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Abstract

In this thesis, we investigate the relationships between the disorder, structure, and defor-

mation in amorphous materials. First, to understand the surprising low-frequency vibrational

modes in structural glasses, and how it arises from the microscopic disorder in the system,

we study the spectra of a large ensemble of sparse random matrices where disorder is con-

trolled by the distribution of bond weights and network coordination. When there is a finite

probability density of infinitesimal bond weights, we find a region in the vibrational density

of states that is consistent with the low-frequency behavior in structural glasses. Next, in

order to investigate structural properties of active systems, we develop a novel method to

generate static, finite packings in an artificial potential that reproduce the packing structures

observed in a class of point-of-interest active self-propelled particle simulations. This allows

us to compute structural measures, such as the vibrational modes, in an unstable active

system. Finally, we evaluate the evolution of structure during strain-induced avalanches in

athermal, amorphous systems using numerical simulation of soft spheres. We find that these

avalanches can be decomposed into a series of bursts of localized deformations, and we de-

velop an extension of persistent homology to isolate these bursts of localized deformations.

Further, we extend existing tools for the structural evaluation of mechanically stable systems

to generically unstable systems to identify how soft regions evolve and change throughout

an avalanche.
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1 Introduction

1.1 Definition of glass and disordered solids

1.1.1 Historical definitions

Pliny the Elder, the great Roman natural philosopher, wrote a story about how silica

glass – what we usually refer to as glass – was discovered:

There is a story that once a ship belonging to some traders in natural soda put in

here and that they scattered along the shore to prepare a meal. Since, however, no

stones suitable for supporting their cauldrons were forthcoming, they rested them

on lumps of soda from their cargo. When these became heated and completely

mingled with the sand on the beach a strange translucent liquid flowed forth in

streams; and this, it is said, was the origin of glass [1].

Humans have been working with glasses for thousands of years [1] and it has been a

source of mystery and confusion for nearly as long. Primarily, the confusion is over the

state of matter glasses occupy: “Is glass liquid or is it solid?” Although some references

have suggested evidence exists that glass is a viscous liquid because 800-year-old cathedral

windows having thicker bottoms and thus the glass has flowed under its own weight [2], this

observation is incorrect because it fails to account for other windows that are thicker on top.

As it turns out, 800 years ago it was fairly difficult to make flat glass panes, so they put

the heavier side on the bottom for stability [3]. A brief calculation of the relaxation time

shows that if glass does flow at ambient temperatures, it does so on timescales much longer

than human history [3].So, asking whether glass is a solid or a liquid is quite fundamentally

1



asking: “What does it mean to be solid?”

1.1.2 Thermodynamics of disordered systems

Figure 1: The volume, v, or enthalpy, h, of a liquid at constant pressure as a function of
temperature T . Tm denotes the melting temperature of the crystalline solid. Tga and Tgb
denote the glass transition temperatures for a slow and fast cooling rate respectively. [4]

As the temperature is decreased, a liquid that crystallizes will suddenly change into a

crystalline solid at a fixed critical temperature, Tm. This sudden transition is seen in the

accompanying drops in the volume and entropy of the system. By contrast, a glass-forming

liquid will remain a liquid as it is cooled well below the melting point of it’s crystalline

counterpart, becoming a super-cooled liquid. In this regime, the volume and enthalpy change

with temperature just as in the liquid above the melting point. Under further cooling, the
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behavior of the system gradually changes to become more solid-like, without crystallizing [4].

This lack of a sharp transition led to the description of glass as an “undercooled liquid” [5].

Even though this is a continuous transition, the temperature at which this transition occurs,

called the glass transition temperature, can be defined by extrapolating the intersection point

between the liquid and solid branches as seen in Fig.1 [4]. In addition, the glass transition

temperature is not fixed; if the temperature is lowered more slowly, the glass transition

temperature decreases [4].

1.1.3 Structure of glassy materials

Physical properties of materials, such as elasticity of a solid or viscosity of a fluid can

often be traced back to the arrangement of the constituent particles within the material.

For example, the qualitatively different behavior of glasses and crystalline solids arises from

the different underlying microstructures of the systems. In a crystal, the microstructure is

repeated, as described by the unit cell of the crystal. Because of this repetition many bonds

are structurally equivalent. When the thermal energy reaches a critical value, all structurally-

equivalent bonds break from the crystal network, defining a clear melting point. To use the

crystallographic terminology, a glass can be considered a crystal with an infinitely large unit

cell of infinitely-many particles. In a glass, then, each atom is structurally unique and each

bond is broken at a different thermal energy. Thus, while crystals have an abrupt transition

from solid to liquid, the breakdown of a glassy network is continuous [6]. Furthermore, the

temperature at which this continuous transition occurs, Tg, depends on the rate at which

the glassy system is cooled [7]. This analysis encapsulates why it is so difficult to discuss

glasses and the glass transition: the solidification of a crystal from a liquid is abrupt, but

3



the glass transition is a continuous rigidification that occurs over a range of temperatures.

Figure 2: a) X-ray diffraction patterns of vapor-deposited CO2 glass measured at 3 K. The red
and black curves represent the glass as deposited and the glass annealed at 90 K respectively.
Vertical tick marks show the peak position of crystalline CO2. b) Pair distribution for glassy,
liquid, and crystalline forms of CO2 [8].

Using X-ray diffraction, the relative distances between particles can be extracted from

materials of various states including crystalline, liquid, and glass. Using these distances, we

can extract a pair-correlation function related to the probability of finding a particle at a

particular distance from another particle. The distances between particles in a crystal are set

by the lattice and this is reflected as bands in the diffraction pattern [9]. Crystalline systems

have tight peaks in the diffraction spectrum as shown by the vertical spikes in Fig. 2a. From

this diffraction pattern, information about the structure of the crystal can be extracted. For

instance, the pair-correlation, g(r), measures the likelihood of encountering a particle at a

distance r from another particle. This can be computed directly the distribution of pairwise

distances, rij, with

g (r) =
1

ρ

〈∑
j 6=i

δ (r − rij)

〉
i

. (1)

4



The repetitive structure of crystals gives rise to a pair-correlation function which contains

many peaks related to the lattice structure of the crystal such as the blue curve in Fig.

2b. Similarly, liquids also have a kind of geometrical order, having a small distribution of

contacts and distances between particles [10], but the contacts are transient and constantly

shifting [11]. In other words, the scattering pattern and corresponding pair-correlation func-

tion for a liquid are constantly shifting, but have general shapes for small distances related to

preferred distances between nearest neighbors. Further, since liquids lack long-range order,

the pair-correlation function must approach a constant value at long distances.

On the other hand, a glass doesn’t show diffraction bands like a crystal as particle dis-

tances are not discrete, but it is very different from the liquid in that particles in glasses

have permanent neighbors at definite distances [9, 11]. Prior to the 1930’s, a common model

for understanding the behavior of glasses was the “Crystallite Hypothesis” in which the mi-

crostructure of glass is crystalline, but the crystal grains are small and the orientation of

crystalline planes are uncorrelated. This claimed to explain the X-ray diffraction patterns

glasses produce by broadening the diffraction peaks in the crystal [5]. However, this model

fails to accurately predict densities of glasses; it also fails to capture the thermal proper-

ties of glassy systems [6]. Critically, a comparison of the glass diffraction pattern to the

diffraction pattern of a powder of crystalline material is radically different, showing a few

broad rings rather than several sharp rings [11]. Further, silica glass is a nearly ideal elastic

material, as it doesn’t creep under load and recovers instantly after prolonged deformation,

in experimental timescales [12]. In addition, it is not yet known how glasses are stably rigid

since traditional theories of elasticity rely on crystalline structure [13]. However, attempts

to calculate Young’s modulus in glasses using these standard elastic theories systematically

5



fall short [12].

Because of these problems, a new set of tools was developed to analyze the microstructure

of glasses. Instead of attempting to explain glass physical properties by constructing glasses

from microscopic crystals, the interparticle forces in glasses are assumed to be essentially the

same as in the crystal, but the particles are not organized into a lattice [6]. In contrast to a

lattice, the particles must arrange into an amorphous network, but X-ray diffraction tells us

that this network is aperiodic and asymmetrical, unlike crystals [6]. At short distances, there

are preferential distances due to the nearest neighbor interactions showing some correlation

to the crystalline structure and, since amorphous materials lack long-range order, the pair-

correlation must approach a constant value like liquid systems, but maintain contacts over

time. This is reflected in how similar the glass curve, in red, and the liquid curve, in green,

align in Fig. 2b. Although the microstructure of glasses shares many similarities with

liquids, the mechanical properties of glasses share similarities with solids, and they exhibit

anomalous behavior different from both. These ideas also explain the broadening of the

diffraction peaks [5]and make predictions about the glass transition [6].

1.1.4 Potential energy landscape

A useful lens through which to view the transition and dynamics in glassy systems is

the potential energy landscapes [4, 14]. For a system of N particles that interact with a

known potential, the total potential energy of the system can be expressed as a function

of the configuration of the system, Φ({xiα}) , where xiα is the position of particle i in the

α dimension. An obvious minimum of this potential energy is the crystalline configuration

of the system. However, a number of non-crystalline configurations can also be minima of

6



Figure 3: Schematic representation of the energy landscape of a glassy system where the
x-axis is representative of configurations of particles in the glassy system. [4]

the potential energy function. Therefore, we describe the potential energy in configuration

space as a landscape containing many minima with various energy barriers between them.

A schematic representation of this landscape can be seen in Fig.3.

A system with thermal energy is free to move around and change its configuration so

long as it has enough energy to cross the energy barriers separating nearby minima [15].

At high temperatures, many configurations are allowable and the system freely explores all

available states. As the temperature is lowered, the number of thermodynamically available

configurations decrease [15]. If cooled quickly, the system can become trapped in the shal-

low minima with high energy, since these minima take up a large portion of configuration

space [15]. In this case, as the system can no longer flow freely, it behaves more like a solid,

but it is non-crystalline. If cooled slowly, however, the system has enough thermal energy
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to escape these shallow minima near the top of the potential energy landscape, before it is

trapped at some lower minimum, solidifying again but at a lower temperature.

In addition to thermal systems, there are a number of other systems which have con-

stituent particles large enough to not fluctuate significantly with temperature. These “ather-

mal” systems don’t undergo a glass transition. Nevertheless, these systems of many loosely-

connected components can rigidify under certain conditions. The parameter that controls

this “jamming” transition from a free-flowing configuration of particles to a solid jammed

state is not temperature, but density. As a system of many particles is compressed at some

density the constituent particles must come into contact and, at some critical density, the

system becomes mechanically stable. When systems jam, they haven’t undergone a glass

transition, nor have they crystallized, so the geometry and structure of the jammed state

is very similar to that of the unjammed state in the same way that the liquid state of a

glass forming liquid is very similar to its glassy state. So the origin of rigidity in disordered

jammed states is similarly mysterious.

1.1.5 Constraint counting

In jammed systems, a constraint counting method, called Maxwell Constraint Counting,

has been useful to understand the rigidity that arises from local mechanical stability [16].

In a system constrained to two dimensions, every particle has two translational degrees

of freedom. As the particles interact, constraints are introduced such that the particles

can’t move without additional energy input in particular directions. For instance, if you

place two pebbles in contact, one can’t move toward the other without one of the pebbles

deforming. The pebbles can, however, move apart or translate together without deforming.
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For frictionless spherical particles, every interaction induces a constraint on motion which

reduces the effective degrees of freedom available to the system. At a critical number of

constraints, all degrees of freedom are constrained except the trivial translations of the

entire system as a rigid body. This critical number of constraints is across the whole of

the system, but local information can be assessed by the average number of contacts per

particle– z – also called the average degree or coordination number, given by

z =
2 ∗# of bonds

# of particles
.

In a d-dimensional system of frictionless spheres, the critical value predicted by Maxwell

Counting is zc = 2d, when the total number of degrees of freedom, N ∗d, is equivalent to the

total number of constraints, N ∗ d. Numerical experiments reveal that the number of force-

carrying contacts jumps from z = 0 to z = 2d discontinuously at the jamming transition for

frictionless particles [17].

One can reverse the jamming transition, or unjam a system, by increasing the volume

until the density is below the critical density. A method like this is used in some grain

silo constructions to induce flow by injecting air to increase the distance between grains,

decreasing the local density and loosening the grains. However, this is not the only method

one could use to fluidize the jammed system. If a jammed system is thermally excited,

it can pass through a glassy phase and melt into a liquid phase. Additionally, one could

apply stress to the system. For small stresses, the system responds as an elastic solid, but

above some critical stress, the system will yield and flow. These critical points cannot be

independently defined. For instance, as temperature increases, the critical yielding stress
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Figure 4: The phase diagram for soft sphere particles. The axes are nondimensionalized pa-
rameters: temperature (T/pσ3), stress (Σ/p), and pressure (pσ3/ε), where T is temperature,
p is pressure, σ is the diameter of hard spheres, Σ is the shear stress, and ε is the interaction
energy scale [18].

decreases. This allows the construction of a jamming phase diagram, indicating at what

parameters the amorphous system will rigidify, as in the example in Fig.4.

1.2 Applications of glass and jamming physics

Over the past several decades, amorphous solidification has been studied in a much

broader class of materials than molecular glass, including granular materials, bulk metallic

glasses [20], biological systems [19, 21], and even crowds of people [22]. Similar questions

arise in all of these systems: “Under what conditions is the material solid-like?” and “How

does the material deform under external forces?” To highlight a particularly interesting

example, consider biological tissue. Epithelial tissues are thin tissues that cover surfaces
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Figure 5: a) The phase diagram for confluent tissues as a function of cell motility, v0, and
target shape index, p0, in the self-propelled Voronoi model for cells. b) Examples of the fluid
and solid states of the self-propelled Voronoi and the trajectories of the particles. Note the
solid state particles move very little [19].

throughout animal bodies such as the skin, lungs, and digestive tracts. This tissue is very

convenient to model since it is effectively two-dimensional. It’s also important to model as

most cancers involve epithelial tissue. One physical model of epithelial tissue is the self-

propelled Voronoi model. In this model, the area of each Voronoi cell is conserved, each

cell has a preferred perimeter, and every cell has a random self-propulsion velocity. This

model has been demonstrated to have a jamming transition controlled by the “preferred

shape parameter”–the preferred perimeter nondimensionalized by the area of the cell–and self

propulsion velocity, as seen in the phase diagram in Fig. 5a. The preferred shape parameter

is particularly interesting, since it is a structural order parameter which is experimentally

accessible via simple video analysis, unlike jamming in particulate systems.
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1.3 Dynamics and material properties of disordered

materials

1.3.1 Examples of amorphous system dynamics

Amorphous materials are not only fascinating, but their mechanical, electrical, and opti-

cal properties differ from crystalline materials in many useful ways. In this thesis, we focus

on the unique mechanical properties of such materials under applied stress. Silica glasses

have, for instance, been used for centuries over quartz crystals because of the ease of worka-

bility. Silica glass becomes a soft solid or a viscous liquid at temperatures much lower than

the melting point of quartz, allowing ancient peoples access to the material that they oth-

erwise could not work with. On the other hand, sometimes systems are actually much more

difficult to generate and work with than the crystalline form. Bulk Metallic Glasses, for in-

stance, when first discovered, had to be cooled evenly at speeds upwards of 1×106 K/s [23].

When conventional metals are cooled from the liquid state, they typically crystallize very

rapidly just below the melting point. This rapid crystallization doesn’t usually result in

perfect crystals. For example, usually, metals form polycrystals, a solid state composed of

microscopic, randomly-oriented crystalline grains. Crystalline metals tend to fracture and

corrode at the boundaries between these crystal grains and other crystalline defects such as

particles missing or replaced by impurities. Metallic glasses have no crystalline grain bound-

aries or crystalline defects. This leads to metallic glasses being much stronger than their

crystalline counterparts, as shown schematically in Fig.6. However, under extreme forces,

crystalline metal systems deform irreversibly without breaking, but metallic glasses can fail

catastrophically [20].
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Figure 6: Tensile yield strength of various materials vs the elastic strain-to-failure limit.
Bulk Metallic Glasses, Glassy Alloys, are stronger and more resistant to plastic deformation
than their crystalline counterparts like steels [23].

In amorphous granular systems, small changes in density can have large changes in the

number of contacts and, therefore, small perturbations to weakly-jammed systems can cause

sudden, rapid collapses. For instance, oranges in a grocery store are often stacked in a

crystalline packing and, so long as you pick from the upper layers, you won’t cause a cascade

of oranges. If, on the other hand, the oranges are thrown onto the pile at random, they

can jam without crystallizing and it becomes unclear which oranges can be moved without

causing the whole system to collapse. Amorphous systems are ubiquitous in the world around

us, far beyond only silica glass, from the landscape to everyday items. For instance, many

natural features on earth are composed of small grains like sand in desert or boulders in an

earthquake fault. Nowhere is this more obvious than in an avalanche where the rocks and

snow on a mountainside are perturbed in such a way that they flow down the mountain [24].

For other granular systems, we rely on their ability to flow like grain from a silo so we

13



can transport food. Pharmaceutical processes require powder to flow and mix in order to

make drugs of the correct dosages in large quantities. Understanding the way in which these

systems respond to external perturbation can aid us in finding ways to predict and prevent

their failure.

1.3.2 Phenomenology of materials under applied shear

Rheology is the study of how materials deform in response to external loading. Fluid-like

materials flow under any loading of stress, or force per unit area. On the other hand, solid

like materials, can support stress without flowing. Instead, as a small amount of stress is

applied to a solid-like system, the material deforms to provide an equal and opposite force.

In the linear approximation, the amount of deformation, or strain, is directly proportional

to the applied stress in the same way that the compression of a spring is proportional to

the force applied. The proportionality constants that compare different stresses and strains

are the elastic constants which measure the material stiffness, similar to the spring constant

in Hooke’s law. However, real materials can only support a finite amount of stress without

undergoing plastic deformation, a permanent change to the shape or structure of the material.

A yielding transition of material under applied stress refers to the change in the global

mechanical response of the system from an elastic solid response to a plastic flowing re-

sponse. This transition can be a smooth transition like butter or foam. Or there can be

a sudden catastrophic failure like the shattering of a glass window. The primary problem

understanding this transition is theoretical. Crystals are well understood to flow and fail at

crystalline defects, and the details of the density and types of defects in the system. Amor-

phous systems, on the other hand, have no explicit defects because they have no crystalline
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structure and therefore extending crystalline theories is difficult.

Two of the most prominent phenomenological models for amorphous systems, shear trans-

formation zone (STZ) theory and Soft Glassy Rheology (SGR) theory, are mesoscopic, where

the relevant variables are defined on length scales larger than the constituent particle sizes

but smaller than the scale of continuum elasticity. In these models, a macroscopic sample of

an amorphous material is conceptually divided into mesoscopic regions and then assumptions

are made about the stress and the strain in these regions. As the system is strained the stress

and local strains can grow until these mesoscopic subsystems rearrange and yield. However,

these models make different sets of assumptions about the mesoscopic regions to predict

different phenomena in glassy dynamics. SGR theory is concerned with understanding how

soft glassy systems flow under shear. It attempts to predict the nonlinear relationship of

viscous stress to strain rate, and the aging process in thermally active systems that results in

an increase of the elastic modulus while the loss modulus decreases [25]. To that end, SGR

considers the local strain in each region or how far each region is strained from a stress-free

state. As the system is strained, these local strains increase until a region yields and rear-

ranges into a new stress-free configuration. This rearrangement is modeled as an activated

proccess with an energy barrier associated with the stiffness of the region and some critical

strain [25]. By using activated processes, this model captures strain-induced yielding, as a

region beyond the critical strain will yield very quickly, but it also allows unstressed regions

to yield at a slower rate to mimic the nonlinear couplings between regions due to the inherent

disorder in the system [25]. STZ theory is concerned with the phenomenology of the yielding

transition. In this model, rather than considering strain, stress is considered directly. It is

assumed that the stress in each region will grow linearly with increasing shear until the stress
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in one region goes above some predefined critical value. Once a region is above the critical

value that region yields or relaxes its stress. Such models have been useful in predicting

hysteresis and shear band formation [26–28].

Figure 7: Yielding in a mean-field elasto-plastic model. Stress, 〈σ〉, vs strain, γ, for in-
creasing degree of annealing, A, from bottom to top. The lowest annealing has a smooth
transformation that transitions into a smooth stress overshoot and continues to transition to
a discontinuous transition. (Inset) The magnitude of the discontinuous stress drop, ∆ 〈σ〉,
as a function of the degree of annealing. Low values of A indicate large annealing [29].

Recent work in related models has shown that whether amorphous materials fail via

ductile flow or brittle shear bands depends strongly on the system preparation protocol, or

equivalently the statistics of the stresses in the mesoscopic regions [29, 30]. These works

have combined analytically solvable mean-field elastoplastic models with molecular dynam-

ics simulations of generic glass formers to investigate the effect of material preparation [29].

In these elastoplastic models, the system is divided into mesoscopic elements characterized

by their current stress and their yield stress or the stress at which they will rearrange. In
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simulations, these yield stresses are chosen from some distribution. A schematic represen-

tation of those distributions is shown in Fig. 8a. As mentioned earlier, when glass-forming

liquids are cooled quickly the system will find itself in a shallow minimum of high poten-

tial energy compared to a slowly cooled glass. Annealing is a process by which a glass in

the shallow minima is warmed and cooled repeatedly so that it is able to relax to a deeper

energy minimum. The degree of annealing is encoded in these elastoplastic models by the

distributions, P0(x), of initial stress to instability, x. As the system is strained or additional

stress is applied, the stress in the mesoscopic elements increases until the stress in one re-

gion surpasses the yield stress and begins to fail, potentially triggering other points to fail

according to a non-positive-definite elastic kernel. At this point, the stress and yield stress

for the original failed region are resampled from another distribution.

The resulting stress strain curves for different initial yield stress statistics, shown in

Fig. 8b and Fig. 7, reveal that the qualitative yielding behavior is dependent on the

initial stability. As shown by the black curve in Fig. 7 and the lightest curve in Fig.

8b, poorly annealed systems, systems in the shallow minima, have a smooth transition

and describe materials like foam and mayonnaise and other soft solids. On the other end

of the spectrum, for the most highly-annealed state tested, there is an accumulation of

stress followed by a sudden drop in stress as the system discontinuously fails at the yielding

point, as metallic and molecular glasses do. As the degree of annealing is decreased, the

discontinuous jump in stress becomes weaker until it approaches zero at a particular value

of the disorder [29]. These results are very similar to mean-field elastoplastic models with

short range interactions, which can be solved analytically. Such models are in the Random

Field Ising Model (RFIM) universality class and also exhibit a discontinuous jump in stress
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Figure 8: a) Schematic of three distributions, P0(x), of stress to instability, x, for elements
in an elastoplastic model for 1) a poorly annealed glass, 2) a moderately annealed glass, and
3) a well annealed glass. b) Stress versus strain curves for these three distributions of initial
stabilities. c) Snapshots of the plastic strain during the yielding transition indicated by red
circles.

that terminates at a second order critical point. An open question is whether elastoplastic

models with long-range interactions, as seen in experiments and simulations, is in the same

universality class. This indicates that the variety of yielding behaviors of disordered materials

are fairly generic across different types of particle interactions or microscopic dynamics; the

transition from soft yielding to sudden catastrophic failure is controlled by the degree of

annealing which controls the initial stability of the system [29].

1.3.3 Linear response and vibrational modes

One powerful method to probe the various material properties of a system, such as the

elastic modulii or thermal properties, is vibrational analysis. For instance, thermal properties
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like the low-temperature heat transfer are mediated by phonon excitations [31] and, in the

thermodynamic limit, we can understand the low-frequency vibrational properties of a crystal

in terms of phonons [32]. In condensed matter systems, vibrations and other excitations have

wavelengths and propagation directions dictated by the microstructure of the system. For

instance, the smallest wavelength that a one-dimensional crystalline system can support is

on the order of the lattice spacing between the particles, while the longest wavelength is

dictated by the size of the system. The vibrational density of states, D(ω), is a measure of

density of vibrational modes with frequency ω and it is useful for determining a number of

physical properties, including the specific heat. For crystalline solids, Debye theory predicts

the density of states should scale with ωd−1 in the low-frequency regime, where d is the

spatial dimension [32]. This behavior is independent of the details of the microstructure

of the crystal unit cell; it applies universally across crystals. In crystalline materials, this

analysis leads to the canonical T 3 temperature dependence of the specific heat [32].

Amorphous materials also appear to have universal vibrational behaviors, but the spectra

of amorphous materials are anomalous compared to the crystal vibrational spectrum. Glasses

do not obey Debye scaling in the low-frequency regime; the density of states scales as ωα

where α 6= d − 1 [33]. This deviation from crystals will alter the low-temperature thermal

behavior of glassy systems; the specific heat of glassy systems scales with T rather than the

T 3 seen in crystalline systems [34]. Additionally, while the vibrational modes in a crystal are

plane waves, the vibrations in glasses can be disordered and in the low-frequency regime they

can also be localized. Recent work isolates localized excitations in the vibrational spectrum

to identify points of failure in disordered materials [35–37].

Mean field theory for glasses using replica symmetry breaking techniques predicts an ω2
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Figure 9: a) DOS for N = 8192 in d = 3 to 7, averaged over 30 to 50 configurations of soft
sphere packings in high dimensions agree with the infinite-dimensional result of D(ω) ∝ ω2 in
the low frequency regime [38]. b) The same DOS for higher pressures. Detailed simulations
over thousands of configurations in two- (c), three- (d), and four- (e) dimensional systems
find ω4 scaling for the lowest vibrational modes [39].

scaling regime in the density of states independent of dimension [40]. This is exact in the

limit of infinite spatial dimensions and some have argued that this persists in dimensions as

low 3 or 4 [38, 40]. Fig 9a shows the vibrational density of states for systems just above the

isostatic point with dimensionality from 3 to 7. At low compression shown in Fig 9a, the bulk

of the spectrum is well described by the ω2 prediction that transitions into a plateau. Note

the fit is particularly poor for three-dimensional systems, especially far from the jamming

density as seen in Fig. 9b. Recent simulations of jammed solids in low dimensions confirm

that D(ω) ∝ ω4, as shown in Fig 9c,d, and e [39]. These simulations are averaged over

thousands of configurations and focus explicitly on modes with lower energy than the lowest
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plane wave mode, in order to extract the power law exponent with high precision. This

analysis finds ω4 not only in 2d or 3d but also in 4d systems. This behavior is consistent

with the earlier predictions for density of states found in the “Soft Potential Model” for soft

glassy materials [41, 42].

Simultaneously, it has been observed that the low-frequency excitations are quasi-localized

modes, which are vibrations that only involve the movements of a fraction of the particles in

one location. One way of measuring the localization of a mode is via the Inverse Participation

Ratio (IPR) of eigenvector −→v

IPR(−→v ) =

∑
i v

4
i

(
∑

i v
2
i )

2 .

For a perfectly localized mode the IPR is 1 while for a perfectly extended mode the IPR is

1
N

, where N is the number of particles in the system. A plane wave mode, for instance, is a

very extended perturbation since a large fraction of the system participates in the passage

of a plane wave. If a displacement vector–a vector that lists particle displacements from

equilibrium positions–has few non-zero entries such that only a few particles are moving,

then the vector is localized. Maximum localization occurs when only one particle is moving

during the displacement. In quasi-localized modes, one typically finds a localized core with

long range tails.

The normal modes in a perfect crystal are plane waves. Dislocations and other crystal

defects can disrupt the normal modes causing localization near the defects. Similarly, in

disordered materials the quasi-localized modes in the low frequency regime can help to

identify the regions where we would expect deformation under external stress [35, 36].

In addition to the low-frequency anomolous behavior, there is an additional universal
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Figure 10: Log-log representation of the simulated density of states for a cubic lattice of cou-
pled, randomly-oriented oscillators. The arrows indicate the two characteristic frequencies
ωb, the boson peak, and ωc, the frequency above which the system returns to ω2 scaling [43].

feature called the boson peak. This is an excess of modes in the low-frequency regime above

the Debye prediction. This is seen in Fig. 10 by the transition from ω4 scaling to linear

scaling. The frequency at which the boson peak occurs, ω∗, scales with the coordination

number as ω∗ ∼ z − zc = ∆z, which can be explained by a length-scale cutting argument

and Maxwell constraint counting discussed in 1.1.5 [44, 45].

Specifically, during compression of an amorphous system, there exists a critical density,

φc, where the average number of contacts is exactly the critical number of contacts to attain

mechanical stability [17]. It has been shown that compression of systems above this critical

density increases the number of contacts according to a simple scaling law in 3D:(φ−φc)
1
2 ∝

z − zc [17]. If we compress a three-dimensional system of N particles with side length L,
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extra constraints are added to the system proportional to system size [44],

∆Nc = N
∆z

2
∼ L3∆z. (2)

On the other hand, cutting the boundaries of a the system relaxes a number of constraints

proportional to the surface area of the system, p ∼ L2. Because L2 < L3∆z for long

length scales, large compressed systems will remain overconstrained after cutting the bound-

ary. However, if the lengthscale approaches a critical value, l∗ ∼ (∆z)−1, the number of

constraints removed via cutting is larger than the number added via compression. Since fre-

quency scales are inversely proportional to length scales, vibrational modes with frequencies

larger than ω∗ ∼ ∆z are little effected by excess contacts [44].

The boson peak also has an effect on the localization of the vibrational modes. Above

ω∗ the modes are extended and disordered, becoming localized at the edge of the vibrational

spectrum [46]. Below ω∗ the vibrational modes are quasi-localized hybridizations of phonon-

like modes and local excitations [46]. The eigenvector of the vibrational mode can be written

as a list of displacement or polarization vectors. The vibrational modes in the boson peak

have a distribution of polarization lengths that is universal and distinct from the distribution

found in plane waves and Anderson localized modes [47].

1.3.4 Thesis outline

This is a very exciting time to study disordered materials because we have made signif-

icant progress in recent years. Notably, analytic results have been derived for hard spheres

in infinite dimensions [48, 49]. A better understanding of how the infinite-dimensional hard
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sphere model extends to lower dimensions and softer materials would provide significant

insight into the behavior of glasses, more complex granular materials, and biological sys-

tems [50].

Additionally there have been numerical advancements in the simulation of glassy systems.

One past limitation for simulations of glassy systems is the speed at which the simulations

can be cooled. Attempting to cool simulated glasses at rates corresponding to experimental

glasses has previously been out of reach, limiting the kind of glasses that can be sampled

and studied. Over the past few years, new numerical techniques have been developed to

probe glasses and jammed packings at much higher densities than are typically achievable

by slow compression or annealing. Thin films of ultra-stable glasses can be obtained by direct

simulation of vapor deposition [51]. Bulk ultrastable glasses in simulations can be generated

with algorithms which allow particles to change size by swapping radii or directly with some

sort of chemical potential or training [52, 53]. These algorithms allow glassy systems to

equilibrate at low temperatures much faster than standard Monte-Carlo simulations. When

these low-temperature systems are quenched, they create bulk ultra-stable glassy systems,

as the configurations being sampled are much deeper in the potential energy landscape.

These new simulation tools allow for exciting investigations into the material properties of

experimentally accessible molecular glasses.

In Chapter 2, we investigate the origins of the interesting low-frequency vibrational be-

havior of glasses and jammed solids, including a region in the density of states–D(ω)–that

scales as ω4 with quasi-localized excitations important for flow and failure. To our knowl-

edge, there are no constructive models that generate ω4 scaling and explain the mechanism

for quasi-localization. However, recent work indicates random matrix models can provide
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explanations for universal vibrational properties in glasses. To better understand the sur-

prising low-frequency vibrational modes in structural glasses, we study the spectra of a large

ensemble of sparse random matrices where disorder is controlled by the distribution of bond

weights and network coordination. We find D(ω) has three regimes: a very-low frequency

regime that can be predicted analytically using extremal statistics, an intermediate regime

with quasi-localized modes, and a plateau with D(ω) ∼ ω0. In the special case of uni-

form bond weights, the intermediate regime displays D(ω) ∼ ω4, independent of network

coordination and system size, just as recently discovered in simulations of structural glasses.

In Chapter 3, we use tools developed to understand and predict the interesting collective

properties and nontrivial dynamics in unstable and active disordered materials to character-

ize behavior in a model for dense human crowds. While the behavior of amorphous solids

under shear is relatively well-understood, the instabilities in active systems remain difficult to

characterize and predict. In the context of dense crowd dynamics, existing work has analyzed

position fluctuations in a self-propelled particle (SPP) model to identify Goldstone modes

and soft spots in models for human crowds. This analysis requires time-resolved trajectory

information in order to form predictions for collective behavior, which can be cumbersome.

To address this issue, we have developed a novel method to generate static packings in an

artificial potential that reproduce the packing structures in a class of point-of-interest active

SPP crowd simulations. These static packings then allow us to precisely identify local struc-

tural defects that govern dynamical group behavior, so that we can predict the locations

of rearrangements and “material” failures in dense, active SPP models. Unlike previous

methods, these predictions can be derived from a single snapshot and could be relevant to

preventing dangerous emergent phenomena in real crowd systems.
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In Chapter 4, we investigate the relationship between structure and dynamics in amor-

phous systems during large-scale plastic deformation. At zero temperature, the deformation

of an amorphous system due to applied shear strain can be separated into elastic branches

where the particles do not change neighbors, and rearrangements where they do. Some re-

arrangement events are small and localized, while others involve large or system-spanning

avalanches. Using numerical simulations of soft spheres, we find that these avalanches can be

decomposed into a series of bursts of localized deformation, and we develop a novel cluster-

ing method inspired by persistent homology to isolate these bursts of localized deformation.

Next, we develop a method to study the “linear response” of unstable systems during an

avalanche, by extending existing tools for identifying structural defects and study how the

population of structural defects evolves during an avalanche. We find that bursts of localized

deformation in the avalanche correlate strongly with localized soft spots generated from the

linear spectrum. These data should help to constrain elastoplastic models for glasses and

granular matter.

Finally, in Chapter 5, we provide a brief outlook and discussions for future work.

1.4 Additional Work

Here we outline projects that the author has contributed to during his graduate work

but are not included as chapters in this thesis.

1.4.1 Predicting failure in disordered solids from structural metrics

One reason disordered solids are so challenging to understand is that, unlike crystals,

their microscopic structure lacks long-range order. In crystals it is easy to identify a defect
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where the crystalline order is broken, and unsurprisingly the crystal breaks at those de-

fects. Over the past 50 years, analogous structural defects have been proposed in amorphous

solids [54], but it has proven very difficult to connect them to deformation and failure. For

this reason, theoretical work has largely remained disconnected from simulations. Perhaps

more problematically, all these theories are phenomenological in the sense that they contain

fitting parameters that we do not know how to extract from first principles, i.e. from the

microstructure and interactions between the constituent parts of the material.

Fairly recently, large-scale computer simulations of glass-formers have reinvigorated the

search for structural defects. Until now there have been three main drawbacks to this line

of inquiry. First, there has never been a consistent methodology for evaluating whether

a given metric that identifies structural defects works well for predicting deformation and

failure, although efforts towards this goal have been made [55]. Second, it has not been clear

whether a given method works best only on a particular model system or the interaction

potential for which it was designed, or whether some methods work well universally across

different disordered solids. Finally, computer generated amorphous solids have historically

been vastly more ductile than those in real experiments, and so it was difficult to simulate

brittle materials that exhibit catastrophic failure. Happily, a recent breakthrough based

on a computational method that allows particles to swap positions with one another has

addressed this last issue [52].

In this project, which is submitted and under review, we use this new computational

protocol, as well as a more standard one, to study glass-formers across the brittle-to-ductile

transition. As a function of the applied shear strain, we simultaneously quantify a large

number of metrics for identifying structural defects in disordered solids, proposed by research
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groups across the world. We develop a standard methodology for comparing these metrics to

one another, and to the complex deformation fields that result from the applied strain. We

find that different classes of structural metrics are not always strongly correlated, suggesting

that different paradigms for identifying structural defects are reporting distinct information.

With a few exceptions, the metrics we investigated are excellent at predicting deformation in

ductile materials over short strain scales, 103 in the system sizes studied, and several remain

correlated beyond 10% strain, highlighting that structure really does govern deformation in

these zero-temperature materials under simple shear. The quality of a given metric does

not vary much between the two interaction potentials we studied, but across all metrics the

undeformed state does a very poor job of predicting the shear band in very brittle glasses.

Robustly across several different metrics, we demonstrate that this failure in prediction occurs

because the density of defects increases dramatically in brittle solids in the pre-yielding elastic

regime.

1.4.2 Jammed packings behave similarly under random forcing and shear

Shear is a necessarily global process—in order to shear a system, one pushes from the

boundaries, affecting all particles within the system. Activity, however, is a local process.

Active particles each have a driving mechanism that propels them in a certain direction,

where that direction is subject to change on a characteristic time scale. The ways in which

loads are carried in a sheared system are then fundamentally different from that of active

systems. However, recent studies have noted that in granular systems the two forcing mech-

anisms yield viscosities [56] and large density fluctuations [57, 58] which are similar. The

connection is further bolstered by a similarity in the forms of the infinite-dimensional mean-
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field equations dictating the response to shear, random force, and friction [59–61] due in part

to their ability to be represented by memory kernels.

What is missing in the low-dimensional scenarios is a unifying picture as developed in

mean-field; to develop such a picture, it is necessary to note how and where the similarities

between shear and random forces diverge. For example, Liao and Xu [56] noted that particles

driven with the same magnitude force in random directions will have the same viscosity curves

as their sheared counterparts [62–64], albeit with different critical exponents. While constant

overdamped force–thus constant velocity–and random direction is a typical assumption of

active particle models [65, 66], it obscures a possible connection. The authors even note that

changing the metric of velocity to be the velocity parallel to the force alters the exponents.

It is possible that varying the magnitude of force may yield the shear exponents or that

both perturbations fall into a broader class. Taking cues from the density of states, it has

been shown that the response of particles to both random force [57, 67] and shear [68] are

dominated by the lowest eigenmode. The energy landscape picture of shear response [69, 70]

then suggests that the connection can be thought of as traversing similar landscapes.

In this project, soon to be submitted for publication, we show how activity and shear

are related in soft sphere systems via the energy landscape. In particular, we show that the

characteristics of the stress-strain curves, the avalanche statistics and the spatial sampling

of saddle points in the pre-yielding regime, and the location of the yielding point have the

same scaling relations found in sheared systems. Furthermore, while the correlation length

of forces on particles under shear is fixed, if we vary the correlation length, we find that the

magnitude of quantities such as the shear modulus change systematically with correlation

length. This implies that shear can be seen as a special case of a more generic random
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forcing. While the macroscopic responses such as avalanche size and shear modulus obey

similar scaling relationships regardless of whether the body forces follow simple shear or are

randomly oriented, it is interesting to note that the spatial structure of instabilities may be

quite different depending on the nature of the forcing. Brittle sheared systems clearly fail

via localized shear bands, but preliminary data suggest that the lack of symmetry in the

random systems might prevent such spatial organization. This will be an interesting area

for future research.
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2 A simple random matrix model for the vi-

brational spectrum of jammed packings

Abstract

To better understand the surprising low-frequency vibrational modes in structural

glasses, we study the spectra of a large ensemble of sparse random matrices where dis-

order is controlled by the distribution of bond weights and network coordination. We

find D(ω) has three regimes: a very-low frequency regime that can be predicted ana-

lytically using extremal statistics, an intermediate regime with quasi-localized modes,

and a plateau with D(ω) ∼ ω0. In the special case of uniform bond weights, the inter-

mediate regime displays D(ω) ∼ ω4, independent of network coordination and system

size, just as recently discovered in simulations of structural glasses.

2.1 Introduction

The vibrational spectra of disordered glassy materials exhibit universal features. Al-

though these features govern the mechanical response and provide insight into mechanisms

for material failure, their origin remains poorly understood.

Perhaps the most well-studied feature of the density of vibrational states D(ω) is the

boson peak, which is an excess of vibrational modes above the Debye prediction, D(ω) ∝

ωd−1 [71–73]. In jammed packings the frequency at which the peak occurs, ω∗, scales linearly

with the average excess number of contacts δz above the isostatic point where the number of

constraints equals the degrees of freedom [44, 72, 74]. Additionally, the eigenvector statistics

of modes in the boson peak follow a universal distribution [75].

Recently, another universal feature has been identified in simulations of low-dimensional
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jammed systems: D(ω) ∼ ω4 below ω∗ [39, 76, 77], which deviates from recent mean-field

calculations for the spectra in infinite dimensions that predict D(ω) ∼ ω2 [38, 78]. This

interesting behavior has also been found in Heisenberg spin glass systems [79]. Understanding

this regime is important, as the vibrational modes are quasilocalized and help govern flow

and failure in disordered solids [71, 79–84].

Given the success of random matrix theory in predicting universal features in other

physical systems [85], it is natural to wonder if a random matrix model may also explain the

ω4 scaling in jammed packings. Other features, including the boson peak, have already been

understood in terms of Euclidean random matrices, which are dynamical matrices for a set

of points that are randomly and uniformly distributed in space [86].

Although there are generic arguments that the global minima of random functions should

have a spectrum that scales as ω4 [87], we would like to construct a random matrix model

to provide insight into how features of the ω4 region, such as the prefactor, or the location

of the scaling regime, change with parameters such as the excess coordination δz. Such

an understanding is important for predicting how material preparation protocols alter the

mechanical response of glassy materials.

2.2 Model

We study matrices that share three important features with the dynamical matrix: they

are symmetric, positive-semidefinite, and force balancing. In higher dimensions, force balance

corresponds to d sum rules on partial sums of entries in each row of a matrix, while in 1D,

the force balancing restriction simply requires the sum over all the entries in a row must be

zero [71]. This rule is also obeyed by standard or weighted Laplacians, Lij, which are also
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symmetric and positive semi-definite. They are defined by

Lij =



−kij i and j are connected

∑
l 6=i kik i = j

0 Otherwise

, (3)

where kij is the independently chosen random weight of the edge between particles i and j

and in the special case of the standard Laplacian, kij = 1 [88]. Standard Laplacian matrices

are well-studied and possess distinctive vibrational spectra [89], so we focus on weighted

Laplacians for the remainder of this Chapter.

In order to calculate the Laplacian we must specify the topology of the underlying graph.

Although recent advances have been made in analytically characterizing the spectra of Lapla-

cians on an Erdős-Rényi graph [90], Erdős-Rényi networks are not locally isostatic, as a sig-

nificant fraction of nodes are under-coordinated (fewer than isostatic coordination zc = 2d),

which leads to highly localized excitations that are not seen in jammed packings.

Instead, we consider the weighted Laplacian on a zc-regular graph with a small number of

additional edges, or crossbonds. Since weighted Laplacians only obey one sum rule, they are

effectively 1D and zc = 2. The number of additional bonds is δzN where N is the number

of points and δz is the excess coordination.

Another important control parameter is the distribution of the edge weights and, in par-

ticular, the weight of this distribution near zero. We choose to parameterize this distribution

as a power law with exponent α, normalized so that the mean is 1, ρ(k) ∝ kα on
[
0, α+2

α+1

]
. A

uniform distribution corresponds to α = 0 and we only consider normalizable distributions,
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α > −1.

2.3 Finite size scaling of weighted ring

We first study the finite size scaling of the low frequency excitations at isostaticity, when

δz = 0 and the underlying network topology is simply a ring of size N . Although this is a

well-studied model, we believe its finite-size scaling can provide insight into the case with

δz > 0.

Figure 11: The rescaled density of states, D(ω′), for the two-regular graph with N=16, 64,
256, 1024, and 4096 and α = 0, normalized by system size, N , averaged over at least 106

matrices. The analytic prediction for the low-frequency scaling is shown as the black dashed
line. In the upper-left we have a sketch of a 1d chain with periodic boundary conditions (the
open circles are the same node) Inset: Unscaled density of states, D(ω).

The inset to Fig. 11 shows the sample averaged density of states for α = 0, calculated via

diagonalization of the matrix, as a function of system size N , averaged over 2×106 matrices.

The main panel shows the sample averaged density of states as a function of the normalized

frequency, ω′ = ωN , highlighting a region of power-law scaling at the lowest frequencies that

disappears in the thermodynamic limit.
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We hypothesize that the lowest-energy mode on a weighted ring is well approximated

by a stretching of the two weakest bonds, with all other bond lengths relatively fixed. We

expect this to be the case when α ≤ 0, so that the weight of the lowest two bonds are well

separated from bonds with larger values of kij, especially in the limit of low ω, ω < N−
2α+3
4α+3 .

If the two weakest bonds have strengths k1 and k2 and are separated by m nodes, the

frequency of this mode is
√

N(k1+k2)
m(N−m)

. As we show in Appendix A, one can use extremal

statistics to find the exact distribution of the weakest bonds on the ring to predict that the

low-frequency density of states scales as:

D(ω) ∝ N2α+3ω4α+3. (4)

For a uniform distribution of bond weights (α = 0), the contribution of these modes to

the density of states scales as (Nω)3. The scaling of Eq. 4, using α = 0, is shown as the

black dashed line in Fig. 11.

2.4 Crossbonded ring with unifrom bond weights

We hypothesize that adding a small number of crossbonds alters the low-frequency be-

havior by reducing the effective distance between the two weakest bonds. In the case of

δz = 0, the two weakest bonds separate the ring into two segments that can move relative

to one another at nearly zero cost, but if a crossbond connects those two segments it will

significantly increase the energy of that mode. Therefore, the weak bonds that contribute

to low-frequency modes must both be in a segment between crossbonds. Because there are

Nδz such segments, we expect that crossbonds give rise to an extensive number of low-
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energy modes, so that the scaling regime described in the previous section persists in the

thermodynamic limit.

We search for very low-weight edges that generate a two-cut of the network: two edges

that, if removed, disconnect the network. In the supplement, we show the low-frequency

density of states scales as

Dα(ω) ∝ ω4α+3

δz2α+3
, (5)

independent of system size.

Figure 12: The density of states for fixed system size (N=1000) and changing δz =
0.1, 0.168, 0.282, 0.476, 0.8 In the upper-left we have a sketch of a 1d chain with periodic
boundary conditions (the open circles are the same node) with additional bonds. Inset:
The density of states, D(ω), for fixed δz = 0.1 and changing system size N = 20, 60, 120,
240, 500, 1000, 2000, and 4000.

To test the universal form predicted by Eq. 5, we computed the spectrum D(ω) for

rings with crossbonds and uniform bond weights (α = 0). For each value of δz and N we

generated between 105 and 2 × 106 matrices samples 1, with independently chosen weights

1For δz = 0.1 and N = 500 and 1000, we calculate 2 × 106 matrices and for N = 2000 and 4000, we
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and uniformly random placements of the endpoints of the Nδz/2 crossbonds. The inset to

Fig. 12 displays plots of the sample-averaged density of states D(ω) for fixed δz = 0.1 as N

increases. This example plot supports the convergence of D(ω) to a gapless distribution as

N → ∞. The main panel of Fig. 12 displays the computed density of states (solid lines)

for large N (N = 1000) and varying δz. The dashed lines in Fig. 12 show fits of the form

D(ω) ∝ ω3 to the low frequency region, as predicted by Eq. 5. These fits are in good

agreement with the computed spectra.

Based on Eq. 5 and the more complete form of the density of states derived in Appendix

B, we expect a collapse of D(ω) when frequencies are scaled by δz. Fig. 13(a) shows the

density of states for the scaled frequency, ω′ = ω/δz. For δz = 0.168 we numerically identify

a frequency ωe that best separates the ω3 scaling regime from the remaining spectrum. Eq. 5

then predicts that all other cutoff frequencies should scale linearly with δz, which is in good

agreement with the data as shown by the open squares in Fig 12 and 13(a).

In addition to the crossover at ωe, there is a second crossover where D(ω) flattens to a

plateau. In jammed packings at zero temperature, where the boson peak occurs at the onset

of the plateau, ω∗ is often defined as the frequency at which the density of states attains a

fixed fraction f (typically 25 %) of its value in the plateau [91]. We use that same definition

here with f = 0.25.

In many disordered solids, numerical evidence suggests ω∗ ∝ δz [72, 74]. To check

whether this is also true for our matrices, we plot the density of states as a function of the

rescaled frequency ω′ = ω/δz, for various values of δz, shown in Fig 13(a). We see a good

collapse of the three regions, suggesting that both crossovers are linear in δz, which is also

calculate 522240 and 261120 matrices. For all other values, we calculate 106 matrices.
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Figure 13: a)The density of states, D(ω), rescaled by δz. The blue dashed line indicates
the transition from the ω3 regime to the ω4 regime while the black dashed line indicates
the transition to the plateau. The inset shows the scaling of ω∗ and ωe with δz is linear.
b)The inverse participation ratio, IPR, rescaled by δz. The IPR approaches a quasilocalized
plateau in the ω3 region.

highlighted by the inset to Fig 13(a).

Importantly, this confirms that although the intermediate region between the two crossover

frequencies spans less than a decade in frequency, it is well-defined and does not change as

a function of excess coordination or system size. Specifically, these results mandate the

following functional form for the density of states in our random matrix model with α = 0:
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D(ω) =



4
L2

(
ω
δz

)3
ω ≤ ωe

∝ ωψ ωe ≤ ω ≤ ω∗

∝ ω0 ω∗ ≤ ω

. (6)

To extract the scaling of D(ω) below the boson peak, we fit D(ω) to this functional form

and extract the best-fit ψ for each value of δz (See table in supplemental materials). We

find that all curves are consistent with ψ = 4.0 ± 0.05 for frequencies ωe ≤ ω ≤ ω∗. This

suggests D(ω) ∝ ω4, just as seen below the plateau in simulations of jammed packings.

Given the striking similarities between the density of states in this simple model and

jammed packings, we would also like to know if the eigenvector statistics are similar. In

jammed systems, many modes at frequencies below the boson peak are quasilocalized [91].

This is quantified by the inverse participation ratio (IPR), IPR(ω) =
∑

i v
4
i /(
∑

i v
2
i )

2, where

v is the vector associated with the eigenfrequency ω. In Fig 12(b), the very low-frequency

regime of the IPR plateaus, and the value of this plateau scales with δz, indicating that only

about 1
δz

nodes are participating in the vibration.

Interestingly, the intermediate region exhibits values of IPR that are typically associated

with quasilocalized excitations. Moreover, the size of those excitations seems to decrease as

δz increases. In jammed solids, an outstanding open question is how the size of localized

excitations changes as one approaches the jamming transition.
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2.5 Crossbonded ring with power-law bond weights

Having a simple constructive model that reproduces many features of the vibrational

modes in jammed packings is useful, because we can vary the model and ask what features

are necessary to generate the ω4 scaling in the density of states. One natural choice is to

perturb the distribution of bond strengths away from the uniform distribution by changing

the power-law exponent α.

Figure 14: The density of states for α = −0.4, −0.2, 0, 0.25, 0.5, 1, and 2, with δz = 0.1.
Inset: D(ω′ = Aω4α+3) for the same values of α as in the main figure, where A is the
coefficient predicted in Appendix B. The black dashed line is the predicted scaling for the
low frequency regime.

For α > 0, very weak bonds become rare and the assumptions that lead to Eq. 5 break

down. Numerically, we observe that a gap appears to open up in the spectrum as α increases,

as seen in Fig 14. For α < 0, we expect Eq. 5 should still hold, as shown by the numerical

data in the inset of Fig 14. In this case, however, the crossover frequency no longer scales

linearly with δz, and so the power-law scaling between ωe and ω∗ – the exponent ψ in Eq. 6

– is no longer independent of δz. In other words, an intermediate regime consistent with
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D(ω) ∝ ω4, independent of δz, is only possible for α = 0.

2.6 Discussion

In this Chapter, we propose a simple random matrix model that is locally nearly isostatic

and captures features of the vibrational states of disordered packings that are typically

associated with marginality. Specifically, the model recapitulates a plateau in the density

of states above ω∗, and a regime consistent with ω4 scaling immediately below that. Our

model also has a second crossover frequency ωe, below which D(ω) scales as ω3.

The modes in this extremely low frequency regime are governed by extremal statistics,

and so we can calculate their properties analytically. This allows us to demonstrate that

ωe scales linearly with excess coordination δz if and only if the weak bonds are uniformly

distributed, suggesting that ω4 seen in jammed packings arises due to a special, self-organized

distribution of the weakest bonds.

Of course, jammed packings only exist in dimensions greater than unity. Above one

dimension, the bond between particles is described by a tensor and not a scalar weight. The

d by d interaction block that corresponds to a single bond in the Hessian matrix can be

written as Hijαβ = −V ′′|u‖|2 − V ′

rij
|u⊥|2. The first term is often referred to as the stiffness

while the second term is called the prestress term [92].

Interestingly, observations in 3D jammed packings suggest that the ω4 regime only exists

when the V ′ term is unperturbed; even very small perturbations to the prestress open up

a gap in the density of states [93]. This suggests that a self-organized balance between

the stiffness and prestress must occur in systems near isostaticity. Moreover, the stiffness is

always positive and the prestress always decreases the entries in the Hessian, so it is plausible
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that the prestress term is driving some interactions to be very weak near isostaticity, similar

to our simple model.

While suggestive, a more concrete connection will require us to extend our analysis to

higher dimensions. We see an ω4 regime when bond strengths are uniform, but it is unclear

what quantity would be analogous to a uniform bond weight in a d×d sub-block. Concurrent

work by Benetti et al. focused on d-dimensional Laplacian matrices where the magnitude

of each bond is unity, but the geometry of the bond is randomly distributed, and these

also generate scaling consistent with ω4 at low frequencies [94]. To better understand the

connections between these models and why both generate ω4 scaling, one could study systems

with random bond weights and ordered geometries, or have both be disordered.

Furthermore, although ω4 scaling as been observed in several glass forming systems [39],

the ω3 regime may be unique to 1D systems, as it has not been reported in simulations

or in the random matrices with 3 × 3 sub-blocks [94]. In addition, we see about half a

decade of frequency consistent with ω4 scaling, while the most recent data from Lerner and

collaborators [39, 77, 93] finds almost a full decade.

Nevertheless, the ω3 scaling regime is interesting. Disordered rings are well-studied, but

major results focus on localization caused by disorder [95, 96]. To our knowledge, the finite-

size scaling effects of the vibrational spectrum have not been discussed previously. Our model

demonstrates that finite size effects in the disordered ring, such as this gapless low-frequency

scaling, can be promoted into properties that are maintained in the thermodynamic limit by

network disorder.

Although we have excellent understanding of the ω3 regime in this simple model, and

convincing numerical evidence demonstrating D(ω) scaling as ω4 over a window of about

42



half of a decade in ω, we have not identified a mechanism for the ω4 regime, where we know

the assumption of two weak bonds and two rigid arms breaks down. There are many higher

order modes that may contribute, and visual inspection of the eigenvector structure suggests

that no single one dominates, so there is no obvious simple extension of our argument for

ω3.

One possible avenue for understanding this regime is suggested by recent numerical work

that shows universality in the eigenvector statistics associated with the boson peak. Specif-

ically, eigenstatistics in jammed packings match those from both the random matrix model

described here, as well as the dense limit of this model where all nodes are connected to

one another [75]. Interestingly, the eigenvector statistics are also identical in a much sim-

pler model which is just the sum of a diagonal matrix and a Gaussian orthogonal matrix.

Very recent analytic work suggests that such matrices are marginal; they are on the edge

of a non-ergodic localized phase [97]. It would therefore be very interesting to extend this

analytic work to sparse matrices and study the tail of the density of states.

Another way to extend our model is to alter the loop structure of the underlying graph.

In our random matrix model, the loop structure is uncontrolled since we add crossbonds

with uniform probability across the graph. This is different from jammed systems where

neighbors of one particle are more likely to be neighbors of each other and loops are small.

It is fairly straightforward to extend our analytic analysis of the ω3 regime to random matrix

models with smaller loops, and we expect that the prefactor and the onset of the scaling ωe

will change, but the ω3 scaling will not. However, this change could impact the behavior of

the ω4 regime.
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2.A Extremal statistics in the two-regular graph

In this section, we calculate the scaling for a ring of N particles and a ring with crossbonds

where particles are bonded to their nearest neighbors and the strengths of those bonds, {bi},

are chosen independently with the distribution f(b). (It is also assumed that the masses of

the particles are identical.)

The mode associated with exciting only the 2 weakest bonds is a very low energy mode.

The calculation here is done by taking the 2 weakest bonds as they are, but assuming all

other bonds are rigid.

Figure 15: A ring or periodic 1d spring system with the two weakest bonds highlighted as
springs.

We will call the strength of these bonds k1 and k2 with a distance of m nodes between

the bonds. This system is equivalent to 2 masses joined by a spring which has 1 non-trivial

mode with a frequency of
√

N(k1+k2)
m(N−m)

≡
√

Ns
m(N−m)

where s = k1 + k2.

The distribution of the weakest bond strength is given by

ρ1(k1) = N ∗ f(k1) ∗ (1− F (k1))N−1, (7)
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which is just the probability density of a bond having strength k1 multiplied by the prob-

ability that all other bonds are at least that strong [98]. The distribution of the second

lowest mode is somewhat more complicated since we need to enforce that k2 ≥ k1. So the

distribution of k2 given k1 is

ρ2(k2|k1) =
(N − 1)θ(k2 − k1)

(1− F (k1))N−1
f(k2)(1− F (k2))N−2. (8)

The frequency depends on the sum s = k1 + k2. The distribution of this sum can be

obtained from the convolution of the distribution of k1 and k2:

ρs(s) =

∫ kmax

kmin

ρ1(k1)ρ2(s− k1, k1)dk1, (9)

ρs(s) = N(N − 1)

∫ kmax

kmin

f(k1)f(s− k1)

(1− F (s− k1))N−2θ(s− 2k1)dk1.

(10)

By changing variables and assuming m is uniformly distributed, we can obtain the distribu-

tion of the frequencies as:

ρω(ω) =
N−1∑
m=1

ρs(
m(N −m)

N
ω2)

2m(N −m)

N(N − 1)
ω. (11)
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2.A.1 Power-law distribution

Let f(b) = α+1
Lα+1 b

α and F (b) =
(
b
L

)α+1
under the limit b ∈ [0, L] and α > −1. By

substitution, we find

ρs(s) =
N(N − 1)(α + 1)2

L2(α+1)

∫ L

0

θ(s− k1)θ(L− s+ k1)

θ(s− 2k1)kα1 (s− k1)α

(
1−

(
s− k1

L

)α+1
)N−2

dk1.

(12)

These step functions are only non-zero in the range max(0, s − L) ≤ k1 ≤ s/2. Using this

information and a change of variables, k = sq, we can extract the primary contribution of s:

ρs(s) =s2α+1N(N − 1)(α + 1)2

L2(α+1)
θ(L− s

2
)∫ 1

2

max(0,1−L
s

)

qα(1− q)α
(

1−
(
s(1− q)

L

)α+1
)N−2

dq.

(13)

Under the assumption that s is small, such that

(
1−

(
s(1−q)
L

)α+1
)N−2

≈ 1 (we will

discuss the range of validity of this assumption below), the density of states for large N can

be found via direct integration of
∫ 1

2

0
(q(1− q))αdq = Γ(α+1)2

2Γ(2α+2)
:

ρs(s) ≈ s2α+1N(N − 1)(α + 1)2

L2(α+1)

Γ(α + 1)2

2Γ(2α + 2)
, (14)

ρω(ω) ≈ NΓ(α + 1)2(α + 1)2

Γ(2α + 2)L2α+2
ω4α+3

N−1∑
m=1

(
m(N −m)

N

)2α+2

. (15)
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By converting the sum over m into a similar integral over m
N

we have

ρω(ω) ≈
√
π(α + 1)2(2α + 2)Γ(α + 1)2

24α+5Γ(2α + 7
2
)L2α+2

N2α+4ω4α+3. (16)

Since this only applies to the lowest vibrational mode, the density of states is given by ρω/N :

D(ω) ≈
√
π(α + 1)2(2α + 2)Γ(α + 1)2

24α+5Γ(2α + 7
2
)L2α+2

N2α+3ω4α+3. (17)

2.B Extremal statistics in the two-regular graph with

additional bonds

A more generic system is the ring with crossbonds. These crossbonds are simply addi-

tional connections between particles that are non-adjacent in the ring. See Figure 16 for

an example of a crossbonded graph; although the sketch is 2-dimensional the cross bond

interaction only depends on the distance along the ring not the euclidean distance across the

ring.

With crossbonds, we are restricted to choosing bonds in a region between 2 crossbonded

nodes. These regions are shown in Figure 16 by the green arrows.

2.B.1 Distribution of bounded regions

Let m1 be the number of edges between crossbonded nodes.

We place the cross bonds randomly. Therefore the crossbonded nodes are chosen uni-

formly. If we have E crossbonds then there are 2E crossbonded nodes (which may not be

unique). The increase in average coordination number is given by δz = 2E
N

. So the number
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Figure 16: A sketch of a crossbonded network with 56 particles and 7 crossbonds. The green
arrows delineate the regions between crossbonds where 2 edges can disconnect the network.
The red arrows point out edges that can’t disconnect the network. The yellow arrows point
out sets of edges that would disconnect the network that aren’t between crossbonded nodes.

of crossbonds and crossbonded nodes are Nδz
2

and Nδz respectively.

Since these are uniformly placed, we can expect the distance between them to be defined

via a Poisson process. We can find the distribution of the second crossbonded node where

we set the first crossbonded node to 1, since we can always rotate along the ring. Order

statistics provide the following result:

p1(m1) =
(1− m1

N
)Nδz−1∑N−1

m=0(1− m
N

)Nδz−1
≈ eδz − 1

eδz
e−m1δz. (18)

This distribution very quickly approaches the thermodynamic expression of an exponential

decay.
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2.B.2 Crossbonded spectrum

For each chain of length m1, we choose the 2 weakest bonds where the bonds are chosen

from the distribution f(b) = α+1
Lα+1 b

α under the limit b ∈ [0, L] and α > −1. We can write

ρs(s) as

ρm1
s (s) =

(α + 1)2m1(m1 − 1)

L2(α+1)
s2α+1θ(L− s

2
)∫ 1

2

max(0,1−L
s

)

qα(1− q)α
(

1−
(
s(1− q)

L

)α+1
)m1−2

dq.

(19)

We assume small s, such that

(
1−

(
s(1−q)
L

)α+1
)m1−2

≈ 1. Following the same argument

from the previous section where m2 is the number of nodes between the weakest bonds, we

find the distribution:

ρω(ω) =ω4α+3 Γ(α + 1)2(α + 1)2

2Γ(2α + 2)L2α+2

eδz − 1

eδz

N−1∑
m1=2

e−m1δzm1

m1−1∑
m2=1

(
m2(N −m2)

N

)2α+2

.

(20)

We take the thermodynamic limit and approximate the sums as integrals (over x = mi
N

and

dx = 1
N

) and expand the result in the low δz limit to obtain:

ρω(ω) =
Γ(2α + 5)Γ(α + 1)2(α + 1)2

2(2α + 3)Γ(2α + 2)L2α+2

ω4α+3

δz2α+4
. (21)

Importantly, this is not just for the smallest mode. Since there are several regions on the

ring from which pairs can be chosen, this analysis applies to an extensive fraction of modes.

On average, there are Nδz regions separated by crossbonded nodes. Therefore, we can apply
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this analysis for the lowest Nδz modes of a total N modes, ie. a fraction of modes δz. The

density of states is given by ρω(ω) ∗ δz

Dα(ω) =
Γ(2α + 5)Γ(α + 1)2(α + 1)2

2(2α + 3)Γ(2α + 2)L2α+2

ω4α+3

δz2α+3
. (22)

Note that α = 0, the uniform distribution, is unique in that ω and δz have the same

exponent

D0(ω) =
4

L2

( ω
δz

)3

. (23)

2.B.3 Full spectrum

In the full spectrum we need to identify the frequency, ω∗, at which the spectrum crosses

over into a plateau. In disordered solids, there are ample examples of this cutoff scaling

linearly with δz; this is also true for the disordered ring with crossbonds. ωe only scales

linearly with δz for α = 0. Therefore it is only for α = 0 that the scaling between ωe and

ω∗, ψ is independent of δz.

So the full spectrum of α = 0 is given by:

D(ω) =



4
L2

(
ω
δz

)3
ω ≤ ωe(

4ω3−ψ
e

L2δz3

)
ωψ ωe ≤ ω ≤ ω∗

c ω∗ ≤ ω

. (24)

In practice, ψ is consistent with 4.
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δz ψ
0.1 4.0761

0.168 4.0115
0.282 3.9606
0.476 3.9496
0.8 3.9749

Table 1: The best fit power law for the intermediate regime as a function of excess contacts
for the uniform distribution of bond weights.

2.B.4 Behavior of sloshing modes

The value of the IPR for a sloshing modes depends explicitly on the distance between

the active bonds. If the active bonds are separated by m particles the IPR is given by

IPR =
1

m
+

1

N −m
− 3

N
. (25)

Thus the increasing of the IPR plateau with δz in the sloshing regime is indicative of a

decrease in the distance between active bonds. By construction of the crossbonded system,

the distance between active bonds is limited by the distance between crossbonded nodes,

which decreases with δz.

Figure 17: The BIPR rescaled by δz. The blue dashed line indicates ωe while the black
dashed line indicates ω∗
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We can also measure the participation of the bonds with what we call the Bond Inverse

Participation Ratio (BIPR):

BIPR(ω) =

∑
(i,j)(vi − vj)4

(
∑

(i,j)(vi − vj)2)2
, (26)

where (i, j) is an edge in the network. In the limit of low frequency, there is a plateau of

BIPR = 1
2

which indicates that only 2 bonds are extending or compressing for the modes in

that regime. This is secondary confirmation that the sloshing mode assumption is reasonable

for this simple model.
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3 A self-propelled particle model for collec-

tive motion in dynamic crowds

Abstract

Unstable and active disordered materials exhibit interesting collective properties

and nontrivial dynamics. While the behavior of amorphous solids under shear is rel-

atively well-understood, instabilities that occur in active systems remain difficult to

characterize and predict. In the context of dense crowd dynamics, existing work has

analyzed position fluctuations in a self-propelled particle (SPP) model to identify Gold-

stone modes and soft spots in models for human crowds. This analysis requires time-

resolved trajectory information in order to form predictions for collective behavior,

which can be cumbersome. To address this issue, we have developed a novel method

to generate static, finite packings in an artificial potential that reproduce the packing

structures observed in a class of point-of-interest active SPP crowd simulations. These

static packings then allow us to precisely identify local structural defects that govern

dynamical group behavior, so that we can predict the locations of rearrangements and

instabilities in dense, active SPP models. Unlike previous methods, these predictions

can be derived from a single snapshot and could be relevant to preventing dangerous

emergent phenomena in real crowd systems.

3.1 Introduction

In recent years, the study of the collective motion of systems comprised of active or self-

propelled constituents has attracted interest from communities of physicists, biologists, and

sociologists. This is because an understanding of this collective behavior is fundamentally
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important to many physical and biological systems across a wide range of length and activity

scales including active colloidal particles, bacterial suspensions, biological tissues, flocks of

birds, and the focus of this work: crowds of people [19, 22, 99–105]. Models for these active

systems in simulations are very similar to molecular dynamics simulations, where motion is

controlled by interactions between constituent particles, but particles in active systems are

driven by an additional active force that propels each particle [101, 102]. In living systems,

these interactions between constituents are often not mechanical but social in nature [101,

106, 107]. For instance, when birds form a flock they typically don’t crash into each other

to determine the direction of the flock [101]. Rather birds can see where their neighbors

are moving and adjust their flight to align with them [101, 107]. For models of crowds of

people, in particular, the constituent “particles” are self-propelled by walking, and models

typically assume some interaction forces due to social rules like collision avoidance and

staying near or aligning with some in-group of people [108, 109]. Although these models

of social interactions are simplifications of human behavior, they qualitatively reproduce

many emergent crowd dynamics such as the formation of unidirectional lanes and stop-and-

go waves [22, 109]. Unfortunately, although these methods are quite good for low-density

crowds where individuals are free to move towards an intended destination, a qualitative

description remains elusive for collective motion in high-density crowds [104].

In extreme situations like riots or concerts, typical social forces break down as a large

number of people become packed into a confined space [104]. This can be very dangerous;

many people are crushed or trampled when a crowd undergoes a sudden collapse [104]. For

instance, recently a human stampede during Madagascar’s independence day celebration

resulted in 15 people dead and 80 injured when a crowd of thousands attempted to push
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into a stadium [110]. It is believed that this stampede occurred because members of the

crowd far from the stadium believed the stadium gates were open and began to push forward.

However, there was nowhere for the crowd to go so the people towards the front of the crowd

were under increasing pressure until eventually there was a collapse.

For these high-density crowds, the primary features that govern the collective motion of

a crowd are the physical interactions between the members of the crowd and the movement

of individuals towards a stage, a door, or some other point of interest [22]. At high densities,

these crowds are no longer fluid-like and are instead better described using tools from the

physics of granular solids [22, 104]. Recent work has focused on active matter models for

human collective motion without terms related to social interactions [22, 104]. This model

for human collective behavior is asocial, where the only forces considered are those from

the physical interactions between the constituent members and the self-generated force that

directs members of the crowd towards a point of interest. We also include random forces to

capture noise or motion not directed toward a point of interest [22].

The primary goal of these models is to determine structural precursors to identify the

location and time of a potentially dangerous rearrangement in the crowd before they oc-

cur [22]. Predictions of where the crowd will collapse or rearrange have previously involved

computing the displacement correlation matrices for noisy simulations [22, 111]. This re-

quires watching the motions in the crowd over some time window using the relative motions

and correlations to determine the effective interaction potential between individuals in the

crowd [111]. The rationale for studying displacement correlations comes from thermalized

colloids. For colloidal systems where fluctuations are driven by thermal temperature, one

can show that, provided there are no rearrangements so particles are confined to a cage by
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their neighbors, the infinite time limit of the displacement correlation matrix can be mapped

to the linear response [22, 111]. However, it is not at all clear that such a relationship holds

in human crowds where fluctuations are not thermal and rearrangements are common.

Next we want to use this information to predict rearrangements and instabilities in

crowds. In a granular system, there are a number of structural measures, that have proven

to be useful to predict rearrangements [35–37, 55, 112, 113]. Many of the best measures rely

on the linear response of a stable packing to predict soft regions where the energy barrier

to rearrangements can be low [113]. One such measure has used an approximation to the

linear response, based on the displacement correlation matrix, to predict soft spots in the

crowd [22]. Given the challenges highlighted above, it would be useful to have a better

method to approximate the linear response. Moerover, such an analysis could be quite gen-

eral and could be useful in situations other than human crowds. It could be used to model

self-propelled colloidal particles in a chemical gradient, animal herds, or even nascent for-

mation of asteroids in microgravity. However, it has not previously been possible to directly

compute the linear response in a self-propelled system due to the presence of non-conservative

forces [114].

To address this challenge, here we demonstrate that, in the limit where the noise contri-

bution to the forces on individuals is negligible, we can exactly predict the linear response

of a self-propelled system using a static model of passive particles augmented by an external

potential. In this framework, we compute linear response to predict regions of rearrangement

when the system is perturbed by noise, as in other granular systems. Our aim is to predict

where people are in danger in a crowd from a single static picture of a crowd rather than an

analysis of random crowd motion over time.
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3.2 Model

Following previous human collective motion studies [22], we model the individuals in the

crowd as simple soft-sphere particles with a self-propulsion velocity, v0, biased towards some

fixed point of interest. Particles in this system interact with a Hertzian contact potential

where the potential energy as a function of distance is given by

Vij(rij) =
2k

5

(
1− rij

ri + rj

)5/2

, (27)

where k is the energy scale associated with the contact potential, rij is the distance between

particle i and j and ri and rj are the radii of particles i and j respectively [115]. In two

dimensions, these systems will crystallize if there is no size disparity between constituent

particles. Therefore, we simulate a binary system comprised of two species of particles with

a size ratio of 1:1.4 to suppress crystallization as the system is compressed [17].

In addition to the interaction between particles, every particle has a self-propulsion ve-

locity, v0. The direction of self propulsion in most self-propelled systems is either randomly

chosen or biased due to alignment with neighboring actors such as birds in a flock align-

ing with each other. By contrast, in our simulation, the self-propulsion velocity is biased

towards a point of interest. Without loss of generality, we choose this point of interest to

be the origin. The self-propulsion velocity has constant magnitude v0 and moves along the

unit vector, n̂i, which is oriented at an angle θ with the positive x-axis. Over time, this

vector turns towards the attracting point on a characteristic time scale such that particles

not initially facing the point of interest will turn to approach it. In this work, we choose this

time scale to be vanishingly small, such that particles instantly orient themselves to propel
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toward the attractor such that n̂i = −r̂ia, where r̂ia is the unit vector that points from the

attractor to particle i.

The net velocity on a particle is computed as the self-propulsion velocity plus the inter-

action forces multiplied by some damping coefficient, Γ, which we set to unity:

−→v i(t) = v0n̂i(t) + Γ
−→
f i(t), (28)

where n̂i is the self propulsion velocity that, in this case, points from the particle i towards

the attaractor at time t and
−→
f i is the net force on particle i at time t. As the magnitude of

the velocity and the radii sets the timescale, we choose v0 and the radius of the small particles

to be unity. We further choose the energy scale associated with the contact potential to be

k = 1000 such that the overlap of particles is below 1% of the radius of the particles when

driven together by self-propulsion.

We initialize the positions of the particles at very low densities such that few if any par-

ticles are interacting. This overdamped self-propelled system, at long times, coalesces into

a stable packing where the net force on any particle approaches zero. We then introduce

noise to these stable systems, in the form of angular or positional noise to the self-propulsion

direction, to investigate random driving behaviors in a crowd from an initial reference con-

figuration.
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Figure 18: Snapshots of a crowd as it forms over time are shown in A, B, C, and D. E) The
maximum unbalanced force in a simulation over time. The red shapes indicate the times at
which each corresponding snapshot of the crowd was taken.

3.3 Symmetry-broken active particle simulations form

static packings

In the noiseless limit, the self-propelled particle simulation where particles are biased

towards a point of interest forms a static configuration at long times. Initially, no particles

are in contact as shown in Fig. 18 A. In this configuration, the net force on any given

particle–and therefore the velocity–is only the self propulsion velocity, v0. In a subset of

these simulations, a particle comes within a threshold of X to the attractor and we pin that

particle to the attractor for numerical stability. We have confirmed that simulation with and

without pinned particles exhibit the same behavior. Over time, members of the crowd begin

to come into contact as the crowd coalesces. However, the maximum unbalanced force is

still given by the particles that have yet to join the main crowd, the self-propulsion velocity.

This coalescence is shown in Fig. 18 B where many members of the crowd are still isolated
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from each other.

After all members join the main crowd cluster, like the snapshot shown in Fig. 18

C, the maximum net force can vary wildly as the system undergoes rearrangements while

compressing towards the point of interest. Finally, after a long period of time, the system

stops rearranging and the maximum net force begins to decrease until the force is within

precision limitations. In other words, at long times the noiseless simulations form stable

jammed packings with no external boundary conditions. To our knowledge, this is the only

active matter system that forms a stable solid, which is possible due to the broken symmetry.

The static configurations, like the one shown in Fig. 18 D, are circular crowds centered

at the point of interest. In this limit, the self-propelled particle simulation is equivalent to

steepest descent in an external potential where the external potential is a constant force

pointing towards the point of interest. The total energy from this external potential is given

by

Uext = v0

∑
i

ria, (29)

where ria is the distance from the attractor to particle i. This implies tools from jammed

packings can be useful to make predictions about the motion in the crowd.

3.4 Modified linear response in an external potential

We consider a generic example where the external potential only depends on the particle

position. Let the potential be defined as

U =
1

2

∑
i

∑
j∈∂i

V (rij) +
∑
i

Ve (−→x i) , (30)
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where ∂i is the neighborhood of particle i, −→x i is the position of particle i, and Ve (−→x i) is the

external potential. The first derivative is given by

∂U
∂xiα

=
∑
j∈∂i

(
V ′(rij)

∂rij
∂xiα

)
+
∂Ve (−→x i)

∂xiα
. (31)

This force has a contribution from internal forces and a second term from the external

interaction. It is crucial to note that this external force on particle i is only dependent on

the position of particle i relative to the external point.

We now consider the Hessian itself to investigate the symmetry directly. The Hessian is

given by

Hijαβ =
∂2U

∂xiα∂xjβ
=



∑
k∈∂i

(
V ′′(rik)

∂rik
∂xiα

∂rik
∂xiβ

+ V ′(rik)
∂2rik

∂xiα∂xiβ

)
+V ′′(rei)

∂rei
∂xiα

∂rei
∂xiβ

+ V ′(rei)
∂2rei

∂xiα∂xiβ
i = j

V ′′(rij)
∂rij
∂xiα

∂rij
∂xjβ

+ V ′(rij)
∂2rij

∂xiα∂xjβ
j ∈ ∂i

0 Otherwise

.

(32)

This is equivalent to the Hessian due to the internal interactions, with an addition of an

external term to the self-interaction blocks, Hiiαβ. Or with an external potential,

Hiiαβ = −
∑
j

Hijαβ +
∂Ve (−→x i)

∂xiα

Ve (−→x i)

∂xiβ
+
∂2Ve (−→x i)

∂xiα∂xiβ
(33)

Therefore, Hiiαβ 6= −
∑

j Hijαβ in the presence of any generic external potential, as the

only requirement is that the external potential only depends on the position of one particle
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relative to some important point. It does not require that this external potential be applied

to all particles, as a single particle with an external potential is enough to break the global

translational symmetry.

To tailor this generic result to the noiseless SPP model described in the previous section,

when all particles experience a velocity directly towards the attractor, we represent the

attracting force as the center of a constant force spring potential:

Va(ria) =
v0ria

Γ
(34)

where v0 is the self-propulsion velocity, Γ is the damping coefficient, and ria is the distance

between particle i and the attractor. This attracting potential breaks translational symmetry

for all particles and results in an athermal static packing of particles without walls to confine

the particles for the usual jamming transition.

We find the force on each particle due to its interactions and the biased self-propulsion

force:

Fiα = − ∂U
∂xiα

= −
∑
j∈∂i

(
V ′(rij)

∂rij
∂xiα

)
− V ′a(ria)

∂ria
∂xiα

= Fint,iα +
v0

Γ
r̂iaα, (35)

where r̂iaα points from particle i to the attractor. The attractive force on a given particle

is critically only dependent on that particle’s position relative to the attractor. To compute

the linear response of the system, we need to find the second derivative of the energy relative

to particle displacements relative to some reference configuration at mechanical equilibrium.

When we compute the dynamical matrix, the off-diagonal elements depend only on the

particle interactions but the on-diagonal or self-interaction terms depend on the particle
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interactions as well as the external potential proportional to v0:

Mijαβ =
∂2U

∂xiα∂xjβ
=



−
∑

k∈∂iMikαβ + v0

ria

(
δαβ − r̂iaαr̂iaβ

)
i = j

V ′′(rij)
∂rij
∂xiα

∂rij
∂xjβ

+ V ′(rij)
∂2rij

∂xiα∂xjβ
j ∈ ∂i

0 Otherwise

. (36)

This alteration to the self-interaction block can dramatically effect the linear response of

the system, as can be seen by the fact that this configuration is stable without walls. We

compute the vibrational modes of the passive system via diagonalization of this dynamical

matrix. This change in the vibrational spectrum due to the external potential alters the

predictions where rearrangements are likely to occur. In our crowd model, the eigenvectors

of this altered spectrum can be used to identify “soft spots” in a crowd which are susceptible

to deformation. It uses only information from a static configuration rather than a long-

time average of motion within the crowd, which may improve our ability to quickly identify

dangerous places in the crowd.

3.5 Structural gradients of static crowds

Most glassy and jammed systems have been studied in a regime where there are no strong

spatial gradients in the material properties. By contrast, crowds are more like sand piles

or sedimenting granular systems where there are strong gradients. For instance, there is a

pressure gradient with high pressure towards the center and low pressure on the boundary.

In Fig. 19 A, we show the decrease of pressure on individual particles throughout the crowd

with a dramatic decrease near the boundary of the crowd.
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Figure 19: A) Pressure on members of the crowd as a function of radius averaged of 15
crowds. B) A sketch of the pressure in an example crowd. C) Vibrability on members of
the crowd as a function of radius averaged of X crowds. D) A sketch of the vibrability in an
example crowd. E) Non-affine vibrability on members of the crowd as a function of radius
averaged of 15 crowds. F) A sketch of the non-affine vibrability in an example crowd.

In systems with external forces, pressure gradients can form to counteract the external

force. For instance, the atmospheric pressure decreases as altitude increases to counteract

the force due to gravity [116]. Similarly, the particles toward the center of the crowd must

support not only their own “weight” due to self-propulsion towards the attractor but also

the weight of all the particles behind them. By contrast, in the absence of external forces,

a region of high pressure pushes particles outward into regions of lower pressure until the
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pressure equalizes throughout the system. Stable configurations in most material systems

have a uniform pressure as a consequence of mechanical or thermal equilibrium.

In addition, there are structural gradients that arise from the external potential of this

system. For instance, we use the dynamical matrix for interacting particles in an exter-

nal potential to compute vibrational modes and structural metrics related to these modes.

The vibrability uses vibrational modes to compute the propensity of mean square displace-

ment in a particle packing as temperature is added to the system in the limit of very low

temperatures [117]. The vibrability on particle i is computed from the vibrational modes:

Ψi = lim
T→0

∂

∂T
〈|−→u i|2〉 =

∑
q

|v̂q,i|2

λq
, (37)

where−→u i is the thermal displacement of particle i, λq is the qth eigenvalue, v̂q is the associated

eigenvector, and |v̂q,i|2 is the squared magnitude of the eigenvector on particle i. On the

boundary there is little to restrain the particles from moving when thermal energy is added

as the density and pressure are lower. Fig. 19 D shows the vibrability field of a crowd, which

exhibits large vibrability near the surface. However, the vibrability gradient shown in Fig.

19 C penetrates deeper into the crowd than one layer of particles.

In addition to quantifying the likelihood of particles moving, researchers in granular

physics are generally interested in where rearrangements are likely to occur. In the con-

text of a crowd model, such rearrangements could be correlated with dangerous events.

These rearrangements are identified as peaks in the locally non-affine motion defined by the

D2
min [26]. Therefore, we introduce the non-affine vibrability as a measure of the propensity

for non-affine motion as temperature is added to the system:
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Ψ̃i = lim
T→0

∂

∂T
〈D2

min,i〉 =
∑
q

∑
j∈∂i

|v̂q,j − v̂q,i|2

λq
, (38)

where ∂i is the neighborhood of particle i defined to be all particles within 5 particle radii

of particle i. Preliminary, it seems there is a plateau in the radial gradient of the non-affine

vibrability shown in Fig. 19 E, beginning at around r = 30 for a system of size 1024.

Visually, this plateau is associated with a lighter-colored ring surrounding a dark core in the

non-affine vibrability field shown in Fig. 19 F. This suggests there could be qualitatively

different rearrangement behavior in the border region compared to the interior.

3.6 Gradients in thermalized active packings

Figure 20: A) The mean squared displacement at 10 τ as a function of radius for 6 different
effective temperatures. B, C, and D are snapshots of a thermally active crowd at 10 τ at
effective temperatures 6.6125, 1.8 and 0.1125 respectively.

Beginning from a stable configuration, we introduce thermal translational noise to model

random agitation in a crowd. The velocities of members of the thermalized crowd over time
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are given by

−→v i(t) = v0n̂i(t) + Γ
−→
f i(t) +−→η i(t), (39)

where −→η i is the thermal noise added to the motion of the particle. This noise is uncorrelated,

gaussian white noise vector with magnitude σ2,

〈−→η i,α(t)−→η j,β(t′)〉 = σ2δijδαβδ(t− t′). (40)

In overdamped, thermal, molecular dynamics simulations of particulate systems, at van-

ishingly low density, the diffusion constant, D = σ2

2
, is related to the physical temperature via

σ2

2
= kBT

Γ
where Γ is the drag coefficient. We have previously chosen the drag coefficient to

be 1; therefore, the thermal energy scale, kBT , as a function of the standard deviation of the

translational noise is given by σ2

2
. We define a unitless effective temperature by comparing

the thermal energy scale with the interaction energy scale

Θ =
σ2

2k
, (41)

where k is the spring constant (energy) associated with our interparticle potential.

As thermal energy is added to the system, we measure the mean squared displacement

of particles after 10 natural time units, τ , which is a local measure of the motility. Fig.

20 A shows the gradient of motility as a function of radius for six different temperatures,

highlighting an increase to the mean squared displacement as radius increases. Particles near

the center are more strongly caged than particles on the boundary. As temperature increases,

the motility increases, but not uniformly. Particles on the boundary, which already move
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more than those near the center, experience a greater increase to their motility at higher

temperatures.

This strong gradient in the mean square displacement is illustrated in Fig. 20 B showing

the motility field for the highest temperature, Θ = 6.6125. This strong gradient clearly

indicates localization of motility on the particles just at the boundary. As the temperature

is decreased to Θ = 1.8 and Θ = 0.1125, shown in Fig. 20 C and D respectively, the overall

intensity decreases. These changes are consistent with the vibrability gradient noted in the

previous section.

3.7 Continuing work

Models for thin films are similar to our model crowds in that they have a free boundary,

but they lack an external force that confines the particles to the film [118]. Therefore, in order

for thin films to have a free boundary, there must be an attractive portion to their interaction

potential, such as the Lenard-Jones potential. Films formed from these attractive particles

have weak pressure and softness gradients only near the surface, but the motility gradient

penetrates quite far into the depth of the packing, further than the softness and relaxation

gradients. This motility gradient, even in regions of constant pressure and softness, has been

explained in terms of activated or Arrhenius processes where the overall rate, R, is given by

R = ωe−
∆E
T , (42)

where ω is the attempt frequency and ∆E is the energy barrier in the potential energy

landscape. Previous work has demonstrated that the pressure and softness set the height of
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the energy barriers associated with rearrangements, while the distance to the surface controls

the attempt frequency [118]. Both softness and the energy barriers are relatively constant

in the bulk of the thin film, while the attempt frequency is much larger towards the edge of

the thin film due to the lack of constraints on particles on the surface.

In our system, not only do we have the free boundary found in thin films, but we also

have strong gradients in pressure and softness that penetrate through the bulk of the system.

This would suggest that active particle crowds could have strong gradients in energy barriers

associated with rearrangements in addition to the gradient in attempt frequency from the

surface of the crowd. This feature could result in enhanced motility gradients due to the

softness gradients.

We are currently working to disentangle the effects of these structural gradients to extract

the gradients in energy barriers and attempt frequencies. Specifically, we are investigating

how much of the motility gradient and the related rearrangement probability gradient is due

to the open boundary versus having pressure gradients or softness gradients.

Additionally, we are investigating how the gradients in pressure, structure, and motility

interact. For instance, since pressure and softness are anti-correlated in packings without

gradients, is the vibrability gradient caused by the pressure gradient generically.

3.8 Discussion

In this chapter, we propose a symmetry-broken self-propelled particle (SPP) model that,

in contrast to typical SPP systems, produces force-balanced granular packings. These pack-

ings exhibit strong radial pressure gradiant and a free boundary. Through modification of the

dynamical matrix used to evaluate linear response measures with a simple external potential,
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we also found these packings demonstrate strong radial gradients in structural measures of

softness such as in the vibrability and nonaffine vibrability. We also contrast our work to

existing studies on crowd dynamics, as our novel approximation for the linear response of

the system does not rely on the dynamics of individual particles evaluated over time.

Our model produces force-balanced, stable packings of self-propelled particles with a

systematic bias towards a central point. We evaluate the stable packing formed in this way

by modelling the self-propulsion as an external potential, allowing us to compute the linear

response and vibrational spectrum of an active material, which, to our knowledge, is the first

time this has been possible. These crowds show strong pressure gradients as well as structral

gradients found with the vibrational spectrum such as the vibrability. These gradients are

not observed in bulk glassy systems or other active matter models.

When thermal translational noise is added to the dynamics, we investigate how these

gradients can be related to particle motility. Similar to results in thin glassy films, we

observe a motility gradient that penetrates into the depth of the packing. However, we are

still investigating how this gradient arises from structural properties of the packing and free

boundary effects.

We seek to answer questions related to the interplay of gradients in our system. How

much is the observed motility gradient caused by structural and free boundary effects? Does

the presence of the strong pressure gradient reinforce a coupling between structure and dy-

namics that is not present in thin films? We study this by investigating the functional

dependence of particle rearrangement probabilities on variables such as nonaffine vibrabil-

ity and pressure. There are also interesting and socially relevant applications of this work
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which include investigating choices of external boundaries which inhibit potentially danger-

ous crowd motility.
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4 Avalanche dynamics in athermal systems

Abstract

Under applied shear strain, granular and amorphous materials deform. At zero tem-

perature, the deformation can be separated into elastic branches where the particles do

not change neighbors and rearrangements where they do. Some rearrangement events

are small and localized, while others involve large or system-spanning avalanches. Using

numerical simulations of soft spheres, we find that avalanches can be decomposed into

a series of bursts of localized deformations, and we develop an extension of persistent

homology to isolate these bursts of localized deformations. Next, we develop a method

to study the linear response of unstable systems during an avalanche, by extending

existing tools for identifying structural defects using the Hessian and study how the

population of structural defects evolves during an avalanche. We find that bursts of

localized deformations in the avalanche correlate strongly with localized excitations

in the linear spectrum. These data should help to constrain elastoplastic models for

glasses and granular matter.

4.1 Introduction

Can we predict how amorphous materials, such as sand, mud, bulk metallic glasses [20,

119], colloidal suspensions [120], foams [121, 122] fail under stress? This question is impor-

tant in many diverse fields from statistical physics to material science to geophysics where

one hopes a fundamental explanation of this response will allow one to control failure mech-

anisms, such as shear band formation and avalanche dynamics [119]. Avalanches in granular

systems, like rock- and mud-slides, are potentially deadly examples of this catastrophic failure
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phenomenon in relatively soft materials. It is crucial to understand these system-spanning

rearrangements to be able to predict when and where they are likely to occur and, if pos-

sible, find methods to prevent such failure modes in manufactured materials. For instance,

bulk metallic glasses are stronger and more elastic than their crystalline counterparts which

would seem to make them excellent candidates for structural materials [20]. However, unlike

the ductile bending of steel and other metals, when these materials fail, they fail catastroph-

ically [20, 123]. A better understanding of the underlying mechanisms of this failure could,

in principle, give material scientists the tools to better predict failure which would allow

replacement or repair before the failure occurs.

Under small deformations or forces, amorphous materials respond like elastic solids where

the shear stress increases with strain, although small rearrangements can occur in this

regime [124]. Above some critical threshold in stress or strain, amorphous materials typ-

ically yield in irreversible plastic deformations, and the resulting macroscopic stress-strain

curve approaches a constant [124]. However, different materials exhibit vastly different be-

haviors during this yielding transition [124]. Soft, ductile materials like foams and emulsions

yield in a smooth and gradual process as the system begins flow under stress [125]. On

the other hand, when hard, brittle materials cross this critical threshold, they tend to yield

abruptly and catastrophically via crack, shear band, or avalanche. [119, 125]. Unfortunately,

it remains unclear what micro- or meso-scopic features govern this brittle-to-ductile transi-

tion. Previous work on athermal avalanches have largely focused on systems under athermal

quasistatic shear, where configurations are analyzed before and after the system spanning

rearrangements [126, 127]. A few works have also focused on packings sheared under finite

strain rate [127]. These studies evaluate the size, statistics, and shape distribution of these
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avalanches as a function of material preparation and material properties, with a specific focus

on the ductility of the initial configuration [124, 127]. Avalanches in ductile systems are typ-

ically not well organized in space and can occur with relatively little energy imparted to the

system. Brittle systems, however, exhibit shear bands, which can be viewed as avalanches

that organize along a plane in three-dimensional systems or along a line in two-dimensional

systems. Several studies of avalanches additionally analyze how the shape and size of these

rearrangements depend on dynamic features such as strain rate or inertia [26, 127].

Phenomenological work has focused on understanding the transition from ductile to brit-

tle failure in terms of macroscopic system parameters such as composition, temperature,

or preparation [128–130]. Explanations of this brittle-to-ductile transition have been based

on analysis from first order transitions in replica theory [129, 131] or directed percolation

transitions [132, 133]. Recently some authors have used mesoscopic elastoplastic models to

investigate the origin of the transition from a brittle-to-ductile behavior [129, 130]. In these

models, it is assumed the system is comprised of independent, mesoscopic yielding regions

and that the stress to yield in each region is taken from a specified distribution. This distri-

bution reflects degree of annealing with which the system is prepared. In poorly annealed

systems, the average value of this local yield stress distribution is expected to be small,

while in well-annealed systems it is large. This hypothesis is strongly supported by work

from Patinet et al. [55] who explicitly measure local yield stresses, with some assumptions

and caveats, in simulated granular systems.

As an elastoplastic system is strained, the stress in each mesoscopic element increases

until the stress in one region surpasses the yield stress and fails, potentially triggering other

regions to fail according to a non-positive-definite elastic kernel. At this point, the stress and
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yield stress for the original failed region are resampled from another distribution. The result-

ing stress strain curves for different initial yield stress statistics reveal that the qualitative

yielding behavior is dependent on the initial stability. Poorly-annealed systems, systems

in the shallow minima, have a smooth, ductile yielding behavior while well-annealed sys-

tems exhibit brittle failure under the application of stress. As the degree of annealing is

decreased, the discontinuous jump in stress at the point of brittle failure becomes weaker

until it approaches zero at a particular value of the disorder [29]. This indicates that the

variety of yielding behaviors of disordered materials are fairly generic across different types

of particle interactions or microscopic dynamics; the transition from soft yielding to sudden

catastrophic failure is controlled by the degree of annealing which controls the initial stability

of the system [29, 30].

Other models such as Shear Transformation Zone (STZ) and Soft Glassy Relaxation

(SGR) also describe localized regions that deform and fail within the glassy systems [25,

27]. These models make similar assumptions about the distribution of soft spots or yield

stress throughout the system, but they are mean-field in the sense that the yielding of one

region effects the stress everywhere else equally instead of via a non-positive elastic kernel.

Moreover, in some versions of these models researchers postulate that there can be local

diffusion of softness; rearrangements in one location can cause nearby locations to become

soft [125]. At a microscopic level these models assume that plasticity is controlled by “shear

transformations”, the discrete localized events where a small number of particles rearrange

locally, which release the accumulated stress [25, 134]. Similar to elsatoplastic models [130],

this implies system-spanning rearrangements such as avalanches or shear bands are expected

to occur in bursts of localized motion. The largest difference between models is how these

75



defects are coupled dynamically during an avalanche. Elastoplastic models couple defects

by explicitly quadrapolar elastic stress fields while the STZ/SGR models couple defects via

local structural changes and noise. In order to test these predictions for coupling between

soft spots during avalanches, we first need a robust method for extracting soft spots from

unstable amorphous packings.

While plastic deformation in crystalline lattices occurs via dislocations and grain bound-

aries [135], this picture breaks down in amorphous systems where the concept of a defect

is not well defined. However, recently tools have been developed that are fairly accurate in

predicting the locations of small localized rearrangements, particularly in soft systems [35,

36, 55, 113, 136, 137]. Several of these measures focus on the linear response while more

complex methods have gone beyond linear-order estimation of motion to evaluate the highly

nonlinear response near a saddle point or instability.

For instance, the local yield stress developed by Patinet and collaborators quantifies

the applied stress required to make a localized region fail. To compute this metric on a

particular particle, all particles beyond a fixed distance are forced to move affinely, as in

perfectly elastic deformation, while particles within that distance are allowed to relax to

minimize their energy. When the particles within the relaxing region fail, the additional

stress to failure can be recorded as a function of the angles associated with the applied

external shear. The lowest of this set of “stresses to failure” for each region, called the local

yield stress, is a direct, non-linear measure of the additional force to make a region fail [55].

Although this method is extremely good at predicting locations of material failure, it is

time-intensive to compute and cannot be directly tied to the local structure.

To address these issues, other methods have focused on the linear response. Such mea-
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sures are computed from the dynamical matrix which determines the linear equations of

motion for a stable system and is defined as the matrix of second derivatives of the energy

with respect to particle displacements [114]. One of the best measures is the nonaffine veloc-

ity, the nonaffine part of the deformation due to the force caused by additional strain [113].

Other structural metrics simply use the lowest energy eigenmodes of the dynamical ma-

trix, or vibrational modes, which are the modes most emphasized in the nonaffine velocity [35,

36, 113]. For instance, the lowest energy vibrational mode just before the instability predicts

the motion very well in these isolated rearrangements [36, 37]. Machine learning methods

have also been investigated to predict this deformation, but rather than train on the actual

motion, these methods have had better success training on this vibrational mode in an effort

to find the defect-like structures that trigger rearrangements [112]. However, all of these

predictions are notoriously bad at predicting the full deformation field during brittle failure

event or a large scale system-spanning avalanches in ductile systems [113].

One obvious reason that linear response measures predict avalanches so poorly is that

these measures are computed once before the avalanche, and do not evolve during the

avalanche. This is because the dynamical matrix, which governs the linear response of stable

systems, has traditionally been used to describe systems in mechanical equilibrium [114].

In this case, the eigenvalues of the dynamical matrix, which describe the curvature of the

potential energy landscape are all positive [114]. However, if there is one or more negative

eigenvalues, then the system is unstable along the associated eigenvectors. Under athermal

quasistatic shear, a rearrangement or avalanche occurs when the lowest eigenvalue transitions

from positive to negative at a saddle point in the potential energy landscape [4]. Therefore, it

is obvious to ask whether some of the methods for identifying soft spots in positive-definite
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dynamical matrices can be extended to Hessians describing unstable systems with one or

more negative eigenvalues.

In this Chapter, we develop such extensions and calculate soft spots in order to investigate

how they evolve over the course of an avalanche. To understand whether we can really

describe avalanches as bursts of localized motions, we develop a new method for isolating

non-affine movements in the D2
min field [26] described in more detail below using persistent

homology to robustly separate an avalanche into a set of localized rearrangements. Finally,

we compare these rearrangements to evolving soft spots to understand how soft spots are

coupled to generate the observed dynamics. These methods would be useful not only for

quasistatically sheared athermal systems, but potentially many other unstable systems such

as active matter systems, which may be amenable to similar techniques, or thermal systems

which are typically not in mechanical equilibrium.

4.2 Model

The system studied in this paper is a bidisperse granular packing. Particles in this

system interact with a Hertzian contact potential where the potential energy as a function

of distance is given by

V (rij) =
2

5

(
1− rij

ri + rj

) 5
2

(43)

where rij is the distance between particle i and j, and ri and rj are the radii of particles

i and j respectively [115]. This binary system is comprised of two species of particles with

a size ratio of 1:1.4 in order to suppress crystallization [17]. Two-dimensional systems are

initialized with random positions in a square periodic simulation box with equal parts small
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and large particles. The systems are then instantaneously quenched to zero temperature via

FIRE energy minimization [138].

After the quench process, the systems are strained using Lees-Edwards boundary condi-

tions. In this method, the periodic replicas above and below the system are shifted horizon-

tally to impose a simple shear on the simulation box. The speed at which these replicas move

relative to the size of the box determines the shear rate of the system. We simulate athermal

quasistatic shear (AQS) by taking a small shear step and minimizing the total energy of the

system using a FIRE minimization algorithm. Since the system is allowed to relax as long

as necessary to find an energy minimum after each shear step, this approximates a strain

rate that approaches zero in large systems.

Following each strain step, the shear stress of the minimized configuration is measured.

If the instantaneous change in shear stress is larger than a specified threshold, which signifies

an instability, we use a linear bisection algorithm to identify the precise strain at which the

instability occurs. Using this procedure, we are able to isolate the system just before and

just after an instability corresponding to a particle rearrangement.

Once we have identified a particle rearrangement event, we then wish to simulate the

dynamics of that event. In athermal quasistatic shear, the minimum energy states are usu-

ally identified by fast algorithms that do not correspond to any realistic dynamics such as

the conjugate gradient minimization scheme or the FIRE minimization algorithm. To sim-

ulate athermal dynamics during an avalanche, we minimize energy using a simple steepest

descent algorithm with an adaptive timestep. Despite being one of the most computation-

ally expensive minimization algorithms, this method is equivalent to a noiseless molecular

dynamics simulation in the overdamped limit where the velocity is given by the force with
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some damping coefficient, which we use to define the natural time unit of the system.

4.3 Plastic motion in avalanches occurs in bursts

Plasticity in disordered systems is well captured by the D2
min, a measure of the nonaffine

motion [26]. D2
min compares two configurations of a system by measuring the local motion.

We choose “local” to be within five particle radii from a central particle because this captures

next nearest neighbors, and previous work suggests the core of localized rearrangements

typically involve 15-20 particles. This is computed as a scalar value on each particle, i, with

D2
min,i

(−→
X 1,
−→
X 2

)
=

∑
j:rij<5r̄

(−→rij2 − S−→rij1)
2
, (44)

where
−→
X 1 and

−→
X 2 represent the two configurations being compared, rij is the distance

between particles i and j, r̄ is the average particle radius, −→rij1 and −→rij2 are the vectors that

separate particles i and j in the first and second configuration respectively, and S is the best

fit affine transformation that minimizes D2
min,i. The D2

min is measured in units of distance

squared.

Typically, for quasistatically sheared systems, the configurations to be compared are

separated by strain where one configuration is obtained by straining some reference configu-

ration. If the system has deformed elastically between the two configurations, the measured

D2
min is negligible as elastic motion is usually locally affine in granular materials. If, however,

there is some plastic deformation between the two configurations, the D2
min will highlight the

region in which the deformation took place as plastic deformation cannot be well described

by an affine transformation.
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Unlike previous studies, our goal is to measure instantaneous plasticity over time. There-

fore, we measureD2
min between two configurations separated by a small time window through-

out the minimization. The bursts of localized deformation we want to focus on have a dura-

tion on the order of one natural time unit, so we choose to measure the plasticity over a time

window, ∆t, of 0.2 time units to obtain good resolution. We denote the plasticity measured

at time t with

D2
min,i(t) = D2

min,i

(
−→
X

(
t− ∆t

2

)
,
−→
X

(
t+

∆t

2

))
(45)

where
−→
X (t′) is the configuration at time t′. This measure is a scalar field measured on each

particle over space and time. Examples of the D2
min during one avalanche are shown in Fig.

21 A, B, and C.

As shown in Fig. 21 D, the maximum value of the D2
min shows clear bursts of motion

where the maximum value increases by orders of magnitude rapidly and decreases just as

quickly. Furthermore, the fields shown in Fig. 21 A, B, and C, chosen because they are

the peaks of the three largest bursts of motion, show the location of the particles that are

responsible to these bursts of motion are different for each burst.

One thing to note is the time at which these bursts start. The first burst doesn’t begin,

in this example, until 868 natural time units after minimization starts. Leading up to that

point there is very little motion or interesting activity to note. The reason for this delay

time is the system begins very near the saddle point instability that triggers rearrangement.

Near this saddle point the net force on the system is very small and since the velocity in

steepest descent is given by the force, the velocity is also small. It takes time for the system

to leave the saddle point behind and approach the region of interest. Similarly, after all the
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Figure 21: Snapshots of the D2
min field over time are shown in A, B, and C. D) The maximum

D2
min as a function of time for an example avalanche. Red symbols indicate the times at

which the snapshots were extracted.

rearrangements have finished, the system relaxes to a minimum and becomes increasingly

slow as it approaches. These build-up and relaxation phases take up the bulk of the time

during steepest descent minimization, taking on the order of hundreds or thousands of time

units, while the system only rearranges for on the order of tens of time units for the system

sizes we study.
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4.4 Avalanches can be decomposed into bursts of lo-

calized deformation

It appears that the bursts of localized motion are localized to relatively small groups of

particles. To investigate this, we introduce a novel clustering algorithm taking inspiration

from Persistent Homology and hierarchical density-based clustering methods.

Our goal is to highlight isolated peaks in the nonaffine motion in this system over space

and time to quantify whether the motion during an avalanche occurs in localized bursts. The

simplest picture one could imagine is applying a plain threshold on the nonaffine motion.

However, it is clear that applying a bare threshold to a function could easily lose impor-

tant peaks and may not well separate the most active peaks and, furthermore, this kind of

clustering is very sensitive to the threshold value which must be determined arbitrarily.

By contrast, persistent homology is a sophisticated analysis method for robust charac-

terization of topological features of a set of data or a function over space. It can be used

to characterize the height and spatial extent of topological features like local maxima and

minima [139]. This method has typically been used to quantify the typical heights and sizes

of the peaks in a test function and separate them from a noise level, but it has not routinely

been used to identify isolated clusters. Here we introduce changes to the standard persis-

tent homology method to identify these isolated clusters using features from hierarchical

density-based clustering.

First, in order to determine whether two particles belong to the same cluster, we set a

distance cutoff of five particle radii, ζ = 5r̄, the same distance used in the computation of

the D2
min. If the distance between particles is below this threshold then we consider them to

83



be part of the same cluster. Furthermore, in order to cluster in space and time together, we

make replicas at every time step, chosen to be 0.01 natural time units, so that we have good

temporal resolution of the deformation. Additionally, we must set a conversion constant, c,

between distances in time and distances in space. We choose this conversion such that a

separation in time equal to half the ∆t used in the D2
min computation is equivalent to cutoff

distance ζ or

c =
2ζ

∆t
. (46)

The distance between two particles in space-time is given by the usual distance in periodic

boundary conditions, d(−→x i,
−→x j), modified by the temporal distance

d̃(i, j) =
√

(d2(−→x i,
−→x j) + c2(tj − ti)2), (47)

where −→x i and ti are the position and time of particle i.

Next, we identify a lower-bound value for the cluster volume in space-time, and we will

explore larger values later during an optimization procedure. This volume is the sum over

the number of particles in each frame of the avalanche. By filtering on the volume, we

eliminate small fluctuations near the maxima of the D2
min field over space and time. We

specify that when clusters above this size threshold merge they create a new cluster. We

identify a region in threshold space where this minimum size does not have a strong effect

on the clusters found as it is large enough to clear out noise but small enough to not lose

information.

As we perform the persistent homology procedure, we track which events merge to form
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Figure 22: A) A portion of the persistent clustering tree diagram for a single avalanche. The
y-coordinate indicates the D2

min value at which the cluster forms. The clusters are colored by
their volume. B) The mutual information between the clusters identified at different volume
thresholds.

new events to generate a tree diagram. The clusters along a branch in this tree overlap each

other in time and space since the merged cluster contains at least every particle in the initial

clusters. Therefore, the leaves of this tree diagram do not overlap. We identify the leaves

of this tree diagram as the set of isolated clusters. In Fig. 22 A, we show a portion of the

tree diagram derived from the persistent clustering algorithm where the clusters are colored

according to their volume.

Next, we can use this basic tree diagram to optimize the volume threshold. Specifically,

we can define a new threshold on the volume of the clusters and prune this tree diagram

to find the equivalent clusters as if we had run the whole analysis again with a new volume

threshold. This allows us to rapidly generate and compare the results of different thresholds.

In this work, we choose 500 as the value for this threshold as it is the beginning of a plateau

where increasing the size has limited changes to the identified clusters. In Fig. 22 B, we show

the relative mutual information between the clusters identified at different size thresholds.

From a volume threshold 500 to 900, bounded by a black box, there is only a 10% variation
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in the relative mutual information.
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Figure 23: A) The clusters identified by the persistent clustering analysis in one example.
B) The plot of the maximum D2

min over time highlighting the D2
min of each cluster in A.

In Fig. 23 A, we show a spacetime plot of the clusters of nonaffine motion, as measured by

the D2
min. Not that this system has periodic boundary conditions in the x and y directions.

Some of the bursts of localized deformation cross this boundary but are indeed still one

single cluster. These clusters meaningfully highlight nonaffine motion in the system during

an avalanche. In Fig. 23 B, we show the nonaffine motion occurs in peaks over time, where

the black curve shows the D2
min,i(t) maximized over particles, indicating that avalanches

occur in bursts of motion. The localized clusters on this nonaffine motion are well separated

in time and space and represent the local maxima as seen in Fig. 23 B, where the clusters

clearly highlight the peaks in motion over time.

From the beginning of the first burst of localized deformation to the end of the last burst,

on average the bursts of localized deformation account for 63± 19% of the nonaffine motion

while only accounting for 4 ± 2% of the spacetime volume. These clusters are localized,

typically involving less than 100 particles at any given time. The distribution of the spatial

extent of the bursts of localized deformation is shown in Fig. 24 A. This distribution has a
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Figure 24: A) The distribution of the size of the identified bursts of localized deformation in
100 avalanches. The dashed line shows a log normal distribution. B) The distribution of the
duration of bursts of localized deformation. The dashed line shows a lognormal distribution
with the same mean and standard deviation as the duration histogram. C) The relationship
between the duration and the size of the burst of localized deformation identified in 100
avalanches. The dashed line shows the threshold for the spacetime volume of the clustering
algorithm.

heavy tail such that the majority of the bursts are relatively small, where the median of this

distribution shows half of the bursts of localized deformation involve fewer than 61 particles.

We have indicated a lognormal distribution to guide the eye and show this size distribution

appears to be consistent with a log normal distribution.

Additionally, we investigate the duration of these bursts of localized deformation. In Fig.

24 B, we see that the duration of bursts of localized deformation are distributed around unity

with a mean value of 2.7 natural time units. Since the duration has a mean that is comparable

to the standard deviation but is required to be positive, we hypothesize the distribution of

the duration of bursts of localized deformation follows a log-normal distribution. As can be

seen by the dashed line in Fig. 24 B, we plot a log-normal distribution with the same mean

and standard deviation and find an excellent consistency. Interestingly, the duration and

the size of each burst of localized deformation does not appear to have a strong correlation,

as shown in Fig. 24 C. In other words, larger bursts do not seem to take longer to complete

than smaller bursts of localized deformation.
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4.5 Effective linear response in unstable systems

First, we note that any structural measure which relies on changing the system and

measuring the response, like the nonaffine velocity, are not particularly useful in the context

of unstable systems because they are infinitely susceptible to perturbation in the unstable

directions. Therefore, we focus on the Hessian matrix, an analogue to the dynamical matrix

in unstable systems.

To linear order, the equations which govern the deformation of mechanically stable sys-

tems are given by the dynamical matrix, M , where the response force,
−→
F , due to a trans-

formation, −→u , is given by

−→
F = M−→u . (48)

Explicitly the entries of the dynamical matrix are defined as the second derivatives of the

energy with respect to particle displacements, −→u , relative to a mechanically stable state.

If there is no mechanically stable reference state, the dynamical matrix cannot be defined.

However, the Hessian matrix, H, whose elements are defined as second derivatives of the

energy with respect to particle positions, is always defined. Critically, the Hessian matrix

can be defined in unstable systems where the force on at least one particle is nonzero.

To understand the relationship between these objects, it is prudent to inquire about the

relationship between derivatives with respect to displacements from a reference state and

derivatives with respect to positions. If we consider the derivative of displacing particle i in

direction α, we can use the chain rule to find relationship to the positional derivatives in the

system

∂

∂uiα
=

∂

∂xjβ
× ∂xjβ
∂uiα

(49)
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If we now choose an arbitrary reference state whose positions are given by −→x 0, the positions

of particles after displacements is given by

−→x = −→x 0 +−→u (50)

It is clear by construction that
∂xjβ
∂uiα

= δijδαβ. Therefore, derivatives with respect to particle

displacements are equivalent to derivatives with respect to particle positions.

∂

∂uiα
=

∂

∂xiα
(51)

Thus when the dynamical matrix is defined it is equivalent to the Hessian matrix. This is

further illustrated in the Taylor series expansion of the response force due to some transfor-

mation, −→u , from a reference configuration:

−→
F =

−→
F0 −H−→u . (52)

Here
−→
F0 is the net force on the system due to interaction between particles, thermal noise,

or active forces in the reference configuration. In the special case of mechanical equilibrium,

where
−→
F0 = 0, we recover the behaviour in Eq. 48 where the dynamical matrix is identical

to the Hessian. In other words, the total response force is not given by the same equation

in stable systems, but the change in force, ∆
−→
F =

−→
F −

−→
F0, due to some deformation is given

by an analogous equation: ∆
−→
F = H−→u .

Therefore, we compute the normal modes of the Hessian in this unstable system to

describe features analogous to the vibrational modes in stable systems. Structural measures
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derived from these modes have had good agreement with localized rearrangements in stable

systems [35, 36, 113]. Typically, these structural measures normalize the modes with the

inverse of the eigenvalues to highlight the lowest vibrational modes by the relative amount of

energy to excite each mode [113]. However, in our unstable system, particularly when close

to saddle points in the potential energy landscape, we expect to have negative eigenvalues of

the Hessian. If we have negative eigenvalues, the inverse of the eigenvalues does not highlight

the lowest energy modes, but only the modes close to zero.

Although we expect to start the minimization with at least one negative eigenmode,

it is not required that there be a negative eigenmode throughout the avalanche. In fact,

the system cannot reach a stable mechanical equilibrium without first passing through an

inflection point such that all negative eigenvalues become positive since, when the system is

near a minimum, all of the eigenvalues must be positive. Therefore, at least one eigenvalue

must change sign during an avalanche, however it remains unclear how often or to what

degree the eigenmodes will change sign.

In addition, since the Hessian is a random matrix, one generally expects there to be

avoided eigenvalue crossings and eigenvalue mixing as the strain continuously changes during

the avalanche. In practice, however, the low and negative eigenvalues in the spectrum

experience very narrowly avoided eigenvalue crossings as a function of strain, and analysis

of the eigenvector overlaps suggests that the eigenvectors are not mixing significantly and

instead they are essentially switching rank. An interesting open question is how frequently

these rank switching events occur for the lowest (most negative) eigenvalues, and how those

switching events impact the system dynamics.

If the eigenmodes do not switch rank very often, we can predict the motion of the system
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using the unstable force and the eigenmodes of the Hessian. Since in the overdamped limit

of our simulation the velocity is given by the force, we can find how the system evolves by

taking a time derivative of the force,

d
−→
F

dt
= −H

−→
F . (53)

In the eigenbasis, we find the force or the velocity along each eigenmode is described by

dFi
dt

= −λiFi, (54)

where λi is the eigenvalue of the ith mode. The solutions to this simple differential equation

are exponential decays for positive eigenvalues and exponential growth for negative eigenval-

ues. Note that there is no oscillation. Since we use an inertia-free simulation, information

does not propagate through the system via phonon modes, but rather deformation diffuses

throughout the system. Since the lowest modes either decay the slowest or grow expo-

nentially over time, ultimately the force is dominated by the lowest mode independent of

whether the system is stable or unstable. Perhaps the simplest hypothesis for the avalanche

dynamics is that each of the localized rearrangements follow the single lowest vibrational

mode, and then changes in the structure caused by the rearrangement identify a new lowest

eigenmode and the next localized rearrangement follows this new unstable mode. Below, we

will show how and why this hypothesis fails in avalanches we observe in our simulations.
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4.6 The lowest “vibrational” modes change rapidly through-

out minimization

In our unstable system, we investigate the dynamic behavior of the eigenvalues of the

Hessian during deformation in order to probe the curvature of the energy landscape along the

minimization path. If the potential energy landscape was simple we would expect a single

negative eigenvalue that becomes positive as the system approaches the energetic minimum.

In fig. 25 A, we show the lowest ten eigenvalues over the course of an avalanche. Initially,

there is only one negative eigenvalue before the main rearrangements occur and, after the

rearrangements, all eigenvalues are positive as the system approaches the minimum, as ex-

pected. However, during the rearrangements, the eigenvalues change very dramatically–on

the scale of an order of magnitude–in sudden jumps often to become more negative. Sur-

prisingly, unlike in a simple picture of a single inflection point, many eigenvalues can become

negative between the initial configuration, near a saddle point, and the final configuration

at a local minimum in the energy landscape. As can be seen in Fig. 25 B, here can be

as many as 5 or 6 negative eigenvalues as the system rearranges. This is indicative of the

system passing nearby many saddle points or higher order saddle points during deformation,

although our data do not distinguish between these two cases.

Contradicting the simplest hypothesis outlined above, we find that the lowest eigenmode

changes significantly multiple times in each burst of localized deformation. In Fig 26 A and

E, we show the dot product of the lowest eigenmode at time t with the lowest eigenmode at

time t+ δt, where δt is 0.01 time units, during two separate bursts of localized deformation.

This measure is nearly 1 if there has been little change in the direction of the lowest mode
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Figure 25: A) The lowest 10 eigenvalues of the Hessian as a function of time for a single
avalanche simulation. B) The number of eigenvalues below zero as a function of time.

in this high-dimensional phase space. On the other hand, this measure will be smaller than

1 if there is a sudden change in the lowest mode, such as a change to which particles are

most engaged in the mode or the directions in which the particles are engaged. The burst

of localized deformation highlighted in Fig 26 A-D has few, relatively small changes to the

lowest eigenmode as shown in Fig 26 A. This short burst of localized deformation is well-

isolated in time from other deformations such that no other bursts occur simultaneously. On

the other hand, the burst of localized deformation in Fig 26 E-H is much longer and occurs

simultaneously in time with bursts in other locations. This burst of localized deformation is

concurrent with many substantial changes to the lowest eigenmode, to the point where the
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lowest eigenmode can become nearly orthogonal to itself a short time later, on timescales

much shorter than the duration of the bursts of localized deformation, as shown in Fig 26 E.

These sudden changes are caused by motions that rapidly alter the Hessian, ie. motions not

well captured by linear response. Most of these peaks of these large changes coincide with

topological changes to the system such as contact changes, buckling in the contact network,

and even T1 transitions in the Voronoi diagram.

However, despite these sudden changes in the eigenmode structure, the force, or velocity,

does not change rapidly with these mode-switching events. If the burst of interest begins

at time t0, Fig 26 B and F show the evolution of the force in the direction of the lowest

eigenmode at the beginning of the bursts of localized deformation, |F̂ (t) · v̂1(t0)|. As we only

measure the unit force, this quantity is unity when the force is completely in the direction

of the initial lowest eigenmode and near zero if the force is orthogonal to the initial lowest

eigenmode. In both these bursts of localized deformation, the force is well aligned with

the lowest eigenmode. Furthermore, the force near the beginning of the burst of localized

deformation turns to become better aligned. The force in the well isolated burst of localized

deformation shown in Fig. 26 B becomes almost perfectly aligned with the lowest eigenmode

at the beginning of the burst of localized deformation. However, after the sudden changes

to the eigenmodes, the force turns away from the initial lowest eigenmode. There is not a

sudden change to the force in the initial lowest eigenmode or the slope, rather the turn is

exponential as the force decays to the new lowest eigenmode. Note that the force in Fig. 26

B doesn’t have far to turn since the lowest eigenmode changes relatively little. This turning

effect is somewhat more pronounced in the green burst of localized deformation in Fig. 26

F which takes place over a longer timescale and involves much more substantial changes to
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the direction of lowest eigenmode. In this burst of localized deformation, the force becomes

nearly orthogonal to the initial lowest eigenmode.
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Figure 26: A-D) Evolution of the eigenmode with the most negative eigenvalue
in a simple event A) The dot product of the lowest eigenmode at time t with the lowest
eigenmode at time t+ δt . The verticle pink lines indicate times when the lowest eigenmode
has changed significantly, specifically when |v̂1(t) · v̂1(t+δt)| < 0.95 for δt = 0.01. B) The dot
product of the normalized force vector at time t with the eigenmode at the beginning of the
burst of localized deformation, t0. C) The weight of the lowest eigenmode in the deformation
region. D) The number of particles in the deformation region as a function of time.
E-H Evolution of the eigenmode with the most negative eigenvalue in a complex
event Parts E), F), G), and H) show the instantaneous change in the eigenmode, the force in
the initial lowest eigenmode, and the weight and number of particles for another two bursts
of localized deformation occurring simultaneously where the green curves indicate the burst
of localized deformation we focus the time window on and the orange curves refer to another
burst of localized deformation.
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In Fig. 26 C we investigate the weight of the lowest eigenmode in the burst, defined by

WI =
∑
i∈BI

∑
α

v2
1,iα (55)

where BI is burst of localized deformation I and v1 is the lowest eigenmode of the Hessian.

At the point where there is a sudden change in the lowest eigenmode, indicated by the dashed

lines, there is a sudden shift in the weight of the lowest vibrational mode in this burst of

localized deformation. However, in Fig. 26 D, we show the number of particles in the burst

of localized deformation does not change instantaneously at that point. This suggests that

lowest eigenmode was localized to the burst location, but, after structural changes during the

deformation, the lowest vibrational mode moves out of the burst location. After this sudden

change to lowest vibrational mode, the size of the burst of localized deformation begins to

decay slowly. This behavior is reflected again in the burst of localized deformation focused

on in Fig. 26 G, where the weight of the lowest vibrational mode in the burst location

changes suddenly when there is a large sudden change to the vibrational mode. Again, the

size of the burst does not change instantaneously Fig. 26 H. One distinction of this burst

from the burst shown in Fig. 26 C is that the lowest vibrational mode jumps in and out of

the burst location at the sudden changes to the lowest vibrational mode.

Other bursts of localized deformation have little to no interaction with the lowest eigen-

mode, but are potentially driven by other modes since we know that there are multiple

unstable modes while the system is rearranging. For instance, the orange curve in Fig. 26

H indicates the size of another burst of localized deformation, but the weight of the lowest

eigenmode in this burst of localized deformation is significantly lower than in other bursts
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maximizing at a value of 0.01. This value is too small to show by an orange curve in Fig. 26

G on the scale necessary to view the red and green curves in Fig. 26 C and G respectively.

4.7 Soft spots evolve during avalanches

As there are many changes the lowest eigenmode and the other modes, rather than

measuring the overlap with each mode individually, we compute a softness field over space

and time as a linear sum of the nonaffine part of the lowest eight modes. Here the non-

affinity of a mode is computed using the D2
min algorithm on each eigenvector as if it were

a displacement field, with the same lengthscale used to quantify deformation, five average

particle radii.

We have chosen to use the eight lowest modes in order to ensure that all the unsta-

ble eigenmodes of a system are included in the structural measure. Furthermore, we have

investigated how many of the lowest vibrational modes contribute significantly to other struc-

tural metrics. In particular, we focus on the vibrability, or thermal susceptibility of motion,

measured just before the rearrangement. We find the total vibrability of the system is well-

approximated by summing over a very small number of modes. Specifically, the vibrability

summed over only the lowest eight modes approximates the true vibrability to within 98%.

This measure is expected to capture important features of the eigenmodes while being less

sensitive to structural changes than one eigenmode alone. We expect the number of modes

needed to capture the salient features of the structure to increase linearly with system size.

Having chosen a softness field, we identify the soft spots in spacetime with the same

persistent clustering algorithm used to compute the bursts of localized deformation. We

choose a size threshold of 1000 to optimize correlation with the bursts of localized deformation
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Figure 27: A) The average maximum correlation for each burst of localized deformation as
a function of the volume threshold. B) A spacetime plot highlighting the localized soft spots
found by clustering on the softness field over time for a volume threshold of 1000. Note the
x- and y-directions in this system have periodic boundary conditions.

found previously, as shown by the maximum in Fig. 27 A, where we plot the average of the

maximum correlation of soft spots with each burst of localized deformation. The space- and

time-locations of these soft spots are shown in Fig. 27 B. These soft spots are much smaller

in space than the bursts of localized deformation, with the largest soft spot on the order of

30 particles. Although the lowest eigenmodes change significantly on the order of 100 times

across 12 localized bursts in this example, we measure only 25 unique soft spots, many of

which exist simultaneously.

It is important to note that the soft spots, while localized in space, are mostly columnar

in time, indicating there is relatively little change to the soft spot over time. Therefore,

they are more stable in time than the lowest eigenmode, as they change comparatively few

times in across the avalanche. This is also a radically different time profile than the bursts

of localized deformation in the strain field such as those in Fig. 24 A.

One issue with the current method for clustering soft spots is disconnection over time.
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Many times a soft spot will occur in the same place as another soft spot separated by

small amount of time, indicating that these two soft spots are likely the same soft spot,

but our persistent clustering method has separated them. However, applying larger size

thresholds on the volume of the clusters often results in joining many soft spots together.

Furthermore, there is a large variation in timescales of the soft spots with many long-lived

soft spots existing simultaneously with a number of very short-lived soft spots. Increasing

the thresholds will result in the removal of some number short-lived soft spots which have

good correlation with bursts of localized deformation.

We have attempted multiple methods for correcting this error. For instance, we have de-

veloped a second clustering algorithm inspired by watershed image processing, which prunes

clusters not by their space-time volume but rather by the persistence of the individual peaks.

Further, we are investigating modifications to the filtration of the persistence tree to prune

leaves with a threshold on features like the persistence of clusters rather than the volume

alone. We are also currently testing using larger time windows for the clustering of the

softness field rather than using the the same time windows as we used in the clustering of

the D2
min, which also may address this problem.

4.8 Dynamic soft spots correlate with bursts of local-

ized deformation

The clustering analysis allows us to define the bursts of localized deformation and soft

spots as discrete scalar fields. The mutual information between these fields is useful for

determining how well one predicts the other [140]. Specifically, we use a normalized form

of the mutual information called the proficiency, which measures how well each soft spot
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predicts the spatiotemporal location of each burst of localized deformation and is given by

PIJ =
M(I, J)

H(I)
, (56)

where M(I, J) is the mutual information between soft spot J and burst of localized defor-

mation I and H(I) is the information measure of the burst of localized deformation I.

Figure 28: Proficiency between each soft spot with each burst of localized deformation in a
single avalanche.

The mutual information between two discrete fields is computed with

M(I, J) =
∑
x∈[I,Ĩ]

∑
y∈[J,J̃ ]

px,y log2

(
px,y
pxpy

)
, (57)

where x is the discrete field of the burst of localized deformation, y is the discrete field of soft

spots, and px, py and px,y are the probabilities that an arbitrary point in the discrete fields is

x in the discrete field formed from the bursts of localized deformation, or y in the soft spot

field, or both, respectively. The information H(I) is given by the mutual information with
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itself:

H(I) = M(I, I). (58)

The proficiency is near unity when the spatial location of a soft spot overlaps very well with

the spatial location of a burst of localized deformation and occurs at the same time. If the

proficiency is very near zero, then the soft spot and the burst of localized deformation have

little to no overlap in space and time.
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Figure 29: A) Statistics of proficiency across many avalanches for all bursts of localized
deformation and soft spot (green) and the maximum proficiency for each burst of localized
deformation (blue). B) The statistics of the number of soft spots with proficiency above 0.01
for each burst of localized deformation.

The soft spots identified by the persistent clustering analysis have strong correlations

with the space time locations of the bursts of localized deformation. In Fig. 28, we show the

proficiency between each burst of localized deformation and each soft spot. In this example,

all but one burst of localized deformation have good correlation with at least one soft spot.

This indicates that the structure probed by the soft spots is indeed probing some features

relevant to the plastic motion. We further investigate the statistics of the proficiencies

between soft spots and bursts of localized deformation shown in Fig. 29 A. There is a clear

drop off in the proficiency of all soft spots with all bursts of localized deformation at about
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PIJ = 0.01. This suggests that, as expected, most soft spots do not overlap with a plastic

event at a given instant in time, and that values of PIJ below 0.01 correspond to no overlap.

In contrast, the maximum proficiency for each burst of localized deformation exhibits a clear

peak beyond PIJ = 0.01, and so if a soft spot and burst of localized deformation have a

proficiency greater than 0.01, we define these as being overlapped. In Fig. 29 B, we show

statistics of how many soft spots overlap with each burst of localized deformation. We find

that 74% of the bursts of localized deformation overlap with one soft spot, while only 14%

of all bursts of localized deformation have no overlap with any soft spot. Taken together,

these data suggest that bursts of localized deformation occur when a structural defect, or

soft spot, reaches its yield stress and deforms. Moreover, we can now track the evolution of

such defects during an avalanche.

4.9 Discussion

Under the application of stress, many disordered materials undergo large scale structural

transformations or avalanches. Currently, structural indicators for the locations of deforma-

tion in amorphous systems are excellent at predicting small isolated rearrangements [113].

However, these methods cannot predict the full motion in an avalanche. Furthermore, the

available tools have only been developed for analysis of mechanically stable states using

perturbative expansions or involve transformation and minimization. An improved under-

standing of the structural evolution of avalanching disordered materials as well as extended

methods for measuring softness of unstable systems are critical to improve prediction meth-

ods or develop novel prediction methods.

In this manuscript, we followed the deformation of avalanches in overdamped athermal
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disordered systems under applied shear to identify the patterns structural evolution through

out the avalanche. We find that the plastic motion in avalanches occurs in bursts over

time and, using a novel clustering algorithm, we robustly identify the bursts of localized

deformation. This is consistent with phenomenological work of elastoplastic models which

explicitly predict avalanches to be a sequence of localized rearrangements.

Using the normal modes of the Hessian, we probe the curvature of the unstable system.

Our first major observation is that there are multiple negative eigenmodes that change

rapidly with small subtle changes to the underlying structure. Localized soft spots generated

from this eigenspectrum are more stable, and we find these localized soft spots have good

correlation with the bursts of localized deformation. An obvious next step is to study how

these localized soft spots couple to one another – via an elastic kernel, structural diffusion, or

perhaps a combination. Such data will constrain and improve continuum models for plastic

failure.

This study has been limited to two-dimensional packings generated via infinite temper-

ature quench. Packings formed in this way have relatively low energy barriers to rearrange-

ment compared to well annealed systems. The preparation protocol is expected to strongly

impact the details of the rearrangement and the evolution of the avalanche. However, it is

expected that these rearrangements and avalanches will qualitatively decompose into bursts

of localized motion in the same way.

Although these methods have been applied to relaxing athermal disordered systems,

other unstable systems could also benefit from similar analyses. For instance, studies of the

structural evolution of thermal systems have focused on the inherent, or energy minimized,

states or on free-energy minimized configurations. Similarly, active systems, like crowds
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of human people or dense packings of driven colloidal particles have relied on structural

evaluations of mechanically stable reference states. However, instantaneous evaluation of the

structure of these mechanically unstable systems have previously been unavailable. Moving

forward it will be interesting to extend the methods developed here to other unstable or

active systems.
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5 Future directions

In Chapter 2, we analyzed a sparse random matrices where disorder is controlled by the

distribution of bond weights and network coordination. We find a unique ω3 low frequency

regime and recapitulate an ω4 region, as seen in simulated models of glasses. The salient

features of the networks that mimic the density of states in glassy systems are that 1) the

system is close to isostaticity, and 2) the probability density of bond weights near zero

is finite. However, this work was limited to a one-dimensional model which could have

pathological results. For instance, the ω3 regime in the density of states is reliant on the

segmentation of the system at the two weakest bonds.

However, in a higher-dimensional system, such segmentation requires the participation

of a number of bonds proportional to the surface area of the segmented region. This implies

that the ω3 regime is a feature of the one-dimensional model alone. One avenue of research

open for investigation is finding similar random matrix models representative of higher-

dimensional glassy systems. In such systems, we would not only have to consider the network

coordination and scalar bond weights, but also bond orientation. The relative orientations

of bonds could result in effective bond weights near zero without the scalar bond weights

approaching zero relative to some transformation. Investigations into such behavior could

be extremely enlightening towards the behavior of elastic networks and glassy systems in

which the scalar bond weights are finite.

In Chapter 3, we investigated the structure and behavior of a unique, symmetry-broken

self-propelled particle system. We are currently investigating the effects of pressure gradients

in amorphous systems especially how the structure rearranges. Through modification of
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the dynamical matrix used to evaluate linear response measures with a simple external

potential,we also found these packings demonstrate strong radial gradients in structural

measures of softness such as in the vibrability and nonaffine vibrability. In addition to

applying these methods to the study of human crowd behavior, this is representative of a

larger class of systems in which we can investigate the amorphous structure. Specifically,

for any system which can be modeled as affected by an external potential, we can extend

structural analysis methods for static packings in the absence of an external potential to

investigate the regions that are likely to rearrange with the application of additional external

force or thermal excitation. For instance, these methods could prove useful in systems such

as grain in silos to investigate the jamming to unjamming transition as grain flows.

In Chapter 4, we demonstrated that avalanches of large-scale plastic deformation in

athermal, amorphous systems of soft spheres are decomposable into bursts of localized de-

formation, a result which is consistent with predictions from elastoplastic models. One

obvious path forward, now that we have identified the locations of the bursts of localized de-

formation, is to identify the methods by which these bursts communicate with one another.

For instance, can we track the elastic propagation of structural changes from the location of

one burst of localized deformation to find how one burst explicitly triggers other bursts of

localized deformation? Is it consistent with propagation via an elastic kernel as predicted

by elastoplastic models or does structural disorder propagate via local structural diffusion

as proposed by STZ models or something else entirely?

Additionally, the clustering algorithm discussed in Chapter 4 has applications beyond

the clustering of motion and softness in athermal avalanches. Specifically, we are working

with collaborators to evaluate collective cell migration in epithelial tissue. We are also inter-
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ested in evaluating the melting behavior in thermal systems, where the Hessian is also not

positive definite and preparation protocol can dictate the evolution of the phase transition.

Amorphous materials formed via vapor deposition, or the slow addition of material, melt

from the surface towards the center. On the other hand, glasses formed by annealing or the

novel swap methods, melt via droplet formation. The new persistent clustering algorithm

we propose could be helpful for identification of bursts of motion during the melting phase

and investigation of flow in the liquid phase.

Finally, we have extended methods for measuring softness to systems that need not

necessarily be mechanically stable. In conjunction with the extensions we discuss in Chapter

3, we have developed tools for investigating the structure of unstable systems in the presence

of external fields. These methods allow for the structural evaluation of many kinds of systems

which previously required investigation relative to a stable reference state or inherent state.

In other words, from a snapshot of a system, these tools can evaluate the regions that are

likely to experience plastic deformation without relying on reference states which could prove

helpful in predicting the mechanical response in thermal, active, or driven systems.
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66. Szabó, B. et al. Phase transition in the collective migration of tissue cells: Experiment

and model. Physical Review E 74. Publisher: American Physical Society, 061908.

https://link.aps.org/doi/10.1103/PhysRevE.74.061908 (2020) (Dec. 2006).

115



67. Bi, D., Yang, X., Marchetti, M. C. & Manning, M. L. Motility-Driven Glass and

Jamming Transitions in Biological Tissues. Physical Review X 6, 021011. https:

//link.aps.org/doi/10.1103/PhysRevX.6.021011 (2018) (Apr. 2016).

68. Merkel, M. & Manning, M. L. A geometrically controlled rigidity transition in a model

for confluent 3D tissues. en. New Journal of Physics 20. Publisher: IOP Publishing,

022002. issn: 1367-2630. https://doi.org/10.1088%2F1367-2630%2Faaaa13 (2020)

(Feb. 2018).

69. Malandro, D. L. & Lacks, D. J. Relationships of shear-induced changes in the poten-

tial energy landscape to the mechanical properties of ductile glasses. The Journal of

Chemical Physics 110, 4593–4601. issn: 0021-9606. https://aip.scitation.org/

doi/abs/10.1063/1.478340 (2018) (Feb. 1999).

70. Maloney, C. E. & Lemâıtre, A. Amorphous systems in athermal, quasistatic shear.

Physical Review E 74, 016118. https://link.aps.org/doi/10.1103/PhysRevE.

74.016118 (July 2006).

71. Manning, M. L. & Liu, A. J. Vibrational Modes Identify Soft Spots in a Sheared

Disordered Packing. Physical Review Letters 107. https://doi.org/10.1103/

physrevlett.107.108302 (Aug. 2011).

72. O’Hern, C. S., Silbert, L. E., Liu, A. J. & Nagel, S. R. Jamming at zero temperature

and zero applied stress: The epitome of disorder. Physical Review E 68. https://

doi.org/10.1103/physreve.68.011306 (July 2003).

116
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