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Abstract  

In this dissertation, I explore ways to support secondary school students’ meaningful 

understanding of quadratic functions. Specifically, I investigate how students co-developed 

representational fluency (RF) and functional thinking (FT), when they gained meaningful 

understanding of quadratic functions. I also characterize students’ co-emergence of RF and FT 

on each representation (e.g., a graph, a symbolic equation, and a table) and across multiple 

representations.  

To accomplish these goals, I employed a design research methodology: a teaching 

experiment with eight Turkish-American secondary school students in an after-school context at 

a Turkish Community Center. I constructed the design principles and design elements for the 

study by networking two distinct domains of literature—representations and quantitative 

reasoning—to support students’ meaningful learning. I conducted ongoing and retrospective 

analyses on the enhanced transcriptions of small- and whole-group interactions. 

The analyses revealed a learning-ecology framework that supported secondary school 

students’ meaningful understanding of quadratic functions. The learning-ecology framework 

consisted of three components: enacted task characteristics, teacher pedagogical moves, and 

socio-mathematical norms. Furthermore, the findings showed that students employed two types 

of reasoning when they created and connected representations of quantities and the relationships 

between them: static thinking and lateral thinking. Static thinking is recalling a learned fact to 

represent a quantitative relationship with no attention to how quantities covary on a 

representation, while lateral thinking is a creative way of thinking wherein students conceive of 

concrete representations of functions as an emergent quantitative relationship. The findings also 

showed that students’ co-emergence of RF and FT can be operationalized into four levels starting 



 

 

from lesser sophisticated reasoning to greater sophisticated reasoning. Level 0 is a disconnection, 

level 1 is a partial connection, level 2 is a connection and level 3 is flexible a connection between 

students’ RF and FT. The dissertation informs teachers and the mathematics education 

community by (a) reporting and verifying the learning-ecology framework that supported 

students’ meaningful understanding of quadratic functions; and (b) characterizing students’ co-

emergence of RF and FT within and across multiple representations.  
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Exploring the Nature of the Co-Emergence of Students’ Representational Fluency and 

Functional Thinking 

Learning quadratic functions includes making translations and connections among and 

within representations along with functional thinking; these are essential skills for students to 

develop in learning functions in general (NCTM, 2000). Functional thinking (FT) has been 

defined in general as a style of creative thinking about functions, creating patterns, and 

generalizing the functional relationships within concrete representations of functions (Blanton & 

Kaput, 2011; Stephens et al., 2017b). The National Council of Teachers of Mathematics (NCTM, 

2000) emphasized both the use and connection of representations in making sense of functional 

relationships. Students should “create and use tabular, symbolic, graphical, and verbal 

representations and analyze and understand patterns, relations, and functions” (NCTM, 2000, p. 

297) to be able to develop a robust understanding of functions.  

Functions are one of the most complex and difficult topics for students to learn. Learning 

functions involves forms of representations, includes other complex topics (e.g., growth, limit, 

extrema, etc.), and integrates multiple subtopics of mathematics (Leinhardt, et al., 1990). In 

school curricula, the function concept heavily emphasizes linear and quadratic functions in order 

to prepare students for advanced mathematics (Dreyfus & Halevi, 1991). However, scholars have 

reported that students often have difficulty in developing robust understandings of functions in 

general (Carlson, et al., 2002; Moore, 2014; Thompson & Carlson, 2017) and quadratic functions 

in particular (Altindis & Fonger, 2019a; 2019b; Dreyfus & Halevi, 1991; Ellis & Grinstead, 

2008; Even, 1998; Lobato et al., 2012; Wilkie, 2019; Zaslavsky, 1997; Zazkis et al., 2003). 

Students’ use of multiple representations and engagement in FT has been much 

emphasized in the mathematics education community for many years (NCTM, 2000, 2014). 
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Students are expected to develop a “deeper understanding of the ways in which changes in 

quantities can be represented mathematically” (NCTM, 2000, p. 305), as well as to create, 

connect, and translate among and within representations (Fonger, 2019) of quantities and their 

relationships in learning functions (Ellis, 2011). In other words, in order to develop a meaningful 

understanding of quadratic functions, the scholarship suggests that students need to reason about 

quantities and the relationships between them (Ellis, 2011) in creating, connecting, and 

translating among and within representations—which I refer to as representational fluency (RF) 

(Fonger, 2019).  

I define “meaningful understanding” in this study as a student’s ability to create, 

interpret, invent, communicate about, and connect representations of functions within a flexible 

framework, including different approaches to reasoning about functions.  

This study seeks to investigate a complex interrelation between students’ RF and FT. 

There may be some cognitive activities taking place when students engage in developing 

meaningful understanding. However, we in the mathematics education field still do not know 

ways of supporting this understanding (e.g., Ellis & Grinstead, 2008; Ellis, 2011). There are still 

unspecified elements about how students translate and connect among and within representations 

of covarying quantities of quadratic functions, as well as how they interpret and assign meaning 

to the concepts they are being taught.  

This study explores ways to support students’ meaningful understanding of quadratic 

functions and ways to characterize the co-emergence of RF and FT in students’ thinking. 

Statement of the Problem 

Students often experience difficulties not only in developing robust understandings of 

quadratic functions as two quantities that covary simultaneously (Ellis & Grinstead, 2008; Ellis, 
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2011), but also in interpreting and translating concrete representations1 of quadratic functions 

from one form to another (Even, 1998; Zaslavsky, 1997). While students are generally able to 

create translations and make connections within and among representations, they often 

experience difficulties transferring the underlying meaning from one representation to another 

(Adu-Gyamfi et al., 2012; Janvier, 1987a). For instance, students often experience difficulties in 

interpreting concrete representations of quadratic functions such as the following: (a) students 

might treat graphs as objects—pictorial entailments—rather than interpreting them as 

representing a relationship between two varying quantities (Moore & Thompson, 2015; 

Moschkovich, 1993; Zaslavsky, 1997); (b) students might articulate the parameters of quadratic 

functions in unsophisticated ways (Ellis & Grinstead, 2008; Even, 1998).  

According to Dreyfus and Halevi (1991), “One of the central difficulties for students in 

the process of constructing their mental image of [quadratic] function is the establishment of the 

connection between the formula defining a function algebraically [e.g., 𝑓(𝑥) = 2𝑥2 ] and its 

graphical representation” (p. 44). Other scholars have validated Dreyfus and Halevi’s (1991) 

view by emphasizing not only connection and translation between graphical and algebraic 

representations, but also within and among graphic, symbolic, and tabular representations of 

quadratic functions with a sophisticated understanding (Borba & Confrey, 1996; Ellis & 

Grinstead, 2008; Even, 1998; Knuth, 2000; Zaslavsky, 1997; Zazkis et al., 2003).  

In order to understand the problem further, it is important to note how students’ RF and 

FT are connected to each other and to meaningful understanding. In the following section, I 

highlight studies that report that RF and FT are related and happen together.  

                                                 
1 Concrete representations are visualizations of mathematical concepts, including diagrams, symbols, graphs, and tables, all of 

which can be defined as ways of communicating and making sense of mathematical ideas (Dreyfus, 2002).  
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The Co-development of Students’ Representational Fluency and Functional Thinking  

In this section I articulate how RF and FT are related, and how in same cases the 

relationship between RF and FT remains ambiguous. This gives context to the current study, as a 

lack of RF skills in tandem with FT (Even, 1998) is a possible source of students’ 

unsophisticated understanding and difficulties in learning quadratic functions. In other words, 

students’ representational activity is intertwined with their FT in their development of a robust 

understanding of quadratic functions. Even (1998) states, “…linking representations are 

interrelated with another kind of knowledge and understanding, seeing the connection between 

the given equation and the related quadratic functions [the graph of quadratic function]” (p. 108). 

Based on the initial studies, we found that students’ RF co-informs FT and vice versa (Fonger & 

Altindis, 2019; Altindis & Fonger, 2019). This finding is supported by other research as well 

(Even, 1998); including findings that students’ FT co-informs students’ RF (Ellis & Grinstead, 

2008; Moore et al., 2013; Moore & Thompson, 2015). From this body of work, it is clear that 

there is a co-informing relationship between students’ cognitive approaches to functions, how 

students think about quadratic functions—covariational reasoning2 and correspondence 

reasoning3—and RF of quadratic functions.  

Moore and his colleagues (2013) pointed out that students’ representational practices are 

rooted in their covariational reasoning. Moore and Thompson (2015) validated that students’ 

quantitative and covariational reasoning sets a groundwork for students’ representational 

fluency: “We find that emergent shape thinking enables students to move among representations 

                                                 
2Covariational reasoning is “being able to move operationally from quantities or values,  𝑦𝑚 to 𝑦𝑚+1 coordinating with 

movement from quantities or values, 𝑥𝑚 to 𝑥𝑚+1” (Confrey & Smith, 1994, p. 33). According to Thompson and his colleagues, 

covariational reasoning is being able to think about “two quantities’ values varying” and understand that the two quantities are 

“varying simultaneously” (Thompson & Carlson, 2017, p. 425).  
3 Correspondence reasoning is understanding the relationship between the independent 𝑥 and dependent 𝑦 values by looking at 

the x and the y as coordinating dependent and independent values (Confrey & Smith, 1991; 1994; 1995).  
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while maintaining a subjective sense of invariance in the form of covarying quantities, thus 

supporting them in conceiving the ‘something’ that multiple representations are to represent.” (p. 

788).  

However, we do not know how covariational reasoning makes students move among 

representations, nor whether they are creating and connecting representations to represent 

covarying quantities. Hence, the nature of the intersection between students’ RF and FT is still 

ambiguous. This is a gap this study aims to address.  

Supporting Students’ Co-emergence of Representational Fluency and Functional Thinking 

Ellis and Grinstead (2008) argue not only for the need to focus on the translation of 

symbolic and graphical representations, but also for the need to shift the teaching of quadratic 

function to include a focus on reasoning with quantities, quantitative operations, and quantitative 

relationships. According to Ellis (2011), “One way to foster functional thinking is to leverage the 

power of the students’ capabilities to reason with quantities and relationships” (p. 215). In 

supporting students’ quantifications and understanding of quantitative operations, this approach 

leverages FT—in particular, covariational reasoning. Smith and Thompson (2007) suggest doing 

so by (a) forming an instructional sequence and (b) providing appropriate instructional support.  

With that in mind, instructional activities include purposefully designed instructional 

sequences (Ellis, 2011; Ellis et al., 2015; Smith & Thompson, 2007). For instance, tasks’ 

characteristics should include features for reinforcing students’ FT within multiple 

representations, such as: making quantification visible to students, providing opportunities for 

measuring quantities, and providing subparts in the tasks to help students reflect on their thinking 

through translating and connecting among and within representations (Weber et al., 2014). In 

addition to providing appropriate instructional support, the instructional sequence can be 
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designed using a variety of tools (e.g., GSP software, color tiles etc.) to provide appropriate 

support for students’ developing RF and FT (Smith & Thompson, 2007).  

Other researchers have built on this idea, pointing out that gaining a meaningful 

understanding of quadratic functions goes hand in hand with quantitative reasoning and 

representations (Fonger & Altindis, 2019). Moore and Thompson (2015) argued that teaching 

functions with a focus on quantitative and covariational reasoning encouraged students to think 

about concepts such as what makes a graph, what quantities form the graph, and how changing 

quantities affect the graph. They suggest that viewing the graph might help students to conceive 

of the graph as representing a relationship between changing quantities, rather than conceiving of 

the graph as an object. This is an example of how students might conceive of quadratic functions 

as describing two quantities which covary simultaneously on a graphical representation. 

Additional research is needed to elaborate on relevant support for the highlighted sophisticated 

learning. This study aims to address this gap.   

Purpose and Aims of the Study  

I situate this dissertation as an inquiry into how combining and coordinating various 

theories of quantitative reasoning (QR) (Thompson, 1994) and representations (Kaput, 1987; 

Dreyfus, 2002) might shed light on students’ meaningful understanding of quadratic functions. I 

seek to advance the field of mathematics education by establishing an example that will enable 

researchers to design new practices and understand students’ meaningful understanding of 

quadratic functions by networking local instructional theories (Gravemeijer & Cobb, 2006) in 

quantitative reasoning (Thompson, 1993) and representations (Kaput, 1987). This study aims to 

shed light on the following: (a) the nature of students’ connections and translations among and 

within representations of quadratic functions in tandem with their FT; (b) ways to support 
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students’ co-emergence of RF and FT in learning quadratic functions; and (c) ways to bridge 

these two distinct yet related domains of literature—representations and QR—in supporting 

students’ meaningful understanding of mathematics. 

Research Questions 

Two major questions guide this study: 

1.  What is the nature of the co-emergence of representational fluency and functional 

thinking among secondary school students as they develop a meaningful 

understanding of quadratic functions? 

2. How do Turkish-American Muslim students’ RF and FT co-develop as they develop a 

meaningful understanding of quadratic function in the context of a small-scale 

teaching experiment in an after-school setting? 

Overview of Theoretical and Methodological Perspectives 

In chapter 2, I will explore possible sources of students’ difficulty in developing a 

meaningful understanding of quadratic functions in the existing literature. I will detail students’ 

unsophisticated understandings of quadratic functions, how students conceive of graphs as 

objects, and how they provide unsophisticated interpretations for parameters of quadratic 

functions. I will investigate students’ RF and FT, and the co-informing relationship between RF 

and FT in learning and teaching quadratic functions 

In chapter 3, I will explore two distinct domains of the literature in detailing how the 

body of work on students’ meaningful understanding is siloed into distinct groups—

representations (e.g., Adu-Gyamfi et al.,2012; Bosse et al., 2012; Dreyfus, 2002; Fonger, 2019; 

Janvier, 1987; Kaput, 1987; Nitsch et al., 2015; Selling, 2016) and quantitative reasoning (e.g., 

Ellis, 2011; Ellis et al., 2015; Ellis & Grinstead, 2008; Confrey & Smith, 1994; Moore et al., 
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2013; Moore, 2014; Smith & Thompson, 2007; Thompson & Carlson, 2017; Thompson, 1994; 

Thompson, 2011). Representations set a groundwork for RF (Fonger, 2019), while quantitative 

reasoning sets a strong foundation for FT, in particular, covariational reasoning (Ellis, 2011). 

However, scholars typically have either focused on students’ covariational thinking and paid 

little or less attention to students’ RF, or vice versa. In this study, I networked the theories of 

quantitative reasoning (Thompson, 1993) and representations (Kaput, 1987b) as background 

theories for supporting students’ meaningful understanding of quadratic functions (Simon 2009).  

In chapter 4, I detail the methodology of my design-based research study, including the 

context and details of the small-scale teaching experiment. In this study, the method I utilized 

was creating a small-scale learning ecology—a teaching experiment (Steffe & Thompson, 2000). 

I created design conjectures informed by the affordances and influences of networking the theory 

of QR and the theory of representations (Kaput, 1987; Dreyfus, 2002; Thompson, 1994). My 

design conjectures included: (a) creating opportunities for students to construct mental images; 

(b) getting students to focus on quantitative operations rather than numerical operations; (c) 

emphasizing the role of concrete representations in quantitative processes; (d) grounding 

students’ RF within a meaning of quantities; and (e) getting students to present the models of 

quantities in their minds via concrete representations. The design conjectures are also informed 

by three design elements: tasks and tools, norms, and teacher moves and prompts. The teaching 

experiment included eight teaching episodes, with each session lasting one hour. In the teaching 

experiment portion, the study included eight secondary school students from 8th, 9th and 10th 

grades, grouped into three groups. The study was conducted during the 2019–2020 school year in 

the CNY RISE Center. For data analyses, I networked analytical frameworks (Simon, 2009) for 

covariational and correspondence reasoning (Confrey & Smith, 1994; Thompson & Carlson, 
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2017), and RF (Fonger, 2019) for characterizing and supporting the co-emergent nature of 

students’ RF in tandem with FT.  

Definition of Key Terms 

Functional thinking (FT) is a style of creative thinking about functions, creating patterns, 

and generalizing the functional relationships within concrete representations of functions 

(Blanton & Kaput, 2011; Stephens et al., 2017a). In this study, FT included two types of 

reasoning about functions: correspondence and covariational reasoning. Correspondence 

reasoning is understanding the relationship between the x and y values by looking at the x and 

the y as corresponding dependent and independent values or quantities (Confrey & Smith, 1991; 

1994; 1995). Covariational reasoning is “being able to move operationally from 𝑦𝑚 to 𝑦𝑚+1 

coordinating with movement from 𝑥𝑚 to 𝑥𝑚+1” (Confrey & Smith, 1994, p. 33). According to 

Thompson and his colleagues, covariational reasoning is being able to think about “two 

quantities’ values varying” and the two quantities “varying simultaneously” (Thompson & 

Carlson, 2017, p. 425).  

Meaningful understanding is defined in this study to include a student’s ability to create, 

interpret, invent, communicate, and connect representations of functions within a flexible 

framework, including different approaches to reasoning about functions.  

Concrete (external) representations of functions are defined as visualizations of 

mathematical concepts, including diagrams, symbols, graphs, and tables, all of which can be 

defined as a way of communicating and making sense of mathematical ideas (Dreyfus, 2002).  

Representational fluency (RF) is “the ability to create, interpret, translate between, and 

connect multiple representations—is a key to a meaningful understanding of mathematics” 

(Fonger, 2019, p. 1).  
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Thompson’s theory of quantitative reasoning is based on Piaget’s work on the mental 

images that a learner creates through their reasoning about quantities that covary (Piaget, 1967, 

as cited in Thompson, 1994). Thompson defines quantitative reasoning with three central tenets: 

a quantity is in a mind, it is not in the world; quantification; and quantitative operations. The 

three central tenets set a foundation for students’ FT.  

A connection within and among representations is defined as students’ articulations of 

“an invariant feature of the mathematical object being represented across representational forms” 

(Fonger, 2019, p. 2).  

The translation process, or cognitive process, involves transforming information 

concealed in a source representation into a targeted representation (Janvier, 1987b).  

Interpretation of representations is any action that learners take in order to gain 

understanding or meaning from representation, or actions students may take while assessing the 

meaning of functions (Leinhardt et al.1990; Nitsch et al., 2015).   

Creating, in the context of this study, is defined as a process of generating a part of or a 

whole representation when a function is not already provided (Bosse at al., 2012).   

A teaching experiment is a small-scale version of a design-based research methodology in 

which a researcher takes a teaching role—a teacher-researcher—in exploring students’ 

mathematical realities in a series of consecutive teaching sessions (Cobb & Steffe, 1983; Steffe 

& Thompson, 2000).  
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Chapter 2—Review of the Literature about Quadratic Functions 

In this chapter, I define students’ lesser sophisticated interpretations of quadratic 

functions as identified in the literature.  In particular, I focus on two parts: (a) conceiving a graph 

as an object (a pictorial entailment) (e.g., Zaslavsky, 1997), and (b) interpreting parameters of 

quadratic functions in a lesser sophisticated manner (e.g., Even, 1998). I argue that one source of 

students’ difficulty with developing a sophisticated understanding of quadratic functions 

originates from a lack of RF skills in tandem with FT. I also articulate connections between 

students’ FT and RF in learning and teaching quadratic functions. I end this chapter by arguing 

that students’ RF co-informs their FT, and vice versa, in the teaching and learning of quadratic 

functions.  

Students’ Unsophisticated Interpretations of Quadratic Functions  

Scholars reported that students often develop an unsophisticated understanding of 

quadratic functions, such as: (a) conceiving a graph as an object (a pictorial entailment) (Ellis & 

Grinstead, 2008; Moschkovich et al., 1993; Zaslavsky, 1997); (b) only articulating the 

parameters of quadratic functions with an unsophisticated understanding (Borba & Confrey, 

1996; Ellis & Grinstead, 2008; Even, 1998); (c) providing inappropriate generalization (Ellis & 

Grinstead, 2008; Wilkie, 2019); (d) conceiving of quadratic growth as exponential (Altindis & 

Fonger, 2018; 2019); and (e) depending heavily on algebraic representations, which limits the 

development of a robust understanding of quadratic functions (Ellis & Grinstead, 2008; Knuth, 

2000). In order to address students’ difficulty learning quadratic functions, studies have 

advocated building on knowledge of linear functions to learn quadratic functions (e.g., 

Movshovitz-Hadar, 1993); however, some studies contradicted this view (Ellis & Grinstead, 
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2008; Wilkie, 2019) by arguing that students might overgeneralize quadratic function based on 

their experience of learning linear function.  

Seeing Graphs as Objects 

One lesser sophisticated understanding of quadratic functions is that students may see a 

graph of a quadratic function as an object—referred to as seeing the graph as a pictorial 

entailment. In this case, students’ understanding of quadratic functions is limited to the 

information that they can see on a graph—that is, they cannot see that the function on the graph 

has an infinite domain. (Leinhardt et al., 1990; Zaslavsky, 1997). For instance, if a student sees a 

graph that does not meet on the y-axis presented to her, then she may claim that the function does 

not have a y-intercept (Zaslavsky, 1997).  

Moore and Thompson (2015) validated Zaslavsky’s (1997) point by characterizing two 

ways students may conceive of a graph, which they referred to as static shape thinking and 

emergent shape thinking. They explain the two ways of thinking as such: static shape thinking 

does not involve quantitative reasoning, but students who think this way might infer things about 

quantities. Static shape thinking includes referring to the graph as “a piece of wire”— “graph as 

wire”—which means treating the graph as an object (Moore & Thompson, 2015, p. 785).  On the 

other hand, emergent shape thinking is conceiving of a graph while thinking about what made 

this graph (thinking about the graph as two quantities that covary simultaneously; recording the 

relationship between two covarying quantities as a graph) and how quantities made this graph 

(using covariational reasoning). Furthermore, Moore and Thompson (2015) stated: “Students 

who are capable of thinking about graphs emergently gain insight into relationships between 

quantities that are more organic to the quantities and relationships” (p. 787).  
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Students’ Difficulties Interpreting the Parameters of Quadratic Functions 

A second major difficulty that students encounter when developing a meaningful 

understanding of function is understanding the role of the parameters4 in 𝑦 = 𝑎𝑥2 + 𝑏𝑥 +  𝑐. 

Dreyfus and Halevi (1990) explored the link between students’ understanding of algebraic and 

graphical representations of quadratic functions; according to them, one of students’ central 

difficulties was the articulation of parameters. Although students knew that the parameter a 

informed the opening of a parabola for the function, they could not articulate further. 

Furthermore, in a related study, students had difficulty differentiating between the parameters 

and slope of quadratic functions—conceiving the coefficient as a slope of quadratic functions 

(Ellis & Grinstead, 2008). And even teachers have difficulty articulating the parameters of 

quadratic functions (Even, 1998).  

Ellis and Grinstead (2008) explored high school students’ understanding of quadratic 

functions in the form of an algebraic equation (𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐), and their findings revealed 

that students think of the parameter a as the slope of 𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐. They interpreted 

students’ difficulty interpreting the parameters as coming from students’ prior experience with 

linear functions. The idea that students might try to solve nonlinear function as if the function 

were linear was corroborated in other studies as well (Altindis & Fonger, 2019; Zaslavsky, 

1997). This suggests that a heavy focus on a single representation (e.g., symbolic) creates 

difficulty for students in differentiating among the parameters of a quadratic function and its 

slope.  

Hence, too much emphasis on one representation, a symbolic representation, without 

further support regarding what type of phenomenon this particular representation presents about 

                                                 
4 In 𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐, the parameters of such a function are a, b, and c.  
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quadratic functions, might create limited student understanding, in particular, a limited 

understanding of the roles of a quadratic equation’s parameters (Ellis, & Grinstead, 2008; Even, 

1998). 

Representational Fluency and Functional Thinking in Learning and Teaching Quadratic 

Functions   

Scholars have reported an explicit connection between students’ knowledge of 

representation and knowledge of FT in linking multiple representations (Ellis & Grinstead, 2008; 

Even, 1998; Knuth, 2000; Yerushalmy, 2006; Wilkie, 2019). For example, Even (1998) focused 

on exploring prospective secondary teachers’ processes when connecting multiple 

representations and the functional approaches they used. Even explored 152 prospective 

secondary teachers’ ability to link representations and how the process of linking intertwined 

with types of understanding about functions. Seven participants were chosen among the sample 

who could not find the solution to a quadratic function equation; then they were asked to use a 

graph to solve it. Two among the seven participants were able to find the solution to the 

quadratic equation in graphical form by linking the graph to the equation. However, more than 

half of the remaining prospective teachers still could not see the solution on a graphical 

representation. This finding brings up the question of what type of functional understanding is 

required when linking graphical representations to symbolic representations of quadratic 

functions.  

Even’s (1998) findings indicated that the nature of the connection between students’ 

representational knowledge and pointwise and global approaches to function is complicated; if 

students were able to make meaningful connections between representations, they were able to 

make these connections using a pointwise approach to function (thinking of a function as a set of 
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discrete points) and a global approach to function (an approach to the behavior of a function). In 

other words, students’ representational skills become sophisticated when the representational 

activities were grounded in functional thinking. Furthermore, students who employed the global 

approach (this approach is similar to covariational reasoning) to reasoning about multiple 

representations were more likely to create meaningful connections between representations than 

students who took a pointwise approach (this approach is similar to correspondence reasoning). 

Even (1998) focused only on linking between the pointwise and the global approaches, and 

connection and translation of representations. 

Ellis and Grinstead (2008) furthered this line of research about merging RF and global 

and pointwise approaches to function and advised scholars to consider merging RF and 

quantitative reasoning. Ellis and Grinstead argued for the need not only to focus on translation 

between symbolic and graphical representations, but to shift learning function within quantitative 

reasoning toward representing functions as quantities and the relationship between them. This 

parallels the fact that Even (1998) reported that translating within and among multiple 

representations is not enough for prospective teachers to make sense of quadratic functions. 

Linking representations requires students to have functional understanding to be able to make 

sense of the functions, since functional understanding and RF are intertwined (Even, 1998) 

Developing a sophisticated understanding of function also goes hand-in-hand with 

quantitative reasoning and representations (Fonger & Altindis, 2019; Thompson, 1994; 

Thompson & Carlson, 2017). For instance, let us imagine that students are solving a task situated 

in quantities, a growing rectangle task: when students drag the corner of the rectangle, the height, 

length and area of the rectangle increase (see Video 1). 
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Video 1  

The Growing Rectangle Task 

 

Note. The embedded video can also be found at this link: 

https://www.dropbox.com/s/4xwt4kxyl08sn02/TE_D3_GSP_Video-Growing-

rectangle.mov?dl=0 

 

In the task, students are asked to explain the relationship between the length, height, and 

area of a growing rectangle. Because the quantities—height, length and area—all increase, the 

students need to think about how a change in height would affect the length and area. The 

quantitative relationship between the height and the length is different than the relationship 

between height and the area, and these relationships can be visualized with representations. The 

relationship between height and length is a linear graph/straight line, which is connected to the 

symbolic representation 𝑦 = 2𝑥, while the relationship between height and area is a curve, which 

https://www.dropbox.com/s/4xwt4kxyl08sn02/TE_D3_GSP_Video-Growing-rectangle.mov?dl=0
https://www.dropbox.com/s/4xwt4kxyl08sn02/TE_D3_GSP_Video-Growing-rectangle.mov?dl=0
https://www.youtube.com/embed/__I_NTl4Gk4?feature=oembed
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is connected to the symbolic representation 𝑦 = 2𝑥2. Students may need to create and connect 

multiple representations to talk about and articulate quantities and quantitative relationships in 

this task—that is, to develop functional thinking while creating and interpreting representations.  

A Co-informing Relationship Between Students’ Representational Fluency and Functional 

Thinking  

A covariational reasoning approach to quadratic functions can provide a foundation for 

students to understand the nature of quadratic growth and can support a meaningful transition to 

correspondence reasoning (Ellis, 2011). Ellis argues that covariational reasoning would naturally 

transition to correspondence reasoning through translation within and among representations. 

Ellis’s study found the following:  

In both the linear and the quadratic case, the students made use of different 

representations (tabular, algebraic, and graphical) to describe and make sense of the 

quantitative situations involving gear ratios, speed, or growing rectangles. Since each 

representation was a way of describing the quantitative phenomena, rather than an 

instructor-introduced artifact divorced from any referents, the connections across the 

representations were natural ones that enabled seamless transitions (p. 233).  

 In Ellis’s study, students created tables, graphs, and algebraic representations as they described 

and interpreted covarying quantities. Because each representation was a way of approaching 

those quantities, the students naturally made connections across representations. Since 

covariational reasoning entails complex cognitive activity in which students might need to 

engage in a sophisticated meaning-making process (Thompson & Carlson, 2017), a translation 

process within and among representations also involves cognitive activity (Janvier, 1987b). 

Therefore, RF co-emerges with FT, in particular, covariational reasoning.  
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When reasoning about quantities and the relationships between them, students’ meaning-

making process might involve both the use of representations and connecting multiple 

representations. One of the reasons for this is that representations (e.g., a tabular representation) 

might make functional relationships visible to students (Confrey & Smith, 1995). Related, Ellis 

(2011) and Moore, Paoletti, and Musgrave (2013) found that students’ connection between 

multiple representations is grounded in covariational reasoning. They claimed that students’ 

covariational reasoning fostered their understanding of the relationships between multiple 

representations. Moore et al. (2013) wrote that students engaged in covariational reasoning “to 

make sense of and conceive invariant relationships among multiple representations” (p. 472). 

Moore and his coauthors claimed that students’ covariational reasoning fostered their 

understanding of the relationship between graphical and algebraic representations of quadratic 

functions on both Cartesian and Polar coordinate systems. Moore and Thompson (2015) made a 

similar argument: “We find that emergent shape thinking enables students to move among 

representations while maintaining a subjective sense of invariance in the form of covarying 

quantities, thus supporting them in conceiving the ‘something’ that multiple representations are 

to represent.” (p. 788).  

These studies report representations being used with covariational and correspondence 

reasoning, shedding light on important cognitive processes involved in representing 

mathematical ideas. However, in previous studies, not much attention was given to students’ RF 

within and among representations of quadratic functions in tandem with evidence of 

covariational and correspondence reasoning. Furthermore, characterization of the intertwined 

nature of students’ RF in tandem with FT remains an important area of inquiry (Ellis & 

Grinstead, 2008; Even, 1998; Dreyfus & Halevi, 1991).  



19 
 

 
 

This study aims to define ways to support students to co-develop RF and FT, and then 

define ways to characterize students’ FT on each representation. Additionally, the study aims to 

characterize students’ co-development of RF and FT as they create connections across 

representations to represent emergent quantitative relationships.  

Chapter Summary 

In chapter 2, I explored existing literature on quadratic functions. I reported that the 

literature suggests students may develop an unsophisticated interpretation of quadratic functions 

in the following two ways:  

1. Students may conceive a graph of a quadratic function as an object—wherein 

students’ understanding about the function is limited to what they see on the graph 

(Moore & Thompson, 2015; Zaslavsky, 1997).  

2. They may have an unsophisticated understanding of parameters of quadratic 

functions—students may treat the parameters of quadratic functions as slopes (Ellis & 

Grinstead, 2008; Even, 1998).  

I articulated that students’ creation and translation of quadratic functions across 

representations requires understanding of the functions; this was first identified by Even (1998), 

who stated that students need pointwise and global approaches to functions (two specific forms 

of FT) in creating and translating among and within representations. Other scholars validated 

Even’s points by providing evidence that students’ representational activities are intertwined 

with their FT, in particular, covariational reasoning (Ellis & Grinstead, 2008; Moore et al., 

2013). Additionally, I identified that while scholars indicated the importance of learning 

quadratic functions through reasoning about quantities and their relationships (Ellis, 2011), ways 

to support students as they create, connect, and translate the quantitative relationships among and 
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within representations is still an open area of inquiry. The nature of students’ co-development of 

RF and FT is still ambiguous.  

In this study, my aim is not to identify whether the concept of multiple representations is 

“better than” FT; my intention instead is to network FT with the theory of multiple 

representations and understand them as different but complementary perspectives with which to 

explore and analyze the ways that students can meaningfully learn quadratic functions. In 

response to the difficulties students encounter in learning functions, I intend to follow the steps 

of studies which highlighted the need for teaching functions through quantitively rich context in 

tandem with flexibility in representations (Borba & Confrey, 1996; Ellis & Grinstead, 2008; 

Even, 1998). In the next chapter, I will explain how the literature led to specific design 

conjectures that might support students’ meaningful understanding of quadratic functions.  
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Chapter 3—Background Theories and Theoretical Frameworks 

I begin this chapter with an articulation of a theoretical orientation on what constitutes 

meaningful understanding. This study is informed by the background theories of representations 

and quantitative reasoning. In this chapter, I will detail historical development of the theory of 

representations (Kaput, 1987a; 1987b); within that, I will define concrete representations: graphs, 

tables, symbolic equations, and diagrams. I will articulate how the literature of representations 

informed the idea of representational fluency. I will define Thompson’s theory of quantitative 

reasoning (1994), as well as FT, which is a way to organize students’ cognitive approaches to 

classify students’ conceptions of the meaning of functions. I will articulate how basic tenets of 

quantitative reasoning set a strong foundation for covariational reasoning and eventually FT; and 

I will finish the chapter with an argument that students’ RF may co-inform FT in learning 

functions and vice versa.   

A Theoretical Orientation on Meaningful Learning 

Understanding is “more than knowing or being skilled” (Dreyfus, 2002, p. 25). 

According to Voigt (1994), the mathematical meaning of understanding is an “individual sense-

making process” and “development of mathematical knowledge” (p. 276). Sfard and Linchevski 

(1994) further posit that students’ construction of meaning evolves with a skill of recognizing 

“abstract ideas hidden behind symbols.” (p. 224). Meaningful learning is a process that occurs 

through using our senses by interacting, touching, seeing, and giving meaning to what we see, 

feel, and touch, then creating new images. In other words, meaningful learning is a process that 

results from the act of creation (Fonger & Altindis, 2019). With that in mind, meaningful 

learning of mathematics can be defined as creating, connecting, inventing, and translating within 

and among representations with a sophisticated interpretation of varying quantities. 
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Meaning-making might happen through students’ interpretation of situations, 

conversations, symbols, and operations, all during various stages of learning (Lobato, 2014; 

Thompson & Saldanha, 2003; Vinner & Dreyfus, 1989; Voigt, 1994). Thompson (2016) stated 

that “the foremost characteristics of meanings is that they are invoked in the act of 

interpretation.” (2016, p. 456). Fonger (2019) further defines meaningful learning as being able 

to create, interpret, translate, and connect representations of mathematical objects with a 

sophisticated level of understanding—that is, meaningful learning involves a high level of RF.  

The process of meaning-making includes creating an image, connecting representations, 

comprehending, and explaining a mathematical idea within multiple perspectives (Dreyfus, 

2002; Lobato et al., 2013). Dreyfus (2002) found that understanding happens when students 

engage in multiple mathematical activities. He further suggested that students taking time to 

reflect on the mathematical process might also improve their understanding of mathematical 

objects. In parallel with Dreyfus, Lobato and her coauthors (2013) explored ways to get students 

to meaningfully visualize the underlying concepts of mathematics by paying close attention to 

“the aspects of mathematical understanding” and “meaning, image, connection, way of 

comprehending the situation, and explanation” (2013, p. 26). Hence, I view the meaning-making 

processes as a foundation of conceptual understanding, and I believe that co-developing RF and 

FT is an essential portion of students’ meaning-making processes. 

According to Dreyfus (2002) and Lobato (2013), meaningful learning has multiple aspects, all of 

which require learners to create, invent, interpret, and comprehend within and among multiple 

representations of functions, reflect on their thinking, and explain their reasoning. Figure 1 

represents the idea of developing a meaningful understanding of quadratic functions by creating, 

translating, and connecting among and within representations in tandem with FT. In Figure 1, 
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each arrow represents students creating a connection across multiple representations when 

reasoning about quantitative relationships that covary across representations. The role of FT in 

the middle presents that the invariant feature across multiple representations is the quantitative 

relationship. In other words, each representation—table, graph, symbolic equation, and 

diagram—represents the quantitative relationship.  

 

Figure 1 
A Logic Model of Meaningful Learning 
 

Note. A table, graph, symbol, diagram are types of representations.  

 

Theory of Representations 

Representations have been a focus of the mathematics education research community for 

decades. Scholars have explored students’ understanding of mathematics in regard to their 

representational activity, in particular, their translations between and among representations—

creating, interpreting, and transforming representations (e.g., Adu-Gyamfi & Bosse, 2013; 

Janvier, 1987a; Movshovitz-Hadar, 1993). In general, the relationship between mathematics and 

representations is understood as cause and effect—as long as teaching and learning mathematics 

exists, representations and their role will exist within it. As Borba and Confrey (1996) write, 

“Mathematics does not exist independently of its representational forms; it exists through those 



24 
 

 
 

forms” (p. 335). Furthermore, it has been conceived that the idea of representation is continuous 

with mathematics itself. Hence, as long as learning and teaching of mathematics are continuous, 

the inquiry into representations will exist (Kaput, 1987b). 

 There are four broad interacting types of representations: cognitive and perceptual 

representations, explanatory representations, representations within mathematics, and external 

symbolic representations (Dreyfus, 2002; Kaput, 1987a, p. 23).  In this study, I will focus on 

external (concrete) representations. Throughout this study, the use of the word representation 

refers to the concrete representations of functions: graphs, tables, symbolic equations, and 

diagrams. Concrete representations, for functions, are defined as visualizations of mathematical 

concepts, including diagrams, symbols, graphs, and tables, and they are a way of communicating 

and making sense of mathematical ideas (Dreyfus, 2002); Figure 2 gives examples of a variety of 

concrete representations.  

 

Figure 2 

An Example of Concrete Representations of a Quadratic Function 

 

Note. The figure represents an exemplar of concrete representations—a graph, a table, a diagram, 

and a symbolic equation of the same quadratic function. 
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Representations are viewed not only as representing mathematical constructs, but also as 

learners’ activities. As stated by Von Glasersfeld (1987), representations are always “the results 

of someone’s productive activity” (p. 217). Von Glasersfeld stressed the point that learning 

happens based on a learner’s involvement and experience. Kaput (1987a;1987b) furthered this by 

stating the theoretical needs and practical concerns regarding the theory of representations.  The 

practical concerns Kaput discussed centered around students’ difficulties in translation and 

connection among and within multiple representations. These practical concerns will be 

elaborated in chapter three, section: Supporting Students’ Development of Representational 

Fluency. With a theory for representations, Kaput (1987a) intended to shed light on developing 

students’ ability to choose, compute, interpret, and translate among and within representations. 

Teaching and Learning Functions via Concrete Representations  

In this study, concrete representations play an important role by informing design 

principles and instructional support when teaching and learning quadratic functions (I will 

further articulate concrete representations’ role in the design principles in chapter four, in the 

section: Affordances and Influences of Networking QR and Representations).   

Dreyfus (2002) described four stages of the learning process in terms of concrete 

representations: “a) Using a single representation, b) using more than one representation in 

parallel, c) making links between representations, and d) integrating representations and flexibly 

switching between them” (2002, p. 39).  In the current study, students are asked to represent 

quantities and their quantitative relationships as functions using multiple representations, 

specifically, by asking them to create representations, to use representations in parallel, and to 

integrate representations of the same function—that is, the same quantitative relationship 

(Dreyfus, 2002)—in order to help them create multiple mental images of quadratic functions 
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(Kaput, 1987a). Dreyfus’s (2002) stages of understanding concrete representations inform the 

design principles and instructional supports; for further articulation of design principles, see 

chapter four, section: Affordances and Influences of Networking Quantitative Reasoning and 

Representations. 

Dreyfus’s four stages of learning with representations provide opportunities for students 

to select a representation(s) that lands on a productive learning activity, in part because students 

prefer different representations depending on the difficulty they experience in learning functions. 

In terms of representations, their study suggested that high-achieving students prefer problems 

presented via graphical representations, while low-achieving students prefer problems presented 

via tabular representations (Dreyfus & Eisenberg, 1981; Yerushalmy, 2006). If a problem is 

given to students which they have difficulty understanding, then they need to have the skill of 

creating another representation that is more meaningful for them.  

However, most students do not recognize that multiple representations of an underlying 

mathematical idea embody the same information (Dufour-Janvier et al., 1987a). Students also do 

not see solving a problem with multiple representations as producing the same answer. They 

expect that the solution to different representations will produce different answers (Hitt, 1998). 

Dreyfus’s four stages of learning with representations may enable students to conceive that 

varying concrete representations can represent the same underlying mathematical idea, and that 

they produce the same answer.   

This study is intended not only to support students in creating, interpreting, and 

connecting representations, but also to help them to conceive of functions as quantities that 

change continuously and smoothly (Thompson & Carlson, 2017). I intend to support and 

characterize students’ co-emergence of representational fluency—creating, connecting and 
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translating among and within representations—and FT—a way of characterizing students’ 

cognitive approaches to functions.   

Quantitative Reasoning 

Quantitative reasoning is not only a foundation for preparing students for advanced 

reasoning in calculus, but also a strong foundation for developing students’ algebraic and 

covariational reasoning (Smith & Thompson, 2007; Ellis, 2011). In particular, QR is a 

foundation for reasoning with magnitudes which provides productive, coherent reasoning within 

magnitudes of quantities. Furthermore, quantitative reasoning is a foundation for covariational 

reasoning; covariational reasoning empowers students to see the invariant relationship between 

changing quantities (Thompson, 2011).  

Thompson’s theory of QR is based on Piaget’s work on the mental images that learners 

create, or mental constructions (Thompson, 1994). Creation of mental constructions is a 

demanding process for students learning to conceptualize quantities, quantification, and 

relationships among quantities (Thompson, 2011). According to Piaget (1967), images are 

conceptualizations that people must create, not something that already exists in their 

understanding of functions or the world. Piaget (1967) theorizes that a given subject’s mental 

operation of a function and their mental image of it are connected, and that the subject makes 

sense of an object by interacting with it. Following this logic, students might form an image of a 

function through reasoning about quantities that covary (Thompson, 1994). According to 

Thompson (1994), students’ ability to build an image of changing quantities involves several 

layers: first, perceiving a change in one quantity; second, shifting into conceiving the two 

quantities as coordinated; and, finally, constructing an image of the two changing quantities as 
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they covary simultaneously. These categories are based on Piaget’s constructivist theory of 

learning (as cited in Thompson, 1994).  

The U.S. Common Core State Standard for Mathematics (CCSSM) emphasizes quantities 

as numbers with units about which one can “reason abstractly and quantitively,” (CCSSM, 2010, 

p. 6) but the CCSSM’s definition of quantity is different from Thompson’s definition. CCSSM 

defines quantities as numbers with units; Thompson, on the other hand, defines quantity as a 

quality of an object (CCSSM, 2010; Thompson, 1993). This study will use Thompson’s 

definition of quantity—a quality of an object which is measurable (Thompson, 1993).  

For instance, let us imagine a person is running while a trainer is watching the distance 

from the starting point with a stopwatch (shown in Figure 3). As the distance from starting point 

increases, the time also increases, so both the time and the distance are varying simultaneously. 

The trainer, who is watching the time and the running person, can visualize that the time and the 

distance are covarying simultaneously; therefore, the trainer is engaging in covariational 

reasoning.  

 

Figure 3 

A Visual Image of a Situation for Covariational Reasoning  

 

Note. This figure is from Thompson and Carlson (2017, p. 426). 
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Setting a Strong Foundation for Functional Thinking Through the Central Tenets of 

Quantitative Reasoning  

There are three central tenets of quantitative reasoning: quantity in mind (not in the real 

world), quantification, and quantitative operations, which inform the design principles of the 

present study. The central tenets of QR can set a strong groundwork for students’ FT, 

covariational reasoning in particular (Ellis, 2011; Thompson, 2011). Ellis (2011) argued that 

“one way to foster FT is to leverage the power of students’ capabilities to reason with quantities 

and their relationships” (p. 215).    

Quantity in Mind. The concept of quantity in mind holds that quantities are mental 

constructions, and that the construction of mental images of quantities requires a great deal of 

effort for students (Thompson, 2011).  

Quantification. Quantification is not the just process of students assigning numerical 

values to an attribute of an object; quantification is defined as “the process of conceptualizing an 

object and attribute of it so that the attribute has a unit of measure, and the attribute’s measure 

entails a proportional relationship (linear, bi-linear, or multi-linear) with its unit.” (Thompson, 

2011, p. 37). Although the motive behind quantification is to measure a quantity, the 

quantification process includes (a) what it looks like to measure a quantity, (b) “what one 

measures to do so” and (c) “what a measure means after getting one” (Thompson, 2011, p. 38). 

For instance, students first conceive the attribute of an object (e.g., the height of a triangle) 

which could be measured. Then students think of a unit to measure the attribute, in this case the 

height of the triangle. A unit of the measure for the length, in this case, is centimeters. Finally, 

students conceive a relationship between a unit of measure—centimeters—and the measure of 

the length (e.g., 10 cm) as an attribute of the triangle.  
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Quantification of a Rate. Quantification of rate is a more complicated process than 

quantification of an attribute of a quantity (e.g., a length) (Johnson, 2015). Quantification of a 

rate involves units, which includes composed units (Johnson, 2015). Consider, for example, the 

relationship between the height and area of a triangle (see Video 1). When we increase the height 

of the triangle, the area of the triangle will increase. Let us imagine the ratio between the area 

and the height of the triangle, which are varying quantities. In order to quantify the ratio between 

height and area, we need to measure the rate of change between the height and area—that is, we 

need a unit to measure the relationship between height and area. We then need to relate the unit 

of measure to the measure of the attribute—relating the rate relationship between the height and 

the area to the rate of change of the area with respect to height.  

Quantitative Operations. Quantitative operations are not the same as numeric 

operations; quantitative operations are the relationships among quantities. Numeric operations, 

on the other hand, are operations done within numerical relationships without conceiving of the 

meaning that those numbers present (Thompson, 2011). Quantitative operations involve 

operating within quantities and the relationships between these quantities (Thompson, 2011). 

Quantitative operations include creating new quantities by: (a) measuring things, (b) calculating 

ratios of quantities, or (c) operating quantities to create a new quantity (multiplicative 

comparisons can be created from a quantitative operation, but not from a numerical operation) 

(Smith & Thompson, 2007).  

This theoretical foundation informed the design of the study. I chose the design principles 

and instructional supports according to the affordances of QR and representations, as follows: (a) 

creating opportunities for students to construct mental images of covarying quantities; (b) getting 

students to focus on quantitative operations rather than numerical operations; (c) emphasizing the 
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role of concrete representations in quantitative processes; (d) grounding students’ RF within the 

meaning of quantities; and (e) getting students to present the models of quantities in their minds 

via concrete representations. These design principles and how I operationalize them with RF and 

FT is elaborated in chapter four, in the section: Affordances and Influences of Networking QR 

and Representations.  

Functional Thinking  

Functional thinking (FT) is a process of “generalizing relationships between covarying 

quantities and representing and reasoning with those relationships through natural language, 

algebraic (symbolic) notation, tables, and graphs” (Blanton et al., 2015, p. 43). In the context of 

this study, FT is used to mean creating a generalized functional relationship between covarying 

variables by connecting, interpreting, and translating among and within concrete representations 

of functions (Dreyfus, 2002). In other words, the concept of FT is a way to organize the 

cognitive approach in order to characterize students’ meanings of functions. FT in this study is 

framed to include: a functional approach to algebra (Yerushalmy, 2000; 2006), correspondence 

and covariational reasoning (Confrey & Smith, 1994; Thompson, 1994; Thompson & Carlson, 

2017), and Cartesian connection (Moschkovich, 1993; Knuth, 2000). I conceptualize all these 

approaches under the umbrella of FT. I represent the four types of functional thinking on Figure 

4.  
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Figure 4 

Visual Images of the Four Types of Functional Thinking 

Correspondence 

Reasoning 
 

 

Covariational Reasoning 
 

 

Cartesian Connection 

 

 

Functional Approach to Algebra  

 

 

 

Note. Figure 4 represents four visual images of FT; the image of a functional approach to algebra 

is from Yerushalmy (2000, p. 359).  

 

Correspondence Reasoning 

Correspondence reasoning is defined as determining output (dependent) values as related to input 

(independent) values and identifying a symbolic equation describing the relationship between the 

dependent and independent values. (Confrey & Smith, 1991; 1994; 1995). 

The correspondence perspective is an abstract definition of a function that focuses on a rule-style 

definition of the function. Correspondence reasoning is central to teaching and learning function 

in schools and colleges (Thompson & Carlson, 2017). In Figure 5, I provide a basic example of 

correspondence reasoning. 
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Figure 5 

Correspondence Reasoning on a Quadratic Function 

 

Note. This figure shows a correspondence approach to the time values, finding the corresponding 

distance values by creating a generalized symbolic equation on a tabular representation. 

 

Covariational Reasoning 

According to Confrey and Smith (1995), the covariation perspective can be defined as an 

understanding of the relationship of change between two or more quantities (e.g., the change in 𝑥 

and the change in 𝑦)—that is, “describing how one quantity varies in relation to another” (p. 79). 

Confrey and Smith (1994) did not ground their definition of covariation in quantitative reasoning 

per-se, but directly on radical constructivist logic (Confrey & Smith, 1991; 1994; Piaget, 2001; 

VonGlasersfeld, 1995). Confrey and Smith’s (1994) definition: “A covariation approach, on the 

other hand, entails being able to move operationally from 𝑦𝑚to 𝑦𝑚+1 coordinating with 

movement from 𝑥𝑚to 𝑥𝑚+1” (p. 33).  

In parallel to Confrey and Smith (1994), according to Thompson and his colleagues, 

covariational reasoning is being able to think about “two quantities’ values varying” and the two 

quantities “varying simultaneously” (Saldanha & Thompson, 1998; Thompson & Carlson, 2017, 

p. 425). Thompson and Carlson’s (2017) definition of the covariation approach builds upon the 

foundation of Thompson’s theory of quantitative reasoning, which itself is built upon the theory 

of radical constructivism (Piaget, 2001; VonGlasersfeld, 1995, as cited in Thompson & Carlson, 
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2017). Thompson’s definition of covariation is students’ understanding of relationships between 

quantitates that vary continuously.  

In this study, I will use Thompson and Carlson’s (2017) definition of covariational 

reasoning: being able to conceive of “two quantities’ values varying,” and the two quantities 

“varying simultaneously” (p. 425). Figure 6 presents covariational reasoning (Confrey & Smith, 

1994) by coordinating the change of time variables (+2 minutes) with the change in distance and 

finding that the change of change of the distance variable (+4 feet) is a constant.    

 

Figure 6 

Covariational Reasoning on a Quadratic Function 

 

Supporting Students’ Development of Representational Fluency 

RF is an essential skill for students that can be developed by creating, interpreting, 

translating, and connecting among and within representations with a sophisticated understanding 

of the mathematical phenomenon (Fonger, 2019). I will define each of the discursive activities of 

creating, interpreting, connecting, and translating in the following section.  

Creating, in the context of this study, is a process of generating a partial or whole 

representation when the function is not already provided (Bosse et al., 2012; Nitsch et al., 2015). 

Interpretation of representations is any action that learners take in order to gain understanding or 

meaning from a representation, or an action a student takes while assessing the meaning of 

functions (Leinhardt et al., 1990; Nitsch et al., 2015). 
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The connection within and among representations is defined as students’ articulation of “an 

invariant feature of the mathematical object being represented across representational forms” 

(Fonger, 2019, p. 2). For instance, in the tabular representations shown in Figure 7, a student 

could see that the rate of rate of change of a quadratic function is constant by dividing the change 

in height (𝑓(𝑥) ) values by the change in time (𝑥) values of the height-versus-time function. The 

student creates a quadratic function graph and states that the rate of rate of change will be 

constant (see Figure 7). Hence, this particular student will be able to see that the rate of change 

of the rate of change of a quadratic function is constant on both the tabular and graphical 

representation of the quadratic function by connecting the representations.  

Figure 75 

An Example of Concrete Representations of a Quadratic Function Representing the Height and 

Area of a Growing Square  

 

Note. This figure is added in this section to help the reader to visualize quantities—the height 

and area of the growing square—and their quantitative relationship on the concrete 

representations: diagram, table, graph and symbolic equation.  

                                                 
5 Figure 7 is same as figure 2; I have added Figure 7 to help the reader to visualize the concrete representations I 

reference in the text.  
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The translation process, or cognitive process, involves transforming information 

concealed in a source representation into a targeted representation (Bosse et al., 2012; Janvier, 

1987a). Translations of representations require the learner to have a “grasp” (meaningful 

interpretation) of each representation (Janvier, 1987a) This gives meaning to the source 

representation and allows students to interpret the same meaning in the form of the targeted 

representation (Lesh et. Al., 1987). For example, to translate the symbolic equation of a 

quadratic function, 𝑦 = 𝑥2, as a graph, students would need to interpret 𝑦 = 𝑥2 as a quadratic 

growth function with an origin on the 𝑦-intercept.  

The difference between connection and translation is that connection involves further 

articulation of how the invariant feature of the mathematical phenomenon is represented across 

representations. 

The Nature of Translation and Connection  

When students create translations and connections among representations, they connect 

the invariant mathematical phenomena. Translation and connection of concrete representations is 

more than just mapping one representation to another representation of the same mathematical 

idea. It is being mindful of what is being translated and connected across representations. As 

highlighted by Adu-Gyamfi and his colleagues (2012), “It should be noted that it is not the 

representations that are translated but rather the ideas or constructs expressed in them” (p. 159). 

For instance, if using Figure 7, when paying attention to the representation with a series of 

diagrams, by viewing the height of the growing rectangle in the form of a diagram, students 

should be able to visualize the increase in the height. Then they can create a table to translate the 

growth in the height (𝑥) to the table. In this case, the numbers on the table are not abstract 
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numbers to students; rather, they represent the height of the rectangle, which keeps increasing. 

So, when the students translate, they are not translating the representation, but the idea behind it.    

Difficulty in Translation and Connection. Janvier defines translation and connection 

with directionality (Janvier, 1987a). Mapping one representation to another representation 

requires cognitive activity (Janvier, 1987a); students have difficulty in translating different forms 

of representations depending on the demand for translation action (Adu-Gyamfi et al., 2012; 

Nitsch et al., 2015). For example, in Figure 7, students may translate the graph of the quadratic 

function into an algebraic equation, 𝑓(𝑥) = 𝑥2, which involves a certain degree of cognitive 

activity; the cognitive activity will be different when they translate the algebraic equation—

𝑓(𝑥) = 𝑥2—into a graph. Furthermore, students’ cognitive approaches to a construct in a 

representation might be different for each representation, and they may also differ while moving 

from source to targeted representations based on students’ functional understanding (Adu-

Gyamfi & Bosse, 2013; Janvier, 1987).  

The difficulties students may experience in translation and connection within and among 

representations might come from two sources: (a) the fact that each type of concrete 

representation requires different interpretations with varying difficulties, and (b) the fact that 

some of the translation and connection is harder because it requires deep conceptual 

understanding (Bosse et al., 2012). Although studies reported that students’ difficulty in 

translation either depends on their inability to make the translation (Bosse et al., 2012) or the 

complexity of the function concept (Carlson et al., 2002), we are still left with uncertainty about 

how to support and characterize students’ translation and connection among and within 

representations in tandem with their FT.  
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In summary, RF is not limited to creating, connecting, and translating among and within 

concrete representations; it is more about the mathematical phenomena being translated and 

connected among and within representations. Students who engage in greater sophisticated RF 

should have developed a meaning of the mathematical phenomena in both source and targeted 

representations (Janvier, 1987b; Lesh et al., 1987); the meaning students construct may co-

inform FT. How students conceive of quantities and their relationships as represented by 

representations while they translate and connect among and within representations is still 

ambiguous. With this study, I intend to network FT and RF for the purpose of characterizing and 

supporting students’ meaningful understanding of quadratic functions.  

Theoretically Grounded Analytical Frameworks: Representational Fluency and 

Covariational Reasoning   

For this study, I networked analytical frameworks as lenses (Simon, 2000) for analyzing 

RF (Fonger, 2019) and two types of FT—covariational (Thompson & Carlson, 2017) and 

correspondence reasoning (Comfrey & Smith, 1991)—in order to characterize the nature of 

students’ co-development of FT and RF. In the above section, I defined these constructs. In this 

section, I detail a networked analytic lens. 

The first analytic lens I networked is based on Carlson and her coauthors (2002) 

identification of covariational reasoning as “the cognitive activities involved in coordinating two 

varying quantities while attending to how they change about each other” (p. 354). They 

developed a framework of five mental actions that students engage in during covariational 

reasoning about the rate of change of covarying quantities. Later on, Castilla-Garsow (2012) 

further developed covariational reasoning by differentiating images of students’ thinking as 

“chunky” or “smooth.” In 2017, Thompson and Carlson revised their theory of covariational 
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reasoning, expanding on Carlson and her colleagues’ (2002) definition of the five mental actions 

involved in the covariational reasoning of rate concepts and integrating Castilla-Garsow’s (2012) 

descriptions of chunky reasoning versus smooth and continuous reasoning. In the current study, I 

employed this revised version of the framework.  

The second analytic lens I networked is based on Fonger’s (2019) representational 

fluency framework. With this framework, RF can be measured in terms of the meaningfulness of 

students’ learning, from lesser meaningfulness to higher meaningfulness. In Fonger’s study 

(2019), each student approach to a problem was analyzed for meaningfulness on a scale of lesser 

to greater meaningfulness. Lesser meaningfulness includes pre-structural understanding, which 

is creating and interpreting one representation with unsophisticated thinking, and multi-structural 

understanding, which is creating or connecting multiple representations with unsophisticated 

thinking. Higher meaningfulness can then fall into the categories of unistructural 

understanding—creating and interpreting one representation with sophisticated understanding 

but not making connections— and relational understanding, which is creating, interpreting, and 

connecting multiple representations with sophisticated thinking.  

Table 1 introduces the networked analytic lens adopted for this study. The left-most 

column “Level” lists the five levels in Thompson and Carlson’s (2017) framework. The 

“Definition” column lists the definitions from their work. The “Verbal and Representational 

Activities” column elaborates my interpretation of the representational behaviors about quadratic 

functions in the growing rectangle context. Notice how the language of functional thinking and 

representational fluency is networked or combined. 
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Table 1 

Networked Lens: Major Levels of Covariational Reasoning and Representational Fluency   

 

Note. This table represents definitions of major levels of covariational reasoning (Thompson & 

Carlson, 2017, p. 442) within the growing rectangle context (see Video 1.) 

 

Level Definition  Verbal and Representational Activities  

in the Growing Rectangle Context  

Smooth 

Continuous 

Covariation 

“The person envisions increases or decreases 

(hereafter, changes) in one quantity’s or variable’s 

value (hereafter, variable) as 

happening simultaneously with changes in another 

variable’s value, and the person envisions both 

variables varying smoothly, moreover, 

continuously.” 

The student creates, connects, or interprets 

representations, thinking that rectangle area and 

height are continuously changing, and then they are 

varying smoothly, simultaneously, at every interval.   

Chunky 

Continuous 

Covariation 

“The person envisions changes in one variable’s 

value as happening simultaneously with changes 

in another variable’s value, and they envision both 

variables varying with a chunky continuous 

variation.” 

The student creates, connects, or interprets 

representations, thinking that the area of the 

rectangle is growing because the height is growing, 

conceiving that both area and height are varying at 

an interval. E.g., each time the height increases, the 

area also increases.  

Coordination 

of 

Values 

“The person coordinates the values of one variable 

(x) with the values of another variable (y) with the 

anticipation of creating a discrete collection of 

pairs (x, y).” 

The student creates, connects, or interprets 

representations, conceiving of change in height and 

change in area as discrete points. E.g., when the 

height is two, the area is 12; when the height is 

three, the area is 27, which would then create a 

graph by lining up (2, 12), (3, 27) for height.  

Gross 

Coordination 

of Values 

“The person forms a gross image of quantities’ 

values varying together, such as ‘this quantity 

increases while that quantity decreases.’ The 

person does not envision that individual values of 

quantities go together. Instead, they envision a 

loose, nonmultiplicative link between the overall 

changes in two quantities’ values.” 

The student creates, connects, or interprets 

representations, conceiving that the area is 

increasing while the height is increasing, and they 

do not conceive that values of height and area are 

changing together.  

Pre-

Coordination 

of Values 

“The person envisions the two variables’ values 

varying, but asynchronously—one variable 

changes, then the second variable changes, then 

the first, and so on. The person does not anticipate 

creating pairs of values as multiplicative objects.” 

 

The student creates, connects, or interprets 

representations, conceiving that the height is 

changing, then the area is changing, but not 

conceiving of both area and height as changing 

together. 

No 

Coordination 

“The person has no image of variables varying 

together. The student focuses on one or another 

variable’s variation with no coordination of 

values.” 

The student creates, connects, or interprets 

representations, thinking of only one quantity as 

varying, creating representations and interpreting a 

change in rectangle area or height without 

coordinating a change in both.     
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Chapter Summary 

I started this chapter with a definition of meaningful learning as when students engage in 

interpreting, creating, reasoning, translating, and connecting among and within representations of 

a quadratic function while they conceive that quantities covary. I elaborated how students’ 

concept of function depends on their prior experience in learning function, so there is no one 

“function concept” (Thompson & Carlson, 2017). I investigated two bodies of literature: broadly, 

QR and FT, and RF and representations. 

I described how this study is informed by background theories: Kaput’s representations 

(1987b) and Thompson’s quantitative reasoning (1993). The theory of representations lays a 

groundwork for students’ representational fluency— students’ skills of creating, interpreting, 

integrating, connecting and translating among and with representations with a robust 

understanding of a mathematical concept (Fonger, 2019). I described how quantitative reasoning 

is a background theory which sets a strong foundation for covariational reasoning, and eventually 

FT (Ellis, 2011); and how FT—covariational and correspondence reasoning—is a way to 

organize the cognitive approach to characterizing students’ meanings of functions. I closed this 

chapter by introducing theoretically grounded analytical frameworks for this study: 

representational fluency (Fonger, 2019) and covariational reasoning (Thompson & Carlson, 

2017).  
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Chapter 4—Method 

Design-Based Methodology 

Historically, it has been reported that students have difficulty both creating and 

connecting multiple representations (e.g., Adu-Gyamfi, 2012) and developing a robust 

understanding of quadratic functions (Ellis & Grinstead, 2008) while reasoning about quantities 

and quantitative relationships (Carlson et al., 2002). Thus, the problem of practice is that students 

would not naturally co-develop representational fluency and functional thinking. In response to 

the problem, I conducted design-based research (Cobb et al., 2017) to investigate ways to 

reinforce students’ understanding of quadratic functions. I conducted a teaching experiment 

(Steffe & Thompson, 2000) and created “a small-scale version of a learning ecology” (Cobb et 

al., 2003, p. 9). The teaching experiment included multiple teaching episodes, with each session 

lasting one hour.  

Rationale for the Design-Based Methodology  

Design-based methodology and the purpose of this study parallel one another. Design 

studies are intended to “develop a class of theories about the process of learning and the means 

that are designed to support that learning” (Schoenfeld, 2004, p. 10). The purpose of the study is 

to explore how combining and coordinating local instructional theories (Gravemeijer & Cobb, 

2006) of representation (Kaput, 1987b) and quantitative reasoning (Thompson, 1993) might shed 

light on students’ meaningful understanding of quadratic functions.  

The teaching experiment, a form of design-based research, also provides opportunities for 

researchers to observe and have direct experience with students’ mathematical reasoning (Cobb 

& Steffe, 1983; Steffe & Thompson, 2000). In the study, the intention of the teaching experiment 

is to better understand the nature of students’ co-development of RF and FT when interacting 
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with the teacher-researcher, tasks, and their peers. In other words, the intention is to make sense 

of the nature of students’ construction of fluency in representations and FT in learning quadratic 

functions.  

Another reason to use design-based methodology is that this methodology pushes the 

researcher to create a learning ecosystem, or community of learners (Brown, 1992; Cobb et al., 

2003), which fits with the needs of the phenomena being explored (Brown, 1992). In creating the 

learning community, the researcher redefines teacher and student roles, which can be different 

than what they look like in a traditional classroom setting. In this study, the role of teachers may 

change dramatically from the traditional classroom. The instructor turns into a facilitator of 

learning, establishing themselves as a responsive guide to students’ discovery process (Brown, 

1992). The role of students in this study changes into constructors of knowledge and community 

members who take an active role in their learning.  

Teaching Experiment 

I conducted a teaching experiment (Steffe & Thompson, 2000). A teaching experiment 

provides opportunities for researchers to see, and have direct experience with, students’ 

mathematical reasoning (Cobb & Steffe, 1983; Steffe & Thompson, 2000). With a teaching 

experiment, a researcher engages, interacts with, observes, and tries to understand students’ 

understanding of mathematical concepts by looking at students’ discussions, artifacts, written 

works, and ways of engaging with the mathematical tasks and tools.  

In the present study, the teaching experiment methodology provided opportunities for me 

to test and revise my understanding of representational fluency and functional thinking. As a 

researcher, my engagement and interactions with the students, and witnessing the co-emergence 

of RF and FT in their thinking, provided me with insight into students’ meaningful learning 
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processes. To understand the nature of students’ co-emergence of RF and FT, I paid attention to 

whatever the students said, created, and did regarding the quadratic functions; I then looked into 

students’ interactions, explanations, and creations to create models of their thinking. 

Additionally, I explored what supported students’ meaningful learning processes.  

 In sum, I have conducted a teaching experiment in order to better understand: the nature 

of students’ co-development of representational fluency and functional thinking as they 

interacted with the teacher-researcher, tasks, and their peers, and what constitutes the 

development of a meaningful understanding of quadratic functions.   

Chapter 4 Overview 

The method chapter includes three phases: research design, experiment design, and data 

analysis. The first phase references the background theories and articulates the design of the 

instructional supports, such as mathematical activities, and the context for learning activities. 

The second phase, experiment design, includes a discussion of the teaching episodes, timelines, 

data collection, participants, and task-based interviews. The third phase, data analysis, consists of 

ongoing and retrospective analysis of the data gathered during the experiment (Cobb, 2000; 

Steffe & Thompson, 2000; Simon, 2000).  

Phase 1: Research Design 

In the first phase, I articulate five design principles—the affordances and influences of 

networking QR and representations. Then I introduce instructional supports, including 

instructional activities, and the context for learning activities.   

Affordances and Influences of Networking Quantitative Reasoning and Representations 

The present study is situated with a background in a theory of representations (Kaput, 

1987a;1987b) and quantitative reasoning (Thompson, 1993). Recall from Chapter 3 that I have 
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five design conjectures; in this section, I explain how I operationalize these design conjectures 

with explicit instructional support strategies. Table 2, below, shows both the design conjectures 

and the design elements, which are informed by the networking of both theories. The design 

elements (tasks, tools, norms, and teacher moves and prompts) will be elaborated on in the 

Design of Instructional Supports section.  

 

Table 2 

Conjecture Map of this Study  

 

Creating Opportunities for Constructing Mental Images. In this section, I explain 

how I operationalize the first design principle. Students’ mental operations regarding reasoning 

with quantities might be constructed through Dreyfus’ four stages of learning6 with 

representations (2002). While going through these stages, students should have opportunities to 

create, interpret, connect, and translate quantitative relationships across first within one 

representation, then later multiple representations. Furthermore, the cognitive operation of 

                                                 
6 Dreyfus (2002) described four stages of the learning process in terms of concrete representations: “a) Using a single 

representation, b) using more than one representation in parallel, c) making links between representations, and d) integrating 

representations and flexibly switching between them” (2002, p. 39). 

Design Principles 1. Creating opportunities for students to construct mental images  

2. Getting students to focus on quantitative operations rather than 

numerical operations 

3. Emphasizing the role of concrete representations in the 

quantification process 

4. Grounding students’ RF within the meaning of quantities 

5. Getting students to present the models of quantities in their minds 

via concrete representations 

Design Elements 

 

Tasks  

Tools  

Norms  

Teacher moves and prompts  
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constructing mental images of quantities might become rich when students develop RF with 

quantitative reasoning.  

For instance, in the first stage of learning, students interact with and present a 

representation (e.g., a table) of changing quantities. Then, in the second stage, students engage in 

constructing images of changing quantities by using two representations (a table and graph) in 

parallel. Lastly, in the third and fourth stages, students revisit and revise their image of the 

changing quantities and the invariant relationships among the quantities through translating and 

connecting among and within representations. In other words, the construction of students’ 

images of changing quantities and the invariant relationships between quantities might be 

developed within RF, because students’ RF might create opportunities for students to develop 

robust reasoning about quantities.  

Focusing on Quantitative Operations Rather than Numerical Operations through 

Explicit Teacher-Researcher Prompts. In this section, I explain how I operationalize the 

second design principle by having students focus on quantitative operations rather than 

numerical operations via teacher-researcher prompts. The goal is to have students focus on the 

relationships among quantities rather than looking for a right answer (Weber et al., 2014). For 

example, in order to get students to isolate the relevant quantities (e.g., height, length, and area), 

the teacher researcher’s prompt could be: What quantities do you think contribute to the growth 

of the area? Explain why you picked those quantities and how you imagine measuring such 

quantities. In order to get students to keep track of the growth of a rectangle, a teacher-researcher 

might ask students to think about how they can measure these variables. With that in mind, the 

teacher-researcher can ask questions such as: How are these variables contributing to the growth 

in the area? How can you think about the growth in the area related to the height/length? How 
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fast is the area growing? The teacher-researcher can encourage students to create concrete 

representations to represent the relationship between the quantities. With this, the teacher-

researcher may ask students to think about the magnitudes of the quantities when creating 

representations in order to push them to focus on quantitative operations rather than numerical 

operations.  

QR reinforces students’ ability to create an image of quantities, rather than rely on rote 

calculation, by looking at quantification within representations. For example, in the study, 

students are involved in the quantification of the length, area, and height of a triangle.  Students 

watched a video where a green paint roller is scrolling to paint the wall; while the length of the 

paint roller increases, the area painted is also increasing.  

In this example, the teacher-researcher may give students opportunities to think about, 

firstly, what it looks like to measure a height, area, or length; and secondly, the meaning of 

measuring the area, length, or height of the triangle. In doing so, the teacher-researcher may 

provide opportunities for the students to extend their thinking about how different measurements 

affect how they conceptualize different shapes (i.e., a height is a line in a triangle, while an area 

is the entirety of the triangle). In other words, what is the relationship between height and 

length—between quantities? The teacher-researcher may provide opportunities for the students 

to think what about it means to calculate the area by multiplying height and length, and 

furthermore, they may provide opportunities for students to think about what a measure means 

after getting one (Thompson, 2011).  
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Video 2 

The Paint Roller Task Video 

 

Note. This task was adapted from Ellis et al. (2015). The paint roller task video can also be found 

at this link: https://www.dropbox.com/s/sumv5wbh6kkajws/Paint-roller-

Triangle%20copy.mov?dl=0 

 

Representations’ Role in the Quantification Process. In this section, I explain how I 

operationalize the third design principle: identifying the role of representations in a 

quantification process. Representations might provide instances for students to think and reason 

about quantities in the following ways: (a) how to represent quantities as a table, graph, symbolic 

equation, or diagram; (b) what is the relevant information about these quantities; and (c) what is 

the unit with which to measure of these quantities, or, what are the numerical values given to 

these quantities (Smith & Thompson, 2007).  

https://www.dropbox.com/s/sumv5wbh6kkajws/Paint-roller-Triangle%20copy.mov?dl=0
https://www.dropbox.com/s/sumv5wbh6kkajws/Paint-roller-Triangle%20copy.mov?dl=0
https://www.youtube.com/embed/jhWi368erJk?feature=oembed
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Additionally, quantification might reinforce students’ full comprehension of what is 

being represented, translated, and connected as quantities, as well as the relationship between 

quantities. The invariant relationship between quantities might be seen while students create, 

connect, and translate among representations. Students’ representational activity might become 

meaningful if they reason about quantities, because reasoning with quantities might push 

students to engage in quantifying processes and quantitative operations (Thompson, 2011; Smith 

& Thompson, 2007).  

Furthermore, when students reason with quantities, they might create another quantity. In 

most cases, the relationship between quantities can be found as a ratio—multiplicative 

comparison (Smith & Thompson, 2007). In this study, for example, students might create the 

area of a triangle as a quantity by multiplying the quantities of length and height of a triangle, 

and this created quantity (the area) would then have a measurable attribute.   

Grounding Students’ RF within the Meaning of Quantities. In this section, I explain 

how I operationalize the fourth design principle by grounding students’ RF within quantities and 

the relationships between them. Students’ use of quantitative reasoning might set a foundation 

for understanding through identifying and analyzing quantitative relationships (Smith & 

Thompson, 2007). Without quantitative meaning, students’ representational activity might 

become ungrounded manipulations of numbers and operations within multiple representations.  

There might also be a quantitative aspect of RF; the creation of representations in a 

quantitative context situates students’ representational activity in the center of the process of 

quantification and understanding relationships between quantities, which might result in 

conceptual understanding (Smith & Thompson, 2007). Understanding the quantitative 

relationship might push students to think about how the relationship is changing. This an 
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important notion, as it may explain how students make these important connections (Ellis & 

Grinstead, 2008; Moore et al., 2013). Encouraging students to consider the quantitative 

relationships within their representations rather than simply thinking about numbers or numerical 

values enables them to create, connect, and translate among and within representations of 

quantities. Through QR, students create non-numerical interpretations related to quantities 

(Smith & Thompson, 2007), and these interpretations become a foundation for students’ RF. 

Presenting Models of Quantities in Students’ Minds via Concrete Representations. 

In this section, I explain how I operationalize the fifth design principle by examining students’ 

models of quantities via representations. Students’ conception of quantities takes place in the 

mind, not in the real world (Thompson, 2011); representing and connecting within concrete 

representations might provide a window for researchers to make sense of the models of 

quantities in the students’ minds. Students’ conceptualization of quantities, quantitative 

relationships, and quantitative operations is complex, and creating these conceptualizations 

requires more of the students in terms of cognitive engagement (Thompson, 2011). Teachers’ 

conceptualization of quantities, quantitative relationships, and quantitative operations are 

different from students’ conceptualization of quantities. In teaching quadratic functions during 

the current study, my intention was to create models of students’ reasoning about quantities, 

quantitative relationships, and quantitative operations while they created, connected, and 

translated among and within representations of quadratic functions.  

Design of Instructional Supports  

The design of instructional components is flexible and can quickly respond to any 

changes that may be required by the researchers ongoing analysis of the iterative teaching 

episodes. In the study, the design of instructional supports is guided by the principles established 
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in the two theories of quantitative reasoning (Thompson, 1993) and representations (Kaput, 

1987b). During the practical implementation of instructional supports, as the TR, I could modify 

these components in order to fit the participants’ need for meaningful learning. I take Simon’s 

(1995) word on learning to heart: “Learning is likely to be fostered by challenging the learner’s 

conception using a variety of contexts” (1995, p. 139). In an attempt to account for this, I 

intentionally allowed for changes to the study if the changes were likely to foster students’ 

meaningful learning. The design of the instructional supports which I used in this study has two 

components: mathematical activities and context for learning activities (Simon, 1995). 

Mathematical activities include tasks, tasks’ characteristics, and instructional sequences; context 

for learning activities includes instructional support via teacher-researcher prompts and the 

language used in the instructions.   

Mathematical Activities. Mathematical activities during the study were guided by the 

principles established in the literature, specifically, the literature of quantitative reasoning and 

representation. In this section, I introduce the instructional activities, including tasks, task 

characteristics and instructional sequences.  

Tasks. In the present study, I used three tasks: the paint roller task, the growing rectangle 

task, and the falling object task.  

The Paint Roller Task and the Growing Rectangle Task. The paint roller task (Video 2) 

and the growing rectangle task (Video 1), the “Gamma tasks” were created by Amy Ellis and her 

colleagues (2011; 2015). Affordances of the Gamma tasks include supporting students’ smooth 

covariational reasoning (Ellis et al., 2015), so these tasks might be powerful in exploring 

students’ quantitative reasoning. These tasks include dynamic situations, diagrams, and videos 

that can help students see how a change in length affects a change in area by using color-coding 
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that might help make the change in variables more visible to students (Johnson et al., 2017; 

Watson, 2015). For instance, creating a growing triangle can emphasize the understanding that 

two quantities covary. 

The Falling Object Task. Although the aforementioned tasks are valuable and useful, I 

would also like to establish my identity through my own activity construction in the teaching 

experiment. With that in mind, I have modified the tasks on the Projectile Motion website’s 

interactive simulations physics lab to create quadratic function tasks. A link to Projectile Motion: 

https://phet.colorado.edu/sims/html/projectile-motion/latest/projectile-motion_en.html.  

The tasks emphasize an inquiry into the relationship between the height of a falling object 

and the time it takes to fall. Through these simulations, students may have the opportunity to 

throw the objects and to explore the relationship between the time passing and the height of the 

dropped object from the ground. The reasoning may start with magnitudes, then participants 

might have the opportunity to measure attributes of the falling objects. With these motion tasks, I 

intended to push students to focus on changing quantities, in particular, covariation between the 

height of the falling object and the time it takes to fall. I used this teaching experiment as an 

opportunity to develop my own tasks for supporting students’ covariational reasoning. I have 

also created videos for the falling object task to provide students opportunities to focus on single 

simulations in creating and connecting representations of the quantities, which can emphasize the 

understanding that two quantities covary.  See the inserted video for the falling object task, 

Video 3, where a cannon fires a person or a cannonball into the sky.  

 

 

 

https://phet.colorado.edu/sims/html/projectile-motion/latest/projectile-motion_en.html
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Video 3  

The Falling Object Task Video  

 

Note. You can find the the falling object task video at the following link: 

https://www.dropbox.com/s/fnsrmth5r9lr9c8/Rocket_Task.mov?dl=0. 

 

Task Characteristics. There are five task characteristics that were purposefully designed 

for the study: (a) making quantification visible to students; (b) providing opportunities for 

measuring quantities; (c) providing subparts within the tasks to help students reflect on their 

thinking; (d) follow-up questions within the tasks; (e) notice and wonder structure. 

First, to make quantification visible to students, tasks were situated in a quantitative 

context to encourage students to interact with quantifications (Weber et al., 2014). For instance, 

tasks located within a growing rectangle and triangle context create opportunities for students to 

engage in quantification and justification for the relationship among quantities (height, length, 

https://www.dropbox.com/s/fnsrmth5r9lr9c8/Rocket_Task.mov?dl=0
https://www.youtube.com/embed/TOIDV6e9fLM?feature=oembed
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and area). Second, to provide opportunities for measuring quantities, the tasks were designed in 

such a way as to help students measure the quantities they identify. For instance, students may 

use a dynamic geometry software on a grid of one unit; this task characteristic may include 

student opportunities to measure the quantities. Third, tasks were designed with subparts to 

provide students space to explore and reflect on their thinking by using these subparts. For 

instance, a growing rectangle starts with 1x1, then grows gradually, so students may have 

various versions of the rectangle to go back and consider. Fourth, follow-up questions within 

tasks support students’ ability to reason quantitively and revisit their thinking. Fifth, all these 

task characteristics were accompanied by concrete representations. 

As a final task characteristic, each task was launched with a notice and wonder structure. 

The notice and wonder sections were designed for students to notice the quantities of a situation 

in motion. For instance, students watch a rocket thrown in the air, and they can see that the 

height of the rocket is changing with time. Alternatively, a paint roller is painting while the 

height of the roller is increasing. In the notice and wonder sections, students are asked to share 

their noticing and wondering; this portion of the task is designed to enable students to 

independently identify a focus question in each task, therefore generating a shared central 

question for the activity that is then used for further interaction. For example, in the paint roller 

task, the central question is about the relationship between height and area, and for the falling 

object task, the central questions is about the relationship between the height of the object and 

the time it takes to fall.  

Instructional Sequence. Smith and Thompson (2007) highlighted two components to 

support students’ quantitative reasoning (QR): (a) sequence of tasks and (b) appropriate support 

for students’ QR. Appropriate support will be articulated in this chapter, in the section: The 
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Context of Learning Activities; here, I will discuss sequencing. I use the paint roller task, the 

growing rectangle task, and the falling object task to create an instructional task sequence for 

teaching quadratic functions within quantitative reasoning. See Appendix A for a sample of the 

lesson plan—the instructor version—from the instructional sequence. 

The instructional sequence starts with the paint roller task, a growing triangle task created 

in dynamic geometry software, (Ellis et al., 2015; Ellis et al., 2018) and continues with the 

falling object task. Instructional activities are emphasized that require students to use 

covariational and correspondence reasoning by setting the tasks in order of the growing 

rectangle, or triangle, first, and then the falling object. For instance, the instructional sequence is 

designed for supporting and encouraging students to notice the quantities—the height, length, 

and area of the triangle—by identifying quantities and creating new quantities (e.g., area). 

Students are given a choice of which representations to create, and then they can sketch a graph 

to represent the relationship between quantities. In Table 3, below, I provide a breakdown of the 

instructional sequence per each day of the study.   

The instructional sequence was designed with emphasis on Dreyfus’s theory of 

representations (see the row for day 2 on Table 3). The participants are asked to create or extend 

the diagram, in this case, a given representation, then create a table from the diagrams they 

already have. Also, the diagram and table become parallel representations; then the next step 

requires participants to think graphically by drawing visual representations and making 

connections between a graph, table, and symbolic representation (see the rows for day 2 and day 

3 on Table 3). 
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Table 3 

Objectives and Tasks for Corresponding Days  

Day  Objective Task 

Day 1  Identifying length and area as quantities and as attributes of 

painting situations.  

 Estimating the relationship between height and area and sketching a 

graph for the connections.  

 Reasoning with the magnitudes of the quantities; realizing that the 

height of the paint roller, length of the triangle, and area of the 

triangle have magnitudes, and these magnitudes are changing in 

relation to one another. 

The paint roller task  

Day 2   Realizing that quantities (height, length, and area) are measurable.  

 Creating a table and a graph to connect and reason about the 

relationship between the height and area of a triangle. 

 Creating parallel representations of quantities as a table and graph 

while reasoning about the change in the area concerning the 

difference in the length of the paint roller. 

 Creating connections and translations among and within tabular, 

symbolic, and graphical representations while reasoning about the 

change in the area as related to the change in the length of the paint 

roller. 

The paint roller task 

Day 3  Recognizing that quantities (height, length, and area) are 

measurable. 

 Creating a table and a graph to connect and reason about the 

relationship between the height and area of the growing rectangle. 

 Creating connections and translations among and within tabular, 

symbolic, and graphical representations while reasoning about the 

change in the area in relation to the change in the length of the 

growing rectangle. 

The growing rectangle task  

Day 4  Thinking with a magnitude of the quantities; realizing that the 

height of the rocket and the time have magnitudes, and these 

magnitudes are changing concerning one another. 

 Realizing that quantities (height, time, and range) are measurable. 

 Creating a table and a graph to connect and reason about the 

relationship between the height of the falling object and the time it 

takes to fall. 

The falling object task  

Day 5  Creating connections and translations among and within tabular, 

symbolic, and graphical representations while reasoning about the 

change in time in relation to changes in the height of the falling 

object. 

The falling object task 

Day 6  Exploring attributes of the quantitative relationship between the 

tasks via analyzing the quantitative relationships on multiple 

representations. 

The paint roller task 

The growing rectangle task  

The falling object task 

Day 7  Exploring attributes of the quantitative relationship between the 

tasks via analyzing the quantitative relationships on multiple 

representations. 

The paint roller task 

The growing rectangle task  

The falling object task 

Day 8   Comparing similarities and differences between quadratic and 

exponential functions. 

The paint roller task   

The growing rectangle task  

The falling object task 
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Context for Learning Activities. In this section, I will provide details of the study’s 

context for learning activities: instructional support via teacher-researcher prompts and language 

of instructions.  

Instructional Support via Teacher-researcher Prompts. To provide appropriate support 

for students’ facility in QR, I designed elements for the study that emphasize teachers’ moves, 

prompts, and promoting actions for supporting students’ mental construction of quantities and 

the relationships among quantities within multiple representations. In the study, the teacher-

researcher used open-ended prompts to encourage students to identify and measure quantities 

and create opportunities for students to refine their concepts of changing quantities (Weber et al., 

2014). Refer to Appendix B, where the teacher researcher’s prompting questions for 

identification of quantities and reasoning within quantities are listed. Furthermore, the teacher-

researcher designed supports that would push students to reason about the relationships between 

quantities by using a single representation, using two representations in parallel, and/or 

integrating and linking concrete representations (Dreyfus, 2002). In this way, the teacher-

researcher might push students to reason, revise, and re-test their reasoning related to the 

relationships between quantities among and within multiple representations. 

In addition to teachers’ moves, prompts, and promoting actions, I aimed to develop 

norms that were centered on providing students with opportunities for quantitative reasoning. I 

set the expectations for the teaching experiment; since the participants had traditional classroom 

experiences, we renegotiated the classroom norms (Cobb, 2000). For instance, the negotiated 

classroom norms included rules for collaborating in a small- or whole-class discussions. I would 

ask students to come up with sets of norms they would like to propose to the classroom 

community, and I defined the classroom community as both teacher-researchers and students.  
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Language of Instruction. In this study, although the instruction language is English, I 

encouraged translanguaging, in particular, code-switching. Code-switching is “a well-governed 

process used as a communicative strategy to convey linguistics and social information” 

(Grosjean, 1999, p. 286, as cited in Moschkovich, 2007). For the purposes of this study, I define 

code-switching as using two languages in the same conversation (Chitera, 2009; Moschkovich, 

2007; Setati, 2005). I view code-switching as a resource; it can enable participants to articulate, 

elaborate, repeat ideas, and add information in another language (Moschkovich, 2007); it can 

support the participants to develop a meaningful understanding of quadratic functions. In this 

teaching experiment, the students were bilingual and spoke Turkish and English. Hence, 

although the language of instruction, including on handouts or any written work, was English, I 

used code-switching between English and Turkish to communicate with the students about 

quadratic functions, and encouraged participants to use code-switching as well.   

Phase 2: Experimenting 

The second phase of the study is experimenting. This section includes descriptions of the 

teaching episodes, teaching location context, participants, the research team and the role of the 

teacher-researcher, a statement of positionality, timelines, data collection, and task-based 

interviews. 

Teaching Episodes 

The teaching experiment had eight episodes, each lasting for one hour. These episodes 

provided opportunities for me, as a teacher-researcher, to explore students’ mathematical 

constructions (Cobb & Steffe, 1983), representational activities in tandem with FT. The teaching 

episodes were videotaped for retrospective analysis to better characterize and support students’ 

co-development of RF and FT. In between each teaching episode, a research team revised and 
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tested learning conjectures during ongoing analysis in relation to previous teaching episodes. The 

research team included four graduate students and my advisor Dr. Fonger. We revised and tested 

the designed instructional supports to better make sense of students’ representational activity and 

FT.  

Teaching Location Context 

The venue for the teaching experiment was the Turkish Community Center (hereafter 

“the Center”) in upstate New York. The duration of the project was eight instructional sessions 

that took place over approximately two weeks within the 2019–2020 school year. The Center 

hosts a weekend school for Turkish-American students who are interested in learning Turkish 

language and culture. The Center has several classrooms; each classroom has a whiteboard and 

18–20 single chairs and tables.  

Participants 

The participants were eight Turkish-American middle and high school students in the 8th, 9th, and 

10th grades from urban and suburban school districts. I recruited participants who were members 

of the Turkish community. Student participants did not receive monetary compensation for 

participating in this study. I read the consent procedure and scripts to students individually with 

the parents or legal guardians present. All students had an opportunity to ask questions and to 

take copies of the assent and consent forms. All the names used to refer to students in this paper 

are pseudonyms (Table 4). Prior to this study, the participants had taken Algebra 1 courses, and 

in Algebra 1, they might have learned about quadratic functions.  
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Table 4  

Demographic of Participants and the Number of Days Participants Were Present  

Name  Number 

of Days  

Gender  Grade 

level  

Location 

&Schools 

Articulation 

Ability  

Visual Language 

Fluency  

Mert  8 Male Grade 8 Suburban  High  High  English  

Asli  8 Female  Grade 10  Suburban High  High  English  

Yener  7 Male  Grade 8 Suburban High  High  English  

Tarik  7 Male Grade 9 Urban  High  Moderate  English  

Eren  7 Male  Grade 9 Urban High  High  English  

Salim  7 Male  Grade 10 Suburban High  High  Turkish  

Bahar  5 Female  Grade 10 Suburban Moderate  Moderate  Turkish  

Zerrin 4 Female  Grade 10 Suburban High   Moderate  Turkish 

 

Some of my participants are fluent in Turkish and know some English; some are fluent in 

English and know some Turkish (Table 4). For instance, Salim, who was one of the 10th-grade 

participants, has been in the US for three years, and before that he was in Turkey, which means 

he is more fluent in Turkish than English. Alternatively, Tarik was born in the US, and is able to 

read and write in Turkish; however, he uses English more frequently in daily life. I consider 

Tarik to be fluent in English, and Salim to be more fluent in Turkish. Moreover, Salim learned 

mathematics in Turkish for several years, so he might be more familiar with mathematical 

phrases in Turkish than English. For this reason, I encouraged participants to flexibly use code-

switching between English and Turkish to provide languages as resources for learning about 

quadratic functions (Moschkovich, 2007).  

The Roles of Teacher-Researchers and Participants  

I defined the roles of students (Yackel & Cobb, 1986) and the teacher-researchers (Steffe 

& Thompson, 2000) to create a productive and robust learning community (Brown, 1992; 

McClain, 2002) that might help support students’ meaningful learning through quantitative 

reasoning and representations. The role of the teacher-researcher was as a facilitator of learning, 

and the role of the student was as a constructor of knowledge. I used the National Council of 
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Teachers of Mathematics’ Principles for Actions (NCTM, 2014) to guide my construction of the 

teacher-researchers’ role and the participants’ role. 

My definition of the teacher-researcher’s role is a facilitator of learning who asks 

questions, elicits students’ thinking, and orients students’ thinking toward one another 

(McDonald et al., 2013). My role in the study was the role of the teacher-researcher. I 

implemented the design by setting tasks, asking questions and giving participants thinking time, 

and supporting students in active learning (Stein et al.,2015). As one of the teacher-researchers, I 

paid close attention to the learning opportunities that emerged from students creating, 

interpreting, and translating multiple representations while flexibly using FT. During the learning 

process, I made sure to analyze my questioning patterns to avoid funneling questions.  

In terms of the students’ role, students were explicitly informed that they were in charge 

of their learning as well as their peers’ learning, via explaining, arguing, and asking questions to 

their peers. Students were told that there was no right or wrong answer in solving the questions. 

Students were encouraged to take daily notes during the teaching experiment; this could be 

another role for the teachers and research team in the room—to encourage students to write 

down their thinking. 

Positionality and Reflexivity 

For the present study, the research employs reflexivity in a moment: a concept that can be 

described as being fully conscious of participants, culture, ideology, and political issues within 

all stages of the research process (Hesse-Biber & Piatelli, 2007). I identify as a Turkish Muslim 

woman who is an English language learner and native Turkish speaker. The participants in the 

study are Turkish-American Muslim students who speak both Turkish and English. In this case, I 

situate myself as an “insider” who has already established trust with the participants (Narayan, 
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1993). In designing and conducting the study in the center, I maintained my positionality with 

awareness of my participants’ culture and identity, from forming research questions to designing, 

conducting, and writing about these participants. To avoid any biases in the present study, 

however, I invited “outsiders” to be involved in all the stages of the study as well, including 

designing, conducting, writing, and interpreting the data, while continually reflecting on it 

(Narayan, 1993).  

Insider. I define my position in this culture as “insider” because I have known the 

participants for two to six years, and these relationships might have affected the participants’ 

enrollment the study. As a member of the community, as a researcher, I have previously 

established trust between the participants and myself.  

Prior to the study, there were several occasions where I was asked by the community 

leaders to talk about what it looks like to be a Turkish, practicing Muslim woman at a university. 

I had several personal conversations with these participants regarding my own experience and 

political issues in Turkey. Some of these participants are asylum-seekers in the U.S., and they 

face political oppressions in their home country. As someone going through the same 

experiences with them, this might create trust between the participants and me. I might also have 

a role model image or a mother image in the participants’ minds, because my kids also go to the 

community center for language classes. I am not sure how these images would affect the 

participants’ understanding of quadratic functions. I asked my advisor Dr. Fonger and other 

graduate students to be present as much as possible with me in all stages of the study, in 

particular the interviews and the teaching experiment. I also wrote memos and journals reflecting 

on my own identity concerning the participants. However, I developed ownership over the study 

while having a place for shared ideas.  
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These students might also not have felt comfortable having me around as the teacher 

figure due to my relationship with their parents, and as a member of the community. I might 

create pressure on them, forcing them to find a right answer for a problem in a way that was 

similar to a traditional mathematical classroom7. In order to avoid such stress, I sought to 

establish a classroom culture which valued ideas and reasoning rather than focusing upon a 

single right answer. As the teacher-researcher, I attempted to avoid hunting for a single correct 

answer by emphasizing students’ thinking processes. However, as someone who has been in the 

mathematics field for 14 years, most of my experiences have focused on looking for a single 

right solution, rather than valuing students’ reasoning even if it is not sophisticated. Because of 

this, my prior experience might have affected my decisions during the ongoing analysis. To 

avoid such a situation, I had research team meetings about testing and revising learning activities 

after every teaching episode and before the next one.  

Timeline 

The teaching experiment took place in the first two weeks of March 2020. Due to the 

Covid-19 pandemic, we ended up running some sessions on an adjusted schedule. The first two 

sessions were carried out on Tuesday and Saturday, one session each day; then, for the remaining 

sessions, we combined two sessions per day. The combined sessions took place on the same day, 

with a 15-minute break in between sessions; for example, sessions 5 and 6 were on the same day. 

Data Collection and Data Storage 

The data sources collected during the study included: classroom videos, pretests, video-

recorded task-based interviews (Clement, 2000; Goldin, 2000), students’ written work in small- 

and whole-group discussions, student journals, and teacher-researcher lesson plans (Figure 8). 

                                                 
7 Broadly speaking, in a traditional classroom, students’ ways of thinking are seen as less valuable than getting a right answer.  
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Brown (1992) highlighted the importance of videotapes. Brown (1992) stated: “Tapes are 

invaluable for documenting conceptual change, in teachers as well as students, and they provide 

a database for discussion and reflective action on the part of teachers and researchers.” (p. 174). 

Following Brown's advice, I recorded videotapes for each small group, and as well as for each 

whole-group interaction. Then, to explore what changed in students’ co-development of RF and 

FT and what supported the co-development, I selected video recordings of whole and small 

groups with students’ corresponding written works. One of my analytical frameworks is RF 

(Fonger, 2019); for this, I needed to see which type of representations students were pointing at 

and how they interpreted representations while reasoning about quantities and quantitative 

relationships. Thus, video recording was a constructive way of documenting the data that fit with 

the analytical frameworks.  

Video footage of the students’ interaction with tasks, tools, the teacher-researcher, and 

the team members was collected through a camera situated to the right corner of the classroom, 

facing the whiteboard. The participants worked in small groups. In order to capture students’ 

work in small groups, I videotaped each small-group interaction. The research team participated 

in several types of meetings of various lengths, which were also audiotaped. These meetings will 

be articulated in the Ongoing Analysis section. Pretests and interviews were videotaped. I was in 

charge of data collection; my job was to collect every piece of data and save it under the naming 

system: TE#1_Day1_Datatype_Studentname_Date e.g.: TE1D1_Task_Amy_2019_15_4. Note 

that not all the types of data that were collected in this study were discussed or utilized in this 

paper; the current analysis was aimed at answering the research questions, and not all of the data 

was required to accomplish this task. The data collected for this research may be shared with 

other researchers, teachers, and community members.  
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Figure 8 

Data Collection 

 

Note. This figure presents an iterative process of the teaching experiment, which will be 

articulated in the Ongoing Analysis section, with its corresponding data collection.   

 

The Pretests and Structured-Task-Based Pre-Interviews. The. In this study, I 

conducted pretests and task-based pre-interviews with each participant before the teaching 

experiment. I designed the pretests and pre-interview protocol to gain a clearer perspective on 

the participants’ prior understandings of quadratic functions. (See Appendix C1 for pretests, C2 

for pre-interview protocol.).   
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The interviews were task-based, which was intended to help to make inferences about the 

participants’ current understandings. This technique was intended to help me to develop 

conjectures, serve the research goal, and make inferences about participants’ mathematical 

thinking (Goldin, 2000). Furthermore, I conducted the task-based interviews with a think-aloud 

protocol (Goldin, 2000) to better understand the meaning participants held about quadratic 

functions. Based on observations, I developed conjectures about participants’ meaning-making 

processes about linking RF with FT, then asked questions to revise and re-test the conjectures. 

I asked questions such as Can you tell me what connection you see between the table and 

the graph? What do you think of these quantities? Tell me what you mean by 

saying/writing/drawing to present the relationship between the quantities.  How did you think of 

solving this question, and how are these related to the quantities? I gave participants enough 

time to think and solve, and then asked unscripted follow-up questions (Goldin, 2000). For 

instance, Can you show me what you mean by that? If the participant’s response did not make 

sense to me, I asked clarifying questions, such as Can you show me in another way/another 

representation? If participants did not engage in linking multiple representations, I implemented 

“the guided use of heuristic questions” established by Goldin (2000, p. 523); I asked: Do you see 

a pattern in the graph, table, or equation? Do you see any connection among these 

representations?  

Creating a Baseline to Serve for the Teaching Experiment with a Pretest and Pre-

interview.  The goal of the pretest and pre-interview was to establish a baseline for what ideas 

the participants were coming in with. I wanted to know what students knew and were able to do 

because, according to the Common Core New York State Curriculum for Mathematics, these 

participants should have been learning quadratic functions in Algebra 1 at grade 8.  
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Based on the pretest and pre-interview results and students’ social interactions (e.g., who 

could work with whom better), I analyzed the students’ levels of the different types of 

reasoning—correspondence reasoning or covariational reasoning with a representation—in order 

to choose small groups. I then created small groups by including academically heterogenous 

categories together as well as looking into social interactions among the grade levels these 

participants were in. These served as the criteria to form small groups for the teaching 

experiment. For instance, I grouped a student who used correspondence reasoning within 

graphical representation with another student who used coordinated change in quantities on a 

tabular representation. So, the small groups were heterogenous, including students with 

understanding of both RF and FT (covariational and correspondence reasoning). So, my 

understanding of the types of representations students employed to present quadratic 

relationships and what type of approach students used in reasoning about quantities informed the 

small groups. With that in mind, I provided opportunities for students to immerse themselves 

with multiple approaches to function in tandem with multiple representations.  

Phase 3: Data Analysis 

There are two types of analysis in design-based research: ongoing and retrospective 

analysis (Cobb, Jackson, & Dunlap, 2017). For the present study, the ongoing analysis took 

place while the teaching experiment was still in progress. The goal of the ongoing analysis was 

to support students’ meaningful learning of quadratic functions through revising and creating 

new learning conjectures to support students’ meaningful understanding of quadratic functions. 

On the other hand, retrospective analyses were conducted after the teaching experiment was 

completed (Cobb et al., 2017; Simon, 2000). Retrospective analyses were conducted to identify 

ways to support students’ meaningful understanding of quadratic functions. Furthermore, 
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retrospective analyses were conducted to characterize the co-emergence nature of students’ RF 

and FT while they were developing a meaningful understanding of quadratic functions. 

Ongoing Analysis  

The ongoing analysis took place between teaching episodes (Cobb, 2000; Steffe & Thompson, 

2000; Simon, 2000) and focused on networking the theories of FT and representational fluency. 

Together with the research team, I focused on observing students’ flexibility in FT when they 

discussed and used QR and representations in tandem and how to support students’ meaningful 

understanding of quadratic functions. The ongoing analysis took two forms: short debriefing 

sessions with the research team (Cobb et al., 2017), and co-planning. The visualization in Figure 

9 represents the iterative process of this design research (Cobb et al., 2017) that occurred. In the 

next coming sub sections, I will provide information about debriefing and co-planning meetings. 

Figure 9 represents the debriefing and co-planning meetings the research team held before and 

after teaching episodes. 

Figure 9 

A Visual Image of Ongoing Analysis 
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During the short debriefing sessions, the research team made conjectures based on 

evidence from students’ discursive activities while students were reasoning with quantities and 

creating, interpreting, connecting, and translating among and within representations. During the 

co-planning sessions the research team planned for the next teaching episodes by revising and 

testing the learning conjectures from the debriefing meeting and then forming new conjectures 

for the following teaching episode. I present the research team’s meeting structure, goals, and 

timeline in Table 5. 

 

Table 5 

Research Team Meetings  

 Time and Duration   Structure  Goal  

Debriefing  A daily meeting 

after the teaching 

episode for 20–30 

minutes  

1. Self-reflection  

2. Share out 

3. Create a conjecture  

1. Identifying emerging themes 

for the day’s instruction 

2. Creating new conjectures  

3. Creating a written log for data 

Co-planning 

   

A weekly meeting 

before a teaching 

episode for 20–30 

minutes  

1. Revise conjectures 

according to 

observational notes and 

self-reflections 

2. Plan for the next 

teaching episode 

1. Testing and revising 

conjectures  

2. Co-planning for the next 

teaching episodes  

 

For both aspects of the ongoing analysis—debriefing and co-planning—I used Simon’s 

(2000) researcher’s reflection-interaction cycle, presented in Figure 10. According to this 

methodology, I, as a researcher, purposefully reflected on how students learned and how RF and 

FT were impacting their meaning-making. Then I created conjectures about the processes that 

led to meaningful learning, and I went on to test the conjectures to inquire whether the 

conjectures seemed to be supporting the participants. For example, I kept a daily researcher 

journal. I reflected on what went well and what did not go well during each session. I noticed 
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that students were focused on naming the quadratic relationship as quadratic or exponential; 

they were not talking about the attributes of these functions. Thus, in reflecting and talking to the 

research team, we devised a solution to avoid naming functions, and instead to dive into 

attributes of those functions. 

 

Figure 10 

Researcher’s Reflection and Interaction Cycle  

 

 

 

 Note. Generated from Simon’s researcher’s reflection-interaction cycle (2000, p.239). 

 

Debriefings. During the debriefing meetings, the research team first had independent 

writing time, then they shared their writing, and then they planned for the next teaching session. 

The debriefings started with self-reflection writing/sketching time, including probing questions 

and sharing with the team members. The research team was asked to write about emerging 

themes from the day’s instruction—goals, instructional activities, learning processes, and tools in 

the context of FT and representations. The purpose of a writing session was to provide 

opportunities for the research team to generate conjectures regarding what supports students’ 

meaningful understanding of quadratic functions, which was an open process. 

Moreover, during the debriefings, team members reflected on new information they 

noticed about students’ meaningful understanding of quadratic functions. We created new 

conjectures about students’ meaningful learning and then modified, revised, and tested those 

Analysis 

Hypothesis generation  

Model building  

Inquiry  

Hypothesis testing  

Promoting development  
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conjectures with the upcoming teaching episodes. Furthermore, I posed probing questions to the 

research team about things that constituted students’ meaningful learning of functions8. For 

example, in debriefing 1 (debriefing after day 1 of instruction), we reread and articulated the 

probing questions. I will present a probing question and an example response in the following 

figure. For Figure 11, an example of this part of the debriefing, the probing question was: “What 

emerged in today’s instruction (goals, instructional activities, learning process, and tools) from a 

stance of networking theory of FT and representations? Provide a rationale for your claim with 

the time and data.”  

 

Figure 11 

Waleed’s9 Reflection  

 

Note. This figure presents a screenshot taken from one of the research team’s notes about day 1 

instruction. 

Waleed, another member of the research team, wrote:  

Table 1 [Eren and Salim’s group] struggled the orientation of the shape. Once they 

figured out that the paint roller was the height of the triangle, it become easier for them to 

find the relationship between area and height. Looking at a shape with correct orientation 

and identify corresponding sides can help move students forward in their thinking. 

                                                 
8 For the  probing questions, see Appendix D: Written Reflection Rubric 

9 Waleed and Kingsley are graduate students and members of the research team. 
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Although I was the teacher-researcher who would facilitate the whole-group interactions, 

the small groups were shared among the research team, and each of us acted as the teacher-

researcher for a small group during small-group interactions. For instance, Waleed served as the 

teacher-researcher for Salim and Eren’s group throughout the teaching experiment, while 

Kingsley followed Tarik, Mert, and Yener’s learning experiences. The same teacher-researcher 

then wrote reflections for the same group of students throughout the teaching experiment. 

The research team also took observational fieldnotes during each teaching episode. 

Observational fieldnotes were designed to show memorable, critical events—“aha moments”—

concerning both FT and RF. The team members provided data excerpts with timestamps to 

support their claims so that I could refer back to the data during the retrospective analyses. These 

forms were designed to guide the team member to take observation notes, and those notes were 

subsequently used during the retrospective analyses. 

Co-planning. During the co-planning meetings, the team members co-planned a lesson 

designed to support students’ co-emergence of RF and FT. To do this, the research team and I 

analyzed students’ daily handouts and journals to see any evidence of students co-developing RF 

and FT—if so, what was supporting the students’ co-emergence of RF and FT? If not, what 

might support it the next day? 

In co-planning meetings, we either met immediately after the teaching session or prior to 

the next teaching sessions. During the co-planning meeting, we analyzed students’ work by 

looking at their written/drawn artifacts, and then we compared what we had planned and how 

that plan would fit with the students’ needs as we saw things coming up during the sessions. I 

took extended notes and incorporated changes to the revised version of student handouts and 
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instructor versions of the handouts. I made sure the research team had the finalized version of the 

instructor handouts before the teaching sessions.  

I have summarized ongoing analysis in Table 6, including the themes of the debriefing 

and co-planning meetings, and each day’s learning conjecture suggested by the research team. 

For example, in planning for day 2 based on students’ work from day 1, none of the 

students’ work showed that they exhibited a sophisticated understanding of how quantities were 

growing together—how a change in height for each time simultaneously affected the changing 

height (see the themes of ongoing analysis for day 1 on Table 6). In day 2 planning, we 

concluded that if we gave students numerical values for the quantities, they might just focus on 

finding an equation and ignore what those quantities represented (see Table 6 for the learning 

conjecture for the following day: first row and last column of Table 6). 
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Table 6 

A Summary of Ongoing Analysis  

Day Themes of Ongoing Analysis Learning Conjecture for the Following Day 

Day 1 

Focus Question: What 

is the relationship 

between the length of the 

paint roller and the 

amount of the area 

covered? 

 

Linking Representations. Participants created representations (graphs, equations, 

tables) in parallel to indicate the relationship between length; however, there was 

not much articulation of how these two representations are connected.  

Measuring the Magnitude of Length and Height and Creating a Unit to 

Measure Quantities. Asli and Zerrin10 were wondering if the base of the triangle 

and the length of the paint roller is isosceles. Asli was using a piece of white paper 

as a unit of measure to measure the base of the triangle and the length of the paint 

roller. In day one, students focused on identifying quantities of the length, height, 

and area of triangles.  

Naming a Quantity—Debating on Whether naming it the Length of the Paint 

Roller or Height of the Triangle. Students took the time to accept that the length 

of the paint roller was changing. They made a lengthy discussion about how to 

name it, the length of the paint roller, or the height of the triangle. 

Learning Conjecture for Day 2. If we do not use numerical 

values for height and area, students may measure magnitudes 

of these attributes (height and area), and reason with these 

magnitudes. They may realize that the height of the paint 

roller, length of the triangle, and area of the triangle have 

magnitudes, and these magnitudes are changing in relation to 

one other. They may use things to measure, such as they can 

use a piece of paper to measure the magnitudes. Also, 

students may create a graph and make connections among 

length and area representations by identifying quantities and 

creating new quantities (e.g., area). 

Day 2 

Focus Question: What 

is the relationship 

between the length of the 

paint roller and the 

amount of the area 

covered?  

 

 
 

Quadratic Functions Mean Parabola. Students called the paint roller task a half-

quadratic function because it did not have a negative domain. This made me 

wonder whether learning the parabola as the quadratic function graph becomes a 

constraint for students’ meaning of the quadratic function. So, for the participants, 

if the quadratic function does not have the negative domain—the shape of a 

parabola—then it means this function is a half-quadratic function.  

Creating and Connecting Multiple Representations with Unsophisticated 

Understanding. Asli created a unit triangle in measuring and creating the 

quantities. She said she moved the unit triangle on the right and left to measure 

each base. So, she used a paper to measure if the unit triangle has the same base as 

the length of the paint roller. Then she concluded that the length of the paint roller 

(the height of the triangle) and the length of the paint roller’s motion (the base of 

the triangle) had a one-to-one ratio. They grow equally. Then she generalized that 

the area of the triangle was ½ x^2. In another example, Asli created a quadratic 

equation and graphed that equation as an exponential graph and named it. The 

graph has a y-intercept. 𝐴 =
1

2
𝑥2 

Learning Conjecture for Day 3–4. If we let the participants 

engage in a growing rectangle context within a geometric 

sketchpad, they may gain a better understanding of 

quantities. If they see a rectangle is growing in both 

directions—the magic paint roller is growing both directions 

in painting the rectangle—this may push participants to think 

that the relationship between height and length is not similar 

to the relationship between the length and the area. 

Furthermore, if students create a table, a symbolic equation, 

and a graph to present change in the height of the rectangle 

in relation to the change in its area via the geometric 

sketchpad, their reasoning about height and area will become 

sophisticated. Students will use graphs, tables, and diagram 

representations to present the relationship between the height 

and area of a growing rectangle. For instance, Asli may see 

via the geometric sketchpad that the height and area of the 

rectangle are both 0, and this may invoke her to differentiate 

between exponential and quadratic growth 

                                                 
10  All the participants’ names are introduced in Table 4.  
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Day Themes of Ongoing Analysis Learning Conjecture for the Following Day 

Combined Session Day 

3 & 4 

Focus question: How 

does the change in the 

height of a rectangle 

affect change in the area 

if presented on a graph, 

symbolic equation, and a 

table?  

 
 

 

 

Focus question: What is 

the relationship between 

the height of the object 

and the time it takes to 

fall?  

 

 
 

Quadratics Means a Parabola for Students. Students have learned a particular 

way of classifying—exponential, quadratics (not quadratic) linear, or nonlinear—

based on the representations. The quadratic function has to be a parabola, and it 

has to have both positive and negative domains. It has to have both parts of the 

curve. If it only has positive, then that doesn’t make sense. That can’t be 

quadratic. Quadratics means a parabola for students.  

The Relationship between Height and Length is more Accessible than the 

Relationship between Height and Area. Students have more sophistication on 

seeing coordination of values between height and length, but their reasoning 

between height and area is still a gross coordination of values. For instance, Tarik: 

“For every 1 cm the height increases the length increases by 2 cm.” Mert: “The 

height increases by one. Therefore, as the length increasing by two, while height 

increases by one, that makes the area larger.” 

Linking two Representations’ Graph and Table may not Impact 

Covariational Reasoning. Students’ use of reasoning about height and area may 

not develop in parallel with the use of multiple representations. For instance, we 

see the reasoning combined with a table and equation, but students still employ 

vague reasoning about quantities. In this situation, there is no attempt to make a 

connection between the table and the graph.  

Learning11 Conjecture about How to Get Students to 

Move Away from Naming Functions and Focus on 

Characteristics of Functions.  Focusing on characteristics 

of quadratic functions and moving away from naming the 

functions via an activity: I will ask participants to write all 

the function names they know on a piece of paper, then 

throw that paper in the trash. Then I will tell them from now 

on, they cannot use any of the functions’ names they know 

of, but they can use attributes of those functions to talk about 

them. Also, they can rename the functions based on the 

characteristics they see in the situations. The goal of this 

activity is to push students away from the naming of 

relationships between quantities as quadratic or exponential 

and focus more on attributes of the growth. 

 

Learning Conjecture for Falling Object Task (Day 5–6). 

If we encourage students to notice the quantities—the height 

of the falling object and the time it takes to fall—on the 

image, which is similar to the actual graph of the height and 

the time, this may invoke a sophisticated understanding of 

what it means to have a vertex. Furthermore, if we get 

students to create a representation (this will be students’ 

choice) and then sketch a graph to represent, then they may 

develop a meaningful understanding of quadratic functions. 

The image of the falling object task is a good example to talk 

about a vertex of a quadratic function. Overall, in teaching 

episodes 4 and 5, students will be supported to identify the 

quantities in the falling object situation and represent the 

relationships among the quantities. And they may understand 

that the quantities (height, time, and range) are measurable. 

Students will develop a sophisticated understanding of 

quadratics by characterizing the connection between tables, 

graphs, and symbolic equations, while reasoning about the 

relationship between the height and the time in the falling 

object task. 

 

 

                                                 
11 This learning conjecture was employed for the rest of the teaching episodes, Days 5–8  
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Day Themes of Ongoing Analysis Learning Conjecture for the Following Day 

Combined Sessions Day 

5 & 6 

Focus question: What is 

the relationship between 

the height of the object 

and the time it takes to 

fall?  

 
Focus Question: How is 

the relationship between 

the height and the time 

will be similar or 

different on the table, 

symbolic equation, or on 

a graph?  

In the Falling Object Task, for Students, the Path of the Ball is a Graph of 

the Height of the Ball and the Time it Takes to Fall. It seems that the falling 

object task naturally lands on quadratic functions, as it starts with a visual, which 

is similar to the graph of a quadratic function. Yener employed chunky continuous 

covariational reasoning on the falling object task. He was quick to reason via a 

table. I have noticed instances where students engaged in correspondence and 

chunky covariational reasoning, but they were not sure how this reasoning would 

help them to create a vertex form of the equation. Students spent ample time 

looking for a symbolic equation, which made me wonder if the symbolic equation 

is the most efficient way for students to talk about functions.   

Attributes of Students’ Exploration of Quadratic Functions that Come out of 

the Falling Object Task: (a) The vertex of the quadratic function in the falling 

object task is the maximum height the function can go; (b) variable versus 

unknown or coefficient of the quadratic functions; (c) articulating about the y-

intercept of quadratic functions in the falling object situation; (d) the rate of 

change of a rate of change is constant; (e) articulating coefficients of the quadratic 

functions concerning quantities; and (f) articulating about the symmetrical nature 

of quadratic functions on both tables and graphs.   

Learning Conjecture for Day 7. To push students to see 

how an exponential function has a y-intercept which cannot 

pass through the origin, and that is one way to differentiate it 

from quadratic functions, “which one does not belong” can 

be a good activity to evoke this understanding.  

Which One Does not Belong (WODB). Make a WODB 

activity presenting the three tasks (growing rectangle, 

triangle, and falling object) that the students already worked 

on, then add one exponential graph, and ask students to share 

why one of these figures does not belong here. In other 

words, asking students to point out a figure that does not 

belong, thereby explaining what the other three have in 

common.  

 Furthermore, if each group presents the attributes of each 

situation and why they belong to this figure, while a single 

group is showing the other group by comparing and 

contrasting with the characteristics they have come up with, 

this may create learning opportunities for all.   

Some of the students were not there for all the tasks; we 

decided that asking students to remember the attributes of 

each task and how all the tasks were related to each other 

might provide learning opportunities through peer 

interaction. 

 

 

Combined Sessions Day 

7 & 8  

Day 7–8 WODB 

 
Focus Questions: How 

the quantitative 

relationships are similar 

or different for each task 

on a graph?    

 

Meaning of Positive Domain in Relation the Length—a Quantity. There were 

discussions on why a graph of each situation starts on the first quadrant. And 

students talked about having a positive domain, and whether a quantity can be 

negative, and if the shape D cannot present quantities the same because it already 

has the quadrant, which means it is not a parabola. They used the word “double” 

to refer to the fact that each situation might have a parabola if they could have the 

length as negative.  

 

Learning Conjecture for Future Studies. One of the 

characteristic features across the teaching episodes is that 

students get to reason, identify, and convince their peers that 

the quantities are changing together before they make 

connections or translations among and with quantities—

understanding what the changes look like on a table, graph 

or diagram. This reasoning may be chunky continuous 

covariation or coordination of values, but it may still push 

students’ meaning-making within representations. In this 

pilot study, I learned that introductions to the tasks at the 

beginning provided ample number of participants support to 

identify quantities, and the relationship between quantities, 

forming an important foundation for students’ 

representational fluency.   
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Day Themes of Ongoing Analysis Learning Conjecture for the Following Day 

Day 1 

Focus Question: What 

is the relationship 

between the length of the 

paint roller and the 

amount of the area 

covered? 

 

Linking Representations. Participants created representations (graphs, equations, 

tables) in parallel to indicate the relationship between length; however, there was 

not much articulation of how these two representations are connected.  

Measuring the Magnitude of Length and Height and Creating a Unit to 

Measure Quantities. Asli and Zerrin12 were wondering if the base of the triangle 

and the length of the paint roller is isosceles. Asli was using a piece of white paper 

as a unit of measure to measure the base of the triangle and the length of the paint 

roller. In day one, students focused on identifying quantities of the length, height, 

and area of triangles.  

Naming a Quantity—Debating on Whether naming it the Length of the Paint 

Roller or Height of the Triangle. Students took the time to accept that the length 

of the paint roller was changing. They made a lengthy discussion about how to 

name it, the length of the paint roller, or the height of the triangle. 

Learning Conjecture for Day 2. If we do not use numerical 

values for height and area, students may measure magnitudes 

of these attributes (height and area), and reason with these 

magnitudes. They may realize that the height of the paint 

roller, length of the triangle, and area of the triangle have 

magnitudes, and these magnitudes are changing in relation to 

one other. They may use things to measure, such as they can 

use a piece of paper to measure the magnitudes. Also, 

students may create a graph and make connections among 

length and area representations by identifying quantities and 

creating new quantities (e.g., area). 

Day 2 

Focus Question: What 

is the relationship 

between the length of the 

paint roller and the 

amount of the area 

covered?  

 

 
 

Quadratic Functions Mean Parabola. Students called the paint roller task a half-

quadratic function because it did not have a negative domain. This made me 

wonder whether learning the parabola as the quadratic function graph becomes a 

constraint for students’ meaning of the quadratic function. So, for the participants, 

if the quadratic function does not have the negative domain—the shape of a 

parabola—then it means this function is a half-quadratic function.  

Creating and Connecting Multiple Representations with Unsophisticated 

Understanding. Asli created a unit triangle in measuring and creating the 

quantities. She said she moved the unit triangle on the right and left to measure 

each base. So, she used a paper to measure if the unit triangle has the same base as 

the length of the paint roller. Then she concluded that the length of the paint roller 

(the height of the triangle) and the length of the paint roller’s motion (the base of 

the triangle) had a one-to-one ratio. They grow equally. Then she generalized that 

the area of the triangle was ½ x^2. In another example, Asli created a quadratic 

equation and graphed that equation as an exponential graph and named it. The 

graph has a y-intercept. 𝐴 =
1

2
𝑥2 

Learning Conjecture for Day 3–4. If we let the participants 

engage in a growing rectangle context within a geometric 

sketchpad, they may gain a better understanding of 

quantities. If they see a rectangle is growing in both 

directions—the magic paint roller is growing both directions 

in painting the rectangle—this may push participants to think 

that the relationship between height and length is not similar 

to the relationship between the length and the area. 

Furthermore, if students create a table, a symbolic equation, 

and a graph to present change in the height of the rectangle 

in relation to the change in its area via the geometric 

sketchpad, their reasoning about height and area will become 

sophisticated. Students will use graphs, tables, and diagram 

representations to present the relationship between the height 

and area of a growing rectangle. For instance, Asli may see 

via the geometric sketchpad that the height and area of the 

rectangle are both 0, and this may invoke her to differentiate 

between exponential and quadratic growth 

                                                 
12  All the participants’ names are introduced in Table 4.  
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In summary, the ongoing analysis using the researcher’s reflection-interaction cycle 

(Simon, 2000) and involved both debriefings and co-planning sessions with the research team. 

During the debriefings, the research team reflected on the teaching sessions, whether the 

implementation of purposefully designed tasks was making use of multiple representations, 

connection between them, and quantitative reasoning accessible to the students. I invited each 

member of the team to interpret events that happened during the teaching episodes and whether 

or not these events may have contributed to students’ meaningful learning. The reflections 

became a log of data which I could look back on to identify what supported students’ RF and FT 

during retrospective analysis. During the co-planning sessions, the research team co-planned a 

lesson for the next teaching episode by analyzing students’ handouts and journals to ascertain a 

sense of what might support students’ meaningful understanding of quadratic functions. 

Retrospective Analyses  

After the teaching experiment, I conducted retrospective analyses, taking the data into 

account: lesson plans, the audio recordings of planning meetings, the audio recordings of daily 

analysis of students’ work, the video recordings of small-group and whole-class instructions, 

written reflections, and students’ journals and handouts. All audio and video recordings were 

turned into enhanced transcripts. I summarize research question 1 and 2 with the corresponding 

data in Table 7.  
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Table 7 

 Research Questions and Corresponding Data 

Research 

Question  

How do Turkish-American Muslim students’ RF 

and FT co-develop as they develop a meaningful 

understanding of quadratic function in the 

context of a small-scale teaching experiment in 

an after-school setting? 

What is the nature of students’ co-emergence 

of RF and FT as secondary school students 

develop a meaningful understanding of 

quadratic functions? 

Data 

Type  

Lesson plans  

Video recordings of small-group and whole-

class instructions  

Written reflections  

Students’ journal and handouts  

Students’ journals  

Students’ handouts  

Video recordings of small-group and whole-

class instructions  

 

In looking for ways ensure data was more manageable for coding, I selected two to three 

small groups of students for analysis. These are my selection categories for these groups of 

students:  

 good class attendance—those who were present during all teaching episodes, and pre-

interviews;  

 gender—the groups that were representative of each gender; 

 location—the groups that were comprised of those who were coming from both urban 

and suburban schools; 

 articulation abilities—the groups included students who did articulate their thinking 

processes; and  

 visuals—the groups included students who were using visuals to represent their 

thinking.  

Based on the demographics of the participants introduced in Table 4, coupled with the 

selection categories listed above, I selected small groups which included Mert, Asli, Yener, 

Tarik, Eren, and Salim on which to conduct retrospective analyses. I represent the number of 

students who were present each day in Table 8.  
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Table 8 

Group Members and Number of Students Who Were Present During Each Teaching Episode  

Groups  TE1 (n=6) TE2 (n=4) TE3 (n=6) TE4 (n=5) TE5 (n=8) TE6 (n=8) TE7 (n=8) TE8 (n=8) 

Group 1  Asli 

Bahar 

N/A Asli 

Yener  

N/A Asli 

Bahar 

Zerrin 

Asli 

Bahar 

Zerrin 

Asli 

Bahar 

Zerrin 

Asli 

Bahar 

Zerrin 

Group 2 Salim 

Eren 

Mert  

Salim 

Salim  

Eren 

Mert 

Tarik 

Ekrem 

Tarik 

Yener 

Mert 

Tarik 

Yener 

Mert 

Tarik 

Yener 

Mert 

Tarik 

Yener 

Mert 

Group 3 Mert 

Tarik 

Asli 

Yener 

Mert 

Tarik 

Asli 

Yener 

Eren 

Salim 

N/A Eren 

Salim 

Eren 

Salim 

Note. TE1 stands for teaching episode 1, and the small “n” stands for the number of students who 

were present during TE1.  

 

Unit of analysis for answering Research Questions 1 and 2. Overall, the unit of 

analysis I used was the students’ approaches and reasoning; students’ discursive activities would 

be depicted as data. Table 9 illustrates an example of a fine-grained level of analysis. A single 

unit of analysis may consist of a line or two of students’ dialogue, written work, or a 

representation, depending on the students’ creation, interpretation, connection, reasoning, and 

translation of functions and concepts. This unit of analysis was chosen to help researchers 

measure the students’ thinking about the process. With this table, I intend to give readers a 

clearer, more accurate sense of what my analyses look like and why or how those analyses might 

differ based on the data.  
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Table 9 

Coding Example for Unit of Analysis 

Coding with FT Raw Data Coding with 

RF 

Unit of 

Analysis 

Coder’s Note 

Correspondence 

reasoning 

Nicole: Are you 

looking here at this 

diagram? 

Student C: Mhmm. 

Nicole: What will the 

area be in this one? 

Student C: Eighteen, 

I mean, eight. 

Interpreting 

the diagram  

Four lines of 

transcript  

Interpreting the diagram by 

counting the height and the area 

of the triangle; Student C looks 

at the diagram and counts the 

length and area of the rectangle 

while he corresponds that length 

is two and the area is eight.  

Coordinating the 

change in the height 

with the area  

Student C: So, it’s 

going up to eight. So 

now it’s one going 

up two, and two goes 

up eight, and 

continues.  

 
[Student C plots the 

points (2,8) and 

(3,18). He then 

connects all three 

points with a line.] 

Creating a 

graph while 

interpreting 

the diagram.  

Two lines of 

the transcript 

and a graph  

Creating a graph to represent the 

relationship between height and 

area. The line looks like a curve 

but the student is not very sure 

how this is different than the line 

he drew for height and length. 

The line has an arrow on the end 

which means the growth in area 

and the height keep increasing. 

NOTE: he is using two 

representations in parallel; he 

uses the diagram and the graph 

as parallel representations.   

Note. The data in the table is taken from an unpublished study Dr. Fonger and I conducted in 

2018–2019 (Fonger & Altindis, 2019). 

 

The Rationale for the Method of Analysis. It is worth noting that this study takes the 

reflexivity stance; neither a psychological process nor a sociological process is dominating the 

other in the analysis processes (Cobb & Whitenack, 1996). As noted by Cobb and Whitenack 

(1996), there is “a reflexive relationship between the children’s mathematical activity and the 

social relationships they established” (p. 223). Cobb and Whitenack intended “to develop an 
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interpretative perspective on a small group activity that brings both psychological and 

sociological to the fore” (1996, p. 223). This lens made it possible to analyze students’ individual 

representational and functional activities and social relationships in small- and whole-group 

settings. Because students’ RF might be constrained by how a small group of students interacts 

with one another, in certain situations, students might be satisfied with a single representation 

and decide not to create, connect and translate among multiple representations.  

I conducted three rounds of analyses: (a) initial analysis, which includes only phase one; 

(b) episode-by-episode analysis, which includes phases two, three, and four, and (c) analysis of 

analyses, including phases five and six.  

In the initial analysis, using phase one, I identified regularities in participants’ 

interactions in small- and whole-group settings by creating enhanced transcripts of video and 

audio recordings, as well as extended memos. In the episode-by-episode analysis, I created the 

initial coding schema by coding the enhanced transcriptions of day 1 to day 8 using phase two. 

Then I re-coded to refute or agree with the codes or form the top-level codes—an emergent 

coding schema—using phase three. I then formed a developed coding schema—a learning-

ecology framework—using phase four. In the analysis of analyses, I coded using the 

predetermined analytical frameworks of RF and FT—using phase five. Then I identified shifts in 

students’ understanding of quadratic functions in relation to the supports students received 

during the teaching experiment and verified the learning-ecology framework with a guest coder 

by coding 25% of the data using phase six. I provide a table showing rounds of analyses with 

corresponding outcomes in Table 10. Next, I will elaborate each of the six phases of analysis. 
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Table 10 

An Overview Table of the Method of Analysis  

 Initial Analysis Episode-by-Episode Analysis Analysis of Analyses 

Phase  Phase one. Identifying 

regularities and patterns 

in participants’ and 

teachers’ interactions in 

small-group and whole-

class interactions.  

 

Phase two. Creating an initial 

coding schema. 

Phase three. Creating an 

emergent coding schema.  

Phase four. Creating a 

developed coding schema—a 

learning-ecology framework 

Phase five. Coding within analytical 

frameworks—RF and covariational 

reasoning.  

Phase six. Identifying shifts in students’ 

understanding of quadratic functions, and 

coding with a guest coder within the 

learning-ecology framework.   

Outcome  1. Enhanced transcripts 

of video and audio 

recordings  

2. Extended Memos  

1. An initial coding schema 

2. An emergent coding 

schema 

3. A learning-ecology 

framework 

1. Coding within a predetermined 

framework  

2. Coding within the learning-ecology 

framework 

3. Verifying the learning-ecology 

framework   

 

Initial Analysis: Identifying Regularities and Patterns in Participants’ and Teacher-

Researchers’ Interaction in Small and Whole Groups Using Phase One. Initial analysis 

included phase one, where I created enhanced transcriptions of small- and whole-group 

interactions and extended memos. 

Phase one. In phase one, I identified regularities and patterns in small- and whole-group 

interactions by creating enhanced transcripts and writing extended memos. I followed 

chronological order—transcribing from day 1 to day 8. Transcriptions included several 

processes. The first was rough transcription by a software; I used advanced speech recognition 

software Temi (https://www.temi.com/). Secondly, I cleaned up the targeted group’s talk by 

running several rounds of watching, listening to the video, and comparing the oral with written 

text. I finalized the transcription by a final round of watching the video and comparing the 

transcriptions. I enhanced the transcriptions with triangulations (Bogden & Biklen, 2016), and 

matched lesson plans, transcriptions of audio recordings of planning meetings, audio recordings 

of daily analysis of students’ work, video recordings of the small-group and whole-class 

https://www.temi.com/
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instructions, and written reflections with corresponding teaching episodes. I also created 

extended memos.  

Extended Memo Writing in Phase One. In my analysis for this study, I followed 

Saldana’s (2009) method of free-writing memos and kept a researcher journal to create memos 

whenever I found it necessary. My memo-writing process began before coding; at that stage, I 

reflected on students’ development of meaningful learning through flexibility in both 

representations and FT. Once I recorded a memo, I added a title to denote what story I wanted to 

tell with that memo, and then I added the memo to the data. I added a rationale section for each 

memo that relates it to the overarching goal, characterizing the co-emergence nature of students’ 

RF and FT.  

In both the process of transcriptions and enhancing, I have written memos. In each 

memo, I used a title that might or might not indicate a code or category for further analysis. In 

addition to that, I recorded a timestamp for each section of the memo and highlighted the time 

stamp. I have organized this information in Table 11.  

In sum, the initial analysis included phase one, where I identified regularities and patterns 

in participants’ and teacher-researcher’ interactions in small groups. And I created enhanced 

transcripts of video and audio recordings and extended memos.  
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Table 11 

A Sample Organization of Memos for Initial Analysis, Phase One   

Title of Code or 

Category 

Data Source Time  Note 

Encouraging 

students to create 

multiple 

representations can 

be classified as 

support 

TE_D2_Asli

_Yener 

12–15 

minutes  

At the beginning of this conversation, Asli’s thinking was vague, 

and Nigar asked Asli to sketch a diagram.  Then, based on the 

sketch, Asli created a table. After the process of creating the 

drawing and table, her articulation about the length of the paint 

roller and the area covered became solid. 

Peers teaching and 

learning 

TE_D2_Asli

_Yener 

3–5 

minutes 

Yener was not present on day 1; he came for day 2. That means it 

was the first time for Yener to see the paint roller task. So, NA 

asked Asli to explain the task to Yener. This was encouraging Asli 

to articulate what the task is. In explaining the task, Asli gave him 

an overview of what she thinks of the task. Such interactions might 

be promising for future analyses. In other words, asking Asli to 

explain the task to Yener is a way of positioning Asli as competent 

and creating a collaboration for future interactions.    

 

Episode-by-Episode Analysis: Developing a Learning-Ecology Framework Using 

Phases Two, Three, and Four. To create a developed coding schema, I conducted phases two, 

three and four. In phase two, I created an initial coding schema by coding the enhanced 

transcriptions of the small- and whole-group interactions. In phase three, I narrated the coding 

segments by refuting, revising, and redefining the codes from the initial coding schema 

(developed in phase two) to form an emergent coding schema (developed phase three). Finally, 

in phase four, I redefined, refuted, and revisited the categories of the emergent coding schema to 

form a developed coding schema (i.e., a learning-ecology framework).  

Phase two: Creating an Initial Coding Schema. During this phase, I coded the 

enhanced transcriptions of small- and whole-group interactions that I had created in phase one. I 

coded the enhanced transcriptions in chronological order, from day 1 to day 8. In this process, I 

created an initial coding schema to verify it by re-coding and narrating the coded segments. I 

have extended the “narration” of the code and the code’s definition so that the framework better 
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captured the data. I made two kinds of changes regarding re-coding and narrating the coded 

segments: coded segments may have been changed to different codes, and the initial coding 

schema was updated. The narration process helped me develop and refine the definitions and 

descriptions of the codes. For instance, there were initially two codes: asking students to be 

specific and asking students for further explanations; after narrating and defining, I combined 

these codes.  

Delineation of How Subcodes Were Created. Some of the subcodes were generated from 

the extended memos and the researchers’ journals. For instance, asking questions to visualize or 

sketch was the theme of a memo related to teacher-researcher promoting actions. And asking 

students to visualize and sketch become a subcode. I also used the design elements as subcodes. 

After creating the initial coding schema, I created subcodes from the design elements and 

regularities and patterns identified during initial analysis.  

 Co-occurrence in the Data. A single sentence, or multiple sentences, can be coded with 

several codes, which means codes may overlap. In other words, I get to code a single sentence 

with several codes. For example, I have coded this sentence as a quadratic equation, as well as 

identifying quantities, and also making sense of peers thinking: “Look, look, that is x [length of 

the rectangle] and this x+2 [height of the rectangle], then height times length, x squared plus 2x. 

Bu [this is] quadratic.” In this example, students identified quantities, created a new quantity—

area—then created a symbolic equation; and all these are happening in small-group interactions.  

Phase Three: Creating an Emergent Coding Schema with the Process of Revising, 

Redefining, or Refuting Initial Chronological Categories. In creating an emergent coding 

schema, I redefined some of the codes, narrated coded segments, added new subcodes under the 

top-level codes, and refuted some of the existing codes. For instance, a top-level code, teacher-
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researcher prompts and moves did not have a code that defined probing for continuous 

covariational reasoning. Probing for continuous covariational reasoning defines instances 

where researchers ask questions or make a pedagogical move in supporting students’ continuous 

covariational reasoning. In developing the coding schema in phase three, I added the code, 

probing for continuous covariational reasoning to the initial coding schema. I also redefined 

some of the codes by adding subcodes underneath. For instance, the code in the initial coding 

schema was clarification-asking for clarification; however, in this code, there are instances 

wherein the researcher asks for attributes of functions, so I added a new subcode called 

encouraging to focus attributes. Encouraging to focus attributes defines cases in which 

researchers encouraged students to focus on attributes of the function rather than naming the 

function as quadratic or exponential. Lastly, I refuted some of the existing codes; for example, 

identifying quantities in growing rectangle situations. Identifying quantities in growing rectangle 

situations code described that students were identifying quantities only in a growing rectangle 

situation. This code overlapped with identifying quantities, which describes instances where 

students identify quantities in any case. So, I refuted the code identifying quantities in growing 

rectangle situations in the process of creating an emergent coding schema.  

Investigating what supported students’ meaningful understanding of quadratic functions 

required me as a researcher to look across codes and categories informing emergent coding 

schema (Cobb & Whitenack, 1996; Glaser & Strauss 1967). I coded and narrated what supported 

students’ learning of quadratic functions. That means I looked across the codes and categories on 

the topic of learning, and then I compared my findings to the codes and categories on the topic of 

teaching. With the process of redefining, refuting, and revising the existing codes, I formed an 

emergent coding schema.  
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Phase Four: Creating a Developed Coding Schema—a Learning-Ecology 

Framework. Using the emergent coding schema (developed as an outcome of phase three), I 

revisited and coded the teaching experiment data and small-group and whole-class interactions to 

explore what supported or constrained students’ meaningful understanding of quadratic 

functions. Then I revised, redefined, or refuted the chronological emergent categories. To form 

the main categories for a learning-ecology framework with axial coding (Strauss, 1987), I further 

revised, redefined, and refuted top-level codes by looking for similarities and intersections 

among codes. In other words, I looked at how the categories in the emergent coding schema were 

related to the concept of supporting students’ meaningful understanding of quadratic functions.  

For instance, for the code focus question, the term focus question is coding for 

researchers using prompts for focus questions in small-group interaction, for facilitating whole-

group interaction around the focus question, for forming questions to serve as a foundation for 

the focus questions in students’ handouts, and for answering focus question in the journal. I have 

noticed conflict between making focus question the main category or making it a subcategory 

under other categories. To decide, I revisited each emergent category to merge, refute, or 

redefine it. To develop the main categories of a learning ecology that supported a meaningful 

understanding of quadratic functions, I explored the leading codes’ chain. I then exported the 

coded segment to a word document. I then interpreted each of the coded pieces to see whether it 

fit or refuted the top-level code. For instance, agree-disagree is a subcode categorized under the 

main category orienting students thinking one another. To include a code in a category, I 

interpreted each coded segment, answering how the subcode serves the main category and why 

this a good fit for such categorization.  
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In sum, with the episode-by-episode round of coding, I created an initial coding schema 

(phase two), an emergent coding schema (phase three), and then the developed coding schema 

(phase four). I also described and narrated the codes. Through the process of creating an initial 

coding schema, emergent coding schema, and developed coding schema, the episode-by-episode 

analysis yields a learning-ecology framework.  

Analysis of Analyses: Coding the Predetermined Framework and Verifying the 

Learning-Ecology Framework Using Phase Five and Six. In phase five, I coded in terms of 

the analytical frameworks—RF and FT. In phase six, to verify the learning-ecology framework, I 

identified shifts in students’ understanding of quadratic functions in relation to the supports the 

students received during the teaching experiment. I invited a guest coder to code 25% of the 

enhanced transcription of the small- and whole-group interactions. We set coders’ agreements. 

The agreements proved that the learning-ecology framework supported students in the identified 

shifts in understanding.  

Phase Five: Coding with Predetermined Frameworks. In phase five, I coded with 

predetermined frameworks: RF (Fonger, 2019) and FT—covariational reasoning (Thompson & 

Carlson, 2017) and correspondence reasoning (Confrey & Smith 1994). I coded the data with RF 

and FT frameworks to see whether the main categories came from these frameworks’ overlap 

with one another. I coded with the two frameworks—RF and FT—in random order. To do this, I 

divided the data into small chunks, separating them by representation (e.g., tables) and coded 

them in random order. First, I coded for RF, then selected another excerpt and coded that group 

of data with FT. Randomly choosing portions to code during phase five ensured that the data did 

not arrive in sequential order, so that I had less bias in seeing how these two theoretical 
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frameworks might overlap or how they might differ in characterizing the co-emergence of 

students’ RF and FT.  

Phase Six: Verifying the Learning-Ecology Framework. I coded with the learning-

ecology framework, and verified the learning-ecology framework by identifying shifts in 

students’ RF and FT and establishing coders’ agreements by having a guest coder code 25% of 

the data set. 

Identifying Shifts in Students’ RF and FT. I have identified four shifts in students’ RF 

and FT in total, one shift per student. In the process of identifying these shifts, I listed types of 

reasoning about quantities for each participant, from less-sophisticated reasoning to more 

significant, sophisticated reasoning. I color-coded each participant’s name and where they 

engaged in levels of covariational reasoning. Then I counted the amount of each participant’s 

reasoning—in that the covariational framework levels quantify how many times each participant 

engaged in each type of reasoning. Based on the quantification, I created a table to show the 

different kinds of reasoning and how many times each participant engaged in each.  

Based on each participant’s number of levels in covariational reasoning (Table 12), I 

selected the participants who had multiple instances of reasoning across levels. For instance, 

Yener, Mert, and Eren had four levels of reasoning, and Asli had three levels of reasoning, while 

Zerrin and Tarik had two levels of reasoning and Salim had one level of reasoning. Hence, I 

chose for this phase to focus on Yener, Asli, Mert, and Eren. I have selected these four students 

because they were consistent with movement from lesser sophisticated reasoning to greater 

sophisticated reasoning. To further focus the analysis, I looked for variation in the kinds of 

reasoning these four participants exhibited each day. Along with looking for variation in 

covariational reasoning, I identified several shifts in the students’ RF.   
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Table 12 

The Participants’ Covariational Reasoning 

 Chunky Continuous 

Covariation  

Chunky Continuous 

Second Covariation—the 

change in change 

Coordination 

of Values 

Gross 

Coordination of 

Values  

Yener 9 10 25 10 

Mert  2 1 6 39 

Asli  1 N/A 6 7 

Tarik 1 N/A N/A 11 

Zerrin  N/A N/A 1 4 

Eren 4 1 6 21 

Salim N/A N/A N/A 15 

Note. Table 12 presents the participants’ names and the number of times they each engaged in 

the various kinds of reasoning they employed throughout the teaching experiment.  

I explored students’ FT and RF shifts by breaking the enhanced transcripts into chunks, 

starting with the lines before the less-sophisticated reasoning and moving to lines with more 

significant sophisticated reasoning. For instance, I looked at the lines coded with gross 

coordination of values and then moved to a chunky continuous variation of values and RF. I 

identified participants who showed up at both levels. For example, Yener had both gross 

covariational reasoning FT and transposition—RF (line 33 on the transcript) and chunky 

continuous covariational reasoning with multidirectional connections—RF (line 108 on the same 

transcript). Then I invited a guest coder to code the enhanced transcriptions to reflect the 

emergent learning-ecology categories—the supports—and whether the existing categories were 

there prior to, during, and/or after Yener’s shift in thinking took place. 

Establishing Coders’ Agreement. With the guest coder, we verified the learning-ecology 

framework by coding with the learning-ecology framework separately and setting a coder 

agreement. We coded 25% of the enhanced transcription of small-whole data sets in particular. 

We focused on either of the developed main categories of the learning ecology prior to, during, 
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and after the identified shift took place. In other words, we verified the learning-ecology 

framework by comparing the identified shifts in students’ reasoning and looking for instructional 

support relative to those shifts. And then we reconciled the coding decisions by working together 

to ask questions, highlight what was common and what was uncommon in the codes, and provide 

evidence for the codes.  

We looked into disagreements among the codes, when the actual codes conflicted with 

each other, and tried to reconcile those disagreements. When this happened, we set a coder 

agreement by redefining the code together. When we redefined the codes, we also extended the 

code definition to ensure that the code defined a broad meaning. In other words, we either 

developed the descriptions of the codes, or we clarified our definitions by rewriting them. When 

making definition changes, we revisited all the coded segments on that category to make sure 

that the coded segment matched with the updated definition. We strengthened and verified the 

learning-ecology framework by talking through and establishing these coders’ agreements.  

To sum up the retrospective analysis portion of the study, I used Cobb and Whitenack’s 

(1996) techniques, which drew from Glaser and Strauss's (1967) constant comparison method.  

After three rounds of analyses: initial analysis, episode-by-episode analysis, and analysis of 

analyses—I established a verified learning-ecology framework and a characterization of 

students’ development of RF and FT. 

Trustworthiness 

The practices I used to maintain the trustworthiness for this study included reporting 

phases of analysis, and conducting and establishing a coder’s agreement. Requiring researchers 

to report the process of analysis in each phase is a well-detailed technique to ensure 

trustworthiness in design studies (Cobb et al. 2017). With that in mind, I reported all the phases 
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of the data analysis process systematically, along with the corresponding evidence from the data 

and the learning conjectures the researchers made about students’ co-development of RF and FT. 

The ultimate way to establish trustworthiness of analysis is inviting a guest coder and setting a 

reconciling coding agreement among coders. This was established in retrospective analysis phase 

6. 

Chapter Summary 

In chapter 4, I articulated the use of a design-based methodology for this study to test and 

investigate the development of learning processes (Brown, 1992; Cobb et al., 2017). I articulated 

how the design conjectures were informed by the affordances and influences of networking the 

theories of quantitative reasoning (Thompson, 1994) and representations (Kaput, 1987b) (e.g., 

getting students to present the models of quantities in their minds via concrete representations). I 

provided the details and context of the small-scale teaching experiment and the research team.  

I detailed my method of analysis in answering the research questions. There were two 

types of analysis. Ongoing analysis took place between teaching episodes. For retrospective 

analysis, I conducted several rounds of analyses. To answer research question one, I used the 

Cobb and Whitenack (1996) method of analyzing data; they used Glaser and Strauss’s (1967) 

constant comparison method to analyze data sets from small- and whole-class interactions. To 

answer research question two, I networked two analytical frameworks as lenses for analyzing 

(Simon, 2000) using RF (Fonger, 2019) and FT—covariational reasoning (Thompson & Carlson, 

2017) and correspondence reasoning (Confrey & Smith, 1994). I finished this chapter by 

detailing he trustworthiness of this study.  
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Chapter 5—Results and Findings 

In this chapter, I present my findings by addressing the following research questions:  

1. What is the nature of the co-emergence of representational fluency and functional 

thinking among secondary school students as they develop a meaningful 

understanding of quadratic functions?  

2.  How can secondary school students be supported to develop a meaningful 

understanding of quadratic functions?   

This chapter includes two parts. In the first part, I characterize the co-emergence of RF 

and FT among students for each representation (a table, a graph and a symbolic equation), and 

across multiple representations, as they created and connected representations to present 

quantitative relationships of quadratic functions. In the second part, I define and verify a 

learning-ecology framework that articulates supports for students’ meaningful understanding of 

quadratic functions.  

Part 1: Characterizing Students’ Co-emergence of RF and FT in Learning About 

Quadratic Function 

Recall research question one: What is the nature of the co-emergence of RF and FT 

among secondary school students as they develop a meaningful understanding of quadratic 

functions? In response to my research question one, I in this section, I articulate two main 

findings. First, I report the results and findings that emphasized ways to characterize students’ 

reasoning about quantities and quantitative relationships on each of these representations: a table, 

a graph, and a symbolic equation. Second, I operationalize students’ co-emergence of RF and FT 

into four levels, based on students’ ability to create and connect multiple representations of 

quantitative relationships. 



95 
 

 
 

Finding 1: Students’ Reasoning about Quantities in Concrete Representations  

For students’ reasoning about quantities in concrete representations I found two types of 

thinking: lateral thinking and static thinking. Lateral thinking is the co-development of RF and 

FT. Static thinking, on the other hand, is the disconnection of RF and FT. A disconnection 

between RF and FT is defined as instances where students create representations without 

realizing that the representations present covarying quantitative relationships. In another words, 

with static thinking, students are able to solve the problem using representations, but they 

conceive the representations as objects.  I define and exemplify both types of thinking in the 

following section by focusing on each of the main representations. I start with the table 

representation, then later move to the graph and symbolic representations. 

Students’ Reasoning About Quantities Within Table Representations. Students’ 

thinking about quantities within the table representation entailed two types of reasoning: tabular 

static thinking and tabular lateral thinking. Broadly speaking, tabular static thinking is when 

students create a table based on a symbolic equation or learned facts without attention to what 

that table represents.  As I define in this study, lateral thinking is a creative way of thinking or 

reasoning about covarying quantities to solve a problem using concrete representations, which 

includes conceiving of quantities as covarying quantities on a table. An overview of these 

characterizations is given in Table 13; in the following sections I elaborate each construct in turn, 

with examples of the two types of reasoning for each.  
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Table 13 

Overview of Students’ Reasoning About Quantities Within Table Representations  

Tabular Static Thinking Tabular Lateral Thinking 

(1)  Sets of learned rules about quantities 

without coordination  

(2) Points on the table as a string of 

numbers 

(1) Determining the vertex of a quadratic function 

by conceiving quantities as covarying 

quantities on a table  

(2) Recognizing that quantitative relationships can 

be generalizable as well as interchangeable 

 

Tabular Static Thinking. Students’ tabular static thinking entails two forms of lesser 

sophisticated reasoning about quantities: sets of learned rules about quantities without 

coordination, and points as a string of numbers.   

The first way that students approach a table with tabular static thinking is through a set of 

learned rules. In this way of reasoning, students are employing a learned fact to create a table to 

present quantities and the relationships between them, but they are conceiving of the quantities 

only as string of numbers with units. In other words, tabular static thinking is about applying a 

particular rule to find what should be the next pairs of numbers on a table. 

With tabular static thinking, the quantities are not understood to be covarying; rather, 

students use a quantity to find the corresponding quantity by applying a set of learned facts or 

formulas.  

The below vignette is taken from Mert and Salim’s small-group interactions, when they 

were exploring the relationship between the length of the paint roller and the amount of the area 

it covered. Consider the paint roller task and the following vignette:  

1 Mert: Relationship between the length of the paint roller and the amount of the area...  

2 Salim: We can find the hypotenuse, too. Look hepsi ayni [they are all same] [Figure 

12 (a)].  
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Figure 12 

(a) Salim’s Pythagorean Theorem, (b) and (c) Salim’s Table for Length, Height, and Area, and 

(d) Salim’s Computation for Finding the Hypotenuse 

 
 

3 Mert: What is that [𝑎2 + 𝑏2 = 𝑐]? 

4 Salim: To find this side [the hypotenuse] let’s complete this table [Figure 12 (c)].  

5 Salim: When it is 1 cm, 1 cm, 0.5 cm2, 2 cm, 2 cm, 2 cm2, 

  3 cm, 3 cm, 4.5 cm2, 4 cm, 4 cm, 8 cm2.  

6 Mert: Oh, it is like this [copies the same table]. 

7  Salim: Soyle yapiyorsun. [You are doing like this.] This is a, this b and this is c.  

8  Mert: OK. 

9  Salim: So, if this is one, this is one, then the line is square root of two.  

10  Mert: We did not use the radical.  

11  Salim: If this was two, two, then what is it now? Eight, right?  

12  Mert: I do not know. How did you get that? 

13  Salim: A squared plus squared is equal to c squared. Hypotenuse is the c. This part 

[pointing at the computer screen]. Let’s find the hypotenuse for each [he adds the last 

column on the table below, Figure 12 (c)]. 

In this example, Salim used a learned fact—the Pythagorean formula—to create a table 
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that represented the height, length, and hypotenuse of a triangle, as well as its area (lines 4–6). 

Salim used the Pythagorean formula for finding the quantities (lines 4–8) without coordinating 

that the change in height was related to the change in length or area. Although Salim used the 

Pythagorean formula appropriately to fill out the table, he could not see that the table represented 

quantities with magnitudes. Hence, for Salim, the quantities on the table were a string of 

numbers created by plugging values into the Pythagorean equation—a learned fact.  

When we look at the conversation between Salim and Mert, Mert stated that they needed 

to explore the relationship between the paint roller’s length and the area of the rectangle (line 1). 

Salim pointed out that the triangle’s height and base were the same; they could use the 

Pythagorean theorem to find the hypotenuse (lines 2 and 4). Although he wrote 1 cm, 1 cm for 

the sides of the triangle, he did not focus on how the height increase affected the growth on the 

base of the triangle or its area. Salim wrote 𝑐2 = 𝑎2 + 𝑏2 [Figure 12 (d)] but Mert did not 

understand how the rule helped identify the relationship between the paint roller’s length and the 

area (line 3). Through the 𝑐2 = 𝑎2 + 𝑏2 𝑎𝑛𝑑 𝐴 =
𝑙ℎ

2
 symbolic equations, Salim completed the 

table (line 5). Salim explained the computation and found the area and the length of the triangle 

(line 13). Still, his thinking centered on mapping the paint roller’s area and length—as 

correspondence reasoning. His reasoning depended on the known rule of A=
𝑙ℎ

2
 (area of a 

triangle) [see Figure 12 (c)]. For Salim and Mert, the table represented numerals which could be 

found with learned facts. This example illustrates how static thinking about a table is when 

students conceive of quantities as numerals created by a learned fact—a form of correspondence 

reasoning.  

The second way of approaching a table with tabular static thinking entails conceiving of 

values as strings of numbers, and mapping or relating each quantity to create new numerals. As 
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we saw with the above vignette, Salim conceived of quantities with no attention to magnitude of 

each quantity (line 5). He said: “When it is 1 cm, 1 cm, 0. 5 cm2, 2 cm, 2 cm, 2 cm2, 

3 cm, 3 cm, 4.5 cm2, 4 cm, 4 cm, 8 cm2.” Even if Salim wrote the units in the table, when he 

articulated, he referenced the quantities on the table as string of numbers. As Salim said: “If this 

was 2, 2, then what is it now? Eight, right?” I interpret that in this case, for Salim, there was not 

much difference between a height of 2 cm and an area of 2 cm2; the quantities were a string of 

numbers with no magnitudes (line 11). Although Salim used units of measurement—cm, cm2—

for height, length, and area, he still conceived of these quantities as a string of numbers, rather 

than a magnitude of height or area. Thus, I conclude that Salim conceived of quantities on the 

table as numeric generations. I present a summary of the constructs of tabular static thinking 

across sets of learned rules and points as a string of numbers in Table 14.  

 

Table 14 

Tabular Static Thinking   

Aspect of Tabular 

Static Thinking 

Definition Example 

(1) Sets of learned 

rules   

Creating a table with a 

learned rule to represent 

quantities  

Mert: What is that [𝑎2 + 𝑏2 = 𝑐]? 

Salim: To find this side [the hypotenuse] 

let’s complete this table [Figure 12 (c)].  

(2) Points as a string of 

numbers 

Approaching quantities 

as a string of numbers or 

numeric generations.   

Salim: If this was two, two, then what is 

it now? Eight, right? 

 

Tabular Lateral Thinking. The second, more sophisticated type of reasoning on a table, 

tabular lateral thinking, has two aspects: (a) determining the vertex of a quadratic function by 

conceiving of covarying quantities on a table, and (b) recognizing that quantitative relationships 

can be generalizable as well as interchangeable.  
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The first aspect of tabular lateral thinking that I found during the study was that students’ 

tabular lateral thinking pushed them to determine the vertex of a quantitative relationship on a 

table by reasoning about covarying quantities. They were able to define the vertex of the 

quantitative relationship as the highest magnitude the quantities could be. Students were able to 

recognize a vertex point on a table by (a) coordinating the change of change in height (i.e., the 

second change) with the change in the time—interrelatedness 2––and (b) coordinating the first 

change in height with the first change in time—interrelatedness 1. Furthermore, students were 

able to connect interrelatedness 1 and 2 (see Table 15) to identify the vertex points of 

quantitative relationships.  

 

Table 15 

Definitions of Interrelatedness 1 and 2  

 Definition  Example 

Interrelatedness 1 A coordination of the first 

change on one quantity with the 

first change in another quantity.  

Asli: “As the height increases by one 

unit, the length increases two units.”  

 Interrelatedness 2  A coordination of the first 

change in one quantity with the 

second change in another 

quantity. 

Yener: “We found that that amount of 

the area, it changes per height change 

was four. So, it would change from two 

to eight. And then when it went from 

eight to 18 and change time just for 

more than six 18 to 32 it changed from 

10 to 14, which adds a difference of 

four. So, adds four each time to it.” 

 

As an example of students determining the vertex of an equation through covarying 

quantities, the vignette below is taken from Mert, Yener, and Tarik’s small-group interactions 

when they were exploring the relationship between the height, range, and time in the falling 

object task (Figure 13). 
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Figure 13  

The Falling Object Task and the Corresponding Table  

 

 

Note. This figure presents a screenshot from the falling object task’s video and the corresponding 

table.  

 

14  Yener: I am pretty sure that is the peak, and then it starts going down. 

15  Mert: That’s the 48 peak? 

16  Yener: I think so. I mean, I don’t think, because change changes six every time. It 

can change six meters. 

17  NA: When you say peak? What do you mean by the peak? 

18  Yener: The maximum. How high the ball goes in general. 

19  Mert: Wait, wait. How was the ball, like, is 21 meters. Oh, yeah. OK. 

20  Tarik: Oh, yeah. 

21  Yener: Because it gets shorter, the distance of those points [showing with his hand 

on Figure 14 (a)], so, 21, 15, uhm [he adds values on Figure 14 (b)] this is nine.  
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Figure 14  

(a) Yener’s Gesture and (b) Yener’s Table of the Falling Object Task 

Note. This figure presents (a) Yener’s gesture to show how the increments get shorter when 

moving away from the vertex and (b) his table to show this logic.  

Yener stated that when the time is four seconds and height is 48 meters, that point must 

be the peak. He said, “I am pretty sure that is the peak, and then it starts going down.” Yener, 

Mert and Tarik attempted to coordinate the first change with the second change: the second 

change in height, compared to the first change in time, decreases six meters per second—

interrelatedness 2 (line 14-21). Yener recognized that the height reaches the maximum at four 

seconds, the parabola’s vertex: “The maximum. How high the ball goes in general?” Yener also 

noticed that the distance in between increments of height gets smaller for each increment of the 

height when getting closer to the maximum height, or the vertex, of the relationship (line 21). He 

stated, “Because it gets shorter the distance of those points [showing with his hand, Figure 14 

(a)], so, 21, 15, uhm [he adds the values on the table] this is nine [Figure 14 (b)].”  

In creating a table of this quantitative relationship—the height and time of the falling 

object—students might interchange between coordinating the first change in time with the 

second change in height as they create and interpret the quantitative relationships on a table (line 

14) [Figure 14 (b)]. In other words, when students create and analyze a single representation with 
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tabular lateral thinking, they build on or reference the quantitative relationships in the 

representation.  

For instance, when Yener and his peers were making a table, they referred to the height 

and the time to complete the table (lines 16 and 19). At the same time, they defined the quadratic 

function’s vertex on the table with quantitative relationships. They also noticed that when the 

increments of quantities get closer to the vertex [they refer to the vertex as the maximum height 

the cannonball can reach], for every one second on 𝑥-axis, the increments of quantities 

represented on a 𝑦-axis get smaller; when they get away from the vertex, the increments get 

larger (line 21). As we see with this example, the students reasoned and made sense of a 

quantitative relationship while completing the task within a given representation.   

In the vignette above, having students create a table to present a quantitative relationship 

pushed their thinking to identify the relationship’s vertex as the maximum the cannonball could 

reach (line 16). They also placed the maximum point as the midpoint and generalized that the 

distance between points gets larger (line 21). When the points move away from the maximum 

(the vertex), compared to when the quantities on the y-axis get closer to the maximum/vertex, the 

distance between points gets smaller. Furthermore, reasoning that the amount of change in height 

decreased six meters for every second made Yener see that the maximum height must be 48 

meters (16). He calculated the first change, in height, as 21 m, 15 m, 9 m and 3 m; then he 

recognized that the difference, the first change is decreasing by six meters for each one second, 

because 15 m − 21 m = −6 m, 9 m − 15 m = −6 m, 3 m − 9 m = −6 m for every one second 

[Figure 14 (b)]. This reasoning helped Yener to identify that the peak the cannonball can reach 

must be 48 m, because the amount of the increase of increase of height—that is, the second 

change in the height—is six meters, which will make the first change −3 m when the time is 3 
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seconds, so the difference between 45 m and 48 m is − 3 m (lines 16–21). And the height must 

be 45 m, so that means 48 m must be the maximum point (the vertex), and the distance in 

between the height for each single second gets larger; for instance, when the height values are 

away from the maximum, the change in height is 21 m, as opposed to when the height values are 

closer to the vertex, where the change is 3 m for every second.  

Thus, fluency in interrelatedness 1 and 2 regarding the quantitative relationship enabled 

Yener to identify the vertex points on the table and complete the given representation. This is 

evidence to suggest that students’ FT affected their RF by allowing them to identify the vertex as 

the maximum height on the table, and also helped them to create a generalization about the 

change in the height for each second when the distance in between the height for each single 

second is closer to the vertex compared to when they are further away from the vertex on a 

tabular representation.  

My findings also suggested a second way students engaged in tabular lateral thinking. 

This could be found in students’ ability to recognize that quantitative relationships can be 

generalized and interchanged. During the study, students switched back and forth between how 

they coordinated the changes among quantities on a table. With the growing rectangle task, for 

instance, they coordinated the height with length, and then switched back and coordinated the 

length with the height. Students created a table to reason about the height and length of the 

growing rectangle. Then they interpreted that for every one-centimeter increase in height, the 

length increases by two centimeters. Using the same table, the students could swap their 

reasoning and say that for every two-centimeter increase in length, there is a one-centimeter 

increase in height. Thus, creating and interpreting tables representing quantities might enable 

students to reason interchangeably about quantities and their relationships. In other words, 
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tabular lateral thinking allows students to coordinate the change from height to length and vice 

versa. 

Consider the growing rectangle task and the following vignette13 in relation to lines 22 to 

25.  

22 NA: How that table [Figure 15] is helping you to see the relationship between the 

height and area? 

23 Asli: It just helps me visualize how to like as the height is increasing by one the 

length increases by two because you can clearly see the difference [Figure 15 (a)]. 

24 NA: Two what? One what? 

25 Asli: 2 cm, for each 1 cm that height increases, the length increases by 2 cm or vice 

versa for each 2 cm length increases, the height increases by 1 cm. 

 

Figure 15 

a) Asli’s Table and (b) Yener’s Table for the Height, Length and Area of the Growing Rectangle  

 
 

Students created a table for the height, length, and area of the growing rectangle to see a 

pattern or a relationship between quantities [Figure 15 (a) and (b)]. As Asli stated, “We try to 

record some height and length values, maybe to see a relationship.” Seeing all the magnitudes of 

the quantities on the table enables students to describe the relationships between them (lines 23 

                                                 
13 This vignette will be cited in the section Supporting Students’ Co-Emergence of Representational Fluency and Functional 

Thinking, in part two of this chapter.  



106 
 

 
 

and 25); thus, the tabular representation may provide opportunities for students to visualize how 

quantitative relationships are covarying. For instance, NA asked Asli how that table helped her 

see the relationship between the height and the area (line 22). Asli stated that it helped her to 

visualize the relationship (line 23): “It just helps me visualize how, like, as the height is 

increasing by one, the length increases by two cause you can clearly see the difference [tracing 

with her pen on the table, Figure 15 (a)].  

When the change in length depended on a change in height (line 25), the students showed 

that they could also interchange the quantities and interpret that every two-centimeter change in 

length depended on the one-centimeter change in height. As Asli stated, “For each 1 cm that 

height increases, the length increases by 2 centimeters or vice versa for each 2 cm length 

increases, the height increases by 1 cm.” Hence, tabular lateral thinking enabled students to 

interchangeably coordinate quantities.  

In sum, in the study, I found that tabular lateral thinking enables students to conceive that 

quantities covary when they create and interpret a table to present the quantitative relationships. 

Furthermore, students were able to identify the vertex point of quadratic function via tabular 

lateral thinking. This kind of thinking supported students’ ability to recognize that the distance 

between coordinate points gets smaller when they approach the vertex on the table, and that the 

change of the quantities (on the y-axis) gets larger when the points move away from the vertex 

point. With this type of thinking, students notice that the points are not merely a string of 

numbers; instead, there is a pattern between them. The students conceive that there is a pattern, 

and that quantitative relationships are generalizable and interchangeable. Thus, it is essential for 

students’ robust understanding of quadratic relationships that they recognize quantities with their 

magnitudes on a table and conceive quadratic relationships as covarying quantities; tabular 
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lateral thinking can help them achieve this. I summarize the construct of tabular lateral thinking 

with Table 16. 

 

Table 16 

Tabular Lateral Thinking  

Aspect of Tabular Static 

Thinking 

Definition Example 

(1) Determining the 

vertex through 

covarying quantities  

Identifying a vertex of a 

quadratic function on a 

tabular representation by 

coordinating the first change 

in one quantity with the first 

or second change in another 

quantity 

Yener: “I am pretty sure that is 

the peak, and then it starts going 

down.” 

Yener: “I think so. I mean, 

because change changes six 

every time. It can change six 

meters.” 

(2) Recognizing 

quantitative 

relationship as 

generalizable and 

interchangeable   

Recognizing that there is a 

pattern between quantities 

and interchangeably 

coordinating the changes 

among the quantities  

Asli: “For each 1 cm that height  

increases, the length increases 

by 2 centimeters or vice versa 

for each 2 cm length increases, 

the height increases by 1 cm.” 

 

Students’ Reasoning About Quantities Within Symbolic Representations. During the 

study, I found that students’ reasoning about quantities within symbolic representations entailed 

two types of reasoning: algebraic static thinking and algebraic lateral thinking. Algebraic static 

thinking about symbolic equations occurred when students used a known formula for the area of 

triangle or rectangle, 𝐴 =
ℎ𝑥𝑏

2
, or 𝐴 = ℎ𝑥𝑙, to generate a symbolic equation to represent a 

quantitative relationship. At this level of thinking, students used the formula (𝐴 = ℎ𝑥𝑙) to create 

symbolic equations, such as 𝑦 = 𝑥 ∗ 2𝑥 = 2𝑥2, without thinking about how the quantities (e.g., 

the height and area) might covary together, nor the meaning for the coefficient in the symbolic 

equation. In contrast, algebraic lateral thinking occurred when students conceived of two 

quantities covarying together as they created and interpreted symbolic equations. For example, 
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students made a connection between the coefficients of symbolic equations and the covarying 

change of the quantities.  

I give an overview of these characterizations of students’ reasoning in Table 17.  

 

Table 17 

Overview of Students’ Reasoning about Quantities within the Symbolic Representation  

Algebraic Static Thinking Algebraic Lateral Thinking 

(1) Creating a symbolic 

equation from the known 

formula: 𝐴 =
ℎ𝑥𝑏

2
, 𝑜𝑟 𝐴 =

ℎ𝑥𝑙, with no attention to 

covarying quantities  

(1) Redefining a symbolic equation within covarying 

quantities and determining the domain and range of the 

function within a quantitative context  

(2) Making a connection between the coefficient of the 

symbolic quadratic equation and the covarying quantities   

(3) Switching flexibly between correspondence and 

covariational reasoning 

 

Algebraic Static Thinking. Students’ algebraic static thinking about quantitative 

relationships includes creating a symbolic equitation with a correspondence reasoning. As we 

will see with the following vignette, I found that students with this kind of thinking could create 

a symbolic equation and a ratio between length and area; however, they could not relate how the 

length and area of the growing triangle task were related to one another. Furthermore, they were 

not always able to explain the origin and how the relationship passes the origin on a symbolic 

equation. 

The following vignette is taken from Mert and Salim’s small-group interactions when 

they were investigating the relationship between the length of the paint roller and the area it 

covered.  
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26 Mert: Like, it starts from the zero. And it is going to go forever.  

27 WR14: Why do you think it starts with the zero?  

28 Salim: According to the formula [pointing at the formula in Figure 16 (a)], if one of 

them is zero, the area has to be zero.   

29 Mert: If the length is zero, area will be zero. How do you visualize? When the 

length… 

30 Salim: Ratio yapalim. [We make a ratio.] [He draws a triangle with 𝑥:
𝑥2

2
 , Figure 16 

(b).] 

31 Mert: OK. How are we going to make the ratio? Bu length me olmasi gerekiyor 

yoksa area mi? [Is this supposed to be length or the area?] [He points to the 𝑥.]  

32  Salim: This is the length since they’re both equal. O yuzden ikisi de aynisi oluyor. 

[They are both the same length times the other length, divided by two, is the area.]   

33 Mert: Why is that 𝑥 square?  

34 Salim: Because the 𝑥 times 𝑥 is 𝑥2. 

35 Mert: But then wait, don’t you, like, is not it like a division symbol?  

36 Salim: Kind of… 

37 Mert: You don’t need to divide 𝑥 by that. 

38 Salim: O ratio. [That is the ratio.] 

 

 

                                                 
14 WR is one of the TR: Waleed’s initials. 
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Figure 16 

(a) Salim’s Formula of the Area of the Triangle and (b) Salim’s Ratio between Length and Area 

for the Paint Roller Task 

 

 

Mert stated that height and area start from zero (line 26). Then, when the teacher-

researcher asked why (line 27), Salim showed that the knowledge was coming from the symbolic 

formula he knew (line 28). Salim’s thinking involved plugging the numbers into the formula; 

when the height was zero, the area would be zero, or vice versa. Salim used what he knew about 

a triangle area formula and applied the formula to argue that when the height was zero, the area 

would be zero. Salim used 𝑥 to represent the length, and 
𝑥2

2
 to define the area and the ratio 

between them (line 30)—a form of correspondence reasoning. Salim drew back from what he 

knew about the triangle’s area and created a symbolic ratio, the magnitudes of which were not 

known.  

For Salim and Mert, it was not clear what the ratio represented; there were expressions, 

but what each expression meant was not clear (lines 31–38). As I interpret the above vignette, the 

length being zero was not meaningful for Salim, because the symbolic equation was static and 

did not represent covarying quantities. Hence, static thinking might involve knowing an equation 
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to solve the problem, but the meaning of what the equation represents and how the variables or 

quantities in the equation are related is still a mystery to the students.  

In sum, the findings have shown that when students used algebraic static thinking, they 

were creating a symbolic equation from the known formula, such as 𝐴 =
ℎ𝑥𝑏

2
, or 𝐴 = ℎ𝑥𝑙, 

without understanding that the equation represented a quantitative relationship. They were able 

to solve a problem with the known formula but lacked an understanding of the quantities and 

their underlying relationships. In other words, reliance on a formula moved students away from 

reasoning about quantities.  

I end this section with a table summarizing the constructs of algebraic static thinking, 

Table 18. 

 

Table 18 

Algebraic Static Thinking  

Aspect of Algebraic 

Static Thinking 

Definition Example 

(1) Creating a 

symbolic equation  

Creating a symbolic 

equation from a learned 

rule to represent quantities 

with correspondence 

reasoning  

Salim: This is the length since they’re 

both equal. O yuzden ikisi de aynisi 

oluyor [
𝐿∗ℎ

2
= 𝐴, 𝑦 =

𝑥2

2
]. [They are both 

the same length times the other length, 

divided by two, is the area.] 

 

Algebraic Lateral Thinking. The second, more sophisticated form of students’ reasoning 

on a symbolic equation is algebraic lateral thinking. Algebraic lateral thinking entails three 

constructs: (a) redefining a symbolic equation with covariation; (b) making a connection between 

the coefficient and covarying quantities; and (c) switching flexibly between covariational and 

correspondence reasoning.  
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The first type of algebraic lateral thinking the study findings suggest is conceiving that 

the symbolic equation represents the covarying relationship of the range and the time of the 

falling object. During the study, this type of thinking became a source of support for students to 

make sense of the symbolic equation and its domain. As we will see in the following example, 

students coordinated the change in the range and the time of the falling object to create a 

symbolic equation. They used the same reasoning to make sense of the domain of the 

relationship. The following vignette is taken from Mert, Yener, and Tarik’s small-group 

interactions, when they were exploring the relationship between height, time and range in the 

falling object task. The falling object task was introduced with a table, and at the very end of the 

table, the students were prompted to create a symbolic equation to present the relationship 

between height, time and range (see Figure 13). Consider the falling object task and the 

following vignette:  

39 Tarik: Can we make rules? 

40 Yener: So, the range is… 

41 Mert: OK, so the range is… 

42 Yener: A time [𝑡] times 18. 

43 Mert: Oh yeah, a time [𝑡] times 18. 

44 Yener: 18𝑡. 

45 Tarik: What? 

46 Yener: Range is 18t. Cause range increase by 18 each time, right? Oh, it stops. Wait, 

so it would be from, and then at the end, you would write like…  

47 Mert: Oh, domain thing like… 

48 Yener: Like, from here and then, like, is less than or equal to 𝑥 is less than equal to t. 
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Figure 17 

Mert’s Table and Symbolic Equation to Present the Relationship Between the Height, Time, and 

Range on the Falling Object Task.  

 

49 Mert: 𝑡 is less than or equal to eight, is that it? Less than or equal to eight. 

50 Yener: From zero to eight. 

51 Mert: Oh, OK, mine [𝑡 less than and equal to 8] is basically is the same.  

52 Yener: No, cause that’s just t. Then, if you do equal less than eight, then it comes 

negatives. If you just say less than eight, it counts negatives. You have to make an 

end at zero. You have to say zero ’cause you’ve said just less than eight. 

53 Mert: I see what you mean. 

In the above vignette, Mert, Yener, and Tarik were prompted to write a symbolic 

equation when the time is 𝑡. Tarik suggested that they should make a symbolic equation, “a rule” 

(line 39). Yener and Mert created a symbolic equation presenting the relationships between 

height and time and between time and range for the falling object task (lines 42–44).  
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They had the relationships on the table (Figure 17), and they reasoned with chunky, continuous 

covariational reasoning. Yener said, “range is 18t. Cause range increase by 18 each time, right,” 

and he wrote 𝑓(𝑡) = 18𝑡.  

As we see in the above vignette, Yener and his group conceived the symbolic equation as 

a lateral quantitative relationship rather than a static symbolic equation. Mert defined the domain 

of 𝑓(𝑡) = 18𝑡 as 𝑡 as the time which is 𝑡 ≤ 8 (line 49) and he said, “𝑡 is less than or equal to 

eight, is that it? Less than or equal to eight.”  

Yener said, “No, cause that’s just 𝑡. Then, if you do equal less than eight, then it comes 

negatives. If you just say less than eight, it counts negatives. You have to make end at zero. You 

have to say zero because you’ve said just less than eight.” According to his reasoning, 𝑡 was not 

just a static symbol for Yener, it is a quantity—the time the cannonball takes to fall––so his 

objection was that time cannot be negative (line 52). Then Mert agreed that t could not be a 

negative number (line 53). He said, “I see what you mean,” and as he said that he canceled out 

𝑡 ≤ 8 and wrote 0 ≤ 𝑡 ≤ 8]. Yener saw that if Mert defined that time is less than or equal to 

eight, then the time would keep going to negative, which did not make sense to him. He said, 

“You have to make end at zero,” which suggests that, in Yener’s thinking, the symbolic 

equation, 𝑓(𝑡) = 18𝑡, and the expression of the domain,  𝑡 ≤ 8, were connected with lateral 

thinking.  

Hence, these students employed algebraic lateral thinking because they created symbolic 

representations of a quantitative relationship (range and the time) while understanding that the 

symbols represented quantities and covarying quantitative relationships. This vignette provides 

evidence that RF and FT’s co-emergence becomes a source of support to help students make 

sense of linear relationships as covarying quantities when dealing with a symbolic equation and 



115 
 

 
 

its domains. With algebraic lateral thinking, the symbolic equation 𝑓(𝑡) = 18𝑡 is an emergent 

relationship between quantities expressed in algebraic symbols, and its domain represents 

quantities.  

The second form of algebraic lateral thinking suggested by the findings was observed 

when students associated the coefficient of the symbolic quadratic equation with the covarying 

quantities. Students made sense of a quadratic equation’s leading coefficient—"𝑎" in 𝑦 = 𝑎𝑥2—

by coordinating the change in one quantity with the change in another quantity. The following 

vignette is taken from Asli and Yener’s small-group interactions when they were exploring the 

relationship between the height and area in the growing rectangle task. As we will see, Asli 

related the quadratic function’s coefficient to covarying quantities.  

54 Asli: Well, this works, too.  

55 NA: What works? 

56 Asli: I wrote 2h squared [Figure 18]. Basically, the same thing. It is just distributed.  

57 NF: Oh, OK. What is the two? What do you mean [referring to the coefficient 

above]? 

58 Asli: As since the height is [inaudible], the area of the rectangle is height times 

length and since the length is 2h. As the height increases by one unit, the length 

increases two units, so that will make h as 2h squared. 

Asli noticed that 2ℎ2 is the same as ℎ x 2ℎ. Her reasoning is that for every one unit of 

height there is a two-unit length increase (line 58); that is why the area must be 2ℎ2. The teacher-

researcher, NF, probed Asli to explain why 2ℎ2 should be same as ℎ x 2ℎ (line 57). Asli defined 

the area formula’s coefficient with reasoning about coordinating a change in height for one unit 

with a change in length for two units. 
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Figure 18 

Asli’s Table and Symbolic Equation 

 

As we see with the above example, the symbolic equation’s coefficient relates to the 

coordination of change between height and length. Asli said, “As since the height is [inaudible], 

the area of the rectangle is height times length and since the length is 2h. As the height increases 

by one unit, the length increases two units, so that will make h as 2h squared.” As we see here, in 

Asli’s thinking, the co-emergence of coordination of values (FT) and multi-connectional (RF) 

reasoning enabled her to make sense of the coefficient on the symbolic equation of a quadratic 

function. Hence, for Asli, the symbolic equation’s coefficient represents that for every one-unit 

increase in height there is a two-unit rise in length. So, the symbolic equation’s coefficient, 2ℎ2, 

is related to the change in height in relation to change in length.  

A third form of students’ algebraic lateral thinking suggested by the findings was 

observed in how students engaged flexibly in covariational and correspondence reasoning. 

Students employed both correspondence and covariational reasoning on a symbolic 
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representation to reason about quantities. The following vignette is taken from Eren and Salim’s 

small-group interaction when they were investigating the relationship between the height and 

area of the growing rectangle. As we will see with the vignette, students employed both 

covariational and correspondence reasoning when reasoning about changing quantities on a 

symbolic equation.  

59  Eren: OK. So, we found out that the equation for the rectangle is, for the area is y 

equals two x squared. Height as x, and then length is two x [𝑦 = 2𝑥2] [Figure 19]. 

60  Salim: We multiplied them. 

61  Eren: Then, every time the height increases by one, the length is twice of that. And 

when you multiply that the areas, big numbers it will be. 

62  NA: So, so we want to be specific. What do you mean by numbers? 

63  Eren: Um, so, like, it grows by a larger amount each time. So, when the height is 

one, it’s two, the area is two. And when the height is two, the area is eight, so it 

grows by six. Well, one the height, the height is three. The area’s 18 grows by 10 the 

next time and it too… 

64  NA: So, when you say the height is two, two what? 

 

Figure 19 

Salim and Eren’s Symbolic Equation 
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65  Eren: 2 cm. 

66  NA: What about the area? 

67 Eren: Cm squared. 

68  NA: OK. What does that tell you? 

69  Salim: Squared, uhm, height times two, height square times two, that is why it 

grows quadratics. 

70  NA: What does that two represent for you? 

71  Salim: It represents the length. 

72  NA: Length? 

73  Eren: Oh, the two represents that number being twice the size of the height. 

In this interaction, Eren described the height of the rectangle as 𝑥 and the length of the 

rectangle as 2𝑥 (line 59). Then Eren and Salim multiplied these two to create the symbolic 

equation (line 60). Eren started by thinking with covariation on both quantities, the height and 

the length: “Then every time the height increases by one, the length is twice of that. And when 

you multiply that the areas, big numbers it will be.” In this example, Eren coordinated a change 

in height with a change in length as he was reasoning about a quantitative relationship on a 

symbolic equation (lines 60 and 63). Note that, in his reasoning, correspondence and 

covariational reasoning about the height with the area of the rectangle were intertwined (line 62). 

He said: “Um, so, like, it grows by a larger amount each time. So, when the height is one, it’s 

two, the area is two. And when the height is two, the area is eight, so it grows by six. Well, one 

the height, the height is three. The areas 18 grows by 10 the next time and it to.” As we see here, 

Eren’s thinking about the height and area of the growing rectangle switched to corresponding 

reasoning from covariational reasoning at the very beginning. When he matched height values 
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with the area, he soon realized the area was also growing. He coordinated the change in height 

with the changing area to reason that the height and the area covary together on the symbolic 

equation (line 61). To understand how the symbolic equation might become meaningful for 

students, NA asked Eren: “So, when you say the height is two, two what.” In response, Eren first 

stated the height is cm, and the length is twice that. Eren then stated, “Oh, the two represents that 

number being twice the size.”  

As we see with this vignette, students might use corresponding reasoning and 

covariational reasoning together; the flexibility in such reasoning might be a resource to help 

students articulate the coefficient of the symbolic equations. Furthermore, algebraic lateral 

thinking might enable students to flexibly employ covariational and correspondence reasoning.  

In sum, I have highlighted that, when using algebraic lateral thinking on the symbolic 

equation of quantitative relationships, students were able to do the following. First, using 

algebraic lateral thinking, students could redefine and make sense of a symbolic equation within 

covarying quantities (e.g., 𝑓(𝑡) = 18𝑡  being defined as “range is 18t, cause range increase by 18 

[meters] each time”). They were able to determine the domain of the function within a 

quantitative context, (e.g., a domain cannot be negative because it represents a quantity, and a 

negative quantity does not exist). Second, via algebraic lateral thinking, students were able to 

notice that each letter on the equation represents a quantity, and all the quantities are related to 

each other. Furthermore, students were able to create a connection between the coefficient of the 

symbolic quadratic equation 𝐴 = 2ℎ2 and the covarying quantities, because they interpreted that 

the increase in the height of one unit covaried with a two-unit increase in the length. They 

concluded that the coefficient 2 in the symbolic equation emerged from the relationship between 

the height and the length of the growing rectangle. Finally, when using algebraic lateral thinking, 
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students were able to flexibly switch between correspondence reasoning and covariational 

reasoning on the symbolic equation. Hence, algebraic lateral thinking is conceiving of a 

symbolic equation as presenting an emergent quantitative relationship, and the coefficient in the 

symbolic equation is related the coordination of change between the quantities. I summarize the 

constructs of algebraic lateral thinking in Table 19. 

 

Table 19 

Algebraic Lateral Thinking 

Aspect of Algebraic 

Lateral Thinking 

Definition Example 

(1) Redefining a 

symbolic 

equation with 

covariation 

 

Redefining and 

making sense of a 

symbolic equation as 

covarying quantities 

with the domain and 

the range of the 

equation within a 

quantitative context 

Mert: “[𝑓(𝑡) = 18𝑡, 𝑡 ≤ 8] range is 18t, cause 

range increase by 18 [meters] each time.” 

Yener: “No, cause that’s just t. Then, if you 

do equal less than eight, then it comes 

negatives. If you just say less than eight, it 

counts negatives. You have to make end at 

zero. You have to say zero because you’ve 

said just less than eight.” 

(2) Making a 

connection 

between the 

coefficient and 

covarying 

quantities 

Seeing that a 

coefficient of the 

symbolic equation 

emerges from 

coordination of the 

change among 

quantities 

Asli: “[A=2ℎ2, ℎ x2ℎ 𝑜𝑟 2ℎ𝑥ℎ = 2ℎ2] As 

since the height is [inaudible], the area of the 

rectangle is height times length and since the 

length is 2h. As the height increases by one 

unit, the length increases two units, so that 

will make h as 2h squared.” 

(3) Switching 

flexibly 

between 

covariation and 

correspondence 

reasoning. 

Flexibly switching 

between covariational 

and correspondence 

reasoning while 

approaching a 

symbolic equation. 

Eren: “[𝑦 = 2𝑥2] Um, so, like, it grows by a 

larger amount each time. So, when the height 

is one, it’s two, the area is two. And when the 

height is two, the area is eight, so it grows by 

six. Well, one the height, the height is three. 

The area’s 18 grows by 10 the next time and 

it to.” 

 

 

Students’ Reasoning About Quantities Within Graphical Representations. The 

findings regarding students’ reasoning about quantities within the graphical representations 
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entailed two types of reasoning: graphical static thinking and graphical lateral thinking. 

Graphical static thinking entails students expressing that they understood graphs as 

corresponding to the independent values and the dependent values. Graphical lateral thinking, on 

the other hand, is when students are imagining graphs as representing covarying quantities, 

where the quantitative relationships covary together on the graphs. An overview of these 

characterizations of students’ reasoning is given in Table 20; in the following sections, I 

elaborate on each construct in turn, with examples.  

 

Table 20 

An Overview of Students’ Reasoning About Quantities Within Graphical Representations  

Graphical Static Thinking Graphical Lateral Thinking 

(1) Mapping dependent and 

independent values of 

quantities as a form of 

correspondence 

reasoning  

(1) Imagining a graph as a motion or change that keeps increasing or 

decreasing  

(2) Generalizing the change on a graph by referencing the vertex point 

(3) Identifying the vertex as a symmetry line on the graph 

(4) Identifying the second change for quadratic growth as constant 

 

Graphical Static Thinking. I found during the study that students’ static thinking on a 

graph might involve presenting quantities on the 𝑥-axis and 𝑦-axis by mapping the independent 

and dependent variables. When using this type of thinking, students’ image of a graph is 

mapping the independent and dependent values without attention to each increment. Students 

perceive the graph as a pictorial entailment (Zaslavsky, 1997), with no attention to how the 

quantities behave on the graph. The below vignette is taken from a small-group interaction when 

Yener was exploring the height and area of the growing rectangle.  

74  NA: How do you draw this graph? 

75  Yener: Uh, so, the height is the 𝑥-axis in the areas, the 𝑦-axis. Oh, wait, yeah. Uh, 
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when the height is one, uh, the area would be three. So, I put a dot on 1, 3, and then, 

when I was two, the area would be 12, so I put a dot on 2, 12, and then, when the 

height was three in the area of be 27, I’ll put a dot up there, and then four would be 

48 and then five and be seen the five. 

76  NA: OK. Is this a straight line, the graph you have [pointing at the graph on Figure 

20]? 

77  Yener: I think so. 

78  NA: OK. Well, tell me, why you think so? 

79  Yener: There must be a constant pattern between height and area. 

80  NA: Tell me what you mean by the constant pattern? 

81  Yener: I do not know. 

We see from the following vignette that Yener created a graph (Figure 20) by mapping quantities 

on the 𝑥 and 𝑦 coordinates without looking at the size of each increment between values; this 

type of thinking represents more correspondence reasoning (line 75). He drew a graph based on 

the fact that he knew area equals height times length; his reasoning seemed to be that the area 

would be different because he multiplied the height and the length to make the area. As we see 

here, he created a graph based on what he knew––the fact that the area is the height times the 

length. Even if he had mapped the quantities onto the graph, his image of the graph was of a map 

that charts the values of height with corresponding areas, with no attention given to the 

increments of the height (x-axis) and the area (y-axis). As we see, he matched a height of two to 

an area of 12, a height of three to an area of 27, and a height of four to an area of 48 (line 75). 

Although he was purposeful about carefully mapping the independent and dependent variables 

accurately onto the graph, he was not paying attention to each increment on the graph. The 
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increment for the coordinates of (2, 12) is same as the (3, 27). In other words, he mapped the 

independent and the dependent variables with no attention to the size of each incremental 

increase in the area—the dependent variable (line 75). Thus, the line Yener made to represent the 

area and height was linear. He engaged in corresponding the values, or thinking of them as pairs 

of coordinate values.  

 

Figure 20 

Yener’s Graph of the Growing Rectangle  

 

 

In this example of graphical static thinking, Yener’s thinking about this graph as 

representing quantitative relationships was focused on what he saw as mapping the numerical 

values of the height with the area. This supports the finding that, when using static thinking 

about the graph of a quantitative relationship, students mapped the quantity on the independent 

x-axis with the quantity on the dependent y-axis.  

I have summarized the aspects of graphical lateral thinking, with definitions and 

corresponding examples, on Table 21.  
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Table 21  

Graphical Static Thinking 

Aspect of 

Graphical Static 

Thinking 

Definition Example 

Mapping 

dependent and 

independent 

values of 

quantities without 

thinking about 

covarying 

quantities 

Mapping the quantity 

on the independent x-

axis with the quantity 

on the dependent y-axis 

without attention to 

how the two quantities 

are changing together 

for the same increments 

on the x-axis.  

Yener: Uh, so, the height is the 𝑥-axis in the 

areas, the 𝑦-axis. Oh, wait, yeah. Uh, when the 

height is one, uh, the area would be three. So, I 

put a dot on 1, 3, and then, when I was two, the 

area would be 12, so I put a dot on 2, 12, and 

then, when the height was three in the area of 

be 27, I'll put a dot up there, and then four 

would be 48 and then five and be seen the five. 

 

 

Graphical Lateral Thinking. The second form of students’ reasoning on a graph 

suggested by the study, graphical lateral thinking, entails four constructs: (a) imagining a graph 

as a motion of increase or decrease; (b) generalizing the change on a graph and the vertex; (c) 

identifying the vertex and symmetry; and (d) identifying the second change for quadratic growth 

as constant. 

The first aspect of graphical lateral thinking is defined as when students’ image of a 

graph is associated with motion and/or change. With this kind of thinking, even if students didn’t 

state a specific amount of change of both quantities on a graph, they still thought of the graphs as 

either increasing or decreasing. The graph is not a pictorial entailment; rather, it has a motion. 

For example, Asli and Yener interpreted their graph as the amount of change in the growing 

rectangle; the change in the area covaried with the change in the height on the graph (see Figure 

21). As Yener said: “We found that that amount of the area, it changes per height change was 

four. So, it would change from two to eight. And then when it went from eight to 18 and change 

time just four more than six 18 to 32 it changed from 10 to 14, which adds a difference of four. 
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So, adds four each time to it.” As we see with this example, Yener had an image of the emerging 

quantities on the graph. In other words, Yener coordinated the change in the growing rectangle’s 

height with the change in its area. Such reasoning is evidence that Yener perceived an image of 

the graph in his mind which represented covarying quantities. 

 

Figure 21 

Yener’s Graph of the Height and Area of the Growing Rectangle  

 

 

The second aspect of graphical lateral thinking is defined as when students generalize 

about the emergent quantitative relationships on a graph by referencing the vertex. During the 

study, students engaging in this kind of reasoning understood that if the coordinate points get 

closer to the vertex, the distance between the dependent quantities gets smaller. If the 

quantitative relationship on the graph moves away from the vertex, the magnitude among the 

quantities gets larger—the distance in y-values (vertically) gets larger. The following vignette is 

taken from whole-group interactions, when Mert, Yener, and Tarik were presenting on the 

relationship between the height of the falling object and the time it takes to fall.  

82  Yener: The farther away the time is from the vertex’s time for the more, the greater 

distance of the height between the points… 

83  NA: Do you want to visualize for us here? Just quickly… 
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84  Yener: So, this is the vertex of four. So, for the time as the x value, this is a time of 

three. There won’t be as much of an increase in height. So, it’s just, like, let’s see, 

here to here. This is way bigger. So, up here, uh, if this is all four and this is three, 

uh, this distance between these points vertically or the height-wise, uh, is less near 

the, uhm, is down here where there’s two and this is one. It’s way bigger cause it’s 

away from the vertex. [He draws on the whiteboard, Figure 22].  

85  NA: So, you were saying, can just say one more time. You were saying… 

86  Yener: So, uh, the farther away the 𝑥 value are that from the vertex’s 𝑥 value, the 

greater the distance between the 𝑦 value points vertically will be (see Figure 22).   

Yener made a statement regarding how the distance between height values (the y-axis on 

Figure 22) gets larger when quantities on the y-axis move away from the vertex point, for the 

same values of time (the x-axis on his drawing) (line 82). He made a conjecture about the height 

change when the quantities were either near or far from the vertex points. As we see from his 

statement, his image of the graph was an emergent quantitative relationship that covaried on the 

graph (lines 82 and 86).  

 

Figure 22 

Yener’s Graph of the Falling Object on the Whiteboard  
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Yener understood that for the same change in the x-axis—the time—the height values got 

smaller when they approached the vertex (line 84). He generalized how the height and the time 

of the falling object covaried on the graph by saying “so, uh, the farther away the 𝑥 value are that 

from the vertex’s x value, the greater the distance between the y value points vertically will be.” 

So, lateral thinking on a graph might help students generalize that, with the same increment of 

change on the x-axis, the quantity on the y-axis increases noticeably more when it is away from 

the vertex point than when it is near the vertex point, as we saw with Yener in the example 

above.  

In the third aspect of graphical lateral thinking found in the study, students conceived that 

the vertex point was where a symmetry line for the quantitative relationship passes through the 

graph: the symmetry line passes through the vertex point vertically and cuts the quantitative 

relationship in half. In other words, graphical lateral thinking enabled students to identify the 

vertex as a symmetry line on the graph that cuts the emergent quantitative relationship into two 

identical pieces; the amount of change on opposite sides of the symmetry line is the same, and, in 

the falling object task, as one increases the other one decreases with the same magnitude. The 

vignette below is taken from a whole-class interaction when Yener presented to the group.  

87  Yener: Because for quadratics near the vertex, you get the points to become closer 

together, because it becomes less linear. Kind of. 

88  NA: What you mean by less linear? 

89  Yener: The top. The top of the quadratic is more in curved than the, like, one of the 

legs.  It started slowing down how much the 𝑦 changes, and then it starts speeding up 

again. Check the other thing except, if you flip it then cut it in half, it would be like 

the other thing. OK… [He cuts the graph at the vertex, see Figure 23].  
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Figure 23 

Yener’s Graph of the Falling Object with the Symmetry Line  

 

As we see here, Yener noticed that the height of the falling object gets further away from 

the vertex, and the vertex is the symmetry line that divides the graph’s equal height (line 87). By 

“equal height,” I mean that students imagined that height values on the y-axis were identical on 

both sides of the graph (line 89). As we see, Yener placed small vertical lines on the graph to 

show that their values were identical (Figure 23). And the vertex is the symmetry line, with the 

change in height reflected on the other side of the line due to the increase and decrease in the 

falling object’s height. When utilizing lateral thinking, students’ co-emergence of RF and FT 

enabled them to coordinate that the change between the height and the time of the falling object 

on the left and the right side of the vertex has the same magnitude; while one decreases, the other 

increases by the same amount (line 89). 

The fourth aspect of graphical lateral thinking that the findings suggested was that 

students recognized that the coordination of the first change in a quantity with the second change 

in another quantity is a constant across the vertex. Therefore, they understood that the rate of rate 

of change in a quadratic function is a constant.  

The following example is taken from a whole-class interaction when Yener was 

presenting to the group on the relationship between the height of the falling object and the time it 

took to fall. Yener stated that the second change in height was coordinated with the first change 

in the time and concluded that the change was six per second. Yener:“Here to here [placing the 
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dots on the graph’s horizontal vertex symmetry line (Figure 24) to show how the change is 

identical across the symmetry line]. For example, from here to here, let’s say it was from 36 to 

40, 36 to 45 uh, the difference between these two numbers would be nine. Yes. And then, if from 

45 the let say this is 48, the difference between these would be three. The between these is a six. 

Yes. Which is how much it keeps changing. Negative six each time.” With graphical lateral 

thinking, students conceived of the graph as an emerging quantitative relationship where they 

could identify the second constant difference between quantities. 

 

Figure 24 

Yener’s Graph of the Falling Object Presenting the Second Constant Difference  

 

A graph of a quantitative relationship helped students to identify the second constant 

difference, and furthermore, it helped them to identify the emergent relationship between height 

and area on a graph. For example, when Yener and Asli were asked how the graph helped them 

see the relationship, they responded by coordinating the first change in one quantity (height) and 

the second change in another quantity (the area of a rectangle) with a constant growth rate. (See 

Yener and Asli’s responses on Figure 25.)  
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Figure 25 

Asli and Yener’s Written Answers to the Question: “How is the Graph You Just Sketched Helped 

You Visualize the Relationship between Height and Area?” 

 

Yener wrote that creating the graph helped him: “By showing me the change of the 

change in area increases by 1 cm squared every time the length [the length of the paintbrush] 

increased by one.” Asli said that the graph helped her to visualize that “area increase as length 

increases.” 

In sum, graphical lateral thinking might reinforce students’ ability to recognize an image 

with a graph of a quantitative relationship as covarying wherein the relationship keeps increasing 

or decreasing as a set of covarying quantities. Graphical lateral thinking enabled students make 

sense of quadratic functions in the ways listed below:  

1. Students developed an image of motion, or change, in graphs representing 

quantitative relationships, as the quantities covary on the graph. 

2. Students could generalize that, for the same increment of quantity on the 𝑥-axis, the 

change in between quantities on the 𝑦-axis gets larger when points are further away 

from the vertex compared to when the points are closer to the vertex.  

3. Students understood that the vertex of a quantitative relationship is either the 

maximum or minimum magnitude that quantity on 𝑦-axis can become.  
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4.  Students understood that the vertex is always the symmetry point where a vertical 

symmetry line could pass through the graph of a quantitative relationship.  

5. Students could perceive that the relationship between the first change in the height of 

a rectangle or triangle and the second change in area is always constant, with a 

growing linear relationship. In other words, the change of change for quadratic 

growth is constant.  

I summarize students’ graphical lateral thinking in Table 22 below.  

Table 22 

Graphical Lateral Thinking 

Aspect of Graphical 

Lateral Thinking 

Definition Example 

Imagining a graph 

as a motion of 

increase or decrease 

Developing an image of a graph as a set 

of emergent quantitative relationships 

Yener: We found that that amount of the area, it 

changes per height change was four. So, it would 

change from two to eight. And then when it went 

from eight to 18 and change time just for more 

than six 18 to 32 it changed from 10 to 14, which 

adds a difference of four. So, adds four each time 

to it. 

Generalizing the 

change on a graph 

and the vertex 

Characterizing the emergent 

relationship between quantities on a 

graph by generalizing the change in 

quantity. 

Yener: So, uh, the farther away the 𝑥 value are that 

from the vertex’s 𝑥 value, the greater the distance 

between the 𝑦 value points vertically will be 

(Figure 22).   

Identifying the 

vertex and 

symmetry 

Identifying the vertex point, where the 

symmetry line passes through, by 

cutting the quantitative relationship in 

half, and naming the vertex as the 

minimum or the maximum point the 

quantitative relationships could reach. 

Yener: The top. The top of the quadratic is more in 

curved than the, like, one of the legs. It started 

slowing down how much the 𝑦 changes, and then 

it starts speeding up again. Check the other thing 

except, if you flip it then cut it in half, it would be 

like the other thing. OK… [He cuts the graph at 

the vertex, see Figure 23].  

Identifying the 

second change for 

quadratic growth as 

constant. 

Identifying the second change for 

quadratic growth as constant—

interrelatedness 2—and understanding 

that the relationship between the first 

change in length and the second change 

in area is constant. 

Yener: By showing me the change of the change in 

area increases by 1 cm squared every time the 

length [the length of the paintbrush] increased by 

one. (See Figure 25). 
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Finding 2: Levels of Connections Between Students’ Representational Fluency and 

Functional Thinking  

Level 0: Disconnection Between Students’ Representational Fluency and Functional 

Thinking. A disconnection between students’ RF and FT is defined as when students are able to 

create multiple representations to present a quantitative relationship, but they don’t perceive that 

the relationship co-emerges across multiple representations. In other words, students think of the 

quantitative relationship as static or nonemergent.  

A disconnection between students’ RF and FT creates multiple representations in parallel 

when engaging in a static way of thinking about quantitative relationships. Students might create 

representations in parallel, but they don’t interpret that the representations present a quantitative 

relationship that covaries. In other words, students might solve a problem using two or more 

representations, but they lack the ability to explain what each representation presents. They 

engage in static thinking to solve the problem using at least two representations; they justify each 

representation using other types of representations in solving the task.   

The following vignette is taken from Salim and Mert’s small-group interactions with the 

growing triangle task—that is, the paint roller task—when they were investigating the 

relationship between the length of the paint roller and the area it covered.  

90 Salim: We have a specific graph [Figure 26 (a)]. This is the question [𝑦 =
𝑥2

2
].  

91 NA: Where is your area? 

92 Salim: 𝑦 is the area. 

93 Salim: And the 𝑥 is the length. 

94 NA: So, what is the…? So, this is the symbolic equation. How is the relationship 

looks like in this equation and on this graph? 
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95 Salim: When we graph this [𝑦 =
𝑥2

2
], we get the graph.   

96 NA: The information you have here explains graph or the equation. [Pointing at his 

written work “The relationship between the length of the paint roller and the area 

covered is quadratics.”] [See Figure 26 (c).] 

97 Salim: It explains the graph.  

98 NA: Tell me how?  

99 Salim: Because the graph is quadratics and the relationship, uhm…  

100 Mert: Quadratics.  

 

Figure 26 

Salim’s (a) Graph, (b) Symbolic Equation, and (c) Written Response About the Relationship 

Between the Length and Area of the Rectangle  

 

(a)                                      (b)                                              (c) 

101 NA: What is your proof of being a quadratic? 

102  Salim: The equation. 

Mert and Salim constructed a parabola and a symbolic equation, claiming that the 

relationship between the height and the area of a triangle was a quadratic function [Figure 26 (a) 

and (b)]. They stated that their symbolic equation showed that the relationship between the 
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length of a triangle and the area is quadratic, and when they graphed it, it made a parabola (lines 

95 and 97). Salim was careful that the area could not be negative; however, he stated that a 

quadratic function graph must be a parabola because he had 𝑦 =
𝑥2

2
 . And according to the 

equation, the graph had a negative domain (line 90). In this case of disconnection between RF 

and FT, Salim had specific thinking about what a graph of 𝑦 =
𝑥2

2
 should look like—a parabola. 

Salim and Mert claimed that they even created a particular graph (line 90). Still, the graph they 

created was a canonical graph of a quadratic function rather than a graph of the relationship 

between the height and the area of the triangle in the task (lines 97–102). Salim wrote, “The 

relationship between the length of the paint roller and the area covered is quadratics.” [See 

Figure 26 (c).] Although Salim wrote that the relationship between the length of the paint roller 

and the area covered was quadratic, he drew a canonical graph to present the equation 𝑦 =
𝑥2

2
 

(line, 95). As we see with Figure 26 (a), the graph had a negative length, and in line 95 Salim 

stated the graph presented the equation. This evidence supports my claim that here there was a 

disconnection between Salim’s RF and FT.  

As we learn from this vignette, students might create a symbolic equation and a graph of 

it, but they might not see that the graph is presenting quantitative relationships (lines 97–102). 

This indicates that there may be a disconnection between students’ representational skills and 

their FT. This data indicates that creating a symbolic representation and graphing that equation 

may not be meaningful for students if they cannot see that representations present two quantities 

with positive domain. Because students created a canonical graph and symbolic equation without 

specifying the domain of the equation, that shows they might not have been making sense of 

what the two representations presented and how they were connected—a disconnection between 

their RF and FT.   
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Level 1: A Partial Connection between Representational Fluency and Functional 

Thinking.  The second level of my characterization of students’ RF and FT, a partial connection 

between RF and FT, can be defined as students being able to conceive that quantities have co-

emerging relationships on a single representation with chunky continuous covariational 

reasoning. At this level, students can create a single representation to present an emerging 

quantitative relationship—interrelatedness 215. However, they are not able to carry 

interrelatedness 2 over to representations other than the source representation—they have 

difficulty making a connection among the source and the targeted representation.  

At this level, students’ thinking switches back and forth between interrelatedness 116 and 

interrelatedness 2 as they create and connect concrete representations to present emergent 

quantitative relationships. Students may create a symbolic equation or a graph representing a 

quantitative relationship. However, they may not be able to differentiate the type of 

interrelatedness they are presenting with these representations. At this level, students can 

differentiate between interrelatedness 1 and 2 on tabular representations by making a conjecture 

to generalize the relationship between the quantities. However, there should be a distinction 

between interrelatedness 1 and 2 when they create and connect these relationships on a symbolic 

equation, and this distinction is absent at level 2. 

The following vignette is taken from Mert, Tarik, and Yener’s small-group interactions 

when they were investigating the relationship between the height of the falling object and the 

time it took to fall on a partially completed table [see the partially completed table in Figure 27 

(a) and (b)]. Before the following vignette, Mert, Yener, and Tarik had agreed on the relationship 

                                                 
15 Interrelatedness 2: a coordination of the first change in one quantity with the second change in another quantity. 
16 Interrelatedness 1: a coordination of the first change on one quantity with the first change in another quantity.  
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between the height and time—that for each second, the height was increasing six meters on the 

table. Yener said, “And then, if from 45 the let say this is 48, the difference between these would 

be three. The between these is a six. Yes. Which is how much it keeps changing. Negative six 

each time.” In the following vignette, the students were creating a symbolic equation to present 

the height [height = 𝑓(𝑡)] when the time is 𝑡. 

 

Figure 27 

(a) Yener’s Table and (b) Mert’s Table for the Height, Range, and Time of the Falling Object 

 

(a)                                                    (b)             

 

103 Yener: OK, and height wouldn’t be… 

104  Mert: It’s going to be, oh that’s a difficult one. 

105  Yener: You put 21 somewhere. I don’t know. 

106  NA: What do you mean by “put 21 somewhere”? 

107  Mert: Let me just write this one. 

108  Yener: Cause it starts out in the change starts and ends at 21, 21 [pointing at the first 

change in height on table Figure 27 (a)]. 
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109  Mert: So, like, it decreases by six each time. So, it’s going to be. I think it’s going to 

be 21 minus 6t [21 − 6𝑡] [Figure 27 (b)]. 

110  Yener: Yeah, that’s good. 

111  NA: Why don’t you write here? 

112  Tarik: But that’s not going to be right because, at one point, it’s going to reach 

heights. How are we going to do it? 

113  Yener: Yeah. it would be, uhm…It would be zero, because that won’t be, you have 

to add, like, a quantity that makes it height. 

114  Tarik: We can make a rule. 

115  Yener: That’s, like, that’s the change. The change. Like, this thing [pointing at the 

second change in the height on Figure 27 (a)]. 

116  Tarik: It has to put one of these in so that once it reaches a one number, then you 

have to stop, and then it has to decrease. 

117  Mert: Well, no, this doesn’t work. 

118  Tarik: Exactly, why? Why does it get works? But because it doesn’t reach the 

maximum. Look, if what will happen if we calculate this. What did you say? 

119  Mert: 21 minus 6t. 

120  Tarik: Trying to. It’s just going down. 

121  Mert: I got this. Is it going to be this? [He adds 9; [21 − 6𝑡 + 9] on Figure 27 (b).] 

122  Yener: No. 

123  Tarik: What is that +9? 

124  Yener: Because is this how this one becomes 36, I think you have to add 48. 

125  Mert: I don’t know what we’re supposed to. I am kind of confused. It is going to be 
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like… [he crosses out his equation, Figure 27].  

126  Yener: I don't know ’cause you have to somehow add a number. 

 

Figure 28 

Mert’s Symbolic Equation of the Height when the Time is t 

 

In this small-group interaction, Tarik, Yener, and Mert were able to identify the vertex 

point on the table, and they determined that every time the time increases by one second, the 

change in the height was a decrease of six meters. They generalized the interrelatedness 2 by as 

for every one second, the height’s increase decreases by six meters (line 109). When they were 

asked to create a symbolic equation using the table, they switched back and forth between 

whether the symbolic equation represented interrelatedness 1 or 2.  

Yener suggested that the equation had to have a 21 because the height increased 21 

meters at the beginning (line 105). He stated, “Cause it starts out in the change starts and ends at 

21, 21 [pointing at the first change in height on Figure 27 (a)].” For Yener, since the change in 

height on the table started and ended with a change of 21 meters, the equation had to have a 21 in 

it (line 108). When Yener referred to interrelatedness 1 in his thinking by stating “You put 21 

somewhere [in the equation],” the first change in height was coordinated with the first change in 

time. Tarik, Yener, and Mert looked for an equation to define the height—𝑓(𝑡)—when the time 

was 𝑡. There was no clear distinction between whether they were trying to represent 

interrelatedness 1 or 2 on the symbolic equation they were trying to make. Yener stated the 

symbolic equation had to have 21 (line 105) and Mert built on it by saying, “So, like, it decreases 
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by six each time. So, it’s going to be… I think it’s going to be 21 minus 6t [21 − 6𝑡]” (line 109). 

Mert’s thinking represented interrelatedness 2—the coordination of the first change in the time 

with the second change in height. Since the relationship was that the height’s increase decreases 

for every six meters, Mert perceived as a constant rate of change. Tarik disagreed with this 

equation (line 112). Tarik noticed that the relationship was between the time and height, 

reasoning that 𝑓(𝑡) = (21 − 6𝑡) would not reach the maximum (line 119). Tarik was still 

looking for a symbolic equation called a “rule” to present interrelatedness 1 (line 114). He 

disagreed with Mert and Yener by saying, “But that’s not going to be right because, at one point, 

it’s going to reach [the maximum] heights. How are we going to do it?” He furthered his claim 

by saying that the equation did not work, “because it doesn’t reach the maximum.” So, for Tarik, 

the equation 𝑓(𝑡) = (21 − 6𝑡), did not represent interrelatedness 1—the coordination of the first 

change in both quantities (the height and the time). Yener, however, noticed that the equation 

presented interrelatedness 2, between the second change in the height and the first change in the 

time. He stated that “That’s, like, that’s the change. The change, like, this thing [pointing at the 

second change in the height on figure 27 (a)].”  

As we notice here, the students had difficulty differentiating types of interrelatedness 

between height and time. When they generalized, their basic reasoning made sense—“The 

amount the height changes decreased by six for every second”—but representing the 

interrelatedness of the time and the height across multiple representational forms was a challenge 

for them. For Tarik, the symbolic equation showed that the relationship had a maximum point 

because he was looking to present interrelatedness 1 (lines 116–121). As Tarik said, “It has to 

put one of these in so that once it reaches a one number, then you have to stop, and then it has to 

decrease.”  
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Since interrelatedness 1 is a curve, it increases by an “uneven” rate, while 

interrelatedness 2 is linear and increases by a constant rate. As we see here, the students had 

difficulty differentiating what the symbolic equation presented in terms of interrelatedness. As 

we see with Yener’s group, chunky continuous second covariational reasoning might land on a 

symbolic equation similar to the symbolic equation’s derivative equation for a quantitative 

relationship. For Mert, the equation 𝑓(𝑡) = (21 − 6𝑡) might have represented the relationship 

between the second change in the height and with the first change in the time—interrelatedness 

2. 

At this level, students’ lateral thinking about a quantitative relationship on a table might 

go in two directions: interrelatedness 1 and 2. When students create and connect to the symbolic 

equation, they have difficulty distinguishing whether the symbolic equation represents 

interrelatedness 1 or 2.  Even if students were engaged in coordinating that for every second, the 

amount the height’s increase decreases by six meters (interrelatedness 2), it was challenging for 

them to see how this relationship would look on a symbolic equation. As we see, Mert created  

𝑓(𝑡) = (21 − 6𝑡) + 9  to present the relationship between the height and time. As we notice, he 

wrote the symbolic equation for the relationship as a linear function with a negative six slope 

which is decreasing by negative six each time—which represents interrelatedness 2.  

Hence, to students at this level, chunky continuous second covariational reasoning is 

more visible on a tabular representation than a symbolic equation. Students might need to be 

supported to differentiate between interrelatedness 1 and 2 on a symbolic equation. And there is 

a connection between them: the symbolic equation for interrelatedness 1 is a quadratic 

relationship, and interrelatedness 2 is the derivative of that quantitative relationship—a linear 

relationship. Since the coordination of quantities determines symbolic equations, an 
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understanding of a quantitative relationship brings richness to students’ thinking about symbolic 

equations.  

In sum, at level 1, with a partial connection between their RF and their FT, recognizing a 

connection between a table and symbolic equation of quantitative relationships might be 

challenging for students. Students have difficulty differentiating whether interrelatedness 1 or 2 

is being represented with the symbolic equation because the symbolic equation for 

interrelatedness 1 is a quadratic relationship, and interrelatedness 2 is the derivative of that 

quantitative relationship—a linear relationship. Although students at this level had difficulty in 

creating a symbolic equation of interrelatedness 2, they were able to flexibly move between 

interrelatedness 1 and 2 in creating and connecting a table and symbolic equation for the 

quantitative relationship.  

Level 2: A Connection between Representational Fluency and Functional Thinking.  

The next level I identified to characterize students’ connection between RF and FT is a 

connection between students’ RF and FT. Level 2 is defined as when students conceive that 

quantities have co-emerging relationships on a single representation—i.e. chunky continuous 

covariational reasoning—and they are able to create two representations to present the emergent 

quantitative relationship’s interrelatedness 2, and carry over the interrelatedness 2 from the 

source to the targeted representations.  

Understanding the connection between the table and graph with chunky continuous 

second covariational reasoning—interrelatedness 2— enabled students to visualize the 

relationship as a negative linear graph—a derivative of a quadratic function with a negative 

leading coefficient. Eren engaged in interrelatedness 2 between height and time on the falling 
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object task by making the connection between the table and graph [Figure 29 (a), (b), and (c)]. 

This reasoning enabled Eren to envision that the graph would be a negative linear graph.  

Consider the falling object task and vignette below:  

127 Eren: OK, so let me just uhm every point one second. The height of the amount that 

the height increases decrease by 0.1 meters. Every 0.1 seconds, the amount that the 

height increases decrease by one point second or all the cases but one meter [Figure 

29 (a)].  

128 Eren: So, it’s a negative linear graph [Figure 29 (b)] 

 

Figure 29 

 Eren’s (a) Written Statement, (b) Graph, and (c) Table of the Relationship between the Falling 

Object’s Height and the Amount of Time it Takes to Fall. 

 

(a)                                                     (b)                             (c)  

Eren, Tarik, and Mert created a table and reasoned that for every 0.1 second, the height 

increase decreased by 0.1 meters (interrelatedness 2) (line 127). Eren said, “Okay, so let me just, 

uhm, every point one second. The height the amount that the height increases decreases by 0.1 

meters for every 0.1 seconds. The amount that the height increases decrease by one point second 

or all the cases but one meter.” Although Eren coordinated the change in height with the first 

change in time in portions of 0.1 second on the table, he had difficulty shifting this reasoning 
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onto a graphical representation. When he was asked to visualize the reasoning on a graph, he 

imagined the first change in time with the second change in height; he then concluded that the 

graph should be linear with a negative slope (128)—he said, “so it is a negative linear graph.” In 

other words, Eren was graphing his reasoning “the height the amount that the height increases 

decreases by 0.1 meters for every 0.1 seconds” as a line with negative slope—a derivative on the 

interrelatedness 1. 

As we see here, Eren’s understanding of interrelatedness 2 on a tabular representation 

[line 127, Figure 29 (c)] helped him to see that the graph represented that the second rate of 

change in height was a negative linear slope, because the amount of increase in the height was 

decreasing 0.1 meter for every 0.1 second. With this example, Eren created the first derivative of 

a quadratic function graph to present the relationship between the first change in time and the 

second change in height [Figure 29 (b)]. Although Eren had not learned about derivatives or a 

graph of the first derivative of quadratic relationships, his reasoning about interrelatedness 2 

between tables and graphs allowed him to create the first derivative graph of quadratic 

relationships (lines 127 and 128). Hence, Eren’s level 2 connection between RF and RT was 

helping him to create and connect the table and the graph of interrelatedness 2.  

Level 3: Flexible Connections between Representational Fluency and Functional 

Thinking. The fourth level of connection between students’ RF and RT that I identified in the 

study was a flexible connection between RF and FT. This can be defined as when students 

understand that quantities have a co-emerging relationship and can flexibly switch between 

interrelatedness 1 and 2. At this level, they are able to create two or more representations to 

present interrelatedness 1 and 2, and they can flexibly switch back and forth between the targeted 

representation and the source representation with a clear understanding of interrelatedness 1 and 
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2. The following vignette is from a small-group interaction between Yener and Asli. They were 

investigating the height and area of the growing rectangle. To prove students’ flexible connection 

between RF and FT, I will refer to Asli and Yener’s vignette.   

129 Yener: How much the area changing each time. Uhm the change, in the amount the 

area changes will be constant for each time. So, this time it changes by six, the next 

time it changes by 10, which is four more than six, next time it changes 14, which is 

four more than 10. So, it keeps increasing like that. The change in the area will be 

four each time. [Pointing at the table on Figure 30 (a).] 

130 NF: Why do you think it keeps going up by four? 

131 Asli: Because it works for this, I guess. 

132 NF: How is this you just talked is related to the way the area is changing is the same? 

How can you see that in the graph? How is this related to the graph? [NF points at 

Figure 30 (b).] 

133 Asli: Because it means that you need to calculate.  

 

Figure 30 

(a) Yener and Asli’s Table Presenting the Height and Area of the Growing Rectangle; (b) 

Yener’s Graphs Showing How the Area Increases 
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134 Yener: The distance between this point and this point will be a number and then this 

point between this point will be a number that is 4 cm more than this number. The 

numbers between these will be…uhm.   

135 NF: Are you making a match? Are making exact match? Do you see the fours in 

your graph? Or this is the six times four? 

136 Yener: Because this would be, oh, wait. So, if you look at the points here, there 

would be, this is between these two points, the first two will be two, and this is 

between this one and the one over there will be six, which is four more than two, and 

it kept going all the 10, then 14, and it keeps going increases four by each time 

[Pointing at the graph Figure 30 (b).]  

137 NF: You are showing 2, and 6, 10 and 14, the distance? 

138 Yener: Yeah, they all have equal distances. This is the point.  

When Asli and Yener created and interpreted quantitative relationships on a table [Figure 

30 (a)] and a graph [Figure 30 (b)], their reasoning pushed them to make connections among the 

graphs and tables (lines 129 and 136). At the same time, they saw the invariant feature that for 

every 1 cm increase in height, the area increased 4 cm2—interrelatedness 2. Yener stated that 

every 1 cm rise in height resulted in the area increasing 4 cm2 on the table and graph (lines 129–

136). Yener made connections between the table and graph to present the emergent quantitative 

relationships. We see that Yener also recognized that for every 1 cm increase in height, the 

change of change (i.e., the second difference) in the area was 4 cm2 on both the table and the 

graph (line 136).  

For Yener and Asli, at level 3 thinking, the table and the graph were no longer static 

symbols; instead, the table and graph represented the growth relationship between the height and 
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the area of the growing rectangle. As we see in the vignette, Yener said, “How much the area 

changing each time? Uhm, the change, in the amount the area changes will be constant for each 

time. So, this time it changes by six, the next time it changes by 10, which is four more than six, 

next time it changes 14, which is four more than 10. So, it keeps increasing like that. The change 

in the area will be four each time. [Pointing at the table on Figure 30 (a)].”  Yener noticed that 

the second difference in area is a constant, 4 cm2 for every 1 cm increase in height on the 

table—interrelatedness 2. Consequently, Yener interpreted the table as a growth relationship 

between the height and the second difference in the area, instead representing numerals on the 

table. Note that when Yener was asked to explain “what increases by four each time?” (lines 130 

and 132), he knowingly switched back and forth between interrelatedness 1 and 2—coordinating 

the change in height with the first change in the area. Eventually, he articulated how he drew the 

4 cm2, a constant increase in the area (line 136). This excerpt shows that Yener had fluency in 

his thinking about interrelatedness 1 and 2—covariational reasoning—and switched back and 

forth between coordination of values and chunky second covariational reasoning. Hence, if 

students have level 3 fluency in interrelatedness 1 and 2, they might engage in reasoning types 

that fit with the nature of the representations they intend to present for the quantitative 

relationships.  

Yener explained how he concluded the second constant difference in the area by 

interpreting the table with coordination of height and area, so he had fluency in interrelatedness 1 

and 2 (line, 136). Then Yener was prompted by NF to articulate a 4 cm2 change in area for each 

increment of time on the graph; NF asked, “How is this you just talked is related to the way the 

area is changing is the same? How can you see that in the graph? How is this related to the 

graph? [NF pointing at the graph in Figure 30 (b)]” This question prompted Yener to notice that 
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the constant increase in the area is a distance between the coordinate points of the graph. He said, 

“Because this would be, oh, wait. So, if you look at the points here, there would be, this is 

between these two points, the first two will be two, and this is between these one and the one 

over these will be six, which is four more than two, and it kept going all the 10, then 14, and it 

keeps going increases four by each time [pointing at the graph in Figure 30 (b)]. As we see here, 

Yener identified the constant increase in the graph as the “difference is four” in between 

coordinate points on the y-axis [see Figure 30 (b)]. He saw the same growth on the graph in 

height and area, so to him the graph represented the growth—emergent shape thinking (Moore & 

Thompson, 2015).  

Hence, at this level, when students approach a graph and a table as representing a 

quantitative relationship that grows, they can interpret the table and graph as growth rather than 

seeing them as static shapes or symbols of quadratic functions. On top of this, students’ 

reasoning about quantitative relationships by creating and analyzing a table and a graph might 

push them to gain fluency in interrelatedness 1 and 2. In other words, students at this level switch 

back and forth between interrelatedness 1 and 2 to explain the quantitative relationships on a 

table and graph. An overview of my findings characterizing students’ co-emergence of RF and 

FT is given in Table 23.  
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Table 23 

Table Summary of Levels of Students’ Co-emergence of Representational Fluency and 

Functional Thinking  

Level Students’ Mental Image of a 

Quantitative Relationship 

Representational Activities 

Level 0  Conceiving that quantities are 

static non-emerging—no 

coordination among the 

quantities  

Creating multiple representations with no 

connections to present static quantitative 

relationships—use of multiple representations in 

parallel to present a static quantitative relationship  

Level 1 Conceiving that quantities have 

co-emerging relationships on a 

single representation—chunky 

continuous covariational 

reasoning   

Creating a single representation to present an 

emerging quantitative relationship 

(interrelatedness 2), but no ability to carry 

interrelatedness 2 over to the targeted 

representation—no connection between source and 

targeted representation  

Level 2 Conceiving that quantities have 

co-emerging relationships on a 

single representation—chunky 

continuous covariational 

reasoning  

Creating two representations to present an 

emergent quantitative relationships 

interrelatedness 2, and carry over the 

interrelatedness 2 on the source and targeted 

representation  

Level 3 Conceiving that quantities have 

co-emerging relationship, and 

flexibly switching between 

interrelatedness 1 and 2   

Creating two or more representations to present 

interrelatedness 1 and 2, and flexible switched 

back and forth between targeted and source 

representations with a flexibility of 

interrelatedness 1and 2.  

 

Part 2: Supporting Secondary School Students in Developing a Meaningful Understanding 

of Quadratic Functions 

A main finding of this study, and the answer to my second research question, is a 

learning-ecology framework that articulates supports that help students to develop a meaningful 

understanding of quadratic functions. The learning-ecology framework included three main 

categories: (a) teacher pedagogical moves; (b) socio-mathematical norms; and (c) enacted task 

characteristics. Since these categories do not constitute distinctly separate layers in developing 
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students’ meaningful understanding of quadratic functions, I refer to them as a “learning-

ecology17 framework.” Such terminology helps to draw attention to the interdependent nature of 

each learning component. With that in mind, the development of a meaningful understanding of 

quadratic function among students during the study did not occur along a linear path; instead, it 

required intertwined layers of supports working in a nonlinear fashion.  

In this chapter, I define students’ meaningful understanding of quadratic functions as 

instances in which students co-develop RF and FT while learning about quadratic functions. 

Subsequently, I introduce and verify the learning-ecology framework by identifying shifts in 

students’ RF and FT when the framework is present. Four shifts were identified in students’ RF 

and FT; I define and summarize each of them here in part one.  

What Counts as “Support:” the Learning-Ecology Framework  

I define the support that students received during the study as a learning-ecology 

framework that helped students’ meaningful understanding of quadratic functions. The learning-

ecology framework consisted of three intertwined components: teacher pedagogical moves, 

socio-mathematical norms, and enacted task characteristics. I present the three components of the 

learning-ecology framework in Table 24.  

                                                 
17 The word ecology is borrowed from biology; it defines the relationship between organisms and their surroundings. 
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Table 24 

The Learning-Ecology Framework  

Enacted Task 

Characteristics  

Socio-mathematical Norms  Teacher Pedagogical Moves  

Setting an infrastructure 

for students’ QR  

 Identifying 

changing attributes 

of tasks 

 Coordinating 

changes among 

quantities 

 Generalization  

Launching students’ RF 

 Visualization 

 Creating and 

making connections 

among 

representations 

Peer pressure for justification 

 Comparison between graphs of 

quadratic functions and 

exponential functions 

 Realization of a limited 

knowledge of quadratic 

functions  

 Justification via the question 

“where is your reasoning?” 

 Skepticism about how two 

quantities are related 

 Justification of whether a 

quantitative relationship is linear 

or nonlinear 

Peer approval  

Supporting students’ co-emergence of RF and FT  

 Teacher pedagogical moves to support creating a 

representation of quantitative relationships 

 Teacher pedagogical moves to support 

connections among representations of 

quantitative relationships 

Creating a foundation for FT  

 Probing students to identify the attributes of an 

object or a situation 

 Probing for a unit to measure an object’s 

attributes 

 Probing for the coordination of change between 

quantities 

 Encouraging students to justify their reasoning 

about the relationship between quantities 

 Probing for continuous covariational reasoning 

 

Enacted Task Characteristics. The first component of the learning-ecology framework 

is enacted task characteristics. I define enacted task characteristics as the instances in which 

students are given opportunities to articulate, talk about, answer, and/or discuss quantitative 

relationships within tables, graphs, and symbolic equations during small- and whole-group 

interactions (King, 2011; Stein et al., 2007). In other words, acted task characteristics are 

statements and questions about a problem or a set of problems that encourage students to 

articulate, talk about, discuss, and/or create representations to present quantitative relationships. 

Enacted task characteristics are a form of instructional support; I have divided the characteristics 

into clusters of those promoting students’ QR and those promoting students’ RF.  

Setting an Infrastructure for Students’ Quantitative Thinking. There are three types of 

enacted task characteristics that fall under the umbrella of setting an infrastructure for students’ 
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QR: (a) identifying changing attributes of the tasks or situations, (b) coordinating the change 

among quantities, and (c) making generalizations about quantitative relationships.  

The first of the enacted task characteristics is asking students to identify attributes of a 

situation or their tasks—identifying relevant quantities, and units to measure the quantities. 

Students were requested or prompted to identify quantities by looking at the attributes of the task 

and identifying relevant quantities. After tracing appropriate quantities within the task context, 

they were prompted to think about a unit to measure the quantities.  

In the following vignette, Asli and Yener watched a video (see Video 1) featuring a 

growing rectangle being sketched via a dynamic geometry software. Student handouts were 

structured so that students were asked to think and talk to each other about varying quantities and 

possible ways to measure those quantities. The task was structured to ask students to identify 

varying quantities; for example, the question in Figure 31: “What are the things you could 

consider varying and possible to measure?”  

 

Figure 31 

(a) Yener’s and (b) Asli’s Ideas About Varying Quantities of the Growing Rectangle 

 

(a)                                                              (b) 

 



152 
 

 
 

See the vignette below, which is the conversation students had in responding to the 

question on the task: “What are the things you could consider varying and possible to measure?”  

139  Asli: Location of point D does not change. 

140  Yener: Yeah. [Figure 31 (a) shows Yener’s written answer: The location of point D 

(bottom left corner) never changed. Everything else, from the length and the height, 

area and the points A, B, and C changed (measurements in length, height, and area 

increased, points changed location)]. 

141  NF: Can you talk to each other?  

142  Asli: We just wrote down when we talked about before we got the paper. [Figure 31 

(b).]  

Asli and Yener identified the corners of the rectangle; D was not changing (line 139–

140). Asli referred to it as the D’s location; Yener stated that D is at the “bottom left corner,” not 

changing (Figure 31). They agreed that everything else is changing on the task. Asli noticed that 

“the length increases causing the height to increase, creating a larger covered area” (see Figure 

31 [b]). Asli also recognized that the corners of the rectangle are changing, so she wrote “Points 

A, B, and drag points are changing, moving away from D.” Yener agreed with Asli that A, B, 

and C changed. Length, height, and area changed as well. Yener recognized that the change in 

height, length, and the area increases when the locations of A, B, and C (corners of the rectangle) 

change (line 140). Hence, I drew a conclusion that creating a foundation for students’ QR might 

involve getting students to determine what is changing or varying in a dynamic task context. The 

tasks’ structure, along with necessary tools, supports students in identifying varying relevant 

quantities. Students begin to recognize which quantities are constant, which are variable, and 

how to measure them.  
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The second enacted task characteristic is the coordination of change among quantities: 

probing, asking, or reinforcing students to coordinate changes among quantities. The tasks were 

structured to ask students how a change in one quantity affects the change in another in order to 

get students to coordinate the change between quantities. For example, one of the enacted task 

characteristics is asking students: “How does the change in height affect change in area?” In the 

following vignette, Asli and Yener were investigating the relationship between the height, 

length, and area of the growing rectangle task.     

143 Yener: How does change in height is affect the change in area? If the height changes, 

the length changes. 

144  Asli: The change in height increases the area covered. Because it contributes to the 

formula to get the area.  

145  Yener: When the height changes, the area changes. Here is the area changes too.  

146  NF: Can you be more specific? About how the height changes, the length changes. 

This also be an area. 

147  Asli: When the length increasing the heights increases. 

148  Yener: Increase uhm. I think they might increase by the same amount. Yeah, they 

probably started over different, and then they increased amount each time the height 

and length. 

149  Yener: Oh, I found this when height changes by two, length changes by three. That 

means that is constant. 

150  Asli: Okay. So, what I wrote is the change in height increases the area covered 

because it contributes to the formula necessary to calculate the area [Figure 32 (a)].  

151  Yener: Mine is same thing with height is affecting the change. [Figure 32 (b); he 
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wrote: “The change in height is affecting the change in area by contributing to the 

formula for area therefore affecting the area.”]  

For this type of enacted task characteristic, students are asked to see how the change in 

one quantity affects the change in another quantity (Figure 32). These questions (e.g., how does 

change in height affect the change in area?) form a foundation upon which students can engage 

in the coordination of change in quantities. For instance, Yener read the question (line 143): 

“How does change in height is affect the change in area?” Then he coordinated height with the 

length such that if the height changes (line 145), the length changes. Asli built on Yener’s 

reasoning by stating (line 144) “The change in height increases the area covered.”  

 

Figure 32 

  (a) Asli’s and (b) Yener’s Response to “How do the change in height affecting change in 

area?” 

 

 

Yener and Asli engaged in the task jointly; Yener agreed with Asli’s statement, which 

encouraged Asli to justify her statement (line 144). She said, “Because it contributes to the 

formula to get the area.” Asli’s justification is about the corresponding reasoning. Yener said: 

“Increase, Uhmm. I think they might increase by the same amount, Yeah, they probably started 

over different and then they increased amount each time the height and length.” Yener noticed 

that the height and length of the growing rectangle started with a different amount that changed 
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in magnitude or amount each time (line 148). Then Yener said: “Oh, I found this when height 

changes by two, length changes by three. That means that is constant.” Asli read her written 

responses: “Okay. So, what I wrote is the change in height increases the area covered because it 

contributes to the formula necessary to calculate the area” (line 150).  

In responding to the task characteristics, students not only respond the questions on the 

tasks, but they also attempt to justify their responses18. As we saw from Asli, she was reading her 

answer and also justifying it (line 150). Furthermore, Yener read his response by comparing and 

contrasting his answer for the same question with Asli’s (line 151).  

Observing the results of this student exchange, we can infer that this student ability to 

reason about relevant quantities and coordinating changes in quantities develops when they are 

prompted to consider how a change in one quantity affected change in another quantity. In other 

words, asking students about how a change in one quantity may affect the change in another can 

be an effective way to support healthy peer deliberation and the development of more advanced 

reasoning.   

Lastly, enacted task characteristics involved structuring tasks to ask students to generalize 

the relationship between quantities. In terms of this study, a generalization is a form of support 

that pushes students to think about a pattern representing the relationship between quantities 

(e.g., the length of the paint roller and its area). With enacted task characteristics, students were 

asked to answer the same focus questions19 in small- and whole-group settings in their handouts 

and had individual writing time for answering the same problem in their journal. The below 

vignette is taken from a whole-group interaction, when students explored the relationship 

between length of the paint roller and the area covered by the paint roller. Enacted task 

                                                 
18 Students’ interactions will be further discussed in the section Socio-mathematical Norms in chapter 5.  
19 For example, “What is the relationship between the length of the paint roller and the amount of the area being covered?” 
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characteristics were structured with a focus question to provide opportunities for the students to 

look for a pattern about the quantitative relationships.  

And in the vignette below, the students were exploring the focus question: “What is the 

relationship between the length of the paint roller and the amount of the area being covered?” 

The focus question is designed to prompt students to coordinate a change in the length of the 

paint roller and a change in the area it covered. In other words, the question itself states that there 

is a relationship between the length of the paint roller and the area covered, which pushes 

students to generalize about the relationship. 

Consider the vignette below:   

152  NA: So, we will present the focus question [“What is the relationship between the 

length of the paint roller and the amount of the area being covered?”]. I will ask this 

group to present first. Yener. Ready. 

153  Yener: I did not finish everything. But I have my answer. 

154  NA: Okay. So, when someone is presenting, we want to ask questions, and we want 

to compare their thinking with ours—what they have on there. All right? 

155  Yener: Wait. So, I just answer the focus question? 

156  NA:Okay. Yeah. We are just answering the focus questions. But we are providing 

some evidence for our thinking.  

157  Asli: Do you want to start first? 

158  Yener: Okay, I'll do it first. 

159  Yener: So, the focus question is, what’s the relation between the length of the paint 

roller and the amount of area covered? And my answer is that every time the length 

increases by one centimeter, the amount the area changes by or the change in the 



157 
 

 
 

change of area, it increases by 1 centimeter. 

As we see with above vignette, the teacher-researcher stated that as a classroom 

community, the students were trying to answer the focus question, which was about generalizing 

the relationship between quantities (line 152). Subsequently, the students’ attention was directed 

to the relationship between the growing triangles length and area (line 155). The paint roller task 

creates a growing triangle, the students’ attention is directed to how the area growing related to 

its length. As we see, the teacher-researcher asked Asli and Yener if they could present, and 

when they agreed to present, she restated that as a community, they were trying to answer the 

focus question (line 152–154). Yener confirms that they were just answering the focus question 

by saying, “Wait. So, I just answer the focused question” (line 155). The teacher-researcher 

oriented Yener toward answering the focus question and providing evidence to the claim they 

made in answering the focus question (line 154). Yener read the question (Figure 33): “What is 

the relationship between the length of the paint roller and amount of the area being covered?” 

and answered it by saying, “And my answer is that every time the length increases by one 

centimeter, the amount the area changes by or the change in the change of area, it increases by 1 

centimeter” (line 159).  

I drew a conclusion that having students answer the same focus questions about 

covarying quantities in social (small- and whole-group settings) and individual contexts (journals 

and individual handouts during writing time) might provide students with opportunities to 

articulate their thinking to a more sophisticated understanding of their reasoning. And the 

process of answering the focus question on the task is also a form of generalizing the quantitative 

relationships.  
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Figure 33 

 A Focus Question for the Paint Roller Task 

 

To use this enacted task characteristics, the students’ handouts and journals center on a 

focus question. For example, “What is the relationship between the length of the paint roller and 

the amount of the area being covered?” Students’ handouts are designed to aid students in 

answering the focus question. Additionally, the teacher-researcher’s prompts in whole- and 

small-group settings, along with students’ journals, center on answering the same focus 

questions. Enacted task characteristics are a form of support in small- and whole-group settings 

where students are encouraged to generalize quantitative relationships.   

In this example, we see that enacted task characteristics are asking students to generalize 

the relationship by getting students to answer the focus question in small- and whole-group 

settings, centered around identifying a pattern between quantities. Thus, enacted task 

characteristics are pushing students to generalize a relationship between quantities. Below, I 

provide Table 25 as a summary table for setting an infrastructure for students’ QR.  
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Table 25 

A Summary Table for Setting an Infrastructure for Students’ Quantitative Reasoning  

Enacted Task 

Characteristics 

Definition Example 

Identifying 

Changing 

Attributes of 

Tasks 

Task characteristics that craft 

opportunities for students to identify 

varying quantities by looking at the 

attributes of the task and identifying 

relevant changing quantities. 

Posing, stating or asking students—“What are the 

things you could consider varying possible to 

measure?” 

Asli: “The length increases causing the height to 

increase, creating a larger covered area.” 

Coordinating 

Change among 

Quantities 

Task characteristics which set 

opportunities for students to 

understand a coordination of change 

among quantities by probing, asking 

about, or reinforcing when students 

talk about quantitative relationships.  

Probing, asking, or reinforcing students to engage in 

coordination of change among quantities—“How 

does the change in height affect the change in area?” 

Asli: “Okay. So, what I wrote is the change in height 

increases the area covered because it contributes to 

the formula necessary to calculate the area.”  

Generalization  Task characteristics that create 

opportunities for generalization by 

asking students to generalize the 

relationship between quantities by 

answering the focus question.  

Posing a focus question to reinforce students to 

explore a pattern about quantitative relationships—

“What is the relationship between the length of the 

paint roller and the amount of the area being 

covered?”    

Yener: “And my answer is that every time the length 

increases by one centimeter, the amount the area 

changes by or the change in the change of area, it 

increases by 1 centimeter.” 

 

Launching Students’ Representational Fluency. In this section, I will provide results 

about the second main form of enacted task characteristics—launching students’ representational 

fluency—including (a) visualization, and (b) creating and connecting representations to present 

quantitative relationships.  

Visualization-draw-sketch tasks are the first kind of enacted task characteristic to support 

students’ representational fluency; they are designed to build on students’ intuitive sense of 

visualization without using a coordinate grid to support their visualization. The purposefully 

designed sequence of tasks featured “unstructured” visualization without a grid before 

introducing a formal Cartesian grid to support students’ RF and FT. Students were always given 

a set of perpendicular lines without tick marks or grid lines. 
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For instance, Yener and Asli watched the paint roller task, and they were asked to think 

graphically about the quantitative relationship between the length of the paint roller and the 

amount of the area covered, both without a grid and on a grid. In the vignette below, Asli and 

Yener were answering the same questions on the handout (Figure 34). The enacted task 

characteristics asked Yener and Asli: “What do you think a graph of this situation would look 

like?” Such probing helped them engage in answering the question, then they read and 

articulated their answers to each other, and they got a chance to agree or disagree with their 

peers’ answers.   

Figure 34 

 (a) Yener’s Graph and (b) Asli’s Graph of the Length and Area of the Paint Roller Task without 

a Grid  

 

(a)                                                                    (b)  

Asli described her reasoning this way: “So, for (a), I said the area is increasing while the 

length is increasing” [Figure 34 (a)]. Yener responded with “Well, I would agree with it. What it 

be uhm…”  
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As we see in Figure 34, the task statement is asking about the relationship between the 

length of the paint roller and amount of the area covered without a grid. The question: “What do 

you think a graph of this situation would look like?” requires unstructured visualization.  

Yener noticed that the relationship would be curve, and he wrote: “It would be a curve 

line that’s y-value would increase as the x-value increases.” Asli wrote, “Area increasing while 

the length is increasing,” and in response to Asli, Yener stated that he would agree that the paint 

roller’s area increases while the length is increasing.  

I found that enacted task characteristics such as asking Yener and Asli to articulate their 

thoughts about their visualizations, supported their reasoning about quantitative relationships on 

a graph. When Yener responded to the question “How is the graph you just sketched helped you 

to visualize the relationship between length and area?” he wrote: “By showing me the change of 

the change in area increases by 1 𝑐𝑚2 every time the length increases by one.”  

So, as one of the enacted task characteristics, is visualization with and without grids 

supported students’ RF when it included asking students to think about a graph without a grid; 

the enacted task characteristics probes students to agree or disagree with each other’s thinking 

and articulate further.    

The second type of enacted task characteristics for launching students’ RF includes 

enacted task characteristics that reinforce students’ reasoning as they make connections between 

representations (e.g., a table and a graph of quantities) while they visualize and generalize about 

quantitative relationships. Encouraging their generalizations about changing quantities and the 

connections between representations of quantitative relationships in joint writing is a form of 

support that might develop students’ co-emergence of RF and FT. The vignette below is taken 
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from Eren and Salim’s small-group interactions, when they explored the relationship between the 

length of the paint roller and the area covered by the paint roller.  

160  Salim: As the height of the triangle increases.  

161  Eren: Hmm. No, look, look, [he points at the question] ‘Respond the above question 

using two different representations (e.g., diagram, graph, table, or symbolic 

equations)’ [on Figure 35] diagram, table, or symbolic equation. 

162 Salim: It is the same thing. [Referring to the diagram being the same as this table.] 

163  Eren: This is not. 

 

Figure 35 

 Salim and Eren’s Journal from Day 1 

 

 

164  Salim: The symbolic equation. Al sana [here you go], height times length divided by 

two. What are you thinking? Um Hmm. Ne kullanalim? [What should we use?] 

Graph mi yapalim? [Should we make a graph?] 
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165  Eren: We should draw the graph. And then we should write a table. 

166  Salim: Triangle is mantikli [Triangle makes sense] (see Figure 35)  

167  Eren: Triangle is not a, not a diagram or a table or a graph. We just draw the graph 

and the table.  

In a small group, Eren and Salim articulated the type of representations needed to show 

the relationship between the length of the paint roller and the area covered. They argued about 

Figure 36; it seemed Salim named Figure 36 as a table (line 162), while Eren was skeptical in 

naming the figure as a table (line 163). Salim was not very clear what representations they 

should pick to present (line 164). They talked about the table, graph and triangle. For Eren, the 

triangle was not a diagram (line 167), and Salim did not seem to differentiate between the 

screenshot of the video and a table (line 167, see Figure 36). They both agreed on creating a 

graph to represent the relationship between height and area.   

 

Figure 36 

 The Figure Salim Named as a Table 

 

 

Salim said: “triangle is mantikli;” the wording is half English and half Turkish. The 

students’ source of difficulty may come from the language itself. Still, I want to highlight that 

here, enacted task characteristics—journal prompting statements and questions—pushed the 
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students to select for themselves what representation to use (see Figure 36). In Salim and Eren’s 

case, a graph was chosen to talk about quantitative relationships.  

When Salim and Eren were prompted, “What is the relationship between the length of the 

paint roller and the amount of the area covered?” they wrote: “As the length of the paint roller 

increases the area covered increases” (see Figure 36). Alongside that, they wrote: “As the height 

of the triangle increases area increases.” Eren’s thinking shifted from thinking about the paint 

roller to seeing the area covered as a triangle and referring to the paint roller’s length as the paint 

roller’s height.  

The magnitude of the change in both quantities was not specified in their wording. As 

such, asking Eren and Salim to create multiple representations to represent the relationship may 

have supported them in identifying magnitudes of the change in covarying quantities in each 

quantity—coordination of growth. The students’ graph and their table of the height and the area 

of the growing triangle, along with their reasoning, “as the length of the paint roller increased the 

area covered increases,” indicated that Eren and Salim coordinated the length of the paint roller 

with the amount of area covered by the paint roller in parallel with a table and a graph without 

further explanations of how the relationship grows with a specific magnitude. I concluded that 

enacted task characteristics that encourage students to select a type of representation may 

constitute a source of support for students in creating a representation, which is more meaningful 

for them in presenting quantitative relationships. Below, in Table 26, I provide a summary of 

enacted task characteristics that support launching students’ RF. 
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Table 26 

 A Summary Table for Launching Students’ Representational Fluency   

Enacted Task 

Characteristics 

Definition Example 

Visualization-

draw-sketch 

Tasks were purposeful in 

sequencing “unstructured” 

visualization without a grid 

before introducing a formal 

Cartesian grid as a design 

principle to support students’ RF 

and FT—thinking graphically 

with and without a grid. 

How do you visualize the relationship between the area 

painted and the length of the paint roller? 

Asli: “So, for (a), I said the area is increasing while the 

length is increasing [Figure 34 (a), she responds the above 

question].”  

Yener: “Well, I would agree with it. What it be uhm…” 

[Yener wrote:] “It would be curve line that’s y-value 

would increase as the x-value increases” [Figure 34 (b)]” 

Creating and  

making 

connections 

among 

representations 

Creating and connecting among 

representations while reasoning 

about quantities and quantitative 

relationships. 

“What are the height and the area mean in this graph? 

How is that relationship similar or different on the graph 

and the table?” 

Eren: “No, look, look, [he points at the question above] 

‘Respond the above question using two different 

representations (e.g., diagram, graph, table, or symbolic 

equations)’ [on Figure 35] diagram, table, or symbolic 

equation.” 

Salim: “The symbolic equation. Al sana [here you go], 

height times length divided by two. What are you 

thinking? Um Hmm. Ne kullanalim? [What should we 

use?] Graph mi yapalim? [Should we make a graph?]” 

 

 

Socio-mathematical Norms. The second major finding (i.e., category) of the learning-

ecology framework is specific socio-mathematical norms that support students’ meaningful 

understanding of quadratic functions. In small- and whole-group settings, students are put in 

charge of their learning by explaining, arguing, being skeptical, and asking their peers questions 

(Yackel & Cobb, 1996). The findings suggested two main socio-mathematical norms that played 

a role in supporting students’ meaningful understanding: (a) peer pressure for justifications and 

(b) peer approval.   

Peer Pressure for Justification. Justification in this present study is defined as students’ 

attempts to explain why and how to each other. The justification students provide is not 

evaluated for validity or invalidity. Instead, justification is intended as support for all students; 

when asked why and how, most students try to articulate why their thinking should be valid.  
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Peer pressure for justification is defined as a situation beginning when students explain 

their thinking or claim the relationship of quantities. Their peers might or might not fully 

understand their statement. Still, they do contradict their peers’ reasoning. In situations like this, 

students pressure their peers to articulate their decisions more clearly by asking them to justify 

why and how—challenging peers’ thinking by asking them to explain why, and/or giving 

contradictory examples to their classmates’ statements.  

In this section, I will provide my findings of socio-mathematical norms related to peer 

pressure for justification. The types of understanding and reasoning that were created by peer 

pressure for justification included: (a) comparison between graphs of quadratic functions and 

exponential functions; (b) realization of limited knowledge of quadratic functions; (c) 

justification via the question “where is your reasoning?” (d) skepticism about how two quantities 

are related; and finally, (e) justification of whether a quantitative relationship is linear or 

nonlinear. 

The first form of a peer pressure for justification is when students push each other to 

compare between graphs of quadratic functions and graphs of exponential functions. This kind of 

peer pressure may create instances for students to engage in creating, comparing, and contrasting 

graphs of exponential versus quadratic functions, especially when asked why and how by their 

peers. Via peer pressure for justification in small- and whole-group settings, students may be 

positioned as being responsible for justifying their thinking, while their peers push them to 

explain why and how. Examples of challenging peers’ thinking included students asking their 

peers to explain why they thought the relationship between height and area is a quadratic 

relationship or offering contradictory examples of why the relationship was not exponential.  
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In the following vignette, Salim and Mert were exploring the relationship between the 

length of the paint roller and the amount of the area being covered in a small-group setting. They 

watched the paint roller task video.  

168  NA: So, does exponential touches or not touches to zero? 

169  Salim: Yeah, it does. 

170  Mert: I am confused. It does? 

171  NA: Show me where touches to zero.  

172  Salim: Where it touches? I said, so quadratics.  

173  Mert: Wait, then it [the relationship between the height of the triangle and the area, 

in the paint roller situation], can be exponential? 

174  Salim: it cannot be.  

175  Mert: Why can’t it be?  

176  Salim: I said so.  

177  Mert: Very good explanation. Look like this. [He sketches the graph on Figure 37 

(a).] 

 

Figure 37 

 (a) Mert’s Sketch of Exponential Function, (b) Salim’s Sketch of Quadratic Function, and (c) 

Salim’s Symbolic Equation of the Relationship of the Length and Area of the Triangle  
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178  Salim: Look, if it is 𝑥 squared, then it cannot be exponential.  

179  Mert: Why can it be? 

180  Salim: Nasil acikliycam bunu? [How am I going to explain this?] 

181  Waleed20: What if we graph both as quadratic and exponential, then we think about 

the difference. 

182  Salim: Yeah, let’s do that.  

183  Mert: I know what it is, U shape 

184  Salim: U, but this side [negative x values] does not mean anything. It is only this 

side. But still quadratics [he sketches the graph shown in Figure 37 (b)]. 

185  Mert: What is the point of this line [the half of the parabola crossed out by black 

pen, see Figure 37 (b)]?  

186  Salim: It just, um. It is just how.  

187  Mert: Then, that line exists, right?  

188  Salim: Yeah.  

189  Met: But it cannot exist because it is negative. The negative area is not a thing 

190  Salim: It can exist because it is an equation [Figure 37 (c)]. It is going to exist 

anyway. 

Salim stated that exponential function touched the origin, then NA repeated the statement 

(line 168). Salim also stated that the relationship between length and area is constitutive of 

quadratic growth (line 172). Skeptical of this explanation, Mert (line 174) asserted that if an 

exponential function can go through the origin, then the relationship between the length of the 

                                                 
20 Although I will articulate more about this in the teacher pedagogical moves section, I would like to draw attention to line 64, 

where the teacher-researcher is prompting students to create graphs of quadratic and exponential functions for justifying and 

comparing within two parallel representations.   
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paintbrush and area constitutes exponential growth (lines 170-175). He was challenging Salim to 

identify the relationship and a reason for the distinction between exponential and quadratic 

functions graphs (line 177).  

Although Salim was in 10th grade and Mert was in 8th grade, Mert was still pushing Salim 

to explain why the relationship was quadratic and how it differed from exponential growth if the 

exponential function passed through the origin (line 56–60). In order to question Salim’s 

reasoning, Mert sketched an exponential function graph that was so close to the origin that it 

canceled out the negative domain, which substantiated his argument about how the paint roller's 

length and the painted area’s graph would look if it passed through the origin. Mert constructed a 

contradictory example to challenge Salim’s statement (line 177–179).  

In response, Salim clarified his explanation, stating “I said so” in response to the concept 

that “if it is x squared, then it cannot be exponential” (line 178). Mert’s interpretation of 

quadratic functions was a parabola (line 83). Salim cut out the negative domain and formed a 

parabola, which contradicted Mert (line 183–184) on Figure 37 (b), a fact that Mert interpreted 

such that a quadratic function with half a parabola and length and height cannot have a negative 

domain (line 173 and line 183). Asking or explaining why and how in small-group interactions 

benefited both Mert and Salim. Mert’s conception of quadratic functions became visible to 

Salim, while Salim’s perception of having exponential functions pass through zero became more 

discernable. 

The vignette highlights several points related to socio-mathematical norms. Salim and 

Mert used two representations—a graph of the quadratic function and a graph of the exponential 

function—in parallel. Salim perceived that if a function had a symbolic equation of 𝑥2, it must 

be a quadratic function (line 178). For Salim, the symbolic equation on Figure 37 (c) had to have 
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a negative domain because it showed a full parabola. Thus, even if quantities could not be 

negative, the function of height and area had to present a parabola. Salim named the relationship 

as a quadratic function based on a canonical symbolic equation. He used a graph and a symbolic 

equation in parallel to argue that the relationship was a quadratic function. Salim's reasoning was 

too vague for Mert. Salim did not accept the explanation that simply using a symbolic equation 

[Figure 37 (c)] and graph [Figure 37 (b)] sufficiently substantiated that the relationship 

represented was a quadratic function. In contrast, Mert perceived that the graph represented the 

relationship between the length of the paint roller and the area covered. Therefore, Mert 

pressured Salim for a justification about when the graph had a positive and negative domain, 

saying that graph could not represent quantitative relationships since quantities did not exist in 

the negative domain.  

This vignette suggests that social interactions such as peer pressure for justification 

among small and whole groups fostered more sophisticated student reasoning and understanding. 

As we observe in the above vignette, students benefited from asking each other to explain why 

and how when they were trying to explain the differences between the graphs of quadratic 

functions and the graphs of exponential functions. Students pressured each other to justify how 

quadratic function graphs and exponential function graphs were similar to and different from one 

another, even though both graphs represent a quantitative relationship. In the vignette, both 

Salim and Mert experienced peer pressure that compelled them to explain their thinking. These 

peer interventions constitute a form of support that results in a more meaningful understanding 

for both students of what quadratic functions represent—the quantitative relationship which is on 

the positive domain of the graph and how it compares to the exponential function graph.  
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The second form of peer pressure for justification helps set a groundwork for students to 

recognize what they know or don’t know about quadratic functions. Socio-mathematical norms 

that put pressure on students to justify their reasoning might move students away from vague 

explanations, such as naming a quantitative relationship as quadratic, to more complicated 

explanations of how the quantitative relationship could be presented as a graph and a symbolic 

equation. I found that socio-mathematical norms could help students to recognize that while they 

knew what a quadratic function looked like, they might not know what it meant.    

Eren and Salim explored the relationship between the height, length, and area of the 

growing rectangle. The students elaborated on the graphs and the symbolic equations of 

quadratic functions in parallel. Consider the growing rectangle task and the vignette below:  

191  Salim: Quadratics. Last time we did this, it [the relationship between the height and 

area of a growing triangle] was quadratics.  

192  Eren: Why?  

193  Salim: Because the equation is quadratic.  

194  Eren: But why? 

195  Salim: It comes out to be quadratics 

196  Eren: Why?  

197  Salim: Because when you graph, it looks quadratics.  

198  NA: What do you mean by that?  

199  Eren: Yes, explain.  

200  Salim: That is height time length is equal A. No, it is height times length. 𝑥 squared 

divided by 2 [ 
𝑥2

2
] [Figure 38 (a) & (b)]; when you graph this, it came out quadratics  

201 Salim: Quadratics. It is height time length cm squared. What do you think?  
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Figure 38 

 (a) Salim’s Symbolic Equation, (b) Salim’s Graph of that Equation, and (c) Salim’s Graph of an 

Exponential Function 

 

                                 (a)                                                   (b)                    (c)   

202 Eren: I do not know what quadratic means.  

203 Salim: Here [he draws a parabola—(Figure 38 (b)] 

204  Eren: I know what it looks like.  

205  Salim: This is exponential. [Salim’s drawing on Figure 38 (c)].  

206  Eren: I know what it looks like, but I forgot what it meant. What does quadratic 

mean? 

207  Salim: This kind of graph.  

As we see in the vignette, Salim made a connection back to the earlier growing triangle 

task—the paint roller task (line 191). He saw the relationship between the height of the triangle 

and its area as similar to the height and the area of a rectangle. He reminded Eren that they had 

done this before, and it was a quadratics function. Eren probed Salim’s thoughts by asking 

“Why?” Salim’s response about the symbolic equation registered his recognition that the 

quadratic function had an equation of 𝑥2(line 193). Salim’s justification did not convince Eren, 

and he continued to probe Salim by insisting he explain why the relationship was quadratic (line 

194). Salim justified his position by explaining that when he created a symbolic equation 
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representing the height and the area, it became an x squared, and the graph of the equation  𝑦 =

𝑥2 was a parabola [see Figure 38 (a) and (b) and lines 195–200]. According to Salim, that was 

why the relationship between the height and area of the growing rectangle was quadratic.  

Eren and Salim continued with their conversation about what it meant to be quadratic. 

Salim stated that area is the multiplication of the rectangle’s length and height, which is in 

centimeters squared (line 201). He asked, “What do you think?” Eren’s response was that he 

knew what a quadratic function looked like, but that he did not understand what it meant to be 

quadratic: “I know what it looks like, but I forgot what it meant.” These socio-mathematical 

norms facilitated the students’ ability to redefine the concepts for themselves by talking about 

quadratic functions and what it meant to be quadratic (line 206). 

In small-group settings like this one, students pushed each other to justify the quantitative 

relationship—the relationship between the length of the paint roller and the area covered. The 

justification involved using two representations, a graph and a symbolic equation, in parallel as 

the students proved their reasoning, which also supported the students’ RF.  

As we see above, even if students could not articulate what it meant to be a quadratic 

function that represents quantitative relationships, they acknowledged to their peers that they 

knew what a quadratic function looked like, but they didn’t know what it meant. The peer 

pressure for justification helped students to realize what they knew and didn’t know about 

quadratic functions. These realizations are an important part of the learning process because they 

might push students to wonder about what it means to be a quadratic function; additionally, 

having students re-voice what they know and don’t know might set a groundwork for further 

exploration.  

The third form of peer pressure for justification in socio-mathematical norms was when 
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the students asked about their peers’ reasoning when their peers made a statement about 

quantitative relationships. Students pressured each other to justify their statements, or guessed by 

asking each other “where is your reasoning?” In the following vignette, Mert and Tarik pressure 

each other to explain their reasoning about a quantitative relationship.  

Mert and Tarik watched the growing rectangle task video, and they were investigating the 

question, “What is the relationship between the height and the area of a rectangle?” Mert and 

Tarik talked about explaining what it means to have an “uneven rate.” Through peer pressure, 

Mert reasoned that if the rate among quantities is not constant, then a graph of these quantities 

should be a curve. See the interaction below and consider the growing rectangle task:   

208  Mert: Oh, OK. So, OK, I’ll go, I guess. OK. The height increases by one each time 

the area increases that are uneven rate. And because of that, it is, I’m not sure. It’s 

either exponential or quadratics. 

209  Tarik: It is exponential.  

210  Mert: because it’s, it can be quite don’t because if you multiply, wait, no, I don’t 

know. It’s an exponential, I guess. 

211  Tarik: Where’s your reasoning? 

212  Mert: Oh, my reasoning is because it is, it is growing at an unequal rate and the 

source like curving and when it’s occurring, it’s an exponential thing. Exponential 

function [see Figure 39 (b)].  
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Figure 39 

 (a) Tarik’s Graph for the Paint Roller Task, and (b) Mert’s Written Artifacts for the Area for the 

Paint Roller Task.  

 

(a) (b)  

Note. Mert wrote in Figure 39 (b): “The relationship is exponential because the area is growing 

at an unequal rate while the height is growing by one each time.”  

 

In the above conversation, Mert and Tarik reasoned about the relationship between 

quantities in a scenario in which the rate of growth between quantities—the height and the area 

of the growing rectangle task—is not constant, so the graph curves. Mert observed that the height 

increased 1 cm each time, and the area was increasing with “uneven rate,” indicating that the 

relationship was either exponential or quadratic (line 209). Tarik named it as exponential (line 

210), but Mert was skeptical. Subsequently, Tarik interrogated Mert’s thinking by asking, 

“Where is your reasoning?” (line 211).  

Questioning a peer’s reasoning was a form of instructional support that emerged from 

small-group engagement. Given his peer’s inquiry, Mert explained his reasoning, stating, “It is 

growing at an unequal rate and the source like curving and when it’s occurring.” When Tarik 

pressed Mert to articulate his reasoning, he supported Mert in deducing that the area and height 

had unequal rates of growth; consequently, these two quantities should be curving when they 
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increase. Granted, Mert and Tarik did not define or articulate how the area and the height of the 

rectangle curved and the ratio between them, but they did establish a norm in their small group 

that when they state a claim, they need to explain the reasoning behind the claim. If the 

explanation is not provided, then one of the peers should raise the question: “Where is your 

reasoning?”  

The fourth form of peer pressure for justification is skepticism about a peer’s explanation 

or statement. Being skeptical about a peer’s explanations or reasoning is about disagreeing with 

the other students’ thinking and pushing them to be specific how the quantities are related. And 

peer pressure for being specific about how two quantities are related is a form of support that 

might create a foundation for covariational reasoning; as we see in this study, students’ 

skepticism and peer pressure encouraged their peers to be specific about the relationships 

between quantities.   

The below vignette is taken from Eren and Mert’s small-group interactions when they 

engaged in exploring the falling object task with the focus question, “What is the relationship 

between the height of the falling object and the time it takes to fall?”  

Consider the falling object task and the vignette below:  

213  Mert: It’s fallen down, it goes up to 60 16.02 meters up which 1.1 seconds 

214  Eren: But you’re not answering the question. 

215  Mert: This drops down. 

216  NA: Think about it. Think about how time affects the height of the falling object. 

217  Mert: Um, it, um… 

218  Eren: How does the time affected the object? But it goes, read the questions. How 

does time affect the height of the falling object? 
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219  Mert: It makes the increase in decrease, increases. 

220  Eren: You’re not answering the question. 

221  Mert: Yes, I am. 

222  Eren: How does the time affect, the time? 

223  Mert: Affects height by increasing and decreasing. 

224  Eren: How does the time affect the height of the falling object? 

225  Mert: More time, uhm as time increases… 

226  Eren: It’s not really like how is the time... 

227  Mert: The time affects the height. 

228  Eren: But how. 

In the small-group interaction, Mert stated that the object went up 16.02 m for 1.1 

seconds (line 213). Mert’s reasoning did not involve any variation among the time and the height 

of the falling object, and Eren objected to Mert that he was not answering the question (line 214). 

Mert responded by saying the object falls down (line 215). Eren became skeptical about Mert’s 

answer to the question and he pressured Mert by reading the question (line 218): “How does the 

time affect the height of the falling object?” Eren pressured Mert to be specific about the 

relationship by reading the question aloud. In response, Mert indicated that he only saw the 

change in height. As such, he stated that height is increasing and decreasing (line 219). Still, 

Eren urged Mert to note the change in height and in the time: “You are not answering the 

question… How does the time affect the time?” Eren’s questions were assertions that a change in 

height was affected by a change in time. Mert still did not see that time was increasing. 

Nonetheless, Eren did not accept the height and time as two quantities that were varying 

separately (line 224). Eren insisted to Mert that the changes in height and time were relevant, 
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contending that they covary (lines 222–226). Once Mert finally accepted Eren’s perception of the 

correlation between time and height (line 227), Eren still pressed him to explain how time affects 

the height by saying “but how.”    

Students being skeptical of peer responses about how two quantities are related may aid 

the ability of the students involved to conceive that two quantities are related and that a change 

in one affects the change in the other. Therefore, students exerting peer pressure on other 

students to be specific about how two quantities are related can be a form of support in 

developing the students’ initial thinking about covarying quantities. Thus, socio-mathematical 

norms supported students’ quantitative reasoning.   

The fifth form of peer pressure for justification of a statement is another form of support 

in learning about quadratic functions that represent covarying quantities. Peer pressure played an 

important role in supporting students’ ability to name a quantitative relationship as linear or 

nonlinear by getting peers to discuss how the two quantities covaried together.  

Consider the following vignette and student artifacts and the falling object task: 

229 Eren: OK, so let me just uhm every point one second. The height of the amount that 

the height increases decrease by 0.1 meters. Every 0.1 seconds, the amount that the 

height increases decrease by one point second or all the cases but one meter [Figure 

41 (a)].  

230  Eren: So, it’s a negative linear graph [Figure 40 (b)] 

231 NA: Negative linear graph. Why? 
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Figure 4021 

 Eren’s (a) Written Statement, (b) Graph, and (c) Table of the Relationship between the Falling 

Object’s Height and the Amount of Time it Takes to Fall. 

 

(a)                                                     (b)                             (c)  

 

232  Eren: Because I put, actually if I put time over here. 

233  Mert: What? 

234  Eren: It would be a normal linear graph. 

235  Mert: No, wait, is it, it’s not going to go. It’s shape as it goes on. It’s going to start 

going down, down, down. When we were like going over there, it’s going to go 

down eventually.  

236  Eren: Eventually. According to this not yet, but if I go past the one point 81 seconds 

point. Just graph for this. I want to graph for that. It’s going to be. It’s going to be 

linear. [Figure 40 (a)] 

237  Mert: No each time. It is not.  

238  Eren: Look look. 1.62. 

239  Mert: But doesn’t increase and decrease at the same rate. 

                                                 
21 Figure 40 is same as figure 29; I have added figure 40 to help the reader to visualize the concrete representations I reference in 

the text. 
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240  Eren: Yes, it does. Look at it. I’m literally showing [Figure 40 (b) and (c)] 

241  Mert: No. Every time it’s not going to by one. It’s going by 1.6 and 1.3, 1.43 and 

1.33. 

242  Eren: Sure, sure. OK, it makes sense. Now that I think about, yeah. OK. That makes 

more sense. So, as the time increases, the height. It’s not linear. I figured that out. 

In this vignette, Eren interpreted the height in relation to the time on the table as a 

coordination of the values of the second difference in height with the first difference of time 

values (line 229). He interpreted that the amount that the height increased also amounted to a 

decrease of 0.1 m for every 0.1 seconds. He identified a linear relationship between the second 

change in height, coordinated with the first change in time (lines 230 & 234). In graphing such a 

relationship, Eren concluded that the relationship was linear since the increase in height 

decreased by 0.1 m for every 0.1 seconds [Figure 40 (b)].  However, Mert did not agree about 

calling the relationship linear, and he pressured Eren to justify his reasoning. He saw the 

cannonball as going down each time. He did not see the second difference in height. Mert argued 

with Eren that the equation was not going to be linear; he also noted that the relationship 

between the height and time was not growing at the same rate, which is why it could not 

constitute linear growth (lines 235–239). As a result of Mert’s observation, Eren began to notice 

a variation in the amount that the height increased every time the time increase was not constant 

(line 242). In other words, the level of increase was not constant. As such, Eren responded: 

“Sure, sure. OK, it makes sense. Now that I think about, yeah. OK. That makes more sense. So 

as the time increases, the height. It’s not linear. I figured that out.”  

After some probing by his peer, Eren realized that the coordinated change between height 

and time in the falling object task was not linear. So Mert’s pressure to justify the rate between 
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the height and the time helped Eren to realize he was coordinating the first change in height with 

the second change in time, which is not a linear increase.  

I summarize the five types of peer pressure for justification described above in Table 27.  

 

Table 27 

A Summary of Socio-mathematical Norms: Peer Pressure for Justification   

 

Peer Approval. Peer approval is the second component of socio-mathematical norms that 

facilitated students’ meaningful learning. In this study, I define peer approval as a response or 

statement on which students agree with one another. And peer approval can aid students in 

making sense of quantitative relationships when learning about quadratic functions. When 

students’ statements get approved by their peers, that might motivate them to further justify their 

Type of Learning via Peer Pressure for 

Justification   

Example 

Comparison between graphs of 

quadratic and exponential functions 

Salim: Look if it is x squared, then it cannot be exponential. 

Mert: Why can it be? 

Realization of a limited understanding 

of quadratic functions—knowing what 

they look like but not what they mean 

 

Salim: Quadratics. It is height time length cm squared. What do you 

think?  

Eren: I do not know what quadratic means.  

Eren: I know what it looks like, but I forgot what it meant. What 

does quadratic mean? 

Justification via the question: “Where 

is your reasoning?” 

Mert: Because it’s, it can be quite don’t because if you multiply, 

wait, no, I don’t know. It’s an exponential, I guess. 

Tarik: Where's your reasoning? 

Skepticism about how quantities are 

related 

 

Mert: It makes the increase in decrease, increases. 

 Eren: You're not answering the question. 

 Mert: Yes, I am. 

 Eren: How does the time affect the height of the falling object? 

Justification of whether a quantitative 

relationship is linear or nonlinear    

 

Mert: But doesn’t increase and decrease at the same rate. 

 Eren: Yes, it does. Look at it. I’m literally showing.  

 Mert: No. Every time it’s not going to by one. It’s going by 1.6 and 

1.3, 1.43 and 1.33. 

Eren: Sure, sure. OK, it makes sense. Now that I think about, yeah. 

OK. That makes more sense. So, as the time increases, the height. 

It’s not linear. I figured that out. 
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statement. Peer approval is a form of socio-mathematical norms that further encourages students 

to be specific about how quantities will change. 

Consider the brief exchange below between Eren and Salim as they discussed the falling 

object task.     

243 Eren: No, the range is not good. The range is just going to continue increasing by 3. 

The range is just going to continue with that. 

244 Salim: That is true. 

245 Eren: Because the ball cannot go back. It’s always going to increase. So, the height is 

going to decrease, 36, 21, Yes. OK. Yeah. Yeah. The height is going to be zero. 

When students made a statement that got approved by other peers in the small group, it 

often motivated them to extend or further their explanations. As we observe above, when Eren 

noted that the range was incorrect and would increase, Salim voiced his approval of Eren’s 

observation by saying, “That is true.” His peer’s approval invited Eren to unpack his observation 

by explaining why the range would continue to increase: “Because the ball cannot go back.” 

Furthermore, Eren provided a contradictory example to make his statement stronger. He said: 

“So, the height is going to decrease, 36, 21, Yes. OK. Yeah. Yeah. The height is going to be 

zero.”  

As the above situation supports, when students make a statement (line 243), and their 

peers approve the statement (line 244), they may gain confidence and provide complementary 

evidence of their thinking to make their case stronger (line 245). Hence, gaining peer approval 

for their claims may push students to further develop their explanations in small-group settings.  

In Table 28, I provide a summary table for the elements of students’ socio-mathematical 

norms that I discussed above. 
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Table 28 

A Summary of Socio-mathematical Norms: Peer Approval  

Socio-

mathematical 

Norm 

Definition Example 

Peer 

Approval  

Peer approval is defined as 

when a statement made by a 

group member gets approved 

by the rest of the group.   

Eren: No, the range is not good. The range is 

just going to continue increasing by three. The 

range is just going to continue with that. 

 Salim: That is true. 

 

Teacher Pedagogical Moves. The last component of the learning-ecology framework is 

teacher pedagogical moves.  I define teacher pedagogical moves as questions or statements a 

teacher raises to encourage or elicit student reasoning about quantities and their representations. 

My findings suggest that effective teacher pedagogical moves cluster around: (a) supporting 

students’ co-emergence of RF and FT, and (b) creating a foundation for students’ FT.  

Supporting Students’ Co-emergence of Representational Fluency and Functional 

Thinking. The first type of teacher pedagogical moves are those clustered around 

characterizations of student reasoning, including creating, translating, and connecting 

representations when reasoning about quantities and quantitative relationships. I found that 

students’ co-emergence of RF and FT was supported via specific teacher pedagogical moves 

when the context involved quantitatively rich sets of tasks within small- and whole-group 

settings. Teacher pedagogical moves that supported students’ co-development of RF and FT 

included two main elements: (a) creating representations of quantitative relationships; and (b) 

connecting representations to reason about quantities and quantitative relationships. In the 

following section, I will introduce collections of teacher pedagogical moves that aided students 

in these two activities.  
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First, I found that supporting students in their creation and interpretation of 

representations involved several sets of teacher pedagogical moves. Exactly what sets depended 

on the features of the particular type of representation and students’ experience with such 

representations. This cluster of teacher pedagogical moves includes: (a) prompting students for 

generalizations about quantitative relationships; (b) pushing students to record data about 

changing quantities; (c) encouraging students to create a table for the data; and (d) asking 

students how the table will help them to see the relationship.  

Consider the following vignette, in which Asli and Yener were investigating the height, 

length, and area of the growing rectangle.   

246  Asli: I am looking at height and length when the height so like from, it took in the 

time when the height increased by 1 cm, length increased by 2 cm. And I am going 

to just look at the values.  

247  NF: Does that always happen? 

248  Asli: Yes, I was going to check.  

249  Yener: At one point when this change three, and it was changing by four [he wrote 3 

cm, 4 cm].    

250  NF: Maybe you could record some of the values that you’re paying attention to. You 

kind of collect that data to compare.  

251  Asli: Where does it start?  

252  Yener: it does not constant, be 0.2 cm away, 0.2 cm different change little bit.  

253  Asli: Can we get the piece of paper? We try to record some height and length 

values, maybe to see a relationship. 

254 NA: How are you going to record it? Are you making a table? 
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255  Asli: It makes sense because we just had to guess numbers.  

256  NA: How that table [Figure 41] is helping you to see the relationship between the 

height and area? 

257  Asli: It just helps me visualize how to like as the height is increasing by one the 

length increases by two because you can clearly see the difference [Figure 41 (a)]. 

258  NA: Two what? One what? 

259  Asli: 2 cm, for each 1 cm that height increases, the length increases by 2 cm or vice 

versa for each 2 cm length increases, the height increases by 1 cm. 

  

Figure 4122 

(a) Asli’s Table and (b) Yener’s Table for the Height, Length and Area of the Growing Rectangle  

 

(a)                                             (b) 

 

This vignette provides evidence of four teacher pedagogical moves that are relevant to 

supporting students in creating and interpreting within a table when reasoning about quantities 

and their relationships. First, when students noticed how two quantities changed within a single 

point on a diagram (line 246), the teacher pedagogical move urged them to generalize by asking 

if that always works for other points (line 247). Second, when students started talking about 

                                                 
22 Figure 41 is same as figure 15; I have added figure 41 to help the reader to visualize the concrete representations I reference in 

the text 
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changes in points (line 249), the teacher pedagogical moves encouraged them to record the data 

(line 250). Third, when the students loosely recorded the magnitude of the quantities, as in line 

249, when Yener wrote quantities without labeling them as height or length, the teacher 

pedagogical moves suggested that students record their data in a table (lines 250–253). 

Consequently, both Asli and Yener created a table clearly delineating the height, length, and area 

of the growing rectangle (Figure 41). Finally, to support students’ quantification, a teacher 

pedagogical move asked students how the table they created would help them detect the 

relationship between quantities (line 256). 

I found that prompting students to create and interpret quantities on a diagram and asking 

them how to represent the relationship in a table drew upon a set of teacher pedagogical moves. 

This set of teacher pedagogical moves is crucial, because it may have impacted a shift in Asli’s 

reasoning. Using a diagram, she was attempting to coordinate a change in height and length on a 

single point (line 246). Later on, she said: “for each 1 cm that height increases, the length 

increases by 2 cm or vice versa for each 2 cm length increases, the height increases by 1 cm.” 

Her explanation became more sophisticated; not only did she interpret how the height and length 

of the growing rectangle were related, but she also flipped the quantities to argue how they were 

related interchangeably to a diagram and table. This development in Asli’s explanation provides 

evidence of a shift in the level of sophistication of her thinking, a process of reasoning 

development that the teacher pedagogical moves facilitated.  

Note that with this claim, I am not arguing that the shift in student reasoning occurred 

because of teacher pedagogical moves; instead, I assert that teacher pedagogical moves helped to 

guide that shift, which was then reinforced in small-group discussions that engaged in the 

quantitatively productive tasks.  
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The second type of teacher pedagogical move that is helpful in encouraging students’ co-

emergence of RF and RT are those moves that support connections among representations. I 

found that asking students what the graph of the situation might look like aided them in 

connecting a symbolic equation and graphs of the quadratic function while engaging in reasoning 

about quantities and their relationships. I found that asking students what the graph of a vertex-

form quadratic equation was might help them to make sense of the terms and variables in the 

equation and identify the vertex point, both on the symbolic equation and the graph of the 

equation.  

In the below vignette, Yener and Asli were investigating the relationship between height 

and time in the falling object task. They used the PHeT simulation to measure the height and 

time of the falling object. Then they created a symbolic equation, 𝑓(𝑥) = (𝑥 − 2.07)2 + 21.38.    

260  Yener: The vertex forms. So, the vertex for this is uh, this, uh, this 2.07. [He writes 

𝑓(𝑥) = (𝑥 − 2.07)2 + 21.38]. [Figure 42 (a)]   

261  NA: So, if you think of a graph of this, how does it going to look like? 

262  Yener: [He is pointing at screen and vertex form above with one hand, and the other 

hand is holding a pen and pointing at the vertex point in the equation, Figure 42 (b).] 

This, I guess this is the vertex form and here this 2.07.  

263  Yener. So, this would be a time, this height. [He sketches the graph below and 

places a vertical line on the vertex.] [Figure 42 (c)].  
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Figure 42 

 (a) Yener’s Symbolic Equation, (b) Image at the Vertex on the Screen and the Equation on the 

Paper, and (c) Yener’s Graph of the Height and the Time on the Falling Object Task.     

 

Yener created a symbolic equation based on the time’s numerical values and the height 

from the screen of the PhET simulation. He called it a vertex form; he wrote                      

 𝑓(𝑥) = (𝑥 − 2.07)2 + 21.38 (line 260). He interpreted the simulation as a path of the 

cannonball, which is essentially a graph of the time and the falling cannonball’s height [Figure 

42 (c)]. The simulation allowed Yener to measure individual points by using the simulation’s 

components of measuring height, time, and range.  

Yener interpreted the simulation as a falling object graph, identifying time as the x-axis 

and height as the y-axis [Figure 42 (c)]. To help Yener to identify the vertex on both the equation 

and the graph, NA asked Yener how this situation would look on a graph. As we see, the 

question does not emphasize any specific type of graph, but rather the graph of the given 

situation. So, the teacher pedagogical move itself is prompting Yener to create a graph to show 

how the vertex looks on the graph and how that is connected to the symbolic equation’s vertex 

form (line 262 and 263). In other words, asking Yener about the graph of this particular situation 

might have created a foundation for him to establish a connection to the given symbolic 

equation, the simulation graph, and a graph of his choice—Yener sketched Figure 42 (c). Note 
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that Yener identified the vertex points on the computer screen and on the equation, and then 

shaded them on his sketched graph.  

 This vignette provides evidence that one way to prompt students to make a connection 

among and within a graph and a symbolic equation while reasoning about quantities is to ask 

them to imagine what the graph of the equation would look like in that situation. From this 

vignette, I concluded that asking students about graphs of quantitative relationships might set a 

groundwork for students to create connection between the symbolic equations and the graphs of 

quantitative relationships.   

Teacher pedagogical moves play an important role in prompting students to make a 

connection between a table and a graph when reasoning about quantitative relationships. In 

particular, when students only see the quantitative relationship on a single representation, they 

may not feel the need to look at the relationship from another viewpoint and articulate how the 

quantitative relationship would be different. With that in mind, teacher pedagogical moves at this 

stage can push students to articulate how the quantitative relationship would look on a graph and 

a table. Therefore, teacher pedagogical moves are a form of support that can reinforce students to 

further articulate quantitative relationships by making a connection between tables and graphs. I 

refer to Asli and Yener’s vignette23 (lines 129–138) in the section earlier in chapter 5. The 

section is called Level 3: Flexible Connection Between Representational Fluency and Functional 

Thinking.  

Yener described that each time the area was increasing by four by coordinating 1 cm with 

the height and the change of change of area on a tabular representation, he said: “How much the 

area changing each time. Uhm the change, in the amount the area changes will be constant for 

                                                 
23 This vignette is cited in the section Level 3: Flexible Connections between Representational Fluency and Functional Thinking, 

at chapter 5, part 1 from line 129-138.  
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each time. So, this time it changes by six, the next time it changes by 10, which is four more than 

six, next time it changes 14, which is four more than 10. So, it keeps increasing like that. The 

change in the area will be four each time. [Pointing at the table on Figure 30 (a).]. Yener saw the 

relationship between height and area as constant, which increased by four cm2(line 129). Then 

NF asked him how the relationship would look like on a graphical representation (line 132), she 

said: “How is this you just talked is related to the way the area is changing is the same? How can 

you see that in the graph? How is this related to the graph? [NF points at graph on Figure 30 (b).] 

This was a form of teacher pedagogical moves which helped Yener to recognize the same 

quantitative relationship on graphical representations as distance (line 136 and 138). Yener said: 

“Because this would be, oh, wait. So, if you look at the points here, there would be, this is 

between these two points, the first two will be 2, and this is between this one and the one over 

there will be six, which is four more than two, and it kept going all the 10, then 14, and it keeps 

going increases four by each time [Pointing at the graph below Figure 30 (b).] Yeah, they all 

have equal distances.” With this vignette, we noticed one more time that teacher pedagogical 

moves might aid students to make connection between graphs and tables of quantitative 

relationships. I present a summary of the teacher pedagogical moves discussed in the above 

section in Table 29. 
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Table 29 

 A Summary of Teacher Pedagogical Moves for Supporting Students’ Co-emergence of 

Representational Fluency and Functional Thinking  

Teacher Pedagogical 

Move 

Example 

Teacher pedagogical 

moves to support 

creating a 

representation of 

reasoning about 

quantities 

NF: Maybe you could record some of the values that you are 

paying attention to. You kind of collect data to compare. 

NA: How are you going to record it? Are you making a table? 

NA: How that table is helping you to see the relationship 

between the height and area? 

Teacher pedagogical 

moves to support 

connections among 

representations of 

quantitative 

relationships 

NA: So, if you think of a graph of this, how does it going to 

look like? 

NF: How is this you just talked is related to the way the area 

is changing is the same? How can you see that in the graph? 

How is this [table] related to the graph?  

 

Creating a Foundation for Functional Thinking. In this section, I will articulate the 

second component of effective teacher pedagogical moves for supporting students’ co-

emergence of RF and FT: creating a foundation for students’ FT. Teacher pedagogical moves in 

this cluster include: (a) probing students to identify the attributes of an object or situation; (b) 

probing students for a unit to measure an attribute of an object; (c) probing students for 

coordination among quantities; (d) encouraging students to justify their reasoning about the 

relationship between quantities; and (e) probing students for continuous covariational reasoning.   

The first main category of teacher pedagogical moves for creating a foundation for 

students’ FT is probing students to notice and recognize objects’ or tasks’ characteristics. This 

includes asking students to: (a) isolate relevant quantities; or (b) visualize or sketch the 

appropriate quantities. I will provide evidence for these two points in the following section.   
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First, I found that teacher pedagogical moves reinforced students’ ability to identify 

attributes of a task, and the initial step was to isolate relevant quantities. When students were 

introduced to a new task, the first thing they were prompted by a teacher pedagogical move to do 

was to identify the attributes of the situation. As we see in the below example, the students were 

asked to identify quantities in the falling object task. The falling object task included several 

attributes, and it was crucial for the students to identify the relevant quantities to focus on. The 

below vignette is from a whole-class interaction, wherein the falling object task was introduced 

for the first time.   

264 NA: So, we have, what are the quantities we have. 

265  Zerrin: We have the diameter of the cannonball. We have the diameter of 

cannonball, and then you have the power, like the speed of the cannonball. 

266  NA: Okay. Speed.  

267  Zerrin: And then a more holistic perspective. We had the weather conditions, which 

doesn’t make sense here. Okay. 

268  Salim: Diameter of staff? 

269  NA: Okay. So, if we say the range, and I saw you guys wrote the height. 

270  Zerrin: Oh yeah, the air resistance. 

271  NA: And then what? The time you guys were talking about the time. 

272  Tarik: Yes. 

273  NA: Okay. This is, this is somehow physics. Zerrin and Salim. We are going to 

focus on only the range, height and time as the variables.  

NA asked students to list all the types of quantities they noticed in the task (line 264). 

Students saw the diameter of the cannonball, speed, etc. (lines 265–270). Then NA directed the 
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students to focus on the relevant quantities—the height, the range, and the time (line 273). This 

is an informal way of directing students to focus on the relevant quantities and placing irrelevant 

quantities to the side. In this conversation, we learned that in isolating relevant quantities, 

students can first be asked to list all the quantities they see in the situation. Then they can be 

prompted to focus on the appropriate quantities and the relationship between the quantities (line, 

273). Asking students to list all the quantities they notice in the task is a way of helping them to 

navigate which quantities are relevant.  

The second teacher pedagogical moves that supported students in identifying the 

attributes of a situation involved asking students to visualize or sketch the relevant quantities. 

Since, as we recall, quantities are in students’ minds, not in the real world (Thompson, 1994) 

asking students to visualize or sketch is one way to see what they have in their minds that may be 

related to the relevant quantities.  

On the falling object task, the range is the horizontal distance between the point at which 

the cannonball leaves and the point at which it lands. The time, on the other hand, is how long 

the cannonball remains in the air. The time can also be visualized as a horizontal path, but 

students should be able to differentiate between these two quantities. One way to help students to 

recognize the relevant units and the relationships between them is to have the students draw a 

visual diagram and then explain what each element of the diagram represents.  

The following vignette is taken from a whole-group interaction, when the falling object 

task was introduced; students were investigating the question “What is the relationship between 

the height of the falling object and the time it takes to fall?” After NA stated to the whole class 

that they would be investigating quantities—the range, the time, and the height—she asked 

students to visualize the relevant quantities by sketching on the whiteboard.  
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274  NA: If the cannonball is here, where is the range the height? Who is going to 

visualize it? [She makes one of the black dots seen on Mert’s sketch, Figure 43]. 

 

Figure 43 

 Mert’s Sketch of Relevant Quantities—the Height, Range, and Time for the Falling Object Task 

 

 

275  Tarik: Um, the range is on how long it takes for the cannonball. Are you talking 

about the range or the time? 

276  NA: We are talking about the range. 

277  Mert: The range is goanna be. Uh, can I show? 

278  NA: Sure. 

279  Mert: Okay. I’m going to show it in a different color. It’s going to be like this 

[Figure 43].   

280  Mert: This is the range now. Because cannonball was like there at the end, but now 

it’s right now. Yep. Okay. Maybe just the height is also this line. 

In the falling object exercise, NA asked students to visualize the height, the range, and 

the time. NA placed a black dot on the cannonball’s path (Figure 43) then asked to students to 

show the height, range, and time on the sketched path of the cannonball (line 274). Tarik defined 
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the range as “range is on how long it takes for the cannonball,” then realized he was describing 

the time (line 275). Mert built on Tarik’s realization, drawing the range as the horizontal distance 

and height as the vertical distance (lines 277 and 279, Figure 43). Mert selected a point along the 

path of the falling cannonball. He used a black marker to represent time and green to sketch the 

range. Since Tarik had some confusion about the range and time, the teacher pedagogical move 

requesting Mert to sketch might have helped him to differentiate between the two.  

From the above vignette, we learned that asking, or probing, students to visualize, sketch 

or draw appropriate quantities is a form of instructional support that helps students identify the 

attributes of an object. This teacher pedagogical move—asking Mert to create a visual diagram 

for height, range, and time—was a way of supporting him and his peers in gaining a shared 

understanding of these quantities. Since the x-axis on the sketch could represent both the range 

and the time, depending on how you approached the question, it was essential to have students 

visualize both the range and the time before they proceeded with coordinating the change in 

range with the change in time.  

The second category of teacher pedagogical move that supports creating a foundation for 

students’ FT is asking them for a unit to measure the quantities. One of the ways to support 

students’ reasoning about quantities and their relationships is asking students to perceive units 

for certain quantities. As we see from the below example, students might initially focus on only 

the numerical values of the quantities, and they might not see that these numerical values 

represent the magnitudes of the quantities. So, via teacher pedagogical moves, we might help 

students to notice the magnitudes of the quantities.  

The below vignette is taken from Salim and Eren’s small-group interactions, when they 

were investigating the relationship between the height and the area in the growing rectangle task.  
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281  NA: [Pointing at the table in Figure 44 (a)] What do these numbers mean?  

282  Salim: That is the height, one. 

283  NA: One what? 

284  Salim: Cm 

285  NA: These are what? 

286  Salim: Cm squared. 

287  NA: How are they similar or different from each other? How that centimeter is 

different than cm squared. 

288  Eren: Cm squared means the area, and cm means Uhm I do not know [holding his 

fingers as a line, to show the height as a centimeter; see screenshot, Figure 44 (b)]. 

289  NA: Let’s say you will teach someone younger; how are you going to teach 

someone what are the area and height? 

290 Salim: Area is the amount of place covered. Now you explain. 

 

Figure 44 

(a) Salim and Eren’s table; (b) Eren’s Gesture Indicating Height as a Centimeter; (c) Eren’s 

Gesture Indicating Area as “Amount of It Covered;” and (d) Eren’s Gesture to Represent the 

Height, in Centimeters, as the Side of the Paper on his Desk. 
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291  Eren: You are doing good. Yeah, amount of it covered [showing with his hand, see 

the screenshot, Figure 44 (c)], the height I how long is one of the sides [tracing his 

hand on the side of a paper, see the screenshot, Figure 44 (d)]. 

292  Salim: How long is the side.  

Salim recorded the height and area of a rectangle on a table without assigning its units 

[Figure 44 (a)]. Then the teacher-researcher, NA, asked what the numbers represented (line 281). 

Salim stated that the numbers were representing the height (line 282); however, Salim did not 

state any unit for the height. Then NA asked for the unit by saying “one what.” This is one of the 

teacher pedagogical moves which directs students to describe a unit for the quantities (lines 283 

and 285). Salim affirmed that the units represented were centimeters and centimeters squared 

(lines 284 and 286). Once Salim and Eren explained their units of measurement, NA asked them 

to compare and contrast them, saying, “How are they similar or different from each other? How 

that centimeters are different than cm squared?” This is a way to help a student to articulate what 

area versus height means (line 287–291). 

As we see in the above example, creating a foundation for functional thinking helps 

students articulate and select units for measuring magnitudes of quantities. In the above example, 

Eren talked about the area’s magnitude as the amount of area covered (line 291). He said, “cm 

squared means the area” while gesturing to the figure on the surface of a paper [see Figure 44 

(c)]. For Eren and Salim, the unit for measuring area should have been centimeters squared, in 

comparison to the unit for measuring height, which should have been centimeters (lines 288–

291). Eren and Salim conceived height as a quantity that was a line—or a side: as we see above, 

Eren said, “height is how long is one of the sides,” and he used his finger to trace on the side of 
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the paper he had on the desk to show it [Figure 44 (d)]. Therefore, Eren and Salim used 

centimeters to measure the height.  

As we observed above, these two students identified the area as the amount covered, and 

the height as a side of it. The activity provided the teacher-researcher with an opportunity to 

gauge what the students understood and thought about units of quantity and how they compare to 

one another. Asking students to assess what area versus height means may involve using these 

quantities by comparing the units they have selected to identify the magnitude of height in 

comparison to area. Hence, prompting students to articulate about the unit for measuring 

quantities is a form of support a teacher can offer in assisting them to reason about quantities, 

which ultimately builds a foundation for their ability to reason about the relationship between 

those quantities. Thus, probing students for a unit to measure an object’s attributes is a form of 

instructional support that sets a foundation for functional thinking via teacher pedagogical 

moves.  

The third category of TPM that sets a foundation for students’ FT is probing students to 

engage in coordination of the change among quantities. Probing students for their understanding 

of coordinating the changes among quantities included: (a) asking students how quantities are 

related or (b) asking students to generalize the quantitative relationships. I will use the following 

vignette to articulate these two points.   

The vignette is taken from Asli and Yener’s small-group interactions, when they were 

investigating the relationships between the height, length, and area of the growing rectangle task. 

Asli and Yener watched the video of the growing rectangle; NF, as the teacher-researcher, 

reinforced Asli and Yener to notice changing quantities and coordinate the change among them.  

Consider the growing rectangle task and the following conversation:    
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293  NF: Is that making sense? What I am asking? You were starting to do over here. 

What are these numbers? [Pointing at area values 2, 8, 18, and 32 on Figure 45 (a).]  

294  Yener: I just try to round these numbers.  

 

Figure 4524 

(a) Yener’s Table of the Height, Length, and Area; (b) Asli’s Written Work; and (c) Asli’s Graph 

for the Growing Rectangle Task 

 

(a)                                                                         (b)                                  (c) 

  

295 NF: Oh, 2, 8, 18, 32, I guess my question is as the height increasing by one, how is 

the area increasing? 

296  Asli: So, like, so the changes in the height is always one, for the area is like, for 

example, 8–2, or 18–8, which is 10. It is like not constant. [Figure 45 (b).]  

297  NF: But that is only two. How do you know it is not constant? 

As we see in this vignette, NF pointed at the number’s area values: 2, 8, 18, and 32 (line 

293). With this, NF asked Yener and Asli what those numbers on the table on Figure 45 

                                                 
24 Figure 45 is same as figure 30; I have added figure 45 to help the reader to visualize the concrete representations I reference in 

the text 
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represented. Yener rounded those numbers to the nearest whole numbers (line 294). To get 

Yener and Asli’s attention on the relationship of change between the height and the area, NF 

said: “Oh, 2, 8, 18, 32, I guess my question is as the height increasing by one, how is the area 

increasing.” In response, Asli explained that the change in height was always 1 cm, but that the 

area was changing in a varying amount (line 296). Asli said, “So like, so the changes in the 

height is always one, for the area is like, for example, 8–2, or 18–8, which is 10. It is like not 

constant.” NF then asked Asli to be specific about the change in the area; she also inquired about 

how they could determine it was not constant by just looking at several area values: “But that is 

only two [8–2 and 18–8]; how do you know it is not constant?” (Line 296.) As we see, teacher 

pedagogical moves here helped turn Asli and Yener’s attention to how the height and the area are 

changing together, and how the height and area of the growing rectangle are related. This is an 

example of teacher pedagogical moves setting a foundation for students’ FT.  

The above conversation continued, with Yener making a statement that the relationship 

between height and the area was increasing by four each time:    

298  Yener: it [the area of the rectangle] increases by four each time, the changes in the 

area. 

299  NF: What increases by four each time?  

300  Yener: How much the area changing each time. Uhm the change, in the amount the 

area changes will be constant for each time. So, this time it changes by six, the next 

time it changes by 10, which is four more than six, next time it changes 14, which is 

four more than 10. So, it keeps increasing like that. The change in the area will be 

four each time. [Pointing at the table on Figure 45 (a).] 

301  NF: Why do you think it keeps going up by four? 
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Yener made a conjecture about the change in the area: “it increases by four each time, the 

changes in the area.” Inviting Yener and Asli to make conjectures about the coordination 

between the change in area and in height is a form of teacher pedagogical move. Furthermore, 

asking students to articulate about quantitative relationships, as NF did in the line 299, is another 

form of teacher pedagogical move that supports students. As we see during the conversation, due 

to a teacher pedagogical move, Yener explained how he reached the generalization of the area 

increasing by four each time. It was not only Yener who benefited from such a conversation by 

articulating his thinking; Asli also benefited from hearing when NF asked what was 

changing 4 cm2 each time and Yener’s answer (lines 299–300). 

One way to build an eventual foundation for FT is by first probing students for the 

coordination of change between quantities; getting students to recognize that quantities are 

changing together and that they are related. I found that pushing students to conceive that 

quantities are related, and that they covary, might include several steps of probing. This may 

amount to asking students if a single quantity is changing and how it is related to other quantities 

(line 295). As a follow-up, a teacher may ask students about the quantities interchangeably; that 

is, they might ask how quantity A changed with respect to quantity B, then inquire about how a 

change in quantity B is related to a change in quantity A. When students notice the change, the 

teacher should then press them to be explicit about the amount of those changes. Lastly, when 

students recognize covarying quantities on several points, they should also be asked to generalize 

how the two quantities are related overall. 

The fourth category of teacher pedagogical moves that sets a foundation for students’ FT 

is encouraging students to justify their reasoning about quantities and the relationships between 
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them. In the vignette25 (lines 293–297), Yener saw the change of change in the area on the graph 

as increasing 4 cm2 each time on his  table [Figure 45 (a)]. NF then encouraged him to justify it 

on a graph; because he saw a 4 cm increase on a table in each instance (line 298), he said: “it 

increases by four each time.” In order to prompt him to think about his justification, NF asked 

what increased four each time and what that increase looked like on a graph (line 299). She said, 

“How is this you just talked is related to the way the area is changing is the same? How can you 

see that in the graph? How is this related to the graph?” while pointing at the graph in Figure 45 

(b). Yener identified the increase in distance of 4 cm by saying (line 134), “The distance between 

this point and this point will be a number and then this point between this point will be a number 

that is 4 cm more than this number.” As we see above, teacher pedagogical moves that get 

students to explain their reasoning about the relationship between the height and area on a table 

and a graph are a form of instructional support which helps to construct a foundation for 

sophisticated understanding.  

The fifth category of teacher pedagogical move that sets a foundation for students’ FT is 

probing students to develop continuous covariational reasoning. Forms of instructional support to 

help students develop continuous covariational reasoning include shrinking and enlarging 

portions of values and having them visualize change and points. The below vignette is taken 

from Mert and Yener’s small-group interactions. Mert and Yener were investigating the 

relationship between height, time, and range on the falling object task. The conversation between 

Mert and Yener focused on what the changes and points were, an essential discussion for 

determining whether or not there was change happening on the points. This necessary 

                                                 
25 This vignette is also cited in the section Level 3: Flexible Connections between Representational Fluency and Functional 

Thinking, at chapter 5, part 1 from line 129-138. 
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conversation assisted the students with beginning to build a foundation for continuous 

covariational reasoning. 

302  Yener: look, the point is not the change. 

303  NA: What is the change? 

304  Yener: It changes like between two points. From one point to others, it changes. 

These are points they don’t change. [Pointing at 0, 1, 2 seconds, on the table in 

Figure 46 (a)]. 

 

Figure 46 

(a) Yener’s Table of the Range, Height, and the Time, and (b) Yener’s Visualization of the 

Change and the Points  

 

(a)                                               (b) 

Note. This represents (a) Yener’s table when he first referred to the points not changing the 

time on this table, and (b) Yener’s sketch identifying the change and points. 

 

305  NA: If you take this table and break down the seconds as 0.0001, 0.0002, what will 

happen? 

306  Yener: It still the points. One the to other is the change. It changes from one point to 
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the other.   

307  Mert: Yeah. So like. Yeah, there are numbers between the things it doesn’t tell, like 

the 0 seconds 21 meters instantly. There are some points in between them, in this. It 

only shows by ones. 

308 NA: Okay, I have 0, 0.0001 to 0.0002, and 1 second. Where are the changes 

happening here [Figure 47]? [She writes the 0s, .0001s, and .0002s for Figure 47.] 

309  Yener: It will go from 0 to 0.0001 seconds, and then 0.0001 to 0.0002 seconds. [He 

visualizes the points by drawing arrows and identifying the points versus change, see 

Figure 47]. 

310  NA: So 0 to 0.0001 changes. Do you want to write for me? Like we’re trying to 

differentiate between the points and the change. 

311  Yener: There is also changes between these two [0 to 1] seconds.  

 

Figure 47 

Yener’s Sketch of the Point and Change 

 

Note. This figure represents numbers written by NA [0s, 0.0001s, 0.00002s, and 1] with a black 

pen, while Yener wrote verbs and arrows with a dark blue pen [change, point, and arrows]. 

 

Yener explained that the points were not changing, but that the changes were taking place 

in between points. He said that it changes “from one point to others; it changes. these are points 
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they don't change.” To encourage student reasoning about whether or not height and time were 

changing between portions of points or not on the points, NA created small portions of points, 

like 0.0001, 0.0002, etc., generating a table to ask about changes in and between the points. 

Yener still insisted that it changed from one point to another. He said, “it still the points. One the 

to other is the change. It changes from one point to the other.” 

For Yener, whatever portion of time values one had, the change happened in those 

portions. Then NA drew much smaller portions (Figure 47) than the portions in Yener’s table 

(see Figure 47): 0 to 0.0001 and 0.0001 to 0.0002. As a follow-up, Yener made arrows showing 

the change [Figure 47 (b)]. When NA asked questions, she encouraged Yener and Mert to 

visualize and write down their statements to elicit deeper thinking (lines 303–208). NA was 

explicitly asking them to differentiate between and at the points (line 310). Interpreting NA’s 

request, Yener responded that “The point is like at that where the ball is26.” His response 

constitutes evidence that, with the use of a teacher pedagogical move involving smaller and 

larger increments of time, Yener’s interpretation of change versus points might have shifted 

towards where the cannonball was at that point. Hence, a teacher can help students create a small 

portion of points on the table in order to visualize the points and the changes. Furthermore, 

getting students to write their thinking is a form of instructional support that may build a 

foundation for continuous covariational reasoning.  I present a summary of the teacher 

pedagogical moves discussed in the above sections in Table 30.  

 

                                                 
26 Yener stated “The point is like at that where the ball is” at a later time in the vignette, thus I cited without showing it in the 

excerpt.  
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Table 30 

A Summary of Teacher Pedagogical Moves for Creating a Foundation for Students’ Functional 

Thinking   

Teacher Pedagogical Move Example 

Probing students to identify the attributes 

of an object or situation 

NA: So, we have, what are the quantities we 

have in the falling object situation? 

NA: Let’s say you will teach someone 

younger; how are you going to teach 

someone what are the area and height? 

Probing for a unit to measure an object’s 

attributes 

NA: How are they similar or different from 

each other? How that centimeters are 

different than cm squared? 

Probing for the coordination of change 

between quantities 

NF: Oh, 2, 8 18, 32, I guess my question is 

as the height increasing by one, how is the 

area increasing? 

Encouraging students to justify their 

reasoning about the relationship between 

quantities 

NF: Why do you think it keeps going up by 

four? 

Probing for continuous covariational 

reasoning 

NA: Okay, I have 0, 0.0001 to 0.0002, and 1 

second. Where are the changes happening 

here? [She writes the 0, .0001, .0002.] 

 

What Counts as “Meaningful Understanding of Quadratic Functions” 

In order to understand how to support students in developing a meaningful understanding 

of quadratic function, it is also useful to define what this entails. For the purpose of this study, a 

meaningful understanding of quadratic function includes a student’s ability to create, interpret, 

invent, communicate, and connect representations of quadratic functions within a flexible 

framework, including different approaches to reasoning about functions. In the study, a 

meaningful understanding of quadratic functions includes co-developing RF and FT in learning 

about quadratic functions. Specifically, developing a meaningful understanding includes shifting 

from less-sophisticated FT and RF (e.g., no coordination of values and pre-structural fluency) to 

significant sophisticated RF and FT (e.g., chunky continuous second covariational reasoning—



207 
 

 
 

covariational reasoning and relational fluency—RF). I will discuss these concepts in more detail 

below.  

Identified Shifts in Students’ Meaningful Understanding of Quadratic Functions. A 

shift in students’ thinking is a transition between functional thinking levels—covariational 

reasoning (Thompson & Carlson, 2016), and representational fluency (Fonger, 2019). For 

instance, when a student first thinks of two quantities that covary as a gross coordination with 

pre-structural fluency, then shifts to coordinating the values of these quantities with relational 

fluency.  

To verify the learning-ecology framework, I identified shifts in students’ meaningful 

understanding that occurred during the study. These shifts were formed as students co-developed 

FT and RF. I have identified four shifts in the RF and FT of four participants: Eren, Yener, Mert, 

and Asli. Each of these shifts took place on four different days. For instance, Eren’s RF and FT 

shifted from no coordination of the time and the height of the falling object, with pre-structural 

fluency, to chunky continuous second covariational reasoning—FT and representational fluency, 

or RF.   

Figure 48 presents shifts in the thinking of Eren, Yener, Mert, and Asli, from lesser 

sophisticated covariational reasoning and lesser meaningful fluency to more significant 

sophisticated covariational reasoning and RF.  The arrows on the chart show the nuances of their 

developing understanding. Each arrow represents one student’s shift during one teaching session.  
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Figure 48 

Identified Shifts in Students’ Representational Fluency and Functional Thinking 
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The four arrows as a collection represent shifts that occurred on four different days 

during three different tasks. This does not mean there were no other shifts in students’ thinking 

during the sessions; however, in this study, I have selected the four most salient shifts and 

individuals. Hence, I focused my analysis on each of these four students as they developed a 

meaningful understanding.  
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My objective in representing this variety of examples as four different shifts was to 

provide evidence of shifts in understanding which were supported by the learning-ecology 

framework, showing that the learning-ecology framework impacted students’ meaningful 

understanding of quadratic functions. This section will define shift one, as an example, and 

provide a summary table for the rest of the shifts.  

Eren’s covariational reasoning and representational fluency shifted from no coordination 

of values and pre-structural fluency to chunky continuous second covariational reasoning and 

unidirectional translations (Fonger, 2019; Thompson & Carlson, 2017).  

The shift occurred within the context of the falling object task—the PhET simulation 

video and the simulation itself, with the focus question, “What is the relationship between the 

height of the falling object and the time it takes to fall?”  

Eren’s initial functional thinking and representational fluency could be summed up by his 

phrase: “it goes up and down.” During shift one, Eren watched a video and simulated throwing 

the object several times in the PhET. Eren’s initial approach to the falling object task as “it goes 

up and then down” indicated no attempt to explain how the time and the height of the object 

were related. Furthermore, he did not attempt to create another representation, and looked at the 

simulations without a further attempt to coordinate the time and the height on the falling object 

task. He simply said: “there’s no answer; this is an open-ended question.”  

During this task, Eren and his group were supported by the learning-ecology framework: 

enacted task characteristics, socio-mathematical norms, and teacher pedagogical moves. First, 

enacted task characteristics supported Eren as he learned about quadratic functions. Eren 

engaged in purposefully designed tasks; the enacted task characteristics of these tasks included 

questions centered on coordination among quantities, identifying attributes of the tasks, and 
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identifying units for measurement of the quantities (see lines 274–280). Furthermore, the enacted 

task characteristics prompted Eren to engage in generalization of quadratic relationships. For 

example, Eren read the statement from the falling object task: “How does the time affect the 

height?” Another example for generalization is the enacted task characteristics of answering the 

focus question. Eren said: “Okay answer the question. How does the title affect, how does the 

time affect the height of the falling object?”  

Second, Eren’s thinking was reinforced by socio-mathematical norms. Eren and his peers 

developed meaningful understanding by agreeing with each other’s solutions, getting approval 

from their peers, building on each other’s thinking, and taking responsibility for teaching their 

peers (see line 213–228). At the same time, they communicated their skepticism about peer 

responses by criticizing each other’s answers and pressuring their peers to be specific about how 

the height and the time it took the cannonball to fall were related (see lines 229–242). Pressuring 

for further justification, for example, Eren responded to Mert: “So you don't have the evidence, 

the evidence you are giving. It doesn’t make sense.”  

Lastly, teacher pedagogical moves supported Eren’s development of a meaningful 

understanding of quadratic functions. The teacher pedagogical moves were clustered around 

supporting Eren’s co-development of RF and FT: asking him to create a table and then a graph to 

present the relationship of height and time. Then Eren was prompted to make a connection 

between the graph and the table when considering the relationship between the height and the 

time. Eren’s thinking was also supported via teacher pedagogical moves prompting him to 

visualize-draw-sketch his statements. For example, NA asked Eren: “Let’s think about graph 

now. Just sketch the graph. How is the time and height going to look like on a graph?” Through 

teacher pedagogical moves, Eren was encouraged to justify his reasoning about the relationship.   
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In addition to other types, a set of teacher pedagogical moves clustered around creating a 

foundation for Eren’s functional thinking by probing for coordination among quantities, 

prompting Eren to conceive that the height, range, and time were changing together. 

Additionally, the teacher pedagogical move included asking Eren how the quantities were 

related, then getting him to generalize the relationship, and probing him to be specific about the 

change in the quantities—height, time, and range. For example, NA: “So can you find the 

relationships between the time and the height?” As another example, to prompt students to 

identify relevant quantities, NA asked Eren’s group to identify the relevant quantities of the 

height, the range, and the time the cannonball takes to fall, causing the students to think of these 

quantities as measurable. NA: “What are the quantities you see in the falling object situation?” 

The unit of measurement for the height and the range were meters; the unit of measurement for 

the time were seconds. NA asked Eren, “Do you want to measure the height, and the time?” Eren 

used the PHeT simulations and measured; when measuring, he said: “Okay. When the time is 

half a second. So high. It’s 7.64 on the time is one to go high. Highest 12 point 82 when the time 

is 1.81, 81 seconds. The height is 60.02 and then it drops down. You see the relationship?” 

In sum, during this session, small- and whole-group interactions, along with teacher 

pedagogical moves and enacted task characteristics, formed a learning-ecology framework that 

helped Eren to develop a meaningful understanding of quadratic functions. In other words, Eren 

co-developed functional thinking and representational fluency in learning about quadratic 

functions.  

As we see, at the very beginning, Eren indicated that the relationship between the height 

and time of the falling object was an open-ended problem; all he understood was “it goes up and 

down” (see first row of Table 31). Through the learning-ecology framework, he engaged in 
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reasoning with chunky continuous second covariational reasoning within unidirectional 

translations (see the first row and the third column of Table 31). He recognized that for every 0.1 

second change in time, the amount of the increase decreased by 0.1 meter. Eren attempted to 

coordinate a change in time with the change of change in height. So, he saw that the second 

change in the height changed by 0.1 meter when the time changed for 0.1 seconds. Eren said: 

“Okay, so let me just uhm every point one second. The height the amount that the height 

increases decrease by 0.1 meters. Sir. Every 0.1 seconds. The amount that the height increases 

decrease by one point second or all the cases but one meter.” Eren created a table and graph in 

parallel to present that the change of change in height was 0.1 meters, without making the 

connection from table to graph explicit [see Figure 29 (a), (b), & (c)]. The learning-ecology 

framework supported him as he made this shift from a lesser sophisticated level of understanding 

to a greater sophisticated reasoning.    

Next, I will use a summary table (Table 31) to represent the four identified exemplar 

shifts in students’ reasoning, including Eren’s shift discussed above; I will define the shifts, then 

I will highlight students’ initial RF and FT, then students’ co-development of RF and FT with 

corresponding tasks throughout the study.  

 



213 
 

 
 

Table 31 

 Definitions of the Identified Shifts in Students’ Co-Development of Representational Fluency and Functional Thinking 

Shift Student’s Initial FT and RF Student’s Co-Developed FT and RF Task and focus question 

Shift 1: Student’s covariational 

reasoning and representational fluency 

shifted from no coordination of 

quantities and pre-structural 

representational fluency to chunky 

continuous second covariational 

reasoning and unidirectional 

translation—RF.   

No coordination and pre-

structural fluency  

Eren: “there’s no answer; this is an 

open-ended question.” “It goes up 

and down.”  

Chunky continuous second covariational 

reasoning within unidirectional translations:  

Eren: “Okay, so let me just uhm every point one 

second. The height the amount that the height 

increases decrease by 0.1 meters. Every 0.1 

seconds. The amount that the height increases 

decrease by one point second or all the cases but 

one meter.”  

The falling object task:  

 
What is the relationship between the height of 

the falling object and the time it takes to fall? 

Shift 2: Student’s RF and FT shifted 

from gross coordination of values and 

pre-structural representational fluency 

to chunky continuous second 

covariational reasoning within 

multidirectional connections 

Gross coordination of height and 

area and pre-structural fluency 

Yener: “As the height of the paint 

roller increases, the length and 

height of the triangle increases, 

increasing the area”  

Chunky continuous second covariational 

reasoning within multidirectional connections   
Yener: “A change of the change of the area 

increases by 1 cm squared each time when length 

increase 1cm each time.” 

 

The paint roller task:  

 
What is the relationship between the length of 

the paint roller and amount of the area covered?  

Shift 3: Student’s FT and RF shifted 

from no coordination of values and pre-

structural representational fluency to 

chunky continuous second 

covariational reasoning within 

unistructural fluency. 

No coordination and pre-

structural fluency 

Mert: “You see, after two seconds, 

uhm three seconds, it reaches the 

height, and it does not go on 

further.” 

Chunky continuous second covariational 

reasoning within unistructural fluency 
Mert: “Yeah. Every second the amount the height 

changes decrease by six.” 

 

The falling object task:  

 
What is the relationship between the height of 

the falling object and the time it takes to fall? 

Shift 4: Student’s RF and FT shifted 

from gross coordination of values and 

pre-structural representational fluency 

to coordination of values and 

multidirectional connections.  

 

Gross coordination of values and 

pre-structural fluence 

Asli: “When the length increasing 

the heights increases” 

Coordination of values and multidirectional 

connections  

Asli: “As since the height is [inaudible], the area of 

the rectangle is height times length, and since the 

length is 2h As the height increases by one unit, the 

length increases two units, so that will make has 2h 

squared.” 

The growing rectangle task 

 
How does the change in the height of a rectangle 

affect the change in the area if presented on a 

graph, symbolic equation, and a table?  
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Chapter 6—Discussion 

The prior literature has reported students’ lesser sophisticated interpretations of quadratic 

functions, such as conceiving of graphs as objects (Moschkovich et al., 1993; Zaslavsky, 1997). 

In response to students’ limited understandings and interpretations of quadratic function, in the 

current study, I employed a design-based research methodology (Cobb et al., 2017) in 

documenting and detailing the theories and design in terms of their contribution to supporting 

students’ meaningful learning of quadratic functions. Recall that the design principles were 

informed by the theories of quantitative reasoning (Thompson, 1994) and representations (Kaput, 

1987a; 1987b; Dreyfus, 2000). I conducted a teaching experiment with eight Turkish-American 

middle and high school students (Grades 8–10) and conducted both ongoing and retrospective 

analyses. The analyses centered on answering two research questions: 

1. What is the nature of the co-emergence of RF and FT among secondary school students 

as they develop a meaningful understanding of quadratic functions?  

2. How can secondary school students be supported to develop a meaningful understanding 

of quadratic functions?  

Summary of Main Findings 

To answer research question one, I characterized both students’ co-emergence of RF and 

FT and students’ disconnection between RF and FT, both on each representation and across 

multiple representations. I operationalized two levels of reasoning about quantitative 

relationships, static and lateral thinking, on each type of representation: a table, an algebraic, and 

a graph. I finished part one by operationalizing students’ co-emergence of RF and FT into four 

levels: level 0, disconnection; level 1, partial connection; level 2, connection; and level 3, 

flexible connections between RF and FT. 
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To answer research question two I introduced the learning-ecology framework that the 

findings of the study suggested, which is made up of support for students that includes teacher 

pedagogical moves, enacted task characteristics, and small- and whole-group dynamics. Then I 

defined a meaningful understanding of quadratic function as students’ co-development of RF and 

FT when learning about quadratic functions. Then, in order to verify the learning-ecology 

framework, I highlighted the four most salient shifts in students’ RF and FT using examples of 

students in the study who co-developed RF and FT while being supported by teacher pedagogical 

moves, enacted task characteristics, and small- and whole-group dynamics. Lastly, I provided 

evidence that the learning-ecology framework was present when students’ thinking shifted from 

initial to co-developed RF and FT. I closed this section with a summary of the shifts in students’ 

thinking.  

In this section, I will provide a summary of the conclusions related to the findings. I will 

focus on the three key findings that emerged from this study: (a) characterization of students’ RF 

and FT on each representation, (b) connection of students’ RF and FT across multiple 

representations, and (c) the learning-ecology framework. In the following I will discuss each 

these areas with its relation to the existing literature. I will articulate how each of these key 

findings mirror and advance the existing literature.   

Students’ Reasoning About Quantitative Relationships on each Representation: Lateral and 

Static Thinking  

In the coming paragraphs, I will articulate how lateral and static thinking relates to the 

existing literature.  



216 
 

 
 

Tabular Lateral Thinking and Its Relation to Existing Literature  

According to Wilkie (2019), students who employed correspondence reasoning on a 

tabular representation are more likely to create algebraic equations for representing growing 

patterns. Wilkie (2019) explored how students conceive of quadratic functions in connection to 

multiple representations. Wilkie recruited 12 high school students and conducted task-based 

interviews with each participant. While Wilkie reported that students benefited from approaching 

tabular representation with correspondence reasoning, the present study showed the opposite.  

The findings of this study indicated that when students employed covariational reasoning 

on a tabular representation—tabular lateral thinking—they were able to create algebraic 

equations to present quantitative relationships. Furthermore, with tabular lateral thinking, they 

were able to make sense of the vertex of a quadratic function and flexibly switch back and forth 

between interrelatedness 1 and 2 in reasoning about quantities. Thus, current findings provide 

evidence that covariational reasoning on a tabular representation might help students to create 

algebraic equations as well as to make sense of what is being represented on the table.  

Lobato and her coauthors (2012) explored quadratic functions in the context of speed, 

distance, and acceleration. The participants were 24 eighth-grade students. Lobato and coauthors 

found that covariational reasoning on tabular representations enabled students to identify the rate 

of rate of change as a constant. While these findings mirror what Lobato and her coauthors 

(2012) found, the current study also suggests that students benefited from flexibly switching 

back and forth between interrelatedness 1 and 2 on a tabular representation when learning about 

quadratic functions. In other words, the significance of these findings is that tabular lateral 

thinking enabled students to simultaneously engage in interrelatedness 1 and 2 as they performed 

tasks of creating symbolic equations and identifying the vertex point on a tabular representation.  
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Algebraic Lateral Thinking and Its Relation to Existing Literature 

Zaslavsky (1998) studied 800 secondary school students and explored obstacles students 

face in understanding quadratic functions. She reported that students don’t conceive of the 

coefficient of quadratic functions as a point when the coefficient has a value of zero. These types 

of inappropriate interpretation of the parameters of quadratic functions were also identified by 

Even (1998). Even explored 152 pre-service mathematics teachers’ flexibility in moving from 

one representation to other and reported that the pre-service teachers had difficulty making sense 

of the parameters of quadratic functions. 

In answer to these historically identified obstacles, several studies have subsequently 

found that students have difficulty understanding the parameters of quadratic functions when 

they take the general form of the algebraic equation 𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 (Borba & Confrey, 1996; 

Ellis & Grinstead, 2008; Zaslavsky, 1997). The findings of this dissertation suggest that students 

might associate the coefficients of quadratic functions with quantitative relationships. Recall that 

in lines 56–58, Asli was able to see that the coefficient of 𝑦 = 2𝑥2is 2 cm, and that it relates to 

the relationship between height and length in the context of the growing rectangle. With that in 

mind, the present findings inform us that students might benefit from conceiving algebraic 

equation representations of quadratic function as a quantitative relationship that covaries on the 

algebraic equation. In other words, students were able to better understand the parameters of the 

quadratic function by coordinating the change in height with the change in length, operating 

length and height to create a symbolic equation of the new quantity, and associating the 

coefficient with the covariation among the quantities. 

The current findings showed that students with algebraic lateral thinking can create a 

symbolic equation that represents covarying quantities, and this might reinforce the students’ 



218 
 

 
 

ability to see the symbols on the equation as associated with covarying quantities, and to see that 

coefficients have a meaning within the quantitative relationship. These findings proved that 

support for students’ meaningful understanding of quadratic functions can be rooted in the 

combination of students’ RF and FT. As we recall from the prior literature (Ellis & Grinstead, 

2008), students conceived of the leading coefficient as the slope of quadratic functions. Building 

on that, the current findings provide evidence that students’ meaningful understanding of the 

coefficients of quadratic function can be supported by networking the theory of QR and the 

theory of representations.   

Graphical Lateral Thinking and Its Relation to Existing Literature 

Historically, the literature suggests that students face challenges when they create and 

interpret graphical representations of functions. First, in their literature review, Leinhardt and 

coathors (1990) documented students’ difficulty creating and interpreting graphical 

representations. Then Zaslavsky (1997) reported that students conceive of graphical 

representations as pictorial entailments, meaning that students treat the graph as what they see 

rather than imagining that the graph still continues even if the image does not show it. Zaslavsky 

explored 800 secondary school students’ interpretation of quadratic function graphs. In parallel 

to Zaslavsky, Oehrtman and coauthors (2008) reported that undergraduate students have 

difficulty in interpreting and creating a graph of a function that models a quantitative relationship 

in certain situations (e.g., graphing height versus volume of an uncanonical shape when the 

object was being filled with water). Building on that, Moore and Thompson (2015) reported in a 

conference proceeding that students conceive of the graph of a function as a piece of wire; they 

named this type of understanding static shape thinking. The findings of this dissertation mirror 

the prior literature about the limited interpretation of graphical representation by showing that if 
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a quadratic function has a vertex at the origin with a positive leading coefficient and it does not 

have a negative domain, then students may name the graph as “half-quadratic” because they have 

a static image of a parabola associated with quadratic function.  

This kind of thinking might be problematic for students, especially students who have a 

static image of a parabola, as it means such students might not look at the domain or range of a 

function, and they may only perceive a quadratic function as a static picture of a parabola. Such 

thinking might limit students’ robust understanding of quadratic functions. Additionally, with 

graphical static thinking, students conceive of all nonlinear growths as exponential growths, even 

if the graph represents a quantitative relationship which has a starting point from the origin 

(Altindis & Fonger. 2019).  

In a prior study with Dr. Fonger, I recruited five pre-service secondary teachers and 

conducted task-based interviews. The task was situated in the context of the growing rectangle, 

and the participants were asked to create multiple representations of the relationship between the 

height and area of the rectangle.  We found that the five participants identified nonlinear 

functions as exponential functions without further inquiry (Altindis & Fonger, 2019). The 

participants conceived of non-linear growth as exponential growth.  

Scholars have agreed that students should be able to create and interpret graphs to 

represent a dynamic function situation (e.g., Oehrtman et al., 2008). In response to such needs, 

Moore and Thompson (2015) introduced emergent shape thinking, which is related to students 

conceiving of a graph as an emergent quantitative relationship that covaries. Moore and 

Thompson reported that middle school and preservice teachers perceived graphs as emergent 

quantitative relationships. The present findings corroborate and extend Moore and Thompson’s 



220 
 

 
 

point by showing that students were able to generalize the emerging nature of the quantitative 

relationship on a graph.  

With such findings, the present study advances the field of mathematics education by (a) 

showing that the emergent quantitative relationships include a generalizable pattern, and (b) 

reporting that students with graphical lateral thinking might be able to coordinate the change in a 

quantitative relationship on multiple increments of a graph. The findings also showed that 

students noticed that, on a parabola of a quadratic relationship, as the amount of one increment is 

decreasing, the relationship is decreasing by the same increment. Furthermore, students with 

graphical lateral thinking could notice that the change of change that is increasing or decreasing 

on the left and right of the parabola is constant for the same increments on the x-axis.  

Note the difference in terminology, Moore and Thompson called this type of reasoning 

emergent shape thinking, while I have called it graphical lateral thinking. I wanted to emphasize 

that lateral thinking has a more general meaning than emergent shape thinking; while Moore and 

Thompson have a definition that is general to the whole representation of graph, my conception 

of graphical lateral thinking is specific to each point on the graph as well as the whole of the 

graph. Such thinking not only characterizes students’ process of reasoning about the graph, but 

also highlights students’ reasoning for each point on the graph in contrast to how students 

approach each increment of the graph (specifically, how the steepness changes when we move 

closer or further away from the vertex of quadratic functions on the graph).  

A Model of Networking Theories: Connections Between Students’ Representational 

Fluency and Functional Thinking  

In this study, I networked the theories of quantitative reasoning and representation. These 

findings modeled creating a rich web of multiple theories that sheds light on students’ 
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meaningful understanding of quadratic functions. Networking theories is defined as a diversity of 

approaches or ways of making theories interact (Kidron et al., 2019). Networking theoretical 

perspectives has been popular for several decades, in the mathematics education community in 

particular (Bikner-Ahsbash & Prediger, 2010; Dreyfus, 2010; Kidron et al., 2019). However, 

practically, it has not been clear in the field how to network theories with a design methodology 

and how to make sense of the findings via multiple analytical lenses. This study sets a model of 

how to network theories using Thompson’s theory of quantitative reasoning and the theory of 

representations (Dreyfus, 2002; Kaput 1987a, 1987b) as an example for: (a) strategically 

combining and coordinating theories as complements to support students’ meaningful 

understanding of quadratic functions; (b) how to employ multiple analytical frameworks—in this 

case, functional thinking (Confrey & Smith, 1994; Thompson, & Carlson, 2017) and 

representational fluency (Fonger, 2019)—to characterize students’ meaningful understanding of 

quadratic functions. 

In the literature, Even (1998) reported that there is an intertwined relationship between 

students’ representational activity and their reasoning about functions. The findings of this 

dissertation advanced Even’s argument by characterizing the intertwined nature of RF and FT 

into four distinct categories, levels 0 to 3. With these findings, I characterized students’ co-

emergence of RF and FT across multiple representations by organizing from the lesser 

sophisticated emergence of RF and FT to the more sophisticated co-emergence of RF and FT.  

In sum, the significance of these findings to the field of mathematics education is in 

demonstrating: (a) that students co-developed RF and FT, and that the co-development 

reinforced their meaningful understanding of functions; (b) that students’ RF and FT co-inform 

one another—RF sets a foundation for FT and vice versa; and (c) a model for characterizing 
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students’ co-development of RF and FT from level 0 to level 3. The current findings support the 

conclusion that students’ fluency in both RF and FT enables them to engage with the 

complicated nature of mathematical phenomena (in this case, quadratic functions), and that this 

fluency becomes a resource for students to develop a meaningful understanding of mathematics. 

The Learning-Ecology Framework 

The findings indicated that students’ meaningful understanding of quadratic functions can 

be supported with a mechanism: the learning-ecology framework. This mechanism was made 

from tasks, tools, teaching actions, socio-mathematical norms, and probing questions centered on 

the theories of quantitative reasoning (Thompson, 1994), and representations (Kaput, 

1987a;1987b). The findings suggested the three main components of the learning-ecology 

framework: enacted task characteristics, socio-mathematical norms, and teacher pedagogical 

moves.  

The findings of the current study empirically proved that the learning-ecology framework 

supported students’ meaningful understanding of quadratic functions. The findings also verified 

the learning-ecology framework by identifying four specific shifts in students’ thinking when 

they were learning about quadratic functions during the study. My evidence for the effectiveness 

of the learning-ecology framework comes from the positive shifts I identified in students’ co-

development of RF and FT, as well as productive shifts in students’ reasoning process when 

using one or more representations in learning about quadratic functions. The shifts showed that 

students’ co-development of RF and FT transformed from lesser sophisticated reasoning to 

greater sophisticated reasoning when they completed tasks and worked within the learning-

ecology framework. Recall, for example, that Eren’s thinking shifted from lesser sophisticated 

thinking to grater sophisticated reasoning via the learning-ecology framework. In Figure 48, I 
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represented the four identified shifts in students’ co-development of RF and FT, which verify the 

effectiveness of the framework.  

To develop the learning-ecology framework, I drew on the work of other researchers, 

who suggested that a productive learning climate (Brown, 1992) includes a teacher’s role as a 

facilitator of learning to provide appropriate support for students’ meaningful learning regarding 

quantities (Smith & Thompson, 2007) by eliciting students’ thinking and orienting their thinking 

toward one another (McDonald et al., 2013). The students’ role in a productive learning climate 

centers on explaining their thinking, asking questions, providing a justification, being skeptical 

with peers’ explanation (Yackel & Cobb, 1986), and engaging with purposefully sequenced tasks 

(Smith & Thompson, 2007). Building on that, my findings suggest that students’ meaningful 

understanding of quadratic functions can be rooted in the learning-ecology framework. In the 

coming paragraph, I will discuss each component of the learning-ecology framework and its 

relation to the prior literature.  

Enacted Task Characteristics 
  

The findings from this study parallel prior literature that posits that the design of enacted 

tasks’ characteristics can be a form of instructional support in learning and teaching about 

mathematics (King, 2011; Stein et al., 2007). While prior literature focused on making quantities 

visible to students (e.g., Johnson et al., 2017), this study advances the prior literature by 

suggesting that designing tasks with prompts, statements, or questions that redirect students’ 

attention toward recognizing a coordination among quantities can provide effective support for 

students’ meaningful learning.  

The findings indicated that, for both launching RF and supporting QR, specific 

characteristics of purposefully designed tasks created opportunities for students to gain a robust 
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understanding of quadratic functions. The study showed evidence of enacted task characteristics 

that would emphasize students creating and making connections across representations to present 

quantities and quantitative relationships within the tasks. Furthermore, certain enacted task 

characteristics pushed students to engage in quantifying processes and quantitative operations 

(Thompson, 2011; Smith & Thompson, 2007), in tandem with Dreyfus’s (2002) four stages of 

learning with multiple representations. In other words, the findings suggest that via enacted task 

characteristics, students developed images of emergent quantitative relationships by creating and 

connecting between graphs, tables, and symbolic equations to present the emergent quantitative 

relationships in the tasks. 

In sum, certain purposefully designed task characteristics might support students to co-

develop RF and FT because these characteristics, discussed above, provide opportunities for 

students to talk, articulate, discuss, and create and connect concrete representations to represent 

emergent quantitative relationships as they learn about quadratic functions. 

Socio-Mathematical Norms   

In general, when students are participating in activities within a small- and whole-group 

structure, social norms help to shape the students’ explanations, their reasoning, and their ability 

to make sense of other explanations (Cobb & Yackel, 1995). Social norms are joint social 

constructions––collectively constructed by the whole class community—and cannot depend on a 

teacher or students alone (Cobb, 2000). Along with these definitions of social norms from the 

prior literature, the findings of this study proved the essential role of social norms and socio-

mathematical norms in shaping how students learn about quadratic functions. As stated earlier, 

the participants in the study were Turkish-American students, and these findings build on the 

literature about social and socio-mathematical norms by reporting unique small- and whole 
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group interactions that took place in a community center, with a researcher who was an insider 

and had established trust with the participants as a member of community via having the same 

language and culture. The participants and the leading teacher-researcher had a common culture 

and language. As we recall, the findings showed that in this setting, the students were skeptical 

about their peers’ work, and they pressured their peers to justify their reasoning. The group 

dynamics between peers are unique to these findings: because the participants were members of 

the same community, that might have created opportunities for them to be critical about each 

other’s work and feel safe when pressuring one another for justification.  

As we saw, the teacher-researcher’s role is as a facilitator of the classroom learning 

community, and during the study, the students recognized this role. Also, students were able to 

see themselves as constructors of socio-mathematical norms when learning about quadratic 

functions. These findings corroborate or confirm previous research in suggesting that the process 

of building up socio-mathematical norms in small- and whole group interactions impacted 

students’ learning by developing students’ intellectual autonomy, enabling the students to 

become aware of when and how to contribute to the mathematics classroom and what counts as a 

mathematically correct solution, thinking, or reasoning (Yackel & Cobb, 1996). Cobb and 

Yackel (1995) define intellectual autonomy as “...students’ awareness of and willingness to draw 

on their intellectual capabilities when making mathematical decisions and judgment” (p. 9), that 

is, when participating in the mathematics classroom. As we recall from lines 208–212, Mert and 

Tarik were in change of their own learning; they contributed to each other’s thinking and 

eventually learned more about quadratic functions by asking “where is your reasoning?”  

The findings of the current study confirm Yackel and Cobb’s (1996) conception that 

justification and explanation develop teachers’ and students’ taken-as-shared meaning of 
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mathematics. Yackel and Cobb (1996) wrote that, “the development of individual reasoning and 

sense-making processes cannot be separated from their participation in the interactive 

constitution of taken-as-shared mathematical meaning” (p. 460). This concept which was 

furthered by Stephan (2003), who presented that the robust relationship between individual 

learning and social process impacts the taken-as-shared learning of the community. Stephan 

stated that “…students’ development cannot be adequately explained in cognitive terms alone; 

social and cultural processes must be acknowledged when explaining mathematical 

development” (p. 28). The findings of this dissertation advance Stephan’s point by relating 

students’ meaningful understanding of quadratic functions to students’ social and cultural 

dynamics.  

The uniqueness of the current findings is that they highlight how an insider’s established 

trust with students might set a space for students to engage in critical thinking about each other’s 

reasoning. These findings also further Yackel and Cobb’s (1996) definition of “taken-as-shared;” 

recall that Eren stated that he knew what a quadratic function looked but he did not know what it 

meant. The taken-as-shared definition of a quadratic function is a parabola; as we recall from 

Salim’s graph (Figure 38), Eren pushed Salim to critically examine what it meant for a function 

to be quadratic function. These interactions indicate that in certain situations, students started 

questioning the meaning of knowledge that was taken-as-shared.  

Teacher Pedagogical Moves 

The findings of this study also endeavor to complement and advance the existing 

literature on teacher moves and promoting actions for supporting students’ understanding of 

quadratic functions as a part of the learning-ecology framework. Previous researchers 

characterized teachers’ talk moves (Michaels & OʼConnor, 2015) and discourse actions (Candela 
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et al., 2020) in eliciting and supporting students’ reasoning in a general mathematics classroom. 

The current findings corroborate those findings, yet add texture to our understanding of how 

such teacher pedagogical moves can support students’ co-development of RF and FT. This 

validates certain sets of teacher pedagogical moves that promote students’ sophisticated 

understanding of quadratic functions as covarying quantities.  

These findings are unique because I networked two distinct literatures to discover sets of 

common pedagogical moves that can help teachers specifically in supporting students’ co-

development of RF and FT; the findings set an example of identifying pedagogical moves that 

support students’ meaningful understanding of quadratic functions. When identifying teacher 

pedagogical moves that created a foundation for students’ FT, I drew on the work of other 

researchers who (a) identified the central tenants of quantitative reasoning—quantification and 

quantitative operations (Thompson, 2011)—and (b) explored ways of supporting students’ 

understanding of quantities and quantitative operations (Smith &Thompson, 2007). I took as a 

baseline that students’ skills in reasoning about quantities and their relationships help to foster 

students’ FT (Ellis, 2011). 

Overall, these findings on teacher pedagogical moves furthered existing literature by 

pointing to specific sets of teacher pedagogical moves that were empirically proven during this 

study to be affective in teaching students about quadratic functions within a quantitative context. 

One of the key contributions of this study was that these sets of empirically proven teacher 

pedagogical moves may help create a foundation for students’ development of continuous 

covariational reasoning. Most of the prior literature stated that students should develop 

continuous covariational reasoning as part of a sophisticated understanding of functions (Carlson 

et al., 2002; Moore; 2014); however, empirically proven sets of teacher pedagogical moves that 
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might support this development had not been explored. Therefore, the current findings set an 

example by identifying specific teacher pedagogical moves that support students’ continuous 

covariational reasoning. 

A Role of Language and Culture in Learning About Quadratic Functions  

In the current study, I identify myself as an insider who established trust with participants 

(Narayan, 1993). As the researcher and participants, we share the culture and language, which 

may have played a critical role in this study. I have known the participants for four to seven 

years. I saw them grow up in the same community and neighborhood. My role in participants’ 

minds might vary; they know me as an “auntie” or a Turkish-American practicing Muslim, who 

speaks the same language they do, laughs at the same jokes, and shares the same culture. I see 

that all the values and experiences I share with the participants may have impacted the students’ 

meaningful learning of quadratic functions.  

An example, I emphasized and encouraged students to engage in code-switching in 

English and Turkish. This is partially because some of the participants had more formal 

mathematics in Turkish than in English; some of the participants learned mathematics in Turkish 

until 7th grade. Then they switched to English for 8th to 10th grades. Knowing their background, 

I code-switched with students, constantly used the terms in both Turkish and English. When they 

used formal mathematics terms both in Turkish and English in the same conversation, I 

understood what they were trying to say.  

In sum, culture and language may have impacted students’ meaningful understanding of 

quadratic functions during this study. However, to measure how this dynamic might support 

students’ learning, I would need specific analytical tools.  
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Limitations and Suggestions for Future Studies 

Limitations 

There were several limitations to the current study, including (a) having few team 

members and a large amount of data; and (b) an inconsistent timeline between teaching episodes. 

I will discuss these limitations in this section, as well as presenting opportunities that the current 

study suggests for further research. 

One of the limitations was having such a large amount of data. Design studies usually 

require the work of a team to analyze that data. Although I had a research team, I believe that my 

team size was on the small side, and that this project would better be conducted with a larger 

group of 20 to 30 people to gain a complete understanding of students’ meaningful learning by 

supporting and characterizing students’ co-emergence of RF and FT. With an extended team 

size, this research could also be conducted with the perspectives of multiple experts from the two 

distinct yet related areas of literature that I networked, quantitative reasoning and 

representations.  

The timeline was also a limitation to my study; the time between teaching episodes 

depended on the availability of the research team, Covid-19 contingencies, and the participants, 

rather than a thorough ongoing analysis of previous teaching episodes. 

Suggestions for Further Studies  

The research site was a community center, rather than a school setting, which may have 

positively affected students’ motivation in solving questions. This study piloted ways to connect 

students’ culture, identity, and language as an “insider.” This study should be conducted in 

school settings by bringing students’ culture and identity into the process of learning about 

functions in the context of the networked theories of QR and representations. With that in mind, I 
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recommend conducting this study in school settings with teacher playing the role of the teacher-

researcher; such a study might yield robust pedagogical moves for school settings.  

The current study showed that students have difficulty differentiating between 

interrelatedness 1 and 2 when they make a connection across multiple representations; we need 

further study to explore ways to ease such difficulty, which might include supporting students to 

make a connection with interrelatedness 1, and then interrelatedness 2, then seeing how each 

emergent quantitative relationship is related across multiple representations. In particular, we 

need studies that explore how and why a connection between a table and symbolic equation of 

quantitative relationships might pose a challenge for students trying to differentiate whether 

interrelatedness 1 or 2 is being represented with a symbolic equation. This is especially true 

because the symbolic equation for the interrelatedness 1 is a quadratic relationship, and 

interrelatedness 2 is the derivative of the quadratic relationship. Hence, we need studies to 

explore whether, if students create a connection between multiple representations along with 

flexibility between interrelatedness 1 and 2, such thinking would yield a foundation for the 

meaningful understanding of a derivative. 

Lastly, although this study shed light on the ways to merge two distinct yet related areas 

of literature, quantitative reasoning and representations, there is also a need to see how 

networked theories could support other families of functions.  

Implications of the Study 

There are several implications of the study: implications for teachers of mathematics and 

implications for curriculum writers.   
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Implications for Teachers 

There is a gap, or a disconnection, between research and practice in teaching and learning 

mathematics (Silver & Lunsford, 2007). Therefore, the findings of this study can inform 

mathematics teachers as to how to better prepare secondary or high school students for advanced 

mathematics via networking the theories of quantitative reasoning and representations. These 

findings offer an example for teachers to see how students’ understanding of quadratic functions 

can be supported through teacher pedagogical moves, enacted task characteristics, and socio-

mathematical norms. With the teaching experiment, along with the learning-ecology framework, 

the findings provide opportunities for teachers to learn theory-guided designs in teaching and 

learning about quadratic functions.  

These findings inform teachers that students’ learning or sense-making does not progress 

on a linear path. Therefore, the components that support learning should build off of one another: 

a learning-ecology framework that takes into account teachers’ moves, prompts and promoting 

actions, socio-mathematical norms, and enacted task characteristics.  

This study can guide teachers toward empirically proven sets of teacher pedagogical 

moves that support students’ meaningful understanding of functions when students engage in 

quantitatively rich tasks within small- and whole-group settings. The reported findings also 

showcase specific enacted task characteristics that support students’ meaningful understanding 

by allowing students to talk, articulate, create, interpret, connect, and communicate about 

multiple representations when presenting emergent quantitative relationships.  

Furthermore, this study can help teachers by highlighting socio-mathematical norms 

which can be used to support students as and encourage them to criticize, justify, articulate, and 

express skepticism about peers’ explanations when learning about quadratic functions.  
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Finally, learning-ecology frameworks can be used to teach other function families as well 

by generalizing that a function family should be taught by getting students to co-develop RF and 

FT.  

Implications for Curriculum Writers  

The findings of this study can help curriculum developers create a curriculum that 

emphasizes designing tasks, tools, and curriculum materials that center on quantitative reasoning 

(Smith & Thompson, 2007; Thompson, 1994) and representations (Dreyfus, 2002; Kaput, 

1987a;1987b). With that in mind, curriculum writers can design curricula that provide 

opportunities for students to represent emergent quantitative relationships by creating and 

connecting multiple representations. In other words, the curriculum materials should create 

opportunities for students to articulate, talk about, and identify quantities, and to create and 

connect multiple representations, when presenting emergent quantitative relationships. 

Furthermore, the curriculum materials should set up opportunities for students to coordinate 

among quantities, make generalizations, estimate, justify, and visualize an emergent quantitative 

relationship with multiple representations. The findings of this study would help curriculum 

developers to develop a curriculum which emphasizes meaningful understanding of quadratic 

functions via the specific, empirically tested elements of the learning-ecology framework.  
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Appendix A: A Sample of Lesson Plan 

 

Learning Goal: Encouraging students to notice the quantities: the height of paint roller, and the 

length and the area of the triangle, by identifying quantities, creating new quantities (e.g., area) 

creating a representation (this will be students’ choice), and then sketching a graph to represent 

to a quantitative relationship. Overall, in this teaching episode, students will be supported to 

identify the quantities for paint-roller task situation and represent the relationship among the 

quantities.  

 

The Focus Question: What is the relationship between the length of the paint roller and the area 

covered? 

 

Research Goal: Exploring quantities in students’ minds: how the height of the paint roller exists 

in students’ minds, how students engage in the quantification process, and what the attributes of 

the paint roller and the painted area are in students’ minds. What is the unit of measure of the 

height and area of the triangle in students’ minds? What are quantitative operations students 

engage with? How do you support students’ quantitative operations? What representations are 

students likely to start using?   

  

 
 

I am going to let you watch a video; I want you record any notices and wonders you come 

across. Let us imagine there is a magic paint roller that sweeps out paint as you see on the screen.  

What did you notice and wonder about the magic paint roller?  

What do you notice and wonder when you watch the video? Fill out the chart below.  

 

I notice  I wonder  
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Quantification: Describing Situations, Attributes of a Situation, Quantities as Quantities  
1. Are these quantities (length, area, and height) measurable?  

 

 What can we measure in this situation? 

 

 What are the units for these quantities? 

 

2. Are the height and area related? How? Why?  

 

 

3. What is the relationship between quantities (area and the length)?  

 

4. How is the change in height of the paint roller affecting the change in the area?  

 

5. How big will the painted area be if the length of the paint roller is big or small? Why?   

 

Quantitative reasoning and creating a representation of the quantities of length and area 

 

1. Estimate: What is the relationship between the length of the paint roller and amount of 

the area covered?  

 

a. What is your estimation in regard to the relationship between height and area?  

 

b. What information do you need in order to find out how close your estimation was 

(the main questions)?  

 

c. How are you going to use the information? 

 

d. Do you think the area painted and the length of the paint roller are related? Why? 

Why not?  

 

e. What is the relationship between the area painted and the length of the paint 

roller?    

 

 

f. Draw a picture of this situation. How do you visualize the relationship between 

the area painted and the length of the paint roller?    
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Appendix B: The Teacher-Researcher’s Prompting Questions 

Identification of Quantities and reasoning within Quantities   

1. What are the quantities?  

2. What are the important quantities in this problem?  

3. Why are these quantities important in this problem context?  

4. What do the quantities mean in this problem?  

a. Give one important quantity  

b. And what is the importance of that quantity in the world of this quantity? 

c. What is another important quantity in this problem? Why? 

. Another important quantity in the problem?  

5. Any more important quantities? And why are they important?  

6. Can you create or come up with another quantity using these quantities? What does 

the new quantity mean in this problem? 

7. How are these quantities related?  

8. What is the new quantity in this problem?  

9. What is the relationship between these quantities?  

10. What information do you have here? 

11. Can you make another quantity by using these quantities you identified? Why is the 

quantity you created important?  

12. What is the meaning of the quantity you just made? Why do you think that quantity is 

important in this problem? What are the quantities representing? And how are these 

quantities being related?  

13. Are these quantities proportional? And how are they proportional?  
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Appendix C 1: Pretest 

 

1. Draw the next rectangle in the pattern (modified from Ellis, 2011)”; “it’s nohe same 

amount”; g i n the 

 

a) Do you see a pattern? Explain.: they might see square numbers, 1, 4,9, 16; from Day 

quadratic growth 

b)  Represent the height, length, and area in a table.  

Height  Area 

 

 

  

 

 

  

 

 

  

 

 

  

 

 

  

c) Create a graph relating height and area. 

d) Describe in your own words how the height and length are related.  

          e) Use what you know about the rectangle to write an equation relating the height and area. 

           f) What is the connection between the symbolic equation and the graph you created to 

show the height and area?   
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Appendix C2: Pre-Task-Based Interview Protocol 

Questions: 

*** Before I start asking you questions, I wanted to say that I am not here to evaluate what 

you did is right or wrong. I am interested in knowing what you think of these solutions. 

Remember there is no right or wrong way of thinking about these questions.   

 

Goal: Characterize students’ quantitative reasoning and RF in examining quadratic 

growth in discrete growing rectangle task 

Researcher Prompts:  

1. Which pattern did you see? Can you explain the pattern? 

a. What images do you have in mind related to the pattern?  

b. Could you draw the pattern?  

If participants could not see any pattern, ask students to create a diagram, either with tiles or 

drawing a diagram. (their drawing)  

 

Quantitative Reasoning and Representational Fluency 
Diagram. Set up: Use algebra tiles to make the first three iterations below. Create the next 

rectangle in the pattern.  

 
 

Quantification: Identifying quantities on a table and graph  
2. What are the quantities you see on this diagram?  

a. Where do you see length?  

b. Where do you see height?  

c. Can you make another quantity by using these quantities you identified? 

d. Where do you see area?  

3. Can you create a table?  

a. Can you extend the table for more values?  

b. What are the quantities? 

c. What do the quantities mean in this growing rectangle problem?  

d. Can you create or come up with another quantity using these quantities? 

e. How are the height and length related? 

f. How did you find the area?  

g. How are the length and area related?  

h.  How are height and area related? 

 

Connection between diagram and table within quantities  
4.  How is your table related to your diagram?  

a. What are the quantities in this table and diagram?  

b. What are the units for those quantities? Can you show me on the table and diagram?  

c. How are these quantities related on the table and the diagram?  

d. Describe the connections between the table and the diagram. 

e. What do you see on the diagram?  
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f. What are the quantities you see on the diagram?  

g. How do you use the quantities to create the table?  

h. How do you create the table? 

i. How do you use diagram to create the table?  

j. How is what you built (in tiles/drawing) connected to your table? 

 

Graph: Connections among graphs, one created without a grid the other one created with a 

grid.  

5.  What would this situation look like in a graph? (papers with no grid o it, no graph 

papers!) 

a. Where is height in the graph? 

b.  Where is area in the graph? 

c. How are the area and height related?  

d. If you plotted points from your table, where would they be on that graph?  

e. (Offer grid paper) 

f. What do the quantities (length, area, height) mean in this graph?  

g. What does area mean in relation to height?  

 

Reasoning in symbolic equation  
6. What rule would get you from any height to the area? 

a. Can you generalize the relationship between height and area?  

b. Can you write an equation for height and area? 

c. What does the area mean in this equation?  

d. What does the height mean in this equation? 

e. How are the area and height related in in this equation? 

 

Connection among and within a graph and a symbolic equation with quantitative 

reasoning 

7. Can you explain your thinking in connecting the graph with the equation? 

a. Where are the height and area on a symbolic representation?  

b. What do you see in connecting the graph and the symbolic equation?  

c. How are the height and the area related on a symbolic equation?  

d.  How are the height and area related on a graph? 

8. What is the best representation to explain the relationship between height and area? 

a. Why?  

b. How did you decide that?  

9. Which one—table, graph, diagram, or symbolic equation—makes more sense to you 

about the relationship between height and area?  

a. Why? How did you think about this relationship?  
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Appendix D: Teacher-Researcher Written Reflection Rubric 

Date, Time:  

Name:  

 

 

 

1. What emerged in today’s instruction (goals, instructional activities, learning process, 

and tools) from a stance of networking the theories of FT and representations? 

 

 

 

a) Provide a rationale for your claim with the time and data 

 

 

 

 

 

 

2. What new information am I acquiring about students’ meaningful understanding of 

function that might challenge our stance on networking theories? 

 

 

 

a) Provide a rationale from the data 

 

 

 

 

 

 

3. Write a burning question about things that constitute students’ meaningful learning 

of function. 
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