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Abstract

The weak charge of the proton is determined via Qweak experiment at Thomas Jefferson

Laboratory in Newport News, VA. A longitudinally polarized electron beam was scattered

by a liquid hydrogen target. The spin direction of the electron beam was switched between

left and right helicity states. The cross section under both of the electron states were

measured to form the parity-violating asymmetry. An asymmetry of

-226.5±7.3(stat)±5.8(syst) was measured, corresponding to a weak charge of 0.0719±0.0045

for the proton, which agrees with the value of 0.0708±0.0003 from the Standard Model.

During the spin reversion of the electrons, other unwanted changes of the electron beam

can be introduced as well to cause false cross section changes, also known as the ”false”

asymmetry. Successful evaluation and removal of these false asymmetries are crucial to the

accuracy of the final measured results. In this thesis, the methods of beam correction,

including regression, are discussed in detail about how the false asymmetry removal is done

and how the results of the experiment can be more robust under such corrections. Other

asymmetry corrections terms are discussed as well, including beam current asymmetry

correction.
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Chapter 1

Introduction

The Standard Model, together with Einstein’s General Relativity, provides the best

description of the universe for humankind. Both of the theories were developed in the last

century by brilliant minds from all over the world. They describe four known fundamental

forces and the particles with which we are made of. Even though there are more

sophisticated theoretical structures that are built on them, including GUT (Grand Unified

Theory), string theory etc, the Standard Model and General Relativity have stood

long-term experimental tests and proven to be on the right track to the ultimate truth of

the universe.

Here in this thesis, one of those experiments is described. The Qweak experiment is

another strict test for the Standard Model. Qweak aims to measure the weak charge of the

proton by scattering longitudinally polarized electrons to a hydrogen target. The change of

scattering rates (asymmetry) with respect to the change of the polarization direction gives

the weak charge of the proton and also the weak mixing angle for the electroweak sector of

the Standard Model. By comparing the experimental results with theoretical prediction,

Qweak experiment offers a test of the Standard Model’s current framework.

This thesis first gives the background of the Standard Model and formalism of the Qweak

experiment. In the next few chapters, the corrections to the asymmetry, including beam

1



current and beam position, energy corrections, are described in details. One chapter gives

the comparison between regression and dithering—two different beam correction

techniques—and partial reasons for the difference between them. The last chapter gives

final results and conclusion for the experiment.

1.1 Symmetries and the Standard Model

1.1.1 Symmetries

Symmetry is one of the great underlying characteristics of nature. The symmetry we are

most familiar with in our daily lives is the symmetry through the mirror. The image in the

mirror and ourselves are the same except that the left becomes right and the right becomes

left. Symmetry, in a more broad sense, gives the invariance of the system under some

operation. Taking the mirror again for example, the operation is the reflection through the

mirror and the invariance of the system is simply the same image in the mirror and the

person looking at the mirror. Like in a mirror maze, it is hard to tell the actual image in

the mirror from a real person, so don’t try to run into and hug someone unless you are

ready to pay for the broken mirror on top of the ticket.

When we include more operations in the concept of symmetry, we are not limited to

mirror symmetry. Other types of symmetries are not very closely related to literal meaning

of “symmetry” by first look. Time translation for the conservation of the energy is a

symmetry. The irrelevance of momentum with respect to position is also a symmetry. They

are all some invariance of something under certain operations. The examples so far sound

pretty trivial at first but when we try to include symmetry groups for the system at hand,

the concept of symmetry becomes deeper and this is how the Standard Model is formulated.

For the symmetries in the Standard Model, the system at hand is more abstract—the

Lagrangian of the system of interest. Physicists of modern days love to work with

Lagrangian not only because the equations of motion (like F = ma in Newton’s days) can
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be easily obtained by applying Euler-Lagrangian equations to the Lagrangian itself, but

also the Lagrangian in general is a linear sum of different energy pieces of the system we

are studying. Normally the kinetic energy terms have positive sign and the potential or

interaction terms have negative signs in the Lagrangian. So with Lagrangian the physics

significance of the system is clear and easy to interpret.

Now comes to the operation of the symmetry on the Standard Model. For a specific

operation, we have an operator and an object. The object which the operation is operated

upon is wave function of particles. The object can be a singlet with which only one particle

is involved. Or a doublet, which has two different types of particles in it. And a triplet,

with each wave function from three particles. For sure, the multilets are not composed of

randomly chosen particles. Normally in a multilet, the particles have almost all in common

but one important property of interest. In the Standard Model, that important particle

property which distinguishes particles in the multilet is electric charge for doublet, and

color charge (source of strong force) for triplet.

Ψ

Ψ+e

Ψ




Ψr

Ψg

Ψb


Singlet Doublet Triplet

As for the operator of a specific symmetry, we need matrices to manipulate multiplets.

For a singlet, we use a simple number as the operator. For doublet, we use a matrix of

rank 2, and rank 3 for triplet. In the Standard Model, the operator matrices are not

completely arbitrary. For the singlet operator, the matrix (a complex number) belongs to

U(1) group. The operator of U(1) group follows a simple rule: U †U = 11. Since for singlet,

the operator is a complex number, this condition limits this number to have only one

degree of freedom, which we can take as eiθ.

For doublet, the operator, matrix of rank 2, is required to follow SU(2) in the Standard

1† means transpose conjugate.
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Model. For SU(2) group, the matrix obeys two conditions: a unitary condition U †U = I2
2

and a “special” condition |U |= 1. With these conditions, a SU(2) matrix has three degrees

of freedom, which can be realized by Pauli matrices3 in the exponent: ei(τ1θ1+τ2θ2+τ3θ3). And

for triplet, the operator of a matrix of rank 3 in the Standard Model obeys SU(3), similar

to SU(2) with only an increase in the rank. And with unitary condition and special

requirement of unit determinant, the SU(3) operator has eight degrees of freedom, which

can be expressed using Gell-Mann matrices4 as ei(λ1α1+λ2α2+...+λ8α8).

Now for symmetry of the Standard Model, the gist is that the Lagrangian is invariant

(Lagrangian has a real value, so simply this value is to be kept unchanged) under

operations we have described on the particle wave functions (singlet or multilets). There

are further procedures, including global or local operations and symmetry breaking, which

are to be introduced in later sections.

1.1.2 The Standard Model

The Standard Model was developed in the 1960–70s and it describes the known

fundamental particles and three of the four interactions (electromagnetic, weak and strong

forces). The Standard Model has stood long and rigorous experimental tests and the last

puzzle of the model—Higgs boson—was discovered in 2012. The current framework of

Standard Model itself is fairly complete except for a few missing parameters in the lepton

section involved with neutrino oscillations. The Standard Model has already been a very

successful theory framework even though many parameters (19) have to be provided by

experiment. So it is not fair to blame the Standard Model for its exclusion of other

2I2 is a unit matrix of rank 2.

3The Pauli matrices are τ1 =

[
0 1
1 0

]
, τ2 =

[
0 −i
i 0

]
, τ3 =

[
1 0
0 −1

]
.

4The Gell-Mann matrices are λ1 =

0 1 0
1 0 0
0 0 0

 , λ2 =

0 −i 0
i 0 0
0 0 0

 , λ3 =

1 0 0
0 −1 0
0 0 0

 , λ4 =0 0 1
0 0 0
1 0 0

 , λ5 =

0 0 −i
0 0 0
i 0 0

 , λ6 =

0 0 0
0 0 1
0 1 0

 , λ7 =

0 0 0
0 0 −i
0 i 0

 , λ8 = 1√
3

1 0 0
0 1 0
0 0 −2

.
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Figure 1.1: Classification of elementary particles in the Standard Model [3].

phenomena in nature. But still, the gravitational force is not incorporated with the

Standard Model. Also the Standard Model can not explain well the matter-antimatter

asymmetry mystery. And the dark matter and dark energy problems can’t find their

origins in the current framework of Standard Model. Therefore, there is still room for new

physics to be found beyond the Standard Model.

The current Standard Model classifies elementary particles into two main categories:

fermions and bosons. Fermions are “matter” particles and have half-integer spin. The

bosons are mostly “force” carrier particles and they have integer spin. Fermions can be

divided into quarks and leptons. Quarks have fractional (increment of 1/3) element electric

charges while leptons have integer element charges (-1, 0, 1). Quarks and leptons have

three generations, with mass increasing from generation to the next generation. The

bosons include gluons (eight of them, carriers of strong force), photon (mediator of

electromagnetic force), Z and W± bosons (carrier of weak forces). These “force” carrier

particles have spin of 1. Also there is newly discovered (theoretically predicted in 1970s)

Higgs boson, which has spin of 0, gives fermions and weak force carrier bosons masses via

spontaneous symmetry breaking.
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1.1.3 Parity Violation in the Standard Model

Of the three fundamental forces described by the Standard Model, the weak force has one

feature that the other two forces (electromagnetic and strong forces) don’t - weak force

violates parity symmetry. Parity violation is unique to weak force. To understand this

feature, first we need to know what parity operation is and what it means for particles.

Parity is a concept that is closely related to the spin of a particle. The spin, even though

we don’t know the exact source or structure of spin, it can be treated as internal angular

momentum of a particle. The angular momentum, like orbital angular momentum, is the

cross produce of two vectors - position and momentum. Under parity operation,

x, y, z → −x,−y,−z, the directions of position and momentum are both changed by 180

degrees while the cross product - the angular momentum - doesn’t change its direction. So

the spin of a particle, under parity operation, keeps its direction as well.

Now we introduce the handedness for a particle. If the spin of a particle is in the same

direction with its momentum, it is a right-handed particle. If the spin and momentum are

in opposite directions, the particle is left-handed. Since under parity operation, the

direction of spin is kept while the direction of momentum is inverted, the handedness of a

particle is changed under parity. A left-handed particle can be changed to a right-handed

particle under parity operation and vice versa.

In nature it is surprising that the weak forces in the Standard Model only work on

left-handed particles. This means the right-handed particles don’t participate in the weak

interactions, at all. Since parity operation changes handedness, basically the parity

operation turns weak force “on and off”5. And this is why we say “weak force violates

parity symmetry”, and in a maximum way.

5This is true for a 100% right-handed particle and 100% left-handed particle in the model. In experiment,
we are dealing with particles that are not 100% left-handed or right-handed, normally a mixed state. For
example, the Qweak experiment utilized a 89% polarized electron beam.
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1.2 Electroweak Unification

Like Maxwell unified electricity and magnetism into a single electromagnetism framework

with a set of equations, weak force and electromagnetic force are unified as well in the

Standard Model. This is not in the sense that the force carriers can all be generated with

different group symmetries we mentioned earlier, but that the SU(2) and U(1) are

intimately bound together. There is a mixing between the force carrier bosons through

SU(2) and the force boson with U(1), which is known as “weak mixing angle”. There is no

mixing between SU(3) and other groups, so strong force is considered to be independent

from electromagnetic force and weak forces, even though they all can be formulated with

the same principle - local gauge invariance.

1.2.1 Local gauge invariance

The local gauge invariance, or in other words based on what we have introduced so far, the

local operation on particle singlet or multilets, with the Lagrangian conserved. The

operators we mentioned earlier all have different numbers of degrees of freedom depending

on the group they belong to. For U(1) operator, the degree of freedom is 1 and for SU(2)

or SU(3) operators, there are 3 or 8 free parameters, accordingly. These free parameters

can be constants in the global gauge invariance scenario or they can depend on position

and time for local gauge invariance.

In the Lagrangian of the Standard Model, before the local gauge invariance is applied,

there are only kinetic terms from the particles involved, singlet or multilets. The kinetic

terms are in the form of free Dirac particles,

ūγµ∂µu ,

where ū is Dirac conjugate of a spinor, it could be a singlet or multiplet.

As we can see, there are partial derivatives in the term shown above. If the operator has

constant free parameter(s), the partial derivative has no effects and the operator from
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Dirac spinor and adjoint Dirac spinor cancel each other and the resulted Lagrangian is

unaffected. This is what “Global Gauge Invariance” means.

For “local” gauge invariance, the free parameters depend on xµ, or position and time.

Therefore the partial derivative can work on the free parameters in the operators and an

extra term shows up after the operation on wave functions. This extra term contains

partial derivatives of the free parameters from the operator of interest. To make sure the

resulted Lagrangian is still conserved, the extra term must be compensated by other things.

And at this point, the vector bosons show up to make up for the extra partial derivatives

from the operator parameters. For SU(2)×U(1) symmetry groups, four parameters exist in

the SU(2) operator and U(1) operator and therefore four vector boson field are introduced.

Effectively speaking we can replace the original partial derivative with “covariant”

derivative. The vector boson fields can be integrated in the “covariant” derivative as

Dµ = ∂µ + ig
2
(τ 1W 1

µ + τ 2W 2
µ + τ 3W 3

µ) + ig
′

2
Bµ ,

where W 1−3
µ and Bµ are four vector boson fields introduced with “Local Gauge Invariance”.

1.2.2 Spontaneous symmetry breaking

When Maxwell introduced the unified theory of electromagnetism, the key idea was that a

changing electric field generates a magnetic field and vice versa. In the Standard Model,

the weak force and the electromagnetic force are unified with a mixing between them. The

strength of the mixing is represented by the weak mixing angle, θW . The vector boson

fields W 3
µ and Bµ are mixed to form the neutral weak boson field Z and the

electromagnetic photon field A: Zµ = cos θWW
3
µ − sin θWBµ

Aµ = sin θWW
3
µ + cos θWBµ

.

The coupling constants from SU(2) and U(1) gauge bosons are related to the element

electric charge by
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g = e/sin θW , g
′ = e/cos θW .

The charged W bosons are related to the original W bosons by

W±
µ = 1√

2
(W 1

µ ∓W 2
µ) .

As of now, the fermions and bosons in the Standard Model are still massless. Their mass

terms (if there should be any) are not introduced until the Higgs boson (via Higgs

mechanism) and Yukawa interactions are added into the framework of the Standard Model.

The Higgs Lagrangian is

L = (DµΨ)†(DµΨ)− µ2Ψ†Ψ− λ(Ψ†Ψ)2 ,

where the negative terms are the potential energy of the Higgs boson and the Higgs boson

is a complex doublet,

Ψ =

ψ+

ψ0

 ,

with ψ+ carrying a positive charge and the neutral ψ0. When the SU(2) symmetry is

spontaneously broken, the Higgs boson takes the form

Ψ→ 1√
2

 0

ν +H

 ,

in which H is the scalar Higgs boson and ν minimizes Higgs potential energy when µ2 < 0.

Since ν is not zero, mass terms for Z and W bosons show up in the Higgs Lagrangian after

spontaneous symmetry breaking, together with the interaction terms between Z, W bosons

and the Higgs boson. The masses of Z and W bosons are related to each other by

MZ = MW/cos θW .

. Further with Yukawa interaction terms between the Higgs boson and the fermions, after

spontaneous symmetry breaking, the fermion masses are introduced as well. Since there are

no right-handed neutrinos observed in experiments, neutrino masses can’t be generated via

Yukawa interactions with symmetry breaking in the Standard Model.
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1.2.3 Neutral weak current

In the electroweak sector of the Standard Model, there are two neutral interactions - the Z

boson and the photon (γ). While the charged W bosons change the flavor of a particle by

absorbing or emitting an element charge, Z and γ keep the particle’s original flavor (Fig.

1.2).

Figure 1.2: Neutral current interactions. Left: Z boson exchange; right: photon γ exchange.

The neutral currents for Z and γ are

Jγµ = ψ̄Qfγµψ ,

JZµ = ψ̄γµ(gfV − g
f
Aγ5)ψ ,

(1.1)

where Qf is the electric charge for a lepton or a quark. gfV and gfA are the weak vector and

axial charges, respectively. The values of Qf , g
f
V , gfA for leptons and quarks in the Standard

Model are listed in Tab. 1.1.

Table 1.1: Electric and weak charges for quarks and leptons.
f Qf gfV gfA

u, c, t +2/3 1− 8/3 sin2θW 1
d, s, b −1/3 −1 + 4/3 sin2θW −1
e, µ, τ 0 1 1
νe, νµ, ντ −1 −1 + 4 sin2θW −1

For electron-quark scattering, the parity-violating part of the Z exchange Lagrangian is

LPV = −GF√
2

∑
q

(C1qēγµγ5eq̄γ
µq + C2qēγµeq̄γ

µγ5q) , (1.2)

where GF is the Fermi constant, q runs through all quark flavors (actually only light
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quarks u, d, s are important in the experiment), C1q and C2q are weak coupling constants

for vector and axial quarks. The Qweak experiment can determine a linear combination of

C1q’s, 2C1u + C1d.

1.2.4 Electroweak radiative corrections

The interaction terms in the Lagrangian so far have been at tree level - four point

interaction with two vertexes. At higher order levels, loops can be inserted into the

diagrams (Fig. 1.3). Due to the loop vacuum effect, the true charge of the coupling is

screened, which causes the running of the coupling constant α with the energy scale.

Figure 1.3: Feynman diagrams for γ exchange at 1st (left) and 2nd (right) orders.

There are also higher order diagrams for electroweak interactions, as shown in Fig. 1.4.

These higher order diagrams lead to the running of the weak coupling.

Figure 1.4: Feynman diagrams for higher order electroweak interactions.

With radiative corrections, the proton’s weak charge is of the form

Qp
W = [1 + ∆ρ + ∆e][(1− 4 sin2 θW (0)) + ∆e′ ] + �WW + �ZZ + �γZ , (1.3)

where ∆ρ modifies the coupling, ∆e and ∆e′ are vertex corrections to Z and γ vertexes.

The last three terms are from box diagrams like in Fig. 1.4. �WW and �ZZ can be well
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calculated due to large masses of W and Z bosons. But �γZ is hard to calculate because

the photon is massless.

1.3 PV Scattering Experiment

1.3.1 Electron Scattering and Form Factors

In the electron-nucleon scattering experiment, due to the structure of proton and neutron,

the neutral currents associated with the nucleon vertexes are

Jµ,γ = ψ̄(F γ
1 γ

µ + F γ
2
iσµνqν

2M
)ψ ,

Jµ,Z = ψ̄(FZ
1 γ

µ + FZ
2
iσµνqν

2M
+GZ

Aγ
µγ5)ψ ,

(1.4)

where F1 and F2 are Dirac and Pauli form factors for photon and Z boson and GZ
A is the

axial form factor for Z boson. In Sachs form factors GE (electric) and GM (magnetic) [4],

we have

GE = F1 − τF2 ,

GM = F1 + F2 ,
(1.5)

in which τ = Q2/4M is a kinematic factor.

The electromagnetic form factors Gγ
E and Gγ

M for proton and neutron are well studied

over a wide range of Q2 and can be summarized as

Gp,γ
E = GD ,

Gp,γ
M = µpMGD ,

Gn,γ
E = −µnE τ

1+5.6τ
GD ,

Gn,γ
M = µnMGD ,

(1.6)

where GD = 1/(1 +Q2/0.711)2 is a dipole form.

The neutral weak form factors GZ
E and GZ

M for proton and neutron are not as well known

as the electromagnetic form factors, but they can be written in terms of the
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electromagnetic form factors as

Gp,Z
E,M = (1− 4 sin2 θW )Gp,γ

E,M −G
n,γ
E,M −Gs

E,M ,

Gn,Z
E,M = (1− 4 sin2 θW )Gn,γ

E,M −G
p,γ
E,M −Gs

E,M ,
(1.7)

where Gs is the form factors for strange quark.

The axial form factor for Z boson follows a dipole form

GZ
A =

GZ
A(0)

(1 + Q2

M2
A

)2
. (1.8)

.

1.3.2 e + p Scattering Parity-Violating Asymmetry

The electron-proton scattering parity-violation asymmetry is [5]

APV =
−GFQ

2

4πα
√

2

εGγ
EG

Z
E + τGγ

MG
Z
M − (1− 4sin2θW )ε′Gγ

MG
Z
A

ε(Gγ
E)2 + τ(Gγ

M)2 , (1.9)

where

ε′ =
√
τ(1 + τ)(1− ε2) , ε =

1

1 + 2(1 + τ)tan2 θ
2

, (1.10)

GF is the Fermi constant, α the fine structure constant, M the proton mass, θ the electron

deflection angle in the laboratory.

The asymmetry can be further reduced to

APV =
−GFQ

2

4πα
√

2
[Qp

W +Q2B(Q2, θ)] , (1.11)

where the B term contains hadronic structure contribution to the asymmetry. At the small

four-momentum transfer for Qweak experiment, the proton structural contributions can be

greatly suppressed.
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1.3.3 Motivation for Qweak

Qweak provides strong constraints on weak vector quark coupling combination 2C1u + C1d.

Together with atomic parity violation (APV) experiments, the coupling C1u and C1d can be

determined separately with good precision.

New lepton-quark PV physics at TeV scale can be parameterized in a contact interaction

Lagrangian as

LPVeq =
g2

4Λ2
ēγµγ5e

∑
hqV q̄γ

µq , (1.12)

in which Λ is the energy scale. The weak charge of proton determined by the Qweak

experiment can set bounds on new semi-leptonic PV physics beyond the Standard Model.
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Chapter 2

The Qweak Experiment

The goal of the Qweak experiment was to determine the weak charge of the proton via the

measurement of parity-violation asymmetry in electron-proton elastic scattering. In order

to achieve better precision, the experiment pushed forward on many existing boundaries,

including higher beam intensity, faster electron helicity reversal, higher power target, etc.

The typical parameters of the experiment are listed in Tab. 2.1.

Table 2.1: Typical parameters of the Qweak experiment.
Quantity Value
Beam Energy 1.16 GeV
Beam Polarization ∼89%
Beam Current (Integrating Mode) 100-180 µA
Beam Current (Event Mode) 50 pA - 200 nA
Target Length 34.4 cm
Target Temperature 20 K
Beam Power in Target 2.1 kW
Luminosity 1.0− 1.7× 1039 cm−2s−1

θ Acceptance 5.8°− 11.6°
Nominal Scattering Angle 7.9°
φ Acceptance 49% of 2π
Elastic Solid Angle 43 msr
Acceptance Averaged Q2 0.025 GeV2∫
| ~B|dl 0.9 T·m

Total Detector Rate 7 GHz
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2.1 Overview

The experiment took place in Hall C at the Thomas Jefferson National Accelerator

Facility[6] (see Fig. 2.1) located in Newport News, Virginia. The data taking was divided

into three running periods:

◦ Commissioning Run: February, 2011

◦ Run 1: February - May, 2011

◦ Run 2: November 2011 - May 2012

Figure 2.1: Schematic of the Continuous Electron Beam Accelerator at Thomas Jefferson
National Accelerator Facility [6].

A ∼89% longitudinally polarized electron beam with a current of 180 µA and energy of

1.16 GeV was delivered to a 34.4 cm long liquid hydrogen target. Two independent

polarimeters, Compton and Møller, were utilized to measure the polarization. Several

beam position and current monitors along the beam line were installed to measure the

beam position, angle, energy and current. Eight quartz 200 cm × 18 cm × 1.25 cm

C̆erenkov detectors were positioned azimuthally in the end of scattering region, with an
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azimuthal angle coverage of 49% of 2π. The symmetry of the detector suppresses

helicity-correlated beam motion differences and transverse polarization asymmetries.

There are two modes associated with the detector measurement. One is current mode

during which the beam was at about 180 µA. The electron rate for each detector bar was

at ∼800 MHz and the current in the PMTs were integrated every millisecond. The other is

event mode with a low beam current of 50-100 pA which allowed for single electrons to be

detected by the detector bars for electron momentum transfer determination.

Figure 2.2: CAD view of the experimental apparatus [7].

A triple collimator system, together with a resistive toroidal magnetic spectrometer,

allowed elastically scattered electrons within 5.8° to 11.6° to travel onto the main detector

array, while keeping inelastic and Møller scattered electrons and neutral events away from

the detector. An electron rate of 0.9 GHz was achieved in each of these detectors during

the integrating mode (beam current 180 µA for asymmetry measurement). A tracking

system composed of horizontal and vertical drift chambers before and after the magnet

were periodically inserted during the event mode to measure the acceptance-weighted
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electron kinematics.

2.2 Polarized Electron Source

The polarized source is illustrated in the schematic of Fig. 2.3. In short, a circularly

polarized laser is incident on a photocathode, which produce polarized electrons with

corresponding helicity. The electrons are accelerated to ∼1 GeV in the CEBAF and bent

into the experiment Hall for later use.

Figure 2.3: Schematic of the polarized source for the experiment [7].

The helicity generator produced a signal of 960 Hz, about period of 1 ms, which was used

to flip the high voltage of Pockels cell. The pattern was repeated with a quartet of four

helicity states, -++- or +–+, with the first helicity state of each quartet determined with a

pseudo-random number. The four sequential helicity state windows forms a quartet, at
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which we average the detector yield or define detector asymmetry.

The linearly polarized laser delivered to Hall C was incident on the Pockels Cell, which

birefringence effect depended on the voltage applied. The Pockels Cell served as a

quarter-wave plate that can transform the linearly polarized laser light into circularly

polarized light. Switching of the sign of the high voltage, about 2.5 kV, also switched the

helicity of the emerging laser light at a rate of 960 Hz.

The flipping of the direction of the spin causes helicity-correlated change in the energy,

position and angle of the beam, referred to as a Helicity-Correlated Beam Asymmetry

(HCBA). The optical elements, especially the Pockels Cell, were carefully aligned to

minimize these false asymmetries. Besides, the Quantum Efficiency (QE) hole generated at

the photocathode during use of laser light can change the profile of the generated electron

beam, which contributes to the measured beam position differences.

Besides fast helicity reversal at a period of 1 ms, there are also slow reversal techniques.

The Insertable Half Wave Plate (IHWP) located in the trajectory of the laser beam before

the Pockels Cell changes the helicity of the beam. It was inserted about every 8 hr to alter

the polarization of the laser and thus the electron beam. The beam position differences

generated by optical elements in the Pockels Cell during fast reversal can have a changed

sign from IHWP “IN” state to “OUT” state. The combined beam position differences were

suppressed when two data segments with opposite IHWP states were combined, reducing

the size of the HCBAs.

The photocathode was a p-doped strained-superlattice GaAs/GaAsP wafer, with a QE

anisotropy of about 4%. The yield of photoelectrons depends on the orientation of the

incident light. During helicity reversal, the change of laser polarization could cause a false

asymmetry, referred to as Polarization Induced Transport Asymmetry (PITA). Charge

feedback from the measured electron beam current was utilized to slightly change the high

voltage of the Pockels Cell, providing equal amounts of electrons in different helicity states.

A Double-Wien filter system was composed of a horizontal Wien and a vertical Wien
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filter (see details in [8]). This could reverse the polarization of the beam, and it was carried

out every month during the experiment. The Wien reversal helped reduce the HCBAs,

especially the differences in the beam spot size (not like energy, position and angle which

were constantly monitored by series of beam position monitors).

2.3 Polarimetry

In order to measure the polarization of the beam, two independent methods were utilized

in this experiment, Møller [9] and Compton polarimeters. The former is invasive and

performed periodically, 2-3 times per week, and the latter is non-invasive and provided a

continuous measurement.

For the Møller polarimeter (see Fig. 2.4), the polarized electron beam is incident on a

magnetized Fe film target with an asymmetry that can be precisely analyzed. The valence

electrons were polarized while the inner shells resulted in a largest uncertainty due to

Levchuk effect [10]. Also since this was performed at a low current ∼2 µA, a conservative

uncertainty was assigned to the extrapolation to high current. In Run 1, an additional

uncertainly for short in one of the quadrupoles was added, which was absent in Run 2.

Figure 2.4: Layout of the Møller polarimeter [9].

The Compton polarimeter setup is shown in Fig. 2.5. The optics table was located 57 cm

below the beam. A coherent laser was locked to an ∼80 cm long optical cavity that crossed

the electron beam at an angle of 1.3°. Compton scattered photons were measured with

photon detector and the recoil electrons were detected by a set of micro-strip detectors to
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analyze their momentum. An asymmetry with respect to the helicity state of the electrons

as a function of the electron momentum was compared to QED calculation to determine

the electron polarization.

Figure 2.5: Layout of the Compton polarimeter [7].

In the middle of Run 1, the Compton polarimeter was commissioned to take polarization

data continuously, with a statistical error of about 1% at run level (in Run 2 this improved

to 0.5%). And as mentioned earlier, a broken quad in Møller polarimeter resulted in its

larger uncertainty in Run 1. For Run 2, the more productive part of the experiment, both

polarimeters functioned properly and the beam polarization obtained from the Compton

measurements at a current of ∼180 µA was consistent with Møller results that ran at a

lower current.

2.4 Beamline Measurements

Six beam charge (or current) monitors (BCM) were utilized in this experiment, labeled

BCM1-2, 5-8. They were located upstream of the target at distances of 16 m (BCM5, 7, 8),

13.4 m (BCM1, 2) and 2.7 m (BCM6) to perform continuous measurement of the beam

current. BCM1 and BCM2 used analog receivers while BCM5-8 used digital receivers.

BCM7 and BCM8 were added between Run 1 and Run 2. Because of the nonlinearity of

the detector (∼1%), detector asymmetry plus charge asymmetry results in a systematic

error. Therefore a small charge asymmetry was desired. To achieve this, a charge feedback

system was utilized to change the voltage of the Pockels Cell to null the change in beam
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current. A small charge asymmetry (IA) was typically averaged to below 40 ppb for both

Run 1 and Run 2.

Stripline monitors were unitized to continuously monitor beam positions along the

beamline. A linear least square fit of 4 or 5 such monitors 1.5-10 m upstream of the target

determined the position and angle of the beam at the target. The typical resolutions are

∼1 µm and ∼150 µrad for position and angle, respectively.

In the arc of the Hall C beamline, the BPM readings can reflect the change in the beam

energy. In the highest dispersion region, BPM3C12X1 was utilized to help characterize the

energy property of the beam. Since the BPM in the arc is also sensitive to the change of

position and angle of the beam at the target, a relative energy difference can be built upon

BPM3C12X, targetX, targetX’2:

4E
E

=
4X3C12X

411
−
4X target

596
+
4X ′target

0.443
, (2.1)

where in the numerator 4 represents the difference between the BPM readings for two

helicity states. The units here are cm for position and radian for angle. The three

quantities, readings of a BPM in the arc region, position and angle at the target, are

linearly combined with the factors in the denominator in order to remove the non-energy

responses in the BPM3C12X and determine the residual response of this BPM to the

change in beam energy.

HCBAs are important sources of false asymmetries in our results, and they are already

greatly suppressed by careful management at the polarized source and the symmetric

layout of the detector array. But sill monitoring of the beam parameter differences during

the experiment with the BPMs described above provided essential information for us to

further remove the HCBAs, including X (horizontal position), X′ (horizontal angle), Y

(vertical position), Y′ (vertical angle) and E (energy). For this purpose, we need to know

1The postfix X represents the horizontal reading for a specific BPM.
2The targetX’ can also be written as targetXSlope.
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the sensitivity of the detector signal to the change of these beam parameters to actually

calculate the size of the false asymmetries, the sum of which is Abeam, defined as3

Abeam = −
5∑
i=1

∂A

∂χi
∆χi , (2.2)

where ∂A/∂χi are the measured detector sensitivities and ∆χi are the corresponding five

beam parameter differences.

To measure these sensitivities, natural jitter of the beam can be used via regression of

the detector asymmetry to these parameter differences. Also, a more reliable and effective

measure was taken during the experiment to help determine these sensitivities in a

controlled manner by varying the beam parameters with the beam modulation system.

Air-core magnets along the beamline and one of the accelerator cavities modulated the

trajectory and energy of the beam at a frequency of 125 Hz. The parameters were

modulated in greater amplitude than natural jitter and in a relatively well-separated

manner in order that the sensitivities due to different parameters can be better decoupled.

2.5 Hydrogen Target

The liquid hydrogen (LH2) target (see Fig. 2.6) was mainly composed of a cell with thin

aluminum windows that allowed beam to interact with H2, a centrifugal pump to circulate

the liquid in the closed loop, and a heat exchanger to remove the heat deposited by the

beam. The energy absorbed by the H2 target from the beam is 2.1 kW, with an extra 0.7

kW for other the heat load in the components of the loop system.

The LH2 cell (Fig. 2.6A) had a conical shape with an angle of 14° to allow a safe pass of

scattered electrons at the acceptance angle of 5.8°-11.6° (see Table 2.1) required for this

experiment. The inner segments of the target cell was simulated with computational fluid

3The negative sign in Eq. 2.2 is for historical reasons, to be consistent with other asymmetry correction
terms.
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Figure 2.6: Schematic of the liquid hydrogen target used by Qweak experiment [7]. (A) beam
cell, (B) heater, (C) centrifugal pump, (D) heat exchanger, (E) solid target ladder, (F) steel
pipe support and adjustment.
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dynamics. The flow of liquid hydrogen was transverse with respect to the beam axis, with

a speed of about several meters per second. The entrance and exit windows of the cell were

made of Al alloy, with about 2 cm and 30 cm in diameter, 0.1 mm and 0.6 mm in

thickness, respectively. The exit window also had a curvature of about 25 cm with a

thinner spot in the center for unscattered electrons.

The temperature of the target was kept at 20.00±0.02 K via the heat exchanger with

helium coolant (Fig. 2.6D) and the heater (Fig. 2.6B) with temperature feedback. The

head exchanger removed the 2.1 kW from the target. The heater kept the target from

freezing when the beam was off. When the intensity of the beam changed, the heat

exchanger and the heater were also able to maintain a constant temperature in the target.

The target noise from density fluctuations contributed to the noise of the measured main

detector asymmetry. The fast helicity flipping increased the statistical error per window

and at the same time was able to suppress those low frequency noises from the target.

2.6 Collimating System

The main components of the collimating system were three lead collimators (see Fig. 2.2 or

Fig. 2.7) with eight apertures each, located downstream of the target at 0.7 m, 2.7 m and

3.8 m respectively. With thicknesses of 11-15 cm, they provided cleanup and defined the

acceptance of scattered electrons.

A pair of tungsten blocks could be inserted behind two opposing apertures of the first

collimator for background studies. Lead lintels were installed between magnet coils to

block neutral line-of-sight events from the inner apertures of the defining collimator. To

reduce the backgrounds from the aluminum beamline pipes, a water-cooled

tungsten-copper beam collimator was installed in the central aperture of the first

collimator, which defined a maximum angle of 0.88° for the central beam after the target.

Around the beamline at the second collimator, a 5 cm (upstream) and 30 cm (downstream,
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Figure 2.7: Schematic of cross section of the collimator system. Different sources of neutral
backgrounds are represented by colorful lines, which are solid until shielded by the collimating
system [7]. (1) neutral particles from the target, (2) the first region of the beamline, (3)
inner apertures of the defining collimator, (4) upstream face of the defining collimator, (5)
third region of the beamline.
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after Run 1) lead shielding were installed. Concrete shielding enclosed the region between

the first and second collimators and the main detector region. Lead shielding around the

beamline was also installed in the enclosed shield hut of the main detector.

2.7 QTOR Spectrometer

The Qweak toroid (QTOR) magnet spectrometer focused the elastically scattered electrons

within the acceptance defined by the collimators onto the eight fused silica detectors. It

could separate the elastic electrons from the inelastic ones and also prevent the neutral

events from reaching the detectors. The QTOR spectrometer consisted of eight resistive

coils 6.5 m downstream of the target. The coils were made of copper bar with cooling water

flowing in the central hole. The iron-free spectrometer was supported by aluminum frames.

Figure 2.8: Scattered electron profile defined by the collimators, spectrometer and main
detector shielding [7].

The QTOR spectrometer, together with the collimator system, is shown in Fig. 2.8. The

scattered electrons were defined by the triple collimator system and deflected in the

magnetic field generated by the QTOR spectrometer magnets, through the apertures in the

upstream shielding war of main detector hut and then focused onto the detector plane.
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2.8 Main Detectors

The main detector array was composed of eight Cherenkov detectors, which were

symmetrically located around the central beam. Each of the detector consisted of two 100

cm × 18 cm × 1.25 cm synthetic quartz bars and two 18 cm × 18 cm × 1.25 cm light

guides glued together. PMTs were installed on downstream sides of the light guides. 2 cm

thick lead pre-radiators were installed in front of each detector to suppress neutral

backgrounds.

During the integration mode for the main detector, the electrons incident at each

detector were at a rate of 850 MHz. The raw current of each PMT was read out and then

the pedestal was subtracted and the beam current from BCMs was used for normalization.

The gain of the PMT degraded over time and the beam current was increased gradually

throughout the experiment. Fig. 2.9 shows the normalized PMT yield vs run number in

this experiment.

Figure 2.9: PMT yield versus run number [7].

The width of the main detector asymmetry is about 230 ppm, with sources from BCM

instrumental noise, target density fluctuation, BCM resolution, target density fluctuation

and non-linearities in detector or BCMs. The RMS of the asymmetry over time (see Fig.

2.10) is relatively stable over the experiment, with Run 1 slightly higher than Run 2.
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Figure 2.10: Main detector asymmetry RMS (scaled by
√

beam current/180 µA) vs run
number [7].

2.9 Tracking System

The tracking system was mainly used to measure the acceptance-weighted average of

four-momentum transfer, < Q2 > during the event mode. Under such low current, the

tracks of individual scattered particles can be determined. The detector operated at event

mode and low-gain was switched to high gain in order to see the individual particles.

The system was composed of four horizontal drift chambers (HDCs) and four vertical

vertical drift chambers (VDCs) and two scintillators. The HDCs and VDCs were located

upstream and downstream of the QTOR magnets, respectively. The scintillators were

positioned between the VDCs and the main detectors. During integration mode, the

tracking system was retracted outside of the acceptance.

The HDCs determined the trajectory of the scattered electrons before the QTOR

magnet. By tracking the trajectory back to the target, the scattering angle can be

determined to derive the value of Q2. After deflection in the magnet, the trajectory can be

determined by the VDCs. With combination of knowledge of magnet field and both

trajectories before entering and after exiting the field, the momentum of the electron can

be determined to distinguish elastic events from inelastic ones. The elastic Q2 distribution

within the acceptance can be found this way to provide an acceptance-weighted average.
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Figure 2.11: Profile of electron flux in the main detector (bottom octant) [7]. Left: VDC
projection of electron tracks in the main detector. Right: electron flux scanned by focal
plane scanner. The scale is relative electron flux.

The tracking mode utilized a beam current of <100 pA while the production run with

integrating mode was typically under a current of >100 µA. A focal plane scanner, a small

Cherenkov detector (1 cm × 1 cm) in the bottom octant, was used to match the tracking

results to high current. The scanner can be operated at both event mode and integrating

mode and was movable with a 2-D driven system to determine the profile of the electron

flux in the focal plane. In Fig. 2.11, the scanned electron flux from focal plane scanner

agreed well with the projection of the VDC tracks to the main detector.

2.10 Background Detection

Four luminosity monitors, synthetic quartz bars with a dimension of 27 cm × 7 cm × 2 cm

each, were located on the upstream face of the second collimator, 2.7 m downstream of the

target, close to the beam line. They detected electrons with a scattering angle of ∼ 5°.

Eight downstream luminosity monitors were installed 17m downstream of the target,

inside the beam pipe, which detected electrons with a scattering angle of only 0.5°. Each of

these had a dimension of 4 cm × 3 cm × 1.3 cm and was covered in the front with 2 cm

lead pre-radiator. Because of the small forward angle and resulting small parity asymmetry,

the downstream lumis provided false asymmetry studies related to the main detector.

One complete detector which was identical to each of eight main detectors, the “ninth”

detector, was located in the super-elastic region in the main detector hut to measure the
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diffuse background. Other background detectors in the hut included PMTs in dark boxes

placed in the super elastic region as well. One bare PMT was used to measure “PMT

background” and the other PMT had the same lightguide part used in main detectors

glued to it to measure background in PMT+lightguide.

2.11 Electronics and Software

The voltage outputs from the detector and beam monitor pre-amplifiers or BCM receivers

were collected and sampled by Qweak 18-bit sampling ADCs (VQWKs) at a rate of 500

kHz. With a 960 Hz helicity reversal rate and exclusion of delay & settling time, a total of

464 samples were collected and averaged for the stable time in each helicity state4. To

digitize all the detectors, beamline and injector instrumentation, a total of 32 VQWK

modules with eight input channels each contributed a data rate of 6.5 MB per second. The

data was written at file sizes no greater than 1.9 GB. These files were called ”runlets”, each

of which had about 5 minutes of data. A typical hour-long run included 10-12 runlets.

During later analysis, runlet level was usually used to take averages and run asymmetry

analysis since the experimental condition was generally stable during the 5 min period.

The typical time periods we use for the analysis are listed in Tab. 2.2.

Table 2.2: Typical time period definitions for the analysis.

Name Approx. Duration Note
quartet 4 ms basic unit to form asymmetry etc.
runlet 5 min for averages and statistical error
run 1 hr generally stable experiment condition in each run
Slug 1 day the same Half Wave Plate state in each day
Wien 1 month beam helicity reversal from Double-Wien filter
Run several months experiment intermission and upgrade

The simulation packages included GEANT3 (optimization of acceptance and background

studies), GEANT4 (main detector yield optimization and tracking analysis) and

4Samples from every quarter of a helicity state was also averaged to “block” level.
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GARFIELD (design of the drift chambers).

Figure 2.12: DAQ and analysis framework [7].

The analysis framework is shown in Fig. 2.12. For each helicity window, the data

acquisition (DAQ) integrated the signals from various detectors and monitors used in this

experiment, computed asymmetries, and stored the data on disk. Real-time and on-line

analyzers provided information on experimental status and the feedback for beam current

control. For off-line analysis, the raw files were processed to form yield and asymmetry

from those events that passed basic cuts on beam current & position, signal saturation and

hardware faults. The main detector asymmetries were blinded with random factors

(different in Run 1 and Run 2) ranging in ± 60 ppb.
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Chapter 3

Dithering Correction

Beam corrections were needed to remove false asymmetries in the main detector, which

were resulted from helicity correlated beam motion. To connect beam motion with the

detector response, beam sensitivities were extracted. The dithering correction utilized the

beam modulation method for sensitivity extraction. This chapter gives the description of

dithering correction, including beam modulation, beam sensitivity extraction, beam

correction calculation and related analysis.

3.1 Helicity Correlated Beam Asymmetries

When the beam helicity state is switched from one state to another, the values of beam

parameters from the current helicity window can be slightly different from the previous

one. This can be from beam natural motion or a small change of beam trajectory during

helicity reversal at the polarized source. These beam parameters include beam energy,

position and angle. The beam current parameter change during the helicity reversal was

taken out by normalizing main detector yield with beam current measurement, which is in

the analysis of Ch. 5.

The beam position and angle are defined and measured at the target, by fitting with

several beam position monitors upstream of the target. The beam position and angle at
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the target give a convenient visualization of beam trajectory in front of the target before

the scattering process. This helps with the analysis and gives a direct physics meaning of

the beam sensitivities. The beam energy is measured with the curvature of the beam

trajectory along the arc of the beamline, or the dispersion of the beam measured by the

beam position monitor located in the middle of the beam arc. The beam energy

measurement in this experiment was performed with a linear combination of position and

angle at the target, together with a BPM(3C12X) that has the largest dispersion along the

beam arc (see Sect. 2.4).

Since the main detector output can be sensitive to beam energy, position and angle, the

change of these beam parameters, after being scattered by the target, can result in the

change of the main detector yield. Therefore, after forming main detector asymmetry with

main detector yields from each helicity state, the variation of these beam parameters

during helicity reversal can result in undesired asymmetries in the main detector. These

“false” asymmetries from beam energy, position and angle are mixed with main detector

parity asymmetry. These asymmetries, related to beam helicity change, are referred to as

Helicity Correlated Beam Asymmetries (HCBAs), which are listed in Tab. 3.1.

Table 3.1: Beam parameters for Helicity Correlated Beam Asymmetries.
No. Parameter Symbol Monitor Difference Sensitivity HCBA
0 Beam energy E dE SE AE

1 Horizontal position X dX SX AX

2 Horizontal angle X′ dX′ SX′ AX′

3 Vertical position Y dY SY AY

4 Vertical angle Y′ dY′ SY′ AY′

To remove these HCBAs from main detector asymmetry, two sets of quantities are

required. The first is beam parameter sensitivities (or slopes) that reflect the amount of

change in main detector yield due to the changes of beam parameter values. The beam

sensitivities provide the quantitative connections between the beam parameters and the

main detector yield. The other set of quantities necessary is the beam parameter values
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themselves. These were constantly monitored and stored during the experiment via beam

position monitors located along the beamline. The change of beam parameters from one

helicity to another are beam monitor differences, listed in Tab. 3.1.

Helicity Correlated Beam Asymmetry = Beam Sensitivity ·Monitor Difference

Ax = Sx · dx
(3.1)

With beam parameter sensitivities and beam monitor differences, the HCBAs can be

calculated and corrected in the main detector asymmetry. The beam correction term is

shown in Eq. 3.2, in which Abeam is the beam correction term. The individual As from

various beam parameters are calculated with the product of beam sensitivity and the

corresponding monitor difference (Eq. 3.1). The beam sensitivity is presented by symbol S

and the monitor difference is prefixed with d in this thesis. The symbol x in Eq. 3.1 and 3.2

runs through five beam parameters, E, X, X′, Y and Y′. The negative sign introduced in

Eq. 3.2 is conventional in this experiment to agree with the signs of other correction terms.

Abeam = −
5∑

x=1

Ax = −
5∑

x=1

Sx · dx (x = E,X,X′,Y,Y′) (3.2)

The beam monitor differences were constantly monitored and can be applied to the beam

correction term directly. The beam sensitivities must be obtained through some dedicated

procedure.

3.2 Beam Modulation

For the beam dithering correction, the modulation system is dedicated to extract detector

sensitivities. It was performed during the experiment to provide information for detector

and monitor response when the beam was dithered in certain pre-defined ways. The beam

modulation system dithers the beam in its five parameters, including energy E, horizontal

position&angle, X&X′, and vertical position&angle, Y&Y′. Sine wave signals are provided
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by five function generators fge, fgx1, fgx2, fgy1, fgy2. The function generator fge is for

beam energy modulation and fgx1 and fgx2 are used to modulate the horizontal position

and angle. fgy1 and fgy2 are for vertical position and angle of the beam. The reason we

have two function generators in either horizontal or vertical direction is that we have two

degrees of freedom in that certain direction.

During the modulation for horizontal position and angle two separate driving patterns

were utilized. The function generators fgx1 and fgx2 have the same frequency and are in

phase with each other, but the relative amplitude settings for them are different from one

modulation pattern to another. Two dithering patterns drive position and angle in

different ways, which helps better decouple these two beam parameters for later sensitivity

extraction.

Table 3.2: Dithering patterns during beam modulation.
Pattern Function Generators Beam Parameters Modulated Fast Feedback

X1 fgx1, fgx2 Horizontal position and angle on
Y1 fgy1, fgy2 Vertical position and angle on
E fge Energy off

X2 fgx1, fgx2 Horizontal position and angle on
Y2 fgy1, fgy2 Vertical position and angle on

There are five modulation patterns1 in total, E, X1, X2, Y1, Y22. Pattern E drives beam

energy. Patterns X1 and X2 modulate horizontal position and angle. Y1 and Y2 are for

vertical position and angle of the beam. Different driving patterns are listed in Tab. 3.2.

The relative amplitude of fgx1:fgx2 changes from pattern X1 to X2 and the same goes for

Y1 and Y2. During the energy modulation pattern E, Fast Feedback (FFB) system for

locking beam positions was turned off and during other dithering patterns the FFB system

was on.

1“Pattern” is also referred to as “coil” sometimes. For example, coilE represents driving pattern E.
2Pattern numbers documented in file (bm pattern number) are mainly 0-4 or 11-15, corresponding to

patterns X1, Y1, E, X2, Y2. Pattern groups 0-4 and 11-15 are different sets of modulation amplitude setting
for function generators.
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3.3 Signal Ramp Fixing

During the modulation of beam parameters, the phase of function generators was recorded

as the “ramp” variable at event level. Ideally, the phase increases from 0° to 360° and

repeats itself, which forms a ramp-like shape. Since we averaged the phase for the duration

of each event (1 ms), the actual phase vs time at the event level looked like Fig. 3.1.

Figure 3.1: Raw ramp vs time. Red line: ideal ramp line. Blue line: average of ramp. Black
points: original raw ramp. Red points: corrected ramp from bad ramp points.

In Fig. 3.1, the black points are read from the file at event level. Each ramp cycle

contains about 7 consecutive windows. Ideally, the black points should lie on the red line.

While most of the ramp points sit on the red line, a few ramp events do not. For the ramp

around 180°, the original phase signal increased gradually and the averaging at event level

left averaged ramp points on the line. The averaged ramp for these events gives “healthy”

average values that can increase linearly with time. But for the events near 0° or 360°,

since the phase jumped from 360° to 0°, the averaging at event level gave a value

inbetween. These points don’t change linearly with time and can affect the fitting of

modulation response vs ramp plots later. Therefore these “bad” ramps should be fixed.

The approach to ramp fixing presented here is to remap and rescale the ramp. Details of

the procedure will be described afterwards. To begin with, a few features of the original
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raw ramp are listed and discussed below.

3.3.1 Features of Raw Ramp

1. The average and range of raw ramp. The original raw ramp lies approximately within

0-360°. The average of raw ramp is around 180° (shown as the blue line in Fig. 3.1). This

is only “generally” true because actually the average might not be exactly 180° and the

range of raw ramp, even after initial fixing of the bad ramps, might not take the full range

of 0-360°;however, this will be accounted for during complete procedure of ramp fixing. For

the moment they are referred to as raw ramp average and range. In the end, the rescaled

ramp will have its average as 180° and range from 0° to 360° to allow for accurate fitting of

detector or monitor modulation responses to a sine function.

Figure 3.2: Ramp histogram before rescaling. Red rectangle: flat probability distribution.
Vertical blue lines: virtual 0°, 90°, 180°, 270°, 360° before rescaling.

Fig. 3.2 shows a ramp distribution for a modulation pattern, in which the central average

is about 175° and the range is from 5° to 345°. The vertical lines are “virtual” lines for the

phases of interest, which will be rescaled to ensure an actual full range of 360°.

2.Stability of raw ramp average and range. Each modulation period contains thousands

of ramp cycles. Fig. 3.1 shows only about three ramp cycles, and for each only the
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modulation duration of a specific pattern are shown. The raw ramp average is pretty stable

for the modulation period, and the raw range is firm for these ramp cycles as well. But

from one modulation period to another, the average and range might change. Therefore

ramp fixing is done for each modulation period.

3. Categories of raw ramp points. The original raw ramp could be classified as “healthy”

or “bad” points. Each of such main categories could be further divided into two

sub-categories: those ramp points that are higher than raw ramp average and those lower

than that threshold. All four categories are summarized below.

� “Healthy” ramp, consecutive and linearly increases with time

– “healthy high” ramp, higher than raw average

– “healthy low” ramp, lower than raw average

� “Bad” ramp, not falling on the ramp lines

– “bad high” ramp, higher than raw average

– “bad low” ramp, lower than raw average

The “healthy” and “bad” classification is largely qualitative, done by eye, but the “high”

and “low” criteria can be quantitatively verified against the raw ramp average. The

significance of such ramp classification will be discussed in the procedure of ramp fixing.

3.3.2 Ramp Fixing Procedure

Step 1: Take the average of raw ramp.

θ̄Raw =

∑NRaw

i=1 θRaw
i

NRaw
, (3.3)

where θ̄Raw is the average of the raw ramp θRaw
i . Index i runs from 1 to NRaw, the number

of raw ramp events in the duration of a modulation pattern. Basically, this is to calculate

the vertical position of the blue line shown in Fig. 3.1, except that this is done for
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thousands of ramp cycles. The average value θ̄Raw is close to 180°. As discussed in Sect.

3.3.1, for so many ramp cycles, this raw ramp average is stable and can serve as certain

criteria for the procedure afterwards.

Step 2: Remap the raw ramp based on “high” or “low” ramp type.

To remap the ramp, the raw ramp value is compared with the average of raw ramp

calculated in the last step. If the raw ramp is higher than average, take the two raw ramp

points on its left (two previous raw ramps) to linearly correct it and generate a new

remapped ramp. If the current raw ramp is lower than average, take the two raw ramps on

its right (two raw ramps afterwards) to calculate the remapped one.

θRemap
i =

 2 · θRaw
i−1 − θRaw

i−2 , if “high” θRaw
i > θ̄Raw

2 · θRaw
i+1 − θRaw

i+2 , if “low” θRaw
i < θ̄Raw

(3.4)

In Eq. 3.4, the criteria is the average of raw ramp, θ̄Raw. Whether the current raw ramp is

higher or lower than this criteria, it is rebuilt and linearly remapped using two adjacent

raw ramps. This is done for all the ramps in this modulation pattern period.

The remapping procedure above can be justified by the fact that each ramp cycle

contains at least six “healthy” consecutive raw ramp points and only one “bad” isolated

raw ramp3. The four categories of ramps listed in the last section can be examined to

verify that step 2 can always produce a “healthy” remapped ramp.

If the current raw ramp is “healthy high” (like points E, F, G in Fig. 3.1), the two raw

ramps on its left are “healthy” as well; so a remapping of the current ramp gives “healthy”

ramp, which almost coincides with the original raw one. The same applies for ”healthy

low” raw ramp (points B, C, D in Fig. 3.1) remapped using the two “healthy” raw ramps

on its right. The remapped and raw ramps for this point also almost coincide with each

3With lower modulation frequency, the number of consecutive ramp points can become more and instead
of two points used in this experiment, potentially more adjacent raw ramps can be used to remap ramp.
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other because of the linear nature of the good consecutive ramp points. As for the ”bad

high” raw ramp (point H in Fig. 3.1), since it is isolated, the two raw ramps on its left are

“healthy” and can be used to remap it. Only this time the remapped ramp is moved

upward to its rightful position, linearly positioned along with other “healthy” ramps in the

ramp cycle, which sits right on the ramp line (red line in Fig. 3.1). The same can be

reasoned for ”bad low” raw ramps (point A in Fig. 3.1), for which the newly remapped one

lies below the original and sits linearly with other ramps. Remapping for the four different

types of ramps are listed below.

Table 3.3: Raw and remapped ramp for four different ramp types.

Ramp Type
Raw Ramp After Remapping

On Ramp Line Position On Ramp Line Position
“Healthy High” Yes above average Yes coincide with raw
“Healthy Low” Yes below average Yes coincide with raw

“Bad High” No above average Yes above raw
“Bad Low” No below average Yes below raw

In Tab. 3.3, after remapping, all four categories of ramps sit on ramp line. The “bad”

raw ramps were not on the line initially but after remapping the newly obtained points

moved onto the line. And “healthy” ramps are basically unmoved and kept along the ramp

line all the time. A clean ramp-like shape is generated for each ramp cycle after remapping.

Special care had to be taken for the first and last two ramps of each modulation period.

For example, if the first raw ramp is higher than average, according to step 2, it should rely

on its previous two ramp points for remapping; however,since it is the first one, this can’t

be done and this ramp point is discarded. For other ramps in the very beginning and end

of the pattern duration, if the condition in Eq. 3.4 can be satisfied, they are remapped

along with other tens of thousands ramps in the modulation pattern period. The same

situation can happen during the run whenever the event counter is discontinuous or simply

when some events are just missing; the one or two ramps near these positions are

un-fixable with the procedure above and should be discarded. Fortunately such outliers are
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pretty rare out of the large number of events we can recover.

Step 3: Rescale ramp to full range.

As described in Sect. 3.3.1, the remapped ramps don’t usually average on 180° and the

ramp range does not take 0-360°. The remapped ramp should be rescaled to bring its

average to 180° and the range to 360° so that the sine function can be fit properly for

detector and monitor modulation responses.

From Fig. 3.2, the ramp has a flat probability distribution. Even though the range is not

full 360°, the ramps still distribute evenly from the minimum to the maximum within its

original range. The rescaling step here tries to bring the “virtual” 90° and 270° lines to

their rightful places so that the new flat distribution can center on 180° and range between

0° and 360°. The procedure of ramp rescaling is shown below.

First, take the average of remapped ramp by

θ̄Remap =

∑NRemap

i=1 θRemap
i

NRemap
. (3.5)

Here θ̄Remap is the average of remapped ramp, which is very close to the average of raw

ramp, θ̄Raw, provided by Eq. 3.5 in step 1. The index i runs through the number of

remapped ramp, NRemap, which has fewer events than NRaw because of the special

treatment of a few events mentioned in step 2.

Second, calculate the flat width of remapped ramp distribution:

σRemap =

∑NRemap

i=1

∣∣∣θRemap
i − θ̄Remap

∣∣∣
NRemap

, (3.6)

where σRemap is the width of flat distribution for the remapped ramp. It has a “virtual”

size of 90° for the ramp before rescaling, which will serve as calibration next.
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Third, we need to establish the connection between ramps before and after rescaling:

θRescaled
i = a · θRemap

i + b , (3.7)

in which θRescaled
i is the rescaled ramp. Free parameters a and b are to be solved based on

certain conditions. Assume the “virtual” 90° and 270° lines from the original flat

distribution (Fig. 3.2) are relocated to actual 90° and 270° positions after rescaling; we

then have an equation set for solving free parameters a and b:

 90° = a · (θ̄Remap − σRemap) + b

270° = a · (θ̄Remap + σRemap) + b
. (3.8)

In the equations above, since the average of remapped ramp θ̄Remap effectively represents

the “virtual” 180° line (Fig. 3.2), and the remapped ramp width σRemap has a size of “90°”,

the quantities θ̄Remap − σRemap and θ̄Remap + σRemap give “90°” and “270°” lines respectively

before rescaling.

After solving Eq. 3.8 and plugging the results into Eq. 3.7, we have the equation for

ramp rescaling:

θRescale
i =

90

σRemap
· (θRemap

i − θRemap
) + 180 , (3.9)

where θRescale
i is the rescaled ramp (Eq. 3.7) and θRemap

i is the remapped ramp (Eq. 3.4).

θ
Remap

and σRemap are the average (Eq. 3.5) and width (Eq. 3.6) of remapped ramp. The

index i runs from 1 to NRemap and the rescaling should be applied for every remapped

ramp. After this step, the rescaled ramp can range evenly between 0° and 360° with an

average of 180°.
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3.3.3 Comparison between Raw and Fixed Ramp

Through the procedure in Sect. 3.3.2, the raw ramp is remapped and rescaled. The fixed

ramp points sit on the ramp line and have a full range of 360°. To compare the raw and

fixed ramp, an example from one of the function generator signals is shown in Fig. 3.3.

Figure 3.3: Comparison between raw and fixed ramp. (a): fgx1 vs raw ramp. (b): fgx1 vs
fixed ramp.

In Fig. 3.3, the behavior of function generator fgx1 vs ramp is shown. This could be

from other function generators as well, or the modulation response from main detector or

beam monitor, which have similar phenomena as shown here. The plot on the left is fgx1

vs raw ramp before remapping and rescaling. It is a sine curve in general but there is a

straight line that could affect proper sine fitting. The straight line is composed of “bad”

raw ramp points (like points A, H in Fig. 3.1) from all ramp cycles during this modulation

period. After ramp fixing, on the right hand side, the “bad” ramp points were fixed and

moved towards both ends of the sine curve. We now have a clean sine curve. The rescaling

of ramp also made sure that the period is 360°. Now we could fit the plot on the right with

a normal sine function to extract dithering coefficients (amplitudes of modulation

responses) for detectors and monitors.
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3.4 Dithering Quality Checking

3.4.1 Dithering Coefficients

During beam modulation, the driving signals modulated the beam trajectory and energy.

The detectors and monitors that were sensitive to the modulated beam parameters had

dithering responses. With respect to fixed ramp from Sect. 3.3, the dithering response of

detector or monitor has sinusoid form. The amplitude of sine wave represents how sensitive

the device is to the modulated beam parameters. To find the amplitude quantitatively, a

sine function is used to fit the dithering response against ramp. The amplitudes of sine or

cosine curves are dithering coefficients of the detector or monitor.

The sin function used to fit the dithering response against the ramp is

Y = A · sin(θ + φ) + C , (3.10)

where Y is output of the detector or monitor, θ the ramp and φ the phase when ramp is

zero. The amplitude, A, is the strength of dithering response and C is the central value.

To see the sine and cosine parts more clearly with a linear function, an equivalent and

more convenient form of fitting is to break Eq. 3.10 into the sine and cosine responses:

Y = A · sin(θ) +B · cos(θ) + C . (3.11)

Here dithering coefficients A and B are amplitudes of modulation responses from sine and

cosine parts. Since the function generator signals are sine wave, it is convenient to refer to

the sine and cosine responses in Eq. 3.11 as “in-phase” and ”out-of-phase” with respect to

the driving signal. Therefore A and B are in-phase and out-of-phase dithering coefficients

for the detector or monitor (see Tab. 3.4).

The dithering coefficients give the size of modulation responses in the detector or

monitor. For each dithering pattern, several beam parameters were modulated. By
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Table 3.4: In-phase and out-of-phase dithering coefficients.
Dithering Coefficients Symbol Response

Sine A in-phase with respect to modulation
Cosine B out-of-phase with respect to modulation

examining the dithering coefficients of the beam parameters, we know what beam

properties were modulated for this pattern. And by looking at the size of dithering

coefficients in a certain detector or monitor, we could have an idea which beam parameters

could change output of the device we are interested in. If the dithering coefficient is high, it

means the detector or monitor is sensitive to the beam parameters that were modulated.

However, if the dithering coefficient is small, we know that the device is not sensitive to the

beam change from this pattern.

In Eq. 3.11, fitting parameter C is the central value of the device output during

modulation4. Normally we are more interested in the change of signals, dithering

coefficients A and B. But for detectors, since the asymmetry is defined as amount of yield

change divided by yield average under helicity reversal, the dithering coefficients for

detectors should be modified to adapt the definition of asymmetry for later application.

Therefore, the detector coefficients A and B from Eq. 3.11 are divided by the central value

C. Now the units for the detector coefficients can be ppb or ppm, just like detector

asymmetry.

When fitting dithering response vs ramp, not only can coefficients A and B can be

obtained, but also the error of coefficients were calculated, which are represented by ∆A

and ∆B here. The source of error is from beam natural motion. The beam width is often

comparable to the amplitude of driven motion, but with many repeated ramp cycles in a

modulation period the error of dithering coefficients from random beam natural fluctuation

is averaged down with respect to the amplitude of its modulation response. The error of a

dithering coefficient can help tell us if the coefficient is significantly non-zero; these error

4Symbol C with a subscript i, Ci, stands for dithering coefficient from a certain modulation pattern,
which will be shown in Sect. 3.4.2.

46



quantities from different modulation patterns are useful for the quality of the dithering

data, as seen in Sect. 3.4.4.

3.4.2 Sine and Cosine Dithering Patterns

The modulation signals applied for functions generators were pure sine wave, and the beam

parameters were driven in sine form as well. We expect to only see a sine dithering

response, if there is any, in a detector or monitor. The cosine dithering coefficient obtained

in Eq. 3.11 should be vanishing within its error.

However, as noted in Tab. 3.2, for most of the modulation patterns, including X1, X2,

Y1, Y2 (modulating beam position and angles at the target), the Fast Feedback system

was on. The modulation system tried to drive the beam out of position while the FFB

system tried to lock the beam in position. Therefore, the FFB system functioned

effectively as the second driving force during beam modulation. There was a short delay

for the FFB to react when the beam was modulated, so the driving signal from the FFB

system was partially out of phase with respect to the sinusoid driving signal from the

original modulation system. The combined driving force from the modulation system and

FFB system has both sine and cosine signals.

Combined driving system


Original Modulation system −→ Sine driving signals

↗

FFB system (X1-Y2 patterns) −→ Cosine driving signals

In detectors and monitors, the sine signals of the combined driving system result in

in-phase responses (non-zero dithering coefficients A in Eq. 3.11), and the cosine driving

signals cause out-of-phase responses (non-zero dithering coefficients B in Eq. 3.11). As a

consequence, for the modulation patterns when FFB was on, we could observe both

in-phase and out-of-phase responses with respect to modulation signal. However, for the

energy dithering pattern, the FFB was off, so only in-phase coefficients were apparent in
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detectors and monitors during energy modulation.

If there are only sine driving signals, we have five modulation patterns designed that

could be used to extract coefficients and calculate five dithering sensitivities. But since

there are also cosine driving signals that resulted from the FFB system, we have,

effectively, an extra set of modulation patterns. These extra modes add to the sine driving

modes. Therefore, the total number of modulation modes is nearly doubled (no cosine

response in energy pattern). These ten modulation modes are indexed and listed below.

Table 3.5: Dithering patterns for both in-phase and out-of-phase responses.
Pattern No. Modulation Type Fast Feedback Response Modulation Signal

0 X1 on sine in-phase
1 Y1 on sine in-phase
2 E off sine in-phase
3 X2 on sine in-phase
4 Y2 on sine in-phase
5 X1 on cosine out-of-phase
6 Y1 on cosine out-of-phase
7 E off cosine out-of-phase
8 X2 on cosine out-of-phase
9 Y2 on cosine out-of-phase

In Tab. 3.5, we have ten effective dithering patterns. They are named as pattern 0-9.

No. 0-4 are in-phase modulation modes and No. 5-9 are out-of-phase modes. The dithering

coefficients could be represented by C0-C9 for pattern 0-9. Or, in a more apparent way, the

sine and cosine coefficients are labeled as AE, AX1, AX2, AY1, AY2 and BE, BX1, BX2, BY1,

BY2 respectively.

Since the number of diving modes is doubled, we also have doubled the number of

coefficients for detectors and monitors. Now we have ten dithering coefficients for a certain

device during a complete modulation cycle. Originally, we needed five sets of coefficients to

solve for the connections between a device response and five beam parameters. Now, since

we have added information, we have extra solutions for these connections.

The original five driving patterns were designed to be sufficiently independent from each
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other. This could help better decouple the dithering responses of beam parameters with

relatively predictable results. The FFB system also worked as an additional driving force.

If the original sine modulation modes were modified by possible superimposed sine

responses from the FFB system, we don’t know if the original five modes are still relatively

independent from each other and whether or not they are still capable of decoupling beam

parameters sufficiently. Additionally, the behavior of extra cosine modes from the FFB

system are completely unknown. Whether or not the extra modes are well separated from

the original modes or each other also becomes a question. Therefore, the relationship

between the driving modes should be examined in detail.

3.4.3 Monitor Coefficient Vector

The dithering patterns were designed to make sure all five beam parameters could be

properly modulated. Dithering patterns differ from each other by modulating selective

parameters. For example, the energy modulation pattern is different from other patterns

since it is the only mode that is dedicated to modulate beam energy. Also, the X patterns

differ from Y patterns because they dither beam in horizontal and vertical directions

separately. Therefore, we almost know by instinct that for sine dithering patterns (from

the original modulation system), the three pattern groups, E, X1&X2, Y1&Y2, differ from

each other’s group in a significant way5. But a few questions remain:

◦ How well are sine patterns X1 and X2 separated? Or Y1 and Y2?

◦ What is the strength of cosine modulation patterns? How well are they separated?

Since we only know the modulation amplitudes of function generators, in principle we

could only predict on some level the original sine responses from the modulation system.

But with FFB on for most of the patterns, new sine driving signals are imposed on original

5Here we assume the sine driving signal contribution from FFB system is small compared to sine driving
signals from original modulation system.
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ones and cosine patterns are also introduced. We don’t have output from FFB driving

coils. With only the information from function generators, it is not sufficient to answer the

questions above.

The questions and their answers are related to dithering quality of the experiment. The

modulation pattern combination might be too singular sometimes, which can bring greater

error to the dithering correction. Here, a relatively convenient and effective method to

check dithering quality and related problems is described. The method utilizes dithering

coefficients from beam parameter monitors; it could provide us with lots of useful

information about the relationship between dithering patterns.

Introducing Monitor Coefficient Vector

We have five beam parameters (see Tab. 3.1), and for each beam parameter, we have a

beam monitor (mostly defined with original stripline BPMs, see Sect. 2.4) to measure it.

Therefore, we have five beam monitors E, X, X′, Y, Y′ that can respond to driving signals

from modulation and FFB systems. For different driving patterns (Tab. 3.5), the responses

of beam monitors are different but each pattern has a signature in the combination of

dithering coefficients from all five monitors. For example, patterns Y1 and Y2 have great

responses in Y and Y′ monitors while responses from other monitors, E, X, X′, are

minimal6. The signature belongs uniquely to a specific pattern and the five monitor

dithering coefficients must be examined at the same time. A straightforward tool to look at

a group of numbers simultaneously is naturally a vector. Therefore, we could define

Monitor Coefficient Vector (MCV):

Ui = (CE
i , C

X
i , C

X′

i , C
Y
i , C

Y′

i ) ≡ (Cm
i ) , (3.12)

6These responses in horizontal monitors are small but not necessarily zero because in reality vertical
patterns could result in small horizontal responses as well.
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where Ui is Monitor Coefficient Vector for dithering pattern i (i takes pattern 0-9, see Tab.

3.5 for all ten dithering patterns). CE
i , CX

i , CX′
i , CY

i , CY′
i are dithering coefficients of five

beam monitors, and Cm
i represents all vector elements (m takes monitor 0-4, all five beam

monitors, see Tab. 3.1).

In Eq. 3.12, Monitor Coefficient Vector Ui contains all dithering coefficients from five

beam monitors under modulation pattern i. It gives the signature of the current dithering

mode. Specific driving signals determine a particular set of monitor coefficients. Therefore,

the Monitor Coefficient Vector could represent the current pattern, and when compared to

MCV from another pattern, the relationship between the two patterns can be revealed.

After all, it is the monitor coefficients we use directly for detector dithering analysis.

There is also an alternative definition for MCV in Eq. 3.12. We could divide dithering

coefficients Cm
i by their corresponding error ∆Cm

i and define Normalized Monitor

Coefficient Vector (NMCV):

Ũi = (
CE
i

∆CE
i

,
CX
i

∆CX
i

,
CX′
i

∆CX′
i

,
CY
i

∆CY
i

,
CY′
i

∆CY′
i

) ≡ (C̃m
i ) . (3.13)

Here, C̃m
i is the normalized dithering coefficient for the monitor and m takes 0-4. This

definition can make units from different monitors uniform. For example, originally the unit

for beam position is millimeter and the unit for beam angle is radian. Now they all have

the same unit of 1. With a value divided by its own error, the new errors for the

coefficients simply become 1.

Angle between two Monitor Coefficient Vectors

With Monitor Coefficient Vector introduced, each dithering pattern can now be represented

by its corresponding MCV vector. We have ten vectors from all dithering patterns, but we

only have five degrees of freedom from five monitors. Therefore, the ten vectors are not

completely independent from each other. Whether this modulation cycle is good or not
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depends on the question: can the modulation patterns form a good basis for dithering

analysis?

It is possible that all ten dithering patterns together can’t make a good basis for the

current modulation cycle and the dithering analysis would fail. It could also happen that

the patterns can cover the five degrees of freedom very well. To tell if the patterns are

singular7 or not, we need to see how the patterns are related to each other, or in other

words, how the Monitor Coefficient Vectors are related. For example, if we have two MCVs

that are linearly dependent8, the two corresponding dithering patterns are redundant with

respect to each other, and we need to rely on other patterns to look for a solid basis.

In principle, it is rare to have two MCVs completely dependent on each other since we

have random beam natural motion all the time and dithering coefficients always fluctuate

on a certain level. Unlike pure math, to tell if two MCVs are close, we can’t just look at

the element values because the numbers will never be completely the same. We also need

to consider the error of vectors when comparing two MCVs.

To compare two MCVs, we first establish the two vectors from two dithering patterns by

following Eq. 3.12

Ui = (CE
i , C

X
i , C

X′

i , C
Y
i , C

Y′

i ) ≡ (Cm
i ) ,

Uj = (CE
j , C

X
j , C

X′

j , C
Y
j , C

Y′

j ) ≡ (Cm
j ) ,

(3.14)

where Ui and Uj are MCVs for patterns i and j respectively. Indexes i and j can both

take from 0-9, the number of dithering patterns given in Tab. 3.5.

Now we can compare the two MCVs in Eq. 3.14. To tell if two vectors are linearly

independent or not, a convenient quantity to examine is the angle between two vectors,

assuming they are non-zero temporarily9. The angle can range from 0° to 180°. If the angle

7Here the concept of singularity is borrowed from the vector analysis. If the number of linearly independent
vectors is less than the dimension of vector space, the vector basis is singular.

8If two vectors are linearly dependent, they can only be parallel or anti-parallel. Or maybe one of the
MCVs is zero vector.

9The angle between a zero vector and another vector does not usually make sense but we shall see for

52



is sufficiently far away from 0° and 180°, the two vectors involved are linearly independent

and the corresponding dithering patterns are not singular.

The angle between two Monitor Coefficient Vectors shown in Eq. 3.14 is

αij =
180°

π
arccos(

|Ui ·Uj|
|Ui| |Uj|

) , (3.15)

where |Ui|, and |Uj| are the module of vectors, |Ui ·Uj| is the absolute value of the inner

product of two vectors. The absolute value is taken because adding a negative sign to a

dithering vector does not change the singularity checking, therefore, 0° has the same

significance with 180°. The factor 180°/π in the front changes the unit from radian to

degrees.

The inner product between two MCVs, i and j, is

Ui ·Uj =
4∑

m=0

Cm
i C

m
j , (3.16)

in which Cm
i and Cm

j are dithering coefficients of monitor m from patterns i and j. Indexes

i and j take value 0-9 for ten patterns and index m takes 0-4 for five monitors.

The modules of MCV i and j are

|Ui| =

√√√√ 4∑
m=0

(Cm
i )2 , |Uj| =

√√√√ 4∑
m=0

(
Cm
j

)2
. (3.17)

By plugging inner product and modules of MCVs into Eq. 3.15, the expression for MCV

angle αij is

αij =
180°

π
arccos(

∣∣∑4
m=0C

m
i C

m
j

∣∣√∑4
m=0 (Cm

i )2
√∑4

m=0

(
Cm
j

)2
) . (3.18)

This quantity only depends on the monitor coefficients from two dithering patterns.

With the angle between MCVs calculated, we can now look at the relationship between

the method described here with error analysis added later, the angle between a zero vector and another one
have special characteristics.
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two dithering patterns. The size of angle reflects how close two modulation patterns can

be. With proper examination of an angle set, we could tell if the current modulation cycle

is good or not for dithering analysis.

Error on the Angle between two MCVs

The angle in Eq. 3.15 ranges from 0° to 90° (by taking the absolute value for vector inner

product), and it could typically show if two vectors are independent or not. The errors of

these vectors can tell us how close two patterns are by comparing the separation between

vectors with the size of their errors. This could be revealed conveniently with error of the

angle between vectors.

By propagating error of dithering coefficients into MCV angle αij (Eq. 3.15), the error of

the angle, ∆αij, is given by

∆αij = 180°

π

√√√√√∑4
m=0

Cmj −Cmi ∑4
n=0 C

n
i
Cn
j∑4

n=0 (Cni )
2

2

(∆Cmi )
2
+

∑4
m=0

Cmi −Cmj ∑4
n=0 C

n
i
Cn
j∑4

n=0 (Cnj )
2

2

(∆Cmj )
2

∑4
m=0 (Cmi )

2 ∑4
m=0 (Cmj )

2
−(

∑4
m=0 C

m
i C

m
j )

2 ,

(3.19)

in which Cm
i and Cm

j are dithering coefficients from pattern i and j. ∆Cm
i and ∆Cm

j are

the error of dithering coefficients. Both indexes m and n take 0-4 for five monitors.

In Eq. 3.19, by checking the right hand side of the equation, the error of MCV angle

depends only on monitor dithering coefficients and their errors, which can be obtained at

the same time by fitting the monitor dithering responses against the ramp for each

modulation pattern.

Now, both MCV angle (Eq. 3.15) and its error (Eq. 3.19) are defined and calculated. We

should look at the angle and its error together for better understanding of the relationship

between two dithering patterns. If the angle is zero within its error, the two patterns are

singular10. If the angle is small but the error is even smaller, the two dithering patterns

10The patterns with zero angle don’t necessarily have the same amplitudes but they have the same direction
or differ in direction by 180°.
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still decouple well enough. But even if the angle is close to 90° but has a very high error,

like 100°, the two modulation patterns are still not well separated.

3.4.4 Checking Criteria and Results

Now with the Monitor Coefficient Vector, the MCV angle and error of the MCV angle

introduced in Sect. 3.4.3, we have the quantities needed to perform dithering quality

checking - an examination of different driving patterns. Checking the results will help

answer the question brought up in Sect. 3.4.3: how well can dithering modes be

independent from one another and work more effectively as a group?

To start with, we look at angle αij (Eq. 3.18) and angle error ∆αij (Eq. 3.19) and find

certain criteria about quality checking of dithering modes. To shed more light on these

quantities and see how they work for quality checking, we look into the criteria by the

order of introduction of the quantities described above.

Checking Criteria

First, with MCV angle introduced, the criteria sets its foundation following the basic

properties of an angle between two vectors:

◦ Angle is 0°. Two vectors are in the same (or opposite11) direction and linearly

dependent. They can’t form a vector basis for two independent beam monitors. Even

though the angle is zero, the vectors are allowed to have different moduli. The

module of one vector could differ significantly from the other and could still be

linearly dependent. This is trivial in math but it will turn out to be very important

when comparing two driving modes in the experiment.

◦ Angle is 90°. Two vectors are perpendicular with each other and they can form a

good basis that is solid for further decoupling of the two beam monitors. To illustrate

11We have taken absolute value for the inner product in Eq. 3.15 so when two vectors are in opposite
direction, the angle is still 0° instead of 180°.
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this more clearly, we take a simplified example. Suppose we only have two monitors,

vertical position Y and angle Y′. The MCVs only contain two elements for these two

monitors. Further, let’s suppose the FFB was off and we only have two dithering

patterns Y1 sin and Y2 sin. When the angle between these two patterns is 90°, it is

possible that we only have dithering response in monitor Y during modulation

pattern Y1 sin and only Y′ response in pattern Y2 sin. This way we only dithered

beam position in one mode and only beam angle in another. The beam position and

angle are completely decoupled in this case and the angle between the two vectors is

90°.

◦ Angle is between 0° and 90°. In this case, the vectors can still form a vector basis.

Perhaps not as good as the case when the angle is 90°, but separation of the two

beam monitors is sill possible. The higher the angle, the better two monitors can be

decoupled in dithering analysis.

So far with only MCV angle introduced, we have a general idea of how the method

works. Initial criteria involving only the concept of vector angle are summarized in Tab.

3.6. Three conditions with different angle values are listed in this table. Status of vector

basis and monitor decoupling are also described for each condition.

Table 3.6: Dithering quality checking with MCV angle.
No. MCV Angle (°) Vector Basis Monitor Decoupling
1 0 singular impossible
2 between 0 and 90 more solid with higher angle better with higher angle
3 90 best good decoupling

Now we add the concept of angle error to the quality checking criteria and then a few

conditions are added to the criteria described above.

• If the error of angle is close to 0°, the small angle error tells us that both of the two

vectors should have high moduli. This is a good sign and these two modulation

modes have relatively large dithering responses in the monitors.
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• If the angle error is over 90°, this means at least one of the MCVs is too “short.” One

of the modes is vanishing and it has weak to none dithering responses in the

monitors. To tell which one of the two modes is weak (or even if both of them are

weak), we should look at the angle with other modulation modes besides the two. If

one of the original two vectors has >90° angles with all other patterns, this specific

modulation mode is too weak with hardly any dithering response in it at all. This

mode can be discarded for the current modulation cycle because this empty mode is

of no use for later analysis12.

• If the angle error is between 0° and 90°, the two patterns can possibly still be

distinguished from each other, and we should look at the value of the angle as well to

tell if this is the case. If the angle error is greater than the angle itself, the two

patterns are too close to be treated as two independent modes and we should look to

other patterns for solution. If the angle error is way smaller than the angle value, the

two patterns could function well for dithering analysis.

Generally speaking, the error of the angle alone could tell us if the modulation modes

have strong dithering responses in the monitors. Stronger responses in the modulation

modes give smaller angle error and help decouple the monitors. The additional criteria

with angle error are shown in Tab. 3.7.

Table 3.7: Dithering quality checking with the error of MCV angle.
No. Angle Error (°) Vector Module Monitor Decoupling
1 close to 0 both modes have good strength possibly good
2 between 0 and 90 stronger with smaller error better with smaller error
3 over 90 at least one of the modes is weak impossible

With the criteria related to angle and error shown in Tab. 3.6 and 3.7 respectively, we

will examine the two quantities together.

12We could keep it as well for simplicity purpose. The weak mode is useless but it also doesn’t hurt to
keep it.
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� The angle is (significantly) smaller than angle error. This means the angle is zero

within the angle error, which corresponds to the first situation in Tab. 3.6 when

angle is zero. The two modulation modes are singular and it is hard to decouple the

two monitors. We need to look to other patterns for solution. This could be classified

into two cases according to the size of angle error.

♦ If the angle error is also small, close to zero (first rule in Tab. 3.7), we have a

zero angle with a small error. This situation means the two dithering patterns

all work well individually. They both have high modulation responses in the

monitors. Two patterns work almost the same way as for dithering the beam,

and one of the patterns is simply redundant. They could have different dithering

amplitude in the monitors but one vector is proportional with the other.

♦ If the angle error is high, close or over 90°, according to rule 3 in Tab. 3.7, one

of the patterns is very weak, or the modulation didn’t function properly during

the experiment and there was no dithering at all for this pattern. We can look

at the angle and error with other patterns to tell which one of them is a weak

vector with small to zero module.

� The angle is (significantly) greater than angle error. The higher the angle the better.

Or, the lower the angle error the better. Since the angle range is limited, the fact

that the angle is greater than its error definitely means we have a small angle error.

In this case, we look at rule 2, or even 1, in Tab. 3.7 and know that the two patterns

both modulated the beam in a strong way. The angle is non-zero by its error, so we

should look to rules 2 and 3 in Tab. 3.6 and understand that the two monitors can be

decoupled for a good solution. In all, for the case here, the two patterns can be used

together for dithering analysis.

� The angle is comparable to angle error. In this case, the decision about the two

patterns depends. Clearly they could decouple monitors and give a solution in a
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reasonable way if we have no other choices. As a result, we might have a relatively

high error in the results of dithering analysis. But they are not as good as the

situation when the angle is significantly greater than angle error. So if we have extra

dithering patterns, we look at the MCV angles with other patterns and look for a

more reliable solution.

Table 3.8: Dithering quality checking with MCV angle and error.
No. Angle Angle Error Checking Result
1

0 within error
small, ∼0 two good but redundant patterns

2 big, ∼90 one or two weak patterns
3 close to error close to angle could work but with greater uncertainty
4 � error small, ∼0 very good pattern pair for analysis

The combined dithering quality checking criteria by examining both angle and its error

are shown in Tab. 3.8. The different cases related to angle and its error are listed in

different rows. There are four typical cases in total. During dithering quality checking, we

should be able to tell which case the current pattern pair in the run falls into and pay

attention to these runs during dithering analysis.

Examples

A few examples of the MCV angle between two dithering patterns are shown here. For

each criterion shown in Tab. 3.8, a typical example is given here to show how the

examination of dithering quality works for the two patterns we are looking at.

1. Example 1: angle ∼ 0° and angle error ∼ 0°. In this case both the angle and its error

are small or close to zero, which corresponds to criterion 1 from Tab. 3.8. The

pattern angle history is shown in Fig. 3.4. The blue point and error bar in this figure

are the MCV angle and its error for that modulation cycle. The green and black

dashed lines are separations for run and slug level, respectively. The angle takes

range of 0-90°. From Fig. 3.4, we can see that the cycles from the slugs in the middle
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Figure 3.4: Angle history between pattern 0 (X1 sin) and pattern 3 (X2 sin) showing an
example of redundant dithering patterns. Blue points with error bar: angle and its error for
each modulation cycle. Green dashed line: separation of runs. Black dashed line: separation
of slugs.

have zero angle and very small angle error. For the slugs before this period and after,

the angle is close to 90° and the angle error is small, which are very “good”

modulation patterns that can be used for dithering analysis. The comparison here is

so distinct that we can tell immediately something is wrong with the cycles

in-between. According to criterion 1 (Tab. 3.8) for the cycles with near zero angle

and error, the two dithering patterns X1 sin and X2 sin are redundant and repeat

each other even though they both have strong dithering responses in the monitors.

So the two patterns function effectively only as one single dithering pattern, and we

need to look to more patterns for dithering solution.

2. Example 2: angle error ∼ 90°. In this case the angle is zero within error and the

angle is high, corresponding to criterion 2 from Tab. 3.8. Fig. 3.5 gives the angle

history of such a pattern angle at modulation cycle level. In Fig. 3.5, the top plot, for

some consecutive runs, shows the error bar of the angle between pattern 0 (X1 sin)

and 2 (E sin) is so high that the angle error almost exceeds the 90° range. This

means that one of the two patterns is a very weak pattern or even zero pattern
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Figure 3.5: Angle history showing the example of weak or missing dithering pattern. Top:
between pattern 0 (X1 sin) and 2 (E sin). Bottom: between pattern 0 (X1 sin) and 3
(X2 sin).
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(dithering didn’t work for this pattern during these runs). To tell which one of the

patterns 0 and 2 is weak, we can look at the angle with a third pattern, 3 (X2 sin) for

example. The angle between patterns 0 and 3 is given in the bottom of Fig. 3.5. We

can see that the angle between pattern 0 and 3 is normal, which means in the top of

Fig. 3.5, the weak pattern is pattern 2, not pattern 0. Now we know that for the run

periods shown here, pattern 2 is weak or missing. In this case, we don’t need to look

at more pattern angles to tell pattern 2 is weak because pattern 0 is shown to be OK;

but, it could be possible that both pattern 0 and 2 are weak and we need to look at

more pattern angles to make sure. If one pattern is weak, the angle between this

pattern and other patterns all have high (∼ 90°) angle errors.

3. Example 3: angle ' its error. Here the angle and error have approximately the same

size, corresponding to criterion 3 in Tab. 3.8. Fig. 3.6 gives an angle between pattern

1 (Y1 sin) and 4 (Y2 sin), which can show a pattern angle that is close to its error for

the run period. For the example here, we can see the angle error is only slightly

Figure 3.6: Angle history showing the example of a moderate dithering pattern pair between
pattern 1 (Y1 sin) and 4 (Y2 sin).

62



smaller than the angle. The separation of the two patterns is not very clear. Since in

this case the angle is not zero within its error, the two patterns can still result in

usable (if not very stable) results for dithering analysis later. We could try to switch

one of the two patterns with another Y modulation mode and see if the situation

could improve. If not, we can still use this pair for monitor decoupling, even though

it is not as good as a pattern pair that has a smaller angle error or a higher angle.

We should try to evaluate all the pairs between Y modes and see if we could find a

better combination of patterns.

4. Example 4: angle � its error. This case is when the two patterns work well to

decouple monitors and give us good dithering results, according to the last criterion 4

from Tab. 3.8. Fig. 3.7 shows what good MCV angles should look like between two

patterns. This is normally what we try to get when planning the modulation inputs,

Figure 3.7: Angle history showing the example of a good dithering pattern pair between
pattern 0 (X1 sin) and 3 (X2 sin).

even though, due to some beam optics limitations, we could not always get a high

angle with small error between two modulation modes. In Fig. 3.7, we can see that
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for patten 0 (X1 sin) and 3 (X2 sin), the two patterns originally designed to decouple

horizontal position and angle, actually have a very high angle here for these runs.

The angle ranges around 70-80° and some of the runs have an angle very close to 90°.

For these runs, the pattern pair 0 and 3 can work well to give good dithering results.

Dithering Quality Checking Results

With the typical examples shown above, we now know how to tell if two modulation

patterns are good or not for dithering analysis. As noted before, we should look at MCV

angles, find the pattern pairs that are well separated and try to evaluate whether or not we

have a good basis for this modulation cycle. If the dithering quality is good overall, we

keep it for further analysis. Otherwise we discard this cycle. Since the modulation

condition does not change very often, we usually have lots of consecutive runs that have

close dithering quality.

Table 3.9: Runs with special dithering conditions by dithering quality checking [1].
No. Condition Range Suitable for Analysis

1 E mode missing

212.15801.2

not for sensitivity extraction
229.16210.1
236.16324

290.17248-299.17345
300.17401-300.17405

2 X1 and X2 modes redundant 159.14422-170.14673 use X1(2) sin and X1(2) cos

3 Cosine modes missing
99.11405

FFB off
307.18436-319.18829

The results for dithering quality checking for the entire experiment are given in Tab. 3.9.

The run periods that have special dithering conditions are summarized in this table. The

run periods are marked by slug.run.cycle number. These runs are worth paying attention

to when performing dithering analysis.

For the runs when E mode was missing, there is not enough information to extract the

complete set of dithering sensitivities, especially the energy sensitivity since we are missing
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Angle α23 between Pattern 2 (E sin) and 3 (X2 sin) : Slug

Angle α25 between Pattern 2 (E sin) and 5 (X1 cos) : Slug

Angle α03 between Pattern 0 (X1 sin) and 3 (X2 sin) : Slug

Angle α58 between Pattern 5 (X1 cos) and 8 (X2 cos) : Slug

Angle α05 between Pattern 0 (X1 sin) and 5 (X1 cos) : Slug

Angle α19 between Pattern 1 (Y1 sin) and 9 (Y2 cos) : Slug

Angle α49 between Pattern 4 (Y2 sin) and 9 (Y2 cos) : Slug

Figure 3.8: Angle history at slug level between pattern pairs.
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the most important mode that modulated beam energy. Because the main detector is more

sensitive to beam energy than position and angle, it is bad to miss the energy modulation

for these runs. This is shown in Fig. 3.8 where the first two plots for angles α23 and α25

can be seen at slug level. Theses angles are between pattern 2 (E sin), the energy

modulation, and other patterns, 3 (X2 sin) and 5 (X1 cos) for example. By looking at the

runs enclosed with the red frame, we can see the angle error is high for both of the angles,

suggesting we are missing energy modulation mode. The angles between pattern 2 and the

rest of patterns (0, 1, 4, 6, 7, 8, 9) show the same results, which can be found in Appx. A.

For the runs with redundant X1 and X2 patterns, the two modulation modes X1 and X2

have the MCV angle as zero, which means they are linearly dependent with each other.

This is shown in Fig. 3.8, the angle α03 and α58 history at slug level. For the runs of

interest in the red frame, the angle between 0 (X1 sin) and 3 (X2 sin) is zero. This means

for the sine responses, X1 and X2 modes work the same way. Additionally, the angle is also

zero for pattern 5 (X1 cos) and 8 (X2 cos), the cosine responses in X1 and X2 modulation

modes. Since X2 is redundant with respect to X1, we should turn to other extra X pattern

pairs for help. We can use a sine mode and corresponding cosine mode in either X1 or X2

modes to perform the dithering analysis for these runs. As shown in Fig. 3.8, angle α05

between pattern 0 (X1 sin) and 5 (X1 cos) is small but non-zero (even smaller angle error);

for these runs and the patterns, 0 and 5 can be used for dithering analysis even though X1

and X2 modes are redundant for these runs.

For the runs with missing cosine modes, all the angles between cosine modes and other

modes have high angle error, which means the cosine modes all have weak dithering

responses. This is shown in Fig. 3.8, taking pattern 9 (Y2 cos) for example. The angles

between this pattern and the other two patterns, 1 (Y1 sin) and 4 (Y2 sin), have high

angle error for the runs enclosed in the red frame. The angles with other patterns (0, 2, 3,

5 ,6, 7, 8) can be found in Appx. A. Because of the high angle error between pattern 9 and

other patterns, we can conclude that this pattern 9 is weak. And since pattern 9 is the
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cosine response for Y2 mode, we can tell that for Y2 mode, FFB was off and there was no

cosine response. This happens to be true for other cosine responses (X1 cos, X2 cos,

Y1 cos) as well, so FFB was off for X1, X2, Y1 and Y2 modes during these runs. For this

run period, we can use the sine responses to perform dithering analysis.

So far, we have used the dithering quality checking method to look at the modulation

cycles of this experiment and have provided the special run periods that we should pay

attention to when performing dithering analysis. One of the main tasks of dithering

analysis is to extract the dithering sensitivities for detectors. The dithering quality

checking results we have so far are closely related to the sensitivity extraction described in

the next section.

3.5 Beam Correction Sensitivities

The beam correction depends on two sets of quantities: monitor differences and dithering

sensitivities. The sum of products between monitor difference and sensitivity for all

monitors gives the beam correction. While monitor differences are provided in data files,

the sensitivities must be carefully calculated in dithering analysis. And the successful

extraction of sensitivities gives us good dithering results when performing beam correction

on the detector asymmetry. The previous section focused on dithering quality checking on

different patterns and discussed what kind of dithering patterns can give us better results.

Each pattern dithered the beam in a certain way, with different responses in the monitors.

These different dithering modes provide us with necessary information for the sensitivity

calculation. A set of patterns can work together to decouple the monitor responses.

Normally a set of five is needed in the standard method of sensitivity extraction. In this

experiment, the Fast Feedback was on and we have more than five effective dithering

patterns for each modulation cycle; a modified method of sensitivity calculation involving a

set of patterns more than five is needed.
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3.5.1 Standard Sensitivity Extraction Method

For the scenario with five dithering patterns, we have the standard way of calculating

dithering sensitivities for the detector. With five beam monitors, energy E, horizontal

position X and angle X′, and vertical position Y and angle Y′, there are five sensitivities to

extract, SE, SX, SX′ , SY, SY′ , corresponding to each of the monitors. Five different

dithering patterns with different modulation responses in the monitors are required to

calculate the sensitivities. In these five patterns, the energy pattern is the only mode that

was designed to modulate beam energy, and it has a high response in the beam energy

monitor. Two X modes are required for two horizontal parameters. The X1 and X2

patterns modulated beam horizontal position and angle with different relative amplitudes.

The same applies to vertical Y patterns. Y1 and Y2 patterns were dedicated for decoupling

vertical position and angle.

The response of each monitor can potentially result in change in the detector. During

modulation, these responses are represented by corresponding dithering coefficients of the

monitors and detector. The relationship between detector dithering response and monitor

responses is
4∑

m=0

SmC
m
i = CD

i , (3.20)

in which Sm is the sensitivity for monitor m. Cm
i is the dithering coefficient for monitor m

in pattern i. Index m takes five monitors, E, X, X′, Y, Y′. Or by expressing index m in an

explicit way, we have

SEC
E
i + SXC

X
i + SX′CX′

i + SYC
Y
i + SY′CY′

i = CD
i , (3.21)

where CD
i with a superscript D is the dithering coefficient for detector D in this pattern. D

can be any detector from the main detector, background detector, etc. Index i can take

values of 0-4 for the standard sensitivity extraction (it can take more than 4 if we have

more patterns, which will be discussed in the next section).
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Following Eq. 3.21, we have five equations for each dithering pattern from a total of five.

These five equations can form an equation set used to calculation sensitivity Sm



SEC
E
0 + SXC

X
0 + SX′CX′

0 + SYC
Y
0 + SY′CY′

0 = CD
0

SEC
E
1 + SXC

X
1 + SX′CX′

1 + SYC
Y
1 + SY′CY′

1 = CD
1

SEC
E
2 + SXC

X
2 + SX′CX′

2 + SYC
Y
2 + SY′CY′

2 = CD
2

SEC
E
3 + SXC

X
3 + SX′CX′

3 + SYC
Y
3 + SY′CY′

3 = CD
3

SEC
E
4 + SXC

X
4 + SX′CX′

4 + SYC
Y
4 + SY′CY′

4 = CD
4

, (3.22)

in which Cm
i and CD

i are known quantities from the fitting of dithering responses in

monitor m and detector D in pattern i. The solution to the equation set gives the values of

five dithering sensitivities for this detector.

To make Eq. 3.22 more clear and revealing, we define a few terms based on the

quantities in the equation set. This way we could comprehend more quickly the method of

sensitivity extraction, making it is easier to compare with the method provided in the

following section when more patterns are introduced.

For the monitor coefficients, we define a matrix that could include all of them. This is a

5 by 5 matrix. For the standard method of sensitivity extraction, the matrix is composed

of monitor coefficients from five monitors and five patterns. The standard matrix of

monitor coefficients, M, is defined by

M =

[
Cm
i

]
, (3.23)

where the index m takes five monitors and the index i takes five patterns. By expressing
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the monitor coefficients individually, we have a more explicit format

M =



CE
0 CX

0 CX′
0 CY

0 CY′
0

CE
1 CX

1 CX′
1 CY

1 CY′
1

CE
2 CX

2 CX′
2 CY

2 CY′
2

CE
3 CX

3 CX′
3 CY

3 CY′
3

CE
4 CX

4 CX′
4 CY

4 CY′
4


, (3.24)

in which each row contains coefficients of five monitors from a certain pattern. Each

column has coefficients from five patterns for one monitor. The matrix M contains all the

information of monitor dithering for the current modulation cycle.

For the dithering responses in the detector, we introduce the vector that takes all the

values of five coefficients of the detector from five patterns. For the sensitivities to be

calculated, we define a vector that takes all five detector sensitivities for five monitors. For

the standard method of sensitivity extraction, the stand vector of detector coefficients and

the stand vector of detector sensitivities are introduced as

S =

(
Sm

)
, D =

(
CD
i

)
. (3.25)

When Eq. 3.25 is expressed in an explicit form for indexes m and i, we have

S =



SE

SX

SX′

SY

SY′


, D =



CD
0

CD
1

CD
2

CD
3

CD
4


. (3.26)

Here the vector of detector coefficients, D, includes all the dithering responses for this

detector in each pattern and it is known based on measurements, just like the previous
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matrix of monitor coefficients, M. The vector of sensitivities, S, is what we need to solve

based on the measured quantities.

With the matrix of monitor coefficients M, the vector of detector coefficients D and the

vector of detector sensitivities S defined, the equation set in Eq. 3.22 can be simplified in a

compact format:

D = M · S . (3.27)

This is a matrix equation that needs to be solved for S.

With five patterns provided, we have the standard method for dithering sensitivity

extraction. When more patterns are added, we have a modified way of calculating

sensitivities, which is different from the standard way described above. The modified way

has different expressions for D, M and S, which are changed to accommodate for more

inputs. The modified method is discussed in the next section.

3.5.2 Sensitivity Calculation with More Patterns

In this experiment, the FFB was on during most of the modulation patterns. An extra five

patterns with out-of-phase responses in the detector and monitors are added to the original

structure. With five unknown sensitivities to solve, we have ten dithering patterns that can

give us ten equations. In this case, a different sensitivity extraction method is given to find

a solution for these dithering patterns. For the patterns from both in-phase and
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out-of-phase responses, we have a set of equations



SEC
E
0 + SXC

X
0 + SX′CX′

0 + SYC
Y
0 + SY′CY′

0 = CD
0

SEC
E
1 + SXC

X
1 + SX′CX′

1 + SYC
Y
1 + SY′CY′

1 = CD
1

SEC
E
2 + SXC

X
2 + SX′CX′

2 + SYC
Y
2 + SY′CY′

2 = CD
2

SEC
E
3 + SXC

X
3 + SX′CX′

3 + SYC
Y
3 + SY′CY′

3 = CD
3

SEC
E
4 + SXC

X
4 + SX′CX′

4 + SYC
Y
4 + SY′CY′

4 = CD
4

SEC
E
5 + SXC

X
5 + SX′CX′

5 + SYC
Y
5 + SY′CY′

5 = CD
5

SEC
E
6 + SXC

X
6 + SX′CX′

6 + SYC
Y
6 + SY′CY′

6 = CD
6

SEC
E
7 + SXC

X
7 + SX′CX′

7 + SYC
Y
7 + SY′CY′

7 = CD
7

SEC
E
8 + SXC

X
8 + SX′CX′

8 + SYC
Y
8 + SY′CY′

8 = CD
8

SEC
E
9 + SXC

X
9 + SX′CX′

9 + SYC
Y
9 + SY′CY′

9 = CD
9

. (3.28)

We need to find a solution that can best fit the ten equations. The least square fitting

method is utilized to find this solution for ten dithering patterns. To do this, we need to

define the χ2 for the equations above:

χ2=
9∑
i=0

(
CD
i −

4∑
m=0

SmC
m
i

)2

=
9∑
i=0

(
CD
i − SEC

E
i − SXC

X
i − SX′CX′

i − SYC
Y
i − SY′CY′

i

)2

,

(3.29)

in which m takes E, X, X′, Y, Y′. The coefficients on right hand side runs through all ten

patterns. The differences between both sides of the equation in each and every pattern are

included in this χ2.

To find the optimal solution of sensitivities, we need to minimize χ2 defined above. The

solution of sensitivities that can minimize the χ2 is given by the following equation set
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composed of five equations



SE

9∑
i=0

CE
i C

E
i +SX

9∑
i=0

CX
i C

E
i +SX′

9∑
i=0

CX′

i C
E
i +SY

9∑
i=0

CY
i C

E
i +SY′

9∑
i=0

CY′

i C
E
i =

9∑
i=0

CD
i C

E
i

SE

9∑
i=0

CE
i C

X
i +SX

9∑
i=0

CX
i C

X
i +SX′

9∑
i=0

CX′

i C
X
i +SY

9∑
i=0

CY
i C

X
i +SY′

9∑
i=0

CY′

i C
X
i =

9∑
i=0

CD
i C

X
i

SE

9∑
i=0

CE
i C

X′

i +SX

9∑
i=0

CX
i C

X′

i +SX′

9∑
i=0

CX′

i C
X′

i +SY

9∑
i=0

CY
i C

X′

i +SY′

9∑
i=0

CY′

i C
X′

i =
9∑
i=0

CD
i C

X′

i

SE

9∑
i=0

CE
i C

Y
i +SX

9∑
i=0

CX
i C

Y
i +SX′

9∑
i=0

CX′

i C
Y
i +SY

9∑
i=0

CY
i C

Y
i +SY′

9∑
i=0

CY′

i C
Y
i =

9∑
i=0

CD
i C

Y
i

SE

9∑
i=0

CE
i C

Y′

i +SX

9∑
i=0

CX
i C

Y′

i +SX′

9∑
i=0

CX′

i C
Y′

i +SY

9∑
i=0

CY
i C

Y′

i +SY′

9∑
i=0

CY′

i C
Y′

i =
9∑
i=0

CD
i C

Y′

i

.

(3.30)

And the modified matrix of monitor coefficients is now

M =

[
9∑
i=0

Cm
i C

n
i

]
, (3.31)

where indexes m and n take five monitors and we have

M =



9∑
i=0

CE
i C

E
i

9∑
i=0

CX
i C

E
i

9∑
i=0

CX′

i C
E
i

9∑
i=0

CY
i C

E
i

9∑
i=0

CY′

i C
E
i

9∑
i=0

CE
i C

X
i

9∑
i=0

CX
i C

X
i

9∑
i=0

CX′

i C
X
i

9∑
i=0

CY
i C

X
i

9∑
i=0

CY′

i C
X
i

9∑
i=0

CE
i C

X′

i

9∑
i=0

CX
i C

X′

i

9∑
i=0

CX′

i C
X′

i

9∑
i=0

CY
i C

X′

i

9∑
i=0

CY′

i C
X′

i

9∑
i=0

CE
i C

Y
i

9∑
i=0

CX
i C

Y
i

9∑
i=0

CX′

i C
Y
i

9∑
i=0

CY
i C

Y
i

9∑
i=0

CY′

i C
Y
i

9∑
i=0

CE
i C

Y′

i

9∑
i=0

CX
i C

Y′

i

9∑
i=0

CX′

i C
Y′

i

9∑
i=0

CY
i C

Y′

i

9∑
i=0

CY′

i C
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i



. (3.32)
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The vector of sensitivities and the vector of detector coefficients are

S =



SE

SX

SX′

SY

SY′


, D =



∑9
i=0C

D
i C

E
i∑9

i=0C
D
i C

X
i∑9

i=0C
D
i C

X′
i∑9

i=0C
D
i C

Y
i∑9

i=0C
D
i C

Y′
i


, (3.33)

where the vector of sensitivities is unchanged and the vector of detector coefficients is

modified for the current case of ten patterns.

3.5.3 Sensitivity History

With the sensitivity calculation procedure in the last section, we have the method to

extract the main detector sensitivities for the case with more than five patterns. The

method includes ten patterns of both in-phase and out-of-phase responses. Some of the

patterns have weak responses for certain periods of runs, like the cosine patterns during the

run period when FFB was off, or the cosine energy pattern when energy modulation signal

was pure sine form. In these weak pattern cases, the corresponding dithering coefficients of

detector and monitors, CD
i and Cm

i , are near zero. Therefore the term(
CD
i −

∑4
m=0 SmC

m
i

)
from that weak pattern is vanishing in the χ2 defined by Eq. 3.29 for

these runs. The χ2 sums over ten patterns (i=0-9) and the contribution from a weak

pattern does little to the sum. This way we don’t need to specifically remove this pattern

from the index i when taking the sum from all patterns during our calculation. We could

keep them and bind them with other relatively strong patterns. Or, we could throw them

away in the process of calculation simply by skipping index i for them when going from 0-9

for the specific runs. But since they are weak, it is normally irrelevant whether we keep

them for calculation or simply throw them away.

The case above seems trivial for the case of weak patterns. But for the strong patterns,
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which have relatively high responses in the detector and monitors, the choice of patterns

becomes more important. In the following sections, the selection of patterns is going to

determine how we justify the results from different combinations of the patterns13. Right

now, we look at the sensitivity results from the full ten pattern (coil) analysis, which are

calculated with the method from Sect. 3.5.2. The full ten pattern analysis gives balance

between the patterns, utilizing the information from both in-phase and out-of-phase

responses. Our first thought might be that we trust the in-phase modes a bit more because

they were supposed to modulate the beam as designed. The out-of-phase responses are

from FFB modes and we are not sure how the FFB works to modulate the beam. But

there is no established reason to prefer in-phase modes more than the out-of-phase modes.

Therefore, here both sine and cosine patterns are both utilized during the ten pattern

analysis.

Energy Monitor Sensitivity History

In Fig. 3.9, we have the main detector sensitivity (slope) history plot at slug level for the

energy monitor. In this plot (and the following plots for position and angle), the slugs after

290 are not shown because according to Tab. 3.9, these slugs either suffered from loss of

the energy modulation mode (the main mode for beam correction analysis) or had FFB off

for special run periods. We can see from Fig. 3.9 that the energy sensitivity is relatively

stable through the runs. The energy slope slowly increased from Run 1 to Run 2 in the

experiment, by less than ∼15%. The energy slope is stable for the majority of Run 2. The

variation from slug to slug is well within 10%. This means the energy sensitivity is well

measured and under control during the experiment.

13We will deliberately omit one or two of the pattens and find the results based on 9 patterns or 8 patterns
in the equation set.
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Figure 3.9: Main detector energy sensitivity slug history for 10 coil (pattern) analysis.

Horizontal Position and Angle Sensitivity History

In Fig. 3.10, we have the sensitivities for horizontal position and angle. On the left, the

slope history versus slug is shown for horizontal position monitor X (or targetX for full

name). On the right, we have horizontal angle X′ (or targetXSlope). We can see that these

slopes are not as stable as the energy slope from Fig. 3.9.

During the run period around slug 159-170, which is from Wien 7 of the experiment, the

horizontal position and angle slopes changed dramatically compared to the slugs prior to

slug 159 and the ones after slug 170. This is the period when the two modulation patterns

X1 and X2 are redundant, as shown in Tab. 3.9. Because of the redundancy in X1 and X2,

when performing the full ten pattern sensitivity calculation, we actually relied on the

information from patterns X1 sin and X1 cos (or the pair of X2 sin and X2 cos) to

calculate the slopes for these runs. For other runs besides these ones, we relied on patterns

X1 sin, X1 cos, X2 sin and X2 cos together and found the solution that could represent the

best out of the four patterns. We can see in Fig. 3.10 that for these slugs, the horizontal

position and angle slopes become very close to zero and differ greatly from the rest of the
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Figure 3.10: Main detector horizontal position and angle sensitivities slug history for 10 coil
(pattern) analysis. (Left) horizontal position. (Right) horizontal angle.

runs. However, we can also see in Fig. 3.9 that the energy slope is pretty constant with

other runs. This means the X modulation patterns could affect horizontal and angle slopes

in a significant way but not the energy slope. The energy slope is pretty much dominated

by the energy modulation pattern E sin (the other energy pattern, E cos, the out-of-phase

pattern of the energy mode, is generally zero because the FFB was off during E

modulation), which is the only pattern that was designed to modulate beam energy. Even

though there are differences from run to run for the X modulation patterns, the energy

slope could still be relatively stable.

Another observation in Fig. 3.10 is that the horizontal position and angle slopes seem

anti-correlated. For example, during the first few slugs, ten or so, the slope is higher than

average for X slope but lower than average for X′ slope. Also, for the slugs mentioned

previously during Wien 7, the slopes are higher than average for X and lower than average

for X′. This means there is a high (anti-)correlation between horizontal position and angle.

77



Vertical Position and Angle Sensitivity History

In Fig. 3.11, we have the sensitivities from vertical position (left) and angle (right). We can

see that compared to horizontal parameters, the vertical slopes are relatively more stable.

Figure 3.11: Main detector vertical position and angle sensitivities slug history for 10 coil
(pattern) analysis. (Left) vertical position. (Right) vertical angle.

For the vertical angle slope on the right, the slope is consistent with zero for the majority

of the runs. For the vertical position slope on the left, the sensitivity is also very small, and

for some of the runs, the vertical position slope is close to zero as well. This means in the

vertical directions, the main detector sensitivities are pretty much consistent with zero.

This is what we expect from the layout of the individual detectors. Since the eight main

detector bars are azimuthally positioned, we expect cancellations of detector sensitivities

from the opposite detector bars. The main detector array was designed to suppress some of

the beam parameter sensitivities given a symmetric layout, including the vertical position

and angle slopes we are looking at here. The bar at the top and the one at the bottom of

the array respond in an opposite way with respect to the vertical position and angle of the

beam. Shifting the beam upward or downward can cause yield in one bar to increase and

yield in the other bar to decrease. The total effect of change tends to be zero when the bar
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responses are combined and averaged.

3.6 Beam Correction with Residual

The sensitivities calculated in the last section were based on the full ten pattern extraction

method. The χ2 in Eq. 3.29 was minimized to give the solution for the ten equations from a

full pattern set. Normally the χ2 could not be minimized to a zero value since each pattern

differs from the solution of sensitivities more or less by a certain amount. Then we need to

look at the deviation of each pattern from this solution. We only dithered five beam

parameters (E, X, X′, Y, Y′) during the modulation stage, and the detector yield should

only respond to the five beam parameters. If this is case, the χ2 should be vanishing. But

if there are other parameters of the beam, like some parameter we were not aware of, that

also introduced some response in the main detector accidentally, the χ2 couldn’t be

minimized normally. To tell if this is the case, we need to look at the dithering residuals.

3.6.1 Dithering Residual

Dithering residual refers to the residual response in the main detector after the correction

from solution given by the χ2 minimization method. After having a solution of five

sensitivities, we plug in the monitor coefficients and the obtained sensitivities on the left

hand side of the equations in Eq. 3.28. Then we have the “projected” response in the main

detector. On the right hand side of the equations, we have the actual measured responses

of the main detector for each pattern. The discrepancy between the projected response and

the measured response is dithering residual for this pattern.

The projected dithering response in the main detector is

PD
i ≡ SEC

E
i + SXC

X
i + SX′CX′

i + SYC
Y
i + SY′CY′

i , (3.34)

where index i takes pattern 0-9. The projected detector response is established for each
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dithering pattern. Since the monitor coefficients are different from pattern to pattern, the

projected response PD
i differs by pattern as well.

Different patterns have different sizes of projected responses and they could be estimated

on a certain level. For example, the projected response is expected to be relatively

suppressed in the position and angle modulation modes since the main detector is less

sensitive to position and angle than beam energy. But for the energy modulation mode, we

expect the projected response to be high since main detector yield is sensitive to beam

energy change.

Compared to the projected detector response PD
i in Eq. 3.34, the actual measured

dithering response in the main detector is its dithering coefficient CD
i . The discrepancy

between the projected response and the measured response is the dithering residual

response for that pattern. The dithering residual for pattern i is

RD
i ≡ DD

i − PD
i , (3.35)

or, in a more explicit way with monitor coefficients and sensitivities plugged in

RD
i = DD

i −
4∑

m=0

SmC
m
i

= DD
i − SEC

E
i − SXC

X
i − SX′CX′

i − SYC
Y
i − SY′CY′

i ,

(3.36)

in which index i takes ten patterns 0-9. Index m takes five beam parameters. Sm is the

detector sensitivity for monitor m. Cm
i is the monitor coefficient of monitor m in pattern i.

The dithering residual RD
i is the measured detector response minus the individual

projected detector responses from each monitor.

With the dithering residual in Eq. 3.36, we take another look at the χ2 given earlier in

Eq. 3.29. The χ2 can be expressed with dithering residual as

χ2=
9∑
i=0

(
RD
i

)2
, (3.37)
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where the sum takes all ten patterns and the residuals are squared to maintain a

non-negative contribution to the χ2. The χ2 minimization method in Sect. 3.5.2 was trying

to minimize the dithering residuals from the patterns. The solution of sensitivities was

calculated so that the resulted residual responses in the detector can be minimal. But

non-vanishing nonetheless, as we shall see later.

3.6.2 Residual History

There are fitting errors in the monitor and detector coefficients, and these errors are

statistical from beam natural motion. This results in statistical error in the dithering

residual as well. So for a slug or run, the residuals from the patterns could not have a zero

value but should be within the statistical reach of zero. If not, we observe a systematic

non-zero residual effect in the dithering analysis. To tell if this is the case for the

experiment, we look at the dithering residuals for the main detector in each of the ten

patterns.

First we look at the residuals in the vertical direction modulation patterns, Y1 and Y2

modes. There are sine and cosine responses for each of the two modes. The residual vs.

slug history plots are shown in Fig. 3.12.

In Fig. 3.12, we have four slug history plots from four patterns, Y1 sin (top left), Y1 cos

(top right), Y2 sin (bottom left), Y2 cos (bottom right). They have corresponding pattern

numbers 1, 6, 4, 9, respectively. The unit of the detector residual in these plots is parts per

million. By looking at the Y1 sin slug history plot (top left), we can see that there are

statistical fluctuations in the residual from slug to slug, and for most of the slugs, the

residual is close to zero. The same happens to the other three Y residual history plots. We

could observe all zero or near zero residuals in the Y patterns.

The small or vanishing residuals in the Y modulation modes mean that four different Y

patterns can give solutions that generally agree with each other. The sensitivities for

vertical position and angle are well determined, just like what has been shown before in the
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Figure 3.12: Main detector dithering residual slug history in pattern Y1 and Y2. (Top left)
Y1 pattern sine residual. (Top right) Y1 pattern cosine residual. (Bottom left) Y2 pattern
sine residual. (Bottom right) Y2 pattern cosine residual.
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sensitivity history plots (Fig. 3.11). The sensitivities for Y direction parameters are close

to zero and relatively stable. This also means that the responses in the main detector

during Y1 and Y2 modes can be well covered by beam parameters, especially the vertical

position and angle. There is not much mystery in the Y dithering modes, but we shall see a

different story in the X modes.

In Fig. 3.13, we have the dithering residual slug history plots for all X modulation

patterns, including X1 sin (top left), X1 cos (top right), X2 sin (bottom left), and X2 cos

(bottom right), corresponding to pattern 0, 3, 5, 8, respectively. By looking at the four

plots in general, we immediately notice that unlike the situation in the Y direction modes,

the residuals in the X patterns are much higher. For example, in X1 sin and X1 cos modes,

the residuals can be as high as 50-80 ppm, but this is not within the statistical fluctuation

allowance of the residuals from slug to slug.

For the X1 sin pattern (top left in Fig. 3.13), the residual can range from 0 to 50 ppm.

For the X1 cos pattern (top right), the residual can be as high as 80 ppm, which is the

highest among the four X modulation patterns (the next highest is pattern X1 sin). It is

also worth noticing that for the X1 sin and X1 cos patterns, the residuals are

compensating for each other. They have opposite signs but about the same magnitude

(actually the magnitude of residual in the X1 cos pattern is about 1.5 times the magnitude

in the X1 sin pattern). For the X2 sin pattern (bottom left), the residual is between 0 and

40 ppm, about half of the size as in the X1 cos pattern. The residual in the X2 cos pattern

is the smallest, which is between -10 to 30 ppm. The residual in X2 cos is close to zero for

most of the slugs.

One special case should be made about the slugs 159-170. We can see from Fig. 3.13 that

for these slugs, the dithering residuals for the X patterns are zero within statistical error.

To explain this, we have to use the dithering quality checking results in Sect. 3.4.4, which

have shown that for these slugs, the X1 and X2 modulation modes are redundant (see Tab.

3.9). We can effectively use two X1 patterns (in-phase and out-of-phase) or two X2 pattens.
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Figure 3.13: Main detector dithering residual slug history in pattern X1 and X2. (Top left)
X1 pattern sine residual. (Top right) X1 pattern cosine residual. (Bottom left) X2 pattern
sine residual. (Bottom right) X2 pattern cosine residual.
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This means two equations in the set of four X equations are redundant with respect to the

remaining two. When two equations are satisfied, the rest two are at the same time

fulfilled. For the two parameters involved, horizontal position X and angle X′, we only have

two effective equations. Therefore the two effective equations can solve horizontal position

and angle sensitivities sufficiently. In this case, the dithering residuals for the two patterns

are zero within statistical error when all ten pattern equations are included.

We now look at the dithering residual in the energy modulation patterns in Fig. 3.14.

On the left, we have the dithering residual from pattern E sin, the dominate energy

modulation pattern. We can see that the residual is approximately within ∼5 ppm. This is

good compared to the X mode residuals (typically ∼50 ppm). This means for the energy

dominated modulation pattern, the residual is small compared to the energy induced

response in the main detector.

Figure 3.14: Main detector dithering residual slug history in pattern E. (Left) E pattern sine
residual. (Right) E pattern cosine residual.

Since the modulation modes in the X direction are well separated from the Y modulation

modes (we have seen before in Sect. 3.4.4 that many angles between X and Y pattern pairs

are close to 90°), we could consider the three parameters, E, X, X′, as a group. From the
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residuals in X modulation patterns (Fig. 3.13) and energy pattern (Fig. 3.14), we can see

that the main detector responses can’t be fully described by the three parameters. We

know that energy can result in a considerable amount of change in the main detector. But

when the three parameters are analyzed together, we still have an unexplained residual

response in the detector.

In general, in this section we have seen that the dithering residuals are not zero in some

of the patterns. The statistical deviation from zero is normal, which can be explained by

the statistical error of the dithering coefficients. But we have seen that there could be a

systematic effect for non zero dithering residuals in some patterns. One possible reason is

that we have another source of beam parameter that can result in the main detector

response during beam modulation. Even though we didn’t modulate this “hidden” variable

intentionally, it happened to be non zero during the modulation stage and the extra

response in the main detector cannot be explained completely by the five beam parameters

(energy, position, angle). This might turn out to be difficult to identify the source of the

residuals because we don’t have direction measurements from this possible variable.

3.7 Beam Correction Systematic Error

In the last section, we calculated the detector residuals for each dithering pattern. We have

seen that for different dithering patterns, the residual can be quite different. The residuals

are generally higher in X-like patterns (Fig. 3.13) and lower in Y like patterns (Fig. 3.12).

Since we have different residuals in different patterns, the solution of sensitivities can

depend on what dithering patterns we choose. For example, if we choose to omit one of the

X patterns and use the rest to calculate sensitivity, since the residuals in X patterns are

high, the sensitivities for X parameters, like horizontal position and angle, are likely to be

altered from the full ten pattern results. With this different set of detector sensitivities, the

beam correction can be different as well since it is based on sensitivities and monitor
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differences (Eq. 3.2). Therefore, we need to study the effects of omitting patterns during

the calculation of sensitivities and see how they can affect the main detector asymmetry

results.

3.7.1 Dithering Schemes

The dithering sensitivities calculated previously in Sect. 3.5.2 utilized all ten effective

patterns. All ten equations are included in the χ2 minimization (Eq. 3.29). When all ten

patterns are included, this dithering scheme is referred to as “10 coil” scheme. It is a

conservative scheme since we have no preference for any of the patterns we have.

Therefore, this scheme can serve as a candidate for the central value of beam correction.

We shall see later how this works.

We have more patterns than we need (five is enough to solve the equation set and we

have ten), and this redundancy can result in the discrepancies of the sensitivities

calculated. To study the influence of this redundancy on our results, patterns are

selectively removed to test the resulted sensitivities. We remove one or two patterns out of

ten at a time to form a new dithering scheme. Different schemes have different results, and

each scheme has its own dithering sensitivities calculated. A systematic error term is

introduced to cover the discrepancies in the results.

During the experiment, five dithering patterns, X1, Y1, E, X2, Y2, were performed. The

sine and cosine responses together provide ten dithering coils, which are named pattern (or

coil) 0-9 following the order of X1 sin, Y1 sin, E sin, X2 sin, Y2 sin and X1 cos, Y1 cos,

E cos, X2 cos, Y2 cos (see details in Tab. 3.5). We remove one coil at a time, which we call

the “single-coil-removal” procedure. We can also remove two coils at a time, or a

“double-coil-removal” procedure. Since FFB was off during energy modulation, the energy

patterns are not redundant. We should keep the energy patterns (2 and 7), and we can

remove the rest of the coils safely as long as we don’t exceed two coils at a time (at least

two patterns are required to decouple position and angle, horizontally or vertically).
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Therefore, the dithering schemes we can use are summarized in Tab. 3.10.

Table 3.10: Dithering schemes with select pattern removal .

Scheme
Category

No. of
Coils

Removed

No. of
Coils
Kept

Dither Schemes

Full 0 10 10coil

Sing-Coil
Removal

1 9
OmitCoil0, OmitCoil1, OmitCoil3,
OmitCoil4, OmitCoil5, OmitCoil6,

OmitCoil8, OmitCoil9

Double-Coil
Removal

2 8

OmitCoil05, OmitCoil01, OmitCoil06,
OmitCoil03, OmitCoil08, OmitCoil04,
OmitCoil09, OmitCoil15, OmitCoil56,
OmitCoil35, OmitCoil58, OmitCoil45,
OmitCoil59, OmitCoil16, OmitCoil13,
OmitCoil18, OmitCoil14, OmitCoil19,
OmitCoil36, OmitCoil68, OmitCoil46,
OmitCoil69, OmitCoil38, OmitCoil34,
OmitCoil39, OmitCoil48, OmitCoil89,

OmitCoil49

The schemes with certain patterns removed are referred to as “OmitCoil” schemes,

followed by the pattern number(s) removed in this scheme. For the schemes with a single

pattern removed, the ten patterns are removed one at a time (skipping 2 and 7), so we have

8 single-coil-removal schemes. When we remove two patterns for sensitivity calculation,

each pair of patterns are selectively removed from the combinations (no pattern 2 or 7

involved), and in the end, we have 28 double-coil-removal schemes. Compared to the “10

coil” scheme which utilized all 10 patterns, the single-coil-removal and double-coil-removal

schemes utilized 9 and 8 patterns out of 10, respectively. Including the full 10 coil scheme,

the “single-coil-removal” and “double-coil-removal” schemes, we have 37 schemes in total.
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3.7.2 Sensitivities with Different Schemes

By selecting different patterns to remove, we can calculate the corresponding sensitivities

based on patterns available in each dithering scheme. The schemes with two patterns

removed are not completely independent from the schemes with single pattern removal. To

illustrate this more clearly, here the sensitivities with one pattern removal are shown for

analysis. The one pattern removal schemes should show more clearly what effect we have

on the sensitivities when that pattern is excluded. This way we can tell what role each coil

plays in the sensitivity calculation. The scheme with two patterns removed can typically

show the combined effects of the two corresponding single-coil-removal schemes.

Energy Sensitivities with Different Schemes

In Fig. 3.15, we have the dithering sensitivity for the energy monitor from different

schemes, including 10 coil and single-coil-removal schemes. The full 10 coil scheme is

marked with black and the other schemes with a single coil removed are marked with

various colors. The schemes with X-like pattern removed have red or orange colors, and the

schemes with Y like pattern removed are in blue or green colors. The zero dashed line is

drawn here to typically show the variation of energy sensitivity over time; we can see that

the energy slope is relatively stable across Run 1 and Run 2.

Also from Fig. 3.15, we can see that the energy sensitivities from different schemes are

generally close to one another. For the slugs around Wien 9a and 9b, omitting pattern 0 or

3 can cause the energy sensitivity to shift. This means pattern 0 or 3 plays an important

role in the energy sensitivity determination. We have kept the energy modulation patterns

for the single-coil-removal schemes, which are dominate modulation modes that help

determine energy sensitivity. For most of the slugs, the energy sensitivity is not affected by

much by removing the modulation patterns that were mainly focused on dithering

(horizontal or vertical) position and angle. Since the main detector is more sensitive to

energy, we can’t lose the energy modulation pattern, which is why pattern 2 or 7 was kept
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Figure 3.15: Main detector energy sensitivity slug history from different dithering schemes.

during pattern removal in the schemes listed in Tab. 3.10.

Vertical Position and Angle Sensitivities with Different Schemes

In Fig. 3.16 and 3.17, we have the dithering sensitivities for vertical beam parameters

calculated by different dithering schemes. Vertical position and angle are in Fig. 3.17 and

3.16, respectively. Just like Y and Y′ sensitivity results for the ten pattern scheme (Fig.

3.11), the sensitivities in vertical directions from different schemes are all generally close to

zero for the majority of the data, and the agreement between different schemes is good.

This is consistent with the observation in Sect. 3.6.2 when we looked at the residual

history for Y like patterns (Fig. 3.12). The residuals for Y patterns, including pattern 1, 4,

6, 9, are small. The results from different Y pattern combinations should agree with each

other. When removing one of the Y patterns, the sensitivities in the Y directions don’t

change much.

Since the Y patterns are dominant modulation modes that help determine sensitivities in

the vertical directions, removing one of the X patterns doesn’t affect the Y sensitivities
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Figure 3.16: Main detector vertical angle sensitivity slug history from different dithering
schemes.

Figure 3.17: Main detector vertical position sensitivity slug history from different dithering
schemes.
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either. However, for the vertical position sensitivity in Fig. 3.17, we can see that omitting

coil 3 (X2 sin) can change the vertical position sensitivity by almost a factor of 2 in Wien 8

and 9. This means pattern 3 also plays a role in the vertical position sensitivity

determination. Even though pattern 3 is sine response from horizontal X2 modulation

mode, the dithering motion of the beam in X2 pattern was involved with some vertical

motion as well.

Horizontal Position and Angle Sensitivities with Different Schemes

Figure 3.18: Main detector horizontal angle sensitivity slug history from different dithering
schemes.

The sensitivity history plots for horizontal directions are shown in Fig. 3.18 and Fig.

3.19. The horizontal position sensitivity history plot is in Fig. 3.19 and the horizontal angle

plot is in Fig. 3.18. We can see that in general, the sensitivities from different schemes

differ quite a bit in the horizontal direction. When removing X like patterns (pattern 0, 3,

5, 8), the sensitivities can be altered by a lot. And the removal of Y like patterns (pattern

1, 4, 6, 9) don’t affect the X sensitivities by much, as expected, since we don’t have much

horizontal motion in the beam during Y modulation modes. The different sensitivities from
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Figure 3.19: Main detector horizontal position sensitivity slug history from different dithering
schemes.

different schemes by removing X patterns agree with the observation we had in the residual

history plots (Sect. 3.6.2). From the residuals’ perspective, we have high residuals in the X

patterns, and removing one of them can greatly alter the X sensitivities.

In Fig. 3.18, we have the dithering sensitivities for horizontal angle motion. Different

dithering schemes, especially the schemes with X like patterns removed, can mostly agree

within about 10%. But removing pattern 3 can change the slope by a factor of 2, just like

it did for vertical position (Fig. 3.17) in Wien 8 and 9. Also removing coil 0 or 5 can

slightly shift the sensitivity toward zero.

In Fig. 3.19, for the horizontal position monitor, the schemes can also differ by much,

especially when we remove pattern 0 or 3. When omitting coil 3, the horizontal position

sensitivity is almost doubled. And when removing coil 0, the slope is shifted toward zero

by up to 50%.

In general, the discrepancies of dithering schemes mainly come from the cases when we

remove the X like patterns. This agrees with the high dithering residual observed for these

patterns. Sometimes, not only the removal of these patterns can affect horizontal

93



sensitivities, they can affect other sensitivities to some level as well. The altered

sensitivities for different coil removal options can affect the results of dithering correction

and the dither corrected main detector asymmetries.

3.7.3 Main Detector Asymmetries with Different Schemes

The HCBAs in main detector raw asymmetries can be corrected with different sets of

sensitivities from different dithering schemes. The discrepancy in the dithering sensitivities

from these dithering schemes can result in different beam correction values and main

detector asymmetry results. In this section, the main detector asymmetries at Wien level

are shown here for comparison between the schemes. Like the previous section, for the

purpose of clarity, we show single-coil-removal schemes together with the full 10 coil

scheme.

In Fig. 3.20, we have main detector asymmetries at Wien level for Run 1 from different

schemes. Five Wiens (1-5) from Run 1 are included. The schemes from various coil removal

options are represented by different colors. The schemes of most interest are from X coil

removal options, like coil 0 (X1 sin), 3 (X2 sin), 5 (X1 cos), and 8 (X2 cos). For Wien 5,

the asymmetries from different schemes agree pretty well. But for other Wiens, the

schemes can have different asymmetries, especially Wien 2. Omitting coil 0 (red), 3

(orange) and 5 (magenta) can clearly alter the main detector asymmetry. These are the

coils in the horizontal modulation patterns, like X1 and X2 sine and cosines responses.

Still in Fig. 3.20, the average of the five Wiens give the physics asymmetries for Run 1.

We can tell from the dashed lines that all colored lines almost coincide with each other,

while the pattern 5 removal scheme sits below other schemes, and the pattern 3 removal

scheme asymmetry is smaller than others. The full 10 coil scheme is mixed with all other

schemes.

In Fig. 3.21, we have the physics asymmetries Wien plot for Run 2. Run 2 in general is

in a better situation than Run 1 because we can see that only one Wien (Wien 8a)
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Figure 3.20: Main detector physics asymmetry in Run 1 with different dithering schemes.

disagrees for different dither schemes.

By looking at different Wiens in Run 2, Wien 6, 7, 8b, 9a, and 9b agree well for different

schemes (Wien 10 is special because in most of Wien 10 the FFB was turned off for all

dithering patterns, so removal of a cosine coil won’t change things, but removal of a sine

coil is not appropriate. In this case, the Wien 10 coil-removal scheme is replaced with 10

coil scheme.) But in Wien 8a, we can see that the different schemes can differ by 20 ppb or

even higher.

By comparing Run 1 and Run 2, we can see that different dithering schemes can give

very different asymmetries. We need to set rules that can serve as criteria for picking out

the good schemes from the rest.

3.7.4 Scheme Selection Criteria

Different dithering schemes give quite different main detector asymmetries, so we need to

carefully choose from the schemes and remove those that don’t work and cause wrong main
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Figure 3.21: Main detector physics asymmetry in Run 2 with different dithering schemes.

detector asymmetries. To choose the good schemes from all the schemes listed in Tab.

3.10, we need a few criteria listed below:

� MD Asymmetry Stability. Or the χ2 and probability at slug level. This gives a

direct look into the quality of the data after beam correction from each dither scheme.

� Residual Correlations. The correlation to beam parameters after beam correction,

including beam energy, position and angle. The residual corrections should be well

controlled.

� MD Asymmetry Error. Statistical error of main detector asymmetry. Or,

equivalently the main detector asymmetry width after beam false asymmetry removal.

The main detector asymmetry width should be reduced after the beam correction.

With the three criteria listed above, we look at those quantities for all the available

dithering schemes. The results are shown in Fig 3.22 (Run 1) and Fig 3.23 (Run 2).

In these two tables, for each dithering scheme, we have slug level χ2 and probability,

residual correlation to beam energy, horizontal position (targetX) & angle (targetXSlope),
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vertical position (targetY) & angle (targetYSlope), the main detector asymmetry error and

asymmetry value. For the residual correlation factors, we have value and error of the factor

with sigma level of the correlation factor in the parentheses. The schemes are sorted in

such an order that the slug-level probability decreases from top to bottom.

Now we apply the three criteria we have previous listed. We look at residual correlation

factors first, since the direct effect of beam correction is that it should remove the

correlation between main detector asymmetry and beam parameter differences.

In Run 1 (Fig. 3.22), we look at the sigma level of correlation with beam parameters and

cut the schemes that have three sigma or higher correlations. After this cut, we have the

schemes marked with red. Each of the schemes has at least one correlation that is higher

than three sigma. For example, the schemes with coil 3 removed (OmitCoil3, OmitCoil38,

etc.) are focused to the very bottom part. The residual correlation for these schemes are

generally 5+ sigma. The energy correlation can even reach 9 sigma. With removal of coil 3,

the probability is very bad, not even 0.001, and the asymmetry error is also the highest

among the schemes.

After we cut on residual correlations, we have the schemes in the top part, which passed

our correlation test. In the bottom part, we have schemes with large residual correlations.

It “happens” that the schemes with high correlations also turn out to have low probability.

The first and the second criterion of our scheme selection are connected. Better residual

correlations often suggest better χ2.

We have removed the schemes with probability lower than 0.01 after the cut on residual

correlations. Scheme OmitCoil69 (with 0.04 probability) is also removed. We now turn to

the third criteria, the main detector asymmetry error. The schemes that passed 3-sigma

correlation cut have, in general, an asymmetry error in the range of 13.14-13.15 ppb. But

OmitCoil08 scheme has an asymmetry error of 13.17 ppb. So this scheme is also removed.

In Fig. 3.23, we have the summary of results for different schemes in Run 2. Like Run 1,

we also first cut on schemes with any residual correlations that are higher than 3 sigma.
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This also leaves the bottom part of the table to be red and excluded. In Run 2, the

schemes with probability that is lower than 0.02 are removed. The rest of the schemes all

have probability higher than 0.06. Then we perform the main detector asymmetry error

check, the third criteria. The rest of the schemes after the correlation cut generally have

asymmetry error ranging in 7.33-7.34 ppb. However, OmitCoil35 scheme has an asymmetry

error of 7.37, which is obviously higher than the rest of the low correlation schemes. So

OmitCoil35 scheme is also excluded in Run 2.

3.7.5 Schemes Systematic Error Assignment

After the correlation cut (close to χ2 cut) and the MD error cut, we are left with a set of

working schemes in Run 1 and Run 2. The schemes and the corresponding main detector

asymmetries are summarized in Fig. 3.24 and Fig. 3.25. They are sorted in asymmetry

increasing order to show the span of the asymmetry distribution, including the boundaries

of the asymmetries.

In Fig. 3.24, we can see that different schemes give nearly identical MD asymmetries.

The maximum and the minimum differ by about 7 ppb. We would like to choose a central

value and an error that can represent the average of the schemes and also cover the span of

the asymmetry distribution.

The 10 coil scheme gives an asymmetry of ∼199 ppb. The OmitCoil46 scheme has the

smallest asymmetry, ∼195 ppb, while OmitCoil05 scheme gives the highest asymmetry of

∼203 ppb. Therefore, the 10 coil sits approximately in the median of the asymmetry range.

This can be used for the central value in Run 1.

To properly cover the range of asymmetries in Run 1, we need to assign an error that can

span the coverage. We can find the distance between the chosen central value (10 coil) to

the minimum asymmetry (OmitCoil46) and the distance between 10 coil and OmitCoil05,

compare them, find the higher of the two distances and use it as the systematic error. By

doing this, we make sure the asymmetries from the working schemes can all be properly
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covered.

In Run 1, the distance between the central value and minimum (absolute value)

asymmetry is

Run 1 : |A10coil − AOmitCoil46| = |−199.49− (−195.38)| = 4.11 ppb . (3.38)

And the distance from central to maximum is

Run 1 : |A10coil − AOmitCoil05| = |−199.49− (−202.66)| = 3.17 ppb . (3.39)

The higher of the two above is taken as systematic error in Run 1

Run 1 : ∆Ascheme = 4.11 ppb . (3.40)

For Run 2, we look at Fig. 3.25. The range of the asymmetries is clearly smaller than

Run 1. From the lower bound to the higher bound, we have a 2 ppb discrepancy. The

lower bound comes from the OmitCoil05 scheme, ∼163 ppb. The higher bound is

OmitCoil58, ∼165 ppb. The 10 coil scheme asymmetry, ∼164 ppb, sits around the median

of the range. So just like Run 1, the 10 coil scheme can be used as the central value.

In Run 2, we have the shift between central value and minimum (absolute value)

asymmetry as

Run 2 : |A10coil − AOmitCoil05| = |−164.01− (−162.94)| = 1.07 ppb . (3.41)

And the distance between central and maximum asymmetry is

Run 2 : |A10coil − AOmitCoil58| = |−164.01− (−164.83)| = 0.82 ppb . (3.42)

The greater value of the two quantities above is utilized as systematic error to cover the
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range in Run 2

Run 2 : ∆Ascheme = 1.07 ppb . (3.43)

Figure 3.24: Main detector asymmetries from working dither schemes in Run 1.

3.8 Beam Correction Results

3.8.1 Beam Correction to Raw Asymmetry

We have raw main detector asymmetries for Run 1 and Run 2, -217.99 ppb and -164.01

ppb for Pass5c+ data set [11]. And based on Fig. 3.24 and 3.25, we have the central value

of corrected asymmetries. Now we have the beam corrections for Run 1 and Run 2 as

(including the systematic error previously defined)

ARun1
beam = 18.50± 4.11 ppb , (3.44)

ARun2
beam = 0.00± 1.07 ppb . (3.45)
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Figure 3.25: Main detector asymmetries from working dither schemes in Run 2.

Please note that in Run 2, the 0.00 ppb is actually 0.0031 ppb when we show more digits.

3.8.2 Wien and HWP Cancellations

The beam correction is 18.50 ppb for Run 1, which seems too large. The beam correction

of 0.0031 ppb for Run 2 seems too small. Why these values are what they are now depends

on cancellation between different spin states.

Table 3.11: Beam correction at Wien level in Run 1.

Wien No. Wien Reversal Precession Reversal IN (ppb) OUT (ppb) PHYS (ppb)
1 1 0 42.37 9.95 29.54
2 0 0 10.73 -16.18 -2.36
3 1 0 6.52 70.83 40.07
4 0 0 118.27 -88.75 20.30
5 1 0 -0.42 22.02 12.19

In Tab. 3.11, the beam correction in each Wien is given for Run 1. The HWP IN and
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OUT states beam are listed separately. The combined beam correction to physics

asymmetry (IN+OUT) is also listed in the last column.

In Wien 1, the HWP cancellation is not very good. The beam correction to HWP IN

state is 42.37 ppb, while for the HWP OUT state it is 9.95 ppb - and they even have the

same sign. The same thing happens to Wien 3, which also have large and same-sign

corrections for IN and OUT states. For Wien 5, one HWP state dominates the correction

but the correction is small. However, for Wien 2 and 4 , the HWP cancellations are good.

The IN and OUT beam correction values are close.

Table 3.12: Beam correction at Wien level in Run 2.

Wien No. Wien Reversal Precession Reversal IN (ppb) OUT (ppb) PHYS (ppb)
6 0 1 -2.43 34.84 18.11
7 1 1 -126.25 48.42 -40.12
8a 1 0 27.26 -8.27 9.17
8b 1 0 23.77 -14.22 4.93
9a 0 0 -5.52 0.42 -2.89
9b 0 0 8.41 -10.45 -1.22
10 1 0 -12.89 25.73 8.86

We turn to Run 2 in Tab. 3.12. Generally speaking, Run 2 is in better shape than Run

1. We can tell this from the fact that beam corrections for IN and OUT states all have the

opposite sign for Run 2. This means the HWP cancellations work much better in Run 2

than Run 1. Wien 8b and 9b show good examples of effective HWP states cancellations.

Tab 3.11 and 3.12 are “unweighted” beam correction values. For the total correction in

Run 1 and Run 2, the Wien level beam corrections have to be weighted and added. The

weighting here is the main detector asymmetry error. After the multiplication with this

weighting, we have effective beam correction values for Run 1 in Tab 3.13. In this table,

the corrections values can be added directly for the total beam correction in Run 1.

In Tab. 3.13, the total beam correction of the last column agrees with Eq. (3.44). In

Run 1, the large beam corrections come from Wien 1 and 3. These two Wiens don’t have

good HWP cancellations (the IN and OUT correction have the same sign) so the beam
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Table 3.13: Beam correction at Wien level in Run 1, weighted.

Wien No. Wien Reversal Precession Reversal IN (ppb) OUT (ppb) PHYS (ppb)
1 1 0 4.23 0.65 4.88
2 0 0 1.36 -1.94 -0.58
3 1 0 0.62 7.34 7.96
4 0 0 11.42 -7.70 3.72
5 1 0 -0.04 2.55 2.52

Beam Correction Sum 17.59 0.90 18.50

corrections for these two Wiens are large. They both happen to have positive physics beam

correction values. These two Wiens caused the large net beam correction value in Run 1.

We can also look at the Wien cancellations in Run 1, from the last column in Tab. 3.13.

Wien 2 and 4 have wien-reversal 0 state while Wien 1, 3, 5 have wien-reversal 1 state.

There is no obvious change of beam correction signs when the Wien state is flipped, even

though Wien 2 has a negative beam correction while other Wiens are positive.

Table 3.14: Beam correction at Wien level in Run 2, weighted

Wien No. Wien Reversal Precession Reversal IN (ppb) OUT (ppb) PHYS (ppb)
6 0 1 -0.11 1.98 1.87
7 1 1 -5.41 2.02 -3.39
8a 1 0 2.09 -0.66 1.43
8b 1 0 1.75 -1.03 0.72
9a 0 0 -0.70 0.04 -0.66
9b 0 0 1.00 -1.30 -0.30
10 1 0 -0.21 0.54 0.33

Beam Correction Sum -1.59 1.59 0.0031

In Tab. 3.14, we have the weighted beam corrections for Run 2. The correction values

are generally smaller than Run 1 (Tab. 3.13) and the HWP cancellations are good. For the

last row, the HWP IN and OUT states have almost exactly the same total correction, -1.59

ppb and 1.59 ppb, which is why we have such small beam correction for Run 2.

In Run 2 there is suggestion of good Wien cancellations as well. The Wien pair of 6&7

can cancel some of their beam corrections. Wien 6 has positive correction and Wien 7 has

negative correction. Wien 8 has positive correction while Wien 9 is negative, which have
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different wien-reversal states. The Wien 8&9 pair can also cancel some of the correction,

lowering the beam correction systematics in Run 2.

In Run 2, the precession reversal is important as well. From Wien 7 to Wien 8, the

precession sign is changed and the sign of correction changed accordingly. This helped to

reduce the net correction in Run 2 as well.
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Chapter 4

Regression and Dithering

This chapter focuses on the comparison between two different beam correction

methods—regression and dithering correction. The two methods utilize different beam

responses, beam natural and driven motion, to calculate main detector sensitivities. The

regression sensitivity is more affected by instrumental noise of the monitors which dithering

is almost immune to. Examples including the main detector dipole asymmetries are given

to compare the results of regression and dithering.

4.1 Natural and Driven Motion

Regression and dithering are two different methods for beam correction and both of them

are intended to remove the HCBAs in main detector asymmetry. The difference between

them is how the detector sensitivities are extracted. Regression and dithering use different

kinds of beam motion, natural and driven respectively, to calculate the sensitivities. These

two beam motion types differ from each other in a few ways.

For natural motion of the beam, beam trajectory and energy fluctuate around the

equilibrium during normal beam running. The beam parameters (energy, position and

angle) vary quickly in time and result in different values for sequential events. This beam

natural motion results in monitor differences at quartet level. In principle, every beam
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parameter has certain amount of fluctuation around its average position. Since the beam

natural motion is not well controlled, the relative amplitude of fluctuation could differ from

one parameter to another. Some parameters have weak natural motion and could not be

successfully resolved from the instrumental noise of the apparatus. Besides, beam

parameter differences can be highly correlated and therefore even if they have relatively

large amplitude of motion, it is hard to decouple the correlated directions and the residual

degree of freedom is suppressed.

Driven motion of the beam is different from natural beam movement described above. A

beam modulation system is designed to deliberately drive the beam periodically out of

balance. This way the amplitude of motion can be made greater and also we could have

different driving patterns and give corresponding motion modes to the beam. Modulation

modes differ from each other in the driving amplitudes of beam parameters. The relative

strength profile of these beam properties is different from one driven motion pattern to

another. Therefore the beam parameters can be better separated and analyzed with proper

settings of modulation modes. The comparison between beam natural and driven motion is

shown in Tab. 4.1.

Table 4.1: Comparison between beam natural and driven motion.
Type Amplitude Decoupling Note
Natural motion small correlated convenient to perform with parity data
Driven motion greater good dedicated experiment running and analysis

With different kinds of beam motion, regression and dithering calculate the sensitivities

differently. The former regresses main detector asymmetry against beam parameter

differences to remove the correlation between them. The resulted regression fitting

parameters are the beam regression sensitivities. As for the dithering, a dedicated beam

modulation method was utilized to extract the beam dithering sensitives. The modulation

of beam energy and trajectory has greater amplitude and better decoupling than beam

natural motion to provide more accurate extraction of beam sensitivities.
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4.2 Main Detector Dipole

4.2.1 Main Detector Combinations

The eight detector bars were located azimuthally around the beam axis in the plane of the

main detector array. Each of the detectors can have its own asymmetry formed1. The eight

detector bars can be combined in different ways to reveal different quantities of interest,

including parity asymmetry and transverse asymmetry. Among the possible combinations,

the parity asymmetry is from main detector monopole—an average of the eight detectors.

Further more, we could form detector dipoles, with opposite bars subtracted instead of

added together. The most typical combinations of the detectors are illustrated in Fig. 4.1.

Figure 4.1: Different combinations of the main detector array. (Left) main detector
monopole. (Middle) detector dipole 1. (Right) detector dipole 3.

In the left of Fig. 4.1, we have main detector monopole, M (or in short mdM). This is

the combination we use for parity asymmetry A. The second and third combinations are

main detector dipoles—horizontal and vertical respectively. The main detector dipoles D1

and D32 (mdD1 and mdD3) give us transverse asymmetries for the detector array. The

relative weighting factors for each detector combination are shown in Tab. 4.2.

In Fig. 4.1, white color stands for a relative weighting factor of 1. Grey stands for
√

2/2

1Each bar has two PMTs on its two ends, neg and pos, so during analysis, for each detector bar we have
two asymmetries formed, which are then averaged to obtain the asymmetry for that detector bar.

2The “positive” direction of dipoles D1 and D3 points to octant 1 and octant 3 respectively.
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Table 4.2: The detector combinations and relative weights.
Detector Combination Monopole Horizontal Dipole Vertical Dipole

Code Name M D1 D3
Octant 1 Weight 1 1 0

Octant 2 Weight 1
√

2/2
√

2/2
Octant 3 Weight 1 0 1

Octant 4 Weight 1 -
√

2/2
√

2/2
Octant 5 Weight 1 -1 0

Octant 6 Weight 1 -
√

2/2 -
√

2/2
Octant 7 Weight 1 0 -1

Octant 8 Weight 1
√

2/2 -
√

2/2

or 0.707. Black has zero weight. The “diagonal” weighting factors for the detector dipoles

can also be 1/2 alternatively. Here factor
√

2/2 is taken so when fitting the asymmetries

from octant 1 to 8 with a sine function, the resulted transverse asymmetries can be

connected to the detector dipole asymmetries introduced here.

4.2.2 Main Detector Dipole Asymmetries

The main detector dipole asymmetries with beam correction can be used to compare the

regression and dithering corrections. The HCBAs in the dipole (transverse) asymmetry is

mainly from beam position and angle. The other HCBAs are largely suppressed since the

opposite bars in the main detector dipole cancel each other with opposite signs. Therefore,

the dipole asymmetries can check against the effectiveness of the two beam correction

methods at false asymmetry removal.

In Fig. 4.2, we have the asymmetries from main detector dipole D1 with regression and

dithering correction independently applied. The points and markers with black color is raw

asymmetry without beam correction. Red is regressed asymmetry and blue is

dither-corrected. From the null asymmetry on the left, we can see that for the raw

asymmetry, the χ2 is bad because of false asymmetries from the beam. After regression,

the χ2 is improved to about 4 per degrees of freedom, but still the false asymmetries are
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not completely removed. In the case of dithering correction, the χ2 is very good, about 1,

which means the false asymmetries are removed after dithering correction is applied.

Figure 4.2: Comparison between regressed and dither-corrected main detector dipole D1
asymmetries.

More over, we have the asymmetries from main detector dipole D3 in Fig. 4.3. For the

raw null asymmetry, the χ2 is about 20 per degrees of freedom, which suggests large

amount of false asymmetries. After regression and dithering correction, the χ2 is improved.

The dither-corrected null asymmetry for main detector dipole D3 has a χ2 of nearly 1, just

like the case of horizontal dipole asymmetry.

In general, for both of the main detector dipole asymmetries, D1 and D3, we can see that

dithering can do a better job at HCBA removal than regression. Dithering correction can

bring the dipole null asymmetries to a minimum level.

4.3 Correlation between Monitors

Regression and dithering correction have different detector sensitivities, which result in

different corrected asymmetries from the two methods. To further study the relationship

between sensitivities and corrected asymmetries, and at the same time to perform
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Figure 4.3: Comparison between regressed and dither-corrected main detector dipole D3
asymmetries.

comparison between regression and dithering, we need to look closely into the sensitivities

from different monitors (five beam parameters E, X, X′, Y, Y′). During beam motion,

especially beam natural motion3, the monitors are correlated. Between certain monitors,

the correlation between monitors differences can be very high. For example, the horizontal

position and angle differences are highly correlated, so are the position and angle in the

vertical direction. To understand better the beam-corrected results, we can try to define a

set of monitors with less correlation based on original ones. To start with, we can define a

new set of monitors that are designed to remove the highest correlations.

3During beam driven motion, there are some level of correlation between dithering coefficients as well,
but we tried to separate the beam motion when we designed the modulation patterns.
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4.3.1 Partially Uncorrelated Monitors

The uncorrelated monitor set M1X, M2X, M1Y and M2Y are defined as (based on original

monitors X, X′, Y, Y′4)



M1X = X(um) + 38.45 ∗ X′(urad)

M2X = X(um)− 38.45 ∗ X′(urad)

M1Y = Y(um) + 33.34 ∗ Y′(urad)

M2Y = Y(um)− 33.34 ∗ Y′(urad)

, (4.1)

where the factors 38.45 and 33.34 are calculated based on the correlation slope between

corresponding monitor differences at quartet level. These correlation factors between

original monitors X and X′, or Y and Y′, are pretty stable during the experiment. The

units for original monitors here are um for position X(Y) and urad for angle X′(Y′). The

units for the defined uncorrelated monitors can be arbitrary, here for simplicity the factors

in front of X and Y are taken to be 1.

In Fig. 4.4, we have the correlation factors between the monitors differences before and

after the correlation removal. In the top row we have the original correlation factors

between X & X′, Y & Y′. We can see that the correlation factors were very high for original

position and angle correlation. For correlation between horizontal position and angle, the

correlation was as high as 1 most of the time. In the vertical direction, correlation between

Y and Y′ was at a level of 0.8. In the bottom row, we have the correlation factors between

the defined monitors. For correlation between M1X and M2X in the bottom left, the

correlation factor is ±0.2. Compared to original correlation factor of nearly 1, this is greatly

reduced. For M1Y and M2Y in the bottom right plot, the correlation factor is less than 0.6

most of the time, which also has reduced correlation compared to original monitors5.

4During analysis, the full names of these monitors are targetX, targetXSlope, targetY and targetYSlope
respectively.

5The factors calculated in Eq. 4.1 were based on the fitting slopes in the correlation plots of original
monitor differences for all the slugs in Run 2.

113



Figure 4.4: Correlation factors between monitor differences at slug level before and after
correlation removal. (Top left) before correlation removal, X and X′. (Top right) before
correlation removal, Y and Y′. (Bottom left) after correlation removal, M1X and M2X.
(Bottom right) after correlation removal, M1Y and M2Y.
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With the uncorrelated monitors defined in Eq. 4.1, the two highest correlations between

the monitors are removed. There are possibly weak correlations between other monitor

differences but not as high as the correlation between position and angle. With the

correlation gone, not only the monitor differences (between position and angle) can be

un-correlated, the corresponding sensitivities can de de-correlated as well. The correlation

between main detector sensitivities before and after monitor correlation removal are shown

in Fig. 4.5 and Fig. 4.6.

For the original monitors before correlation removal on the left (Fig. 4.5), we have the

correlation factors between horizontal position and angle sensitivities. The correlation

factor was about higher than 0.8. After the correlation removal, on the right, the

correlation factor between M1X and M2X sensitivities is reduced to about less than 0.4.

4.3.2 Fully Uncorrelated Monitors

With the highest correlation between position and angle removed by uncorrelated

monitors, M1X(Y), M2X(Y), we are left with a monitor set that is partially correlation

free. There are still correlations in the rest of the monitors, which can be removed as well.

To achieve a fully correlation free monitor set, we introduce another set of monitors that

are good at the comparison between regression and dithering corrections.

Based on original monitors, the fully correlation free monitors are introduced with a few

steps, including BPM noise normalization, eigen matrix de-correlation and eigen monitor

identification. These steps will be explained in the following sections.

BPM Noise Normalization

Difference BPMs have different instrumental noise (or resolution), which depends on what

kind of monitor we are looking at. The stripline beam position monitors have a typical

resolution of ∼ 1µm. The defined monitors have unique noises depending on the specific

definition. For example, the position monitor X (or targetX) is defined with a few stripline
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Figure 4.5: Correlation factors between horizontal detector sensitivities at slug level before
and after correlation removal. (Left) before correlation removal, X and X′. (Right) after
correlation removal, M1X and M2X.

Figure 4.6: Correlation factors between vertical detector sensitivities at slug level before
and after correlation removal. (Left) before correlation removal, X and X′. (Right) after
correlation removal, M1X and M2X.

116



monitors upstream of the target and has its own unique resolution. This applies to other

monitors as well, including X′, Y, Y′. The energy monitor E is defined with bpm3c12X, X

and X′, which is effectively based on a couple of stripline monitors along the beamline.

Therefore, these defined monitors have resolution that are determined by corresponding

definition.

BPM noise normalization is to divide the the monitor differences from E, X, X′, Y, Y′ by

their specific resolution. In other words, the monitor differences are normalized to the

monitor resolution. Originally, the monitors have their own units, like microns or radians.

After BPM noise normalization, the new monitor differences are unitless, or effectively

speaking, they are put under the same natural unit system. Now the monitor differences

are all simply numbers with no specific units and they can be compared relatively easily for

later use.

Suppose the resolution of monitors E, X, X′, Y, Y′ are σE, σX, σX′ , σY, σY′ respectively.

Then the BPM noise normalization step is to divide the monitor differences by the

corresponding resolution

δx =
dx

σx
, (4.2)

where dx is original monitor difference and δx is the noise-normalized monitor difference.

Here x can take monitors from E, X, X′, Y, Y′ and we have

δE =
dE

σE

, δX =
dX

σX

, δX′ =
dX′

σX′
, δY =

dY

σY

, δY′ =
dY′

σY′
. (4.3)

Please note that for beam correction results, the monitors we used for E, X, X′, Y, Y′

were energy, targetX, targetXSlope, targetY and targetYSlope. But for the regression and

dithering analysis here, we could try other monitor sets. Monitor set 11 (bpm3c12X,

targetX, targetXSlope, targetY and targetYSlope) and 7 (bpm3c12X, bpm3h09X,

bpm3h04X, bpm3h09Y, bpm3h04Y) will be used as well for some of following sections of

the related analysis to compare regression and dithering. The procedure described here use
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a generic monitor set E, X, X′, Y, Y′, in which the individual monitors could be replaced

by others.

Eigen Matrix De-correlation

The normalization procedure in the last part gives the same units to all five original

monitors from different categories of beam properties. After BPM noise normalization,

they can be unified and transformed more freely. We can see later in this section how the

correlation matrix between monitor differences benefit from this uniform unit system.

First, we have covariance between monitor differences from monitors x and y as

cov(δxδy). When monitors x and y represent the same monitor, we have cov(δxδx),

cov(δyδy), or simply var(δx), var(δy), which stand for variances from these monitors. The

correlation matrix between monitor differences is

C =
[
cov(δxδy)

]
, (4.4)

in which δx and δy are BPM-noise-normalized monitor differences. The diagonal elements

in matrix C are the variances from five monitors, var(δx). x and y can take monitors from

E, X, X′, Y, Y′. The explicit form of Eq. 4.4 is

C =



var(δE) cov(δXδE) cov(δX′δE) cov(δYδE) cov(δY′δE)

cov(δEδX) var(δX) cov(δX′δX) cov(δYδX) cov(δY′δX)

cov(δEδX′) cov(δXδX′) var(δX′) cov(δYδX′) cov(δY′δX′)

cov(δEδY) cov(δXδY) cov(δX′δY) var(δY) cov(δY′δY)

cov(δEδY′) cov(δXδY′) cov(δX′δY′) cov(δYδY′) var(δY′)


. (4.5)

The matrix C represent the correlation between monitors. Generally the non-diagonal

elements are non-zero and typical correlations are within X-like monitors or Y-like

monitors (there could be some level of correlation between X and Y monitors as well

118



depending on the beam motion). In the uncorrelated monitors (M1X, M2X, M1Y, M2Y)

introduced before, cov(δXδX′) and cov(δYδY′) were greatly reduced. Here we need to find

a way to bring down all the non-diagonal elements. Just like de-correlation for position and

angle, we defined a new set of monitor for these beam parameters. We here further define

another set of monitors that involve all beam parameters and apply monitor

transformation to the correlation matrix C to transform it into diagonal matrix.

To diagonalize matrix C, we can solve the eigen problem below

CV = λV , (4.6)

where λ and V are eigenvalues and corresponding eigenvectors. We have five eigenvalues

λ1, λ2, λ3, λ4, λ5 and five eigenvectors V1, V2, V3, V4, V5.

The transformation matrix that can bring correlation matrix C into a diagonal form is

T =
[
V1, V2, V3, V4, V5

]
, (4.7)

which is composed of the elements from five eigenvectors. The new form of correlation

matrix after diagonalization is

C′ = diag
(
λ1, λ2, λ3, λ4, λ5

)
. (4.8)

Now we introduce a new set of monitors M1, M2, M3, M4, M5. Please note that for

monitors here, also like eigenvalues and eigenvectors, we have used the indexes 1-5. The

numbers will be replaced by monitor names later in the next step of the entire procedure.

For now, they are indexed with the order of eigenvalues, for example, λ1 is the highest

eigenvalue and λ5 is the smallest. The transformation from BPM-noise-normalized monitor
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differences to the eigen monitor differences is



δM1=
∂M1

∂E
δE+

∂M1

∂X
δX+

∂M1

∂X′
δX′+

∂M1

∂Y
δY+

∂M1

∂Y′
δY′

δM2=
∂M2

∂E
δE+

∂M2

∂X
δX+

∂M2

∂X′
δX′+

∂M2

∂Y
δY+

∂M2

∂Y′
δY′

δM3=
∂M3

∂E
δE+

∂M3

∂X
δX+

∂M3

∂X′
δX′+

∂M3

∂Y
δY+

∂M3

∂Y′
δY′

δM4=
∂M4

∂E
δE+

∂M4

∂X
δX+

∂M4

∂X′
δX′+

∂M4

∂Y
δY+

∂M4

∂Y′
δY′

δM5=
∂M5

∂E
δE+

∂M5

∂X
δX+

∂M5

∂X′
δX′+

∂M5

∂Y
δY+

∂M5

∂Y′
δY′

, (4.9)

in which the transformation factors ∂Mi/∂x are from the eigenvectors found when

diagonalizing the correlation matrix. With the elements for eigenvectors filled in, the

transformation matrix T becomes

T =



∂M1

∂E

∂M2

∂E

∂M3

∂E

∂M4

∂E

∂M5

∂E

∂M1

∂X

∂M2

∂X

∂M3

∂X

∂M4

∂X

∂M5

∂X

∂M1

∂X′
∂M2

∂X′
∂M3

∂X′
∂M4

∂X′
∂M5

∂X′

∂M1

∂Y

∂M2

∂Y

∂M3

∂Y

∂M4

∂Y

∂M5

∂Y

∂M1

∂Y′
∂M2

∂Y′
∂M3

∂Y′
∂M4

∂Y′
∂M5

∂Y′



. (4.10)

And the diagonalized correlation matrix is

C′ = diag
(

var(M1), var(M2), var(M3), var(M4), var(M5)
)
. (4.11)
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Eigen Monitor Identification

The eigen monitors M1−5 transformed with matrix T from last section were named

according to the size of the eigen values. Monitor M1 was from the highest eigenvalue and

monitor M5 was from the smallest. The choice was for the purpose of convenience and it

could be the other way around or any eigen monitor can be assigned to any eigenvalue.

From one run to another, the eigenvalues of the monitors can change and therefore the

order of the eigenvalues can change as well. When two eigenvalues are too close, the order

of the monitors can be flipped from time to time. Besides, the monitors numbers 1-5 are

not directly related to any beam parameters. The physics significance of the eigen monitors

is not clear. To make the order of the eigen monitors more stable, we need to “identify”

the monitors. The procedure is shown as below.

1. Check the absolute value of component |∂Mi/∂E| of all eigenvectors Vi. Pick the

biggest one and assign this eigenvector to monitor E.

2. Check the component |∂Mi/∂X| of the rest four eigenvectors. Pick the biggest and

assign the eigenvector to monitor X.

3. Check |∂Mi/∂Y| for the rest three eigenvectors. Pick the biggest one and assign Y.

4. Check |∂Mi/∂X′| for the rest two eigenvectors. Assign X′.

5. Assign the last eigenvector to monitor Y′.

After the above “sorting” procedure, random eigen monitors M1, M2, M3, M4, M5 are

now physically significant and have new names ME, MX, MX′ , MY, MY′ , which means that

ME is dominated by monitor E, MX dominated by monitor X, etc. To show this more

clearly, the transformation matrix at slug level is in Fig. 4.7. We can see that for monitor

set ME, MX, MX′ , MY, MY′ , the dominant (diagonal) components are close to 1 and the

rest of the components are relatively smaller or close to zero. For example, the last row is

MY′ monitor. It is dominated by original Y′ monitor (component in fifth column is close to

1) and has some contribution from other monitors as well. This agrees with the procedure

of eigen monitor identification above.
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4.4 Comparison between Regression and Dithering

With the monitors ME, MX, MX′ , MY, MY′ introduced following the steps, we now have a

monitor set that is fully correlation free based on original monitors E, X, X′, Y, Y′. The

original covariance matrix has twenty-five elements and the monitors are all coupled to one

another. The covariance matrix for the new monitor set is a diagonal matrix with all

covariance terms reduced to zero. The benefits of correlation free monitor difference matrix

will be revealed in later sections, especially for the comparison between regression and

dithering.

4.4.1 Monitor Difference Width

The monitor difference width gives us the “amplitude” of beam natural motion, combined

with the monitor instrumental noise. If the width is high, we have stronger beam jitter in

the corresponding beam parameter and if the width is low, the beam jitter in this direction

is small and we are almost left with monitor instrumental noise. Since regression utilizes

beam natural motion to determine detector sensitivities, the width of the monitor

differences are crucial for regression correction. Higher widths in the monitor differences

are important for successful extraction of regression sensitivities, otherwise we have less

accurate regression correction in the low-width beam parameters.

The slug history plots of monitor difference widths are shown in Fig. 4.8, with

comparison between original monitors and correlation-free monitors. In the top, we have

the monitor difference widths after correlation removal. We can see that monitors ME, MX

and MY have high widths while MXP and MYP have low monitor widths. In the bottom,

we have the monitor difference widths for monitors before correlation removal. We can see

that the monitor difference widths from bpm3c12X, targetX and targetY monitors are high

as well. And for the low width monitors targetXSlope and targetYSlope, the widths are

slightly higher than MXP and MYP monitors in the top plot.
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Figure 4.8: Monitor differences width slug history.
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From the examination of monitor difference widths, we can see that for three beam

parameters, ME, MX, MY, we have higher width, in which we have plenty of beam motion.

For two directions MXP, MYP, the width is very low, which means we don’t have much

beam natural motion in these two monitors and the beam information is insufficient for

regression to extract accurate sensitivities.

4.4.2 The Comparison of Regression and Dithering Sensitivities

The detector sensitivities can be different between regression and dithering since they

utilize different types of beam motion. To study how the correction results differ between

the two methods, we compare the sensitivities for the five beam parameters. With the

monitors defined in the last section, we can look at sensitivities in the basis of the

correlation-free monitors, in which the comparison between regression and correction is

more clear. With the monitor difference width information, we could try to understand

how regression generally differ from dithering correction for detector combinations.

In Fig. 4.9, we have the comparison between regression and dithering sensitivities for

detector monopole. Five monitors (ME, MX, MY, MXP, MYP) are shown here in different

plots. Red points are regression sensitivities and blue points are dithering ones. We can see

that for monitors ME, MX and MY with large monitor widths, the regression and dithering

sensitivities are close. Especially for monitor ME, the sensitivities from two methods are

very close to each other. For monitors MXP and MYP with small monitor difference

widths, regression and dithering tend to disagree. Dithering sensitivity has a finite size for

most of the slugs, especially for MXP monitor, and regression sensitivity is close to zero.

The comparison between regression and dithering sensitivities for detectors dipoles are

shown in Fig. 4.10 and 4.11. In these plots, we can see that the regression and dithering

sensitivities are close for high width monitors ME, MX, MY and the regression sensitivity

is generally lower than dithering, especially for MY monitor. For example, in the plot of

∂D3/∂MY sensitivity, we can see that the regression sensitivity is significantly lower than
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Figure 4.9: Detector monopole sensitivity slug history.
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Figure 4.10: Detector dipole 1 sensitivity slug history.
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Figure 4.11: Detector dipole 3 sensitivity slug history.
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dithering for most of the slugs.

By comparing the sensitivities between regression and dithering for different detector

combinations, we can see that in general, for higher width monitors, regression and

dithering agree better and regression sensitivities are normally smaller than dithering. For

lower width monitors, the discrepancy between regression and dithering are greater.

4.4.3 The Comparison of Regression and Dithering Correction

With the un-correlated monitor set, we look at the separate corrections due to each

monitor to find the difference between regression and dithering correction. As we have seen

previously in the last section, the sensitivities differ from regression to dithering for

different monitors. Therefore, the separate corrections from individual monitors should be

related to monitor widths as well. Since for lower monitor width, the discrepancy between

regression and dithering sensitivities is higher, we expect the correction from high width

monitor to agree better between regression and dithering.

To compare the beam corrections from regression and dithering, we look at monitor

differences first. In Fig. 4.12, we have the monitor differences at Wien level for monitors

ME, MX, MY, MXP and MYP. We can see that the monitor differences from the high

width monitors, ME, MX, MY, are generally higher than the low width monitors. For

MXP and MYP, the monitor differences are closer to zero than other monitors. We could

also notice that the monitor differences for these two low width monitors are higher in Run

1 than Run 2. The monitor differences, combined with the sensitivities, form the beam

corrections for individual monitors.

In Fig. 4.13, we have the beam corrections from individual monitors for main detector

monopole, which are the sensitivities multiplied by the monitor differences. The

comparison is made between regression (red) and dithering (blue). From previous

comparison of sensitivities, we know that for the high width monitors ME, MX and MY,

the regression and dithering sensitivities are close to each other. Therefore the beam
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Figure 4.12: Monitor differences at Wien level.
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Figure 4.13: Detector monopole beam corrections at Wien level.
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correction contributions from these three monitors are close for regression and dithering as

well. However, for MXP and MYP, the low width monitors, we have great discrepancies

between regression and dithering sensitivities, so we should expect different beam

correction contributions from these monitors for regression and dithering. Even though the

monitor differences are small for MXP and MYP, they are still not zero. Besides, we have

large sensitivity in MXP monitor, as shown in Fig. 4.9. The beam correction from MXP

monitor still has a comparable size with other monitors and the discrepancy between

regression and dithering for MXP monitor is significant. By looking at all five monitors, we

can see from Fig. 4.13 that the discrepancy from MXP monitor is the highest. With the

combined beam corrections shown in the last plot of Fig. 4.13, the total correction differ

from regression to dithering. However, this mostly happens in the Wiens from Run 1. As

we have noticed before, the monitor differences for low width monitors is lower in Run 2,

and we have better agreement between regression and dithering in Run 2 than Run 1.

We now look at the comparison between regression and dithering corrections for main

detector dipoles. In Fig. 4.14, we have beam corrections from monitors for main detector

dipole 1. From previous study of sensitivities in Fig. 4.10, we know that for high width

monitors, the regression sensitivity for dipole 1 is smaller than dithering sensitivity.

Therefore, in Fig. 4.14, we can see that for ME, MX and MY, the beam correction from

dithering has a higher absolute value than regression. For the low width monitor MXP, the

monitor difference has a non-zero value, especially in Run 1 and the beam correction

contribution from MXP has discrepancy between regression and dithering for the Wiens in

Run 1. Since the MYP monitor sensitivity is smaller than MXP for detector dipole 1, we

can see that even MXP and MYP have comparable sizes in monitor difference values, the

beam correction contribution from MYP monitor is still small. When the corrections from

the monitors are combined for the total beam correction, regression differ from dithering

from Wien to Wien.

In Fig. 4.15, we have beam corrections for main detector dipole 3. For the high width
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monitors, since the regression sensitivity for detector dipole 3 is generally smaller than

dithering sensitivity, we have regression corrections that are closer to zero than dithering

corrections. For the low width monitors, since the monitor differences are relatively small,

the beam correction contribution to the total correction is small as well. For detector

dipole 3, the correction discrepancy mainly comes from the high width monitors. We have

discrepancy between regression and dithering for dipole 3 in the total correction.

After applying beam corrections to main detector asymmetries, we have the comparison

between regressed and dither-corrected asymmetries. The detector monopole is shown in

Fig. 4.16. The red is regressed asymmetry and blue is dither-corrected asymmetry. We can

see that for the Wiens in Run 1, the regressed and dither-corrected results don’t quite

agree and they agree well for the Wiens in Run 2.

In Fig. 4.17, we have the asymmetries for detector dipoles. For dipole 1 on the left, we

have discrepancies between regression and dithering in Run 1 and the agreement in Run 2

is better than Run 1. For dipole 3, we have different regressed and dither-corrected results

in the Wiens for both Run 1 and Run 2.

With the beam corrections from individual monitors studied for detector combinations,

we can understand better the main detector asymmetries from regression and dithering.

The discrepancy between regression and dithering corrections results from the discrepancy

in the sensitivities. In general, the sensitivities agree better for high width monitors. With

non-zero monitor differences, we can have different net beam corrections between the two

methods, which leads to different main detector asymmetries.
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Figure 4.14: Detector dipole 1 beam corrections at Wien level.
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Figure 4.15: Detector dipole 3 beam corrections at Wien level.
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Figure 4.16: Detector monopole asymmetries at Wien level.

Figure 4.17: Detector dipole asymmetries at Wien level.
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Chapter 5

Beam Current Correction

This chapter focuses on the beam current monitor (BCM) analysis, including the BCM

choices made for each Run of the experiment and the errors assigned for BCM

normalization. The beam current false asymmetry during helicity reversal is dealt with by

normalizing main detector yield to beam current. Since we have multiple BCMs, which

BCMs to use and how to combine them become the central question.

5.1 BCM Choices

Several BCMs were utilized in each Run of the experiment. In Run 1, we have BCMs 1, 2,

5 and 6. In Run 2, we have BCMs 1–2, 5–6, 7–8. During the data acquisition, virtual BCM

“charge” was utilized to normalize main detector signal, which was defined as the average

of BCM 1&2 in Run 1 and BCM 8 in Run 2.

After the main detector signal is normalized to the beam current, the residual correlation

between the main detector and BCM asymmetries should be small. However, in Run 1, the

residual correlations with BCM 1 and 2 were relatively high, about 30% (see Fig. 5.1),

while the residual correlations with BCM 5 and 6 are small [12]. Besides, when normalized

to BCM 5 and 6, the main detector Null asymmetries have also improved [13]. In Run 1,

the average of BCM 5 and 6 was used to normalize the main detector.
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Figure 5.1: Residual correlation between main detector and BCM asymmetries in Run 1.

In Run 2, the residual correlation is small for all BCMs [12]. After Wien 9, the BCM

double difference between BCM 1 and 2 had very high width which indicated something

wrong with them in that period [14], while BCM 5 and 6 had normal behavior in Run 2

(correlation with other BCMs look normal as well [15]). BCM 5, 6 and 8 were combined to

normalize main detector in Run 2.

5.2 Combining Different BCMs

To combine different BCMs, the BCM asymmetries at quartet level were averaged. In Run

1, the average BCM asymmetry from two BCM 5 and 6 is

ABCM =
ABCM5 + ABCM6

2
. (5.1)

Since the main detector asymmetry was pre-normalized to charge (average of BCM 1 and 2

in Run 1), the main detector was renormalized to the average of BCM 5 and 6 at quartet

level by

ARenorm
MD = AMD + Acharge − ABCM . (5.2)
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So effectively the main detector asymmetry is the average of asymmetries renormalized to

BCM 5 and 6 separately:

ARenorm
MD =

ABCM5
MD + ABCM6

MD

2
. (5.3)

Plugging in the asymmetry values, we have

ARenorm
MD =

−204.41− 194.58

2
ppb = −199.49 ppb . (5.4)

For Run 2, using the same procedure for BCM 5, 6 and 8:

ABCM =
ABCM5 + ABCM6 + ABCM8

3
, (5.5)

ARenorm
MD = AMD + Acharge − ABCM , (5.6)

ARenorm
MD =

ABCM5
MD + ABCM6

MD + ABCM8
MD

3
. (5.7)

The renormalized main detector asymmetry in Run 2 is

ARenorm
MD =

−167.86− 159.91− 164.26

3
ppb = −164.01 ppb . (5.8)

5.3 Statistical Error of Renormalized Asymmetry

To find statistical error of the renormalized main detector asymmetry, the asymmetry at

quartet level should be averaged through runlet, slug, Wien and Run level. Alternatively,

with BCM double differences (BCMDD, difference between asymmetries from a pair of

BCMs), the statistical error could be calculated using the covariance terms from BCM

asymmetry correlations.

Run 1
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In Run 1, first we take Eq. 5.3

ARenorm
MD =

ABCM5
MD + ABCM6

MD

2
.

The statistical error of the renormalized asymmetry is (including the covariance terms):

σstat(A
Renorm
MD ) =

1

2

√
σ2

stat (ABCM5
MD ) + σ2

stat (ABCM6
MD ) + 2cov(ABCM5

MD ABCM6
MD ) . (5.9)

Since the BCM double difference is defined as

BCMDD56 = ABCM5 − ABCM6

= − (−ABCM5) + (−ABCM6)

= − (AMD + Acharge − ABCM5) + (AMD + Acharge − ABCM6)

= −ABCM5
MD + ABCM6

MD

= ABCM6
MD − ABCM5

MD ,

(5.10)

we have the statistical error of the BCM double difference

σstat(BCMDD56) =
√
σ2

stat (ABCM5
MD ) + σ2

stat (ABCM6
MD )− 2cov(ABCM5

MD ABCM6
MD ) . (5.11)

Then we could have the statistical error of the renormalized main detector asymmetry

directly from the BCM double difference error and the main detector error normalized to

each BCM:

σstat(A
Renorm
MD ) =

1

2

√
2σ2

stat (ABCM5
MD ) + 2σ2

stat (ABCM6
MD )− σ2

stat (BCMDD56) . (5.12)

By applying the numbers we have

σstat

(
ARenorm

MD

)
=

1

2

√
2 ∗ 13.782 + 2 ∗ 12.842 − 4.222 ppb = 13.15 ppb . (5.13)
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The indirect calculation using the BCM double difference resulted in a statistical error that

agreed with the direct calculation from quartet level. This means the indirect calculation

works fine and we could as well apply it in Run 2 as below.

Run 2

We start with Eq. 5.7

ARenorm
MD =

ABCM5
MD + ABCM6

MD + ABCM8
MD

3
.

The statistical error of the renormalized asymmetry in Run 2 is (we have more covariance

terms compared with Run 1):

σstat(A
Renorm
MD ) =

1

3

[
σ2

stat

(
ABCM5

MD

)
+ σ2

stat

(
ABCM6

MD

)
+ σ2

stat

(
ABCM8

MD

)
+2cov(ABCM5

MD ABCM6
MD ) + 2cov(ABCM5

MD ABCM8
MD ) + 2cov(ABCM6

MD ABCM8
MD )

]
1/2 .

(5.14)

Since the BCM double differences are (we have three BCMs and we have three pairs of

BCM double differences in Run 2)

BCMDD56 = ABCM6
MD − ABCM5

MD ,

BCMDD58 = ABCM8
MD − ABCM5

MD ,

BCMDD68 = ABCM8
MD − ABCM6

MD .

(5.15)

The statistical errors of the BCM double differences are

σstat(BCMDD56) =
√
σ2

stat (ABCM5
MD ) + σ2

stat (ABCM6
MD )− 2cov(ABCM5

MD ABCM6
MD ) ,

σstat(BCMDD58) =
√
σ2

stat (ABCM5
MD ) + σ2

stat (ABCM8
MD )− 2cov(ABCM5

MD ABCM8
MD ) ,

σstat(BCMDD68) =
√
σ2

stat (ABCM6
MD ) + σ2

stat (ABCM8
MD )− 2cov(ABCM6

MD ABCM8
MD ) .

(5.16)
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Then the statical error of the renormalized asymmetry can be calculated as

σstat(A
Renorm
MD ) =

1

3

[
3σ2

stat

(
ABCM5

MD

)
+ 3σ2

stat

(
ABCM6

MD

)
+ 3σ2

stat

(
ABCM8

MD

)
−σ2

stat (BCMDD56)− σ2
stat (BCMDD58)− σ2

stat (BCMDD68)
]

1/2 .

(5.17)

After applying the numbers we have

σstat

(
ARenorm

MD

)
=

1

3

√
3 ∗ 7.392 + 3 ∗ 7.692 + 3 ∗ 7.362 − 2.812 − 1.82 − 2.732 ppb = 7.34 ppb .

(5.18)

The statistical error after renormalization to the average of BCM 5, 6 and 8 is 7.34 ppb.

When originally normalized to BCM 8, the statistical error was 7.36 ppb.

5.4 Systematic Error

A BCM systematic error is assigned to cover the BCM double differences. In Run 1,

BCMDD56 is 9.9± 4.2 ppb, higher than 2 sigma. In Run 2, BCMDD56 is 8.0± 2.8 ppb,

BCMDD58 is 3.6± 1.8 ppb, BCMDD68 is −4.4± 2.7 ppb, which are all about 2 sigma level.

These BCM double difference errors indicate that there are systematic differences between

different BCMs, and we need a systematic error term associated with this difference.

Run 1

In Run 1, half of the distance between the main detector asymmetries normalized to

BCM 5 and 6 respectively was used as the systematic error:

σ′syst(A
Renorm
MD ) = |A

BCM5
MD − ABCM6

MD

2
| . (5.19)

The following shows how the above can be calculated.

In Run 1, we have the average of main detector asymmetries as

ARenorm
MD =

ABCM5
MD + ABCM6

MD

2
. (5.20)
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We assume the BCMs have close uncorrelated resolution σBCM, which is effectively equal

weighting for the BCMs.

Then the χ2 of averaging all main detector asymmetries is

χ2 =

(
ABCM5

MD − ARenorm
MD

)2

σ2
BCM

+

(
ABCM6

MD − ARenorm
MD

)2

σ2
BCM

=

(
ABCM5

MD −ABCM6
MD

2

)2

σ2
BCM

+

(
ABCM6

MD −ABCM5
MD

2

)2

σ2
BCM

=
(ABCM5

MD − ABCM6
MD )

2

2σ2
BCM

.

(5.21)

The χ2 is divided by d, the number of degrees of freedom.

χ̃2 =
χ2

d
=

χ2

2− 1
=

(ABCM5
MD − ABCM6

MD )
2

2σ2
BCM

. (5.22)

We scale the BCM error based on the reduced χ2

σBCM
√
χ̃2 =

√
(ABCM5

MD − ABCM6
MD )

2

2
. (5.23)

Then the systematic error is defined as the quantity above divided by square root of n, the

number of BCMs in Run 1. We have

σ′syst(A
Renorm
MD ) =

σBCM

√
χ̃2

√
n

=

√
(ABCM5

MD −ABCM6
MD )

2

2√
2

= |A
BCM5
MD − ABCM6

MD

2
| . (5.24)

The result above is the same as the half of the distance between BCM 5 and BCM 6

normalized asymmetries, Eq. 5.19.

Combine Eq. 5.21-5.24 and we have:

σ′syst(A
Renorm
MD ) =

σBCM√
n

√
χ2

d
. (5.25)

There is one more modification we should make to Eq. 5.25. The χ2 (Eq. 5.21) not only
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has the BCM systematic effect in it, also it has contribution from BCM resolution. When

we normalize the main detector asymmetry, the BCM instrumental noise is already

propagated into the statistical error fo the main detector asymmetry. To avoid double

counting of the BCM instrumental noise, we should remove the contribution of BCM

resolution from the BCM systematic error. The BCM error should be subtracted from the

left hand side of Eq. 5.23

√(
σBCM

√
χ̃2
)2

− (σBCM)2 = σBCM

√
χ̃2 − 1 . (5.26)

And Eq. 5.24 becomes

σsyst(A
Renorm
MD ) =

σBCM

√
χ̃2 − 1√
n

. (5.27)

In the end we have the systematic error as

σsyst(A
Renorm
MD ) =

σBCM√
n

√
χ2

d
− 1 , (5.28)

in which σBCM is the BCM resolution, n is the number of BCMs and d is the number of

degrees of freedom.

A user-friendly version of Eq. 5.28 can be expressed with the main detector asymmetries

as

σsyst(A
Renorm
MD ) =

1√
n

√∑n
i (ABCMi

MD − ARenorm
MD )

2

d
− σ2

BCM , (5.29)

in which the index i takes all the BCMs available.

Additionally, a convenient relationship between Eq. 5.25 and Eq. 5.28 is

σsyst(A
Renorm
MD ) =

√
σ′2syst(A

Renorm
MD )− σ2

BCM

n
, (5.30)

which suggests that in order to calculate the effective systematic error, we need to subtract

the BCM resolution divided by square root of n from the “total” systematic error.
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In Run 1, applying numbers into Eq. 5.19 or Eq. 5.24, we have

σ′syst(A
Renorm
MD ) = |−204.41− (−194.58)

2
|= 4.92 ppb . (5.31)

To remove the BCM noise contribution from the above, we could use the error of BCM

double difference to calculate the BCM noise. In Run 1, the BCMDD56 error is 4.2 ppb.

We can take an estimate of BCM noise using this BCMDD56 error, and we have

σBCM =
σstat (BCMDD56)√

2
=

4.22√
2

= 2.99 ppb . (5.32)

Applying Eq. 5.30 we have the effective systematic error in Run 1:

σsyst(A
Renorm
MD ) =

√
σ′2syst(A

Renorm
MD )− σ2

BCM

n

=

√
4.922 − 2.992

2

= 4.44 ppb .

(5.33)

Run 2

For Run 2, we apply the same procedure as we have developed for Run 1.

Again we start with Eq. 5.7, the renormalized asymmetry from three BCMs,

ARenorm
MD =

ABCM5
MD + ABCM6

MD + ABCM8
MD

3
.

The χ2 is

χ2 =

(
ABCM5

MD − ARenorm
MD

)2

σ2
BCM

+

(
ABCM6

MD − ARenorm
MD

)2

σ2
BCM

+

(
ABCM8

MD − ARenorm
MD

)2

σ2
BCM

. (5.34)
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When divided by d, the degrees of freedom, which is 3− 1 in Run 2,

χ̃2 =
χ2

d
=

χ2

3− 1
=

(
ABCM5

MD − ARenorm
MD

)2
+
(
ABCM6

MD − ARenorm
MD

)2
+
(
ABCM8

MD − ARenorm
MD

)2

2σ2
BCM

.

(5.35)

The scaled BCM error is

σBCM

√
χ̃2 =

√
(ABCM5

MD − ARenorm
MD )

2
+ (ABCM6

MD − ARenorm
MD )

2
+ (ABCM8

MD − ARenorm
MD )

2

2
. (5.36)

Then divide it by n, the number of BCMs in Run 2, we have the systematic error as shown

in Eq. 5.25:

σ′syst(A
Renorm
MD ) =

σBCM√
n

√
χ̃2

=

√
(ABCM5

MD − ARenorm
MD )

2
+ (ABCM6

MD − ARenorm
MD )

2
+ (ABCM8

MD − ARenorm
MD )

2

6

=

√
(−167.86 + 164.01)2 + (−159.91 + 164.01)2 + (−164.26 + 164.01)2

6

= 2.30 ppb .

(5.37)

The systematic error calculated above with Eq. 5.25 includes the contribution from BCM

resolution. We need to subtract BCM noise from it. The BCM resolution at quartet level is

known to be ∼ 50 ppm in Run 2, and we have 939 million quartets in Run 2. The BCM

resolution for entire Run 2 is

σBCM =
σBCM(quartet)√

number of quartets
=

50 ppm√
9.39× 108

= 1.63 ppb . (5.38)

Alternatively, we could estimate the BCM noise based on BCM double differences between

different BCMs, BCM5, 6 and 8. We assume in Run 2, these three BCMs have close noises
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and we calculate the BCM noise this way

σBCM =
1√
2

σstat (BCMDD56) + σstat (BCMDD58) + σstat (BCMDD68)

3

=
1√
2

2.81 + 1.80 + 2.73

3
= 1.73 ppb .

(5.39)

The BCM noises obtained from the two equations above are very close.

Then with the help of Eq. 5.30 we have the effective systematic error in Run 2:

σsyst(A
Renorm
MD ) =

√
σ′2syst(A

Renorm
MD )− σ2

BCM

n

=

√
2.302 − 1.732

3

= 2.07 ppb .

(5.40)
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Chapter 6

Ditherless Data Recovery

This chapter summarizes ditherless data recovery, including the definition of the main

detector sensitivities for the ditherless periods, calculation of the dithering statistical error

and the comparison of Null and Physics asymmetries before and after the inclusion of

ditherless data.

6.1 Background

During the experiment, beam dithering was performed constantly to help determine the

main detector sensitivities to beam parameters for later analysis. Still, we have some data

periods that don’t have dithering slopes, which are “ditherless”. They are ditherless for

different reasons. Some slugs are due to insufficient healthy dithering patterns. Some slugs

miss a good energy modulation pattern, etc.

6.1.1 Ditherless Data Coverage

Tab. 6.1 shows how much ditherless data we have in our data set. In Run 1 we have 9 out

of 91 slugs that don’t have dithering slopes. And in Run 2 we have 23 out of 182 slugs. By

calculating the ratio between ditherless quartets and total quartets, we have the percentage
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Table 6.1: Ditherless data coverage summary.

Run 1 Run 2
Ditherless Slugs 9 23
Total Slugs 91 182
Ditherless Quartets 30901868 96655558
Total Quartets 449610032 939320843
Ditherless Percentage (%) 6.9 10.3

of ditherless data in our data set, which is 6.9% in Run 1 and 10.3% in Run 2.

Since the percentage of the ditherless data is on the order of 10%, they should be treated

in a careful manner. We don’t have dithering slopes to perform beam corrections on them.

We could simply throw them away by losing 10% accuracy or we could figure out ways to

save them.

6.1.2 Regression and Dithering Approaches

The ditherless slugs miss measured dithering slopes. We have two different approaches to

perform beam corrections for these data. The first approach is regression slope calculation

and the second approach is dithering slope interpolation or extrapolation.

The first approach is using regression slope to correct the main detector asymmetry. We

have been using dithering instead of regression because dithering correction is proven to

work better than regression [16][17]. Regression slope can be influenced by monitor noise

and therefore it is not effective at correction to weak jitter directions. Work was done on

the prediction of the “correct” regression slope [18] but it required more verification. Plus,

it maybe be better to stick to one correction scheme, not a mixture of regression and

dithering.

The second approach is to project the good dithering data to the ditherless data with the

help of adjacent data periods that have measured dithering slopes. The details of this

method will be discussed here.
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6.2 Recovery Method

6.2.1 Ditherless Sensitivity Definition

For most of the ditherless slugs, we have dithering slopes for the previous slugs (smaller

slug number) and the subsequent slugs (higher slug number). The change of the slope

across the gap is often not statistical, which means the distance between the two ends

represents a systematic “jump” of the slope. We use the average of the previous and

subsequent slugs to fill the ditherless slug in the middle and use half of the distance

between the two slopes as an error bar. This procedure is illustrated in Fig. 6.1.

Figure 6.1: Ditherless slug with measured sensitivities on both sides.

This error bar shown in Fg. 6.1 is high enough to cover these scenarios: the “true” slope

of unmeasured slug is consistent with the previous slug or the subsequent slug with a

different beam tune, which are the two most probable cases. This is a simple procedure but

it is also effective to cover the unknown nature for these ditherless data. The error bar is

generous but it should and will be propagated into the final main detector asymmetry error

to make sure these ditherless data can be safely included.

For the ditherless slug inbetween the “good” slugs, its “slope” is set to be the average of

the left and right slugs:

S =
Sleft + Sright

2
. (6.1)
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The error of the defined slope is set to be half of the change from left to right:

σ =

∣∣∣∣Sleft − Sright

2

∣∣∣∣ . (6.2)

Eq. 6.1 and 6.2 are conceptual formulas. In application, first we make sure we use the

same number of slugs on its left and right. For example, we use 5 slugs from the ditherless

slug’s left side and 5 slugs from its right. Then Eq. 6.1 becomes simply the average of all

slugs that are involved:

Sm = 〈Smi〉 , (6.3)

in which m can take 0-4, one of the five monitors and i takes all adjacent slugs, including

both good slugs on the left and right in Fig. 6.1.

Not only do we need to calculate the error of the slope, to make sure the dithering

correction error is properly propagated into the physics asymmetry error, we also need to

calculate the slope error covariance for the ditherless slug:

cov (SmSn) = 〈(Smi − Sm) (Sni − Sn)〉 , (6.4)

in which m and n both take 0-4, five monitor slopes. cov(SmSn) is the error covariance

between monitor m and monitor n. The square roots of the diagonal elements are the error

of the ditherless slope:

σm =
√

cov (SmSn) . (6.5)

It can be proven that when the slopes of the left slugs are stable, the slopes of the right

slugs are stable and the number of slopes on the left equal the number of slopes on the

right, Eq. 6.5 and Eq. 6.2 are equivalent.

6.2.2 Further Details of Ditherless Sensitivity Calculation

Some details related to the treatment of the ditherless data:
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� The slugs used for calculation are given equal weighting. The reason is that the

statistical error bar of the dithering slopes is normally very small compared to the

change of slope from slug to slug. So across the ditherless gap, if we used weighted

average, it is highly likely the average of them would not lie in the middle, the

“unbiased” position, and the slope variance would not equal half of the distance

between the two sides. For example, the slugs on the left have small statistical error

and the slugs on the right have relatively high statistical error (both of them are way

less than the jump between the slopes). If we use the statistical error as the

weighting, the average of the slopes is going to be closer to the slugs on the left and

the slope variance is going to be smaller than half of the change between the slopes

on both sides. Often we don’t know if the ditherless slug have a more similar beam

tune condition to its previous slugs than the slugs happened afterwards.

� The number of good slugs used for calculation should vary depending on the

situation. For the consecutive slugs, like the middle of Wien 9b, we could use more

slugs to average things because the adjacent slugs are relatively stable on its side. For

this situation, 10 slugs (5 on the left and 5 on the right) were used to fill the

ditherless slugs. But for other region that is more sparse, the slugs on both sides

don’t always have 5 or more slugs that have stable slopes. So for these slugs, 2 slugs

were used for calculation, 1 on the left and 1 on the right. If not, the error bar of the

filled slope sometimes is not high enough to represent the change of the slug gap due

to the interference from other unstable slopes distant from current ditherless

stand-alone slug.

� Some slugs don’t always have both dithering slugs on its left and right. For example,

slug 42-45 in Wien 1 and slug 320 in Wien 10. In this case, Eq. 6.1 and 6.2 don’t

apply but still Eq. 6.3, 6.4 and 6.5 can be used. 5 slugs were used for Wien 1 and 4

slugs for Wien 10 to calculate slope and slope error covariances. Since these ditherless
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slugs only have “one end” of useful information, we have assumed its slope to be

consistent with this end, or extrapolation. There are other ways to give these

ditherless slugs higher error bar. For example, we could use all slugs in Wien 1 to

estimate error covariances of slug 42-46 and all slugs in Wien 10 to fill slug 320.

6.2.3 Dithering Sensitivity Slug History

With the procedure provided in the previous sections, the dithering slopes for ditherless

slugs are calculated and put together with other slugs that have measured dithering slopes.

First let’s look at energy slope in Fig. 6.2, which is dominated by energy modulation and

stable through Run 1 and Run 2. The black points are those slugs with measured dithering

slopes and the red points are the ditherless slugs.

Figure 6.2: Main detector dithering sensitivity slug history for energy monitor.

From Fig. 6.2, we can see that the energy slope is pretty stable. The filled (red) slopes

are approximately the same with other slugs. For the slugs around slug 290, the filled

slopes have error bars that can cover the change of slopes from before slug 290 to after slug

300. The two slugs in the middle of Wien 10 have error bars that are also high enough to

cover the instability of slopes. For the slugs 42–46 in Wien 1, the slopes are set consistent

with the slugs after slug 46. For slug 320, the slope is taken to be consistent with the four

slugs previous to it.
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Now let’s look at horizontal monitors, targetX and targetXSlope, the horizontal position

and angle in Fig. 6.3 and 6.4. We can see that for slugs 290–300, we don’t know where the

slopes are for those ditherless slugs inbetween. They could be consistent with previous or

subsequent slugs. Therefore, the error bar is chosen to be so high that it can cover both

cases. For ditherless slugs 311 and 312 in Wien 10, the error bar is high enough to cover

the change of slopes from slug 310 to 313.

Figure 6.3: Main detector dithering sensitivity slug history for targetX monitor.

Figure 6.4: Main detector dithering sensitivity slug history for targetXSlope monitor.

Now let’s look at monitors targetY and targetYSlope, which are vertical position and

angle. Since we have used energy monitor in the horizontal direction, the Y slopes for main

detector monopole are relatively small compared to horizontal ones. For Y direction, the
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dithering and ditherless slopes are shown in Fig. 6.5 and 6.6.

Figure 6.5: Main detector dithering sensitivity slug history for targetY monitor.

Figure 6.6: Main detector dithering sensitivity slug history for targetYSlope monitor.

In the Y direction, we have similar observations as shown in the X directions. For slug

∼290, the error bar can cover the systematic change of slopes. For the slugs in Wien 10, we

can see that the statistical error for some of the slugs are very high. The value of the slope

and its error still make the vertical dithering slopes in Wien 10 effectively small, or close to

zero, like the rest of the slugs in Run 1 and Run 2. However, the high error bar here in Fig.

6.5 and 6.6, like the high error bar with ditherless slugs in X direction as shown in Fig. 6.3

and 6.4, can all be incorporated into statistical error of dithering correction and in the end

combined with main detector asymmetry error. This problem shown here is covered.
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6.3 Main Detector Asymmetry with Ditherless Data

In the previous sections, “dithering slopes” for ditherless slugs were defined. This enables

us to calculate the main detector asymmetry with these ditherless data included. Here we

compare the main detector asymmetries with and without these ditherless slugs.

IHWP+Spin Null, IHWP-only Null and Physics asymmetries are provided here.

6.3.1 Null Asymmetry

In Fig. 6.7, we have main detector IHWP+Spin Null asymmetries. Blue is for the slugs

with measured dithering slopes. Red is the ditherless data only. And black in the middle is

the two sets combined, which is our whole data set. Please note that in some Wiens, we

could only have one ditherless slug so there is no Null asymmetry defined for that

ditherless Wien, like the zero Null value in Wien 2, 3, 4, 6, 8b and 9a ditherless data set.

Also for Wien 5, the ditherless slugs have very small statistics so the error bar is very high.

Figure 6.7: Main detector IHWP+Spin Null asymmetries.

From Fig. 6.7, we can tell that the Null asymmetry for ditherless data (red) is not very

different from the dithering data (blue). For Wien 1, 5, 7, 8a and 10, the Null asymmetries

agree within one sigma. We can also tell from the IHWP-only Null asymmetries shown in

Fig. 6.8.

156



Figure 6.8: Main detector IHWP-only Null asymmetries.

6.3.2 Physics Asymmetry

The physics asymmetries of main detector are shown in Fig. 6.9. We can tell that for the

majority of the Wiens, the dithering data and the ditherless data agree pretty well within

one sigma, like Wien 2, 3, 5, 6, 7, 8b, 9b and 10. There are only two Wiens that show

mismatch between red and blue data sets, which are Wien 1 and Wien 8a.

Figure 6.9: Main detector Physics asymmetries.

These two Wiens have their own special problems from other sources. Wien 1 asymmetry

can be different for different beam current monitors [19] and Wien 8a asymmetry can differ

from different beam correction schemes [20]. The observations from other aspects of

asymmetry corrections can suggest the underlying systematic error that caused the
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discrepancy between dithering and ditherless data in these two Wiens.

Table 6.2: Main detector Physics asymmetries.

Run Data Set Asymmetry (ppb)
1 Dithering -204.71±13.60
1 Dithering+Ditherless -199.49±13.15
1 Ditherless -125.24±51.33
2 Dithering -159.92± 7.75
2 Dithering+Ditherless -164.01± 7.34
2 Ditherless -200.20±23.06

In Tab. 6.2 we have the physics asymmetry values from different data sets. The

discrepancies between dithering and ditherless data sets for Run 1 and Run 2 are

Run 1, Dither Corrected: A(Dithering-Ditherless) = 79.47± 53.10 ppb , (6.6)

Run 2, Dither Corrected: A(Dithering-Ditherless) = 40.28± 24.33 ppb . (6.7)

From Eq. 6.6 and 6.7, we can tell that the discrepancy is about 1–2 sigma for Run 1 and

Run 2. This may seem to tell us that the dithering and ditherless don’t quite agree. But

the main detector asymmetry error here is statistical only. There are the systematic error

terms, including the bcm systematics, beam correction systematics and BB correction

error, etc. When these systematic errors are added1, we have better agreement between the

dithering and ditherless data. Besides, we can apply other corrections (like beamline

background correction) to the physics asymmetry and see if the agreement can be further

improved.

6.3.3 BB Corrected Physics Asymmetry

The discrepancy between dithering and ditherless data shown in Eq. 6.6 and 6.7 are from

dither-corrected physics asymmetry. Here beamline background (BB) is applied as well to

1The bcm, beam and BB correction systematic error combined can be as high as half of the main detector
asymmetry statistical error. The inclusion of these systematics can typically increase the error by 10%.
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test the dithering-ditherless consistency.

In Fig. 6.10, we have the main detector physics asymmetries for Run 1 and Run 2 with

BB correction applied. We can see that in Run 1, the benefit from BB correction is not

obvious but in Run 2, for example Wien 8a, the agreement between dithering (blue) and

ditherless (red) is much better. The discrepancy in Wien 8a is about 1 sigma now, much

better than what Fig. 6.9 showed without BB correction.

Figure 6.10: Main detector Physics asymmetries + BB correction.

Table 6.3: Main detector Physics asymmetries + BB correction.

Run Data Set Asymmetry (ppb)
1 Dithering -201.25±13.60
1 Dithering+Ditherless -195.57±13.15
1 Ditherless -114.73±51.33
2 Dithering -163.88±7.75
2 Dithering+Ditherless -166.37±7.34
2 Ditherless -188.44±23.06

In Tab. 6.3, we have the main detector asymmetry values with different data sets,

dithering only, ditherless only and the complete set. The dithering-ditherless discrepancies

after beam and BB corrections are

Run 1, BB+Dither Corrected: A(Dithering-Ditherless) = 86.52± 53.10 ppb , (6.8)
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Run 2, BB+Dither Corrected: A(Dithering-Ditherless) = 24.56± 24.33 ppb . (6.9)

From Eq. 6.8, the discrepancy in Run 1, we can see the discrepancy is actually a few ppb

larger than Eq. 6.6, before BB correction. But in Run 2, the dithering-ditherless

discrepancy is greatly reduced from Eq. 6.7 to Eq. 6.9 after BB correction is applied. Now

in Run 2, the discrepancy is only about one sigma.

6.4 Dithering Sensitivity Error

6.4.1 From Ditherless Slope Error to Main Detector Error

Since we have given the ditherless slope a high error (Fig. 6.1), the error of the slope for

these ditherless slugs must propagate into the main detector asymmetry error. If this error

term is small compared to main detector error, we can say that the uncertainty of the

ditherless slope does not affect the final physics asymmetry by much. If the high error of

the ditherless slope does not result in increase of main detector asymmetry error after the

inclusion of ditherless data, we can say that the missing slope for these data really can’t

justify the “low quality” of ditherless data and there will be no reason to distinguish

between the data that have measured slopes and the data that don’t.

6.4.2 Beam Correction Statistical Error

Now let’s turn to the definition of dithering statistical error. The high defined error of

ditherless slope is analog to the statistical error of the dithering slopes, which means they

can be treated the same way.

We have dithering correction defined as

Abeam = −
4∑

m=0

Sm · dm, (6.10)
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in which m takes any monitor from E, X, X′, Y, Y′. Sm is the slope for monitor m and dm

is the monitor difference.

Besides the systematic error previous discussed, here we focus on the statistical error

part in this beam correction.

Taking the error of Eq. 6.10, we have

∆Abeam =

√√√√ 4∑
m=0

4∑
n=0

cov(SmSn)dmdn+
4∑

m=0

4∑
n=0

SmSncov(dmdn) , (6.11)

in which cov(SmSn) is the error covariance between the slopes for monitor m and n, like

the definition of slope error covariance for the ditherless data in Eq. 6.4. Likewise,

cov(dmdn) is the error covariance between the monitors, or the resolution of the monitors.

The monitors have intrinsic resolution, typically 1 µm for position monitors. Different

monitors might have common mode noise so their resolution can be correlated. A typical

example is the familiar targetX and targetXSlope monitors we are using. They have their

own resolution but still their noises are correlated by definition assuming the original

BPMs have relatively independent noises.

In Eq. 6.11, the statistical error of beam correction is composed of two parts, the part

with slope error is “Sensitivity Error Term” and the part with monitor difference noise is

“Monitor Noise Term”. When we perform beam correction to main detector asymmetry,

we have already propagated the monitor noise to main detector asymmetry width. So the

“Monitor Noise Term” of beam correction should not be included again when we have the

correct statistical error of main detector asymmetry to avoid double counting. Therefore,

we are left with the “Sensitivity Error Term”:

∆Asens =

√√√√ 4∑
m=0

4∑
n=0

cov(SmSn)dmdn . (6.12)

For good dithering slugs, since the error in slope comes from beam natural motion, the
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dithering sensitivity error for dithering slugs should be considered statistical. But for

ditherless slugs, since the slope error are defined and should be considered as boundaries

instead of Gaussian distribution, the dithering sensitivity error for ditherless slug should be

considered systematic. So when combining sensitivity error from different slugs, the

statistical type error should be considered uncorrelated and the systematic type error

should be considered correlated.

When averaging the slugs, we have the combined sensitivity error for the

dithering+ditherless combined set

∆ARun
sens =

√∑
s

w2
s(∆A

Dithering
sens )

2

s +
∑
r

∑
t

wrwt(∆A
Ditherless
sens )r(∆A

Ditherless
sens )t , (6.13)

in which s takes the dithering slugs and r, t take ditherless slugs. The w is from main

detector error weighting, normalized to 1. The first term in the quadrature is from the

contribution of dithering slugs. The second term is from ditherless data, in which the

systematic sensitivity errors from ditherless slugs are correlated.

For Run 1 and Run 2, the calculated Sensitivity Errors are

Run 1: ∆Asens = 0.07 ppb , (6.14)

Run 2: ∆Asens = 0.26 ppb . (6.15)

We have 0.07 ppb for Run 1 and 0.26 ppb for Run 2. These values are from data set with

ditherless data included. Compared to the statistical error of main detector asymmetry

13.15 ppb for Run 1 and 7.34 ppb for Run 2, this sensitivity error term is very small.

With the comparison between dithering and ditherless data and the smallness of the

sensitivity error term, we can include the ditherless data and increase our statistics. For

Run 1, it is improved from 13.60 ppb to current 13.15 ppb and in Run 2, the original 7.75

ppb becomes 7.34 ppb when the ditherless data is included.
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Chapter 7

Conclusion

7.1 The Asymmetry

The asymmetry results for Run 1 and Run 2 are

Run 1 : Aep = −223.5± 15.0(stat)± 10.1(syst) ppb ,

Run 2 : Aep = −227.2± 8.3(stat)± 5.6(syst) ppb ,

which are in excellent agreement with each other. The combined asymmetry is

Aep = −226.5± 7.3(stat)± 5.8(syst) ppb .

The systematic error contributions are listed in Fig. 7.1, including ABCM and Abeam (the

beam Sensitivity Errors calculated in Ch. 6 are incorporated with Abeam error) calculated

in this thesis. From Fig. 7.1, in Run 2, the fractional contribution from beam parameter

related systematic errors is smaller than Run 1.
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Figure 7.1: Most significant systematic error contributions [2].

Figure 7.2: Results for the weak charge of the proton [2].
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7.2 The Weak Charge of the Proton

Based on the asymmetry result, the weak charge of the proton can be extracted with

different methods (Fig. 7.2). The PVES database determined the weak charge to be

0.0719±0.0045 (the intercept of the global fitting of PVES data including Qweak at Q2 = 0

shown in Fig. 7.3), which agrees well with the Standard Model.

Figure 7.3: World PVES data fitting of reduced asymmetry versus Q2 to determine the weak
charge of the proton [2].

The Qweak experiment has made the first direct measurement of the proton’s weak charge.

Fig. 7.4 gives C1d vs C1u showing the constraints from Qweak and APV experiments.

The Qweak experiment had also made the best measurement of the weak mixing angle at

low energy, shown in Fig. 7.5.

For New lepton-quark PV physics at TeV scale shown in Fig. 7.6, at 95% confidence

level, new physics is ruled out at 0.9 TeV.

The Qweak experiment pushed existing boundaries on many fronts and provides scientific

and technical developments for next generation of measurements. My methods developed

in this thesis are being used for the on-line and off-line analysis of PREx and CREx and

will be important for the MOLLER experiment.
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Figure 7.4: Constraints on coupling constants C1u and C1d [2].

Figure 7.5: Running of weak mixing angle with previous measurements [2].
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Figure 7.6: New physics limits vs quark flavor coupling [2].
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Appendix A

MCV Angle History
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Angle between Pattern 0-9 and Pattern 0 : SlugAngles between Patterns with Target Variables 
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Angle between Pattern 0-9 and Pattern 1 : SlugAngles between Patterns with Target Variables 
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Angle between Pattern 0-9 and Pattern 2 : SlugAngles between Patterns with Target Variables 
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Angle between Pattern 0-9 and Pattern 3 : SlugAngles between Patterns with Target Variables 
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Angle between Pattern 0-9 and Pattern 4 : SlugAngles between Patterns with Target Variables 
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Angle between Pattern 0-9 and Pattern 5 : SlugAngles between Patterns with Target Variables 
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Angle between Pattern 0-9 and Pattern 6 : SlugAngles between Patterns with Target Variables 
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Angle between Pattern 0-9 and Pattern 7 : SlugAngles between Patterns with Target Variables 
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Angle between Pattern 0-9 and Pattern 8 : SlugAngles between Patterns with Target Variables 
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Angle between Pattern 0-9 and Pattern 9 : SlugAngles between Patterns with Target Variables 

 12 / 23 
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