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Abstract

During the last decades, most collective information has been digitized to form an

immense database distributed across the Internet. This can also be referred to as

Big data, a collection of data that is vast in volume and still growing with time.

Nowadays, we can say that Big data is everywhere. We might not even realize how

much it affects our daily life as it is applied in many ways, ranging from online

shopping, music streaming, TV streaming, travel and transportation, energy, fighting

crime, to health care. Many organizations and companies have been collecting and

analyzing large volumes of data to solve domain-specific problems or making business

decisions. One of the powerful tools that can be used to extract value from Big data

is Deep learning, a type of machine learning algorithm inspired by the structure and

function of the human brain called artificial neural networks that learn from large

amounts of data. Deep learning has been widely used and applied in many research

fields such as natural language processing, IoT applications, and computer vision. In

this thesis, we introduce three Deep Neural Networks that used to learn semantic

information from different types of data and a design guideline to accelerate Neural

Network Layer on a general propose computing platform.

First, we focus on the text type data. We proposed a new feature extraction

technique to preprocess the dataset and optimize the original Restricted Boltzmann

Machine (RBM) model to generate the more meaningful topic that better represents

the given document. Our proposed method can improve the generated topic accuracy

by up to 12.99% on Open Movie, Reuters, and 20NewsGroup datasets.

Moving from text to image type data and with additional click locations, we

proposed a human in a loop automatic image labeling framework focusing on aerial



images with fewer features for detection. The proposed model consists of two main

parts, a prediction model and an adjustment model. The user first provides click lo-

cations to the prediction model to generate a bounding box of a specific object. The

bounding box is then fine-tuned by the adjustment model for more accurate size and

location. A feedback and retrain mechanism is implemented that allows the users to

manually adjust the generated bounding box and provide feedback to incrementally

train the adjustment network during runtime. This unique online learning feature en-

ables the user to generalize the existing model to target classes not initially presented

in the training set, and gradually improves the specificity of the model to those new

targets during online learning.

Combining text and image type data, we proposed a Multi-region Attention-

assisted Grounding network (MAGNet) framework that utilizes spatial attention net-

works for image-level visual-textual fusion preserving local (word) and global (phrase)

information to refine region proposals with an in-network Region Proposal Network

(RPN) and detect single or multiple regions for a phrase query. Our framework is

independent of external proposal generation systems and without additional informa-

tion, it can develop an understanding of the query phrase in relation to the image to

achieve respectable results in Flickr30k entities and 12% improvement over the state-

of-the-art in ReferIt game. Additionally, our model is capable of grounding multiple

regions for a query phrase, which is more suitable for real-life applications.

Although Deep neural networks (DNNs) have become a powerful tool, it is highly

expensive in both computational time and storage cost. To optimize and improve

the performance of the network while maintaining the accuracy, the block-circulant

matrix-based (BCM) algorithm has been introduced. It has been proven to be highly

effective when implemented using customized hardware, such as FPGAs. However, its

performance suffers on general purpose computing platforms. In certain cases, using

the BCM does not improve the total computation time of the networks at all. With



this problem, we proposed a parallel implementation of the BCM layer, and guidelines

that generally lead to better implementation practice is provided. The guidelines

run across popular implementation language and packages including Python, numpy,

intel-numpy, tensorflow, and nGraph.
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Chapter 1

Introduction

1.1 Outline and Main Contributions

In recent years, deep learning with the deep neural networks as the core has become

the most powerful tools to solve many challenging problems and has been able to

deliver impressive results. Who have thought that DeepMind’s AlphaGo [3] could

defeat some of the best Go players in the board game that has more possible moves

than the number of atoms in the entire universe? Deep learning technique has exceled

in many other tasks in our daily life situations such as identifying faces, reading hand-

written digits and texts, recognizing/translating speeches, playing computer games,

or even controlling self-driving cars. Many organizations and companies utilize deep

learning to extract value from Big data to solve domain-specific problems or making

business decisions. For example, the Amazon Go store uses deep learning to track

and estimate the intention of every customer in the store. This is referred to as Just

Walk Out technology, [4] which solves 6 core problems, sensor fusion, calibration,

person detection, object detection, pose estimation, and activity analysis to provide

the experience.

As in today’s era, Big data is everywhere. We might not even realize how much it

1



affects our daily life. Ranging from online shopping, music streaming, TV streaming,

travel and transportation, energy, fighting crime, to health care, many types of data

has been collected and digitized to form an immense database distributed across

the internet. With this data, there are several ways that deep learning models can

be applied. For example, Recurrent Neural Networks (RNNs) and Convolutional

Neural Networks (CNNs) models can be used to process free text to perform sentiment

analysis or text classification and tagging. They can also be used for automatic image

caption generation where object is detected from the input image and sentences are

generated based on the detected objects. When applied to healthcare applications,

the aforementioned deep learning models can be used to help diagnose and treat

patients by analyze blood samples, track glucose levels in diabetic patients or even

perform tumors detection from medical images.

In this thesis, we present three Deep Neural Networks that are used to learn

semantic information from different types of data ranging from text, image, user

mouse activities and their combinations. A design guideline to accelerate Neural

Network Layer on a general propose computing platform is also presented.

The remainder of the thesis is organized as follows. In chapter 2, deep learning

model is applied to process text data. We present new feature extraction techniques

to preprocess the dataset and optimize the original Restricted Boltzmann Machine

(RBM) model to generate the more meaningful topic that better represents the given

document. The method consists of three steps. First, it generates the word/word-

pair from every single document. Then, it applies a two-way TF-IDF algorithm

to word/word-pair for semantic filtering. Finally, it uses the K-means algorithm to

merge the word pairs that have the similar semantic meaning. Then we replaced the

original word only RBM model by introducing word pairs. The proposed new topic

model is designed which combines two classes of text features as the model input.

We demonstrate that a feature selection based on semantically related word pairs

2



provides richer information than the simple bag-of-words approach and the feature

clustering effectively controls the model complexity. Compared to existing feature

extraction and topic modeling approach, the proposed model improves the accuracy

of the topic prediction by up to 12.99%.

In chapter 3, we present a human in a loop automatic image labeling framework

focusing on aerial images without salient features for detection. The proposed model

consists of two main parts, a prediction model and an adjustment model. The user

first provides click location to the prediction model to generate a bounding box of

a specific object. The bounding box is then fine-tuned by the adjustment model for

more accurate size and location. A feedback and retrain mechanism is implemented

that allows the user to manually adjust the generated bounding box and provide

feedback to incrementally train the adjustment network during runtime. This unique

online learning feature enables user to generalize existing model to target classes

not initially presented in the training set, and gradually improves the specificity of

the model to those new targets online. We further improve the feature pyramid in

the YOLOv3 model to enhance its detection of small objects. Experimental results

show that we can improve the IOU of the prediction by 35.6% in average. A further

improvement of up to 45% can be reached after applying the adjustment network.

The experimental results also show that we can utilize the feedback from users to

incrementally train the model during runtime even with very small samples.

In chapter 4, we present a framework, the Multi-region Attention-assisted Ground-

ing network (MAGNet), that utilizes spatial attention networks for image-level visual-

textual fusion. It preserves local (word) and global (phrase) information to refine

region proposals with an in-network Region Proposal Network (RPN) and detects

single or multiple regions for a phrase query. Our contributions of this work are listed

as the following:

• A model for image-level visual-textual fusion and natural language query through

3



the encoder-decoder language model with spatial attention.

• Spatial Attention representation for the global (i.e. phrase level) understanding

alongside the local (i.e. word level) understanding of the query in relation to

the input image.

• Attention-assisted proposal generation through in-network RPN trained with

the aforementioned attention representation.

• Attention-assisted region detection through Region-CNN enabling single or mul-

tiple detections for the given query.

In chapter 5, we present a parallel design of the block-circulant based-matrix al-

gorithm and demonstrated that this new design can achieve better performance than

previous version of algorithm. We also provide guidelines on how to select block

size, batch size, and number of cores in certain situations in order to achieve optimal

performance in the least amount of time. The guidelines run across popular imple-

mentation language and packages including Python, numpy, intel-numpy, tensorflow,

and nGraph

In Chapter 6, we conclude this thesis with a summarization of the results and

discuss the future research directions.

4



Chapter 2

Learning Topics using Semantic

Locality

2.1 Introduction

During the last decades, most collective information has been digitized to form an

immense database distributed across the Internet. Among all, text-based knowledge

is dominant because of its vast availability and numerous forms of existence. For

example, news, articles, or even Twitter posts are various kinds of text documents.

On one hand, it is difficult for human users to locate one’s searching target in the

sea of countless texts without a well-defined computational model to organize the

information. On the other hand, in this big data era, the e-commerce industry takes

huge advantages of machine learning techniques to discover customers’ preference.

For example, notifying a customer of the release of “Star Wars: The Last Jedi” if

he/she has ever purchased the tickets for “Star Trek Beyond”; recommending a reader

“A Brief History of Time” from Stephen Hawking in case there is a “Relativity: The

Special and General Theory” from Albert Einstein in the shopping cart on Amazon.

The content based recommendation is achieved by analyzing the theme of the items

5



extracted from its text description.

Topic modeling is a collection of algorithms that aim to discover and annotate

large archives of documents with thematic information[5]. Usually, general topic

modeling algorithms do not require any prior annotations or labeling of the document

while the abstraction is the output of the algorithms. Topic modeling enables us to

convert a collection of large documents into a set of topic vectors. Each entry in this

concise representation is a probability of the latent topic distribution. By comparing

the topic distributions, we can easily calculate the similarity between two different

documents[6]. The availability of many manually categorized online documents, such

as Internet Movie Database (IMDb) movie review [7], Wikipedia articles, makes the

testing and validation of topic models possible.

Some topic modeling algorithms are highly frequently used in text-mining[8], pref-

erence recommendation[9] and computer vision[10]. Many of the traditional topic

models focus on latent semantic analysis with unsupervised learning [5]. Latent Se-

mantic Indexing (LSI) [11] applies Singular-Value Decomposition (SVD) [12] to trans-

form the term-document matrix to a lower dimension where semantically similar terms

are merged. It can be used to report the semantic distance between two documents,

however, it does not explicitly provide the topic information. The Probabilistic Latent

Semantic Analysis (PLSA)[13] model uses maximum likelihood estimation to extract

latent topics and topic word distribution, while the Latent Dirichlet Allocation (LDA)

[14] model performs iterative sampling and characterization to search for the same

information. Restricted Boltzmann Machine (RBM) [15] is also a very popular model

for the topic modeling. By training a two layer model, the RBM can learn to extract

the latent topics in an unsupervised way. Moreover, a lot of Deep Neural Network

(DNN) based topic modeling methods have been proposed in recent years[16, 17].

Almost all of the existing works are based on the bag-of-words model, where a

document is considered as a collection of words. The semantic information of words
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and interaction among objects are assumed to be unknown during the model con-

struction. Such simple representation can be improved by recent research in natural

language processing and word embedding. In this work, we will explore the existing

knowledge and build a topic model using explicit semantic analysis.

This work studies effective data processing and feature extraction for topic model-

ing and information retrieval. We investigate how the available semantic knowledge,

which can be obtained from language analysis, can assist in the topic modeling.

The rest of the chapter is structured as follows: In Section 2.2, we summarize

our contributions of this work. In Section 2.3, we review the existing methods, from

which we got the inspirations. This is followed in Section 2.4 by details about our

topic models. Section 2.5 describes our experimental steps and analyzes the results.

Finally, Section 2.6 concludes this work.

2.2 Contributions

Compare to existing published feature extraction and topic modeling approach [14,

18], the proposed word/word pair combined model can improve the mAP score up to

10.48% in OMDb dataset, up to 1.11% in Reuters dataset and up to 12.99% in the

20NewsGroup dataset. A new topic model is designed which combines two classes of

text features as the model input. We demonstrate that a feature selection based on

semantically related word pairs provides richer information thank simple bag-of-words

approach and the proposed semantic based feature clustering effectively controls the

model complexity.

2.3 Related Work

Many topic models have been proposed in the past decades. This includes LDA,

Latent Semantic Analysis(LSA), word2vec, and RBM, etc. In this section, we will
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compare the pros and cons of these topic models for their performance in topic mod-

eling.

LDA was one of the most widely used topic models. LDA introduces sparse Dirich-

let prior distributions over document-topic and topic-word distributions, encoding the

intuition that documents cover a small number of topics and that topics often use

a small number of words [14]. LSA was another topic modeling technique which is

frequently used in information retrieval. LSA learned latent topics by performing a

matrix decomposition (SVD) on the term-document matrix [18]. In practice, training

the LSA model is faster than training the LDA model, but the LDA model is more

accurate than the LSA model.

Traditional topic models did not consider the semantic meaning of each word and

cannot represent the relationship between different words. Word2vec can be used for

learning high-quality word vectors from huge data sets with billions of words, and with

millions of words in the vocabulary [19]. During the training, the model generated

word-context pairs by applying a sliding window to scan through a text corpus. Then

the word2vec model trained word embeddings using word-context pairs by using the

continuous bag of words (CBOW) model and the skip-gram model [20]. The generated

word vectors can be summed together to form a semantically meaningful combination

of both words.

RBM was proposed to extract low-dimensional latent semantic representations

from a large collection of documents [15]. The architecture of the RBM is an undi-

rected bipartite graphic, in which word-count vectors are modeled as Softmax input

units and the output units are binary units. The Contrastive Divergence learning

was used to approximate the gradient. By running the Gibbs sampler, the RBM

reconstructed the distribution of units [21]. A deeper structure of neural network,

the Deep Belief Network (DBN), was developed based on stacked RBMs.

In this work, we adopt Restricted Boltzmann Machine (RBM) for topic modeling,
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and investigate feature selection for this model. Another state-of-the-art model in

topic modeling is the LDA model. As mentioned in Section 2.3, LDA is a statically

model that is widely used for topic modeling. However, previous research [22] shows

that the RBM based topic modeling gives 5.45%∼19.94% higher accuracy than the

LDA based model. In Section 2.5, we also compare the MAP score of these two when

applied to three different datasets. Our results also show that the RBM model has

better efficiency and accuracy than the LDA model. Hence, we focus our discussion

only for the RBM based topic modeling.

2.4 Approach

Our feature selection contains three steps handled by three different modules: feature

generation module, feature filtering module and feature coalescence module. The

whole structure of our framework as shown in Figure 2.1. Each module will be

elaborated in the next.

Previous Module

  K Center Selection

  K Means Clustering

Feature Combination

Count Dictionary
    Generation

Feature Generation Feature Filtering Feature Coalescence

Raw Data

Basic Text Processing

Clean Data

    Word 
Generation

Word Pair
Generation

Next Module

Previous Module

Word Based 
   TF-IDF

  Word Pair
Based TF-IDF  Word 

  Filter Word Pair
   Filter

Next Module

  Word Pair
   Selection

    Word 
Dictionary Word Pair

Dictionary

Figure 2.1: Model Structure
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The proposed feature selection is based on our observation that word dependencies

provide additional semantic information than that simple word counts. However,

there are quadratically more depended word pairs relationships than words. To avoid

the explosion of feature set, filtering and coalescing must be performed. Overall those

three steps perform feature generation, screening and pooling.

2.4.1 Feature Generation: Semantic Word Pair Extraction

Current RBM model for topic modeling uses the bag-of-words approach. Each visible

neuron represents the number of appearance of a dictionary word. We believe that

the order of the words also exhibits rich information, which is not captured by the

bag-of-words approach. Our hypothesis is that including word pairs (with specific

dependencies) helps to improve topic modeling.

In this work, Stanford natural language parser [23, 24] is used to analyze sentences

in both training and testing corpus, and extract word pairs that are semantically de-

pendent. Universal dependency(UD) is used during the extraction. For example,

given the sentence: “Lenny and Amanda have an adopted son Max who turns out to

be brilliant.”, which is part of description of the movie “Mighty Aphrodite” from the

OMDb dataset. Figure 2.2 shows all the depended word pairs extracted using the

Standford parser. Their order is illustrated by the arrows connection between them,

and their relationship is marked beside the arrows. As you can see that the depended

words are not necessarily adjacent to each other, however they are semantically re-

lated.

Because each single word may have combinations with many other different words

during the dependency extraction, the total number of the word pairs will be much

larger than the number of word in the training dataset. If we use all depended word

pairs extracted from the training corpus, it will significantly increase the size of our

dictionary and reduce the performance. To retain enough information with manage-

10



acl

Lenny   and Amanda adopted  have     an    son   Max

 who    turns    out brilliant    to     be

  nsubj

compound  nsubj
mark

xcomp

amod

det
dobj

cc
conj

compound

Figure 2.2: Word Pair Extraction

able complexity, we keep the 10,000 most frequent word pairs as the initial word pair

dictionary. Input features of the topic model will be selected from this dictionary.

Similarly, we use the 10,000 most frequent words to form a word dictionary. For both

dictionary, stop words are removed.

2.4.2 Feature Filtering: Two steps TF-IDF Processing

The word dictionary and word pair dictionary still contain a lot of high frequency

words that are not very informational, such as ”first”, ”name”, etc. Term frequency-

inverse document frequency (TF-IDF) is applied to screen out those unimportant

words or word pairs and keep only important ones. The equation to calculate TF-

IDF weight is as following:

TF (t) = Number of times term t appears in a document
Total number of terms in the document

(2.1)

IDF (t) = log Total number of documents
Number of documents with term t in it

(2.2)

TF − IDF (t) = TF (t) ∗ IDF (t) (2.3)

Equation 2.1 calculates the Term Frequency (TF), which measures how frequently
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a term occurs in a document. Equation 2.2 calculates the Inverse document frequency

(IDF), which measures how important a term is. The TF-IDF weight is often used

in information retrieval and text mining. It is a statically measure to evaluate how

important a word is to a document in a collection of corpus. The importance increases

proportionally to the number of times a word appears in the document but is offset

by the frequency of the word in the corpus [25, 26, 27, 28, 29].

As shown in Figure 2.1, Feature Filtering module, a two-step TF-IDF processing

is adopted. First, the word-level TF-IDF is performed. The result of word level

TF-IDF is used as a filter and a word pair is kept only if the TF-IDF scores of both

words are higher than the threshold (0.01). After that, we treat each word pair as a

single unit, and the TF-IDF algorithm is applied again to the word pairs and further

filter out word pairs that are either too common or too rare. Finally, this module will

generate the filtered word dictionary and the filtered word pair dictionary.

2.4.3 Feature Coalescence: K-means Clustering

Even with the TF-IDF processing, the size of the word pair dictionary is still pro-

hibitively large. We further cluster semantically close word pairs to reduce the dic-

tionary size. Each word is represented by their embedded vectors calculated using

Google’s word2vec model. The semantic distance between two words is measured as

the Euclidean distance of their embedding vectors. The words that are semantically

close to each other are grouped into K clusters.

We use the index of each cluster to replace the words in the word pair. If the

cluster ID of two word pairs are the same, then the two word pairs are semantically

similar and be merged. In this we can reduce the number of word pairs by more than

63%. We also investigate how the number of the cluster centrum (i.e. the variable K)

will affect the model accuracy. The detailed experimental results on three different

datasets will be given in 2.5.
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2.5 Evaluation

2.5.1 Experiments Setup

The proposed topic model will be tested in the context of content-based recommen-

dation. Given a query document, the goal is to search the database and find other

documents that fall into the category by analyzing their contents. In our experiment,

we generate the topic distribution of each document by using RBM model. Then we

retrieve the top N documents whose topic is the closet to the query document by

calculating their Euclidean distance. The number of hidden units of the RBM is 500

which represents 500 topics. The number of visible units of the RBM equals to total

number of different words and words pairs extracted as input features. The weights

are updated using a learning rate of 0.01. During the training, momentum, epoch,

and weight decay are set to be 0.9, 15, and 0.0002 respectively.

Our proposed method is evaluated on 3 datasets: OMDb, Reuters, and 20News-

Group. All the datasets are divided into three subsets: training, validation, and

testing. The split ratio is 70:10:20. For each dataset, a 5-fold cross-validation is

applied.

• OMDb, the Open Movie Database, is a database of movie information. The

OMDb dataset is collected using OMDb APIs [30]. The training dataset con-

tains 6043 movie descriptions; the validation dataset contains 863 movie de-

scriptions and the testing dataset contains 1727 movie descriptions. Based on

the genre of the movie, we divided them into 20 categories and tagged them

accordingly.

• The Reuters, is a dataset consists of documents appeared on the Reuters newswire

in 1987 and were manually classified into 8 categories by personnel from Reuters

Ltd. There are 7674 documents in total. The training dataset contains 5485
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news, the validation dataset contains 768 news and the testing dataset contains

1535 news.

• The 20NewsGroup dataset is a collection of approximately 20,000 newsgroup

documents, partitioned (nearly) evenly across 20 different newsgroups. The

training dataset contains 13174 news, the validation dataset contains 1882 news

and the testing dataset contains 3765 news. Both Reuters and 20NewsGroup

dataset are download from [31].

2.5.2 Metric

We use mean Average Precision (mAP ) score to evaluate our proposed method.

It is a score to evaluate the information retrieval quality. A higher mAP score is

better. Compare with the traditional F1 score, this evaluation method considers

the effect of orders in the information retrieval results. If the relational result is

shown in the front position (i.e. ranks higher in the recommendation), the score

will be close to 1; if the relational result is shown in the back position (i.e. ranks

lower in the recommendation), the score will be close to 0. mAP1, mAP3, mAP5,

and mAP10 are used to evaluate the retrieval performance. For each document, we

retrieve 1, 3, 5, and 10 documents whose topic vectors have the smallest Euclidean

distance with that of the query document. The documents are considered as relevant

if they share the same class label. Before we calculate the mAP , we need to calculate

the Average Precision (AveP ) for each document first. The equation of AveP is

described below,

AveP =

∑n
k=1(P (k) · rel(k))

number of relevant documents
, (2.4)

where rel(k) is an indicator function equaling 1 if the item at rank k is a relevant

document, 0 otherwise [32]. Note that the average is over all relevant documents and

the relevant documents not retrieved get a precision score of zero.
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The equation of the mean Average Precision (mAP ) score is as following,

mAP =

∑Q
q=1AveP (q)

Q
, (2.5)

where Q indicates the total number of queries.

2.5.3 Results

2.5.3.1 LDA and RBM Performance Comparison

In the first experiment, we investigate the topic modeling performance between LDA

and RBM. For the training of the LDA model, the training iteration is 15 and the

number of generated topics is 500 which are as the same as the RBM model. As we

can see from the Table 2.1. The RBM outperforms the LDA in all datasets. For

example, using the mAP5 evaluation, the RBM is 30.22% greater than the LDA in

OMDb dataset, 18.18% greater in Reuters dataset and 25.25% greater in 20News-

Group dataset. To have a fair comparison, the RBM model here is based on word

only features. In the next we will show the including word pairs can further improve

its mAP score.

Table 2.1: LDA and RBM performance evaluation

mAP
OMDb Reuters 20NewsGroup

LDA RBM LDA RBM LDA RBM
mAP 1 0.12166 0.14772 0.84919 0.94407 0.68669 0.73959
mAP 3 0.07473 0.09381 0.79976 0.92604 0.55410 0.65530
mAP 5 0.05723 0.07453 0.77500 0.91589 0.48796 0.61115
mAP 10 0.03914 0.05273 0.74315 0.90050 0.44719 0.55338

2.5.3.2 Word/Word Pair Performance Comparison

In this experiment, we compare the performance of two RBM models. One of them

only considers words as the input feature, while the other has combined words and
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Table 2.2: fixed total feature number word/word pair performance evaluation

mAP
F = 10.5K F = 11K F = 11.5K F = 12K F = 12.5K F = 15K

word word pair word word pair word word pair word word pair word word pair word word pair
OMDB

mAP 1 0.14772 0.14603 0.13281 0.14673 0.13817 0.14789 0.13860 0.14754 0.14019 0.14870 0.13686 0.14708
mAP 3 0.09381 0.09465 0.08606 0.09327 0.08933 0.09507 0.08703 0.09517 0.09054 0.09657 0.09009 0.09537
mAP 5 0.07453 0.07457 0.06835 0.07380 0.07089 0.07508 0.06925 0.07485 0.07117 0.07635 0.07175 0.07511
mAP 10 0.05273 0.05387 0.04862 0.05340 0.04976 0.05389 0.04900 0.05322 0.05019 0.05501 0.05083 0.05388

Reuters
mAP 1 0.94195 0.95127 0.94277 0.95023 0.94407 0.95179 0.94244 0.94997 0.94277 0.95270 0.94163 0.94984
mAP 3 0.92399 0.93113 0.92448 0.93117 0.92604 0.93276 0.92403 0.93144 0.92249 0.93251 0.92326 0.93353
mAP 5 0.91367 0.92123 0.91366 0.91939 0.91589 0.92221 0.91367 0.92051 0.91310 0.92063 0.91284 0.92219
mAP 10 0.89813 0.90425 0.89849 0.90296 0.90050 0.90534 0.89832 0.90556 0.89770 0.90365 0.89698 0.90499

20NewsGroup
mAP 1 0.73736 0.77129 0.73375 0.76093 0.68720 0.75865 0.73959 0.75846 0.72280 0.76768 0.72695 0.75583
mAP 3 0.65227 0.68905 0.64848 0.68042 0.60356 0.67546 0.65530 0.67320 0.63649 0.68455 0.63951 0.66743
mAP 5 0.60861 0.64620 0.60548 0.63783 0.56304 0.63321 0.61115 0.62964 0.59267 0.64165 0.59447 0.62593
mAP 10 0.55103 0.58992 0.54812 0.58057 0.51188 0.57839 0.55338 0.57157 0.53486 0.58500 0.53749 0.56969

word pairs as the input feature. The total feature size varies from 10500, 11000, 11500,

12000, 12500, 15000. For the word/word pair combined RBM model, the number of

word feature is fixed to be 10000, and the number of word pair features is set to meet

the requirement of total feature size.

Both models are first applied to the OMDb dataset, and the results are shown

in Table 2.2, section 1, the word/word pair combined model almost always performs

better than the word-only model. For the mAP1, the mAP5 and the mAP10, the

most significant improvement occurs when total feature size is set to = 11000. About

10.48%, 7.97%, and 9.83% improved were found compared to the word-only model.

For the mAP3, the most significant improvement occurs when the total feature size is

set to = 12000, and about 9.35% improvement is achieved by considering word pair.

The two models are further applied to the Reuters dataset, and the results are

shown in Table 2.2, section 2. Again, the word/word pair combined model outper-

forms the word-only model almost all the time. For the mAP1, 3, 5 and 10 up to

1.05%, 1.11%, 1.02% and 0.89% improvement are achieved.

The results for 20NewsGroup dataset are shown in Table 2.2, section 3. Similar

to previous two datasets, all the results from word/word pair combined model are

better than the word-only model. For the mAP1, 3, 5 and 10, the most significant

improvement occurs when the total feature size is set to = 11500. Up to 10.40%,
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11.91%, 12.46% and 12.99% improvements can achieved.

2.5.3.3 Cluster Centrum Selection

In the third experiment, we focus on how the different K values affect the effectiveness

of the generated word pairs in terms of their ability of topic modeling. The potential

K values are 100, 300, 500, 800 and 1000. Then we compare the mAP between our

model and the baseline model, which consists of word only input features.

The OMDb dataset results are shown in Figure 2.3. As we can observe, all the K

values give us better performance than the baseline. The most significant improve-

ment occurs when in K = 100. Regardless of the size of word pair features, in average

we can achieve 2.41%, 2.15%, 1.46% and 4.46% improvements in mAP1, 3, 5, and 10

respectively.

The results of Reuters dataset are shown in Figure 2.4. When the K value is

greater than 500, all mAP scores for word/word pair combination model are better

than the baseline. Because the mAP score for Reuters dataset in original model is

already very high (almost all of them are higher than 0.9), compared to OMDb, it

is more difficult to further improve the mAP score of this dataset. For the mAP1,

disregard the impact of input feature size, in average the most significant improvement

happens when K = 500, which is 0.31%. For the mAP3, the mAP5 and the mAP10,

the most significant improvements happen when K = 800, which are 0.50%, 0.38%

and 0.42% respectively.

The results for 20NewsGroup dataset results are shown in Figure 2.5. Similar

to the Reuters dataset, when the K value is greater than 800, all mAP scores for

word/word pair combination model are better than the baseline. For themAP1, 3, 5, and 10,

in average the most significant improvements are 2.82%, 2.90%, 3.2% and 3.33% re-

spectively, and they all happen when K = 1000.

In summary, a larger K value generally gives a better result, like the Reuters
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Figure 2.3: OMDb dataset mAP score evaluation

dataset and the 20NewsGroup dataset. However, for some documents sets, such

as OMDb, where the vocabulary semantically has a wide distribution, keeping the

number of clusters small will not lose too much information.

2.5.3.4 Word Pair Generation Performance

In the last experiment, we compare different word pair generation algorithms with

the baseline. Similar to previous experiments, the baseline is the word-only RBM

model whose input consists of the 10000 most frequent words. The “semantic” word

pair generation is the method we proposed in this work. The proposed technique

is compared to a reference approach that applies the idea from the skip-gram [20]

algorithm, and generates the word pairs from each word’s adjacent neighbor. We
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Figure 2.4: Reuters dataset mAP score evaluation

call it “N-gram” word pair generation. And the window size used in here is N = 2.

For the “Non-K” word pair generation, we use the same algorithm as the “semantic”

except that no K-means clustering is applied to the generated word pairs.

Table 2.3: Different Word Pair Generation Algorithms for OMDb

mAP Baseline Semantic N-gram Non-K
mAP 1 0.14134 0.14870 0.13202 0.14302
mAP 3 0.09212 0.09657 0.08801 0.09406
mAP 5 0.07312 0.07635 0.07111 0.07575
mAP 10 0.05113 0.05501 0.05132 0.05585

The first thing we observe from the Table 2.3 is that both “semantic” word pair

generation and “Non-K” word pair generation give us better mAP score than the

baseline; however, the mAP score of the “semantic” generation is slightly higher than
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Figure 2.5: 20NewsGroup dataset mAP score evaluation

the “Non-K” generation. This is because, although both “Non-K” and “semantic”

techniques extract word pairs using natural language processing, without the K-means

clustering, semantically similar pairs will be considered separately. Hence there will be

lots of redundancies in the input space. This will either increase the size of the input

space, or, in order to control the input size, reduce the amount of information captured

by the input set. The K-means clustering performs the function of compression and

feature extraction.

The second thing that we observe is that, for the “N-gram” word pair generation,

its mAP score is even lower than the baseline. Beside the OMDb dataset, other

two datasets show the same pattern. This is because the “semantic” model extracts

word pairs from natural language processing, therefore those word pairs have the
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semantic meanings and grammatical dependencies. However, the “N-gram” word pair

generation simply extracts words that are adjacent to each other. When introducing

some meaningful word pairs, it also introduces more meaningless word pairs at the

same time. These meaningless word pairs act as noises in the input. Hence, including

word pairs without semantic importance does not help to improve the model accuracy.

2.6 Conclusion

In this chapter, we proposed a few techniques to preprocess the dataset and optimize

the original RBM model. During the dataset preprocessing, first, we used a semantic

dependency parser to extract the word pairs from each sentence in the text document.

Then, by applying a two-way TF-IDF processing, we filtered the data in word level

and word pair level. Finally, K-means clustering algorithm helped us merge the

similar word pairs and remove the noise from the feature dictionary. We replaced the

original word only RBM model by introducing word pairs. At the end, we showed

that proper selection of K value and word pair generation techniques can significantly

improve the topic prediction accuracy and the document retrieval performance. With

our improvement, experimental results have verified that, compared to original word

only RBM model, our proposed word/word pair combined model can improve the

mAP score up to 10.48% in OMDb dataset, up to 1.11% in Reuters dataset and up

to 12.99% in the 20NewsGroup dataset.

21



Chapter 3

Automatic Image Labeling with

Click Supervision on Aerial Images

3.1 Introduction

Object detection has become one of the proliferating research fields in recent years.

With the convolution based network structure and novel backpropagation technique

[33], models can be trained to directly extract features from images or videos for object

detection and classification. Many state-of-the-art models [34, 35, 36, 37, 38, 39] have

demonstrated impressive results. Although they have different training techniques

and network architectures, what is common is that they all require carefully labeled

data for supervised training. Obtaining a set of high-quality labeled data is one of

the major challenges for those who have to build and train their own model using

supervised learning. Although there are many available public datasets, i.e. [40, 41,

42] training an application specific model requires additional domain specific data.

Creating labeled data for object detection is time consuming. According to [43],

annotators take about 35 seconds to draw and annotate a bounding box in the

ILSVRC dataset. Do this repeatedly for every object in the training image is a tedious
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task for human annotator and impairs their productivity. On the other hand, human

cognition is necessary for robust detection, especially in the cases where salient image

feature is missing. Examples of such cases are given in Fig 3.1. Conventional CNN

based object detection model such as YOLOv3 [44] generates bounding boxes only

when it has a relatively high confidence that the region is not part of the background.

Given the aerial image in Fig 3.1, the confidence level reduces. Human cognition is

much more reliable in these cases.

In this work, we present a human-in-loop automatic image labeling model that

can be used to improve the annotator’s productivity while maintaining the labeling

accuracy. The proposed model mainly focuses on aerial images (top-down view) which

has less salient features for detection and classification. It adopts a hybrid approach

to automatically generate a bounding box around the object identified by a user click.

The rest of the chapter is organized as the following. In section 3.2, we summarize

our contributions of this work. In section 3.3, we review the existing methods that

has been used to help training object class detectors. This is followed by Section 3.4

that provides details of our framework. Section 3.5 describes our experimental steps

and analyzes the results. Finally, Section 3.6 concludes this work.

3.2 Contributions

We present a framework that fuse human object detection capability with the machine

intelligence in feature extraction and semantic understanding to improve annotators

productivity in labeling. We improve the feature pyramid in the YOLOv3 model [44]

to enhance the detection of small objects. We also proposed an adjustment network

that is attached to the original detection model to dynamically learn how to improve

the bounding boxes and adapt to new target classes that are not in the training

set. Compare to [44], we can improve IOU in prediction model by 35.6% in average.
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Figure 3.1: Example of aerial images.

A further improvement of up to 45% can be reached after applying the adjustment

network. The experimental results also show that we can utilize the feedback from

users to incrementally train the model during runtime even with very small samples.

3.3 Related Works

Human in a loop click annotation method has been used to help training object class

detectors in many researches [45, 46, 47, 48, 49].

Papadopoulos et al. [48] utilized crowdsourcing framework (Amazon Mechanical

Turk) to collect click annotations. Annotators must pass a simple qualification test

before they can proceed to the real annotation tasks which are divided into batches

of 20 images. During the test, annotators will be asked to click as close as possible to

the center of synthetic polygons. The purpose of the test is to ensure that annotators

can locate the center of the object regardless of the shape. The click annotations

are then used to incorporate into a reference Multiple Instance Learning framework

designed for weakly supervised object detection [40] results in improvements of object

class detectors. In 2011, Wah et al. [49] proposed a visual recognition system which

combined a computer and a human into a single system to identify the class of the

objects. The system asked the annotator to provide click location on the specific part

of the image along with answering binary questions. The system will predict the most

likely class based on the given information. The procedures will continue until the
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correct class was presented.

Other than object class detection, user click information has also been used in

semantic segmentation [50, 51, 52, 53]. For example, Bearman et al. [53] combining

user click information with state-of-the-art Convolutional Neural Network (CNN) for

semantic segmentation by adding in training loss function to help infer the boundary

of the objects.

Either object class detection or semantic segmentation requires the CNN to incor-

porate with user click location to complete the tasks. There are many state-of-the-art

methods for class object detections. They can be divided into two main categories,

one-stage methods [36, 39], and two-stage method [35]. In one-stage method, the

model processes and predicts object bounding boxes regularly across the image, while

in the two-stage method, the model will generate location proposals and then classify

each proposal into one of the object classes or the background. There are trade-offs

between these two methods in terms of speed and accuracy, the one-stage method is

faster while the two-stage method is more accurate.

In this work, we choose the one-stage method and incorporate it with user click

location. More specifically we choose YOLOv3 [44] as our based model due to its

speed and state-of-the-art accuracies.

3.4 Hybrid Human-Machine Labeling Framework

In this section, we introduce the overall architecture of the proposed framework. Its

input is the image and the (x, y) coordinates of user click, which indicate the location

of a target object. Its output is the bounding box of the target object. The framework

can be divided into two main parts, prediction model and adjustment model. The

prediction model generates the bounding box of the object selected by the user click,

while the adjustment model refines the predicted bounding box to better fit the target
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Figure 3.2: The overall architecture of proposed work. There are two mains part,
prediction model on the top section and adjustment model on the bottom There are
two type of input to the model which include image and user click location. Image is
used to feed in for both prediction and adjustment model, while user click location
is used for post processing to find the final bounding box prediction. The prediction
model predicts bounding based on user click location, while adjustment model predicts
how much the predicted box should adjust to fit more to the target object

object. The overall architecture is shown in Fig 3.2.

3.4.1 Prediction Model

The prediction model can be further divided into three main parts, a backbone net-

work in which Darknet-53 is used, a Feature Pyramid Network [39], and a post-

processing module, which is only used during the inference. During the inference,

features extracted from different layers in the backbone network will be combined

in the feature pyramid network to get the bounding box predictions. The Post-

processing module is used to filter and select the final predicted box based on the

user click information.

3.4.1.1 Backbone Network

Darknet-53 is used for backbone network for its high speed and state-of-the-art per-

formance. It is a hybrid approach that combines Darknet-19 [36], residual network,
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and skip connection techniques. This results in 53 convolutional layers using only

1× 1 or 3× 3 kernels. The residual block replicates itself 1×, 2×, 4×, and 8× times

at each part of the network. The output size of the residual block is always the same

as the input because of padding.

3.4.1.2 Feature Pyramid Network

We apply the feature pyramid network on top of Darknet-53. The last three feature

maps of residual block are used as the inputs of feature pyramid network. Each

feature map is up-sampled by 2× to match the size of the output of earlier layers. We

use fusion to combine the up-sampled high level features with the low level features

coming from the darknet. With this technique, the combined features allow us to

extract information at higher resolution, and help to locate and detect the object

with different scales and different feature representations. While YOLOv3 predicts

boxes at three different scales and using concatenation when merging. Our unique

feature pyramid network can identify small objects in the image more efficiently.

3.4.1.3 Post-processing

Post-processing module is used during inference. The goal of this module is to find

the best bounding box prediction based on user click information. In traditional

object detection methods, a threshold of the detection confidence must be set. If the

threshold is too high, the model may not predict any boxes, and if the threshold is

too low, the model will generate multiple boxes at the same location which sometimes

makes it difficult to select the best one. The aerial images that we target at have

low resolution and most of the bounding boxes will be filtered out due to a low

confidence. However, a user click will significantly boost the detection confidence of

the bounding boxes located at the clicked area. Instead of increasing the confidence

of those bounding boxes, we lower the confidence threshold to keep more detected
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boxes, then use the post-processing algorithm to filter out the boxes not adjacent to

the click location.

The input of the post-processing is all bounding boxes generated by the backbone

and feature pyramid network, albeit with low confidence. Overlapped boxes have

been filtered using Non-Maximum Suppression (NMS). With the assumption that

there is exactly one object at the click location and the user already knew the class of

the object; the post-processing module filters the input bounding boxes and selects

the most fit one. The algorithm is shown below:

Algorithm 1 Post-processing steps
Input
Bounding boxes generated from model: B = Bi

(x,y,w,h,c,s) where i = 0, 1, 2, ...n

User click location and predefined class: P = (px, py, pc)
Output
Final predicted box at user click location: F = (fx, fy, fw, fh)

List L: list of boxes that contain user click location
List M: list of boxes that contain user click location and match pre-define class
foreach b ∈ B do

select boxes that contain user click location
xminbx − bw/2, xmax = bx + bw/2
ymin = by − bh/2, ymax = by + bh/2
if xmin ≤ px ≤ xmax and ymin ≤ py ≤ ymax then

L.add(b)
foreach l ∈ L do

filter out boxes that don’t match pre-define class
if lc == pc then

M.add(l)
if M == ∅ then

M = L (use boxes from other classes)
for m ∈M do

find boxes that have a minimum distance to a click location
calculate Euclidean distance between center of a box and user click location

dm =
√

(mx − px2 + (my − py)2

sort(M by dm): sort List M by distance from smallest-largest
M = top30(M): keep 30% smallest distance
F = max(M): select the box that has the highest score
return F

First, we filter boxes that do not contain the user click point. Then we filter
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boxes whose class information does not match the target class of the user click. In

some cases, there will be no boxes left after the filtering. If this happens, we will

alternatively select boxes belonging to other classes as an approximation since the

model may miss classifying the objects that have similar features, e.g. bus as train,

helicopter as an airplane, etc. The possible error led by such approximation can

be mitigated by the adjustment network later. In the next step, we calculate the

Euclidean distance between the center of boxes and user click location, sort and

select the top 30% of remaining boxes that have the shortest distance. Finally, we

select the box that has the highest detection score.

3.4.1.4 Training and Inference

Following YOLOv3, we divide an image into S×S grids, each grid predicts 9 anchor

boxes with different aspect ratios and predifined width and height using k-mean

clustering algorithm.

For each box, the model predicts 5 values: x, y, width, height, and confidence

score. As a result, the final prediction features are encoded into a S × S × 45 tensor,

where S = imagesize/16 in our model.

We use a pre-trained Darknet-53 network on the MS-COCO dataset [42] as our

backbone network. The prediction model is trained using three losses: location of

boxes, width and height of boxes, and the confidence score of the box showing the

probability of having an object. The loss equations are defined below:

L = α ∗ Lxy + β ∗ Lwh + γ ∗ Lconf (3.1)

Lxy =
B+∑
i=0

(xi − x̂i)2 + (yi − ŷi)2 (3.2)
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Lwh =
B+∑
i=0

(wi − ŵi)
2 + (hi − ĥi)2 (3.3)

Lconf = −
B+∑
i=0

pilog(pi) + δ ∗ −
B−∑
i=0

pilog(pi) (3.4)

where α, β, γ and δ are weighted parameters for each part of the loss. We use

a square loss for both location and size of the box. It only considers the set of

boxes, denoted as B+, which are responsible for the ground truth (i.e. IOU between

the predicted box and ground truth more than a threshold). For confidence loss,

we use cross entropy loss where pi is an object probability calculated using sigmoid

activation function, It is calculated only for the set of boxes, denoted as B−, which

are not responsible for the ground truth.

Instead of predicting x, y, width, and height directly, we predict x and y in relative

to the location of the grid cell using sigmoid activation function and predict width

and height using the anchor boxes [36].

During inference, click location can be asked in two ways. [48] ask annotator to

click on the center of the object while in [53] ask to click anywhere on a target object.

In this work, we choose to ask annotators to click anywhere on the target due to its

feasibility in real applications. Some of the images may have small objects, which will

be hard for annotators to click exactly at the center. Furthermore, concentrating on

clicking at the center will slow down the annotation process and reduce the human

productivity.

3.4.2 Adjustment Model

The performance of the aforementioned model is highly determined by the training

set. If the annotated image deviates from the training image, accurate bounding boxes

may not be generated. Given the initial bounding box found by the aforementioned
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prediction model at the user click location, the goal of the adjustment model is to

dynamically adapt to the testing data and adjust the size and shape of the box

to be more precise over the target object. This is achieved by allowing the user to

manually adjust the initially predicted bounding box to the correct size, and to collect

the difference, (∆x̂, ∆ŷ, ∆Ŵ , and ∆Ĥ), between the predicted and corrected boxes.

The difference will be referred to as the ground truth adjustment and will be used to

train the adjustment model.

The adjustment model receives two inputs, the input image and the image of

the target object cropped based on the predicted bounding box. Both images pass

through VGG16 to extract features. The stacked features run through multiple con-

volution layers before finally used to predict the bounding box adjustment ∆x̂, ∆ŷ,

∆Ŵ , and ∆Ĥ. The total loss to train the model is defined as follow:

L = L∆x + L∆y + L∆W + L∆H (3.5)

where smoothed L1 loss is used for each loss:

L... =


0.5d2 |d| < 1

|d| − 0.5 otherwise

(3.6)

where d is the difference between the predicted adjustment (∆x, ∆y, ∆W , and

∆H) and ground truth adjustment (∆x̂, ∆ŷ, ∆Ŵ , and ∆Ĥ). We maintain an ad-

justment network for each object class. Compared to Darknet or VGG net, the

adjustment model is a relatively small and low-cost and hence is more suitable for

online training.

The significance of the adjustment model is beyond refining the size and the

location of the predicted bounding boxes. It also enables transfer learning. As we

will show in the experimental results, the adjustment model only needs a few samples
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in order to adapt. By leveraging this property, we can apply the learned prediction

model of one target class to predict the bounding boxes of objects of another target

class that has not been included in the training set, as long as the two have similar

features, and apply the adjustment model to adapt to the correct bounding boxes.

For example, if we have a trained prediction model for trucks, but not for cars. We

can still use the existing truck model to generate bounding boxes of cars at user click

location. At first, the predicted box will not fit perfectly to the object because all

observed features will be interpreted as trucks and be fit into a truck bounding box.

Based on the user feedback, the adjustment model will gradually learn to adjust the

bounding box specifically for the “cars”.

The adjustment network is especially useful when the labeled data of a specific

target class is limited. Training the adjustment model (rather than the prediction

model) for this class will be more effective as there will be less overfitting. Further-

more, it will be more difficult to locate an object than adjusting a box that has already

existed.

3.5 Experiments

In this section, we describe the details of the experiments, including the dataset,

the implementation details, and evaluation metrics. The experimental results will be

presented for prediction models compared to a state-of-the-art method.

3.5.1 Experimental Setup

For prediction model, the pre-trained Darknet-53 on MS-COCO is used as the back-

bone network. We then fine-tuned the model on Neovision2 Heli dataset [54]. We

chose this dataset to mainly focus on aerial images.

The dataset contains 32 video clips for training and 37 video clips for testing.
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Table 3.1: Statistics of Neovision 2 Heli dataset.

Class
Number of boxes
Train Test

All 8839 17626
Car 3791 8065
Boat 251 1150
Helicopter 23 39
Person 1196 3867
Container 654 2824
Cyclist 240 426
Plane 2576 792
Tractor 12 130
Truck 96 243
Bus 0 90

The videos were filmed by a helicopter over the Los Angeles area and have 10 classes:

car, boat, helicopter, person, container, cyclist, plane, tractor, truck, and bus. The

annotation of videos is divided into frames. We only choose the frames and boxes that

are not part of the Don’t Care Regions (DCR), not ambiguous, and have confidence

score equal to 1.0. With these criteria, there are no ground truth boxes left for

“buses”, so we exclude this class during the training. The total number of boxes for

each class in training and testing sets are shown in table 3.1.

We compare our model to a state-of-the-art YOLOv3 model [55]. Both models

are trained on NVIDIA TitanX (Pascal) and Tensorflow r1.13. In the experiment, we

set α, β, γ, and δ to 5.0, 5.0, 1.0, and 0.5 respectively.

During inference, we lower the model threshold at predict phase to 0.01 to get ad-

ditional bounding boxes before applying post-processing to select the final prediction.

The locations of user click were generated using uniform distribution with a specific

range of the lowest and highest value. We used scale of 0, 0.25, 0.5, 0.75, and 1.0.

At scale 0, we assumed that a user click is located at the center of the ground truth

box. At scale 0.25, 0.5, and 0.75, user click locations were randomly selected within a

rectangular area whose size is 25%, 50% and 75% of the ground truth bounding box
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Figure 3.3: Generated user clicks location area.

located at its center. Obviously the larger the rectangular area is, the more possible

the user click will deviate from the center. And at scale 1.0, user click locations can

be anywhere within the ground truth box. Fig 3.3. shows the area where user click

locations are generated at different range.

3.5.2 Evaluation Metric

To measure the accuracy of our predicted boxes, we use intersection of union (IOU)

as the evaluation metric. If no predicted boxes were generated at user click locations,

possibly due to very low detection confidence, the IOU is considered to be 0.

3.5.3 Prediction Model Results

We performed experiments on Neovision 2 Heli dataset, where we trained the model

while considering all classes and each class individually. The threshold of 0.01 and

IOU of 0.5 were used during the inference. We compared our model with a state-of-

the-art YOLOv3 in which post-processing technique was applied for both approaches.

The randomly generated user click location at scale of 0, 0.25, 0.5, 0.75, and 1.0 were

used in the experiments. As mentioned above, “bus” class was excluded in this

experiment since there is no labeled training data.

The results are shown in table 3.2. Each row represents an average IOU of corre-

sponding class objects at different user clicks. and average percentage improvement.

Compared to the YOLOv3, our models have better IOU in every class and user click

scale. This is because our model has a better detection rate with the help of user
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Table 3.2: Prediction model results.(a) YOLOv3 (b) Our model

Click location
0 0.25 0.50

(a) (b) % improvement (a) (b) % improvement (a) (b) % improvement
Class
All 0.2446 0.3647 49.10 0.2399 0.3615 50.69 0.2028 0.3319 63.66
Car 0.2519 0.3095 22.87 0.2506 0.3071 22.55 0.2203 0.2718 23.38
Boat 0.1298 0.1349 3.93 0.1262 0.1614 27.89 0.1077 0.1208 12.16
Helicopter 0.2442 0.2790 14.25 0.2442 0.2790 14.25 0.2301 0.2790 21.25
Person 0.0804 0.1879 133.71 0.0728 0.1763 142.17 0.0653 0.1297 98.62
Container 0.1359 0.2579 89.77 0.1292 0.2500 93.50 0.1086 0.2167 99.54
Cyclist 0.4216 0.4884 15.84 0.4225 0.4764 12.76 0.3580 0.4638 29.55
Plane 0.3844 0.4172 8.53 0.3785 0.4141 9.41 0.3128 0.3447 10.20
Tractor 0.1720 0.1828 6.28 0.1576 0.1798 14.09 0.1405 0.1537 9.40
Truck 0.1785 0.2965 66.11 0.1708 0.2965 73.59 0.1468 0.2508 70.84

Click location
0.75 1.00 Average

(a) (b) % improvement (a) (b) % improvement (a) (b) % improvement
Class
All 0.1320 0.2449 85.53 0.0846 0.1717 10.96 0.1808 0.2949 63.15
Car 0.1491 0.1806 21.13 0.0968 0.1193 23.24 0.1937 0.2377 22.67
Boat 0.0695 0.0861 23.88 0.0410 0.0628 53.17 0.0948 0.1132 19.36
Helicopter 0.1921 0.2194 14.21 0.1113 0.1830 64.42 0.2044 0.2497 21.28
Person 0.0471 0.0770 63.48 0.0334 0.0482 44.31 0.0468 0.1238 164.57
Container 0.0761 0.1439 89.09 0.0538 0.0899 67.10 0.1007 0.1917 90.31
Cyclist 0.2302 0.3295 43.14 0.1580 0.2031 28.54 0.3181 0.3922 23.32
Plane 0.2018 0.2279 12.93 0.1221 0.1559 27.68 0.2799 0.3120 11.45
Tractor 0.1246 0.1247 0.08 0.1081 0.1087 0.56 0.1406 0.1499 6.67
Truck 0.1003 0.1876 87.04 0.0750 0.1302 63.60 0.1343 0.2323 73.01

Average 0.1694 0.2297 35.60

click information. We can also observe that the IOU dropped when the range of the

user click expanded. This mean that the user click location plays an important role

in the final prediction. The closer the user clicks locate near the object center, the

better the predicted box can be.

Additionally, we tested the model on aerial video which is not part of the Neovi-

sion2 Heli dataset. Fig 3.4. shows the result when applying post-processing technique

to get the final prediction box. From left to right, the first image represents all pos-

sible bounding boxes when the threshold has been lowered. The second image shows

all boxes that contain user click location while the third image shows the top 30% of

all boxes that have a minimum distance from click location. Finally, the last image

shows the final prediction box which has the highest score. Fig 3.5. shows additional

results at the final prediction.
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Figure 3.4: An example of post-processing output at each step.

Figure 3.5: Examples when applying our prediction model and post-processing tech-
nique.

Figure 3.6: Examples when applying adjustment model. Left: before adjustment.
Right: after adjustment. Red: ground truth box. Blue: predicted box.

Table 3.3: Adjustment model results.

Training data
Average IOU Percentage

ImprovementBefore After
All 0.4416 0.5650 27.94
Car 0.4975 0.6095 22.51
Boat 0.4240 0.7199 69.78
Helicopter 0.3858 0.7419 92.30
Person 0.4649 0.6395 37.55
Container 0.4652 0.6410 37.79
Cyclist 0.5094 0.6382 25.28
Plane 0.4997 0.7252 45.12
Tractor 0.2246 0.3397 51.24
Truck 0.3665 0.5205 42.01
Average 0.42792 0.61404 45.15
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(a) N=10

(b) N=40

(c) N=90

Figure 3.7: Incremental learning results. y-axis represent percent improvement, x-
axis represent number of batch where the model has been retrained when new data
is available. (a) size 10, (b) size 40, (c) size 90. The size indicates how many new
feedback boxes will trigger the model to retrain itself.
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Table 3.4: Adjustment model results across classes.

Training Data
Average IOU

Detection rate
Before After

(1) Car 0.4975 0.6095 60.01%
(2) Vehicle except car 0.3337 0.6098 82.00%
(3) All except car 0.3432 0.4580 26.00%
(4) All 0.4290 0.5593 84.80%

3.5.4 Adjustment Model Performance

The second experiment evaluates the performance of the adjustment model. In this

experiment, we assume the center click. We first apply the prediction model to obtain

the initial bounding boxes. The results are then split into 70:30 ratio for training and

testing. The adjustment model is trained while considering all classes and each class

individually.

The results are shown in Table 3.3. Each row represents the average IOU of

corresponding class before and after applying the adjustment model. The IOU is

calculated only if predicted boxes were generated at user click locations. It shows

that, with adjustment model, IOU can be improved up to 45% in average.

We also evaluated the transfer learning capability of the adjustment network by

using the pre-trained prediction model from different classes that have similar features

to predict a new class of objects that has not been trained. We trained four prediction

models using different training sets that consists of only: (1) cars, (2) all vehicles

except the cars, (3) all classes in Table 3.3 except the cars, (4) all classes in Table

3.3. Then we apply the prediction model to predict the bounding box of cars followed

by the adjustment model that learns to fine tune the bounding boxes. Table 3.4.

shows the prediction results of the four configurations. Each row represents the

detection rate of the prediction model, the IOU before adjustment, and the IOU after

adjustment.

As we can observe, when the model is trained with data belong to all other classes
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except the car (i.e. 3rd row in Table 3.4), we got the lower detection rate and IOU

before and after the adjustment. This happens because there were classes in the

training data that is totally different from cars. Using a prediction model learned

from those examples results in lower overall performance.

We can also see that we got promising results if the model is trained based on

data from all other vehicle classes except the car (i.e. scenario 2 in Table 3.4). Even

though the IOU without adjustment is lower than that of scenario 1 (i.e. prediction

model trained using car images), it has a higher detection rate and the IOU can be

improved by adjustment. This result confirms that we can adjust the model trained

for other classes to predict the bounding box of new target class, if they share some

similarities. Fig 3.6. shows some example of bounding boxes before and after apply

adjustment model. The same results can also be observed for other classes.

Since the adjustment model is a relatively low-cost network, it can utilize the

feedback from users to incrementally train the model during runtime. Fig 3.7. shows

how adjustment model improves the IOU over the incremental learning procedure.

In this experiment, the target class is the “car” class and the prediction model was

trained using the image of cars. We use the ground truth bounding box of the

testing samples as the user feedback. The adjustment network is incrementally re-

trained every N samples, and N varies from 10 to 40 and 90. The plots show the

improvement in IOU after applying the adjustment model. As we can see even with

a small batch N=10, the adjustment network adapt to the testing samples after 20

batches and start to deliver around 10% improvements over the original prediction

model. For all different N, after about 3,000 samples, the adjust network can about

25% of improvements in average
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3.6 Conclusion

In this chapter, we proposed a human in a loop automatic image labeling model.

The combined prediction, post-processing, and adjustment model can be used to

streamline the analyst’s job in annotating images or videos. The model focuses on

aerial images, which has less salient features for detection. We demonstrate promising

results on Neovision 2 Heli dataset with a comparison to YOLOv3.

Also, by leveraging user click information and the adjustment model, we can

improve the overall IOU and extend the framework during runtime to adapt to new

classes whose labeled training data is not readily available.
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Chapter 4

MAGNet: Multi-Region

Attention-Assisted Grounding of

Natural Language Queries at

Phrase Level

4.1 Introduction

Object detection has been the bread and butter of computer vision with the recent

advances in deep learning leading to super-human performances in terms of accuracy

and speed [56, 57]. A variation of the object detection task is visual grounding where

the objective is to detect objects/regions of interests in the image referenced by a

descriptive phrase instead of a pre-defined set of classes. The visual grounding task

can have various specific objectives: (a) Phrase localization [58, 59]: The language

query is a local phrase from a caption describing an image such that an image region

linked to the phrase may or may not be independent of the broader context of the

full caption. This makes the queries inherently ambiguous. (b) Referring expression
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[60, 61, 62, 63, 64]: the query is an expression referring to a particular region of

an image. It is less ambiguous. (c) Natural language object retrieval [65, 66]: a

query is used to retrieve images from a set of images. (d) Visual question answering

[67, 68, 69]: a query is in the form of a question and the image region is the associated

answer.

In this work, we will mainly focus on the tasks (a) and (b). Recently, various

approaches have been developed to solve the above-mentioned specific tasks. Most

state-of-art visual grounding systems have a two-stage framework [59, 62, 63, 70, 71,

72, 73] which rely on an explicit pre-trained object detector to obtain proposed object

bounding boxes and rank their ROI-pooled features based on the encoded feature

obtained from the query. This essentially limits these systems to a fixed set of object

classes that the detector was trained on. One-stage approaches [74, 75, 76, 77] adopt

object detection frameworks to generate image features of all possible regions and fuse

them with separately encoded features for the query (proposal-level visual-textual

fusion) to rank them. Such proposal-level fusion doesn’t build an understanding of

the whole image in relation to the phrase query. Some datasets [58] also provide

annotations in addition to the query such as class, attribute, etc. described by the

query and thus are used in various works [63, 75, 78]. This makes them dependent

on the information provided by the dataset and not purely based on the natural

language query. To reduce the ambiguity in phrase localization, [24] also utilizes

the full sentence to describe the image along with the query to develop relationships

between multiple queries in the sentence.

Evaluation metrics used to measure the performance also adds bias to some ex-

isting works. The conventional Recall@K metric essentially expects the predicted

region in an image to be ranked in the top K spots. Thus, most works are designed

to predict one region per query even if the query might suggest multiple regions in

the image irrespective of how the dataset has marked the ground truth.
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In this work, to address the mentioned issues, we utilize an encoder-decoder lan-

guage model with spatial attention for image-level visual-textual fusion of the input

image and the natural language query which encodes both the local (word) and global

(full query/phrase) understanding of the query in relation to the input image. We

utilize this context generated from the attention distribution to train a Faster-RCNN

framework [79] such that the proposal generation through in-network Region Pro-

posal Network (RPN) is trained to understand the multi-modal relationship and is

not limited to a fixed set of classes, and the Region-CNN network is trained to de-

tect one or multiple regions that can relate to the given query. We depend only on

the phrase query - ground truth pair information to make the model independent of

the constraints of the datasets i.e. additional attributes, context etc. We call this

framework Multi-region Attention-assisted Grounding network (MAGNet).

4.2 Contributions

The contributions of this work are listed as follows:

• Image-level visual-textual fusion of the input image and the natural language

query through the encoder-decoder language model with spatial attention.

• Spatial Attention distribution representing global (phrase) understanding along-

side the local (word) understanding of the query in relation to the input image.

• Attention-assisted proposal generation through in-network RPN trained on the

context generated from attention.

• Attention-assisted region detection through Region-CNN trained on the con-

text generated from attention enabling single or multiple detections for a single

query.
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We evaluate our approach on Flickr30k entities [58], ReferIt game [60] and Visual

Genome [80] datasets. Compare to existing work in table 4.1, Our model achieves

12.30% better R@1 performance than the current state-of-the-art one-stage [77] and

two-stage [81] approaches. This performance boost can be attributed to the following

key points: (1). encoding the image and the query together ensures that the query

is understood in relation to the given image. Thus, for independent queries, the

generated context vector relates the query closely to the image. This is especially

effective for queries with positional cues. Hence, our framework is better at handling

the visual oriented language information. (2) the attention-assisted RPN produces

better quality proposals than other pre-trained proposal generators. We also achieve

state-of-the-art R@1 performance on Visual Genome. However, there aren’t many

reported visual grounding results on the dataset.

4.3 Related works

As we intend to focus on the phrase localization and referring expression tasks in a

supervised setting, we compare our work to related works specifically for those tasks.

Fig. 4.1a shows the types of appraoches.

Two-stage approach. The majority of the grounding systems follow a two-stage

approach: proposal generation and ranking. Proposal generation is performed either

through a pre-trained RPN [70, 81] or Faster-RCNN [63, 78], proposal generation

algorithms such as Edgebox [72, 59], Multibox [73], Selective Search [82] or proposal

candidates based on all the ground truths in the image [71, 78]. The proposals are then

matched with an encoding of the query and then ranked using ranking algorithm or

network based on their matching scores. The performance of these two-stage systems

relies heavily on the proposal generation. And as the proposal generation mostly

focuses on just objects when it’s trained as object detectors, the regions unrelated to
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objects are often missed. For example, generated proposals may contain “person”,

“tree”, “car” etc. but it might not contain “sky to the left of the tree”, “a group of

people”, etc.

One-stage approach. [74, 75, 76, 77] adopt object detection frameworks such

as to SSD [83], YOLO [84], FPN [85] and Retina Net [86] to generate image features

of all possible regions and fuse them with separately encoded features for the query

to rank them. As an encoding does not capture the entire information, fusing them

after encoding might lead to loss of relationships between the two modes (i.e. image

and query).

Additional information for reducing ambiguity. Various works also utilize

additional information other than the image and query-ground truth pair to reduce

ambiguity and fine-tune the grounding predictions. Some datasets [58] provide anno-

tations in addition to the query such as class, attribute, etc. described by the query.

As some of the two-stage approaches [63, 75], one stage approaches [75, 78] also utilizes

the attribute classes to refine the grounding. The help of these attribute is noticeable

in the performance but are not available for most visual grounding datasets. In phrase

localization task, the image caption is available. This helps reduce the ambiguity of

just utilizing the query phrase. [81, 70] utilize the image caption to form relations

between the query phrases to improve grounding performance. But, datasets for re-

ferring expressions do not have such captions relating query phrases in the image.

And most of the works including one-stage approaches [74, 76, 77] also encode the

spatial information as an 8-dimensional feature vector to bias predictions for queries

based on their location.

One query – one region approach. The majority of the related works are

designed to output only one region for a query. This bias is derived from the current

formalization of the visual grounding problem and prevalent use of Recall@K metric

to evaluate the performance. This metric essentially expects the predicted region in
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Figure 4.1: (a) Visual grounding approaches (b) Block diagram of our model.

an image to be ranked in the top K spots. Thus, most work either utilize matching

network/algorithms to generate a matching score to produce ranking for proposed

regions or simply utilize a softmax over the proposed regions. These systems are

thus unable to localize a query to multiple regions in the image even though multiple

objects matching the query exists.

Our approach. In this work, we intend to enable visual grounding for single

or multiple regions in an image based on natural language query without the use of

any additional information other than the image and query-ground truths pairs and

any pre-trained proposal generation systems. The approach and evaluation of the

approach are described in the following sections.
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Figure 4.2: (a) Encoder-Decoder Language Model. (b) Attention-based Region Pro-
posal Network. (c) Attention-based Region CNN.

4.4 Methodology

In this section, we describe the MAGNet framework. Our approach involves encoding

the image and phrase using an Encoder-Decoder framework (Section 4.4.2), identify-

ing regions of interest using a spatial attention model (Section 4.4.3) embracing both

local and global information and integrating the attentions into a region proposal

network (Section 4.4.4) and region-CNN (Section 4.4.5). In the following sections,

we introduce our model. In Section 4.6 we perform an ablation study. The block

diagram of the overall framework is shown in Fig. 4.1b.
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4.4.1 Visual features

For our model, we use ResNet-50 [87] as the backbone network to extract visual

features of the input image. The input image is resized and padded with zeros to get

a square image of size 512× 512. The visual features are extracted from the C4 layer

with size 32× 32×Dc such that the feature map is 1/16 of the input image and Dc

is the number of feature maps. The choice of C5 (16× 16) and C4 (32× 32) makes

minimal difference in the performance. Dc varies with the choice of the backbone

and the input image size. So, to standardize the model, we add a 1× 1 convolutional

layer with a ReLU and De = 512 filters to produce the final visual features V . This

visual feature is further encoded separately for the language model and the spatial

attention model.

4.4.2 Encoder-Decoder Language Model

To encode the image and the phrase together, we first adopt the encoder-decoder

framework [88] and modify it to encode the image and corresponding phrase together.

Fig. 4.2a shows the encoder-decoder model we utilize.

In this work, for our model, we adopt Gated Recurrent Units (GRU) instead

of Long-Short Term Memory (LSTM) as it has demonstrated state-of-the-art per-

formances with significantly lower number of parameters. Alongside, we adopt a

bidirectional version of GRUs to encode the phrases from both front-to-back and

back-to-front. The encoder encodes the combination of the image and phrase pro-

ducing the global embedding H where it is computed over the entire time steps.

H = Encoder(xt, eht−1,mt−1, eht+1,mt+1) (4.1)

mt is the memory cell vector and eht is the hidden state of the encoder at the time

before and after t. xt is the input vector formed from the concatenation of the visual
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features from the image and embedding of the words yt in the phrase at each time

t given as Et. For our model, the visual features from the backbone network V are

embedded using global average pooling (GAP) such that vg = GAP (V ). The phrase

is embedded using pre-trained 300-dimensional GLOVE embedding vectors [89] wt

trained on Wikipedia2014 and Gigaword. Such that xt = [Et, vg]

The encoder may consist of multiple recurrent layers, but for our model, we only

use a single layer of BiGRU. The decoder also only consists of a single layer of BiGRU

such that its hidden state is represented as:

ht = Decoder(H, ht−1,mt−1, ht+1,mt+1) (4.2)

Utilizing the context vector ct generated from attention distribution to be detailed

in Section 4.4.3 and hidden vector ht, the probability distribution of yt over the word

vocabulary is generated as:

p(yt|I) = f(ht, ct) (4.3)

4.4.3 Attention model

In the attention-based frameworks such as [90] at time t based on the hidden state,

the decoder would focus on the specific regions of the image with a distribution at

and compute ct using the spatial image features from visual backbone network. Such

that the context vector ct is defined as:

ct = g(va, ht) (4.4)

where g is the attention function that will be given later by equation 4.8, and

va = Conv1×1(V ) with number of filtersDa to match dimensions with ht. va ∈ RDa×Df

where Df = wf × hf is the number of pixels in a single visual feature map. For a
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512× 512 input image, Df is 32× 32 and each pixel in the feature map corresponds

to a 16× 16 region in the input image.

ct in equation 4.4 captures the region of focus in the visual features pertaining to

the current word t in the phrase. In localizing the phrase, it is important to preserve

the global information of the whole phrase when focusing on a region. H encodes the

entire phrase in the encoder layer such that it is a viable candidate to generate the

context vector. The importance of having H will be shown in Section 4.6. With the

global information H, the context vector ct can be derived by the following:

ct = g(va, ht, H) (4.5)

where H ∈ RDa×1 and ht ∈ RDa×1. Given va, ht and H, we apply a simple neural

network and a softmax function to generate the attention distribution αt over the

spatial image features at time t:

zt = W T
z tanh (Wvva + (Whht)1

T + (WHH)1T ) (4.6)

αt = softmax(zt) (4.7)

where Wv,Wh,WH ∈ RDf×Da , and Wz ∈ RDf×1 are weight coefficients learned

from the training process, and 1 ∈ RDf×1 such that αt ∈ R1×Df . The context vector

ct at time t can now be obtained as:

ct = va(WHH)αt (4.8)

Such that we model the probability distribution over yt in equation 4.3 as

p(yt|I) = f(ht, ct) = softmax(Wp(ct + ht1
T ))) (4.9)
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where Wp is learned weight matrix. The log probability distribution yt is maxi-

mized with a cross-entropy loss. Applying this loss as an auxiliary loss enables training

the attention vector without any grounding supervision. This infers the possibility

for pre-training the attention model. More specifically, the attention model in Section

4.4.3 can be trained separately with just the auxiliary loss in equation 4.9 to predict

the next words of the query, similar to seq-to-seq language models. In doing so, the

attention model can focus its gaze to the relevant area of the image, i.e. learn the

soft attention (αt) and thus the context vector (ct) without the grounding supervi-

sion, i.e. the ground truth bounding boxes. This can provide a way to pre-train the

attention model before adding it into the MAGNet framework where fine-tuning of

the attention model can be done along with training the attention-based RPN and

Region CNN.

4.4.4 Attention-based Region Proposal Network

Instead of using a pre-trained RPN to generate proposals in conventional two-stage

phrase localization works, we intend to train the RPN with assistance from the context

(ct) derived from encoding the visual and phrase features together.

The context vector ct from equation 4.8 represents the understanding of the word

in a phrase at time t in terms of focus on the image. To utilize this context, we need

to combine the context over the entire phrase. In our model, we simply average the

context over the time dimension such that the resulting context ĈT still has the same

dimensions as the original visual feature va.

ĈT =
1

T

T∑
t=1

ct (4.10)

where T represents the number of words in the phrase.

We use this average context vector ĈT as the input of the RPN. Similar to Faster-
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RCNN, our RPN as shown in Fig. 4.2b takes the average context vector as input

and outputs a set of rectangular object proposals (reg layer), each with an objectness

score (cls layer). Here, we define ”objectness” not literally but based on how the

phrases are grounded in the dataset. For example, the phrase ”a red shirt” refers

to an actual object whereas the phrase ”a group of people” might not fit the literal

definition of the word “object” but still is taken as such based on the dataset.

We also adopt the same multi-task loss as in [79] to train the cls layer (binary

classification) and the reg layer (regression). In Section 4.6, we demonstrate the

efficacy of utilizing the learned context for training the RPN instead of using a pre-

trained RPN.

4.4.5 Attention-based Region CNN

Now we utilize the proposals generated by RPN for region-based phrase detection

CNN. For the detection network, we again adopt Faster-RCNN as shown in Fig.

4.2c. Again, the proposals are used to perform ROI alignment on the context vector

ĈT . As we do not have classes as the detection network in Faster-RCNN, we define

the task of the cls layer in the phrase detection network as detecting how much

the proposal represents the given phrase. For this purpose, cls layer classifies each

proposal as either not related or related to the given phrase using a softmax. This

essentially means, instead of ranking these proposals, we detect how related these

proposals are to the phrase such that we can detect multiple instances of the phrase

in the image. The reg layer is now used to regress to the final bounding box for

the phrase. After this, we perform a further step of non-maximum suppression to

fine-tune the detections.
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4.5 Experiments

In this section, we present experiments to evaluate our proposed model MAGNet

on varieties of datasets with multiple evaluation metrics and compare our results to

the state-of-the-art visual grounding methods [58, 59, 65, 70, 72, 74, 75, 77, 81, 82].

Results of ablation studies with different configurations will also be reported to further

explain the design decisions of the proposed model.

4.5.1 Datasets

We evaluate MAGNet on 3 different datasets Flickr30K entities [58], ReferltGame [60],

and Visual Genome [80]. Flickr30K Entities provides region phrase correspondence

annotations to the original Flickr30K. The 31,783 images in Flickr30K have 427K

referred entities. We follow the same training/test split used in the previous work [77]

in our experiments. The queries in Flickr30K are region phrases extracted from a full

sentence description of the image. The ground truth image object provided for each

query is an object described in the image caption. The contextual information of the

image caption imposes extra constraints in visual grounding, such that the dataset

ignores other objects in the “background” that also match the query phrase. The

MAGNet focuses on the referring expressions itself with no other context information,

its training and testing are done solely based on the query phrases. As we will show

in this section, it detects more matching objects for the given query. Some of them

are not in the ground truth of Flickr30K. ReferItGame has 20,000 images from the

SAIAPR-12 dataset [91] and contains 130,525 expressions, 96,654 distinct objects,

and 19,894 photographs of natural scenes. The queries are expressions referring to

one or more regions in the image. The Visual Genome dataset has a total of 108,077

images with 5.4 million region descriptions.
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4.5.2 Evaluation metrics

We evaluate the models with two metrics: Recall@K and mean average precision

(mAP). Recall@K (R@K) for K = 1, 5 and 10 is defined as the proportion of all

positive examples ranked above a given rank K. mAP metric is adapted from the

PASCAL VOC challenge [92] used for object detection tasks. The mAP considers

both precision and recall of a model and enables evaluation of the model when there

are more than one region to be detected for a single query. and is defined as the

mean precision at a set of eleven equally spaced recall levels [0, 0.1, ..., 1]. Detailed

description of the mAP metric can be found in [92]. For both metrics, the predicted

bounding box is considered positive if it is classified as related to the given query

phrase and the intersection over union (IOU) is 0.5 or more.

4.5.3 Training details

We reshape the input image to size 512× 512 while keeping the original aspect ratio

and padding the smallest dimension with zero pixels. No other data augmentation is

performed. Query phrases are prepended with a start token and appended with an

end token and embedded with the GLOVE 300D embedding [89]. Shorter phrases

are padded with pad tokens and are limited to 18 words.

We utilize ResNet-50 [93] trained on ImageNet [94] as the backbone network for

visual features. The two layers of BiGRU contains 512 units each. For the RPN and

Region-CNN, we use the same architecture and dimensions as the original Faster-

RCNN. For the RPN, we use 9 anchors (3 aspect ratios and 3 sizes) for each feature

in the context vector. All the modules in the model are trained together to allow the

attention distribution to correlate better with the region proposals and the final region

predictions. In the experiments, we found that training the RPN and Region-CNN

separately hindered the performance of our approach.
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Table 4.1: Visual Grounding results

Methods Flickr30k Entities ReferltGame Visual Genome
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

2
-S
ta
g
e

SCRC[65] 27.80 - 62.90 17.93 - 45.27 11.00 - -
DSPE[95] 43.89 64.46 69.66 - - - - - -
GroundeR[82] 47.81 - - 26.93 - - - - -
CCA[58] 50.89 71.09 75.73 - - - - - -
Similarity Net[59] 51.05 70.30 75.04 - - - - - -
MSRC[96] 57.53 - - 32.31 - - - - -
QRN[70] 60.21 - - 43.57 - - - - -
QRC[70] 65.14 - - 44.07 - - - - -
CITE[72] 61.89 - - 34.13 - - 24.43 - -
PIRC Net[81] 72.83 - - 59.13 - - - - -

1
-S
ta
g
e IGOP[74] 53.97 - - 34.70 - - - - -

SSG[75] - - - 54.24 - - - - -
ZSGNet[76] 63.39 - - 59.63 - - - - -
[77] 68.69 - - 59.30 - - - - -
MAGNet(Ours) VGG16 49.85 67.00 67.85 63.55 72.50 72.75 22.35 34.90 36.35
MAGNet(Ours) Resnet50 60.20 78.85 79.90 71.60 81.00 81.20 28.85 48.50 50.70

4.5.4 Quantitative Analysis

Table 4.1 compares our approach with prior works on Flickr30k entities, ReferIt, and

Visual Genome datasets in terms of Recall@K metric where K = 1, 5, and 10. We

separate the prior works into two-stage and one-stage approaches. and compare the

results with our model described in Section 4.4 and 4.5.3. Results for the prior works

are collected from their respective publications.

For the phrase localization task on Flickr30k entities, the phrase queries extracted

from the image caption ignore the context in the original sentence and thus are highly

ambiguous especially in terms of the positional cues of the region. Some examples

are given in Figure 4.3c with the ground truths. As we explained in Section 4.5.1 ,

MAGNet searches for the matching objects solely based on the query phrase without

considering any additional contextual information. Additionally, we modelled MAG-

Net as a detection framework to detect single or multiple regions for a query instead

of just specifically one region. Therefore, it is able to detect all matching objects

in the image, and the one mentioned in the image caption may not necessarily have

the highest score. That is why the R@5 and R@10 score of MAGNet is significantly

better than its R@1 score. From this perspective, the Flickr30k entities is not the
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ideal dataset to evaluate our approach, because only the objects within the context of

the image captions are identified as the ground truth, while other objects are ignored

even though they also match the query description.

The authors of [70] [81] utilize the entire caption to either build relationships

between multiple queries in a single image or as the context to reduce the ambiguity

in the query phrase. Therefore, they are able to locate the object in the context (i.e.

image caption) that matches the phrase description. However, for many applications

the caption of the image is usually not available. Furthermore, focusing only on the

context given by the image caption prohibits the model to locate all possible matching

objects to the query in the image. That is why the performance of these approaches

degrade significantly when applied to the ReferItGame dataset.

In addition to focus only on a single region, [76] [77] explicitly code spatial features

for each position of the spatial dimensions to add positional information thus reducing

positional ambiguity. These works also encode the queries and images separately,

thus enabling them to utilize powerful pre-trained language models like BERT [97].

However, separately trained language and image model also means that the model

is less effective in extracting language features that have salient image information

or vice versa. This probably is another reason that these works perform worse when

applied to ReferItGame dataset, where many objects are located based on the position

cue in the phrase description.

The advantages of our approach become apparent in the referring expression task

in ReferIt and Visual Genome datasets as shown Table 4.1. In this task, the queries in

the image are independent of each other. The queries are self-sufficient with specific

positional cues and thus less ambiguous. Hence, the ground truth has better precision

in this dataset. Our model achieves 12.30% better R@1 performance than the current

state-of-the-art one-stage [77] and two-stage [81] approaches. This performance boost

can be attributed to the following key points: (1). encoding the image and the query

56



together ensures that the query is understood in relation to the given image. Thus,

for independent queries, the generated context vector relates the query closely to

the image. This is especially effective for queries with positional cues as shown by

predicted grounding in Fig. 4.3b. Hence, our framework is better at handling the

visual oriented language information. (2) the attention-assisted RPN produces better

quality proposals than other pre-trained proposal generators. Table 4.3 shows the hit

rates for various region proposal methods for the number of proposals N = 200. The

MAGNet (a) in the table is the original MAGNet model, however the input of its

RPN (Figure 4.2b) is the visual feature V instead of the attention enhanced visual

feature Ĉt. Our attention-assisted RPN produces the highest quality proposals for

ReferIt and Visual Genome.

We also achieve state-of-the-art R@1 performance on Visual Genome. However,

there aren’t many reported visual grounding results on the dataset.

4.5.5 Qualitative Analysis

Fig. 4.3a shows some examples of visual grounding performance of our approach

and the attention distribution for Flickr30k entities and ReferIt datasets. For each

dataset, the leftmost and middle columns show the visual grounding and attention

distribution when the query is grounded correctly, and the rightmost column when

the query phrase is grounded incorrectly. The yellow bounding box represents the

ground truth and the red bounding box represents the predicted bounding box. As

can be seen from the examples, the attention is distributed as suggested by the query

focusing on relevant parts as described by the words in the phrase. The incorrect

region grounding occurs mainly in cases of high ambiguity in the query. For example,

for Flickr30k entities in the rightmost column, the query is “the load” with an image

of a car with baggage on its top. The image caption “the passenger is holding on

to the load on top of the car” is also provided. The word “load” itself has various
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Flickr30K ReferItGame
Positive Negative Positive Negative

Ex ps a shopping cart a red shirt the load the beige building 
on the front right people to the left damn that snake 

head

Pr
ed

ic
tio

ns
A

tte
nt

io
n

(a)

above the people all the people below the people person on the left 
side

person on the right 
side

person in the 

(b)

a baseball player the lady two boys a mountain climbera blue shirt fruit bottom left

(c)

Figure 4.3: (a) Examples from our approach. (b) Predicted grounding for positional
cues. (c) Examples showing multiple region detection and discrepancies with ground
truth.
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(a) (b) (c)

Figure 4.4: Proposals generated by query “a red shirt” by (a) RPN(COCO) (b) RPN
without attention (c) attention-assisted RPN. The bounding boxes are colored only
for distinguishing between the dense boxes

meanings. Without the context of the car in the query or the context of the full

caption, this example becomes highly ambiguous.

Our approach also detects multiple regions for a query. This causes some dis-

crepancies between our prediction and the ground truth, esp. in Flickr30k entities.

We show some examples of discrepancies of grounding of queries in the two datasets,

perceived correct grounding and our approach’s predicted grounding in Fig. 4.3c.

For example, the query ”two boys” is grounded showing only one of the boys in the

dataset whereas our approach is able to predict regions for both the boys in the image

which is perceived to be correct.

As mentioned in Section 4.5.4, the attention-assisted RPN produces better quality

proposals than other pre-trained proposal generators. Fig. 4.4 shows an example of

proposals generated by an (a) RPN trained on MSCOCO, (b) RPN without attention

and (c) our attention-assisted RPN. As it can be seen, the RPN (a) produces lots of

proposals unrelated and not useful to ground the given phrase, whereas our attention-

assisted RPN produces very focused proposals based on the query.
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4.6 Ablation study

We study the effect of some variations in our model to demonstrate the effectiveness

of some design choices. Table 4.2 shows the R@1 and mAP for three variations from

the final model.

Variation (a) studies the effect of not using a word embedding. Instead of using

the GLOVE 300D embedding, we allow the model to learn the embedding during

the training. This variation has minimal impact on ReferIt whereas a bigger impact

on the Flickr30k entities. This is expected as the vocabulary size of ReferIt queries

are smaller (∼1500) than that of Flickr30k entities (∼ 4000). And also learning the

embedding just from the vocabulary doesn’t allow the model to generalize as it does

when using a word embedding trained on a large corpus.

Variation (b) studies the effect of not utilizing the encoding of the full query H

in attention distribution. In this model, (4.6) (4.7) and (4.8) are reduced to the

following:

zt = wT
z tanh(Wvva + (Whht)1

T ) (4.11)

at = softmax(zt) (4.12)

ct = αtva (4.13)

This variation has a clear impact on the performance of our approach for all

the datasets. Without the knowledge of the full query, the attention distribution

only tends to represent the focus towards the latest word in the query, thus missing

the context of the full query. For example, in a query ”a red shirt”, the attention

distribution without H only focuses on shirts at the end of the query, whereas with

H, the attention is now focusing on red shirt.

Variation (c) studies the effect of training the RPN without the use of the context
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Table 4.2: Ablation Study

Method Flickr30k Entities Referlt Game Visual Genome
R@1 mAP R@1 mAP R@1 mAP

MAGNet 60.20 0.4956 71.60 0.6052 28.85 0.1892
MAGNet(a) 52.90 0.4293 69.95 0.6129 29.00 0.1823
MAGNet(b) 49.65 0.3672 68.00 0.5505 26.50 0.1316
MAGNet(c) 52.90 0.3730 68.95 0.5813 28.40 0.1144

MAGNet: Our model (a) without word embedding (b) without global H (c) without
attention-assisted RPN

Table 4.3: Hit rates (N=200) of region proposal methods

Method Flickr30k ReferIt Visual Genome
RPN(COCO)[79] 76.60 46.50 -
Edgebox[98] 83.69 68.26 -
Selective Search[99] 85.68 80.34 -
PGN (N=100)[70] 89.61 - -
MAGNet 89.78 92.68 68.59
MAGNet(a) 78.22 83.98 50.90

MAGNet(a) MAGNet without attention-assisted RPN

vector ĈT . In this variation, we directly utilize va from equation (10) to train the

RPN and utilize ĈT only to train the Region-CNN. This variation of training RPN is

similar to the Proposal Generation Network (PGN) in [70] but with regular cls and

reg RPN loss instead of the proposal generation loss dependent on the context of the

full caption. This variation also creates a measurable impact on the performance of

our approach. This can be understood as the proposals generated by this RPN are

of lower quality than the attention-assisted RPN as shown in Table 4.3 and Fig. 4.4.

4.7 Conclusion

In this chapter, we utilize an encoder-decoder language model to fuse the input im-

age and the natural language query and train an attention distribution over the input

image which encodes both the local and global understanding of the query in relation
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(a) (b) (c)

Figure 4.5: a man

to the input image. We utilize the generated context to train an attention-assisted

region proposal network to generate proposals relevant to the query phrase and train

an attention-assisted region CNN to classify these proposals in a Faster-RCNN frame-

work. We call this framework the Multi-region Attention-assisted Grounding network

(MAGNet). With this MAGNet framework, our model is independent of external

proposal generation systems and without additional information it can develop un-

derstanding of the query phrase in relation to the image to achieve respectable results

in Flickr30k entities and 12% improvement over the state-of-the-art in ReferIt game.

Additionally, our model is capable of grounding multiple regions for a query phrase,

which is more suitable for real-life applications. The use of attention distribution also

makes the model more interpretable than other existing works.

4.8 Supplementary Materials

We show more examples of using our model. Fig. 4.5, 4.6, 4.7, and 4.8 show the

predicted bounding box (a), attention (b), and masking (c) of a query expression. Fig.

4.9 shows predicted grounding for positional cues, while Fig. 4.10 shows examples of

different attributes. Fig. 4.11, 4.12, and 4.13 show more examples in each data set

where the red boxes are predicted boxes and yellow boxes are ground truth boxes.
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(a) (b) (c)

Figure 4.6: a thick-striped orange shirt

(a) (b) (c)

Figure 4.7: a black pants

(a) (b) (c)

Figure 4.8: his arms

(a) person left (b) person right (c) tree left (d) tree right

Figure 4.9: Examples of position clue
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(a) yellow shirt (b) blue shirt (c) a Buddha face

(d) a big guy (e) a small girl

Figure 4.10: Examples with different attributes

(a) white shorts (b) green shirt (c) a cold drink (d) a chinese hat

Figure 4.11: Flickr30K examples

(a) pitcher of water (b) tree on right (c) left person (d) a wheel far right

Figure 4.12: Refclef examples
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(a) bat held by batter (b) white colored front door

(c) a flag hanging from a building (d) the red coffee mug

Figure 4.13: Visual Genome examples
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Chapter 5

Accelerating Block-circulant

Matrix-based Neural Network

Layer on a General Purpose

Computing Platform: A Design

Guideline

5.1 Introduction

In the past few years, driven by increasing amounts of data and processing speed, Deep

Neural Network (DNN) has been able to deliver impressive results for many complex

and challenging problems. Particularly large-scale DNNs have significantly enhanced

object recognition accuracy and led a revolution in many real-world applications, such

as automatic machine translation [100], self-driving systems [101], and drug discovery

[102]. The resurgence of neural networks has attracted both academic and industry

in evaluation, improvement and promotions.
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The deep neural networks consist of multiple layers of various parameters and

thousands of neurons. Recent research has proven that the depth of DNN structure

is crucial to satisfactory that stands out accuracy [93]. As a result, large scale DNNs

require computation and memory remarkably. Driven by this challenge, more and

more techniques have been proposed to compress deep neural network size with a

negligible accuracy loss. One strategy is the block-circulant matrix-based (BCM) al-

gorithm [1], a principled approach utilizing Fast Fourier Transform (FFT) and block-

circulant matrices to reduce both computational and memory complexity. Compared

to other compression techniques such as weight pruning [103], BCM algorithm has

three main advantages. First, it allows us to derive a tradeoff between accuracy and

acceleration. Second, the BCM algorithm reduces storage complexity from O(n2) to

O
(

n2

k

)
by compressing the weight matrix into k dense vector, whereas conventional

weight pruning gives a sparse weight matrix that requires additional memory foot-

print for indexing. Lastly, BCM algorithm maintains the regular network structure

and retains a rigorous mathematical foundation on a compression ratio and accuracy

[1].

5.2 Contributions

In prior work, the BCM algorithm has only been evaluated for embedded platforms

due to their portability, versatility, and energy efficiency [1]. We aim to solve two re-

maining questions. First, can the BCM algorithm be implemented on software-based

platforms, especially in Python which is the most popular programming language

used for deep learning. Second, how to configure the BCM algorithm to balance the

tradeoff between accuracy and compression/acceleration. We proposed in this work

to guide users to implement the BCM algorithm and achieve the best performance.

To solve the two questions, we will evaluate the performance of the algorithm in
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Python using numpy, intel-numpy, tensorflow, and nGraph packages. Additionally,

we design the parallel BCM algorithm that effectively utilize multiple cores in the

target systems.

5.3 Related Works

In the past decade, numerous techniques have been proposed to compress neural

network. These include structured weight matrices [104, 105], parameter pruning

[106, 103, 107] and quantization [108, 109]. Recently weight pruning methods have

become more and more popular. Although weight pruning could achieve an amazing

compression ratio, but the network structure and weight storage after pruning become

irregular, hence indexing is required which weaken the performance improvement.

Specially, when implemented in embedded system, it requires a customized hardware

capable of loading sparse matrices and/or performing sparse matrix-vector operations

[110]. Inherently, irregular memory access and extra storage footprint reduce the

speed of the weight pruning.

Frequency domain operation was first proposed by LeCun to accelerate the com-

putations of convolution layer by replacing the convolution operation using element

wise multiplication in frequency domain [111]. No weight compression was considered

in [111]. Circulant-weight matrix was first proposed in [104] in 2015, as a mean to

reduce the storage complexity of fully connected neural networks. By compressing a

weight matrix into a circulant weight matrix, it reduces the space complexity from

O(d2) to O(d). As a property of circulant matrix, the matrix-vector multiplication

(between the weights and the inputs) can be done as element wise vector-vector mul-

tiplication in frequency domain, and hence reduce the time complexity from O(d2) to

O(d). Unlike conventional weight pruning, the circulant weight matrix has a dense

structure and it could be used to optimize both speed and space. FFT is used to

68



transform weights and inputs to frequency domain.

For very large weight matrices, the circulant matrix approach provides very sig-

nificant compressing ratio, but also will lead to considerable quality degradation of

the neural network. Block-circulant weight matrix was first proposed by Ding et al.

[1] as a way to balance the storage complexity and neural network quality during

the compression. The authors also proposed the CirCNN to implement the BCM

based Deep Neural Networks on hardware, such as ASIC and FPGA. With the cus-

tomized pipeline structure, the FFT and element-wise operation achieve their best

performance on the customized hardware implementation. However, the efficiency of

the BCM on general purpose computing platforms, which is still normally used by

machine learning community, has not been studied.

In this work, we consider all the potential overheads in software and propose

a parallel design of the block-circulant matrix-based algorithm for general purpose

computing platform. We evaluate its performance on popular deep learning frame-

works/packages and provide guidelines that can generally lead to better implementa-

tions.

5.4 Background of block-circulant weight matrix

The block-circulant matrix-based algorithm can be applied to both Fully Connected

(FC) and Convolutional (CONV) layers. Since the benefit of compression is more

noticeable for FC layers, in this work we will focus our discussions on FC layers. The

similar result can be extended to CONV layers as well.

In FC layers, W ∈ Rm×n, a weight matrix W with the size of m × n will be

partitioned into 2D blocks of square submatrices where each submatrix is a circulant

matrix. After partitioning, there will be p × q blocks where p = m ÷ k, and

q = n ÷ k while k represents the size of square submatrices or block size. X ∈ Rl,
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the input vector X with the size of l will also be partitioned into r blocks where

r = l ÷ k. Fig 5.1. shows an example of partitioned matrices of input and weight

where m = 6, n = 9, l = 9, and k = 3.

Figure 5.1: An illustration of the partitioned weight and input matrices in FC layer

Following the partitioning, the weight matrix becomes W = [Wij], i ∈ {1...p}, j ∈

{1...q}, and the input matrix becomes X = [x1
T , x2

T , ...., xq
T ]

T
. As a result, the

output of each block can be calculated as:

ai =
∑q

j=1Wijx
T
j (5.1)

where ai ∈ Rk is an output column vector. According to circulant convolution

theorem [112], the compressed weight matrix Wij is defined by the first row of a vector

wij as shown in Fig 5.1. The output of each block can be calculated as:

ai = IFFT (
∑q

j=1 FFT (wij) ◦ FFT (xTj )) (5.2)

where ◦ denotes element-wise multiplication, and FFT denotes Fast Fourier trans-
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form. An illustration of the BCM calculation is shown in Fig 5.2.

By using the BCM algorithm, we can reduce the storage complexity from O(mn)

to O(pqk). Since we only need to store FFT (wij) for each submatrix, it is equivalent

to O(n) for small p and q values. Additionally, the computational complexity of FC

layer is reduced from O(n2) to O(nlogn), and from O(WHr2CP ) to O(WHQlogQ)

where Q = max(r2C, P ) for CONV layer.

Figure 5.2: An illustration of the block-circulant matrix-based calculation [1].

5.5 Acceleration for General Purpose Computing

Platforms

Despite its success in hardware implementation, the BCM based approach has not

been widely adopted by machine learning community that works mainly on general

purpose computing platforms. This is because, compared to matrix multiplication,

which is highly optimized for multi-core systems in many programming paradigms,

FFT, IFFT, and element-wise multiplication are not nearly optimized. This sig-
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nificantly affect the performance of the BCM algorithm. In our investigations, we

ran experiments comparing matrix multiplication with the BCM algorithm by using

different numbers of CPU cores.

Our implementation is based on Python programming language with numpy, intel-

numpy, tensorflow, and nGraph packages. We ran the experiments with one FC layer

which contains 4,096 hidden neurons. A batch size of 1024, and a block size of 128.

Fig 5.3. shows the results of matrix multiplication and BCM algorithm with different

number of CPU cores.
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Figure 5.3: Total time used with different number of CPU cores. Left panel: Matrix
multiplication results. Right panel: Block-circulant matrix-based algorithm results.
The y-axis display time used in milliseconds, the x-axis shows the number of CPU
cores which the maximum number is 8 since the machine has 4 physical cores and 8
threads, and each label represents different packages.

As shown in Fig 5.3, the time used in matrix multiplication decreases as the num-

ber of cores increases. This can be explained through utilization of multiple cores in

each package by using either multiprocessing or multithreading. In contrast, the time

used in the block-circulant matrix-based algorithm slightly decreases in tensorflow

and tensorflow+nGraph while remains stable in numpy and intel-numpy.

Therefore, we design the parallel block-circulant matrix-based algorithm to ac-

celerate the computations. The key idea is to separate each computation block and
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run it on different processes as each block can be calculated independently. Fig 5.4.

represents parallel block-circulant matrix-based algorithm. We partition the block-

circulant matrix by row and run it on the different processes. Once the calculations

are completed, we combine and convert the matrices to get the final output.

Figure 5.4: An illustration of parallel block-circulant matrix-based algorithm.

In case there are multiple inputs, we can use data parallelism to separate these

inputs into processes such that each portion of data is assigned to different processes.

The portion of data is defined as input size / number of CPU cores.

In terms of implementation, we initially use native multithreading and multipro-

cessing provided in Python. However, Python has Global Interpreter Lock (GIL) that

only allows one thread to hold the control of its interpreter, creating the performance

bottleneck in multithreading. In contrast to multithreading, multiprocessing uses sub

processes to solve GIL which allows the program to optimize multiple cores in a given

machine. Nevertheless, there are overhead in spawning processes and sending data.
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To improve the performance, we use Ray [2]: a simple framework that has been

proven to be faster than native multiprocessing and multithreading. Additionally,

Ray can be easily integrated with Python. Fig 5.5. represents the basic sample code

of how to use Ray to accelerate the parallel block-circulant matrix-based algorithm.

In case there are multiple inputs, we can use data parallelism to separate these inputs 
into processes such that each portion of data is assigned to different processes. The 
portion of data is defined as C#3[\	]C^_	/	#[2a_;	Ub	XYc	dU;_].  

In terms of implementation, we initially use native multithreading and 
multiprocessing provided in Python. However, Python has Global Interpreter Lock 
(GIL) that only allows one thread to hold the control of its interpreter, creating the 
performance bottleneck in multithreading. In contrast to multithreading, 
multiprocessing uses sub processes to solve GIL which allows the program to 
optimize multiple cores in a given machine. Nevertheless, there are overhead in 
spawning processes and sending data.  

To improve the performance, we use Ray [16]: a simple framework that has been 
proven to be faster than native multiprocessing and multithreading. Additionally, Ray 
can be easily integrated with Python. Fig 5. represents the basic sample code of how 
to use Ray to accelerate the parallel block-circulant matrix-based algorithm. 
 

Basic Python Distributed with Ray 

# Execute f serially. 
 
 
def f(): 
    time.sleep(1) 
    return 1 
 
 
 
results = [f() for i in range(4)] 

# Execute f in parallel. 
 
@ray.remote 
def f(): 
    time.sleep(1) 
    return 1 
 
 
ray.init() 
results = ray.get([f.remote() for i in range(4)]) 

Fig. 5. Example use of Ray in Python implementation [16]. 
 

Using parallel design and Ray, we can achieve better performance than the original 
block-circulant matrix-based algorithm when increasing the number of CPU cores. 
Fig 6. shows the results of our parallel version versus the previous version. The new 
parallel version can achieve a stable speedup ratio up to 4 cores which is the number 
of physical cores.  
 

Figure 5.5: Example use of Ray in Python implementation [2].

Using parallel design and Ray, we can achieve better performance than the original

block-circulant matrix-based algorithm when increasing the number of CPU cores.

Fig 5.6. shows the results of our parallel version versus the previous version. The

new parallel version can achieve a stable speedup ratio up to 4 cores which is the

number of physical cores.

5.6 Design Space Exploration of BCM

In this work, the block-circulant matrix-based algorithm has been applied to the

model during inference phase. When it comes to computational complexity, the block-

circulant matrix-based algorithm is faster than matrix multiplication. However, when

it comes to implementation, we need to examine the overhead from IFFT , FFT , and

matrix reshaping. Design parameters such as the batch size, block size, and number

of CPU cores all will affect the calculation time. For some combinations, matrix

multiplication may be faster than the BCM, while for others the BCM may be more
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Figure 5.6: Comparing the original and our ray-parallel implementation. Top-left
panel: numpy. Top-right panel: intel-numpy. Bottom-left panel: tensorflow. Bottom-
right panel: tensorflow+nGraph. A batch size of 1024, and a block size of 128 are
used in these experiments. The y-axis display time used in milliseconds, and the
x-axis shows the number of CPU cores.

effective than matrix multiplication. While increasing the block size always reduces

storage and computing complexity, it also lowers the model capacity of the neural

network and hence may lead to larger prediction error. It has been shown in [1] that

with a compression ratio of up to 30-50x, sometimes the loss may be negligible, and

the compressed models may even outperform the baseline models. However, in some

cases the loss is noticeable. In general, the loss is monotonically increasing with the

compression ratio. By focusing on the speed during the inference phase, users must

decide whether the accuracy loss is acceptable.

In order to choose the best model with the most efficient configuration and ac-

ceptable accuracy without exhaustively exploring the entire design space, the designer

needs to know how the performance is affected by these design parameters including

the batch size, block size, and number of CPU cores. In this work, we designed a set of
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benchmark programs that characterize the performance of different configurations of

BCM with a comparison to the matrix based implementation. Guidelines in choosing

the configuration of the BCM was derived from the result. These guidelines will help

designers to choose the configuration without having to attempting all combinations.

The study is performed on Intel(R) Xeon(R) W-2123 CPU @3.6GHz which has

4 physical cores and 8 threads. Matrix multiplication and the BCM algorithm are

implemented using Python programming language with various packages. The fol-

lowing lists of possible choices of the hardware/software configurations and design

parameters that were evaluated.

• Packages: numpy, intel-numpy, tensorflow, and tensorflow+nGraph.

• Number of CPU cores: 1, 2, 4, and 8

• Block size (M): 128, 256, 512, 1024, and 2048

• Batch size (N): 128, 256, 512, 1024, 2048, 4096, and 8192

The evaluation results reported in this work are platform specific, however, the

benchmarks and methodologies can be applied to other platforms. The model that

we considered is a fully connected layer with 4,096 hidden neurons. The weights and

inputs that have the size of (4096, 4096), and (number of batches, 4096) respectively.

Table 5.1 shows the size of inputs, blocks, and weights used in the experiments.

We assume that the block-circulant weight matrix has already been trained and

the FFT of each block has been calculated. Please refer to [1] about how to train

a block circulant weight matrix. For a fully connected layer whose input size and

output size are X and Y , let M denote the block size, then there will be
⌈
X
M

⌉
×
⌈
Y
M

⌉
circulant blocks. Each block, after FFT, will be represented as a vector of size M

2
+ 1

since we only compute the real part of discrete Fourier Transform. Overall we will

represent the weight as 4D tensor with size 1 ×
⌈
X
M

⌉
×
⌈
Y
M

⌉
× (M

2
+ 1). In Table
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Table 5.1: Size of inputs, blocks, weights before and after partitioning & FFT

Input size
Weight size before
partitioning & FFT
(X,Y)

Block size
(M)

Weight size after
partitioning & FFT
(1, [ X

M
], [ Y

M
], M

2
+ 1)

(N, 4096) (4096, 4096)

128 (1, 32, 32, 65)
256 (1 16, 16, 129)
512 (1, 8, 8, 257)
1024 (1, 4, 4, 513)
2048 (1, 2, 2, 1025)

5.1, N represents the number of batches. The weight size after partitioning & FFT

has 4 dimensions, including 1,
⌈
X
M

⌉
,
⌈
Y
M

⌉
, and size after FFT where 1 represents

additional dimension that help matching the number of batches in input size during

element-wise multiplication.

In each experiment, we record the time used starting from the initial step until

we receive the output from the algorithm. The algorithm consists of six steps as the

following:

1. Reshaping input X into 4 dimensions (N,
⌈
X
M

⌉
, 1, M) to match the size of

weight tensor.

2. Calculating the FFT of input X from step 1, FFT (X) where the size of this

step becomes (N,
⌈
X
M

⌉
, 1, M

2
+ 1).

3. Calculating element-wise multiplication FFT (W ) ◦ FFT (X). The output size

becomes (N,
⌈
X
M

⌉
,
⌈
Y
M

⌉
, M

2
+ 1).

4. Summing the output from step 3 using the formula:
∑dX

M e
i=1 FFT (wij) ◦ FFT (xi)),

where j is each block in
⌈
Y
M

⌉
. The output size becomes (N,

⌈
Y
M

⌉
, M

2
+ 1)

5. Calculating IFFT along the third dimension of the tensor from step 4 and get

output Y . The output size becomes (N,
⌈
Y
M

⌉
,M)
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Figure 5.7: Total time used with different block size with single core in numpy pack-
age. Left panel: Small batch size (128). Middle panel: Medium batch size (1024).
Right panel: Large batch size (8192). The y-axis display time used in milliseconds,
and the x-axis shows different block size.

6. Reshaping the output into (N, output size) where the output size is 4,096.

The dimensions that have been set to 1 are used for broadcasting which are avail-

able in all packages that we use in our experiment, reducing and simplifying the

codes.

5.7 Impact of block size on performance

Varying the block size will result in different compression ratios and accuracies. In this

experiment, we set the number of blocks to 128, 256, 512, 1024, and 2048 to observe

the performance in relative to increasing number of blocks in different configurations

(i.e. number of CPU cores and batches).

Single core. Even though multiple cores/GPUs may be readily available, some

specific embedded system/machine may only have single core. Therefore, running

deep model on this system may require significant amount of time and memory. BCM

based approach is especially effective for this type of resource constrained platforms.

Applying the block-circulant matrix-based algorithm will reduce the amount of mem-

ory used and increase the speed. Fig 5.7, 5.8, 5.9, and 5.10. Show how inference time

reduces as block size increases.

In all packages, increasing the block size reduces the time used. However, this
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Figure 5.8: Total time used with different block size with single core in intel-numpy
package. Left panel: Small batch size (128). Middle panel: Medium batch size (1024).
Right panel: Large batch size (8192). The y-axis display time used in milliseconds,
and the x-axis shows different block size.
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Figure 5.9: Total time used with different block size with single core in tensorflow
package. Left panel: Small batch size (128). Middle panel: Medium batch size (1024).
Right panel: Large batch size (8192). The y-axis display time used in milliseconds,
and the x-axis shows different block size.
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Figure 5.10: Total time used with different block size with single core in tensor-
flow+nGraph package. Left panel: Small batch size (128). Middle panel: Medium
batch size (1024). Right panel: Large batch size (8192). The y-axis display time used
in milliseconds, and the x-axis shows different block size.
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Figure 5.11: Total time used with different block size with multiple cores in numpy
package. Left panel: Small batch size (128). Middle panel: Medium batch size (1024).
Right panel: Large batch size (8192). The y-axis display time used in milliseconds,
and the x-axis shows different block size.

correlation is not linear, increasing the block size twice does not reduce the time by

half. Once the block size reaches 1024, the speedup ratio remains stable.

In numpy, using the BCM algorithm is faster than matrix multiplication in all

block size, small, medium, and large batch size. Meanwhile, the BCM algorithm is

faster when the block size is larger than 128 in intel-numpy. The same results apply

to all batch size with more difference observed in the large batch size.

In contrast to numpy and intel-numpy, tensorflow and tensorflow+nGraph display

a slower speed in the BCM algorithm when compared to matrix multiplication. This

outcome applies to small batch size when block size less than 256, and all block size

for medium and large batch size. The results can be explained by the overhead time

used to compute FFT, IFFT, and to create session to run the calculation.

Multiple cores. Exploiting the resources of multiple cores of the system/machine

will help increase the overall performance. As mentioned earlier, we use Ray library

to implement the parallel block-circulant matrix-based algorithm. In this experiment,

we set the number of cores to 4 and ran the experiments using small, medium, and

large batch size. Fig 5.11, 5.12, 5.13, and 5.14. represents how much time used when

we increase block size in each package using multiple cores.

Due to different techniques used in multiple cores in each package, different re-

sults are expected. In numpy, the BCM algorithm appears to be faster than matrix
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Figure 5.12: Total time used with different block size with multiple cores in intel-
numpy package. Left panel: Small batch size (128). Middle panel: Medium batch
size (1024). Right panel: Large batch size (8192). The y-axis display time used in
milliseconds, and the x-axis shows different block size.
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Figure 5.13: Total time used with different block size with multiple cores in tensorflow
package. Left panel: Small batch size (128). Middle panel: Medium batch size (1024).
Right panel: Large batch size (8192). The y-axis display time used in milliseconds,
and the x-axis shows different block size.
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Figure 5.14: Total time used with different block size with multiple cores in tensor-
flow+nGraph package. Left panel: Small batch size (128). Middle panel: Medium
batch size (1024). Right panel: Large batch size (8192). The y-axis display time used
in milliseconds, and the x-axis shows different block size.
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multiplication once the block size is above 128 and small batch size is used, while it

appears to be faster with all block sizes when using a medium and large batch size.

With intel-numpy. matrix multiplication is always faster than the BCM algo-

rithm for block size below 128. The BCM outperforms matrix multiplication only

for relatively larger blocks. This outcome can be explained by highly optimized ma-

trix multiplication by Intel Math Kernel Library (MKL) packages which is designed

specifically for intel CPU.

With tensorflow and tensorflow+nGraph, the break-even block size where BCM

and matrix multiplication has similar performance moves left. We now need even

larger blocks to outperform matrix multiplication. Similar to single core system, the

BCM performance still prefers smaller batch size. The break-even block size gets

bigger when the batch size increases.

5.8 Impact of number of CPU cores on perfor-

mance

The parallel block-circulant matrix-based algorithm utilizes multiple cores by spawn-

ing multiple processes. However, the amount of speed up is not linearly proportional

to the hardware resources. Increasing the number of cores exceeds a certain point

will cause the program to run slower because of the communication bottleneck. Each

process uses more time in synchronization, such that the amount of increased com-

munication time outweighs the amount of computing time saved by add more cores.

With some configurations, applying matrix multiplication is more advantageous.

In this experiment, the number of cores is set to 1, 2, 4 and 8. We ran the

experiments using a small, medium, and large batch size of 128, 1024, and 8192 in

numpy, intel-numpy, tensorflow, and tensorflow+nGraph respectively. Fig 5.15, 5.16,

5.17, and 5.18. display how much performance gain when we increase the number of
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Figure 5.15: Total time used with different number of CPU cores in numpy package.
Left panel: Small batch size (128). Middle panel: Medium batch size (1024). Right
panel: Large batch size (8192). The y-axis display time used in milliseconds, the x-axis
shows different number of CPU cores, and the legend represents matrix multiplication
and different block size.

cores in each package using a different block size.

In general, using BCM algorithm can gain a stable speedup ratio up to 4 cores,

while in some cases, it become slower when using 8 cores as a result of parallel

slowdown, each process uses more time in communication and spawning process than

the increased processing power that it achieves.

Meanwhile in numpy, BCM algorithm is faster than matrix multiplication, How-

ever, when a small batch size, block size of 128 & 4 cores, and block size of 256 & 8

cores are used, matrix multiplication is faster. In intel-numpy, regardless of the num-

ber of cores and batch size, the block-circulant is faster than matrix multiplication

when the block size is larger than 128.

For tensorflow and tensorflow+nGraph, the BCM algorithm is slower than matrix

multiplication when using larger batch size. Although at small batch size, it is faster

when setting block size to be greater than 128.
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Figure 5.16: Total time used with different number of CPU cores in intel-numpy
package. Left panel: Small batch size (128). Middle panel: Medium batch size (1024).
Right panel: Large batch size (8192). The y-axis display time used in milliseconds,
the x-axis shows different number of CPU cores, and the legend represents matrix
multiplication and different block size.
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Figure 5.17: Total time used with different number of CPU cores in tensorflow pack-
age. Left panel: Small batch size (128). Middle panel: Medium batch size (1024).
Right panel: Large batch size (8192). The y-axis display time used in milliseconds,
the x-axis shows different number of CPU cores, and the legend represents matrix
multiplication and different block size.
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Figure 5.18: Total time used with different number of CPU cores in tensor-
flow+nGraph package. Left panel: Small batch size (128). Middle panel: Medium
batch size (1024). Right panel: Large batch size (8192). The y-axis display time
used in milliseconds, the x-axis shows different number of CPU cores, and the legend
represents matrix multiplication and different block size.

5.9 Impact of batch size on performance

Since the batch size affects the computational speed, choosing appropriate batch

size for particular system will significantly improve the performance. For instance,

using larger batch size will improve the computation speed in multiple cores sys-

tem/machine. However, there is a saturation point where increasing the batch size

will no longer decrease the computational speed.

In contrast, using smaller or larger batch size with a single core does not signifi-

cantly affect the computational speed since it has to go through data one at a time.

Fig 5.19 displays total compute time when increase batch size, while Fig 5.20 shows

compute time per sample. A block size of 128 & 256, and number of CPU cores of 1

& 4 are used in this experiment.

As shown in Fig 5.19, a positive near linear relationship can be observed between

the batch size and the total computational time. However, the amount of time is

different in each configuration which is explained through the slope differences.

The computational time used per sample is not decreasing as the batch size in-

crease as shown in Fig 5.20. However, it still decreases a little at the beginning because
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Figure 5.19: Total computation time. Top-left panel: 1 core with 128 block size.
Top-right panel: 4 cores with 128 block size. Bottom-left panel: 1 core with 256
block size. Bottom-right panel: 4 cores with 256 block size. The y-axis displays total
time used in milliseconds, and the x-axis shows the batch size.

of overhead in creating session & graph when using tensorflow or tensorflow+nGraph,

and spawning processes and sending data when using multiple cores.

5.10 Summary of Design Guidelines

In general, using the block-circulant matrix-based algorithm in intel-numpy packages

is the best choice since intel-numpy takes the benefit of intel MKL which is highly

optimized for mathematics operations. However, there are certain cases such as when

the batch size is large enough and the block size is 128 where matrix multiplication

will be more beneficial. Another case is when using a single core with small batch

size, using the block-circulant in numpy is the fastest only when the block size is

less than 256. Due to the emphasis placed on inference phase, tensorflow and ten-

sorflow+nGraph always perform slower than numpy and intel-numpy when applying
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Figure 5.20: The time used per sample. Top-left panel: 1 core with 128 block size.
Top-right panel: 4 cores with 128 block size. Bottom-left panel: 1 core with 256 block
size. Bottom-right panel: 4 cores with 256 block size. The y-axis display time used
per sample in milliseconds, and the x-axis shows the batch size.

BCM algorithm. They require time to initialize the graph and session before starting

to compute the output.

When using multiple cores, larger batch size will optimize the parallelization of

the algorithm which will speed-up compute time of all samples in the batch.

Although the guideline provides the best possible combination of block size, num-

ber of cores, and batch size to achieve optimal performance, it focuses mainly on the

time used to compute the algorithm. The accuracy reduction must be addressed of

manually in exchange for the increasing speed of the compute time.

5.11 Conclusion

In this chapter, we proposed a parallel design of the block-circulant based-matrix

algorithm and demonstrated that this new design can achieve better performance
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than previous version of algorithm. We also provide guidelines on how to select block

size, batch size, and number of cores in certain situations in order to achieve optimal

performance in the least amount of time. The guidelines run across popular imple-

mentation language and packages including Python, numpy, intel-numpy, tensorflow,

and nGraph.
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Chapter 6

Conclusion

6.1 Summary

In this thesis, we present three Deep Neural Networks that used to learn semantic

information from different types of data e.g. text, image, and click locations and a

design guideline to accelerate Neural Network Layer on a general propose computing

platform.

In Chapter 2, we proposed a new technique to preprocess the dataset and improve

the conventional RBM based topic classification by introducing new input features

based on semantically related word pairs. The technique applies semantic dependency

parser to extract the word pairs from the text document, two-way TF-IDF processing

to filter the data in word level and word pair level, K-means clustering algorithm

to merge the similar word pairs and remove the noise from the feature dictionary.

We showed that proper selection of K value and word pair generation techniques

can significantly improve the topic prediction accuracy and the document retrieval

performance.

In Chapter 3, we proposed a human in a loop automatic image labeling model

which include combined prediction, post-processing, and adjustment model. The
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model focuses on aerial images, which lack salient features for detection. We also

showed that by leveraging user click information and the adjustment model, we can

achieve transfer learning capability.

In Chapter 4, we proposed a MAGNet framework that utilizes the encoder-decoder

language model to fuse the input image and the natural language query and train an

attention distribution over the input image, which encodes both the local and global

understanding of the query in relation to the input image. We also utilize the gen-

erated context from encoder-decoder language model to train an attention-assisted

region proposal network to generate proposals relevant to the query phrase and train

an attention-assisted region CNN to classify these proposals in a Faster-RCNN frame-

work. With this MAGNet framework, our model is independent of external proposal

generation systems and without additional information it can develop understanding

of the query phrase in relation to the image to achieve respectable results.

In Chapter 5, we proposed a parallel design of the block-circulant based-matrix

algorithm and demonstrated that this new design can achieve better performance

than previous version of algorithm. We also provide guidelines on how to select block

size, batch size, and number of cores in certain situations in order to achieve optimal

performance in the least amount of time. The guidelines run across popular imple-

mentation language and packages including Python, numpy, intel-numpy, tensorflow,

and nGraph.

6.2 Future Research Directions

6.2.1 Improvement on MAGNet framework

In Chapter 4, we present a MAGNet framework that can be used to understand the

relationship between the query phrase and the image. In comparison to the stateof-

the-art models, our model can achieve respectable results in three data sets which
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include Flickr30k entities, ReferIt game, and Visual Genome. However, there are more

data in visual grounding tasks such as RefCOCO, RefCOCO+, and RefCOCOg. We

ran our model on these data sets and received comparable results, however, unfor-

tunately, we are currently unable to outperform state-of-the-art model due to some

limitations of the MAGNet framework. The MAGNet framework works better when

the input phrases are concise and specific e.g. “right rocks”, “The man with red

shirt”, “Person on the right”. It works less well with more complex queries like “guy

in yellow dribbling the ball”, “A man with yellow shirt and black short”. The prob-

lem occurs in the Encoder-Decoder Language Model part. Given the complexity of

the sentences, the attention that is generated from this model cannot focus its gaze

to the relevant area of the image, resulting in the inability of the overall framework

to predict the accurate location. We need to investigate different model architecture

designs to achieve better attention. One of the possible architectures is the Trans-

former Network which has been used recently in many researches and outperform

state-of-the-art sequence-to-sequence model in many areas and applications.

6.2.2 Accelerating MAGNet framework by applying Struc-

ture Pruning to Deep Network

The overall MAGNet framework consists of multiple parts. Each part is implemented

using Deep Neural Network which consists of multiple layers of various parameters

and thousands of neurons. The large scale DNNs require computation and memory

remarkably. Thus, our framework requires a huge number of resources to train/test

the model in which not applicable to apply to real time application . There are

multiple techniques that have been proposed to compress deep neural network size

with a negligible accuracy loss. For example, [113] proposed a framework to induce

different types of structured sparsity such as filter-wise, channel-wise, and shape-wise

sparsity, as well as non-structured sparsity. Applying this approach to our framework
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will improve the computation time and memory requirements.
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