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Abstract

Differential geometry is a diverse field which applies principles from calculus to a more

general set of objects. Endowing a smooth manifold with a Riemannian metric allows us to

measure length and angle in a way such that length is positive. This enables us to examine

measures of curvature on a manifold. The study of manifolds with such metrics is called

Riemannian geometry. Using geometric flows associated with tensors, we are able to analyze

the relationship between metrics and curvature. Examining solitons, specifically gradient

solitons, is one way we investigate this relationship.

This thesis focuses on the geometric flows associated with the Bach tensor and the ambient

obstruction tensor. The Bach tensor is realized as the gradient of the Weyl energy functional.

Consequently, the minimizers of the Weyl energy are the metrics where the Bach tensor

vanishes. There are a number of metrics that are widely considered interesting that are

known to be Bach flat. Studying the Bach flow and broadening our understanding of Bach

flat metrics could produce other such metrics. At the crux of our investigation is the fact

that the Bach tensor is divergence-free (in dimension 4) and trace-free. To generalize this

to higher dimensions and maintain these properties, we consider the ambient obstruction

tensor, O. For n “ 4 the ambient obstruction tensor is the Bach tensor.

In this thesis we begin a new program of studying ambient obstruction solitons and

homogeneous gradient Bach solitons. Examining higher dimensions, we establish a number

of results for solitons to the geometric flow for a general tensor q and apply these result to

the ambient obstruction flow. This method enables us to prove that any compact ambient

obstruction soliton with constant scalar curvature is trivial. For n “ 4, we show that any

homogeneous gradient Bach soliton that is steady must be Bach flat, and that the only non-

Bach-flat, shrinking gradient solitons are product metrics on R2ˆS2 and R2ˆH2. Moreover,

we construct a non-Bach-flat expanding homogeneous gradient Bach soliton.
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Ambient Obstruction Solitons and
Homogeneous Gradient Bach Solitons



Introduction

Research in Riemannian geometry aims to answer the question “what is the best metric?”

with the hope that the answer to this question will provide valuable insights into the universe

we inhabit. The word “best” takes on different meanings in different contexts, leading to a

variety of approaches.

Motivating Riemannian Geometry

Before discussing this notion of a “best” metric, we examine the intuition behind some of

the basic objects and tools of Riemannian geometry.

A Riemannian manifold, pM, gq, is a smooth (C8) manifold M paired with a Riemannian

metric, g. Like the dot product we learn in calculus, Riemannian metrics are positive definite

inner products defined on the tangent space, TpM : the space spanned by all tangent vectors

at a point p on M . This metric provides a way to measure length and angle on the manifold.

The idea of congruence inspires our investigation of the origins of curvature. For a more

thorough discussion, refer to [Lee18]. We know that for polygons, combinations of angles

and lengths are sufficient means to guarantee congruence. However, when examining curves

we quickly see that we need a systematic way to consider and quantify the “curviness” of a

curve. The notion of concavity that we learned in calculus seems to do this, so we will use

it as a foundation to build up a notion of curvature.

Broadly speaking, we use the concavity of a curve to identify a best fit circle. The best
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fit circle of radius R at a point p is called the osculating circle. The curvature at that point

is the same as the curvature of the osculating circle:

κ “
1

R
.

This definition is actually quite intuitive. Briefly consider the case where our curve is a circle

of radius R. Since the congruence of two circles depends only on their radii, their curvatures

should depend only on their radii. Furthermore, our intuition says that the smaller a circle

is the “curvier” it is (and vice versa), so it makes sense that the curvature should have an

inverse relationship with the radius.

The last thing we need to do is distinguish between curving up and down. To do so we

need to choose a normal direction and assign a sign based on whether our curve is curving

towards or away from that direction. This is signed curvature. For example, consider a curve

with normal direction defined to be in the direction of the positive y-axis. Then our curve is

curving towards the normal direction and has, say, positive curvature when it is concave up.

It is curving away from the normal direction and has, correspondingly, negative curvature

when it is concave down.

To examine the curvature of a surface, M , at a point, p, we look at the signed curvature

of the curve formed by intersecting a plane, Π, with M at p. Rotating Π produces infinitely

many curves and consequently infinitely many signed curvatures. The largest and smallest

signed curvatures are the principle curvatures κ1 and κ2, respectively. Using the principal

curvatures we can calculate the Gaussian curvature:

K “ κ1κ2.

The Gaussian curvature, though seemingly simple, plays a huge role in our understanding

of Riemannian 2-manifolds.
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Theorem (Theorema Egregium, Gauss). The Gaussian curvature is intrinsic to a surface.

That is, K is preserved by isometries.

This theorem is hugely influential in mathematics and in our daily lives, informing things

even as mundane as how we eat pizza.

Metrics and curvature provide a clear distinction between geometry and topology. Where

topology is focused on examining a manifold regardless of its shape, geometry is focused on

determining that shape. The Gauss-Bonnet Theorem shows that though these two subjects

are different, they are necessarily linked.

Theorem (Gauss-Bonnet Theorem). Consider a compact Riemannian 2-manifold, pM, gq.

Then
ż

M

K dA “ 2πχpMq,

where K is the Gaussian curvature of g and χpMq is its Euler characteristic.

A manifold’s Euler characteristic depends only on its topology (genus). So we have some

sort of constraint on Gaussian curvature given by the manifold’s topology and some con-

straint on topology from the Gaussian curvature, ultimately allowing us to classify compact

manifolds.

In Section 1.1 we will discuss the tools we use to analyze curvature for higher dimensional

manifolds.

Basics of Geometric Flow

Returning to the question of finding the best metric, limiting our scope to Riemannian

metrics allows us to use curvature as a tool to help define what “best” might mean. As

we point out above, there are many ways to measure a manifold’s curvature. We will use

curvature to mean these measures in general. The study of geometric flow evolved as a way

to use curvature to identify best metrics.
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A geometric flow is a differential equation in which the metric is considered as a function

of time, gptq, and is changed over time in accordance with the curvature of the manifold.

Specifically, we define a geometric flow for a general tensor q (or for a general measure of

curvature) as a one parameter family of smooth metrics such that

$

’

’

&

’

’

%

Btg “ q

gp0q “ h.

We call this the q-flow. The geometric flow associated with a tensor enables us to use tools

from differential equations to analyze the relationship between metrics and curvature. This

shift in perspective allows us to examine the behavior of the flow itself, to better understand

how the curvature behaves, and, consequently, to refine the idea of what “best” might mean

for a specific measure of curvature.

One of the major ideas from differential equations is locating and classifying fixed points.

In the study of geometric flows, this manifests as the examination and classification of

solitons. Solitons are solutions to the flow that, over time, change only by diffeomorphism

and/or rescaling. A (normalized) soliton of the q-flow (where q is a general-tensor) is a

metric that satisfies the equation:

1

2
LX g “ cg `

1

2
q,

where X is a vector field and LX g is the Lie derivative of the metric g in the direction of the

vector field X. Note, that we have normalized the equation by scaling q by 1
2
. This scaling

enables us to show that solitons are in fact solutions to the geometric flow in Theorem 2.1.13.

Studying the solitons of a geometric flow provides insight into the nature of the flow while

narrowing down the number of metrics that one is considering. We classify these solitons as

expanding, steady, and shrinking when c ă 0, c “ 0, and c ą 0, respectively.
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Letting X “ ∇f , the resulting solitons are called gradient solitons. Here f is a function

called the potential function. Thus, for a general tensor q, we can say a (normalized) gradient

q-soliton satisfies:

Hess f “ cg `
1

2
q.

Note that we’ve used the fact that L∇f g “ 2 Hess f , where Hess is the Hessian (the matrix

of second derivatives). This choice of vector field serves to improve our understanding of

what we mean by “best” and to get us closer to finding a best metric.

A Quick Note on Homogeneous Manifolds

When beginning the examination of solitons, it is useful to first consider only homogeneous

manifolds. As such, we focus on examining gradient solitons on such manifolds.

A Riemannian manifold pM, gq is homogeneous if for each p and q on M there exists an

isometry, f , such that fppq “ q. Broadly, this means that each point of a manifold “looks

like” all of the other points on the manifold. More concretely, they share specific attributes

such as curvature. From this we see that all homogeneous manifolds have constant scalar

curvature. Classic examples include Rn, Sn, and Hn.

An Overview of our Tensors

We will delve into the following topics more in Chapter 1, but wanted to give the reader

a more condensed overview and to show how this work contributes to the overall goals of

Riemannian geometry.

One way that something can be “best” in mathematics is that it minimizes a functional.

Indeed, we see even the shape of many objects in nature is explained by minimizing func-

tionals. The shape of soap bubbles, for example, minimizes surface area. We know from

calculus that to find the minimum of a function we need to examine its derivative.

To understand why the Bach tensor would be a helpful in our search for the best metric,
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we must begin by considering the Weyl tensor. The Weyl tensor is the conformally invariant

component of the Riemannian curvature tensor. One can think of the Weyl tensor as the

obstruction to a manifold being locally conformally flat. For n “ 4, the Bach tensor is the

gradient of the Weyl energy functional. The minimizers, then, are where the Bach tensor

vanishes. It is known that the Bach tensor vanishes for Einstein metrics and (anti)self-dual

metrics. These three types of metric have historically been considered as candidates for

a best metric, so studying the Bach flow and broadening our understanding of Bach flat

metrics could produce other such metrics. To do so, we investigate homogeneous gradient

Bach solitons. That is, we will look at gradient solitons on homogeneous manifolds using

the Bach tensor, B, as my measure of curvature.

The Bach tensor itself has properties that are useful in expanding the field of geometric

flow. There is an explicit representation of the Bach tensor in arbitrary dimension. Like

the Weyl tensor, the Bach tensor is trace-free for arbitrary n. Moreover, in dimension

n “ 4, the Bach tensor is conformally invariant (of weight ´2) and divergence-free. Since

these properties only hold in this dimension, we limit our examination of the Bach flow to

dimension n “ 4.

Given the utility of the Bach flow, it would be helpful to be able to examine manifolds

where n ‰ 4. However, because the Weyl energy is no longer conformally invariant for n ‰ 4,

the Bach tensor loses many of its properties. We look to changing the functional to get a

better higher dimensional generalization. For even dimensions n ě 4 this functional is the

Q-energy: a similar functional to the Weyl energy that uses the Q-curvature instead of the

Weyl tensor. The gradient of the Q-energy is the ambient obstruction tensor, O. Like the

Bach tensor, the ambient obstruction tensor is trace-free, divergence-free, and conformally

invariant (of weight 2 ´ n). In fact, for n “ 4 the ambient obstruction tensor is the Bach

tensor.
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Summary of Results

My work begins a new program of studying homogeneous ambient obstruction solitons and

homogeneous gradient Bach solitons. In the subsequent sections I will explain the specific

aspects of these flows that make them ideal tools in our search for finding the best metric.

Focusing first on dimension 4, I was able to show that any homogeneous gradient Bach

soliton that is steady must be Bach flat, and that the only non-Bach-flat, shrinking gradient

solitons are product metrics on R2ˆS2 and R2ˆH2. Moreover, I constructed a non-Bach-flat

expanding homogeneous gradient Bach soliton. To extend my work to higher dimensions,

I established a number of results for solitons to the geometric flow for a general tensor q.

Applying these result to the ambient obstruction flow resulted in proving that any compact

ambient obstruction soliton with constant scalar curvature is trivial.

Overview

The dissertation is organized as follows. We begin Chapter 1 with a discussion of the

major curvature tensors. Proceeding, we introduce the Weyl, Bach, and ambient obstruction

tensors. We conclude with a section detailing the geometric flows we will examine and

discussing some of the results from Ricci flow that inspired our search. Next, in Chapter 2

we begin by establishing a number of results for a general tensor q and applying them to

the ambient obstruction tensor. Then we move our focus onto the Bach tensor, beginning

to classify the gradient Bach tensors of homogeneous 4-manifolds. The results of this partial

classification are summarized in Table 2.1.
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Chapter 1

Background

1.1 Riemannian Geometry

We begin the background section with a brief review of Riemannian geometry to get the

reader acquainted with the conventions used.

Recall from the introduction that a Riemannian manifold, pM, gq, is a smooth (C8)

manifold M paired with a Riemannian metric, g, defined on the tangent space of the man-

ifold, TpM , at a point, p. For the duration of this thesis, manifolds can be assumed to be

Riemannian.

1.1.1 Einstein Notation

For the reader unfamiliar with Einstein notation, we provide a brief explanation of the no-

tation. Einstein notation is a notational shorthand in which we replace a sum with repeated

indices, where one is a superscript and the other is a subscript. For example, if we are

working over an n-dimensional manifold:

aiqi “
n
ÿ

i“1

aiqi “ a1q1 ` a
2q2 ` ¨ ¨ ¨ ` a

nqn.

8



This notation serves as a useful shorthand when working with equations expressed in terms

of local coordinates. Moreover, raised indices within a tensor can be lowered using elements

of our metric:

T k
i j “ gkmTimj.

This type of change is particularly useful in Appendix B.

In addition to using this shorthand for summation, mathematicians will also use subscripts

of semi-colons or commas to represent derivatives such as:

Tij;k “ ∇kTij and Tij,k “ ∇kTij.

It should be notated that this notation is not always convenient to write as proper super-

script and subscript pairs. For the sake of this thesis, any repeated indices can be understood

as being summed over.

1.1.2 Basics of Curvature

Continuing to develop an intuition behind curvature of curves and surfaces from the intro-

duction, this section will focus on the tools that we use to measure curvature in a more

general sense. One of the biggest differences in this discussion will be the use of properties

of tensors, such as type changes. For a review of tensors, we refer the reader to [Lee18,

Appendix B].

We know intuitively that measuring curvature means we want to see how “non-flat” a

manifold is. In order to use this intuition we will rely on the flatness criterion as discussed

in [Lee18, Chapter 7], which says a Riemannian manifold is flat if the connection, ∇ satisfies

the following condition:

∇X∇YZ ´∇Y∇XZ “ ∇rX,Y sZ.

A manifold is flat and, in particular, satisfies this equation if it is locally isometric to Eu-
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clidean space. Consequently, the first measure of curvature we will examine is the Rieman-

nain curvature tensor as a (3,1)-tensor:

RpX, Y qZ “ ∇X∇YZ ´∇Y∇XZ ´∇rX,Y sZ.

Based on the flatness criterion above, it is clear that this tensor measures how much a

manifold differs from being flat. Putting this equation in terms of local coordinates:

R l
ijk “ BiΓ

l
jk ´ BjΓ

l
ik ` ΓmjkΓ

l
im ´ ΓmikΓ

l
jm, (1.1)

where

Γkij “
1

2
gkl pBigjl ` Bjgil ´ Blgijq

is the Christoffel symbol. The Riemannian curvature tensor can also be presented as a p4, 0q

tensor:

RmpX, Y, Z,W q “ g pRpX, Y qZ,W q ,

with corresponding equation in local coordinates given by:

Rijkl “ glm
`

BiΓ
m
jk ´ BjΓ

m
ik ` ΓpjkΓ

m
ip ´ ΓpikΓ

m
jp

˘

.

Taking the trace of the Riemannian curvature tensor we get the symmetric 2-tensor, the

Ricci curvature:

Rij “ R k
kij “ gkmRkijm. (1.2)

Taking the trace of the Ricci curvature yields the scalar curvature:

S “ gijRij. (1.3)

While the Ricci curvature and scalar curvature have a geometric interpretation, the tools

10



we’ve presented are not sufficient to thoroughly explain this interpretation.

These two measures of curvature have played a major role in modern mathematics. For

example, we define what it means for a metric to be an Einstein metric by:

Ric “ λg λ P R.

These metrics are considered interesting for a number of reasons including their connections

to physics and their potential uses in higher dimensions. The topic of Einstein metrics for

n “ 4 is something that is often researched. We discuss the impacts of the Ricci flow and

Einstein metrics further in Section 1.5. Further, Hilbert showed that Einstein metrics are

critical points of the total scalar curvature functional:

S “
ż

M

S dVg.

This notion of examining metrics that are the critical points of functionals can be seen in

the motivation behind examining the Bach and ambient obstruction tensors.

1.2 Weyl Tensor

The Weyl tensor has been an object of interest for mathematicians and physicists for decades.

Though the work in this paper focuses on the Weyl energy, we will spend our time here

discussing the origins of the Weyl tensor, its properties, and its self-duality in dimension

n “ 4. We provide reader with additional background and demonstrate the nature of

calculations using the Weyl tensor in Appendix A. We will only consider dimensions n ě 4

in our calculation, since the Weyl tensor is identically zero for n “ 2, 3.

In the broadest sense, the Weyl tensor measures how close a manifold is to being con-

formally flat. More explicitly, a manifold is conformally flat if and only if its Weyl tensor

vanishes [Bes08].

11



The Weyl tensor is typically considered as a (3,1) tensor, but can be given as a (4,0)

tensor:

Wabcd “ Rabcd ` gacPbd ´ gadPbc ´ gbcPad ` gbdPac,

where P is the Schouten tensor given in terms of the Ricci and scalar curvature by:

Pij “
1

n´ 2

ˆ

Rij ´
S

2pn´ 1q
gij

˙

.

For n ě 4, the Weyl tensor is also conformally invariant, so if g̃ “ e´ωg then W̃ “ W .

This property has proved imperative in both the study conformal geometry and the study

of geometric flows.

1.2.1 The Cotton Tensor

Briefly moving away from the Weyl tensor, we take a moment to exam some identities of the

Cotton tensor.

We noted above that the Weyl tensor is identically 0 for n “ 3. However, for n “ 3,

Cijk “ 0 if and only if the manifold is locally conformally flat and thus plays the role of the

Weyl tensor in this dimension. The Cotton tensor is given locally by:

Cijk “ ∇iPjk ´∇jPik.

For n ě 4, the Cotton tensor can also be realized as the divergence of the Weyl tensor, up

to a constant [CC13]. This can be seen in the following definition of the Cotton tensor:

Cijk “ ´
n´ 2

n´ 3
∇lWijkl.

Like the Weyl tensor in n ě 4, for dimension n “ 3 the Cotton tensor is conformally

invariant. In fact, for 3-dimensional Riemannian manifolds, any conformally invariant ir-

12



reducible natural tensors are equivalent with a multiple of the Cotton tensor, modulo a

conformally invariant natural tensor of degree at least 2 in curvature.[GH08, Theorem 1.2].

Lemma 1.2.1 (Properties of the Cotton Tensor).

a. Cijk “ ´Cjik

b. gijCijk “ gikCijk “ 0.

Proof. a.

Cijk “ 2∇lWijkl “ ∇iPjk ´∇jPik

“ ´2∇lWjikl “ ∇jPik ´∇iPjk

“ ´Cjik

b.

gijCijk “ gij∇lWijkl “ ∇lg
ijWijkl “ ∇l0 “ 0

gikCijk “ gik∇lWijkl “ ∇lg
ikWijkl “ ∇l0 “ 0

1.2.2 The Duality of the Weyl Tensor

The Weyl tensor decomposes into self-dual and anti-self-dual components only in dimension

n “ 4. As such, we limit the scope of the following section to n “ 4.

In general, an object is self-dual if it equals its dual. Likewise an object is anti-self-dual

if it equals the opposite its dual.

To understand precisely what it means for a tensor to be (anti)self-dual, we consider

the Hodge ˚ operator as presented by [Jos17, Section 1.8]. In dimension n, the Hodge ˚

operator maps from k forms to n´ k forms. Examining n “ 4, is governed by the following
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equivalences for an orthonormal frame e1, . . . e4:

˚pe1 ^ e2q “ e3 ^ e4 ˚pe1 ^ e3q “ e4 ^ e2 ˚pe1 ^ e4q “ e2 ^ e3

˚pe2 ^ e3q “ e1 ^ e4 ˚pe2 ^ e4q “ e3 ^ e1 ˚pe3 ^ e4q “ e1 ^ e2

Since ˚˚ “ 1, we see that ˚ has eigenvalues ˘1 for corresponding eigenspaces Λ2,˘. Thus,

the Hodge ˚ operator induces the following decomposition of exterior 2-forms:

Λ2
“ Λ2,`

‘ Λ2,´

into self-dual and anti-self-dual components, respectively. Similarly, we are able to decom-

pose the Weyl tensor into self-dual and anti-self dual components:

W “ W`
‘W´.

Appendix A details how the matrix representation of the Riemannian curvature operator

formalizes this decomposition. Further, we discuss the resulting eigenbasis and use it to

prove facts about the Weyl tensor and its components.

1.3 Bach Tensor

The Bach tensor was defined by Rudolph Bach in [Bac21] in 1920 to study conformal rel-

ativity [CC13]. While the Bach tensor takes on more significance in dimension 4, we will

begin by looking at this tensor for general n ě 4.

The Bach tensor is given in local coordinates in terms of the Weyl tensor by, [CC13]:

Bij “
1

n´ 3
∇k∇lWikjl `

1

n´ 2
RklWikjl. (1.4)
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The Bach tensor can be given in terms of the Schouten tensor, P , [Hel20]:

Bij “ glqPij;lq ´ g
lqPil;jq ` P

klWkijl, where Pij “
1

n´ 2

ˆ

Rij ´
S

2pn´ 1q
gij

˙

. (1.5)

The Bach tensor can also be given in terms of the Cotton tensor and Weyl tensor. This

will prove helpful in proving the following fact. Consider the Cotton tensor for arbitrary

dimensions, given by

Cijk “ ´
n´ 2

n´ 3
∇lWijkl.

Then the Bach tensor can be given as follows.

Bij “
1

n´ 3
∇k∇lWikjl `

1

n´ 2
RklWikjl

“
1

n´ 3
∇k

ˆ

´
pn´ 3q

n´ 2
Cikj

˙

`
1

n´ 2
RklWikjl

“
1

n´ 2
∇kCkij `

1

n´ 2
RklWikjl

“
1

n´ 2

`

∇kCkij `R
klWikjl

˘

.

Proceeding, I will prove some well established properties of the Bach tensor which hold

for all dimensions n ě 4.

Fact 1.3.1. The Bach tensor is a symmetric tensor, that is Bij “ Bji.

Proof. We know from the Bianchi identity that Wikjl “ Wjkil `Wijkl. (The proof of this

identity is in Appendix A.) Thus:

Bij ´Bji “
1

n´ 3
∇k∇lWijkl `

1

n´ 2
RklWijkl.

Examining each term we see that:

∇k∇lWijkl “

n
ÿ

k,l“1

∇k∇lWijkl.
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For k “ l Wijkl “ 0 (Appendix A). Moreover, we can choose a basis such that ∇ElEk “ 0.

Splitting the sum and reindexing, we see that the two sums in fact cancel out:

n
ÿ

k,l“1

∇k∇lWijkl “
ÿ

kăl

∇k∇lWijkl `
ÿ

kąl

∇k∇lWijkl

“
ÿ

kăl

∇k∇lWijkl ´
ÿ

kąl

∇k∇lWijlk

“
ÿ

kăl

∇k∇lWijkl ´
ÿ

k1ăl1

∇l1∇k1Wijk1l1

“
ÿ

kăl

∇k∇lWijkl ´
ÿ

k1ăl1

∇k1∇l1Wijkl

“ 0.

Similarly, we see the same thing can be done to the second term using the symmetry of the

Ricci tensor:
n
ÿ

k,l“1

RklWijkl “
ÿ

kăl

RklWijkl `
ÿ

kąl

RklWijkl

“
ÿ

kăl

RklWijkl ´
ÿ

kąl

RlkWijlk

“
ÿ

kăl

∇k∇lWijkl ´
ÿ

k1ăl1

Rk1l1Wijk1l1

“ 0.

Thus Bij ´Bji “ 0. Therefore the Bach tensor is symmetric.

Fact 1.3.2. The Bach tensor is trace-free in arbitrary dimension n ě 4. That is, trpBq “ 0.

Proof. We know from above that:

Bij “
1

n´ 2

`

∇kCkij `R
klWikjl

˘

.

Since both the Cotton and Weyl tensors are trace-free ([CC13], Appendix A), it is clear that

trpBq “ 0.
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Fact 1.3.3. Einstein metrics are Bach flat.

Proof. An Einstein metric is one in which Rij “ λgij. Taking the trace of both sides, we see

that S “ λn. Note that this forces Rij “
S
n
gij.

Examining the Schouten tensor, we see:

Pij “

ˆ

S

n
´
S

6

˙

gij “
´

1´
n

6

¯

λgij.

Using the Schouten tensor definition of the Cotton tensor, we see that:

Cijk “ ∇iPjk ´∇jPik “

ˆ

λ´
λn

6

˙

p∇igjk ´∇jgikq “ 0.

Examining the second term in the Bach tensor:

RklWikjl “
R

n
gklWikjl “

S

n
¨ 0 “ 0.

because the Weyl tensor is trace-free. Thus,

Bij “
1

n´ 2

`

∇kCkij `R
klWikjl

˘

“ 0.

Fact 1.3.4. If pMn, gq is locally conformally flat, that is, if Wijkl “ 0, then Bij “ 0.

Proof. This follows from the fact that

Bij “
1

n´ 3
∇k∇lWikjl `

1

n´ 2
RklWikjl.

17



1.3.1 Dimension 4

Switching gears, we will focus only on dimension n “ 4. This is, in fact, a very natural setting

for the study of the Bach tensor. As mentioned in the introduction, in dimension n “ 4 the

Bach tensor is realized as the negative gradient of the conformally invariant functional given

by:

Wpgq “
ż

M

|Wg|
2dVg.

where Wg is the Weyl tensor and |Wg|
2 “ gipgjqgkrglsWijklWpqrs. This functional has been

studied for decades in the context of physics. This functional, known as the Weyl energy,

has been used historically to study relativity [Bes08]. One commonly referenced fact is that

the Weyl energy is only conformally invariant in dimension 4 [Der83]. Though this fact is

well established in the literature, we prove it here for completeness.

Fact 1.3.5. The Weyl energy is only conformally invariant in dimension 4.

Proof. Consider the Weyl energy:

Wpgq “
ż

M

|Wg|
2dVg “

ż

M

gapgbqgcrgdsWabcdWpqrs dVg.

Consider the conformal mapping such that g̃ “ eωg for some ω P C8pMq. We want to show

that in dimension 4, Wpg̃q “Wpgq. First note that:

dVg̃ “ enωdVg g̃ij “ e´ωgij.
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Examining the Weyl energy, we see that:

Wpg̃q “
ż

M

|Wg̃|
2 dVg̃

“

ż

M

g̃apg̃bqg̃crg̃dsW̃abcdW̃pqrs dVg̃.

“

ż

M

`

e´ωgap
˘ `

e´ωgbq
˘ `

e´ωgcr
˘ `

e´ωgds
˘

WabcdWpqrs e
nωdVg

“

ż

M

e´4ωgapgbqgcrgdsWabcdWpqrs e
nωdVg

“

ż

M

epn´4qω
|Wg|

2 dVg.

Thus Wpg̃q “Wpgq for all g if and only if n “ 4.

Continuing our investigation of dimension n “ 4, we note that the Weyl tensor is self-dual

in dimension 4. These considerations make n “ 4 a natural setting in which to consider the

Bach tensor. Moreover, the four dimensional Bach tensor arises naturally when examining

Huygen’s principle in physics [Sze68].

Examining (1.4) in this context, we see that for n “ 4 the Bach tensor is given by:

Bij “ ∇k∇lWikjl `
1

2
RklWikjl. (1.6)

In addition to being trace-free, for n “ 4 the Bach tensor is symmetric, divergence-free,

and conformally invariant of weight -2. Note, we say that a function is conformally invariant

of weight ´2 if for a positive, smooth function ρ, g̃ “ ρ2g then B̃ “ 1
ρ2
B. Fefferman-Graham

detail why the Bach tensor is only conformally invariant for n “ 4 in [FG12, Chapter 6]. We

show below that it is divergence-free.

Fact 1.3.6. The Bach tensor is only necessarily divergence-free for n “ 4.

19



Proof. From [CC13] we know the divergence of the Bach tensor is given by:

divB “ ∇jBij “
n´ 4

pn´ 2q2
CijkRjk.

Clearly for n “ 4 divB “ 0.

For n ‰ 4, there are conditions that we can place on the manifold (such as being Ricci-

flat) that would force the Bach tensor to be divergence-free. However, the Bach tensor is

not necessarily divergence-free as in dimension 4.

Examining n “ 4 allows us to consider self-dual and anti-self-dual metrics, as described

in Section 1.2.

Proposition 1.3.1. (Anti)self-dual metrics are Bach flat.

Proof. Using [Der83, Lemma 6]. We are able to rewrite the equation for the Weyl energy

using the self-dual and anti-self-dual components:

ż

M

|W pgq|2 “

ż

M

|W`
pgq|2 `

ż

M

|W´
pgq|2.

We also consider the signature formula given by:

τpMq “
1

12π2

ˆ
ż

M

|W`
pgq|2 ´

ż

M

|W´
pgq|2

˙

.

Note that, like the Euler characteristic of a manifold, the signature of a manifold is a topo-

logical invariant [Der83]. (In fact, the relationship between the characteristic and signature

of a manifold is given by the Thorpe inequality.)

Manipulating these equations we see that:

Wpgq “
ż

|W pgq|2 “ 12π2τpMq ` 2

ż

|W´
pgq|2.
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Since the signature of a manifold is a topological invariant, τpMq and, consequently,

12π2τpMq are fixed. Therefore W is minimized when W´pgq “ 0. That is, when out metric,

g, is self-dual.

By [Der83, Lemma 1], we know that a metric on a compact oriented four-manifold M is

a critical point of g Ñ W if and only if its Bach tenser vanishes identically. Since self-dual

metrics are minimizers of W , they are critical points and are therefore Bach Flat.

On the other hand, consider an anti-self-dual metric g, so W`pgq “ 0. By definition,

τpMq ď 0. Since

Wpgq “ 2

ż

|W`
pgq|2 ´

ż

|W pgq|2 “ 12π2τpMq

is minimized when W`pgq “ 0, we know by the same argument as above that g is Bach

flat.

1.3.2 Bach Tensor on Product Manifolds

For a manifold M “ Np1q ˆ Np2q with product metric g “ gp1q ` gp2q the Bach tensor acts

differently on the components depending on their dimensions. For simplicity, we will refer to

a manifold where dim
`

N p1q
˘

“ a and dim
`

N p2q
˘

“ b as an aˆb product manifold. Following

the conventions set by Helliwell [Hel20], we use Greek indices for N p1q and lower case roman

indices for N p2q. Moreover, it should be noted that indices begin at 0.

As Helliwell points out, for a general product manifold

Rαβ “ R
p1q
αβ , Rij “ R

p2q
ij , Rαj “ 0, S “ Sp1q ` Sp2q.

Specifically for a 1ˆ 3 product manifold R00 “ 0 and S “ Sp2q.

For a 1 ˆ 3 product manifold, we see in [DK12] and [Hel20] that the equations for the

component of the Bach tensor are:
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B00 “

ˆ

´
1

12
p∆p2qSp2qq ´

1

4

„

p|Ric |p2qq2 ´
1

3
pSp2qq2

˙

g00,

Bjk “
1

2
∆p2qR

p2q
jk ´

1

12
∆p2qSp2qgjk ´

1

6
S
p2q
; jk ´ 2 trp2qpRicp2qbRicp2qqjk

`
7

6
Sp2qR

p2q
jk `

3

4
p|Ric |p2qq2gjk ´

5

12
pSp2qq2gjk.

(1.7)

Here trpRicbRicqjk “ gilRijRlk

From [DK12], [Ho18], and [Hel20], we see that the 2 ˆ 2 product manifold breaks down

as follows:

Bµν “ ´
1

6
∇µ∇νS

p1q
`

1

6
gp1qµν

„

∇α∇αS
p1q
´

1

2
∇k∇kS

p2q
`

1

4

´

`

Sp2q
˘2
´
`

Sp1q
˘2
¯



,

Bij “ ´
1

6
∇i∇jS

p2q
`

1

6
g
p2q
ij

„

∇k∇kS
p2q
´

1

2
∇α∇αS

p1q
`

1

4

´

`

Sp2q
˘2
´
`

Sp1q
˘2
¯



,

Bαj “ 0.

(1.8)

Note that we’ve used the equations as stated in [Hel20].

We use these equations to find an explicit representation for the Bach tensor in terms of

the metric. The cases investigated in this theses use structure constants to complete this

calculation. This is discussed in more detail in Appendix B, where we go through an example

of computing the Bach tensor of a manifold.

1.4 Ambient Obstruction Tensor

For our study of Bach solitons, it is particularly important that the Bach tensor is divergence-

free and conformally invariant of weight ´2. But these properties are only guaranteed for

n “ 4. Consequently, in order to find a higher dimensional equivalent we examine the first

variation of the functional for even n:

Fn
Qpgq “

ż

M

Qpgq dVg,
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where Qpgq is Branson’s Q-curvature described in [Bra93].

The use of this functional is interesting. The Q curvature is itself a scalar quantity defined

on even-dimensional manifolds. We see that Q lacks some of the conformal properties of

|W |2, specifically Q is not pointwise conformally covariant. However, the functionals Fn
Q are

conformally invariant for arbitrary even n. Moreover Branson uses the Chern-Gauss-Bonnet

theorem to show that, in dimension n “ 4, Fn
Q is related to W by the equation:

F4
Q “ 8π2χpMq ´

1

4
W ,

where χpMq is the Euler characteristic of M . Since χpMq is a topological invariant and a

constant, the functionals have the same critical metrics.

In [FG12], Fefferman and Graham examine the gradient of Fn
Q and introduce the resulting

symmetric 2-tensor, the ambient obstruction tensor, O, for even n ě 4. This tensor can

be also characterized as the obstruction to an n-manifold having a formal power series of

asymptotically hyperbolic Einstein metric (or Poincaré metric) in dimension n ` 1 [BH11],

[GH08]. In fact, this characterization provides the relationship between the Q-curvature and

obstruction tensor, as established in [GZ03], [FG02].

Like the Bach tensor in dimension 4, the ambient obstruction tensor is symmetric, trace-

free, divergence-free, and conformally invariant of weight 2´ n. (A tensor, q, is of weight w

if ĝ “ ρ2g, q̂ “ ρwq, for 0 ă ρ P C8pMq.) The ambient obstruction tensor can be viewed as

a family of even dimensional tensors, where the dimension 4 ambient obstruction tensor is

the Bach tensor.

Explicitly, the ambient obstruction tensor is given by the equation found in [BH11]:

On “
1

p´2q
n
2
´2

`

n
2
´ 2

˘

!

ˆ

∆
n
2
´1P ´

1

2pn´ 1q
∆

n
2
´2∇2S

˙

` Tn´1

P “
1

n´ 2

ˆ

Ric´
1

2pn´ 1q
Sg

˙

,

(1.9)
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where P is the Schouten tensor and Tn´1 is a polynomial natural tensor of order n ´ 1. It

should be noted that the ambient obstruction tensor is given slightly differently in [FG12],

[GH08], and [Lop18]:

Oij “ ∆
n
2
´2

`

P k
ij,k ´ P

k
k ,ij

˘

`

n{2
ÿ

k“2

T n´2k
k pRmq

Tmk pAq “
ÿ

i1`¨¨¨`ik“m

∇i1A ˚ ¨ ¨ ¨ ˚∇ikA.

(1.10)

The reader should note that (1.10) uses Einstein notation to represent the same operations

on the Schouten tensors. This is detailed in Proposition 1.4.1 below. We include (1.10)

because it provides a representation in local coordinate and it illuminates the nature of the

lower order terms. Furthermore, using the definition of the Weyl tensor as seen in Section

1.2, (1.10) quickly yields the following:

Oij “
1

3´ n
∆

n
2
´2∇l∇kWkijl `

n{2
ÿ

k“2

T n´2k
k pRmq.

It is worthwhile to show that (1.9) is, in fact, the same (up to a constant) as (1.10). For

readers unfamiliar with Einstein notation, this will also serve to illuminate some of the

notation used in (1.10).

Proposition 1.4.1. Equation (1.9) is equivalent to (1.10) up to a constant.

Proof. Following the steps shown by Lopez in [Lop18, Proposition 2.3], we first note that:

P k
k “ Pkjg

jk

“
1

n´ 2

„

gjkRkj ´
1

2pn´ 1q
Sgjkgkj



“
1

n´ 2

„

S ´
n

2pn´ 1q
S



“
1

2pn´ 1q
S.
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Using this in our equation and expanding some of the Einstein notation used by [FG12],

[GH08], we see that:

Oij “ ∆
n
2
´2

`

P k
ij,k ´ P

k
k ,ij

˘

`

n{2
ÿ

k“2

T n´2k
k pRmq

“ ∆
n
2
´2

`

∆Pij ´∇j∇iP
k
k

˘

`

n{2
ÿ

k“2

T n´2k
k pRmq

“ ∆
n
2
´1Pij ´∆

n
2
´2∇j∇iP

k
k `

n{2
ÿ

k“2

T n´2k
k pRmq

“ ∆
n
2
´1Pij ´

1

2pn´ 1q
∆

n
2
´2∇j∇iS `

n{2
ÿ

k“2

T n´2k
k pRmq.

Note that equation 1.9 is scaled by the constant:

cn “
1

p´2q
n
2
´2

`

n
2
´ 2

˘

!

This constant will ultimately change how Bahuaud-Helliwell determine Ô and consequently

will change the way they define the ambient obstruction flow in [BH11], [BH15].

In any formulation of the equation, the lower order terms present an obstacle for working

with the ambient obstruction tensor. However, in dimension n “ 4 we know that Oij “ Bij

and for n “ 6:

Oij “ B k
ij,k ´ 2WkijlB

kl
´ 4P k

k Bij ` 8P klCpijqk,l ´ 4Ck l
i Cljk

`2C kl
i Cjkl ` 4P k

k,lC
l
pijq ´ 4WkijlP

k
mP

ml.

25



1.5 Geometric Flows

Below we will restate important definitions in the study of geometric flows, establish the

ambient obstruction and Bach flows, and discuss results from the study of Ricci flow that we

will generalize in Section 2.1. Please refer to the introduction for a more detailed explanation

of the origin and motivation of geometric flows and solitons.

As stated in the introduction, a geometric flow is a differential equation in which the

metric, gptq, is changed over time in accordance with the chosen tensor. For a general

tensor, q, the q-flow is the one parameter family of smooth metrics such that:

$

’

’

&

’

’

%

Btg “ q

gp0q “ h.

(1.11)

Solitons are self-similar solutions to this flow, meaning they are metrics that the flow changes

by diffeomorphism and/or rescaling. More specifically, a (normalized) q-soliton is a metric

that satisfies the equation:

1

2
LX g “ cg `

1

2
q, (1.12)

for vector field X and Lie derivative LX g. As in the introduction, we normalize the equation

to prove Theorem 2.1.13. We classify these solitons as expanding, steady, and shrinking when

c ă 0, c “ 0, and c ą 0, respectively.

Letting X “ ∇f , where f is the potential function, a (normalized) gradient q-soliton

satisfies:

Hess f “ cg `
1

2
q. (1.13)

1.5.1 Ambient Obstruction Flow

As we saw in Section 1.4, the Bach tensor is the four dimensional ambient obstruction tensor.

While we will discuss the Bach flow specifically, one should remember that the definitions
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and results for the ambient obstruction flow apply to the Bach flow as well.

In the last decade Bahuaud-Helliwell, Helliwell, and Lopez have studied flowing a metric

by the ambient obstruction tensor. Bahuaud and Helliwell, in [BH11, Theorem C], consider

the flow given by:

$

’

’

&

’

’

%

Btg “ On ` cnp´1q
n
2

`

∆
n
2
´1S

˘

g

gp0q “ h,

(1.14)

where h is a smooth metric on a compact manifold of even dimension n ě 4 and

cn “
1

2
n
2
´2

`

n
2
´ 2

˘

!pn´ 2qpn´ 1q
.

For n “ 4 we will call this flow the Bach flow, which is given by:

$

’

’

&

’

’

%

Btg “ B ` 1
12

∆Sg

gp0q “ h.

(1.15)

In [BH11, BH15] Bahuaud and Helliwell show short time existence and uniqueness on

compact manifolds for this flow. As Lopez explains in [Lop18], the scalar curvature term

“counteracts the invariance of O under the action of the conformal group on the space of

metrics on M .” Moreover, the addition of this terms serves as a way to make the geometric

flow strongly parabolic, allowing the use of the first part of the DeTurk trick. In [Lop18],

Lopez finds pointwise smoothing estimates and uses them to find an obstruction to long-time

existence and to prove a compactness theorem for the flow (1.14).

Since homogeneous manifolds have constant scalar curvature, the equations for the am-
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bient obstruction flow and Bach flow on homogeneous manifolds are given by:

$

’

’

&

’

’

%

Btg “ On

gp0q “ h

and

$

’

’

&

’

’

%

Btg “ B

gp0q “ h,

(1.16)

respectively. Helliwell uses the latter equation in [Hel20] to study the Bach flow on homoge-

neous compact product manifolds of the form S1 ˆK3.

The solitons of these flows are defined as follows.

Definition 1.5.1. An ambient obstruction soliton is a solution, pM, gq, to the equation:

1

2
LX g “ cg `

1

2

`

On ` cnp´1q
n
2

`

∆
n
2
´1S

˘

g
˘

,

where cn is defined as above. In dimension n “ 4, the ambient obstruction soliton is the

Bach soliton, given by:

1

2
LX g “ cg `

1

2

ˆ

B `
1

12
∆Sg

˙

.

These are called gradient if X “ ∇f , and the corresponding equations are

Hess f “ cg `
1

2

`

On ` cnp´1q
n
2

`

∆
n
2
´1S

˘

g
˘

Hess f “ cg `
1

2

ˆ

B `
1

12
∆Sg

˙

.
(1.17)

This change comes from the following identity:

L∇f gpY, Zq “ gp∇Y∇f, Zq ` gpY,∇Z∇fq “ Hess fpY, Zq ` Hess fpZ, Y q “ 2 Hess fpY, Zq.

Note that, like our general soliton equation, this equation has also been normalized. As

such it is slightly different than the definition in [Ho18]. Moreover, Ho only considers a flow

that aligns with the definition in the case of constant scalar curvature. Taking this into
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account and letting c “ ´1
2
λ we see that the two equations are equivalent.

B “ λg ` LX gpfq

LX gpfq “ ´λg `B
1

2
LX gpfq “ ´

1

2
λg `

1

2
B

1

2
LX gpfq ´

1

2
B “ cg.

Using these definitions, we begin by examining general solitons then focus more on ex-

amining specific Bach solitons.

1.5.2 Ricci Flow Results

Historically, analyzing gradient solitons has provided a lot of insight into the Ricci flow. The

work of Hamilton, Ivey, and Perelman combine to classify 3-dimensional shrinking gradient

Ricci solitons [PW10]. Further, in [Per02], Perelman proves that any compact Ricci soliton

is a gradient Ricci soliton. As we will briefly discuss in Appendix B, Perelman also used

Ricci flow to prove Thurston’s geometrization theorem. Most notably, the study of Ricci

solitons was imperative in Perelman’s proof of the Poincaré Conjecture.

The popularity of the Ricci flow has lead to a great deal of results about Ricci solitons

that the author has used as a basis for generalizations in this paper. On such well known

result is as follows

Theorem 1.5.2. [PW09, Theorem 3.1] A compact Ricci soliton with constant scalar curva-

ture is Einstein.

By the (twice-contracted) second Bianchi identity, we know that:

div Ric “
1

2
∇S.

Thus, the Ricci tensor is divergence-free if and only if the scalar curvature is constant.
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Moreover, for the Ricci tensor requiring constant scalar curvature is similar to the trace-free

condition. Looking to this for inspiration, we get the following result for general q.

Theorem 1.5.3. For a divergence-free, trace-free tensor q, any compact q-soliton is q-flat.

We also establish a generalization of the following theorem and apply said generalization

to the ambient obstruction tensor.

Theorem 1.5.4 (Theorem 1.1, [PW09]). A shrinking compact gradient soliton is rigid with

trivial f if
ż

M

Ricp∇f,∇fq ď 0.

Using this as inspiration, we investigate the implications of this for gradient ambient

obstruction solitons in Theorem 2.1.8 which is as follows.

Theorem. For any compact gradient ambient obstruction soliton

ż

M

Ricp∇f,∇fq dvolg ě 0,

where the integral is zero if and only if f is constant.

The study of Ricci solitons has continued to prove a bountiful source of information and is

still a very large area of research. It is reasonable to hope that the study of gradient solitons

for other flows (specifically the Bach flow and ambient obstruction flow) would prove similarly

fruitful in the understanding of the behavior of the flows and consequently the behaviors of

the tensors themselves.

For further background on Ricci flow, refer to [CLN06, MT07, Top06]. For further reading

about Ricci solitons refer to [Cao06, CK04, CLN06, Der12].

30



Chapter 2

Results

2.1 Results for General Tensor

In this section, we prove a number of statements for a general trace-free and/or divergence-

free tensor q. Applications of the theorem to the ambient obstruction tensor will follow in

subsequent corollaries. For the sake of simplicity, full proofs of these corollaries have been

omitted, but appropriate connections will be made.

Recall from Section 1.4 that the ambient obstruction tensor, On (n even), is trace-free and

divergence-free. However, the reader should note that the tensor affiliated with the general

flow (1.14) does not possess all of these properties. That said, we will often focus on the

homogeneous case in order to define the flow as in (1.16) and to use these properties of the

ambient obstruction tensor.

The following proposition is useful in examining gradient solitons and will be used to

prove later results.

Proposition 2.1.1. Let q be a symmetric two tensor and pM, g, fq a gradient q-soliton
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(1.13). The potential function, f , has the property that

Ricp∇fq “ divQ´
1

2
∇ptrQq,

where Q is the dual (1,1)-tensor of q with respect to g.

Proof. Consider a gradient soliton of the q-flow, given by

Hess f “ cgij `
1

2
qij.

Type changing into (1,1) tensor

∇∇f “ cI `
1

2
Q.

If we simply take the trace of each of the terms, we see that then ∆f “ cn` 1
2

trQ.

Taking the divergence of each term in our soliton equation we see that:

divQ “ divp∇∇fq

“ Ricp∇fq `∇p∆fq

“ Ricp∇fq `∇pcn` 1

2
trQq

“ Ricp∇fq ` 1

2
∇ptrQq.

Thus:

Ricp∇fq “ divQ´
1

2
∇ptrQq.

Using this theorem, we are able to quickly generalize [Ho18, Theorem 3.4] as follows.

Corollary 2.1.2. For any constant trace, divergence-free tensor q, the gradient solitons of

its flow has that property that Ricp∇fq “ 0.
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For the ambient obstruction flow on a non-homogeneous manifold, we see that a gradient

soliton is given by:

Hess f “ cg `
1

2

`

On ` an
`

∆
n
2
´1S

˘

g
˘

,

where

an “
p´1q

n
2

2
n
2
´2

`

n
2
´ 2

˘

!pn´ 2qpn´ 1q
.

Note that an simply combines constant terms in our original definition to help with notation.

Examining this soliton, we get the following corollary.

Corollary 2.1.3. A gradient ambient obstruction soliton with potential function f satisfies

Ricp∇fq “ anp1´ nq ∇
`

∆
n
2
´1S

˘

.

Proof. Consider a gradient ambient obstruction soliton with potential function f . Then

q “ On ` an
`

∆
n
2
´1S

˘

g and consequently

divq “ and
`

∆
n
2
´1S

˘

,

tr q “ nan
`

∆
n
2
´1S

˘

,

∇ tr q “ nan∇
`

∆
n
2
´1S

˘

.

Using Proposition 2.1.1:

Ricp∇fq “ anp1´ nq∇
`

∆
n
2
´1S

˘

.

Remark 2.1.4. For a gradient ambient obstruction soliton with constant scalar curvature

(specifically for homogeneous manifolds) we see that ∆
n
2
´1S “ 0, so Ricp∇fq “ 0.

The following lemma appears to be well known, but we include the proof for completeness.
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Lemma 2.1.5. For any symmetric (0,2)-tensor field ψ and vector field ξ:

xLξ g, ψy “ 2divpiξψq ´ 2pdivψqξ,

where iξψ is a 1-form such that iξψp¨q “ ψpξ, ¨q

Proof. Consider a symmetric (0,2)-tensor field ψ and a vector field ξ. For a (0,2)-tensor A,

we know that Apx, yq “ gpApxq, yq, so:

xA,By “
ÿ

i

gpApeiq, Bpeiqq “
ÿ

i

Apei, Bpeiqq,

where B is a (1,1)-tensor.

Consider the Lie derivative as our (0,2)-tensor, and ψ a (1,1)-tensor. First, examining

the type change, consider ψ as a (0,2)-tensor:

ψpX, Y q “ gpψpXq, Y q ùñ ψpX,Ejq “ gpψpXq, Ejq ùñ ψpXq “
ÿ

j

gpψpXq, EjqEj.

Next, we know that:

divpιξψq “
ÿ

i

p∇EiιξψqpEiq “
ÿ

i

∇Eiψ pξ, Eiq “
ÿ

i

∇Eig pψpEiq, ξq ,

pdivψqpξq “
ÿ

i

gpξ,∇EipψpEiqqq.
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Then

xLξ g, ψy “
ÿ

i

Lξ gpEi, ψpEiqq

“
ÿ

i

g p∇Eiξ, ψpEiqq `
ÿ

i

g
`

Ei,∇ψpEiqξ
˘

“
ÿ

i

g p∇Eiξ, gpψpEiq, EjqEjq `
ÿ

i

g
`

Ei,∇gpψpEiq,EjqEjξ
˘

“
ÿ

i

gpψpEiq, Ejqgp∇Eiξ, Ejq `
ÿ

i

gpψpEiq, EjqgpEi,∇Ejξq

“ 2
ÿ

i

gpψpEiq, Ejqgp∇Eiξ, Ejq

“ 2
ÿ

i

pgp∇Eiξ, ψpEiqq

“ 2
ÿ

i

r∇Eigpξ, ψpEiqq ´ gpX,∇EipψpEiqqqs

“ 2divιξψ ´ 2pdivψqpξq.

Thus, the identity holds.

We use this fact to prove the following lemma for compact solitons of a general q-flow.

Note that these solitons are not necessarily gradient solitons.

Lemma 2.1.6. Let pM, g,Xq be an n-dimensional compact soliton to the q-flow, (1.12).

Then:

a.

ż

M

||LX g||2 dvolg “ ´2

ż

M

divpqqpXq dvolg.

b. If q is divergence-free, then X is Killing.

c. If q is divergence-free and trace-free, then pM, gijq must be q-flat.

Proof. a. Consider the q-soliton, 1
2
LX g “ cg ` 1

2
q. We know that for any vector field ξ

on M

xLξ g, ψy “ 2divpiξψq ´ 2pdivψqpξq

where iξψp¨q “ ψpξ, ¨q.
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Note that the soliton can be written as q “ LX ´2cg. Examining the divergence of

this equation:

divqij “ divpLX gq ´ 2cdivpgijq “ divpLX gq.

Using Lemma 2.1.5, we see that letting ψ “ LX g and ξ “ X:

xLX g,LX gy “ ||LX g||2 “ 2divpiX Lx gq´2divpLX gqpXq “ 2divpiX Lx gq´2divpqqpXq.

Integrating over M we see that since M is compact and has no boundary:

ż

M

||LX g||2 dvolg “ 2

ż

M

divpiX Lx gq dvolg ´ 2

ż

M

divpqqpXq dvolg

“ ´2

ż

M

divpqqpXqq dvolg.

b. If q is divergence-free part (a) shows that
ş

M
||LX g||2 dvolg “ 0. Thus, LX g “ 0 and

consequently X is Killing.

c. Suppose that q is divergence-free and trace-free. From (b), this means that qij “ ´2cgij.

Taking the trace of both sides we see that 0 “ ´2nc and thus c “ 0. Thus qij “ 0 and

subsequently pM, gijq is q-flat.

Corollary 2.1.7. Let pM, g,Xq be an n-dimensional compact ambient obstruction soliton

with constant scalar curvature. Then
ş

M
||LX g||2 dvolg “ 0, X is Killing, and M is O-flat.

Proof. Since M has constant scalar curvature we know that the flow is given by (1.16). Thus,

we consider q “ On. Since O is divergence-free and trace-free, the conclusion follows directly

from Lemma 2.1.6
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In particular, Corollary 2.1.7 shows that any homogeneous compact ambient obstruction

soliton is O-flat.

Proceeding to examine the non-homogeneous, gradient case we have the following in-

equality. This inequality was inspired by [PW09, Theorem 1.1] as mentioned in Section

1.5.

Theorem 2.1.8. For any compact gradient ambient obstruction soliton pM, g, fq

ż

M

Ricp∇f,∇fq dvolg ě 0,

where the integral is zero if and only if f is constant.

Proof. Consider an n-dimensional compact gradient ambient obstruction soliton, pM, g, fq.

Applying Lemma 2.1.6, let q “ O and let X “ ∇f . From Corollary 2.1.3:

divQ “ an∇
`

∆
n
2
´1S

˘

“
an

1´ n
p1´ nq∇

`

∆
n
2
´1S

˘

“
1

1´ n
Ricp∇fq.

By Lemma 2.1.6:

0 ď

ż

M

||L∇f g||
2 dvolg “ ´2

ż

M

divpqqp∇fqq dvolg “
2

n´ 1

ż

M

Ric p∇f,∇fq dvolg.

Thus
ş

M
Ricp∇f,∇fq dvolg ě 0.

Suppose
ş

M
Ricp∇f,∇fq dvolg “ 0.

Since
ż

M

||L∇f g||
2 dvolg “

2

n´ 1

ż

M

Ric p∇f,∇fq dvolg,

if the right hand side is zero then L∇f pgq “ 0 and consequently Hess f “ 0. Since M is

compact this implies that f is constant. If f is constant ∇f “ 0 then clearly Ricp∇fq “ 0.

Therefore, the integral is zero if and only if f is constant
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Remark 2.1.9. A soliton is defined to be stationary if f is constant. Thus Theorem 2.1.8

implies that a compact gradient ambient obstruction soliton with non-positive Ricci curvature

must be stationary.

We note that in general, stationary gradient ambient obstruction solitons are characterized

by the following proposition.

Proposition 2.1.10. If pM, g, fq is a stationary gradient ambient obstruction soliton, then

pM, gq is O-flat. If pM, gq is also compact then S is constant.

Proof. Consider a stationary gradient ambient obstruction soliton, pM, g, fq. Since the soli-

ton is stationary, f is constant. Consequently Hess f “ 0 and thus q “ ´2cg. Since

q “ On ` an
`

∆
n
2
´1S

˘

g,

On “
`

´an
`

∆
n
2
´1S

˘

´ 2c
˘

g.

Taking the trace of both sides:

0 “ n
`

´an
`

∆
n
2
´1S

˘

´ 2c
˘

.

Thus

0 “ ´an
`

∆
n
2
´1S

˘

´ 2c.

This forces On “ 0, so that soliton is O-flat. Furthermore:

∆
n
2
´1S “

2c

an

is constant. If M is compact, this implies that S is constant.

Remark 2.1.11. The converse of Proposition 2.1.10 is true in the compact case. That is, a

compact gradient ambient obstruction soliton that is O-flat and has constant scalar curvature

is stationary. Constant scalar curvature and O-flat imply that Hess f “ cg. Compactness
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forces the manifold to have a maximum and minimum so Hess f “ 0. Appealing once more

to compactness, this forces f to be constant and our soliton to be stationary.

Though the following lemma is not necessary when studying when ambient obstruction

solitons are stationary (this was taken care of in Corollary 2.1.7), it does give another criteria

for when a q-soliton is stationary.

Proposition 2.1.12. For a trace-free tensor q, any compact gradient soliton to the q-flow

must be q-flat.

Proof. Generalizing from [Ho18], consider a gradient q-soliton (1.13). By assumption trpqq “

0, so taking the trace of both sides yields ∆f “ cn. Integrating over M :

0 “

ż

M

cn´∆f dvolg “ cn V olpM, gq.

Thus c “ 0. Further, ∆f “ 0n ` 0 so ∆f “ 0, that is, f is harmonic. Since M is compact,

f must be constant.

Therefore qij “ 2 Hess f ´ 2cgij “ 0, so any compact gradient soliton is q-flat.

Changing directions slightly, we will show that for a general tensor q with certain scaling

properties that a gradient q-soliton is a self similar solution to the q-flow. This observation

appears to be made first by Lauret [Lau16]. To do so we will follow the proof from [CLN06,

Chapter 4] which shows that gradient Ricci solitons are self-similar solutions to the Ricci

flow. Following our proof, we will apply the theorem to the ambient obstruction flow in both

the homogeneous and non-homogeneous cases. In [Lau19] and [Lau16], Lauret shows that

the following theorem is true for general, non-gradient solitons and can be made into an if

and only if statement. We have chosen to focus on the case of gradient solitons. Our goal in

including the following proof is to motivate our choice to modify the equation for a soliton
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by including a factor of 1
2

and to show a more explicit proof of this theorem.

Theorem 2.1.13. Consider any tensor q with the property that when the metric is scaled

by a constant λ P R:

g̃ “ λg ùñ q̃ “ λ
w
2 q.

Consider a complete gradient q soliton pMn, h, f0, cq, that is:

Hessh f0 “ ch`
1

2
qphq.

There exists an ε ą 0 such that for all t P p´ε, εq there is a solution gt of the q flow with

g0 “ h, diffeomorphisms ϕt with ϕ0 “ 1Mn, and functions fptq “ ft with fp0q “ f0, such

that:

1. τ is scales the metric according to the function:

τt :“

$

’

’

&

’

’

%

e1´2ct w “ 2

`

1´ 2c
`

1´ w
2

˘

t
˘

1
1´w2 w ‰ 2,

2. The vector field Xt :“ τ
w
2
´1

t ∇hf0 exists,

3. ϕt : Mn ÑMn is the 1-parameter family of diffeomorphisms generated by Xt. So:

B

Bt
ϕtpxq “ τ

w
2
´1

t p∇hf0q pϕtpxqq,

4. gt is the pull back by ϕt of h up to the scale factor τt:

gt “ τtϕ
˚
t h,
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5. ft is the pull back by ϕt of f0:

ft “ f0 ˝ ϕt “ ϕ˚t pf0q.

Moreover

Hessgt ft “
c

τt
gt `

1

2
pqpgtqq

or equivalently

qpgtq “ ´
2c

τt
gt ` 2 Hessgt ft

and

Bf

Bt
ptq “ τ

w
2 |∇gtft|

2
gt
.

Proof. Construct a 1-parameter family of diffeomorphisms ϕt : Mn Ñ Mn generated by

vector field Xt “ τ
w
2
´1∇hf0 defined for all t such that t P p´ε, εq. Define ft “ f0 ˝ ϕt and

gt “ τtϕ
˚
t h.

B

Bt

ˇ

ˇ

ˇ

ˇ

t“t0

gt “
B

Bt

ˇ

ˇ

ˇ

ˇ

t“t0

pτtϕ
˚
t hq “

ˆ

B

Bt
τt

˙

ϕ˚t0h` τt0
B

Bt

ˇ

ˇ

t“t0
ϕ˚t h.

Using Remark 1.24 from [CLN06] we are able to assess the derivative of the pullback:

τt0
B

Bt

ˇ

ˇ

ˇ

ˇ

t“t0

ϕ˚t h “ τt0 LY ptq
`

ϕ˚t0h
˘

“ LY ptq
`

τt0ϕ
˚
t0
h
˘

,

where

Y ptq :“
B

Bt

ˇ

ˇ

ˇ

ˇ

t“t0

`

ϕ´1
t0
˝ ϕt

˘

“ pϕ´1
t0
q˚
B

Bt

ˇ

ˇ

ˇ

ˇ

t“t0

ϕt.

Note that for g̃ “ λg:

gp∇gf,Xq “ dfpXq “ g̃p∇g̃f,Xq “ λgp∇g̃f,Xq.
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So 1
λ
∇gf “ ∇g̃f . Therefore:

∇gt0
ft0 “ ∇τt0ϕ

˚
t0
hft0 “

1

τt0
∇ϕ˚t0

hft0 “
1

τt0
∇ϕ˚t0

hϕ
˚
t0
f0 “

1

τt0
ϕ˚t0p∇hf0q “ ϕ˚t0

ˆ

1

τt0
∇hf0

˙

.

Thus

B

Bt

ˇ

ˇ

ˇ

ˇ

t“t0

ϕt “ τ
w
2
´1

t0 ∇hf0 “ τ
w
2
t0

ˆ

1

τt0
∇hf0

˙

“ τ
w
2
t0

`

pϕt0q˚
`

∇gt0
ft0

˘˘

.

Using this, we are able to evaluate the desired derivative and find one term of our initial

sum:

τt0
B

Bt

ˇ

ˇ

ˇ

ˇ

t“t0

ϕ˚t h “ τt0 LY ptq
`

ϕ˚t0h
˘

“ L
τ
w
2
t0

∇gt0 ft0

`

τt0ϕ
˚
t0
h
˘

“ τ
w
2
t0 L∇gt0 ft0

gt0 .

To evaluate the derivative of τ we must consider each case.

Case 1. For w “ 2 define τt “ e1´2ct. Then:

ˆ

B

Bt
τt

˙

ϕ˚t0h “ ´2cτϕ˚t0h

“ ´2cgpt0q.

Case 2. For w ‰ 2 define τt “
`

1´ 2c
`

1´ w
2

˘

t
˘

1
1´w2 . We can compute the following:

ˆ

B

Bt
τt

˙

ϕ˚t0h “
1

1´ w
2

´

1´ 2c
´

1´
w

2

¯

t0

¯
1

1´w2
´1 ´

´2c
´

1´
w

2

¯¯

`

ϕ˚t0h
˘

“ ´2c
´

1´ 2c
´

1´
w

2

¯

t0

¯

w{2
1´w2

`

ϕ˚t0h
˘

“ ´2cτ
w
2
t0

ˆ

τt0ϕ
˚
t0
h

τt0

˙

“ ´2cτ
w
2
´1

t0 gpt0q.

Thus we see that for any w,

ˆ

B

Bt
τt

˙

ϕ˚t0h “ ´2cτ
w
2
´1

t0 gpt0q.

42



Returning to our original derivative, we see that for general t:

B

Bt
gt “´ 2cτ

w
2
´1

t0 gt ` τ
w
2
t0 L∇gtft gptq

“τ
w
2
t0

ˆ

´2c

τt
gptq ` 2∇gt∇gtft

˙

.

Applying [CLN06] Exercise 1.23 to q we see:

qpgtq “ qpτtϕ
˚
t hq

“ τ
w
2
t ϕ

˚
t pqphqq

“ τ
w
2
t ϕ

˚
t p´2ch` 2 Hessh f0q

“ τ
w
2
t ϕ

˚
t p´2ch` L∇hf0 hq

“ τ
w
2
t

ˆ

´2c

τt
gt ` L∇gtft gptq

˙

“ τ
w
2
t

ˆ

´2c

τt
gt ` 2 Hessgt ft

˙

“
B

Bt
gt.

Hence, there exists a solution gt to the flow with the desired properties.

Looking at the derivative of the potential function we see that:

Bftpxq

Bt
“
B

Bt
f0pϕtpxqq

“ lim
ηÑ0

f0pϕt`ηpxqq ´ f0pϕtpxqq

η

“ h

ˆ

∇hf0,
B

Bt
ϕt

˙

“ h
`

∇hf0, τ
w
2
´1∇hf0pϕtpxqq

˘

“ τ
w
2
´1h p∇hft,∇hftpxqq

“ τ
w
2
´1 1

τ
gt pτ∇gtft, τ∇gtftpxqq

“ τ
w
2 |∇gtft|

2
gt
.
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Remark 2.1.14. If the vector field Xt “ τ
w
2
´1

t ∇hf0 is complete then the flow exists for all

t such that τt ą 0.

Remark 2.1.15. One such tensor q with the necessary weighting property is a conformally

invariant tensor of weight w. That is, a tensor T such that for g̃ “ ρ2g, then T̃ “ ρwT for

a smooth positive function ρ.

Corollary 2.1.16. The gradient solitons of the ambient obstruction flow are self similar

solutions to the ambient obstruction flow.

Proof. Consider the tensor provided by the ambient obstruction flow:

On ` cnp´1q
n
2

`

∆
n
2
´1S

˘

g.

We know that the ambient obstruction tensor is of conformal weight 2´ n, and is conse-

quently a tensor q described by Theorem 2.1.13. In the homogeneous case, or more generally

the constant scalar curvature case, we are able to directly apply the theorem.

To examine the non-homogeneous case we must also investigate the scaling properties

of the scalar curvature term. A simple calculation (shown in Appendix C) shows that for

g̃ “ λ2g:

∆̃S̃g̃ “
1

λ2
∆Sg.

Using induction one can show that this generalizes to:

∆̃kS̃g̃ “
1

λ2k
∆kSg.

Thus for k “ n
2
´ 1

∆̃
n
2
´1S̃g̃ “

1

λn´2
∆kSg “ λ2´n∆kSg.
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That is, the scalar curvature term is scaled by a factor of 2 ´ n and consequently has the

same scaling properties as the ambient obstruction tensor.

Applying Theorem 2.1.13 with w “ 2´n, we see that this implies that with the appropriate

choice of τ and ϕ a gradient ambient obstruction soliton is a self-similar solution to the

ambient obstruction flow.

As Lauret shows, Corollary 2.1.16 is also true for non-gradient solitons. Turning our

attention to noncompact, homogeneous solitons we consider recent theorem of Petersen and

Wylie [PW20]. This theorem is a key part of understanding homogeneous gradient Bach

solitons as we see in Section 2.2.

Theorem 2.1.17 (Petersen-Wylie). Let pM, gq be a homogeneous manifold and q̃ an isom-

etry invariant symmetric two-tensor which is divergence-free. If there is a non-constant

function such that Hessf “ q̃ then pM, gq is a product metric N ˆRk and f is a function on

the Euclidean factor.

For a divergence-free tensor q, we apply this theorem to homogeneous gradient q solitons

by simply letting q̃ “ cg` 1
2
q. Then q̃ is the sum of isometry invariant symmetric two-tensors

that are divergence-free and is itself such a tensor. Applying this theorem to homogeneous

manifolds, we are able limit the ambient obstruction flow to the flow given by (1.16). Since

O is a divergence-free, isometry invariant, symmetric two-tensor, we can let q “ On resulting

in the following corollary.

Corollary 2.1.18. If pM, gq is a homogeneous gradient ambient obstruction soliton, then

either M is stationary or it splits as a product Rk ˆN and f is a function on the Euclidean

factor.

This theorem informs our approach to classifying homogeneous gradient Bach solitons in

the next section.
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2.2 Gradient Bach Solitons

In order to examine and classify the gradient solitons of the Bach flow on homogeneous

4-manifolds, we consider the four configurations of homogeneous 4-manifolds that are found

by “pulling off copies of R”. More explicitly, by Theorem 2.1.17, the solitons will be of the

form R4, R3 ˆ N1, R2 ˆ N2, R ˆ N3, or N4 (where Nk is necessarily homogeneous). The

first and last case we will call non-split manifolds, the others may be called the 3ˆ 1, 2ˆ 2,

and 1 ˆ 3 cases respectively. For each of these cases (and for the remainder of the paper)

it will be assumed that the product manifolds are equipped with the appropriate product

metric g “ g0 ˆ gN . Table 1 summarizes our findings regarding each type and thus proves

the following general theorem.

Theorem 2.2.1. Any homogeneous gradient Bach soliton that is steady must be Bach flat

and the only non-Bach-flat shrinking solitons are product metrics on R2 ˆ S2 and R2 ˆH2.

Remark 2.2.2. There are non-trivial homogeneous 4-dimensional Bach flat metrics. For

example, Einstein metrics and (anti)self-dual metrics are Bach flat. Moreover there is a

classification of simply connected homogeneous Bach-flat 4-manifolds. (See [AGS13] and

[CnLGMGR`19].)

Remark 2.2.3. There are non-Bach-flat expanding homogeneous gradient Bach solitons.

We find one such soliton on R ˆ S3 with metric g “ g0 ˆ gSUp2q. We show this is the only

expanding soliton on a manifold of the form RˆN3 where N3 is a unimodular Lie group.

Setting up the conventions used throughout this section, recall from (1.13) we know that

for homogeneous manifolds the equation for a gradient Bach soliton is given by:

Hess f “ cg `
1

2
B,
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and can be represented in coordinates as:

∇i∇jf “ cgij `
1

2
Bij.

In order to make the following proofs more clear, we will consider how the above equation

can be given by matrices. In order to do this we will establish conventions that will hold

for the remainder of the section unless otherwise noted. We will always choose a basis so

both the metric and the Bach tensor are diagonal. (This is always possible, per the spectral

theorem.) Since the metric and the Bach tensor are diagonal, Hess f must also be diagonal so

∇i∇jf “ 0 for i ‰ j. One very important statement in Theorem 2.1.17 is that the potential

function depends on only the Euclidean factor of the product manifold. Let ∇i∇if “ fii.

Thus, in general we see that the gradient Bach solitons can be represented by the following

equality:

»

—

—

—

—

—

—

—

–

f00 0 0 0

0 f11 0 0

0 0 f22 0

0 0 0 f33

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“ c

»

—

—

—

—

—

—

—

–

g00 0 0 0

0 g11 0 0

0 0 g22 0

0 0 0 g33

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

`
1

2

»

—

—

—

—

—

—

—

–

B00 0 0 0

0 B11 0 0

0 0 B22 0

0 0 0 B33

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

To prove Theorem 2.2.1, we will simply examine each type of manifold and assess the

solitons. The following table will summarize this investigation with one notable exception: in

the RˆN3 case we are able to prove that non-Bach-flat gradient solitons must be expanding.

It should also be noted that we have not completed the classification of manifolds of type

R ˆ N3, but this is not necessary to prove Theorem 2.2.1. We expand on our choice of

3-manifolds in Appendix B.
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Split Manifold Type of Soliton Permissible Metrics Potential
Function

N4

R4 Gaussian Bach flat (any) fpx, y, z, wq “
cpx2`y2`z2`

w2q`ax` by`
dz ` hw ` k

N4 Stationary Bach flat fpx, y, z, wq “
k

R3 ˆN1 Steady Bach flat (any) fpx, y, zq “
ax`by`dz`k

R2 ˆN2

R2 ˆ R2 Steady Bach flat (any) fpx, yq “
ax` by ` d

R2 ˆ S2 Shrinking See [Ho18] fpx, yq “
cpx2 ` y2q `

ax` by ` d

R2 ˆH2 Shrinking See [Ho18] fpx, yq “
cpx2 ` y2q `

ax` by ` d

RˆN3

Rˆ R3 Steady Bach flat (any) fpxq “ ax` b

RˆNil — None —

Rˆ Solv — None —

Rˆ xSLp2,Rq — None —

Rˆ pRˆH2q — None —

Rˆ pRˆ S2q — None —

Rˆ Ep2q Steady Bach flat (g11 “ g22) fpxq “ ax` b

RˆH3 Steady Bach flat fpxq “ ax` b

Rˆ S3
Steady Bach flat (g11 “ g22 “ g33) fpxq “ ax` b

Expanding g11 “ g22 “ 4g33 fpxq “
2cx2 ` ax` b

Table 2.1: Summary of Results
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2.2.1 Non-split Manifolds

Theorem 2.2.4. pR4, g0q is a Gaussian soliton.

Proof. We know from the equation for the Bach tensor that pR4, g0q is Bach flat, that is,

Bij “ 0 for all i, j “ 0, 1, 2, 3, so Hess f “ cg. By Theorem 2.1.17, f is a function on R4.

Thus for any orthonormal basis, R4 is a gradient Bach soliton with potential function

fpx, y, z, wq “
1

2
cpx2

` y2
` z2

` w2
q ` ax` by ` dz ` hw ` k

for a, b, d, h, k P R.

Since there are no restrictions on c, we see that this is the Gaussian soliton.

Proposition 2.2.5. Consider a non-split, homogeneous 4-manifold N4 ‰ R4 with metric

gN . Then N4 is a gradient Bach soliton if and only if it is Bach flat.

Proof. Consider a non-split, homogeneous 4-manifold N4 with metric gN . By the converse

of Theorem 2.1.17, since N4 is not a product manifold, it must have constant potential

function and is therefore stationary. Since the potential function is constant, Hess f “ 0.

Consequently, any soliton has the form ´1
2
B “ cg. Taking the trace of each side we see that

0 “ ´
1

2
trB “ tr cg “ 4c,

and so it is necessarily true that c “ 0 and the soliton is steady.

Since c “ 0 always, B “ 0 always and thus the manifold must be Bach flat.
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2.2.2 Manifolds of the form R3 ˆN 1

Remark 2.2.6. For a homogeneous manifold of the form R3ˆN1 with metric g “ g0ˆ gN ,

we know that N1 “ R1 or S1. Thus any manifold of this form is flat and consequently Bach

flat.

Proposition 2.2.7. Homogeneous manifolds of the form R3 ˆN1 with metric g “ g0 ˆ gN

are steady gradient Bach solitons with linear potential functions.

Proof. Consider a homogeneous manifold of the form R3 ˆN1 with metric g “ g0 ˆ gN . We

know from Remark 2.2.6 that any manifold of this form is Bach flat. So for any gradient

Bach soliton Hess f “ cg. By Theorem 2.1.17 we know that fpx, y, zq : R3 Ñ R. So

∇3∇3f “ 0 “ cg33. Since the metric is positive definite, c “ 0. Therefore, the gradient Bach

solitons are steady.

Consequently Hess f “ 0, so fxx “ fyy “ fzz “ 0. Thus fpx, y, zq “ ax` by ` cz ` d.

2.2.3 Manifolds of the form R2 ˆN 2

In his 2018 paper, [Ho18], Ho finds homogeneous gradient solitons of the form R2 ˆN2. Ho

proves that both R2 ˆ S2 and R2 ˆH2 is a nontrivial soliton of the form:

Hess f “ B `
1

12
g

for any function f of the form fpx, yq “ 1
12
px2 ` y2q ` k. Note the difference between Ho’s

definition of a gradient Bach soliton and that of this paper. Ho has chosen to place the

metric term on the right hand side of the equation switching the conventions of shrinking/

expanding. We will prove that Ho’s examples are the only examples of this type.

Theorem 2.2.8. If a homogeneous manifold of the form R2 ˆ N2 equipped with product

metric g0 ˆ gN is a non-Bach-flat gradient Bach soliton, then it is a shrinking soliton. Fur-
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thermore, the soliton is steady if and only if it is Bach flat.

Proof. Consider a homogeneous manifold of R2ˆN2. Using (1.8) where M p1q “ R2, M p2q “

N2, Sp1q “ 0 and Sp2q “ SN are the respective scalar curvatures, and g0 and gN are their

respective metrics. Recall that homogeneous 2-manifolds have constant scalar curvature,

thus we see that:

B00 “
1

12
pSNq

2g00 B11 “
1

12
pSNq

2g11 B22 “ ´
1

12
pSNq

2g22 B33 “ ´
1

12
pSNq

2g33.

Since R2 ˆN2 is a gradient Bach soliton, the following system must hold.

»

—

—

—

—

—

—

—

–

fxxg00 0 0 0

0 fyyg11 0 0

0 0 0 0

0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

–

`

1
24
pSNq

2 ` c
˘

g00 0 0 0

0
`

1
24
pSNq

2 ` c
˘

g11 0 0

0 0
`

´1
24
pSNq

2 ` c
˘

g22 0

0 0 0
`

´1
24
pSNq

2 ` c
˘

g33

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Thus 0 “
`

´1
24
pSNq

2 ` c
˘

gii for i “ 2, 3. Since the metric is positive definite, we know

that c “ 1
24
pSNq

2. Thus c ě 0 and the soliton must be steady or shrinking.

The soliton is steady if and only if SN “ 0 which happens if and only if the manifold is

Bach flat.

If the manifold is non-Bach-flat, then c ą 0 and soliton must be shrinking.
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Scaling S2 and H2 so that SS2 “ 1 “ ´SH2 , we see that c “ 1
24

and the potential function

is of the form fpx, yq “ 1
24
px` yq2` ax` by` d. Again, this differs slightly from Ho because

of our initial definition of a gradient Bach soliton. This confirms that the gradient solitons

found by Ho are in fact the only gradient solitons on R2 ˆ S2 and R2 ˆH2 up to scaling.

Corollary 2.2.9. The potential function of a steady gradient Bach soliton of the form R2ˆ

N2 equipped with product metric g0 ˆ gN must be linear.

Proof. Since R2ˆN2 must be steady, we know that fxx “ fyy “ 0. Recall from the beginning

of this section that the Hessian must be diagonal, and consequently fxy “ fyx “ 0. It follows

that fpx, yq “ ax` by ` k.

Corollary 2.2.10. The manifold R2ˆR2 with metric g “ g0ˆgN , where gN is a flat metric,

is a steady gradient Bach soliton with linear potential function.

Proof. Consider a homogeneous manifold of R2 ˆ R2. Using (1.8), we know that R2 ˆ R2

is Bach flat. By Theorem 2.2.8 we know that the soliton is steady. By Corollary 2.2.9 the

potential function must be linear.

2.2.4 Manifolds of the form RˆN 3

We begin by stating and proving statements that apply to all homogeneous manifolds of the

form RˆN3, then we will examine specific manifolds of this form.

A few notes before stating the theorem. We will look at a potential function f : RÑ R.

Since we use x in later computations to mean something else, we have chosen to make f a

function of r P R. Furthermore, note that in this potential function c P R is the same c such

that Hess f “ cg ` 1
2
B. Thus, we have a steady soliton, the potential function necessarily

lacks that term.
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Lemma 2.2.11. A homogeneous gradient Bach soliton of the form R ˆ N3 with metric

g “ g0 ˆ gN has potential function of the form fprq “ 2cr2 ` ar ` b for a, b P R.

Proof. Since the manifold is a soliton, we know that Hess f “ cg ` 1
2
B. By Theorem 2.1.17

that f is a function on r P R and consequently tr Hess f “ f2prq. Since the Bach tensor is

trace-free:

tr Hess f “ trpcgq ` trB ùñ f2prq “ 4c.

Using calculus we see that this implies that fprq “ 2cr2 ` ar ` b for a, b P R.

In order to examine specific manifolds, we will need the following theorem. This theorem

enables us to use algebra to determine which metrics will produce solitons.

Theorem 2.2.12. Consider a homogeneous manifold of the form R ˆ N3 equipped with

metric g “ g0 ˆ gN . The manifold is a gradient Bach soliton if and only if

B11

g11

“
B22

g22

“
B33

g33

“ ´2c for c P R. (2.1)

Proof. Consider a manifold of the form RˆN3 equipped with metric g “ g0 ˆ gN . Suppose

that this manifold is a gradient Bach soliton. Then:

Hess f “ cg `
1

2
B,

where f : RÑ R. Examining the components of the flow:

»

—

—

—

—

—

—

—

–

f2g00 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“ c

»

—

—

—

—

—

—

—

–

g00 0 0 0

0 g11 0 0

0 0 g22 0

0 0 0 g33

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

`
1

2

»

—

—

—

—

—

—

—

–

B00 0 0 0

0 B11 0 0

0 0 B22 0

0 0 0 B33

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.
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This system yields the following equalities.

f2g00 ´
1

2
B00 “ cg00 ´

1

2
B11 “ cg11 ´

1

2
B22 “ cg22 ´

1

2
B33 “ cg33.

It follows that:

B11

g11

“
B22

g22

“
B33

g33

“ ´2c for c P R.

Thus the desired equality holds. Furthermore, since B00 “ ´2cg00 ` 2f2prqg00, by Lemma

2.2.11, B00 “ 6cg00 and consequently B00

g00
“ 6c.

On the other hand, suppose that

B11

g11

“
B22

g22

“
B33

g33

“ ´2c for c P R.

Then ´1
2
B11 “ cg11, ´1

2
B22 “ cg22, and ´1

2
B33 “ cg33. Taking the trace of the Bach tensor:

trB “ gijBij

“ g00B00 ` g
11B11 ` g

22B22 ` g
33B33

“ g00B00 ´ 2g11cg11 ´ 2g22cg22 ´ 2g33cg33

“ g00B00 ´ 6c.

Since B is trace-free, we see that B00 “ 6cg00. By Lemma 2.2.11 f2prq “ 4c, so:

f2g00 ´
1

2
B00 “ 4cg00 ´

1

2
p6cg00q “ cg00.

Thus, ∇i∇jf ´
1
2
Bij “ cgij for all i, j “ 0, 1, 2, 3, so Hess f “ cg` 1

2
B. Therefore, RˆN3 is

a gradient Bach soliton.

This theorem enables a classification of the resulting solitons of the form RˆN3. We see
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that we can apply it broadly to the following case to classify Bach-flat homogeneous gradient

Bach solitons.

Corollary 2.2.13. If a homogeneous manifold of the form R ˆ N3 equipped with metric

g “ g0 ˆ gN is a non-Bach-flat gradient Bach soliton, then it is an expanding soliton. The

soliton is steady if and only if it is Bach flat.

Proof. Consider a manifold of the form RˆN3 equipped with metric g “ g0 ˆ gN .

From Theorem 2.2.12 we know that:

B11

g11

“
B22

g22

“
B33

g33

“ ´2c.

Since the Bach tensor is trace-free we know that:

´B00 “
B11

g11

g11 `
B22

g22

g22 `
B33

g33

g33

“ ´2cpg11 ` g22 ` g33q

B00 “ 2cpg11 ` g22 ` g33q.

Using (1.7), since S is constant:

B00 “ ´
1

4

„

p|Ric |p2qq2 ´
1

3
pSp2qq2



g00.

By Cauchy-Schwartz, we know

|Ricp2q |2 ě
tr
´

Ricp2q
¯

3
“

1

3
pSp2qq2,

and thus B00 ď 0. Since the metric is positive definite, this implies c ď 0, where c “ 0 if and

only if B00 “ 0. By definition a soliton is expanding if c ă 0.
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If c “ 0, B00 “ 0 then:

»

—

—

—

—

—

—

—

–

f00 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“
1

2

»

—

—

—

—

—

—

—

–

0 0 0 0

0 B11 0 0

0 0 B22 0

0 0 0 B33

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Clearly, this implies that Bii “ 0 for i “ 1, 2, 3. Thus, if the soliton is steady, the manifold

is Bach flat.

If the soliton is Bach flat then Hess f “ cg, so 0 “ cgii for i “ 1, 2, 3 so c “ 0 and the

soliton is steady.

Remark 2.2.14. In [Hel20, Proposition 2.2], Helliwell notes that g00 is static if and only

if the manifold is Bach flat. Moreover, if this is not the case then g00 is strictly decreasing.

This seems to contradict the condition that a soliton be expanding.

Recall that rescaling is a diffeomorphism of R. That is, contracting is the same as stretch-

ing after diffeomorphism. Thus, we see that though B

Bt
g00 ă 0 under the Bach flow, our soliton

RˆN3 can still be classified as expanding.

In order to use this theorem to find metrics that produce solitons, we will need explicit

representations of the Bach tensor. These can be found using (1.7) with M p1q “ R and

M p2q “ N3. The Bach tensor for solitons of the form R ˆ N3 where N3 3-dimensional

unimodular Lie group is given in [Hel20]. In Appendix B we provide more background on

the choice of manifolds and their affiliated structure constants, present the equations for

calculating the Bach tensor in terms of those structure constants, and demonstrate how one

would calculate the components of the Bach tensor.

We begin investigating manifolds of the form R ˆ N3 by examining the covering spaces

for the nine manifolds with compact quotient. The qualitative behavior of the compact
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quotients is examined in [Hel20]. The gradient solitons of the compact quotients themselves

are easily classified by Corollary 2.1.7. We, however, are interested in the solitons on the

covering spaces themselves. As such, we will examine the 9 manifolds in [Hel20] to see if

there is a metric that produces a gradient Bach solitons. The Lie groups with compact

quotient are given by the unimodular, solvable Bianchi classes. That is, Bianchi classes I,

II, VI0, VII0, VIII, and IX. There are three additional cases which are not Lie groups, but

have compact quotient.

By Theorem 2.2.12 we need only show that a metric satisfies (2.1). If there are no metrics

that satisfy the string of equalities, then the manifold produces no solitons. The general

methodology is to use the explicit representation for the Bach tensor in the above equality,

then see what conditions must be placed on the metric to produce a soliton. We show how

to find an explicit representation for the Bach tensor in Appendix B and work through the

example of RˆNil.

For ease of notation in calculations, we will let:

x “ g11, y “ g22, z “ g33, β “
1

6pdet gq2
.

To clarify the consequences of each example, the metric notations will be used. These proofs

heavily rely on the fact that Riemannain metrics are positive definite. That is, gii ą 0 is

a strict inequality. This allows us the use the quotients in (2.1) and to rule out potential

solitons. A summary of our results is as follows. The proofs will be in subsequent sections.

Theorem 2.2.15. For a homogeneous manifold of type M “ R1 ˆ N3 equipped with the

metric g “ g0 ˆ gN the following hold:

a. If N3 “ R3, then a metric g “ g0 ˆ gN , where gN is a flat metric, produces a gradient

Bach soliton with linear potential function.

b. If N3 “ Nil, Solv, xSLp2,Rq, Rˆ S2, RˆH2 then g is not a gradient Bach soliton
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c. If N3 “ Ep2q, H3, then g produces a Bach soliton if and only if it is Bach flat.

d. If N3 “ S3, then a gradient Bach soliton is produced if and only if the metric is of

the from g11 “ g22 “ g33 or if it is isometric to g11 “ g22 “ 4g33. These solitons are

categorized in Theorems 2.2.26 and 2.2.28 respectively.

Rˆ R3

Proposition 2.2.16. The manifold R ˆ R3 with metric g “ g0 ˆ gN , where gN is a flat

metric, is a gradient Bach soliton with potential function fprq “ ar ` b or some a P R.

Proof. We know from (1.7) that Bii “ 0 for i “ 0, 1, 2, 3. By Corollary 2.2.13 we know that

the soliton is steady, so c “ 0. So by Lemma 2.2.11 fprq “ ar ` b for a, b P R.

RˆNil

We know from [Hel20]

B00 “ ´βpg00q
3
pg11q

4 B11 “ ´5βpg00q
2
pg11q

5

B22 “ 3βpg00q
2
pg11q

4g22 B33 “ 3βpg00q
2
pg11q

4g33.

Proposition 2.2.17. The manifold RˆNil with metric g “ g0ˆgNil is not a gradient Bach

soliton.

Proof. Proceeding by contradiction, suppose RˆNil with metric g “ g0ˆ gNil is a gradient

Bach soliton. Then using (2.1) we see that:

B11

g11

“
B22

g22

ùñ ´5βpg00q
2
pg11q

4
“ 3βpg00q

2
pg11q

4.

However, this implies that ´5 “ 3. Thus RˆNil is not a gradient Bach soliton.
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Rˆ Solv

We know from [Hel20]

B00 “ ´βppg11, g22qpg00q
3 B11 “ ´βqpg11, g22qpg00q

2g11

B22 “ ´βqpg22, g11qpg00q
2g22 B33 “ 3βppg11, g22qpg00q

2g33

where

ppx, yq “ x4
` x3y ` xy3

` y4 qpx, yq “ 5x4
` 3x3y ´ xy3

´ 3y4.

Proposition 2.2.18. The manifold R ˆ Solv with metric g “ g0 ˆ gSolv is not a gradient

Bach soliton.

Proof. Proceeding by contradiction, suppose RˆSolv with metric g “ g0ˆgSolv is a gradient

Bach soliton. Using (2.1) we see that:

B11

g11

“
B33

g33

ùñ ´β qpg11, g22qpg00q
2
“ 3β ppg11, g22qpg00q

2.

Letting x “ g11 and y “ g22:

´qpx, yq “ 3ppx, yq

´p5x4
` 3x3y ´ xy3

´ 3y4
q “ 3px4

` x3y ` xy3
` y4

q

´5x4
´ 3x3y ` xy3

` 3y4
“ 3x4

` 3x3y ` 3xy3
` 3y4

´8x4
´ 6x3y ´ 2xy3

“ 0

´2xp4x3
` 6x2y ` y3

q “ 0

x “ 0 or 4x3
` 6x2y ` y3

“ 0.

Then either x “ 0 or 4x3 ` 6x2y ` y3 “ 0. The first statement is not possible because the

metric is positive definite. The latter statement holds if and only if x “ y “ 0 forcing either
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g11 “ 0 or g11 “ g22 “ 0, contradicting positive definiteness. Thus RˆSolv is not a gradient

Bach soliton.

Rˆ xSLp2,Rq

We know from [Hel20]

B00 “ ´βpp´g11, g22, g33qpg00q
3 B11 “ ´βqp´g11, g22, g33qpg00q

2g11

B22 “ ´βqpg22,´g11, g33qpg00q
2g22 B33 “ ´βqpg33,´g11, g22qpg00q

2g33

where

ppx, y, zq “ x4
´ x3

py ` zq ` x2yz ` xp´y3
` y2z ` yz2

´ z3
q ` y4

´ y3z ´ yz3
` z4

qpx, y, zq “ 5x4
´ 3x3

py ` zq ` x2yz ` xpy3
´ y2z ´ yz2

` z3
q ´ 3y4

` 3y3z ` 3yz3
´ 3z4.

Proposition 2.2.19. The manifold Rˆ xSLp2,Rq with metric g “ g0 ˆ gxSLp2,Rq cannot be a

gradient Bach soliton.

Proof. Proceeding by contradiction, suppose Rˆ xSLp2,Rq with metric g “ g0 ˆ gxSLp2,Rq is a

gradient Bach soliton. Using (2.1) we see that:

B22

g22

“
B33

g33

´β qpg22,´g11, g33qpg00q
2
“ ´β qpg33,´g11, g22qpg00q

2

qpy,´x, zq “ qpz,´x, yq

5y4 ´ 3y3p´x` zq ´ y2xz ` yp´x3 ´ x2z

`xz2 ` z3q ´ 3x4 ´ 3x3z ´ 3xz3 ´ 3z4
“

5z4 ´ 3z3p´x` zq ´ z2xy ` zp´x3 ´ x2y

`xy2 ` y3q ´ 3x4 ´ 3x3y ´ 3xy3 ´ 3y4
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5y4 ` 3xy3 ´ 3y3z ´ xy2z ´ x3y ´ x2yz

`xyz2 ` yz3 ´ 3x4 ´ 3x3z ´ 3xz3 ´ 3z4
“

5z4 ` 3xz3 ´ 3yz3 ´ xyz2 ´ x3z ´ x2yz

`xzy2 ` y3z ´ 3x4 ´ 3x3y ´ 3xy3 ´ 3y4

8y4 ` 6xy3 ´ 4y3z ´ 2xy2z ` 2x3y

`2xyz2 ` 4yz3 ´ 2x3z ´ 6xz3 ´ 8z4
“ 0

2py ´ zqpx3 ` 3xy2 ` 2xyz ` 3xz2

`4y3 ` 2y2z ` 2yz2 ` 4z3q
“ 0.

The only potential real solution is that y “ z. As above, because the metric is positive

definite, the last term in the product is nonzero. Examining the consequences of this using

the other equations in (2.1) we see that the following must hold.

B11

g11

“
B22

g22

´β qp´g11, g22, g33qpg00q
2
“ ´β qpg22,´g11, g33qpg00q

2

qp´x, y, zq “ qpy,´x, zq

5x4 ` 3x3py ` zq ` x2yz ´ xpy3 ´ y2z

´yz2 ` z3q ´ 3y4 ` 3y3z ` 3yz3 ´ 3z4
“

5y4 ´ 3y3p´x` zq ´ y2xz ` yp´x3 ´ x2z

`xz2 ` z3q ´ 3x4 ´ 3x3z ´ 3xz3 ´ 3z4

5x4 ` 3x3y ` 3x3z ` x2yz ´ xy3 ` xy2z

`xyz2 ´ xz3 ´ 3y4 ` 3y3z ` 3yz3 ´ 3z4
“

5y4 ` 3xy3 ´ 3y3z ´ xy2z ´ x3y ´ x2yz

`xyz2 ` yz3 ´ 3x4 ´ 3x3z ´ 3xz3 ´ 3z4

8x4 ` 4x3y ` 6x3z ` 2x2yz ´ 4xy3 ` 2xy2z

`2xz3 ´ 8y4 ` 6y3z ` 2yz3
“ 0.

However, if y “ z then:

8x4 ` 4x3y ` 6x3z ` 2x2yz ´ 4xy3

`2xy2z ` 2xz3 ´ 8y4 ` 6y3z ` 2yz3
“

8x4 ` 4x3y ` 6x3y ` 2x2y2 ´ 4xy3

`2xy3 ` 2xy3 ´ 8y4 ` 6y4 ` 2y4

“ 8x4
` 10x3y ` 2x2y2

‰ 0.
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Therefore if y “ z, then B11 { g11 ‰ B22 { g22. Thus y ‰ z. Therefore, R ˆ xSLp2,Rq is

not a gradient Bach soliton.

Rˆ pRˆ S2q

Proposition 2.2.20. There are no gradient Bach solitons on R ˆ pR ˆ S2q with metric

g “ g0 ˆ pgR ˆ gS2q.

Proof. Consider the manifold R ˆ pR ˆ S2q with metric g “ g0 ˆ pgR ˆ gS2q. Rescaling the

sphere to have scalar curvature SS2 “ 1, from Theorem 2.2.8 we know:

B00 “
1

12
g00 B11 “

1

12
g11 B22 “ ´

1

12
g22 B33 “ ´

1

12
g33.

This contradicts Theorem 2.2.12. Therefore, there are no gradient Bach solitons on RˆpRˆ

S2q with potential function on R.

Rˆ pRˆH2q

Proposition 2.2.21. There are no gradient Bach solitons on R ˆ pR ˆ H2q with metric

g “ g0 ˆ pgR ˆ gH2q.

Proof. Rescaling the H2 to have scalar curvature SH2 “ ´1, from Theorem 2.2.8 we know:

B00 “
1

12
g00 B11 “

1

12
g11 B22 “ ´

1

12
g22 B33 “ ´

1

12
g33,

and thus the proof follows exactly as in the proof for Rˆ Rˆ S2 above.
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Rˆ Ep2q

We know from [Hel20]

B00 “ ´βpp´g11, g22qpg00q
3 B11 “ ´βqp´g11, g22qpg00q

2g11

B22 “ ´βqpg22,´g11qpg00q
2g22 B33 “ 3βpp´g11, g22qpg00q

2g33

where ppx, yq and qpx, yq are as above.

Proposition 2.2.22. The manifold RˆEp2q with metric g “ g0 ˆ gEp2q is a gradient Bach

soliton if and only if it is Bach flat.

Proof. Consider the manifold RˆEp2q with metric g “ g0 ˆ gEp2q. Using (2.1) we see that:

B11

g11

“
B22

g22

´β qp´g11, g22qpg00q
2
“ ´β qpg22,´g11qpg00q

2

qp´x, yq “ qpy,´xq

5x4
´ 3x3y ` xy3

´ 3y4
“ 5y4

´ 3y3x` yx3
´ 3x4

8x4
´ 4x3y ` 4xy3

´ 8y4
“ 0

2x4
´ x3y ` xy3

´ 2y4
“ 0

px´ yqpx` yqp2x2
´ xy ` 2y2

q “ 0.

The only two real, nonzero solutions are that x “ y or x “ ´y. Since our metric is positive

definite x ‰ ´y. Thus x “ y is the only candidate. Proceeding, we will see that the equalities

from (2.1) are satisfied if and only if x “ y.

B11

g11

“
B33

g33
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´β qp´g11, g22qpg00q
2
“ 3β pp´g11, g22qpg00q

2

´qp´x, yq “ 3pp´x, yq

´p5x4
´ 3x3y ` xy3

´ 3y4
q “ 3px4

´ x3y ´ xy3
` y4

q

´5x4
` 3x3y ´ xy3

` 3y4
q “ 3x4

´ 3x3y ´ 3xy3
` 3y4

´8x4
` 6x3y ` 2xy3

“ 0

´2xp4x3
´ 3x2y ´ y3

q “ 0.

Since x ‰ 0, 4x3 ´ 3x2y ´ y3 “ 0. We see that x “ y holds.

B22

g22

“
B33

g33

´β qpg22,´g11qpg00q
2
“ 3β pp´g11, g22qpg00q

2

´qpy,´xq “ 3pp´x, yq

´p5y4
´ 3y3x` yx3

´ 3x4
q “ 3px4

´ x3y ´ xy3
` y4

q

´5y4
` 3xy3

´ x3y ` 3x4
“ 3x4

´ 3x3y ´ 3xy3
` 3y4

´8y4
` 6xy3

` 2x3y “ 0

´2yp4y3
´ 3xy2

´ x3
q “ 0.

Since y ‰ 0, 4y3 ´ 3xy2 ´ 2x3 “ 0. Again, we see that x “ y holds.

Thus, g11 “ g22. This condition is equivalent to being Bach flat by the following lemma.

Therefore, by Theorem 2.2.12 and Lemma 2.2.23, RˆEp2q is a gradient Bach soliton if and

only if it is Bach flat.

Lemma 2.2.23. The manifold RˆEp2q with metric g “ g0 ˆ gEp2q is Bach flat if and only

if g11 “ g22.
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Proof. Factoring the components of the Bach tensor for Rˆ Ep2q:

B00 “ ´β pg11 ´ g22q
2
`

pg11q
2
` g11g22 ` pg22q

2
˘

pg00q
3,

B11 “ ´β pg11 ´ g22q
`

5pg11q
3
` 2pg11q

2
pg22q ` 2pg11qpg22q

2
` 3pg22q

3
˘

pg00q
2g11,

B22 “ ´β pg22 ´ g11q
`

3pg11q
3
` 2pg11q

2
pg22q ` 2pg11qpg22q

2
` 3pg22q

3
˘

pg00q
2g22,

B33 “ 3β pg11 ´ g22q
2
`

pg11q
2
` g11g22 ` pg22q

2
˘

pg00q
2g11.

Since our metric is positive definite Bii “ 0 if and only if g11 ´ g22 “ 0 if and only if

g11 “ g22.

RˆH3

Proposition 2.2.24. The manifold RˆH3 with metric g “ g0 ˆ gH3 is the trivial gradient

Bach soliton. That is, RˆH3 is a Bach soliton if and only if it is Bach-flat.

Proof. Following the explanation from [Hel20], we know that H3 is a one parameter family of

homogeneous metrics. Consequently all metrics are Einstein since they are scalar multiples

of the standard metric. Thus, as Helliwell concludes, the flat metric remains flat in the Bach

flow. Therefore, the Bach flat metric produces a gradient soliton.

Rˆ S3

Before delving into this case, it is important that the reader note that I mean S3 to be

synonymous with SUp2q. That is, the manifold does NOT necessarily have the round metric,

but rather has any left invariant metric on Lie group SUp2q. My choice to call this S3 was

motivated by wanting to maintain consistency between the cases presented by Helliwell in

[Hel20] and this paper.
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We know from [Hel20]

B00 “ ´β ppg11, g22, g33qpg00q
3 B11 “ ´β qpg11, g22, g33qpg00q

2g11

B22 “ ´β qpg22, g33, g11qpg00q
2g22 B33 “ ´β qpg33, g11, g22qpg00q

2g33

where

ppx, y, zq “ x4
´ x3

py ` zq ` x2yz ` xp´y3
` y2z ` yz2

´ z3
q ` y4

´ y3z ´ yz3
` z4,

qpx, y, zq “ 5x4
´ 3x3

py ` zq ` x2yz ` xpy3
´ y2z ´ yz2

` z3
q ´ 3y4

` 3y3z ` 3yz3
´ 3z4.

Proposition 2.2.25. The manifold R ˆ S3 with metric g “ g0 ˆ gSUp2q is a gradient Bach

soliton if and only if our metric is g11 “ g22 “ g33 or if it is isometric to g11 “ g22 “ 4g33.

Proof. Proceeding, consider RˆS3 with metric g “ g0ˆ gSUp2q. We will show that the (2.1)

holds if and only if x “ y “ z, x “ y “ 4z, x “ 4y “ z, or 4x “ y “ z.

We will first consider that case where x “ y “ z:

B11

g11

“
B22

g22

“
B33

g33

“ ´β qpg11, g11, g11qpg00q
2.

This clearly satisfies (2.1).

Proceeding to examine the equalities in general we see that:
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B11

g11

“
B22

g22

´β qpg11, g22, g33qpg00q
2
“ ´β qpg22, g33, g11qpg00q

2

qpx, y, zq “ qpy, z, xq

5x4 ´ 3x3py ` zq ` x2yz ` xpy3 ´ y2z

´yz2 ` z3q ´ 3y4 ` 3y3z ` 3yz3 ´ 3z4
“

5y4 ´ 3y3pz ` xq ` y2zx` ypz3 ´ z2x

´zx2 ` x3q ´ 3z4 ` 3z3x` 3zx3 ´ 3x4

5x4 ´ 3x3y ´ 3x3z ` x2yz ` xy3 ´ xy2z

´xyz2 ` xz3 ´ 3y4 ` 3y3z ` 3yz3 ´ 3z4
“

5y4 ´ 3y3z ´ 3xy3 ` xy2z ` yz3 ´ xyz2

´x2yz ` x3y ´ 3z4 ` 3xz3 ` 3x3z ´ 3x4

8x4 ´ 4x3y ´ 6x3z ` 2x2yz ` 4xy3 ´ 2xy2z

´2xz3 ´ 8y4 ` 6y3z ` 2yz3
“ 0

2px´ yqp4x3 ` 2x2y ´ 3x2z ` 2xy2

´2xyz ` 4y3 ´ 3y2z ´ z3q
“ 0.

(2.2)

B11

g11

“
B33

g33

´β qpg11, g22, g33qpg00q
2
“ ´β qpg33, g11, g22qpg00q

2

qpx, y, zq “ qpy, z, xq

5x4 ´ 3x3py ` zq ` x2yz ` xpy3 ´ y2z

´yz2 ` z3q ´ 3y4 ` 3y3z ` 3yz3 ´ 3z4
“

5z4 ´ 3z3px` yq ` z2xy ` zpx3 ´ x2y

´xy2 ` y3q ´ 3x4 ` 3x3y ` 3xy3 ´ 3y4

5x4 ´ 3x3y ´ 3x3z ` x2yz ` xy3 ´ xy2z

´xyz2 ` xz3 ´ 3y4 ` 3y3z ` 3yz3 ´ 3z4
“

5z4 ´ 3xz3 ´ 3yz3 ` xyz2 ` x3z ´ x2yz

´xy2z ` y3z ´ 3x4 ` 3x3y ` 3xy3 ´ 3y4

8x4 ´ 6x3y ´ 4x3z ` 2x2yz ´ 2xy3

´2xyz2 ` 4xz3 ` 2y3z ` 6yz3 ´ 8z4
“ 0

2px´ zqp4x3 ´ 3x2y ` 2x2z ´ 2xyz

`2xz2 ´ y3 ´ 3yz2 ` 4z3q
“ 0.

(2.3)
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B22

g22

“
B33

g33

´β qpg22, g33, g11qpg00q
2
“ ´β qpg33, g11, g22qpg00q

2

qpy, z, xq “ qpy, z, xq

5y4 ´ 3y3pz ` xq ` y2zx` ypz3 ´ z2x

´zx2 ` x3q ´ 3z4 ` 3z3x` 3zx3 ´ 3x4
“

5z4 ´ 3z3px` yq ` z2xy ` zpx3 ´ x2y

´xy2 ` y3q ´ 3x4 ` 3x3y ` 3xy3 ´ 3y4

5y4 ´ 3y3z ´ 3xy3 ` xy2z ` yz3 ´ xyz2

´x2yz ` x3y ´ 3z4 ` 3xz3 ` 3x3z ´ 3x4
“

5z4 ´ 3xz3 ´ 3yz3 ` xyz2 ` x3z ´ x2yz

´xy2z ` y3z ´ 3x4 ` 3x3y ` 3xy3 ´ 3y4

8y4 ´ 4y3z ´ 6xy3 ` 2xy2z ` 4yz3 ´ 2xyz2

´2x3y ´ 8z4 ` 6xz3 ` 2x3z
“ 0

´2py ´ zqpx3 ` 3xy2 ` 2xyz ` 3xz2

´4y3 ´ 2y2z ´ 2yz2 ´ 4z3q
“ 0.

(2.4)

Case 1. Suppose that x “ y. Then (2.2) is satisfied. Moreover this means that in order for

(2.3) to be satisfied:

0 “ 4x3
´ 3x3

` 2x2z ´ 2x2z ` 2xz2
´ x3

´ 3xz2
` 4z3

“ 4z3
´ xz2

“ z2
p4z ´ xq

Consequently x “ 4z. We see that this equality not only holds in 2.4, but is forced:

0 “ x3
` 3x3

` 2x2z ` 3xz2
´ 4x3

´ 2x2z ´ 2xz2
´ 4z3

“ xz2
´ 4z3

“ z2
px´ 4zq.

Thus x “ y “ 4z maintains all three equalities.
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Case 2. Suppose that x “ z. Then (2.3) is satisfied. Moreover this means that in order for

(2.2) to be satisfied:

0 “ 4x3
` 2x2y ´ 3x3

` 2xy2
´ 2x2y ` 4y3

´ 3y2x´ x3

“ 4y3
´ y2x

“ y2
p4y ´ xq.

Consequently x “ 4y. We see that this equality not only holds in (2.4), but is forced:

0 “ x3
` 3xy2

` 2x2y ` 3x3
´ 4y3

´ 2xy2
´ 2x2y ´ 4x3

“ xy2
´ 4y3

“ y2
px´ 4yq.

Thus x “ 4y “ z maintains all three equalities.

Case 3. Suppose that y “ z. Then (2.4) is satisfied. Moreover this means that in order for

(2.2) to be satisfied:

0 “ 4x3
` 2x2y ´ 3x2y ` 2xy2

´ 2xy2
` 4y3

´ 3y3
´ y3

“ 4x3
´ y2x

“ x2
p4x´ yq.

Consequently 4x “ y. We see that this equality not only holds in (2.4), but is forced:

0 “ 4x3
´ 3x2y ` 2x2y ´ 2xy2

` 2xy2
´ y3

´ 3y3
` 4y3

“ 4x3
´ x2y

“ x2
p4x´ yq.
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Thus 4x “ y “ z maintains all three equalities.

Case 4. Suppose that x ‰ y, x ‰ z, y ‰ z. Then only other permissible metric would need

to satisfy the system of equations:

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

4x3 ` 2x2y ´ 3x2z ` 2xy2 ´ 2xyz ` 4y3 ´ 3y2z ´ z3 “ 0,

4x3 ´ 3x2y ` 2x2z ´ 2xyz ` 2xz2 ´ y3 ´ 3yz2 ` 4z3 “ 0,

x3 ` 3xy2 ` 2xyz ` 3xz2 ´ 4y3 ´ 2y2z ´ 2yz2 ´ 4z3 “ 0.

Subtracting the first equation from the second yields:

5x2y ´ 5x2z ` 2xy2
´ 2xz2

` 5y3
´ 3y2z ` 3yz2

´ 5z3
“ 0

py ´ zqp5x2
` 2xy ` 2xz ` 5y2

` 2yz ` 5z2
q “ 0.

Thus y “ z contradicting the original assertion. Moreover, the metric is positive definite.

Thus, this case yields no potential metrics.

Therefore, by Theorem 2.2.12, R ˆ S3 is a Bach soliton if and only if g11 “ g22 “ g33,

g11 “ g22 “ 4g33, g11 “ 4g22 “ g33, or 4g11 “ g22 “ g33.

Theorem 2.2.26. If g11 “ g22 “ g33 then the soliton produced by R ˆ S3 is Bach flat and

steady.

Proof. Suppose g11 “ g22 “ g33. We know by Theorem 2.2.25 that this is the metric of a

soliton on Rˆ S3. Then:

B11

g11

“
B22

g22

“
B33

g33

“ ´β qpg11, g11, g11qpg00q
2
“ ´βp0qpg00q

2
“ 0.

Thus c “ 0, so the soliton is steady.
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Moreover, since

ppx, x, xq “ x4
´ x3

p2xq ` x4
` xp´x3

` x3
` x3

´ x3
q ` x4

´ x4
´ x4

` x4
“ 0

qpx, x, xq “ 5x4
´ 3x3

p2xq ` x4
` xpx3

´ x3
´ x3

` x3
q ´ 3x4

` 3x4
` 3x4

´ 3x4
“ 0.

We know that Bii “ 0 for all i “ 0, 1, 2, 3. Therefore the metric is Bach flat.

Remark 2.2.27. Note that in the previous proof, one could have referenced Corollary 2.2.13

instead of calculating the Bach tensor. The calculation was included to demonstrate an

alternate method using known components of the Bach tensor.

Theorem 2.2.28. If g11 “ g22 “ 4g33 then the soliton produced by Rˆ S3 is expanding and

immortal.

Proof. Without loss of generality, suppose g11 ď g22 ď g33. Consider g11 “ g22 “ 4g33. We

know by Theorem 2.2.25 that this is the metric of a soliton on Rˆ S3. Then:

B11

g11

“
B22

g22

“
B33

g33

“ ´β qpg11, g11, 4g11qpg00q
2
“ ´2c

Observe that:

q

ˆ

x, x,
1

4
x

˙

“ 5x4
´ 3x3

ˆ

5

4
x

˙

`
1

4
x4
` x

ˆ

x3
´

1

4
x3
´

1

16
x3
`

1

64
x3

˙

´ 3x4
`

3

4
x4
`

3

64
x4
´

3

256
x4

“ x4

ˆ

5´
15

4
`

1

4
` 1´

1

4
´

1

16
`

1

64
´ 3`

3

4
`

3

64
´

3

256

˙

“ ´
3

256
x4.
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Thus β 3
256
pg11q

4pg00q
2 ą 0. Since

´2c “ β
3

256
pg11q

4
pg00q

2

we see that c ă 0. Recall the soliton is of the form Hess f ´ 1
2
B “ cg. Thus, the soliton with

the given metric is expanding.

Using Theorem 2.1.13. The Bach tensor is conformally invariant of weight w “ ´2, so

τt “
?

1´ 4ct. Since c ă 0, we see that τt is defined for t P
`

1
4c
,8

˘

. Thus the soliton is

immortal.

Remark 2.2.29. This result aligns with the analysis of the Bach flow of Rˆ S3 in [Hel20].
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Chapter 3

Future Directions

This thesis begins the program of studying ambient obstruction solitons and there is still

much to be learned. The following research objectives outline a few of the different directions

and applications of this program of study.

Open Question 3.1. Complete classification of homogeneous gradient Bach solitons and

extend methodology to dimension n “ 6.

In order to complete the classification of homogeneous gradient Bach solitons, we need

to classify expanding solitons. These solitons will be of the form R ˆ N3 where N3 is

a non-unimodular Lie group, and thus can be classified using the same methodology as

in my previous work, [Gri20]. Thus, once one calculates the explicit representations of the

components of the Bach tensor using computing software (following methods used in [Hel20]),

the method used in Section 2.2 will determine the existence and nature of solitons on those

manifolds. The cases of non-gradient solitons and co-homogeneity one manifolds are also

completely open.

Extending these results to higher dimensions, we can examine homogeneous gradient

ambient obstruction solitons for n “ 6. Since Theorem 2.1.17 applies to every dimension

of the ambient obstruction tensor, we can use methods similar to those used in Section 2.2

73



to investigate the homogeneous 6-dimensional ambient obstruction solitons. This project

will provide additional insight into the nature of ambient obstruction solitons to inform the

understanding of the conformal invariance of solitons for n “ 6.

Open Question 3.2. Continue studying the solitons of the q-flow via properties of the

general tensor q, specifically considering q with a well defined conformal transformation law.

Using similar techniques to Section 2.1, we can continue examining solitons of the q-

flow where q is a general tensor with selected properties. Specifically, we are interested in

examining the case where q has a well defined transformation law under conformal change.

In the case when q is conformally invariant, this question reduces to examining modified

solitons of the form 1
2
LX g “ λg ` 1

2
q where λ is function. This change allows us to see

how conformal class is preserved by the flow and look towards finding conformal classes of

solitons. This work bridges the fields of conformal geometry and geometric flow, and has

proven incredibly fruitful.

Since the conformal invariance (of weight 2´n) of the ambient obstruction tensor is well

established, we will use this tensor as a guiding example. To improve generalizations, we

look to [BH11] to guide how we account for other transformation laws when constructing

the geometric flows.

Open Question 3.3. Use the known connection between the divergence of the Ricci tensor

and scalar curvature to continue to generalize theorems from Ricci flow.

As we point out in Section 1.5, div Ric “ 1
2
∇S. This implies that on a manifold with

curvature the Ricci tensor is divergence-free. We note that in Section 2.1 many of our

generalizations rely on one or both of these properties. Researching this equivalence could

allow us to loosen conditions, to generalize a greater number of theorems, to consider the

homogeneous non-gradient case, etcetera. One such theorem that could be generalized is as

follows.

Theorem 3.3.1 (Theorem 1.2, [PW09]). A gradient Ricci soliton is rigid if and only if it
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has constant scalar curvature and is radially flat.

(A gradient soliton is rigid if it is of type NˆΓRk where N is Einstein with Einstein constant

λ, f “ λ
2
|x|2 on Rk, and where Γ acts freely on N and by orthogonal transformations on Rk.)

This theorem comments on complete non-homogeneous manifolds, something that is not

discussed in this thesis. A first step in generalizing this result would be to investigate the

condition that the soliton has constant scalar curvature. Is it a necessary attribute of the

manifold? Or, is it necessary to force the Ricci tensor to be divergence-free? Answering this

question would allow us to give a similar result for a general tensor q.

Open Question 3.4. Examine extrinsic analogies of the Bach flow and ambient obstruction

flow.

The Ambient obstruction tensor and, consequently, the Bach tensor are intrinsic tensors,

meaning that they do not depend on the ambient space a manifold is immersed in. Another

way to expand our work is by flowing manifolds by extrinsic tensors with similar conformal

properties. Studying the Bach flow built an understanding of how conformal properties

impact intrinsic flows and has led to a number of generalizations. Seeking to do this for

extrinsic flows, we will be led by the example of the first variation of the Willmore energy: the

Willmore invariant. Just as mean curvature flow is an extrinsic analog of Ricci flow, flowing

a surface by the Willmore invariant is the extrinsic analog of the Bach flow. This can be

extended to higher dimensions by considering the first variation of the conformally invariant

generalization of the Willmore energy, as established by Graham-Reichert in [GR17]. This

can be thought of as the extrinsic analog of the ambient obstruction tensor. Though the

tools needed for this investigation seem to be fundamentally different from our previous

work, the connections between the Willmore invariant and Bach tensor (and that of their

higher dimensional equivalents) will allow us to draw conclusions about extrinsic geometric

flows by q with conformal transformation laws, and determine the necessary considerations

for extrinsic q and thus make further generalizations.
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Appendix A

Weyl Tensor

This appendix is intended to serve as a continuation of Section 1.2. We begin by proving

a number of identities and properties of the Weyl tensor in arbitrary dimension n ě 4.

Then, focusing on n “ 4, we expand upon the notion of self-duality to see that we can use

eigenvalues and eigenvectors to prove identities of the self-dual Weyl tensor.

Recall the following definitions from Section 1.2:

Wabcd “ Rabcd ` gacPbd ´ gadPbc ´ gbcPad ` gbdPac (A.1)

for

Pij “
1

n´ 2

ˆ

Rij ´
S

2pn´ 1q
gij

˙

Equivalently, we can give the Weyl tensor directly in the terms of its Riemannian, Ricci

and scalar curvature tensors. This fact is useful in calculations and the derivation is shown

below.

Wabcd “ Rabcd`
1

n´ 2
pRbdgac ´Rbcgad ´Radgbc `Racgbdq´

S

pn´ 1qpn´ 2q
pgacgbd ´ gadgbcq .

(A.2)
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Proposition A.0.1. (A.1) and (A.2) are equivalent.

Proof.

Wabcd “ Rabcd `
1

n´ 2

ˆ

gac

ˆ

Rbd ´
S

2pn´ 1q
gbd

˙

´ gad

ˆ

Rbc ´
S

2pn´ 1q
gbc

˙

´gbc

ˆ

Rad ´
S

2pn´ 1q
gad

˙

` gbd

ˆ

Rac ´
S

2pn´ 1q
gac

˙˙

“ Rabcd `
1

n´ 2

ˆ

Rbdgac ´
S

2pn´ 1q
gacgbd ´Rbcgad `

S

2pn´ 1q
gadgbc

´Radgbc `
S

2pn´ 1q
gbcgad `Racgbd ´

S

2pn´ 1q
gbdgac

˙

“ Rabcd `
1

n´ 2

ˆ

Rbdgac ´Rbcgad ´Radgbc `Racgbd

´
S

2pn´ 1q
pgacgbd ´ gadgbc ´ gbcgad ` gbdgacq

˙

“ Rabcd `
1

n´ 2
pRbdgac ´Rbcgad ´Radgbc `Racgbdq ´

S

pn´ 1qpn´ 2q
pgacgbd ´ gadgbcq

A.0.1 Identities of the Weyl Tensor

In this section we will prove a number of results about the Weyl tensor. These results have

been written to include additional steps that one wouldn’t otherwise show in order to shed

light on the nature of these calculations.

Proposition A.0.2 (Symmetries of the Weyl tensor.).

Wabcd “ ´Wbacd “ ´Wabdc “ Wcdab.

Proof.

Wabcd “ Rabcd ` gacPbd ´ gadPbc ´ gbcPad ` gbdPac
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Wbacd “ Rbacd ` gbcPad ´ gbdPac ´ gacPbd ` gadPbc

“ ´Rabcd `´gacPbd ` gadPbc ` gbcPad ´ gbdPac

“ ´Wabcd

Wabdc “ Rabdc ` gadPbc ´ gacPbd ´ gbdPac ` gbcPad

“ ´Rabcd `´gacPbd ` gadPbc ` gbcPad ´ gbdPac

“ ´Wabcd

Wcdab “ Rcdab ` gcaPdb ´ gcbPda ´ gdaPcb ` gdbPca

“ Rabcd ` gacPbd ´ gbcPad ´ gadPbc ` gbdPac

“ Rabcd ` gacPbd ´ gadPbc ´ gbcPad ` gbdPac

“ Wabcd

Note the following symmetries:

gij “ gji,

Rij “ gabRaijb “ gabRbjia “ gbaRbjia “ Rji,

Pij “
1

pn´ 2q

ˆ

Rij ´
S

2pn´ 1q
gij

˙

“
1

pn´ 2q

ˆ

Rji ´
S

2pn´ 1q
gji

˙

“ Pji.

Lemma A.0.3 (Bianchi identity).

Wabcd `Wcabd `Wbcad “ 0.

Proof.

Wabcd “ Rabcd ` gacPbd ´ gadPbc ´ gbcPad ` gbdPac
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Wcabd “ Rcabd ` gcbPad ´ gcdPab ´ gabPcd ` gadPcb

Wbcad “ Rabcd ` gbaPcd ´ gbdPca ´ gcaPbd ` gcdPba

Wabcd `Wcabd `Wbcad “ Rabcd ` gacPbd ´ gadPbc ´ gbcPad ` gbdPac

`Rcabd ` gcbPad ´ gcdPab ´ gabPcd ` gadPcb

`Rabcd ` gbaPcd ´ gbdPca ´ gcaPbd ` gcdPba

“ Rabcd `Rcabd `Rabcd ` gacPbd ´ gadPbc

´ gbcPad ` gbdPac ` gcbPad ´ gcdPab ´ gabPcd

` gadPcb ` gbaPcd ´ gbdPca ´ gcaPbd ` gcdPba

“ 0` gacPbd ´ gadPbc ´ gabPcd ´ gbcPad ` gbdPac ´ gcdPab

´ gacPbd ` gadPbc ` gabPcd ` gbcPad ´ gbdPac ` gcdPab

“ 0

Lemma A.0.4. The Weyl tensor is trace-free.

Proof. We approach this proof by tracing over the different pairs of indices. First, we examine

the results of tracing over the first and fourth indices.

gabWacdb “ gab
ˆ

Racdb `
1

pn´ 2q
pgadRcb ´ gabRcd ´ gcdRab ` gcbRadq

´
S

pn´ 1qpn´ 2q
pgadgcb ´ gabgcdq

˙

“ gabRacdb `
1

pn´ 2q

`

gabgadRcb ´ g
abgabRcd ´ g

abgcdRab ` g
abgcbRad

˘

´
S

pn´ 1qpn´ 2q

`

gabgadgcb ´ g
abgabgcd

˘

“ Rcd `
1

pn´ 2q

`

δbdRcb ´ nRcd ´ gcdS ` δ
a
cRad

˘

´
S

pn´ 1qpn´ 2q

`

δbdgcb ´ ngcd
˘
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“ Rcd `
1

pn´ 2q
pRcd ´ nRcd ´ gcdS `Rcdq ´

S

pn´ 1qpn´ 2q
pgcd ´ ngcdq

“ Rcd `
1

pn´ 2q
pp2´ nqRcd ´ gcdSq ´

S

pn´ 1qpn´ 2q
pp1´ nqgcdq

“ Rcd ´Rcd ´
1

pn´ 2q
gcdS `

S

pn´ 2q
gcd

“ 0.

Due to the symmetry of the Ricci tensor, we see that we can switch the inner two indices

without consequence to our final calculation when we are not tracing over those two indices.

gabWadcb “ gab
ˆ

Radcb `
1

pn´ 2q
pgacRdb ´ gabRdc ´ gdcRab ` gdbRacq

´
S

pn´ 1qpn´ 2q
pgacgdb ´ gabgdcq

˙

“ gabRadcb `
1

pn´ 2q

`

gabgacRdb ´ g
abgabRcd ´ g

abgcdRab ` g
abgdbRac

˘

´
S

pn´ 1qpn´ 2q

`

gabgacgdb ´ g
abgabgcd

˘

“ Rcd `
1

pn´ 2q

`

δbcRdb ´ nRcd ´ gcdS ` δ
a
dRac

˘

´
S

pn´ 1qpn´ 2q

`

δbcgdb ´ ngcd
˘

“ Rcd `
1

pn´ 2q
pp2´ nqRcd ´ gcdSq ´

S

pn´ 1qpn´ 2q
pp1´ nqgcdq

“ Rcd ´Rcd ´
1

pn´ 2q
gcdS `

S

pn´ 2q
gcd

“ 0.

Since Wbcda “ Wcbad “ Wadcb, we see that gabWbcda “ 0 and likewise gabWbdca “ 0.

Applying these calculations to different indices, it is easy to see that:

gacWabdc “ gacWadbc “ gacWcbda “ gacWcdba “ 0,

gadWabcd “ gadWacbd “ gadWdbca “ gadWdcba “ 0,
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gbcWbadc “ gbcWbdac “ gbcWcadb “ gbcWcdab “ 0,

gbdWbacd “ gbdWbcad “ gbdWdacb “ gbdWdcab “ 0,

gcdWcabd “ gcdWcbad “ gcdWdabc “ gcdWdbac “ 0.

Thus, the trace over the first and fourth indices of the Weyl tensor is always 0.

Our method moving forward will be to use identities and symmetries to get the indices we

are tracing over in the first and fourth position, then use our previous findings. Proceeding

to take the trace over the first and second indices, we use the first Bianchi identity and the

symmetries of the Weyl tensor:

Wabcd “ ´Wcabd ´Wbcad “ ´Wacdb `Wbcda.

Taking the trace we see that:

gabWabcd “ ´g
abWacdb ` g

abWbcda “ 0.

Using symmetries to exhaust other formations:

gabWabdc “ ´g
abWabcd “ 0 gabWbacd “ ´g

abWabcd “ 0 gabWbadc “ gabWabcd “ 0.

As is the case above, this generalizes, and thus the trace over the first and second indices of

the Weyl tensor is always 0.

Proceeding to take the trace over the first and third indices:

gacWabcd “ ´g
acWabdc “ 0 gacWadcb “ ´g

acWadbc “ 0
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gacWcbad “ ´g
acWcbda “ 0 gacWcdab “ ´g

acWcdba “ 0

As is the case above, this generalizes and thus the trace over the first and third indices of

the Weyl tensor is always 0.

Proceeding to take the trace over the second and third indices:

gbcWabcd “ gbcWbadc “ 0 gbcWdbca “ gbcWbdac “ 0

gbcWacbd “ gbcWcadb “ 0 gbcWdcba “ gbcWcdab “ 0

As is the case above, this generalizes and thus the trace over the second and third indices of

the Weyl tensor is always 0.

Proceeding to take the trace over the second and fourth indices:

gbdWabcd “ ´g
bdWbacd “ 0 gbdWcbad “ ´g

bdWbcad “ 0

gbdWadcb “ ´g
bdWdacb “ 0 gbdWcdab “ ´g

bdWdcab “ 0

As is the case above, this generalizes and thus the trace over the second and fourth indices

of the Weyl tensor is always 0.

Proceeding to take the trace over the third and fourth indices using the first Bianchi identity:

gcdWabcd “ gcd p´Wcabd ´Wbcadq “ ´g
cdWcabd ` g

cdWcbad “ 0.
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Using symmetries to exhaust other formations:

gcdWbacd “ ´g
cdWabcd “ 0 gcdWabdc “ ´g

cdWabcd “ 0 gcdWbadc “ gcdWabcd “ 0.

As is the case above, this generalizes and thus the trace over the second and fourth indices

of the Weyl tensor is always 0.

Expansion on Duality

Let n “ 4. As discussed in Section 1.2, the Weyl tensor decomposes into two parts, W` and

W´. In this section we detail this decomposition and examine the linear algebra to prove

useful identities for each of the components.

We begin our investigation of the Weyl tensor by noting that the Riemannian curvature

tensor defines a self-adjoint transformation R : Λ2 Ñ Λ2, where Λ2 is the set of exterior two

forms. This transformation is given by:

Rpei ^ ejq “
1

2

ÿ

k,l

Rijklek ^ el

As in [AHS78], we are able to rewrite R as a block matrix relative to our decomposition of

exterior 2-forms:

R “

»

—

–

A B

B˚ C

fi

ffi

fl

where B is a homomorphism from Λ2,´ to Λ2,`, A is a self-adjoint endomorphism of Λ2,`,

and C is a self-adjoint endomorphism of Λ2,´.

A classic fact, pointed out in [Bes08], is that there is a natural decomposition of the cur-

vature tensor into components involving the scalar curvature, the trace-free part of its Ricci
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tensor, and the Weyl tensor. Furthermore since the Weyl component can be decomposed into

self-dual and anti-self-dual, per [ST69], this decomposition is given in terms of the matrix

by:

R Ñ ptrA,B,A´
1

3
trA,C ´

1

3
trCq,

where trA “ trC “ 1
4
S, B is the trace-less Ricci tensor, and

W`
“ A´

1

3
trA W´

“ C ´
1

3
trC W “ W`

`W´.

Recall that A and C were endomorphisms of Λ2,`,Λ2,´, respectively. Thus, we see how the

Weyl tensor decomposes into self-dual and anti-self-dual parts.

Proceeding to examine the Weyl component as a matrix itself, we know from [CGY03]

and [Der83] that we can fix a point and diagonalize W˘. Doing so, we get the oriented

orthogonal bases pω`, η`, θ`q and pω´, η´, θ´q of Λ` and Λ´ respectively. The eigenvectors

of W are such that

|ω`| “ |η`| “ |θ`| “
?

2 and |ω´| “ |η´| “ |θ´| “
?

2.

Let the three corresponding eigenvalues of W` and W´ be given by λ`, µ`, ν` and λ´,

µ´ and ν´, respectively. Then we can represent the Weyl tensor as:

W “
1

2

`

λ`pω` b ω`q ` µ`pη` b η`q ` ν`pθ` b θ`q
˘

`
1

2

`

λ´pω´ b ω´q ` µ´pη´ b η´q ` ν´pθ´ b θ´q
˘

.

Additionally, the self-dual and anti-self-dual components are given by:

W`
“

1

2

`

λ`pω` b ω`q ` µ`pη` b η`q ` ν`pθ` b θ`q
˘

,

W´
“

1

2

`

λ´pω´ b ω´q ` µ´pη´ b η´q ` ν´pθ´ b θ´q
˘

.

(A.3)
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Lemma A.0.5. |W`|2 “ pλ`q2 ` pµ`q2 ` pν`q2.

Proof. In order to avoid issues with normality, we look at each eigenvector as a unit vector

in the same direction scaled by
?

2. To do so, let:

a “
ω`
?

2
b “

η`
?

2
c “

θ`
?

2

|W`
|
2
“

ˇ

ˇ

ˇ

ˇ

1

2

`

λ`pω` b ω`q ` µ`pη` b η`q ` ν`pθ` b θ`q
˘

ˇ

ˇ

ˇ

ˇ

2

“

ˇ

ˇ

ˇ

ˇ

1

2

´

λ`p
?

2ab
?

2aq ` µ`p
?

2bb
?

2bq ` ν`p
?

2cb
?

2cq
¯

ˇ

ˇ

ˇ

ˇ

2

“

ˇ

ˇ

ˇ

ˇ

1

2

`

2λ`pab aq ` 2µ`pbb bq ` 2ν`pcb cq
˘

ˇ

ˇ

ˇ

ˇ

2

“
ˇ

ˇλ`pab aq ` µ`pbb bq ` ν`pcb cq
ˇ

ˇ

2

“ pλ`q2 ` pµ`q2 ` pν`q2.

Since W is trace-free (and, consequently, so are W˘), this implies that λ`` µ`` ν` “ 0

and λ´ ` µ´ ` ν´ “ 0 .

In order to use this basis of eigenvectors, we need to rewrite W`
ijkl as W` : Λ2 Ñ Λ2.

That is we want type change from a (4,0) tensor to a (2,2) tensor. We know for an arbitrary

tensor T : Λ2 Ñ Λ2:

Tijkl “ T pei, ej, ek, elq “ gpT pei ^ ejq, ek ^ elq.

This fact will prove invaluable in the following proofs.

Moreover, one should note that results one can quickly find mirroring results for W´
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using the same methods we use below.

Rewriting ei ^ ej in terms of our eigenbasis:

ω` “ ´e1 ^ e2 ´ e3 ^ e4 η` “ ´e1 ^ e3 ´ e4 ^ e2 θ` “ ´e1 ^ e4 ´ e2 ^ e3

ω´ “ e1 ^ e2 ´ e3 ^ e4 η´ “ e1 ^ e3 ´ e4 ^ e2 θ´ “ e1 ^ e4 ´ e2 ^ e3

Thus, we see that:

1

2

`

´ω` ` ω´
˘

“
1

2
p´p´e1 ^ e2 ´ e3 ^ e4q ` pe1 ^ e2 ´ e3 ^ e4qq “

1

2
p2 e1 ^ e2q “ e1 ^ e2,

1

2

`

´ω` ´ ω´
˘

“
1

2
p´p´e1 ^ e2 ´ e3 ^ e4q ´ pe1 ^ e2 ´ e3 ^ e4qq “

1

2
p2 e3 ^ e4q “ e3 ^ e4.

Moreover we use the fact that ω` and ω´ are eigenvectors of W`,W´ to see that:

W`
pω`q “ λω`, W`

pω´q “ 0.

Using this process to rewrite all pairs of ei^ ej in terms of the corresponding eigenvector

and finding the corresponding values of W`, W´, and W (when taken as (2,2)-tensors).
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ei ^ ej Eigenvector W`pei ^ ejq W´pei ^ ejq W pei ^ ejq

e1 ^ e2
1
2
p´ω` ` ω´q ´1

2
λ`ω` 1

2
λ´ω´ 1

2
p´λ`ω` ` λ´ω´q

e3 ^ e4
1
2
p´ω` ´ ω´q ´1

2
λ`ω` ´1

2
λ´ω´ 1

2
p´λ`ω` ´ λ´ω´q

e1 ^ e3
1
2
p´η` ` η´q ´1

2
µ`η` 1

2
µ´η´ 1

2
p´µ`η` ` µ´η´q

e4 ^ e2
1
2
p´η` ´ η´q ´1

2
µ`η` ´1

2
µ´η´ 1

2
p´µ`η` ´ µ´η´q

e1 ^ e4
1
2
p´θ` ` θ´q ´1

2
ν`θ` 1

2
ν´θ´ 1

2
p´ν`θ` ` ν´θ´q

e2 ^ e3
1
2
p´θ` ´ θ´q ´1

2
ν`θ` ´1

2
ν´θ´ 1

2
p´ν`θ` ´ ν´θ´q

Table A.1: Weyl tensors given in terms of eigenvalues and eigenvectors

Proceeding, we will use a few lemmas to eliminate cases that we need to consider. We

will do this for both the self-dual component of the Weyl tensor and the whole Weyl tensor.

It should be noted that there are parallel identities for the anti-self-dual component of the

Weyl tensor.

We focus first on the self-dual component.

Lemma A.0.6. For any i, j, k, l (not necessarily distinct):

W`
iikl “ W`

ijkk “ 0.

Proof. gpW`pei ^ eiq, ek ^ elq “ 0 “ gpW`pei ^ ejq, ek ^ ekq.

We see this holds for the whole Weyl tensor.
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Lemma A.0.7. For any i, j, k, l (not necessarily distinct):

Wiikl “ Wijkk “ 0.

Proof. gpW pei ^ eiq, ek ^ elq “ 0 “ gpW pei ^ ejq, ek ^ ekq.

Again, focusing on the self-dual component we get the following identity.

Lemma A.0.8. If any one index is repeated, the Weyl tensor is zero. That is, for distinct

i, j, k, l: W`
ijil “ W`

ijki “ W`
ijjl “ W`

ijkj “ 0. Note, if two indices are repeated, this is not

true.

Proof. In order to use our eigenbasis, we focus on a specific set of indices that demonstrate

this desired repetition. Consider:

W`
1213 “ gpW`

pe1 ^ e2q, e1 ^ e3q

“ ´
1

4
λ`gpω`,´η` ` η´q

“ ´
1

4
λ`

`

´gpω`, η`q ` gpω`, η´q
˘

“ 0

because the eigenbasis is orthogonal. This calculation can be repeated to the same end for

all other such combinations of indices.

Again, this holds for the entire Weyl tensor.

Lemma A.0.9. If any one index is repeated, the Weyl tensor is zero. That is, for distinct

i, j, k, l: Wijil “ Wijki “ Wijjl “ Wijkj “ 0. Note, if two indices are repeated, this is not

true.
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Proof. Again choosing a specific set of indices for ease of calculation, consider:

W1213 “ gpW pe1 ^ e2q, e1 ^ e3q

“
1

4
gp´λ`ω` ` λ´ω´,´η` ` η´q

“
1

4

`

´λ`gpω`,´η` ` η´q ` λ´gpω´,´η` ` η´q
˘

“
1

4

`

´λ`
`

´gpω`, η`q ` gpω`, η´q
˘

` λ´
`

´gpω´, η`q ` gpω´, η´q
˘˘

“ 0.

As above, this is due to the orthogonality of our eigenvectors. This calculation can be

repeated to the same end for all other such combinations of indices.

From these two lemmas, we can determine that the only nonzero values of W`
ijkl are those

with four distinct indices or with two pairs of indices. These are enumerated as follows.

1

4
λ`|ω`|2 “ g

`

W`
pe1 ^ e2q, e1 ^ e2

˘

“ W`
1212 “ W`

1234 “ W`
3434 “ W`

3412 “ W`
2121 “ W`

2143 “ W`
4343 “ W`

4321

´
1

4
λ`|ω`|2 “ g

`

W`
pe2 ^ e1q, e1 ^ e2

˘

“ W`
1221 “ W`

1243 “ W`
3443 “ W`

3421 “ W`
2112 “ W`

2134 “ W`
4334 “ W`

4312

1

4
µ`|η`|2 “ g

`

W`
pe1 ^ e3q, e1 ^ e3

˘

“ W`
1313 “ W`

1342 “ W`
4242 “ W`

4213 “ W`
3131 “ W`

3124 “ W`
2424 “ W`

2431

´
1

4
µ`|η`|2 “ g

`

W`
pe1 ^ e3q, e3 ^ e1

˘

“ W`
1331 “ W`

1324 “ W`
4224 “ W`

4231 “ W`
3113 “ W`

3142 “ W`
2442 “ W`

2413

1

4
ν`|θ`|2 “ g

`

W`
pe1 ^ e4q, e1 ^ e4

˘

“ W`
1414 “ W`

1423 “ W`
2323 “ W`

2314 “ W`
4141 “ W`

4132 “ W`
3232 “ W`

3241
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´
1

4
ν`|θ`|2 “ g

`

W`
pe1 ^ e4q, e4 ^ e1

˘

“ W`
1441 “ W`

1432 “ W`
2332 “ W`

2341 “ W`
4114 “ W`

4123 “ W`
3223 “ W`

3214

A sample of the calculation involved:

W`
1212 “ g

`

W`
pe1 ^ e2q, e1 ^ e2

˘

“ g

ˆ

´
1

2
λ`ω`,

1

2
p´ω` ` ω´

˙

“
1

4
λ`gpω`, ω`q ´

1

4
λ`gpω`, ω´q

“
1

4
λ`|ω`|2

Similarly, we find the that for the whole Weyl tensor:

W1212 “ W3434 “
1

4

`

λ`|ω`|2 ` λ´|ω´|2
˘

W1234 “
1

4

`

λ`|ω`|2 ´ λ´|ω´|2
˘

W1313 “ W4242 “
1

4

`

µ`|η`|2 ` µ´|η´|2
˘

W1342 “
1

4

`

µ`|η`|2 ´ µ´|η´|2
˘

W1414 “ W2323 “
1

4

`

ν`|θ`|2 ` ν´|θ´|2
˘

W1423 “
1

4

`

ν`|θ`|2 ´ ν´|θ´|2
˘

A sample of the calculation involved:

W1212 “ g pW pe1 ^ e2q, e1 ^ e2q

“ g

ˆ

1

2
p´λ`ω` ` λ´ω´q,

1

2
p´ω` ` ω´

˙

“
1

4

`

λ`gpω`, ω`q ´ λ`gpω`, ω´q ´ λ´gpω´, ω`q ` λ´gpω´, ω´q
˘

90



“
1

4

`

λ`|ω`|2 ` λ´|ω´|2
˘

The following lemma is widely accepted as true, but an explicit proof was not given in

the literature. As such, we’ve chosen to prove it in this section for completeness. The reader

should also note that part (a) of the following Lemma has been edited to the equivalent

result in [Der83] as the statement in [CGY03] has a few small errors.

Lemma A.0.10 (Chang-Gursky-Yang, Lemma 3.4).

a. W`
ijklW

`
jskl “ ´|W

`|2δis

b. W`
msijW

`
ijklW

`
mskl “ 24 detW`

c. 4WmiksW
`
ijklW

`
jmsl “ 48 detW`

a. Proof. Using the symmetries of the Weyl tensor one should note that this is equivalent

to proving:

W`
ijklW

`
sjkl “ |W

`
|
2δis

Proceeding, we show by contradiction that WijklWsjkl “ 0 if i ‰ s. Seeking said

contradiction, suppose that there was a nonzero value of WijklWsjkl. That is, suppose

there is a combination of i, s, j, k, l such that both components are nonzero. Without

loss of generality, let i “ 1. From the rules above, we know that j ‰ 1, and that one

of two cases: 1.) One of k or l can equal 1 or 2.) j ‰ k ‰ l ‰ 1.

Case 1. Without loss of generality, suppose k “ 1. This forces j “ l and the first term

to be of the form W1j1l. By our original supposition, s ‰ 1. Consequently we see: Wsj1l

this means that s, j, and l must be distinct and non-one. However, our supposition

forces j “ l, a contradiction.

Case 2. Suppose, on the other hand, that j ‰ k ‰ l ‰ 1. Then, when we consider

Wsjkl, s “ 1 (else s would equal one of j, k, or l). This contradicts our original

supposition that s ‰ i.
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Therefore, by contradiction, for i ‰ s WijklWsjkl “ 0.

Proceeding, suppose i “ s. Recall from our construction of the eigenbasis, |ω`| “

|η`| “ |θ`| “
?

2. Using (A.3) to represent the right hand side in terms of the

eigenbasis we appeal to Lemma A.0.5 to see that:

|W`
|
2
“
`

pλ`q2 ` pµ`q2 ` pν`q2
˘

Proceeding to examine the left hand side by enumerating the combinations of indices

that produces a nonzero W` we see that:

W`
1jklW

`
1jkl “

ÿ

jkl

W`
1jklW

`
1jkl

“
ÿ

jkl

`

W`
1jkl

˘2

“

¨

˚

˝

1

4
λ`|ω`|2

1212

˛

‹

‚

2

`

¨

˚

˝

1

4
λ`|ω`|2

1234

˛

‹

‚

2

`

¨

˚

˝

´
1

4
λ`|ω`|2

1221

˛

‹

‚

2

`

¨

˚

˝

´
1

4
λ`|ω`|2

1243

˛

‹

‚

2

`

¨

˚

˝

1

4
µ`|η`|2

1313

˛

‹

‚

2

`

¨

˚

˝

1

4
µ`|η`|2

1342

˛

‹

‚

2

`

¨

˚

˝

´
1

4
µ`|η`|2

1331

˛

‹

‚

2

`

¨

˚

˝

´
1

4
µ`|η`|2

1324

˛

‹

‚

2

`

¨

˚

˝

1

4
ν`|θ`|2

1414

˛

‹

‚

2

`

¨

˚

˝

1

4
ν`|θ`|2

1423

˛

‹

‚

2

`

¨

˚

˝

´
1

4
ν`|θ`|2

1441

˛

‹

‚

2

`

¨

˚

˝

´
1

4
ν`|θ`|2

1432

˛

‹

‚

2

.

Since |ω`| “ |η`| “ |θ`| “
?

2 we can simplify this:

`

W`
1jkl

˘2
“

ˆ

1

2
λ`

˙2

`

ˆ

1

2
λ`

˙2

`

ˆ

´
1

2
λ`

˙2

`

ˆ

´
1

2
λ`

˙2

`

ˆ

1

2
µ`

˙2

`

ˆ

1

2
µ`

˙2

`

ˆ

´
1

2
µ`

˙2

`

ˆ

´
1

2
µ`

˙2
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`

ˆ

1

2
ν`

˙2

`

ˆ

1

2
ν`

˙2

`

ˆ

´
1

2
ν`

˙2

`

ˆ

´
1

2
ν`

˙2

“4

ˆ

1

2
λ`

˙2

` 4

ˆ

1

2
µ`

˙2

` 4

ˆ

1

2
ν`

˙2

“pλ`q2 ` pµ`q2 ` pν`q2

“|W`
|
2.

b. Proof. In order to show that

W`
msijW

`
ijklW

`
mskl “ 24 detW`,

note that

detW`
“ λ`µ`ν`.

Moreover, recognize that since λ` ` µ` ` ν` “ 0,

0 “ pλ` ` µ` ` ν`q3

“ pλ`q3 ` pµ`q3 ` pν`q3 ` 3λ`pµ`q2 ` 3λ`pν`q2 ` 3µ`pλ`q2 ` 3µ`pν`q2

` 3ν`pλ`q2 ` 3ν`pµ`q2 ` 6λ`µ`ν`

“ pλ`q3 ` pµ`q3 ` pν`q3 ` 3pµ` ` ν`qpλ`q2 ` 3pλ` ` ν`qpµ`q2

` 3pλ` ` µ`qpν`q2 ` 6λ`µ`ν`

“ pλ`q3 ` pµ`q3 ` pν`q3 ` 3p´λ`qpλ`q2 ` 3p´µ`qpµ`q2 ` 3p´ν`qpν`q2 ` 6λ`µ`ν`

“ pλ`q3 ` pµ`q3 ` pν`q3 ´ 3pλ`q3 ´ 3pµ`q3 ´ 3pν`q3 ` 6λ`µ`ν`

“ ´2pλ`q3 ´ 2pµ`q3 ´ 2pν`q3 ` 6λ`µ`ν`

“ ´2
`

pλ`q3 ` pµ`q3 ` pν`q3
˘

` 6λ`µ`ν`.
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Thus pλ`q3 ` pµ`q3 ` pν`q3 “ 3λ`µ`ν`. Therefore, it is equivalent to show that:

W`
msijW

`
ijklW

`
mskl “ 8

`

pλ`q3 ` pµ`q3 ` pν`q3
˘

.

The most straightforward way to prove this is to enumerate the possibilities and use

some simple counting arguments.

I. Consider the case where tm, su “ t1, 2u, ti, ju “ t1, 2u, and tk, lu “ t1, 2u,. Then

W`
msijW

`
ijklW

`
mskl “ W`

1212W
`
1212W

`
1212 “

1

64
pλ`q3p|ω`|2q3 “

1

8
λ3.

We get this same result when tm, su “ t3, 4u, ti, ju “ t1, 2u, and tk, lu “ t1, 2u.

In fact, if we switch any of the 1’s with a 3 (and the corresponding 2 with a 4).

So we see that we have the following sets of indices that yield the above result.

• tpm, sq “ p1, 2q, pi, jq “ p1, 2q, pk, lq “ p1, 2qu

• tpm, sq “ p3, 4q, pi, jq “ p1, 2q, pk, lq “ p1, 2qu

• tpm, sq “ p1, 2q, pi, jq “ p3, 4q, pk, lq “ p1, 2qu

• tpm, sq “ p1, 2q, pi, jq “ p1, 2q, pk, lq “ p3, 4qu

• tpm, sq “ p3, 4q, pi, jq “ p3, 4q, pk, lq “ p1, 2qu

• tpm, sq “ p1, 2q, pi, jq “ p3, 4q, pk, lq “ p3, 4qu

• tpm, sq “ p3, 4q, pi, jq “ p1, 2q, pk, lq “ p3, 4qu

• tpm, sq “ p3, 4q, pi, jq “ p3, 4q, pk, lq “ p3, 4qu

Thus, so far we have 8 sets of indices, each of which produce W`
msijW

`
ijklW

`
mskl “

1
8
λ3.

Proceeding, we will look at how we can modify these 8 sets by switching pairs of

indices.
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i. If we switch m and s we generate 8 more sets. Using the symmetries of the

Weyl tensor we see that reflecting any single pair of indices results in the

same answer:

W`
smijW

`
ijklW

`
smkl “ p´W

`
msijqW

`
ijklp´W

`
msklq.

There are 3 ways to reflect one pair of indices. Thus, there are a total of 24 sets

of indices with one pair switched, each set producing: W`
msijW

`
ijklW

`
mskl “

1
8
λ3.

ii. If we switch m and s and then switch i and j, again we generate 8 more sets.

Reflecting two pairs of indices produces the same result:

W`
smjiW

`
jiklW

`
smkl “ W`

msijp´W
`
ijklqp´W

`
msklq

and there are 3 ways to reflect two pairs of indices. Thus, there are a total of 24

sets of indices with two pairs switched, each set producing: W`
msijW

`
ijklW

`
mskl “

1
8
λ3.

iii. Lastly, reflecting all three pairs of indices still maintains the original sign:

W`
smjiW

`
jilkW

`
smlk “ W`

msijW
`
ijklW

`
mskl.

There is only 1 way to do this, so there are a total of 8 sets of indices with

all three pairs switched, each set producing: W`
msijW

`
ijklW

`
mskl “

1
8
λ3.

Therefore, there are a total of 8 ` 24 ` 24 ` 8 “ 64 sets of indices, thus we see

that we get

W`
msijW

`
ijklW

`
mskl “ 8pλ`q3.

II. We can repeat this process with pairs p1, 3q and p4, 2q, again producing 64 sets of
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indices yielding

W`
msijW

`
ijklW

`
mskl “ 8pµ`q3.

III. Lastly, we can repeat this process with pairs p1, 4q and p2, 3q, producing another

64 sets of indices yielding:

W`
msijW

`
ijklW

`
mskl “ 8pν`q3.

Combining all of these different options we see that indeed:

W`
msijW

`
ijklW

`
mskl “ 8pλ`q3 ` 8pµ`q3 ` 8pν`q3,

proving our revised claim.

c. Proof. We will proceed in a similar fashion to show that:

4WmiksW
`
ijklW

`
jmsl “ 48 detW`.

Again, we begin by noting that it is equivalent to prove that

WmiksW
`
ijklW

`
jmsl “ 16λ`µ`ν`.

As in part (b), the most straightforward way to do this proof is to enumerate the

nonzero options. Recall that the norm of the eigenvectors is
?

2. Moreover, from the

symmetries we know that if m ‰ s, i ‰ k, and j ‰ l then m ‰ i ‰ j and s ‰ k ‰ l.

For example, if m “ 1 then i “ 2 and j “ 3, so:

ñ W1212W
`
2323W

`
3131 “

ˆ

1

4

`

λ`|ω`|2 ` λ´|ω´|2
˘

˙ˆ

1

4
ν`|θ`|2

˙ˆ

1

4
µ`|η`|2

˙
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“
1

8
λ`µ`ν` `

1

8
λ´µ`ν`.

The following chart enumerates all of the combinations. Taking the product of the last

last three columns of each row and adding the rows together produces 16λ`µ`ν`, as

desired.

m s i k j l imks ijkl mjsl Wimks W`
ijkl W`

mjsl

1 1 2 2 3 3 2121 2323 1313 1
2
pλ` ` λ´q 1

2
ν` 1

2
µ`

1 1 2 2 4 4 2121 2424 1414 1
2
pλ` ` λ´q 1

2
µ` 1

2
ν`

1 1 3 3 2 2 3131 3232 1212 1
2
pµ` ` µ´q 1

2
ν` 1

2
λ`

1 1 3 3 4 4 3131 3434 1414 1
2
pµ` ` µ´q 1

2
λ` 1

2
ν`

1 1 4 4 2 2 4141 4242 1212 1
2
pν` ` ν´q 1

2
µ` 1

2
λ`

1 1 4 4 3 3 4141 4343 1313 1
2
pν` ` ν´q 1

2
λ` 1

2
µ`

2 2 1 1 3 3 1212 1313 2323 1
2
pλ` ` λ´q 1

2
µ` 1

2
ν`

2 2 1 1 4 4 1212 1414 2424 1
2
pλ` ` λ´q 1

2
ν` 1

2
µ`

2 2 3 3 1 1 3232 3131 2121 1
2
pν` ` ν´q 1

2
µ` 1

2
λ`

2 2 3 3 4 4 3232 3434 2424 1
2
pν` ` ν´q 1

2
λ` 1

2
µ`

2 2 4 4 1 1 4242 4141 2121 1
2
pµ` ` µ´q 1

2
ν` 1

2
λ`

2 2 4 4 3 3 4242 4343 2323 1
2
pµ` ` µ´q 1

2
λ` 1

2
ν`
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3 3 1 1 2 2 1313 1212 3232 1
2
pµ` ` µ´q 1

2
λ` 1

2
ν`

3 3 1 1 4 4 1313 1414 3434 1
2
pµ` ` µ´q 1

2
ν` 1

2
λ`

3 3 2 2 1 1 2323 2121 3131 1
2
pν` ` ν´q 1

2
λ` 1

2
µ`

3 3 2 2 4 4 2323 2424 3434 1
2
pν` ` ν´q 1

2
µ` 1

2
λ`

3 3 4 4 1 1 4343 4141 3131 1
2
pλ` ` λ´q 1

2
ν` 1

2
µ`

3 3 4 4 2 2 4343 4242 3232 1
2
pλ` ` λ´q 1

2
µ` 1

2
ν`

4 4 1 1 2 2 1414 1212 4242 1
2
pν` ` ν´q 1

2
λ` 1

2
µ`

4 4 1 1 3 3 1414 1313 4343 1
2
pν` ` ν´q 1

2
µ` 1

2
λ`

4 4 2 2 1 1 2424 2121 4141 1
2
pµ` ` µ´q 1

2
λ` 1

2
ν`

4 4 2 2 3 3 2424 2323 4343 1
2
pµ` ` µ´q 1

2
ν` 1

2
λ`

4 4 3 3 1 1 3434 3131 4141 1
2
pλ` ` λ´q 1

2
µ` 1

2
ν`

4 4 3 3 2 2 3434 3232 4242 1
2
pλ` ` λ´q 1

2
ν` 1

2
µ`

1 2 2 1 3 4 2112 2314 1324 ´1
2
pλ` ` λ´q 1

2
ν` ´1

2
µ`

1 2 2 1 4 3 2112 2413 1423 ´1
2
pλ` ` λ´q ´1

2
µ` 1

2
ν`

1 2 3 4 2 1 3142 3241 1221 ´1
2
pµ` ´ µ´q 1

2
ν` ´1

2
λ`

1 2 3 4 4 3 3142 3443 1423 ´1
2
pµ` ´ µ´q ´1

2
λ` 1

2
ν`

1 2 4 3 2 1 4132 4231 1221 1
2
pν` ´ ν´q ´1

2
µ` ´1

2
λ`
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1 2 4 3 3 4 4132 4334 1324 1
2
pν` ´ ν´q ´1

2
λ` ´1

2
µ`

2 1 1 2 3 4 1221 1324 2314 ´1
2
pλ` ` λ´q ´1

2
µ` 1

2
ν`

2 1 1 2 4 3 1221 1423 2413 ´1
2
pλ` ` λ´q 1

2
ν` ´1

2
µ`

2 1 3 4 1 2 3241 3142 2112 1
2
pν` ´ ν´q ´1

2
µ` ´1

2
λ`

2 1 3 4 4 3 3241 3443 2413 1
2
pν` ´ ν´q ´1

2
λ` ´1

2
µ`

2 1 4 3 1 2 4231 4132 2112 ´1
2
pµ` ´ µ´q 1

2
ν` ´1

2
λ`

2 1 4 3 3 4 4231 4334 2314 ´1
2
pµ` ´ µ´q ´1

2
λ` 1

2
ν`

1 3 2 4 3 1 2143 2341 1331 1
2
pλ` ´ λ´q ´1

2
ν` ´1

2
µ`

1 3 2 4 4 2 2143 2442 1432 1
2
pλ` ´ λ´q ´1

2
µ` ´1

2
ν`

1 3 3 1 2 4 3113 3214 1234 ´1
2
pµ` ` µ´q ´1

2
ν` 1

2
λ`

1 3 3 1 4 2 3113 3412 1432 ´1
2
pµ` ` µ´q 1

2
λ` ´1

2
ν`

1 3 4 2 2 4 4123 4224 1234 ´1
2
pν` ´ ν´q ´1

2
µ` 1

2
λ`

1 3 4 2 3 1 4123 4321 1331 ´1
2
pν` ´ ν´q 1

2
λ` ´1

2
µ`

3 1 1 3 2 4 1331 1234 3214 ´1
2
pµ` ` µ´q 1

2
λ` ´1

2
ν`

3 1 1 3 4 2 1331 1432 3412 ´1
2
pµ` ` µ´q ´1

2
ν` 1

2
λ`

3 1 2 4 1 3 2341 2143 3113 ´1
2
pν` ´ ν´q 1

2
λ` ´1

2
µ`

3 1 2 4 4 2 2341 2442 3412 ´1
2
pν` ´ ν´q ´1

2
µ` 1

2
λ`
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3 1 4 2 2 4 4321 4123 3113 1
2
pλ` ´ λ´q ´1

2
ν` ´1

2
µ`

3 1 4 2 1 3 4321 4224 3214 1
2
pλ` ´ λ´q ´1

2
µ` ´1

2
ν`

1 4 2 3 3 2 2134 2332 1342 ´1
2
pλ` ´ λ´q ´1

2
ν` 1

2
µ`

1 4 2 3 4 1 2134 2431 1441 ´1
2
pλ` ´ λ´q 1

2
µ` ´1

2
ν`

1 4 3 2 2 3 3124 3223 1243 1
2
pµ` ´ µ´q ´1

2
ν` ´1

2
λ`

1 4 3 2 4 1 3124 3421 1441 1
2
pµ` ´ µ´q ´1

2
λ` ´1

2
ν`

1 4 4 1 2 3 4114 4213 1243 ´1
2
pν` ` ν´q 1

2
µ` ´1

2
λ`

1 4 4 1 3 2 4114 4312 1342 ´1
2
pν` ` ν´q ´1

2
λ` 1

2
µ`

4 1 1 4 2 3 1441 1243 4213 ´1
2
pν` ` ν´q ´1

2
λ` 1

2
µ`

4 1 1 4 3 2 1441 1342 4312 ´1
2
pν` ` ν´q 1

2
µ` ´1

2
λ`

4 1 2 3 1 4 2431 2134 4114 1
2
pµ` ´ µ´q ´1

2
λ` ´1

2
ν`

4 1 2 3 3 2 2431 2332 4312 1
2
pµ` ´ µ´q ´1

2
ν` ´1

2
λ`

4 1 3 2 1 4 3421 3124 4114 ´1
2
pλ` ´ λ´q 1

2
µ` ´1

2
ν`

4 1 3 2 2 3 3421 3223 4213 ´1
2
pλ` ´ λ´q ´1

2
ν` 1

2
µ`

2 3 1 4 3 2 1243 1342 2332 ´1
2
pλ` ´ λ´q 1

2
µ` ´1

2
ν`

2 3 1 4 4 1 1243 1441 2431 ´1
2
pλ` ´ λ´q ´1

2
ν` 1

2
µ`

2 3 3 2 1 4 3223 3124 2134 ´1
2
pν` ` ν´q 1

2
µ` ´1

2
λ`
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2 3 3 2 4 1 3223 3421 2431 ´1
2
pν` ` ν´q ´1

2
λ` 1

2
µ`

2 3 4 1 1 4 4213 4114 2134 1
2
pµ` ´ µ´q ´1

2
ν` ´1

2
λ`

2 3 4 1 3 2 4213 4312 2332 1
2
pµ` ´ µ´q ´1

2
λ` ´1

2
ν`

3 2 1 4 2 3 1342 1243 3223 1
2
pµ` ´ µ´q ´1

2
λ` ´1

2
ν`

3 2 1 4 4 1 1342 1441 3421 1
2
pµ` ´ µ´q ´1

2
ν` ´1

2
λ`

3 2 2 3 1 4 2332 2134 3124 ´1
2
pν` ` ν´q ´1

2
λ` 1

2
µ`

3 2 2 3 4 1 2332 2431 3421 ´1
2
pν` ` ν´q 1

2
µ` ´1

2
λ`

3 2 4 1 1 4 4312 4114 3124 ´1
2
pλ` ´ λ´q ´1

2
ν` 1

2
µ`

3 2 4 1 2 3 4312 4213 3223 ´1
2
pλ` ´ λ´q 1

2
µ` ´1

2
ν`

2 4 1 3 3 1 1234 1331 2341 1
2
pλ` ´ λ´q ´1

2
µ` ´1

2
ν`

2 4 1 3 4 2 1234 1432 2442 1
2
pλ` ´ λ´q ´1

2
ν` ´1

2
µ`

2 4 3 1 1 3 3214 3113 2143 ´1
2
pν` ´ ν´q ´1

2
µ` 1

2
λ`

2 4 3 1 4 2 3214 3412 2442 ´1
2
pν` ´ ν´q 1

2
λ` ´1

2
µ`

2 4 4 2 1 3 4224 4123 2143 ´1
2
pµ` ` µ´q ´1

2
ν` 1

2
λ`

2 4 4 2 3 1 4224 4321 2341 ´1
2
pµ` ` µ´q 1

2
λ` ´1

2
ν`

4 2 1 3 2 4 1432 1234 4224 ´1
2
pν` ´ ν´q 1

2
λ` ´1

2
µ`

4 2 1 3 3 1 1432 1331 4321 ´1
2
pν` ´ ν´q ´1

2
µ` 1

2
λ`
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4 2 2 4 1 3 2442 2143 4123 ´1
2
pµ` ` µ´q 1

2
λ` ´1

2
ν`

4 2 2 4 3 1 2442 2341 4321 ´1
2
pµ` ` µ´q ´1

2
ν` 1

2
λ`

4 2 3 1 1 3 3412 3113 4123 1
2
pλ` ´ λ´q ´1

2
µ` ´1

2
ν`

4 2 3 1 2 4 3412 3214 4224 1
2
pλ` ´ λ´q ´1

2
ν` ´1

2
µ`

3 4 1 2 2 1 1324 1221 3241 ´1
2
pµ` ´ µ´q ´1

2
λ` 1

2
ν`

3 4 1 2 4 3 1324 1423 3443 ´1
2
pµ` ´ µ´q 1

2
ν` ´1

2
λ`

3 4 2 1 1 2 2314 2112 3142 1
2
pν` ´ ν´q ´1

2
λ` ´1

2
µ`

3 4 2 1 4 3 2314 2413 3443 1
2
pν` ´ ν´q ´1

2
µ` ´1

2
λ`

3 4 4 3 1 2 4334 4132 3142 ´1
2
pλ` ` λ´q 1

2
ν` ´1

2
µ`

3 4 4 3 2 1 4334 4231 3241 ´1
2
pλ` ` λ´q ´1

2
µ` 1

2
ν`

4 3 1 2 2 1 1423 1221 4231 1
2
pν` ´ ν´q ´1

2
λ` ´1

2
µ`

4 3 1 2 3 4 1423 1324 4334 1
2
pν` ´ ν´q ´1

2
µ` ´1

2
λ`

4 3 2 1 1 2 2413 2112 4132 ´1
2
pµ` ´ µ´q ´1

2
λ` 1

2
ν`

4 3 2 1 3 4 2413 2314 4334 ´1
2
pµ` ´ µ´q 1

2
ν` ´1

2
λ`

4 3 3 4 1 2 3443 3142 4132 ´1
2
pλ` ` λ´q ´1

2
µ` 1

2
ν`

4 3 3 4 2 1 3443 3241 4231 ´1
2
pλ` ` λ´q 1

2
ν` ´1

2
µ`

Table A.3: Computations for proof of Theorem A.0.10 (c)
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Appendix B

Structure Constants

In Section 2.2, we use explicit representation of the Bach tensor to determine the existence

and nature of solitons. To get those representations we use structure constants. We begin

this appendix by looking at the background and meaning behind structure constants, then

we will go through an example of such a computation.

Broadly speaking, structure constants provide an n ˆ n ˆ n array that describes a Lie

algebra structure. Ryan and Shepley, [RS75], call these constants “structure coefficient”,

which more clearly defines their role in describing a Lie algebra structure. When examining

a Lie group with a left invariant metric, the structure constants, Cijk arise when looking at

the effects of the Lie bracket on an orthonormal basis e1, . . . , en:

rei, ejs “ C k
ij ek “

ÿ

k

Cijkek.

As Milnor notes in [Mil76], this is equivalent to:

Cijk “ xrei, ejs, eky.
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The anti-symmetry of the Lie bracket induces an anti-symmetry of the first two indices:

Cijk “ ´Cjik.

Note, this notation is very similar to the Cotton tensor, but the two are unrelated.

B.1 Geometries

The scope of subsection 2.2.4 is limited to the cases where N3 is 3-dimensional, unimodular,

Lie groups. The choice of manifolds is related to Thurston’s geometrization conjecture, which

is a 3-dimensional version of the uniformization conjecture in 2-dimensions. Thurston’s ge-

ometrization conjecture uses the geometries from the following classification with other tools

to classifying all 3-manifolds. We refrain from a more thorough discussion of this theorem,

but refer the reader to [Lee18, pg.77] for more information. The following classification of

a subset of 3-manifolds helps guide our choice of manifolds we investigate in Section 2.2.4.

First, define a geometry as a pair pX,Gq where X is a set and G is a group acting on X, as

in [Sco83]. Then we get the following classification as stated in [Sco83].

Theorem B.1.1. Any maximal, simply connected, 3-dimensional geometry which admits

compact quotients is equivalent to one of the geometries pX, IsomXq where X is one of E3,

H3, S3, Rˆ S2, RˆH2, xSLp2,Rq, Nil, or Solv

It’s worth noting that this is equivalent to considering to the nine classes discuss by

Isenberg-Jackson in [IJ92]. These classes are (nearly) equivalent to Thurston’s eight ge-

ometries, the notable difference being that the Thurston only considers metrics which have

maximal symmetry. Thus both R3 and the group of isometries of the Euclidean plane, Ep2q,

are considered as one geometry E3. The connection between the two sets of classifications

is summarized in [IJ92, Table 1]. These classifications aid in determining the Bianchi type

of many of the manifolds we examine in subsection 2.2.4. The Bianchi type of each of the
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Lie algebras is provided in [RS75].

Proceeding, we will see how these Bianchi types enable us to determine the structure

constants of our manifolds. In [EM69] we see that for the unimodular Lie groups that are

Bianchi types, there is a basis for the Lie algebra such that we can represent the structure

constants as:

C k
ij “ εijsE

ks

where εijs is the Levi-Civita symbol. The Levi-Civita symbol captures the permutations of

the indices and can be defined as follows:

εijk “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

1 if pi, j, kq is p1, 2, 3q, p2, 3, 1q, p3, 1, 2q

´1 if pi, j, kq is p3, 2, 1q, p1, 3, 2q, p2, 1, 3q

0 if i “ j, j “ k , k “ i

.

The main idea being that each permutation of indices produces a ´1. So if we permute an

odd number of times we get a ´1, and if we permute an even number of times we get `1.

It’s worth noting that this does not permit repeated indices in the structure constants we

consider.

Proposition B.1.2. For a manifold with diagonal E, structure constants with repeated in-

dices are zero

Proof. By definition of Levi-Civita symbol,

C k
ii “ εiisE

ks
“ 0Eks

“ 0

For E diagonal we know that Eij “ 0 for i ‰ j. Thus:

C i
ij “ εijsE

is
“ 0
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While the first condition is true in general, the latter condition only holds for diagonal E.

This matrix representation of structure constants is also referenced in [RS75, Chapter 6],

where they provide a number of charts detailing the structure constants. In [Hel20], Helliwell

uses a basis that diagonalizes the initial matrix E. Per [Mil76], this is always possible for

a three-dimensional Lie algebra with structure constants of the above form. Using this, we

get [Hel20, Figure 1]:

Type Group E

I R3 0

II Nil diagp1, 0, 0q

VI0 Solv diagp´1, 1, 0q

VII0 Ep2q diagp´1,´1, 0q

VIII ŜLp2,Rq diagp´1, 1, 1q

IX S3 id

Table B.1: Diagonal representation of structure constants for 3-dimensional unimodular Lie
groups.

B.2 Equations

We will now present equations for the Ricci and scalar curvature tensors in terms of structure

constants as presented in [Hel20]. In order to use these in determining the Bach tensor, we

will also need to use a formula for the Laplacian of a left-invariant (2,0)-tensor. This will be
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given in terms of a general (2,0)-tensor, Tij.

Rjk “ ´
1

2

´

C l p
j ` Cp l

j

¯

Clkp `
1

4
C lp

jClpk `
1

2
C lp

l pCpjk ` Cpkjq (B.1)

S “ ´
1

4
C lkpClkp ´

1

2
CpklClkp ´ C

lp
lC

k
pk (B.2)

p∆T qij “
1

2
Tpq

´

Ck p
i C

q
kj ` C

kp
iC

q
k j ` C

pk
i C q

j k

´ Ck p
i C

q
k j ´ C

k p
j C

q
k i ´ C

k p
i C

q
j k

´Ck p
j C

q
i k ` C

kp
iC

q
j k ` C

kp
jC

q
i k

¯

`
1

4
Tqj

´

pCkp
i ´ C

k p
i ` C pk

i qpC q
k p ´ C

q
kp ` C

q
p kq

`2Ckp
kpC

q
p i ´ C

q
pi q

¯

`
1

4
Tqi

´

pCkp
j ´ C

k p
j ` C pk

j qpC q
k p ´ C

q
kp ` C

q
p kq

`2Ckp
kpC

q
p j ´ C

q
pj q

¯

(B.3)

We will use these equations to get the components of (1.7) from Section 1.3. We restate

the equation here for convenience.

B00 “

ˆ

´
1

12
p∆p2qSp2qq ´

1

4

„

p|Ric |p2qq2 ´
1

3
pSp2qq2

˙

g00

Bjk “
1

2
∆p2qR

p2q
jk ´

1

12
∆p2qSp2qgjk ´

1

6
S
p2q
; jk ´ 2gilR

p2q
ij R

p2q
lk

`
7

6
Sp2qR

p2q
jk `

3

4
p|Ric |p2qq2gjk ´

5

12
pSp2qq2gjk

B.3 Example

In the following example we will calculate the Bach tensor of R ˆ Nil. It should be noted

that this is the most straightforward example and is the only example that is feasible to do

by hand. The remaining manifolds require the use of computing software.
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From the table above we see that for Nil, the matrix the will yield structure constants is

given by:

E “

»

—

—

—

–

1 0 0

0 0 0

0 0 0

fi

ffi

ffi

ffi

fl

Again we use the fact that:

C k
ij “ εijsE

ks

where εijs is the Levi-Civita symbol. We know that E11 is the only nonzero entry, so we

need only consider the cases where k “ s “ 1:

C 1
ij “ εij1E

11

Using the Levi-Civita symbol, we work through a couple of the computations to demonstrate

a way one might approach working with the Levi-Civita symbol.

C 1
23 “ ε231E

11
“ ε231 “ ´ε213 “ ε123 “ 1

C 1
32 “ ε321E

11
“ ε321 “ ´ε231 “ `ε213 “ ´ε123 “ ´1

Proceeding, we see that these are in fact the only nonzero structure constants.

C 1
23 “ 1

C 1
32 “ ´1

C 1
11 “ C 1

12 “ C 1
13 “ C 1

21 “ C 1
22 “ C 1

31 “ C 1
33 “ 0

C 2
11 “ C 2

12 ““ C 2
13 “ C 2

21 “ C 2
22 “ C 2

23 “ C 2
31 “ C 2

32 “ C 2
33 “ 0

C 3
11 “ C 3

12 ““ C 3
13 “ C 3

21 “ C 3
22 “ C 3

23 “ C 3
31 “ C 3

32 “ C 3
33 “ 0
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By the spectral theory, we can pick a basis to diagonalize out metric g, so gjk “ 0 for

j ‰ k.

Because we are working on the manifold RˆNil we know that:

R00 “ 0 and Sp1q “ 0

Proceeding to examine the components that correspond to Nil we use the equation for

the Ricci tensor defined in terms of structure constants.

Rjk “ ´
1

2

`

glsC p
sj ` g

psC l
sj

˘

gpsC
s

lk `
1

4
pglsgprgjtC

t
sr qpgksC

s
lp q

`
1

2
glsgprgltC

t
sr

`

gksC
s

pj ` gjsC
s

pk

˘

Using the fact that the metric is orthogonal we see that:

Rjk “ ´
1

2

`

gllC p
lj ` g

ppC l
pj

˘

gppC
p

lk `
1

4
pgllgppgjjC

j
lp qpgkkC

k
lp q

`
1

2
gllgppgllC

l
lp

`

gkkC
k

pj ` gjjC
j

pk

˘

Proposition B.3.1. A 3-manifold, M , with diagonal E has a diagonal Ricci tensor.

Proof. Suppose j ‰ k. From Proposition B.1.2, we know that structure constants with

repeated indices are zero. In order for the first and second term to be nonzero, j, k, l, and

p need to be distinct:

• j ‰ k by assumption

• l ‰ p ‰ j else we have a repeated index

• l ‰ p ‰ k for the same reason

Thus j ‰ k ‰ l ‰ p. However, because M is a 3-manifold, we only have 3 available indices.

Thus, by the pigeonhole principle, one index must be repeated. The last term is zero because
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of repeated indices.

Thus, the Ricci tensor is diagonal.

Proceeding, we calculate the remaining pieces of (1.7).

R11 “ ´
1

2

“`

g22C 3
21 ` g

33C 2
31

˘

g33C
3

21 `
`

g33C 2
31 ` g

22C 3
21

˘

g22C
2

31

‰

`
1

4

“

pg22g33g11C
1

23 qpg11C
1

23 q ` pg
33g22g11C

1
32 qpg11C

1
32 q

‰

`
1

2
gllgppgllC

l
lp

`

g11C
1

p1 ` g11C
1

p1

˘

“
1

4

“

pg22g33g11C
1

23 qpg11C
1

23 q ` pg
33g22g11C

1
32 qpg11C

1
32 q

‰

“
1

4

“

g22g33
pg11q

2
` pg33g22g11p´1qqpg11p´1qq

‰

“
1

2

„

1

g22

1

g33

pg11q
2



“
pg11q

2

2g22g33

R22 “´
1

2

`

gllC p
l2 ` gppC l

p2

˘

gppC
p

l2 `
1

4
pgllgppg22C

2
lp qpg22C

2
lp q

`
1

2
gllgppgllC

l
lp

`

g22C
2

p2 ` g22C
2

p2

˘

“´
1

2

`

g11C 3
12 ` g

33C 1
32

˘

g33C
3

12 ´
1

2

`

g33C 1
32 ` g

11C 3
12

˘

g11C
1

32

“´
1

2

ˆ

1

g33

p´1q

˙

g11p´1q

“ ´
g11

2g33

R33 “´
1

2

`

gllC p
l3 ` gppC l

p3

˘

gppC
p

l3 `
1

4
pgllgppg33C

3
lp qpg33C

3
lp q

`
1

2
gllgppgllC

l
lp

`

g33C
3

p3 ` g33C
3

p3

˘

“ ´
1

2

`

g11C 2
13 ` g

22C 1
23

˘

g22C
2

13 ´
1

2

`

g22C 1
23 ` g

11C 2
13

˘

g11C
1

23

“´
1

2

ˆ

1

g22

˙

g11
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“´
g11

2g22

p|Ric |p2qq2 “ xRic,Ricy

“ gilgjkRijRkl

“ giigjjRijRij

“
`

giiRii

˘2

“
`

g11R11

˘2
`
`

g22R22

˘2
`
`

g33R33

˘2

“

ˆ

g11 pg11q
2

2g22g33

˙2

`

ˆ

´g22 g11

2g33

˙2

`

ˆ

´g33 g11

2g22

˙2

“

ˆ

g11

2g22g33

˙2

`

ˆ

´
g11

2g22g33

˙2

`

ˆ

´
g11

2g22g33

˙2

“
pg11q

2

4pg22q
2pg33q

2
`

pg11q
2

4pg22q
2pg33q

2
`

pg11q
2

4pg22q
2pg33q

2

“
3pg11q

2

4pg22q
2pg33q

2

Sp2q “´
1

4
C lkpClkp ´

1

2
CpklClkp ´ C

lp
lC

k
pk

“´
1

4

“

C l1pCl1p ` C
l2pCl2p ` C

l3pCl3p
‰

´
1

2

“

Cp1lCl1p ` C
p2lCl2p ` C

p3lCl3p
‰

´
“

C l1
lC

k
1k ` C

l2
lC

k
2k ` C

l3
lC

k
3k

‰

“´
1

4

“

C213C213 ` C
312C312 ` C

123C123 ` C
321C321 ` C

132C132 ` C
231C231

‰

´
1

2

“

C312C213 ` C
213C312 ` C

321C123 ` C
123C321 ` C

231C132 ` C
132C231

‰

´
“

C21
2C

3
13 ` C

31
3C

2
12 ` C

12
1C

3
23 ` C

32
3C

1
21 ` C

13
1C

2
32 ` C

23
2C

1
31

‰

“´
1

4

“

g2sg1rC 3
sr g3tC

t
21 ` g

3sg1rC 2
sr g2tC

t
31 ` g

1sg2rC 3
sr g3tC

t
12
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`g3sg2rC 1
sr g1tC

t
32 ` g

1sg3rC 2
sr g2tC

t
13 ` g

2sg3rC 1
sr g1tC

t
23

‰

´
1

2

“

g3sg1rC 2
sr g3tC

t
21 ` g

2sg1tC 3
sr g2tC

t
31 ` g

3sg2rC 1
sr g3tC

t
12

`g1sg2rC 3
sr g1tC

t
32 ` g

2sg3rC 1
sr g2tC

t
13 ` g

1sg3rC 2
sr g1tC

t
23

‰

“´
1

4

“

g22g11C 3
21 g33C

3
21 ` g

33g11C 2
31 g22C

2
31 ` g

11g22C 3
12 g33C

3
12

`g33g22C 1
32 g11C

1
32 ` g

11g33C 2
13 g22C

2
13 ` g

22g33C 1
23 g11C

1
23

‰

´
1

2

“

g33g11C 2
31 g33C

3
21 ` g

22g11C 3
21 g22C

2
31 ` g

32g22C 1
32 g33C

3
12

`g11g22C 3
12 g11C

1
32 ` g

22g33C 1
23 g22C

2
13 ` g

11g33C 2
13 g11C

1
23

‰

“´
1

4

“

g33g22g11 ` g
22g33g11

‰

“´
1

2

„

1

g33

1

g22

g11



“´
g11

2g22g33

“´
g11

2g22g33

¨
g00g11

g00g11

“´
g00pg11q

2

2 det g

∆R11 “
1

2
Rpq

´

Ck p
1 C q

k1 ` C
kp

1C
q

k 1 ` C
pk

1 C q
1 k ´ C

k p
1 C q

k 1 ´ C
k p
1 C q

k 1

´Ck p
1 C q

1 k ´ C
k p
1 C q

1 k ` C
kp

1C
q

1 k ` C
kp

1C
q

1 k

¯

`
1

2
Rq1

´

pCkp
1 ´ C

k p
1 ` C pk

1 qpC q
k p ´ C

q
kp ` C

q
p kq ` 2Ckp

kpC
q

p 1 ´ C
q

p1 q

¯

“
1

2
Rpp

´

Ck p
1 C p

k1 ` C
kp

1C
p

k 1 ` C
pk

1 C p
1 k ´ C

k p
1 C p

k 1 ´ C
k p
1 C p

k 1

´Ck p
1 C p

1 k ´ C
k p
1 C p

1 k ` C
kp

1C
p

1 k ` C
kp

1C
p

1 k

¯

`
1

2
R11

´

pCkp
1 ´ C

k p
1 ` C pk

1 qpC 1
k p ´ C

1
kp ` C

1
p kq ` 2Ckp

kpC
1

p 1 ´ C
1

p1 q

¯

“
1

2
R11

`

Ck 1
1 C 1

k1 ` C
k1

1C
1

k 1 ` C
1k

1 C 1
1 k ´ C

k 1
1 C 1

k 1 ´ C
k 1
1 C 1

k 1

´Ck 1
1 C 1

1 k ´ C
k 1
1 C 1

1 k ` C
k1

1C
1

1 k ` C
k1

1C
1

1 k

˘
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`
1

2
R22

`

Ck 2
1 C 2

k1 ` C
k2

1C
2

k 1 ` C
2k

1 C 2
1 k ´ C

k 2
1 C 2

k 1 ´ C
k 2
1 C 2

k 1

´Ck 2
1 C 2

1 k ´ C
k 2
1 C 2

1 k ` C
k2

1C
2

1 k ` C
k2

1C
2

1 k

˘

`
1

2
R33

`

Ck 3
1 C 3

k1 ` C
k3

1C
3

k 1 ` C
3k

1 C 3
1 k ´ C

k 3
1 C 3

k 1 ´ C
k 3
1 C 3

k 1

´Ck 3
1 C 3

1 k ´ C
k 3
1 C 3

1 k ` C
k3

1C
3

1 k ` C
k3

1C
3

1 k

˘

`
1

2
R11

´

pCkp
1 ´ C

k p
1 ` C pk

1 qpC 1
k p ´ C

1
kp ` C

1
p kq

¯

“
1

2
R22

`

C3 2
1 C

2
31 ` C

32
1C

2
3 1 ` C

23
1 C 2

1 3 ´ 2C3 2
1 C

2
3 1 ´ 2C3 2

1 C
2

1 3 ` 2C32
1C

2
1 3

˘

`
1

2
R33

`

C2 3
1 C

3
21 ` C

23
1C

3
2 1 ` C

32
1 C 3

1 2 ´ 2C2 3
1 C

3
2 1 ´ 2C2 3

1 C
3

1 2 ` 2C23
1C

3
1 2

˘

`
1

2
R11

`

pC23
1 ´ C

2 3
1 ` C 32

1 qpC 1
2 3 ´ C

1
23 ` C

1
3 2q

`pC32
1 ´ C

3 2
1 ` C 23

1 qpC 1
3 2 ´ C

1
32 ` C

1
2 3q

˘

“
1

2
R22

`

g33C 2
31 C

2
31 ` g

33g22g11C
1

32 g
22g11C

1
32 ` g

22g123g22g33C
3

12

´2g33C 2
31 g

22g11C
1

32 ´ 2g33C 2
31 g

22g33C
3

12 ` 2g33g22g11C
1

32 g
22g33C

3
12

˘

`
1

2
R33

`

g22C 3
21 C

3
21 ` g

22g33g11C
1

23 g
33g11C

1
23 ` g

33C 2
13 g

33g22C
2

13 ´

2g22C 3
21 g

33g11C
1

23 ´ 2g22C 3
21 g

33g22C
2

13 ` 2g22g33g11C
1

23 g
33g22C

2
13

˘

`
1

2
R11

`

pg22g33g11C
1

23 ´ g
22C 3

21 ` g
33C 2

13 qpg
11g33C

3
21 ´ C

1
23 ` g

11g22C
2

31 q

`pg33g22g11C
1

32 ´ g
33C 2

31 ` g
22C 3

12 qpg
11g22C

2
31 ´ C

1
32 ` g

11g33C
3

21 q
˘

“
1

2
R22

`

g33g22g11C
1

32 g
22g11C

1
32

˘

`
1

2
R33

`

g22g33g11C
1

23 g
33g11C

1
23

˘

`
1

2
R11

`

pg22g33g11C
1

23 qp´C
1

23 q ` pg
33g22g11C

1
32 qp´C

1
32 q

˘

“
1

2
R22

`

g33
pg22

q
2
pg11q

2
˘

`
1

2
R33

`

g22
pg33

q
2
pg11q

2
˘

`
1

2
R11

`

´2g22g33g11

˘

“

ˆ

´
g11

4g33

˙ˆ

pg11q
2

g33pg22q
2

˙

`

ˆ

´
g11

4g22

˙ˆ

pg11q
2

g22pg33q
2

˙

`

ˆ

´
pg11q

2

2g22g33

˙ˆ

g11

g22g33

˙

“ ´
pg11q

3

pg33q
2pg22q

2
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∆R22 “
1

2
Rpq

´

Ck p
2 C q

k2 ` C
kp

2C
q

k 2 ` C
pk

2 C q
2 k ´ C

k p
2 C q

k 2 ´ C
k p
2 C q

k 2

´Ck p
2 C q

2 k ´ C
k p
2 C q

2 k ` C
kp

2C
q

2 k ` C
kp

2C
q

2 k

¯

`
1

2
Rq2

´

pCkp
2 ´ C

k p
2 ` C pk

2 qpC q
k p ´ C

q
kp ` C

q
p kq ` 2Ckp

kpC
q

p 2 ´ C
q

p2 q

¯

“
1

2
Rpp

´

Ck p
2 C p

k2 ` C
kp

2C
p

k 2 ` C
pk

2 C p
2 k ´ C

k p
2 C p

k 2 ´ C
k p
2 C p

k 2

´Ck p
2 C p

2 k ´ C
k p
2 C p

2 k ` C
kp

2C
p

2 k ` C
kp

2C
p

2 k

¯

`
1

2
R22

´

pCkp
2 ´ C

k p
2 ` C pk

2 qpC 2
k p ´ C

2
kp ` C

2
p kq ` 2Ckp

kpC
2

p 2 ´ C
2

p2 q

¯

“
1

2
R11

`

Ck 1
2 C 1

k2 ` C
k1

2C
1

k 2 ` C
1k

2 C 1
2 k ´ C

k 1
2 C 1

k 2 ´ C
k 1
2 C 1

k 2

´Ck 1
2 C 1

2 k ´ C
k 1
2 C 1

2 k ` C
k1

2C
1

2 k ` C
k1

2C
1

2 k

˘

`
1

2
R33

`

Ck 3
2 C 3

k2 ` C
k3

2C
3

k 2 ` C
3k

2 C 3
2 k ´ C

k 3
2 C 3

k 2 ´ C
k 3
2 C 3

k 2

´Ck 3
2 C 3

2 k ´ C
k 3
2 C 3

2 k ` C
k3

2C
3

2 k ` C
k3

2C
3

2 k

˘

`
1

2
R22

´

pCkp
2 ´ C

k p
2 ` C pk

2 qpC 2
k p ´ C

2
kp ` C

2
p kq

¯

“
1

2
R11

`

C3 1
2 C

1
32 ` C

31
2C

1
3 2 ` C

13
2 C 1

2 3

´2C3 1
2 C

1
3 2 ´ 2C3 1

2 C
1

2 3 ` 2C31
2C

1
2 3

˘

`
1

2
R33

`

C1 3
2 C

3
12 ` C

13
2C

3
1 2 ` C

31
2 C 3

2 1

´2C1 3
2 C

3
1 2 ´ 2C1 3

2 C
3

2 1 ` 2C13
2C

3
2 1

˘

`
1

2
R22

`

pC13
2 ´ C

1 3
2 ` C 31

2 qpC 2
1 3 ´ C

2
13 ` C

2
3 1q

`pC31
2 ´ C

3 1
2 ` C 13

2 qpC 2
3 1 ´ C

2
31 ` C

2
1 3q

˘

“
1

2
R11

`

g33C 1
32 C

1
32 ` g

33g11g22C
2

31 g
11g22C

2
31 ` c

11C 3
21 g

11g33C
3

21

´2g33C 1
32 g

11g22C
2

31 ´ 2g33C 1
32 g

11g33C
3

21 ` 2g33g11g22C
1

32 g
11g33C

3
21

˘

`
1

2
R33

`

g11C 3
12 C

3
12 ` g

11g33g22C
2

13 g
33g22C

2
13 ` g

33C 1
23 g

33g11C
1

23

´2g11C 3
12 g

33g22C
2

13 ´ 2g11C 3
12 g

33g11C
1

23 ` 2g11g33g22C
2

13 g
33g11C

1
23

˘
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`
1

2
R22

`

pg11g33g22C
2

13 ´ g
11C 3

12 ` g
33C 1

23 qpg
22g33C

3
12 ´ C

2
13 ` g

22g11C
1

32 q

`pg33g11g22C
2

31 ´ g
33C 1

32 ` g
11C 3

21 qpg
22g11C

1
32 ´ C

2
31 ` g

22g33C
3

12 q
˘

“
1

2
R11g

33
`

1

2
R33pg

33
q
2g11 `

1

2
R22

`

pg33
qp´g22g11q ` pg

33
qp´g22g11q

˘

“
1

2

ˆ

pg11q
2

2g22g33

˙ˆ

1

g33

˙

`
1

2

ˆ

´
g11

2g22

˙ˆ

g11

pg33q
2

˙

`

ˆ

´
g11

2g33

˙ˆ

1

g33

˙ˆ

´
g11

g22

˙

“

ˆ

pg11q
2

4g22pg33q
2

˙

´

ˆ

pg11q
2

4g22pg33q
2

˙

`

ˆ

pg11q
2

2g22pg33q
2

˙

“
pg11q

2

2g22pg33q
2

∆R33 “
1

2
Rpq

´

Ck p
3 C q

k3 ` C
kp

3C
q

k 3 ` C
pk

3 C q
3 k ´ C

k p
3 C q

k 3 ´ C
k p
3 C q

k 3

´Ck p
3 C q

3 k ´ C
k p
3 C q

3 k ` C
kp

3C
q

3 k ` C
kp

3C
q

3 k

¯

`
1

2
Rq3

´

pCkp
3 ´ C

k p
3 ` C pk

3 qpC q
k p ´ C

q
kp ` C

q
p kq ` 2Ckp

kpC
q

p 3 ´ C
q

p3 q

¯

“
1

2
Rpp

´

Ck p
3 C p

k3 ` C
kp

3C
p

k 3 ` C
pk

3 C p
3 k ´ C

k p
3 C p

k 3 ´ C
k p
3 C p

k 3

´Ck p
3 C p

3 k ´ C
k p
3 C p

3 k ` C
kp

3C
p

3 k ` C
kp

3C
p

3 k

¯

`
1

2
R33

´

pCkp
3 ´ C

k p
3 ` C pk

3 qpC 3
k p ´ C

3
kp ` C

3
p kq ` 2Ckp

kpC
3

p 3 ´ C
3

p3 q

¯

“
1

2
R11

`

Ck 1
3 C 1

k3 ` C
k1

3C
1

k 3 ` C
1k

3 C 1
3 k

´2Ck 1
3 C 1

k 3 ´ 2Ck 1
3 C 1

3 k ` 2Ck1
3C

1
3 k

˘

`
1

2
R22

`

Ck 2
3 C 2

k3 ` C
k2

3C
2

k 3 ` C
2k

3 C 2
3 k

´2Ck 2
3 C 2

k 3 ´ 2Ck 2
3 C 2

3 k ` 2Ck2
3C

2
3 k

˘

`
1

2
R33

´

pCkp
3 ´ C

k p
3 ` C pk

3 qpC 3
k p ´ C

3
kp ` C

3
p kq

¯

“
1

2
R11

`

C2 1
3 C

1
23 ` C

21
3C

1
2 3 ` C

12
3 C 1

3 2

´2C2 1
3 C

1
2 3 ´ 2C2 1

3 C
1

3 2 ` 2C21
3C

1
3 2

˘

`
1

2
R22

`

C1 2
3 C

2
13 ` C

12
3C

2
1 3 ` C

21
3 C 2

3 1

´2C1 2
3 C

2
1 3 ´ 2C1 2

3 C
2

3 1 ` 2C12
3C

2
3 1

˘
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`
1

2
R33

`

pC12
3 ´ C

1 2
3 ` C 21

3 qpC 3
1 2 ´ C

3
12 ` C

3
2 1q

`pC21
3 ´ C

2 1
3 ` C 12

3 qpC 3
2 1 ´ C

3
21 ` C

3
1 2q

˘

“
1

2
R11

`

g22C 1
23 C

1
23 ` g

22g11g33C
3

21 g
11g33C

3
21 ` g

11C 2
31 g

11g22C
2

31

´2g22C 1
23 g

11g33C
3

21 ´ 2g22C 1
23 g

11g22C
2

31 ` 2g22g11g33C
3

21 g
11g22C

2
31

˘

`
1

2
R22

`

g11C 2
13 C

2
13 ` g

11g22g33C
3

12 g
22g33C

3
12 ` g

22C 1
32 g

22g11C
1

32

´2g11C 2
13 g

22g33C
3

12 ´ 2g11C 2
13 g

22g11C
1

32 ` 2g11g22g33C
3

12 g
22g11C

1
32

˘

`
1

2
R33

`

pg11g22g33C
3

12 ´ g
11C 2

13 ` g
22C 1

32 qpg
33g22C

2
13 ´ C

3
12 ` g

33g11C
1

23 q

`pg22g11g33C
3

21 ´ g
22C 1

23 ` g
11C 2

31 qpg
33g11C

1
23 ´ C

3
21 ` g

33g22C
2

13 q
˘

“
1

2
R11

`

g22
˘

`
1

2
R22

`

pg22
q
2g11

˘

`
1

2
R33

`

p´g22
qpg33g11q ` p´g

22
qpg33g11q

˘

“
1

2

ˆ

pg11q
2

2g22g33

˙ˆ

1

g22

˙

`
1

2

ˆ

´
g11

2g33

˙ˆ

g11

pg22q
2

˙

`

ˆ

´
g11

2g22

˙ˆ

´
1

g22

˙ˆ

g11

g33

˙

“

ˆ

pg11q
2

4pg22q
2g33

˙

´

ˆ

pg11q
2

4pg22q
2g33

˙

`

ˆ

pg11q
2

2pg22q
2g33

˙

“
pg11q

2

2pg22q
2g33

∆Sp2q “ 0 and S; jk “ ∇j∇kS “ 0 because Nil is homogeneous.

To keep with the conventions in [Hel20], let

β “
1

6pdet gq2
.

The component of the Bach tensor corresponding to R is as follows.

B00 “

ˆ

´
1

12
p∆p2qSp2qq ´

1

4

„

p|Ric |p2qq2 ´
1

3
pSp2qq2

˙

g00

“

˜

´
1

12
p0q ´

1

4

«

3pg11q
2

4pg22q
2pg33q

2
´

1

3

ˆ

´
g00pg11q

2

2 det g

˙2
ff¸

g00

“

˜

´
1

4

«

3pg11q
2

4pg22q
2pg33q

2
´

1

3

ˆ

´
g11

2g22g33

˙2
ff¸

g00
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“

ˆ

´
1

4

„

3pg11q
2

4pg22q
2pg33q

2
´

pg11q
2

12pg22q
2pg33q

2

˙

“´
g00pg11q

2

6pg22q
2pg33q

2

“´
pg00q

3pg11q
4

6pdet gq2

“´ βpg00q
3
pg11q

4

For the components corresponding to Nil we use the equation:

Bjk “
1

2
∆p2qR

p2q
jk ´

1

12
∆p2qSp2qgjk ´

1

6
S
p2q
; jk ´ 2gilR

p2q
ij R

p2q
lk

`
7

6
Sp2qR

p2q
jk `

3

4
p|Ric |p2qq2gjk ´

5

12
pSp2qq2gjk

The reader should note that we have dropped the p2q notation in our discussion of the

components of the Ricci tensor and their corresponding Laplacians. From context indices

i “ 1, 2, 3 correspond to Nil.

B11 “
1

2
∆R11 ´

1

12
∆Sp2qg11 ´

1

6
S; 11 ´ 2gilRi1Rl1 `

7

6
Sp2qR11 `

3

4
p|Ric |p2qq2g11 ´

5

12
pSp2qq2g11

“
1

2
∆R11 ´ 2g11

pR11q
2
`

7

6
Sp2qR11 `

3

4
p|Ric |p2qq2g11 ´

5

12
pSp2qq2g11

“
1

2

ˆ

´
pg11q

3

pg33q
2pg22q

2

˙

´ 2g11

ˆ

pg11q
2

2g22g33

˙2

`
7

6

ˆ

´
g00pg11q

2

2 det g

˙ˆ

pg11q
2

2g22g33

˙

`
3

4

ˆ

3pg11q
2

4pg22q
2pg33q

2

˙

g11 ´
5

12

ˆ

´
g00pg11q

2

2 det g

˙2

g11

“´
1

2

pg11q
3

pg33q
2pg22q

2
´

1

2

pg11q
3

pg22q
2pg33q

2
´

7

24

pg11q
3

pg22q
2pg33q

2
`

9

16

pg11q
3

pg22q
2pg33q

2
´

5

48

pg11q
3

pg22q
2pg33q

2

“

ˆ

´
1

2
´

1

2
´

7

24
`

9

16
´

5

48

˙

pg11q
3

pg22q
2pg33q

2

“´
5

6

pg11q
3

pg22q
2pg33q

2

“´
5

6

pg00q
2pg11q

5

pdet gq2
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“´ 5βpg00q
2
pg11q

5

B22 “
1

2
∆R22 ´

1

12
∆Sp2qg22 ´

1

6
S; 22 ´ 2gilRi2Rl2 `

7

6
Sp2qR22 `

3

4
p|Ric |p2qq2g22 ´

5

12
pSp2qq2g22

“
1

2
∆R22 ´ 2g22

pR22q
2
`

7

6
Sp2qR22 `

3

4
p|Ric |p2qq2g22 ´

5

12
pSp2qq2g22

“
1

2

ˆ

pg11q
2

2g22pg33q
2

˙

´ 2g22

ˆ

´
g11

2g33

˙2

`
7

6

ˆ

´
g00pg11q

2

2 det g

˙ˆ

´
g11

2g33

˙

`
3

4

ˆ

3pg11q
2

4pg22q
2pg33q

2

˙

g22 ´
5

12

ˆ

´
g00pg11q

2

2 det g

˙2

g22

“
1

4

ˆ

pg11q
2

g22pg33q
2

˙

´
1

2

ˆ

pg11q
2

g22pg33q
2

˙

`
7

24

ˆ

pg11q
2

g22pg33q
2

˙

`
9

16

ˆ

pg11q
2

g22pg33q
2

˙

´
5

48

ˆ

pg11q
2

g22pg33q
2

˙

“

ˆ

1

4
´

1

2
`

7

24
`

9

16
´

5

48

˙

pg11q
2

g22pg33q
2

“
1

2

pg11q
2

g22pg33q
2

“
1

2

pg00q
2pg11q

4g22

pdet gq2

“3βpg00q
2
pg11q

4g22

B33 “
1

2
∆R33 ´

1

12
∆Sp2qg33 ´

1

6
S; 33 ´ 2gilRi3Rl3 `

7

6
Sp2qR33 `

3

4
p|Ric |p2qq2g33 ´

5

12
pSp2qq2g33

“
1

2
∆R33 ´ 2g33

pR33q
2
`

7

6
Sp2qR33 `

3

4
p|Ric |p2qq2g33 ´

5

12
pSp2qq2g33

“
1

2

ˆ

pg11q
2

2pg22q
2g33

˙

´ 2g33

ˆ

´
g11

2g22

˙2

`
7

6

ˆ

´
g00pg11q

2

2 det g

˙ˆ

´
g11

2g22

˙

`
3

4

ˆ

3pg11q
2

4pg22q
2pg33q

2

˙

g33 ´
5

12

ˆ

´
g00pg11q

2

2 det g

˙2

g33

“
1

4

ˆ

pg11q
2

pg22q
2g33

˙

´
1

2

ˆ

pg11q
2

pg22q
2g33

˙

`
7

24

ˆ

pg11q
2

pg22q
2g33

˙

`
9

16

ˆ

pg11q
2

pg22q
2g33

˙

´
5

48

ˆ

pg11q
2

pg22q
2g33

˙

“

ˆ

1

4
´

1

2
`

7

24
`

9

16
´

5

48

˙

pg11q
2

pg22q
2g33
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“
1

2

pg11q
2

pg22q
2g33

“
1

2

pg00q
2pg11q

4g33

pdet gq2

“3βpg00q
2
pg11q

4g33
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Appendix C

Tensors Referenced

This appendix is here to serve as a list of the tensors discussed in this thesis.

• Riemannian Curvature Tensor [ p3, 1q version]

RpX, Y qZ “ ∇X∇YZ ´∇Y∇XZ ´∇rX,Y sZ.

Rl
ijk “ BiΓ

l
jk ´ BjΓ

l
ik ` ΓlidΓ

d
jk ´ ΓljdΓ

d
ik.

• Riemannian Curvature Tensor [ p4, 0q version]

RmpX, Y, Z,W q “ g pRpX, Y qZ,W q

Rijkl “ glm
`

BiΓ
m
jk ´ BjΓ

m
ik ` ΓpjkΓ

m
ip ´ ΓpikΓ

m
jp

˘

• Christoffel Symbol

Γkij “
1

2
gkl pBigjl ` Bjgil ´ Blgijq

• Ricci Curvature Tensor

Rij “ R k
kij “ gkmRkijm
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• Scalar Curvature Tensor

S “ gijRij

• Weyl Tensor (n ě 4)

Wabcd “ Rabcd ` gacPbd ´ gadPbc ´ gbcPad ` gbdPac

Wabcd “ Rabcd `
1

n´ 2
pRbdgac ´Rbcgad ´Radgbc `Racgbdq

´
S

pn´ 1qpn´ 2q
pgacgbd ´ gadgbcq

• Schouten

Pij “
1

n´ 2

ˆ

Rij ´
R

2pn´ 1q
gij

˙

• Cotton Tensor

Cijk “ ´
n´ 2

n´ 3
∇lWijkl.

Cijk “ ∇iPjk ´∇jPik

• Bach Tensor

Bij “
1

n´ 3
∇k∇lWikjl `

1

n´ 2
RklWikjl

Bij “ glqPij;lq ´ g
lqPil;jq ` P

klWkijl

Bij “
1

n´ 2

`

∇kCkij `R
klWikjl

˘

• Divergence of Bach Tensor

divB “ ∇jBij “
n´ 4

pn´ 2q2
CijkRjk

• Bach Tensor on Product Manifold
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1ˆ 3:

B00 “

ˆ

´
1

12
p∆p2qSp2qq ´

1

4

„

p|Ric |p2qq2 ´
1

3
pSp2qq2

˙

g00

Bjk “
1

2
∆p2qR

p2q
jk ´

1

12
∆p2qSp2qgjk ´

1

6
S
p2q
; jk ´ 2 trp2qpRicp2qbRicp2qqjk

`
7

6
Sp2qR

p2q
jk `

3

4
p|Ric |p2qq2gjk ´

5

12
pSp2qq2gjk

where trpRicbRicqjk “ gilRijRlk

2ˆ 2:

Bµν “ ´
1

6
∇µ∇νS

p1q
`

1

6
gp1qµν

„

∇α∇αS
p1q
´

1

2
∇k∇kS

p2q
`

1

4

´

`

Sp2q
˘2
´
`

Sp1q
˘2
¯



Bij “ ´
1

6
∇i∇jS

p2q
`

1

6
g
p2q
ij

„

∇k∇kS
p2q
´

1

2
∇α∇αS

p1q
`

1

4

´

`

Sp2q
˘2
´
`

Sp1q
˘2
¯



Bαj “ 0

• AOT

On “
1

p´2q
n
2
´2

`

n
2
´ 2

˘

!

ˆ

∆
n
2
´1P ´

1

2pn´ 1q
∆

n
2
´2∇2R

˙

` Tn´1

Oij “∆
n
2
´2

`

P k
ij,k ´ P

k
k ,ij

˘

`

n{2
ÿ

k“2

T n´2k
k pRmq

Tmk pAq “
ÿ

i1`¨¨¨`ik“m

∇i1A ˚ ¨ ¨ ¨ ˚∇ikA

Oij “
1

3´ n
∆

n
2
´2∇l∇kWkijl `

n{2
ÿ

k“2

T n´2k
k pRmq

n “ 6:

Oij “B
k

ij,k ´ 2WkijlB
kl
´ 4P k

k Bij ` 8P klCpijqk,l ´ 4Ck l
i Cljk

` 2C kl
i Cjkl ` 4P k

k,lC
l
pijq ´ 4WkijlP

k
mP

ml
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C.1 Rescaling Tensors

In this section we will show the effect of rescaling on a tensor. These calculations specifically

aid in the proof of Corollary 2.1.16.

Consider the rescaling given by g̃ “ λg.

gp∇gf,Xq “ dfpXq “ g̃p∇ĝf,Xq “ λgp∇ĝf,Xq ùñ
1

λ
∇gf “ ∇ĝf

R̃ “
ÿ

g̃
´

R̃icpẽjq, ẽj

¯

“
ÿ

λg

ˆ

1

λ3{2
Ricpejq,

1
?
λ
ej

˙

“
1

λ

ÿ

g pRicpejq, ejq

“
1

λ
R

gp∇gf,Xq “ dfpXq “ g̃p∇ĝf,Xq “ λgp∇ĝf,Xq ùñ
1

λ
∇gf “ ∇ĝf

∇̃g̃R̃ “
1

λ
∇gR̃ “

1

λ2
∇gR

∆̃R̃ “
ÿ

g̃
´

∇̃ẽi∇̃g̃R̃, ẽi

¯

“
ÿ

g̃

ˆ

∇ 1?
λ
ei

1

λ
∇g

ˆ

1

λ
R

˙

,
1
?
λ
ei

˙

“
ÿ

λg

ˆ

1

λ3
∇ei∇gR, ei

˙

“
1

λ2
∆R
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∆̃2R̃ “ ∆̃∆̃R̃

“
ÿ

g̃
´

∇̃ẽi∇̃g̃

´

∆̃R̃
¯

, ẽi

¯

“
ÿ

g̃

ˆ

∇ 1?
λ
ei

1

λ
∇g

´

∆̃R̃
¯

,
1
?
λ
ei

˙

“
ÿ

g̃

ˆ

1

λ3{2
∇ei∇g

ˆ

1

λ2
∆R

˙

,
1
?
λ
ei

˙

“
ÿ

λg

ˆ

1

λ4
∇ei∇gp∆Rq, ei

˙

“
1

λ3
∆∆R

“
1

λ3
∆2R

∆̃3R̃ “ ∆̃∆̃2R̃

“
ÿ

g̃
´

∇̃ẽi∇̃g̃
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