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  Abstract 

The development of 3D printing techniques using shape-memory polymers (SMPs) has 

created potentials for creating dynamic, three-dimensional structures that can be produced 

rapidly and be customized for specific and complex architectures. These qualities have made 3D 

printing a popular fabrication method for future SMP parts and devices. While important 

information about is known about the effects of printing parameters on 3D printed SMPs, there 

remains a gap in the understanding of these parameters on fundamental shape memory 

properties. Understanding the shape memory behavior of the SMPs post-printing can implicate 

potential advantages or weaknesses in using these materials in biomedical applications. 

Furthermore, understanding how these materials perform can lead to new advancements in 

platforms for cell culture, personalized medicine, and medical devices. 

The primary goal of this dissertation was to evaluate a cytocompatible SMP to develop 

techniques to 3D print predictable substrates for biomedical applications. This was accomplished 

through two major aims: 1) by printing and performing material characterization of 

cytocompatible SMP dogbones, and 2) studying and applying programming via printing in 

different geometric constructs. The first part of this thesis covered the preparation of 

cytocompatible SMP filament and the fundamental materials characterization. The second 

portion addressed the development and implementation of PvP. 

Chapter 2 described the process for selecting the appropriate material and developing a 

protocol for a printer-compatible filament for printing during the fundamental and PvP studies 

later in the thesis. It was determined that a commercially available SMP (SMP MM4520) would 

best fit the needs of the remaining experiments. A custom-made melt-spinner was chosen to 

produce filament from the SMP pellets. 



Next, a study was carried out to evaluate the shape memory behavior of the SMP (chapter 

3). While several studies have reported the effects certain parameters of the printing process has 

on mechanical properties or part quality, the effects of printing parameters on the shape memory 

abilities of the printed SMP structures is not well understood. To determine the extent to which 

the 3D printing process affects the fundamental shape-memory properties of a printed SMP 

structure, we systematically varied temperature, multiplier, and fiber orientation, that is, the 

direction of the individual fibers that make up the sample, and studied the effect on fixing and 

recovery ratios of shape-memory dogbone samples. It was found that fiber orientation 

significantly impacted the fixing ratio, while temperature and multiplier had little effect. No 

significant effects on recovery ratio were seen from any of the parameters. However, as fiber 

orientation went from 0° to 90°, the variability of the recovery ratios increased. These results 

indicate that fiber orientation is a dominant factor in the resulting shape memory capacities, 

specifically the fixity, of a 3D printed SMP. Further, these results suggest that the parameters 

have an impact on the reliability of the shape memory polymer to recover back to its original 

shape.  

A technique for trapping strains in the SMP during printing was developed (chapter 4) for 

fabricating ready-to-trigger objects immediately after printing. Trapped strains were measured in 

1D, 2D, and 3D samples with varied temperature, multiplier, and fiber orientation. Different 

geometries were observed post-triggering and simulated, and an application in vitro was 

presented in chapter 5. 
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Chapter 1: Introduction 

1.1 4D printing – a fabrication method for smart materials 

 Three-dimensional (3D) printing has become a popular fabricating method for parts and 

devices over the last decade. 3D printing was initially classified as a medium for rapid 

prototyping, where printers were used to quickly create models, prototypes, or mock-ups of a 

proposed device. However, due to the ability of 3D printing technology to build intricate or 

complex shapes, it has also been used as a primary fabrication method. The growing popularity 

and versatility of 3D printing have both increased and evolved the technology, and from it, a 

concept called 4D printing has emerged1. Simply defined, 4D printing is 3D printing a part with 

a time-dependent component (Scheme 1-1). This time dependency is achieved by printing with a 

smart material. 4D printing has enabled a way to create complex and highly tailorable smart 

material parts and devices2. 

 4D printing is a layer-by-layer additive manufacturing method for creating smart material 

products. The growth in research and technological advances in 4D printing has increased 

significantly in the past few years. It offers several advantages over traditional smart material 

fabrication methods including minimal waste, single-step fabrication, and precision complex 

architectures3.  It can be classified into three groups based on feeding mechanism: liquid, 

powder, and solid. Liquid feed-based printers include stereolithography (SLA), digital light 

processing (DLP), and direct ink writing (DIW). SLA and DLP techniques use light to photo-

polymerize or UV cure liquid material, while DIW uses a shear-thinning ink. Powder feed 

systems include selective laser sintering and selective laser melting, where lasers fuse powder 
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particles either by solid-state or complete melting, respectively. Solid feed printers refer to fused 

deposition modeling, where a filament of prepared material is needed.  

 From above, smart materials employed in 4D printing can be solid, liquid, or powder, 

depending on the fabrication technique. The materials can be metallic, ceramic, polymeric, or 

composites. The materials have a time-dependent component, which has been generally 

classified as shapeshifting, such as swelling or self-repair, and shape memory materials.  

4D printing has been used in several disciplines including biomedical, electronics, 

aerospace/automotive, and even textiles.  Nadgorny et al. 4D printed a shapeshifting, pH-

sensitive hydrogel valve4. The valve could be used to control flow rates at different, 

predetermined pH values that would cause the hydrogel to swell or shrink. Similarly, Bakarich et 

al. printed a thermally triggered valve that would expand in warm temperatures5. Another 

swelling 4D printed device was a lock-and-key actuator by Kokkinis et al. and proposed as an 

actuator for soft robotics6. It could also be used to lock items in place as the sides would bow out 

upon triggering and press against the perimeter, thus holding it in place. Zarek et al. 

demonstrated a 4D printed heel attachment that could change a flat shoe into a heel7. 

1.2 Shape Memory Polymers 

Shape memory polymers (SMPs) are a class of smart material with an ability to transition 

from a temporary “programmed” shape, back to its original, permanent, form8. Programming is 

achieved through a cycle of heating, loading, cooling, and unloading. Once triggered by an 

external stimulus, the polymer recovers to its original shape. Stimuli can include light, water, 

ultrasound, enzyme, and magnetism, however, the most common triggering mechanism is heat9. 

Polymers with shape-memory ability require two domains: net-points and switches. Net-

points are the domain that have the highest transition temperature (Ttrans) and act as permanent 
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entanglements, or anchors, that prevent polymer flow and chain slipping during programming. 

The switching segment is a network that becomes flexible when it reaches a temperature above 

its Trans, which is below that of the net-point. This can be either the segment’s glass transition 

temperature (Tg) or melting temperature (Tm). Switches include amorphous polymer chains with 

a Tg, semi-crystalline with a Tm, or have liquid crystals with an isotropic temperature. SMPs with 

a Tg switch have a broad range of temperature transition, whereas those with a Tm transiting have 

a sharp transition9,10. These characteristics make SMPs highly tunable. 

  When the SMP is heated above Ttrans, the chains in the network become soft and flexible. 

When the load is added, the chains flow while the net-points remain rigid. Cooling the SMP back 

below Ttrans will fix the chains in place, either through crystallization or vitrification. For 

thermally triggered polymers, exposure to heat re-mobilizes the chains and releases the stored 

strain energy, thus allowing the chains to slide back into their original position.  

 The versatility of the polymers and their triggering mechanisms make SMPs highly 

desirable for applications in biomedical devices, where the shape transition is highly 

advantageous in invasive surgery or tissue engineering applications due to a small starting shape 

and larger end shape. A few SMP devices have been approved by the U.S. Food and Drug 

Administration (FDA) for clinical use, with the first being a self-tying suture. This suture is 

made of a biodegradable block copolymer thermoplastic that is triggered by heat to close to the 

proper pressure for optimum wound healing11–13. Several years later, the FDA approved a 

thrombogenic coated SMP foam device for aneurysm treatment, which expands from heat from a 

laser after insertion into the abnormality14. A soft-tissue fixation device was approved for ACL 

treatment, which expands to anchor the ACL in place instead of screws that damage the 

surrounding tissues15. Other proposed devices which have been discussed and demonstrated in 
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the literature include vascular stents16,17, dialysis needle adaptors18, bone defect scaffolding19, 

and hemorrhage treatment devices20.  

 SMPs have also emerged as tools and platforms for biomedical research. The first 

reported SMP intended as a cellular research tool was from Neuss et al. They synthesized a 

biodegradable SMP network and studied the shape memory interactions with various cell lines to 

assess its aptitude for clinical applications. However, due to a triggering temperature 

significantly higher than body temperature, cells did not survive well on the material21. Next, the 

Henderson Lab developed a temperature-responsive SMP substrate that transitioned from 

wrinkled to smooth and studied how the change in topography could be used to direct cell 

behavior and morphology from aligned to random22 or vice versa23. The use of SMPs as a tool to 

direct cells was also used by Ashby et al, who also had success and studied microarray 

transformations in a PCL-based SMP on controlling cell behavior24, and again by the Henderson 

group when an electrospun POSS thermoplastic polyurethane SMP was studied, with great 

success using SMPs alongside stem cells to study their mechanobiology and behavior25.  

Currently, SMPs have been used in active cell culture experiments to study cell motility, 

morphology, and differentiation. 

1.3 Biomedical 4D printing with SMPs 

 3D printing enables the production of complex and highly personalized bioinspired 

devices. SMPs clearly enhance the technology in biomedical applications as seen above, 

however, the previous examples were all prepared using traditional methods including casting, 

electrospinning, etc. The addition of 3D printing SMP technology has given rise to 3D scaffolds 

and the ability to create intricate geometries. 



5 

 

 Targeted drug delivery has been demonstrated. Azam et al. demonstrated self-folding 

capsules fabricated with a biodegradable PCL using lithography to produce precision geometries 

such as shape, size, and porosity26. 2D templates were created using lithography of SU-8, a 

biocompatible, epoxy-based polymer, and hinges were made from PCL. Heat-activated the PCL 

hinges to self- fold the capsule. They encapsulated beads, chemical dyes, mammalian cells, and 

bacteria – demonstrating its diversity for drug delivery, “micro-Petri dishes”, or even pseudo- 

vesicles or lysosomes. 

 Malachowski et al. created heat-responsive drug-eluting devices comprised of a multi-

fingered gripper27. A temperature sensitive hydrogel (which controls its hydrophilicity) hinge 

was employed to open and close the gripper, which was fabricated using photolithography. The 

gripper successfully grabbed tissues and could be loaded with drugs and dyes. The group then 

demonstrated the enhanced release of doxorubicin as compared to a control patch and released 

dye in the stomach of a pig. Experimental success suggested to the authors that their technology 

could be used as a method for sustained-release drug delivery. 

 Another biomedical aspect that has been demonstrated is medical devices. A stent was 

developed and shown as a proof of concept by Bodaghi et al. using a polyjet printer and UV 

cross-linked liquid photopolymer that expands when exposed to heat28. Ge et al. created a stent 

using high resolution micro-stereolithography and photo-curable methyl methacrylate29. Both 

authors used models to accurately predict the stent’s behavior.  

 4D printed SMPs have also been used to create cell scaffolds. Senatov et al. printed a 

PLA/HA scaffold and studied the effect of programming temperature on stresses formed during 

compression deformation and demonstrated MSC survival on a 3D printed scaffold, however, the 

shape memory effect was not utilized during the cell study30. Hendrikson et al. demonstrated that 
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4D printed SMP devices have the potential to be applied in clinical scaffolds as cells were 

attached and viable after recovering the sample31. 

 While these accomplishments are a step towards 4D advancement in biomedical 

applications, it should be noted that the materials and technology used in these reports are not 

democratized, meaning methods used to produce these materials is dependent on expensive, high 

resolution equipment. 

1.4 Scope of Dissertation 

 This dissertation advances 4D printing in the biomedical field. From the work presented 

here, recommendations can be made to improve the shape memory properties of 3D printed SMP 

parts. Additionally, we have explored a new process for creating ready-to-trigger parts that have 

been programmed during printing. This eliminates the manual programming step and also creates 

a way to create complex geometries that are not possible using traditional fabrication methods.  

 Chapter 1 (present chapter) introduces 4D printing and shape memory polymers and 

explains how they are currently utilized, separately and together, in the biomedical field. Chapter 

2 provides the methods and selection criteria for choosing an SMP and filament making process 

to meet the needs of bio-applications. In chapter 3 we study the impacts of commonly employed 

printing parameters on the shape memory behavior of a 3D printed SMP. Chapter 4 focuses on 

the development of “Programming via Printing” (PvP), a process that programs the SMP during 

printing to eliminate the need for manual programming and create an avenue for complex shape 

change. Finally, in chapter 5, we study cell viability with the printed SMP material using 

different printing parameters, as well as a demonstration of PvP used as a cell scaffold. 

The objectives of this dissertation were: 
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Objective 1: Create spools of biocompatible SMPs for 3D printing. Shape-memory polymers and 

extrusion-based filament fabrication methods were explored to obtain highly reproducible spools 

of material for printing throughout this work. 

 

Objective 2: Determine the extent to which printing parameters affect shape-memory behavior. 

The effects of commonly incorporated printing parameters on fixing and recovery ratios were 

explored. 

 

Objective 3: Develop programming via printing to create a path for complex shape change. 

Temperature and flow-rate combinations were evaluated for creating trapped strains into the 

material during printing for automated/complex shape changes. 

 

Objective 4: Determine the extent to which printing parameters affect cell viability and 

attachment. Cells were seeded onto SMP samples printed with the same parameters employed in 

Objective 2 to analyze cell viability on 3D printed structures. 

 

Objective 5: Demonstrate employment of PvP in vitro. A PvP cell scaffold was evaluated for cell 

distribution compared to that of static cell seeding. 
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Scheme 1-1. Diagrams showing the main differences between 3D and 4D printing. Used with 

permission from F. Momeni, S. M. Mehdi Hassani, X. Liu, J. Ni, Materials and Design, 2017 2. 

Copyright © Elsevier 2017. 
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Scheme 1-2.  Diagram showing the programming and recovery of a thermally triggered shape 

memory polymer. The polymer in its original, permanent, shape is heated above Ttrans and 

physically deformed. It is then cooled to fix into a temporary shape, following, when desired, 

reheated to recover the permanent geometry. Used with permission from M. E. Pede and J. H. 

Henderson, Polymer and Photonic Materials Towards Biomedical Breakthroughs, Springer 

Nature. 20188. Copyright © Springer International Publishing AG 2018. 
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Chapter 2: Material Selection and Filament Fabrication  

2.1 Introduction and Background 

 Smart materials used in 4D printing are chosen based on factors such as need, 

performance, and printer compatibility. In this work, we used an FDM printer and a shape 

memory polymer (SMP) to create 4D printed objects. Section 2.1 explains how an appropriate 

SMP was chosen for our experiments and gives an overview of the methods for making filament, 

printing, and material characterization. Specific protocols for these methods are discussed for 

each SMP in sections 2.2-2.4. 

2.1.1 Selection Criteria 

 The work in this dissertation is intended to advance 4D printing in biomedical 

applications, and consequently, several material attributes—cytocompatibility, process-ability, 

and printability—needed to be considered when selecting an appropriate SMP for our 

experiments. Proposed applications for 4D printed biomedical devices include cell culture 

platforms and scaffolds, where the material will come into direct contact with cells or tissues. 

Therefore, an appropriate SMP candidate for these biomedical applications must have low 

cytotoxicity and suitable cell attachment. In addition to cytocompatibility, the SMP must be able 

to be reliably processed into a filament with the proper 1.75mm diameter to fit our FDM printer, 

and that filament must print consistently without causing jams or defects in the printed object. 

Finally, because of the repeated heating and cooling necessary to create the filament and deposit 

it during printing, the SMP must be resistant to heat degradation and not breakdown due to 

cycling above and below its melt temperature.  
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2.1.2 Material Family: Thermoplastic Polyurethanes 

 Thermoplastic polyurethanes (TPUs) are versatile polymers that can be customized for 

their intended purpose, which made them an ideal class of SMP for our proposed work. A TPU is 

synthesized from an isocyanate and an alcohol to create a urethane bond and each component 

can be modified to alter the properties of the material. Isocyanate segments can be aliphatic or 

aromatic, aliphatic TPU medical devices have demonstrated UV resistance and in-body 

softening, while aromatic TPUs have good chemical resistance1,2. The backbone composition of 

the alcohol can be a polyester, or polyether. TPUs with polyester-based alcohols are susceptible 

to hydrolytic attack, and will degrade inside the body, making them ideal materials for 

biodegrading devices. In contrast, polyether-based TPUs are resistant to both hydrolysis and 

oxidation, which make them suitable for long-term devices or in contact with blood3.  

 To further tailor the TPU properties, the percentages of isocyanate versus alcohol 

segments can be adjusted, thus making TPUs highly versatile and suitable for processing, while 

also having strength and flexibility. In our study, three TPUs with previously demonstrated shape 

memory properties and cytocompatibility: Pellethane™/PCL blend4, POSS-based5,6, and 

commercially available SMP pellets7, were chosen to be evaluated for 4D printing. 

2.1.3 Fabrication of TPU Filament 

 Methods for creating filament out of different amounts of raw SMPs had to be developed 

in order to use the materials successfully in a 3D printer. While a polymer extruder is suitable for 

making filament from large quantities (>25 grams) of polymer pellets, current methods for 

extruding small amounts of material have not been reported. This severely limits 4D printing 

development with SMPs that are synthesized in research labs and yield small batches of non-

uniform (i.e. non-pellet) products.  
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2.1.3.1 Melt-Spinner 

 To accommodate material feeds less than 20 grams, an existing custom-built melt-spinner 

was used8. The melt-spinner is a mechanical extrusion device that consists of a barrel, heating 

cuff, plunger, die, spooler, and a thermocouple feedback system (Scheme 2-1). The melt-spinner 

plunger and spooler are controlled through DMC Terminal using G-code, and the temperature of 

the heating cuff is independently set by the user.  

 To extrude filament, SMP is added to the barrel, which is heated by the heating cuff until 

melted. The SMP melt is extruded out of the die at the end of the barrel by lowering the plunger 

and is collected on a spool to maintain a constant diameter. Specific protocols for the SMPs are 

described in sections 2.3.2 and 2.4.2. 

2.1.3.2 Extruder 

 A single-screw extruder (Microtruder RCP-0625, Randcastle Extrusion Systems, Inc.), 

hereafter as “Extruder”, was used to make filament when quantities >20 grams of polymer 

pellets were available. A custom dye with a 1.75mm outlet was made to match the diameter 

required by the 3D printer feed mechanism. The Extruder has four heating zones: 1, 2, 3, and die, 

with a thermocouple feedback in each. The screw drives the polymer pellets through the heating 

zones and out the die. Specific protocols for the SMPs are described in sections 2.2.2 and 2.4.2. 

2.1.4 Printing 

 A MakerBot® Replicator™ 2X was used for all 3D printing. Like all FDM printers, the 

MakerBot® feeds material to its nozzle by drive wheels, which grip and push the solid filament 

through the heating element and out the nozzle (Scheme 2-3). In this model, the drive wheels and 

heating element are in close proximity, and due to the low transition temperatures of the SMPs, 

heat conduction from the printer’s heating element through the filament often causes jamming. 
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This happens when the filament softens and is unable to be pushed into the nozzle. Instead, the 

now-rubbery filament wraps around the drive wheels. To remedy this, we designed and 3D 

printed a motor-mount with an opening for airflow (Scheme 2-3(F)). It was placed between the 

drive wheels and the heating element to create enough distance and additional cooling so that the 

filament remained below Tg and could be pushed through the nozzle. 

 Each SMP was tested in the printer to determine which material printed most reliably. 

Temperature ranges for which the SMP flowed fully out of the nozzle were established for each 

material. Temperatures below the range prevented material flow out of the nozzle, and 

temperatures above the range caused the material to bubble or “foam” out of the nozzle. Both 

conditions prevented adequate material deposition and consequently created defects in each 

printed layer. Specific protocols for each SMP are described in sections 2.2.3, 2.3.3, and 2.4.3. 

2.1.5 Characterization 

2.1.2.1 Thermal Analysis 

 Each SMP was characterized by thermal analysis. Thermal analysis consisted of TGA to 

find the degradation temperatures of each material, which was taken when 99% of the mass 

remained after heating the material to 600℃ at 10℃ per minute. DSC was run to confirm the 

transition temperatures of each SMP. Additionally, differential scanning calorimetry (DSC) was 

performed on SMP filament and print samples to determine if the filament fabrication or printing 

processes effected the thermal properties due to the continuous heat cycling. Two cycles of 

heating and cooling were run on the DSC, and the data was analyzed from the second cycle. All 

thermal analysis data was analyzed using TA Universal Analysis software. 
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2.1.2.2 Quality Analysis 

 Filament quality is a vital component to successful FDM printing. The filament must 

have a diameter that fits the printer and must also be consistent. Ahmed et al. reported that 

consistent filament diameter was the most important element of the filament. The filament 

should also be solid and smooth with no air bubbles9. Air bubbles are a problem for two major 

reasons. First, it creates gaps in the material, so there is inconsistent flow out of the nozzle, 

which creates defects in the print. Second, bubbles expand when subjected to high temperatures, 

which expands the local diameter of the filament. This can result in jamming or filament 

breakage. The SMP filaments were visually inspected for smoothness and bubbles. The 

diameters were measured with calipers and threaded through a spare printer extruder to check for 

diameter consistency. 

2.2 Pellethane™/PCL 

2.2.1 Material information 

 A 50:50 wt% blend of a Pellethane™ (5380-80A, Lubrizol Corporation) and Poly-ε-

caprolactone (PCL) was chosen because of its demonstrated fixing, recovery, and 

cytocompatibility4. It was also chosen because of its easy fabrication method which required 

melt-mixing (see section 2.2.2) the two components together rather than synthesis. As a blended 

SMP, the thermal triggering occurs at the PCL melting temperature while Pellethane™ serves as 

net-points. This particular Pellethane™ is an elastomer comprised of an aromatic isocyanate and 

a poly-ether alcohol with a Tg of -37℃ and a Tm of 135℃. PCL (Mn = 80,000) is a semi 

crystalline polymer with a Tm of 64℃ and has been widely used commercially and in biomedical 

research due to its biocompatibility and versatile physical and mechanical properties when 

blended with other polymers10–12.   
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2.2.2 Filament Fabrication 

 The Extruder was used to melt-mix and extrude the Pellethane™/PCL blend into filament 

in a single step. We did not use the melt-spinner because the heat and plunge extrusion 

mechanism did not mix the Pellethane™ and the PCL together in a uniform filament of material. 

A 50:50 mix of Pellethane™ and PCL was made by adding 15g of each polymer to the 

Extruder’s hopper. The zones were set to 170℃, 180℃, 185℃, 190℃, respectively, based on 

the extrusion recommendations from Lubrizol for Pellethane™. These temperatures were below 

the PCL thermal degradation temperature of 280℃ and did not cause any accidental material 

loss.   

 Both Pellethane™ and PCL are above Tg at room temperature, which resulted in a 

rubbery and flexible filament. It was discovered that humidity greatly affected the quality of the 

extrusion process. On dry days, the resulting filament was smooth, well mixed with no portion 

containing only one of the polymers, and had a consistent diameter (1.76 mm +/- 0.04). In 

contrast, filament extruded on high humidity days was unsuitable for printing because it 

contained bubbles and portions with only one polymer.  

2.2.3 Printing 

 The Pellethane™/PCL blend could be printed between 195℃ and 215℃, with the best 

printing flow at 205℃. Even with the printer modifications, the flexible filament often wrapped 

around the drive wheels and jammed the printer. Additionally, the filament would often stick to 

the inside of the nozzle, start to burn, and cause a clog. Flexible filaments are reportedly difficult 

to print, and issues we observed, were likely due the inability of the drive wheels to push soft 

filament into the heating element13. 
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2.2.4 Thermal Analysis 

 The degradation temperature of the Pellethane™/PCL blend was found to be 260℃ by 

TGA. Samples of the filament and printed Pellethane™/PCL blend were evaluated using DSC to 

determine the Tg of the polymer. A cycle of heating at 10℃/min to 200℃ followed by cooling 

10℃/min to 0℃ was run twice for each sample. The Tg of the filament and printed material was 

found to be 61℃ and 62℃, respectively. 

2.3 POSS-containing Thermoplastic Polyurethane 

2.3.1 Material information 

 A shape-memory, thermoplastic polyurethane was developed by the Henderson and 

Mather Labs containing polyester and POSS components (Figure 2-1). This TPU is 

biodegradable and cytocompatible with POSS serving as net-points. Both labs have successfully 

used this TPU in vivo as a method for healing bone defects and in vitro 5,6,14. 

 TPU was synthesized in a two-step reaction: the synthesis of a polyol with a target 

molecular weight (Mn) of 12,000 g/mol and a subsequent reaction with Hexamethylene 

diisocyanate (HDI) (Sigma-Aldrich, 52649) to link 1,2-propanDiolIsobutyl POSS (Hybrid 

Plastics, AL0130) to the polyol. The synthesis developed by Tseng, et al. was followed and 

described below6. 

 D,L –lactide ((3,6-Dimethyl-1,4-dioxane-2,5-dione, LA monomer, Sigma-Aldrich, 

303143) was dissolved in ethyl acetate (Fisher Scientific, E145-500) and crashed out for 

purification. To link the monomer together, 1,4-Butandiol (Sigma-Aldrich, 240559) and Tin(II) 

2-ethylhexanoate (Sigma-Aldrich, S3252) were added to the lactide and left to react at 140C for 

12 hours under nitrogen. Tetrahydrofuran (THF) (Fisher Scientific, T-400) was added to the 

flask to dissolve the polyol and precipitated out in hexanes (Fisher Scientific, H-292), then dried 

for three days. 



21 

 

 Polyurethane was synthesized with the dry polyol and POSS (Hybrid Plastics, AL0130). 

The polyol was dissolved in distilled toluene (Fisher Scientific, T-290). HDI and a few drops of 

Dibutyltin dilaurate (Sigma-Aldrich, 291234) were added to the dissolved polyol under nitrogen. 

POSS was added after 30 minutes and the temperature was increased to 90℃. Extra HDI was 

added to the reaction every hour for 5 hours to improve the molecular weight of the TPU, which 

ideally is 200,000 g/mol. The reaction was left to run for 24 hours after the final HDI addition. 

Finally, the TPU was precipitated out in cold hexanes and left to dry for at least three days. 

Proper synthesis yields a polymer with a Tg near body temperature, making it a physiological 

relevant material at the biological interface. Small batches of 10-15 grams of material achieved 

the target Mn compared to larger batches (>20 grams). 

2.3.2 Filament Fabrication 

 The melt-spinner was used to fabricate filament from the synthesized TPU, which yielded 

an average of 12 grams of filament. It should be noted that TPU batches exceeding 350,000 

g/mol could not be extruded due to its lack of flow when heated. Before making filament, the 

plunger, barrel, and die were flame dried and stored in a vacuum oven at 80℃ overnight. To 

make filament, the die was heated on a hotplate to 120℃. TPU was added to the inside of the die 

and packed in to help eliminate air bubbles. The die was then screwed onto the end of the barrel, 

and filled with more TPU. The heating cuff was placed around the barrel and set to 120℃. As 

the TPU inside the barrel became rubbery, it was pushed down and compacted using the plunger, 

and then more TPU was added. This was repeated until the barrel was filled with heat-packed 

TPU and greatly eliminated air bubbles during extrusion. The plunger is lowered using g-code 

through DMC Terminal and the polymer flows out of the die and is collected on the spooler. 

 Similar to the Pellethane™/PCL blend, the filament extrusion process was sensitive to 

humidity. Under dry conditions, the filament extruded smooth with little to no bubbles. The 
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filament was stiff and brittle, which made it difficult to be stored for later use. On humid days the 

filament would bubble or foam out of the melt-spinner and produce inconsistent filament, which 

could not be used for printing.   

2.3.3 Printing 

 The TPU was printed the most reliably at 120℃, and had a narrow printing range from 

118℃ -122℃. Filament jamming was not common, however, clogs in the nozzle would occur 

for prints lasting longer that 2 minutes, due to overheating and degradation of the material inside 

the nozzle.  

2.3.4 Thermal Analysis 

 DSC was used to determine the Tg of the raw polymer, filament and prints. A cycle of 

heating at 10℃/min to 140℃ followed by cooling 10℃/min to 0℃ was run twice for each 

sample. The Tg of the raw SMP, filament, and prints were all near 56℃ (around 36℃ wet). The 

heating cycles for making the filament and printing did not affect the Tg of the material. 

2.4 SMP MM4520 

2.4.1 Material information 

 A commercially available SMP was also evaluated for use in our experiments.  SMP 

MM4520, a thermoplastic polyurethane elastomer was purchased in pellet form from SMP 

Technologies Inc (Figure 2-2). It has a polyether backbone and is semi crystalline13,15, with a Tm 

of 200℃ and Tg of 45℃. SMP MM4520 is part of a tailored Tg line synthesized by SMP 

Technologies Inc, with other Tgs of 35℃, 55℃, and 65℃ available. We chose this particular 

SMP family because of its triggering temperature near body temperature, and its demonstrated 

cytocompatibility7,16–18 and success in previous 4D printing work13,19–22. Additional studies were 

carried out to confirm cell viability with MM4520 in Chapter 5. 
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2.4.2 Filament Fabrication 

 The SMP MM4520 filament was prepared using both the Extruder and the melt-spinner. 

The Extruder’s zones were set to 180℃, 190℃, 205℃, 210℃ respectively. These temperatures 

were used based on guidelines provided by the manufacturer, and also Yang et al, who explored 

the different extruder temperature settings and how it affected the quality of the filament13. 

 The melt-spinner was also used to make small batches of filament. The hot plate and heat 

cuff were set to 200℃, and the heat-packing procedure described above was followed. The 

material was extruded at 200℃ and collected on the spooler for use.  

2.4.3 Printing 

 This SMP could be printed between 205℃ and 230℃. No nozzle clogging occurred, and 

jamming was rare – only occurring in the upper temperature range during long prints (>5min). 

2.4.4 Thermal Analysis 

 DSC was used to determine the Tg of the polymer pellets, filament, and prints. A cycle of 

heating at 10℃/min to 250℃ followed by cooling 10℃/min to 0℃ was run twice for each 

sample. The Tg of the SMP pellets, filament, and prints were all 46℃, indicating the heating 

cycles for making the filament and printing did not affect the Tg of the material. DSC was also 

used to confirm the Tg of the material after exposure to 37℃ water for 24 hours. This analysis 

showed a plasticizing effect of water on the SMP, which lowered the Tg to about 30℃, which is 

consistent with what has been reported in the literature10. 

2.4 Conclusions 

 Three SMPs were evaluated in this chapter for their potential implementation in the 

remaining studies. The Pellethane™/PCL blend was considered unsuitable because of its 

difficulty during printing. The material would clog and cause jamming due to the high flexibility 

of the filament. The POSS-based TPU was determined to be unfit for printing for several 
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reasons. First, synthesis of the TPU took about two weeks and often over- or undershot its target 

molecular weight, making it unable to be extruded. The TPU was also difficult to extrude when it 

was humid, and the lab environment does not have an adequate mechanism for constant humidity 

control. Lastly, the TPU filaments were very brittle and could not be “spooled”. Sticks of 

filament were used and were limited to approximately 40 cm. This limited the volume of the 

object that could be printed.  

 The most reliable material and method was determined to be the SMP MM4520 filament 

fabricated with the Extruder. This filament diameter was the most consistent, contained the least 

amount of bubbles and could be made in large quantities in short periods of time. It also printed 

the most reliably and at a largest range of temperatures and appeared to be the most resistant to 

changes in humidity. For the remaining studies in this dissertation, SMP MM4520 was used. 

 

Additional acknowledgements for this chapter: Michelle Pede and Shelby Buffington for their 

guidance in polymer synthesis techniques, Peter Lok and Lucas Albrect for their assistance with 

preliminary 3D printing, and Prof. Monroe and Changling Du for their support with 

supplemental SMP characterization. 
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Scheme 2-1. A schematic for the custom-built melt-spinner which includes: (A) hollow steel 

barrel, (B) plunger, (C) heating cuff, (D) brass conical die with a 1.75 mm outlet, (E) polymer 

pellets, and (F) extruded polymer filament. 
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Scheme 2-2. A schematic for the general FDM mechanism within a Makerbot 3D printer (A) 

thermoplastic filament, (B) drive gears, (C) heating element with nozzle, (D) deposited material 

layers, (E) build plate. The standard printer was modified with a custom motor mount (F) to 

increase the distance between the drive gears and the heating element.  
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Figure 2-1. The chemical structure of the synthesized thermoplastic polyurethane. Used with 

permission from L. F. Tseng, P. T. Mather, and J. H. Henderson, Acta Biomaterialia, 9, 8790–

8801, 20136. Copyright © Elsevier 2013.  
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Figure 2-2. The general structure of the SMP MM4520. The specific structure is proprietary. 

Used with permission from Y. Yang, Y. Chen, Y. Wei, and Y. Li, The International Journal of 

Advanced Manufacturing Technology, 84, 2079–2095, 201613. Copyright © Springer Nature 

2015.  
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Chapter 3: Printing Parameters Affect Key Properties of 4D Printed 

Shape Memory Polymers 

 

3.1 Introduction 

 Fused filament fabrication (FFF) is a widely used method of additive manufacturing that 

enables 3D printing of complex parts using a continuous thermoplastic filament. The filament is 

heated to its melting temperature and deposited in layers to print the part from the bottom up. 

The print path is created using slicing software from computer-aided design (CAD) drawings, 

which, in combination with the deposition process, results in an efficient and low-cost method 

for building complex part architectures1. The accessibility of FFF technology for both 

researchers and consumers has enabled 3D printing to be used not only as a method of rapid 

prototyping but also as a method of primary fabrication of new parts. 

 FFF is one of several methods that have been employed in the development of 4D 

printing—the 3D printing of smart materials—wherein the dynamic, time-dependent 

functionality of the smart material provides the “fourth” dimension2,3. 4D printing produces 

structures with the capacity to change form or function when triggered by an external stimulus4. 

The stimulus can be physical (such as heat5,6), electrical7,8, or even biochemical9. Structures 

produced through 3D printing can be complex and highly tailorable, making 4D printing a useful 

fabrication option for parts made from smart materials. FFF was chosen for our study because it 

is the most widely used and most easily democratized compared to other technologies (e.g. 

Polyjet, DLP)10.  

Shape memory polymers (SMPs) are materials of growing interest for 4D printing. 

Because of their comparatively low processing temperatures and costs, when compared to shape 
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memory alloys (SMAs), and capacity for shape-changing functionality, when compared to 

composites, SMPs have potential advantages over other smart materials for many applications. 

SMPs are a class of smart material with the ability to remember an original shape, be deformed 

and fixed into a temporary shape, and later return to the original shape when triggered by an 

external stimulus. To program an SMP, the polymer is first heated above its transition 

temperature (Ttrans), for example, glass transition temperature (Tg) or melting temperature (Tm), 

and configured into a new, temporary shape. The polymer is then cooled back below Ttrans to 

immobilize the polymer chains and store the strain energy within the geometry through 

vitrification or crystallization. To recover the SMP back to the original shape, an external 

stimulus (e.g., heat5,6,11–13) is applied, which remobilizes the polymer chains and releases the 

strain. The shape memory effect is commonly quantified in terms of shape fixing and shape 

recovery ratios: the fixing ratio characterizing the ability of an SMP to hold its temporary shape; 

and the recovery ratio characterizing the ability to return to its original, permanent shape. These 

measures are critical in the understanding of the functionality of SMP structures. 

 Although several studies have examined the extent to which the parameters of the 3D 

printing process affect physical properties14–16 and quality15,17 of printed SMP parts, fundamental 

questions as to the effect of 3D printing on shape memory behavior remain. Villacres et al. found 

that printing angle and infill percentage significantly impact ultimate tensile stress, elastic 

modulus, and maximum strain14. Yang et al. studied the effect of processing parameters on part 

density, dimensional accuracy, and surface roughness, intending to improve SMP part quality15. 

Abuzaid et al. studied the relationship between fiber orientation and shape change to understand 

part shrinkage17. Rosales et al. looked at the effect of print speed, layer height, and print 

temperature on Young’s modulus, fixing ratio, and recovery ratio16. While that study found that 
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higher temperatures, higher layer heights, and lower speeds led to a higher Young’s modulus, the 

findings for fixing and recovery ratios were only reported for samples printed using a single set 

of parameters (temperature, speed, and layer height of 235˚C, 100 mm/s, and 0.25 mm, 

respectively) and were affected by the amount of strain programmed into the sample during 

testing. The investigation into fixing and recovery was additionally limited by the programming 

conditions, which were carried out at room temperature (below Tg), and the short recovery time 

near Tg, (45˚C and 50˚C for 1 min each), leading to an unclear demonstration of the impact of the 

printing parameters. Thus, prior investigations have established that printing speeds and 

temperatures can affect physical properties and part quality, yet the extent to which the 3D 

printing process affects shape memory behavior, including shape fixing and recovery, remains 

under-examined and poorly understood. Until such understanding is achieved, accurate design, 

precise high-fidelity printing, and reproducible shape memory actuation of 3D printed SMP parts 

are unlikely to be realized.  

Here, our goal was to determine the effect of the printing process on shape memory 

behavior. To achieve this, three critical and commonly controlled printing parameters—

temperature, extrusion rate multiplier, and fiber orientation—were systematically varied when 

printing dogbone samples, and the effect of the parameters on shape memory behavior was 

quantified by measuring shape fixing and recovery.  

3.2 Methods 

3.2.1 Experimental Design 

To investigate the extent to which printing parameters affect fixing and recovery, 

dogbone samples were produced using systematically varied nozzle temperature, extrusion 

multiplier, and fiber orientation (Scheme 3-1).  Each parameter was statistically analyzed as a 
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categorical factor (e.g., “high” and “low”) and not a numerical value in case of inaccuracies in 

the printer resolution (e.g., small deviations in the programmed flow rate, temperature, or fiber 

orientation).  

To control for multiplier and fiber orientation effects, additional dogbone samples were 

punched from hot-pressed SMP sheets. To control for the effect of material looped at the sample 

edge from one line to the next during raster printing, dogbones were also punched from a printed 

SMP sheet. Fixing and recovery ratios for each sample were calculated after conducting a one-

way shape memory cycle (1WSMC) using a dynamic mechanical analyzer (DMA). Comparisons 

between fixing ratios and between recovery ratios were made within each printed and punched 

group to determine the effect of printing parameters, within each hot-pressed group to determine 

the effect of temperature, and between the printed and punched groups to determine the effect of 

raster-printed edges. 

3.2.2 Materials 

 Commercially available semi-crystalline thermoplastic polyurethane pellets (MM-4520, 

SMP Technologies Inc., Japan) were used for all experiments. This SMP is aromatic with a 

polyether backbone with a Tg of 45˚C and melting temperature (Tm) of ~200˚C and was chosen 

for this study because of its demonstrated success with fused filament 3D printers15,16,18.  

 Modifications were made to a Makerbot Replicator 2X (Makerbot® Industries, LLC) to 

prevent printer jamming due to heat conduction from the heating element through the SMP 

filament, which becomes rubbery and wraps around the printer’s extruder drive gears – inhibiting 

deposition. To remedy this, a motor mount was added to create more distance between the drive 

gears and the heating element. To further reduce head conductance, an air tube was placed in the 

motor mount to direct airflow over the filament, similar to a design described by Yang et al.15.  
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3.2.3 Sample Preparation 

3.2.3.1 Raster Printed Samples 

Dogbones were designed by CAD (Autodesk Inventor, Autodesk, USA, 2019) to comply 

with the ASTM dogbone type IV standard, scaled down by a factor of 4. Temperature, extrusion 

rate multiplier, and fiber orientation were varied for each sample set. In this paper, we define 

nozzle temperature as the temperature the heating element located in the printer’s extruder is set 

to during printing. Extrusion multiplier controls the volume of polymer extrusion relative to 

nozzle translational velocity. Fiber orientation is the direction the material is deposited during 

printing, with 0˚ defined in the present study as the long axis of the dogbone and 90˚ 

corresponding to the width. Preliminary printing was conducted to determine the range of 

printing parameters that produced samples of sufficient quality, which we defined as a lack of 

bubbles, gaps, or defects in the object upon visual inspection19. Based on the preliminary printing 

evaluation, the following printing parameters were chosen for the study. The printing 

temperatures used were 215˚C and 225˚C, with an intentional separation of ten degrees to 

prevent an overlap in printing temperature due to over- or undershot nozzle heating. Extrusion 

multipliers used were 0.95 and 1.0, and the fiber orientations used were 0˚, 45˚, and 90˚ (Scheme 

3-2A; Figure 3-1A, B). Systematically varying the printing parameters yielded twelve sample 

sets (Table 3-1). The infill was set to 100%, and each layer in a sample was printed using the 

same parameters. The print bed was set to 25˚C and the printing speed was held constant at 3600 

mm/s. All dogbones were printed in a batch of three samples (with the same parameters) in the 

same place on the print bed in case of non-uniform heating. The samples were left to cool on the 

print bed before removal. 
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3.2.3.2 Hot-Pressed Samples 

To control for fiber orientation and multiplier, we created samples of homogenous 

material (i.e., no fibers) by hot-pressing SMP filament into films. To fabricate these control 

samples, filament from the melt-spinner was placed between two sheets of Teflon with a 0.60 

mm spacer and inserted between two heated plates of a benchtop hydraulic press (Carver 3851-0, 

USA) at 215˚C or 225˚C. The filament was pressed stepwise at 0.25 tons per 5 minutes to 

eliminate air bubbles, then held at 1 ton until cool. Pressure was released and dogbones were 

punched from the resulting film using a type IV dogbone punch with the same dimensions as the 

printed dogbones.  

3.2.3.3 Punched Samples 

 To determine if raster print edge effects play a role in fixing or recovery, dogbone 

samples were also punched from a large printed sheet (Scheme 3-2B; Figure 3-1C, D). To 

fabricate these control samples, a rectangular sheet was printed at 225˚C with a multiplier of 1.0 

while all other printer settings were kept as described above. The sheet was printed in the same 

place on the print bed as the raster-printed dogbones. From the printed sheet, dogbones were 

punched out using the same method as the hot-pressed samples. Samples possessing the three 

different fiber orientations being studied were achieved by rotating the punch on the sheet to 0˚, 

45˚, and 90˚, relative to the fiber direction of the printed sheet.  

3.2.4 Material Characterization 

Fixing and recovery ratios were calculated after preforming a 1WSMC using DMA. The 

1WSMC  is a thermomechanical cycling of an SMP20, wherein the SMP is heated above its Ttrans 

to a rubbery state, then deformed under stress to a predetermined strain. The force is held 

constant as the SMP is cooled back below Ttrans to fix the polymer chains. The sample is 
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unloaded, and the temperature is increased above Ttrans, triggering the release of the stored strain 

energy as the SMP recovers20. The strains measured before and after deformation, after 

unloading, and after recovery can be used to determine the fixing and recovery ratios.   

Samples were loaded into the DMA and, using a force-controlled sequence, heated above 

Tg to 90˚C, isothermally held for 10 minutes to ensure uniform heating, and then stretched at 

0.02 N/min to elongate the samples to 20% of their initial length. Upon reaching 20% strain the 

temperature was decreased to 0˚C to fix the sample in the strained state. The sample was then 

heated back to 90˚C at 2.0˚C/min and held isothermally at 90˚C for 10 min to completely recover 

the sample. This cycle was repeated four times and the strains from cycles two through four were 

used to calculate fixing ratio and recovery ratio. For the punched dogbones, which were more 

sensitive to applied stresses, 0.001 N/min was used during the stretching portion of the cycle to 

prevent programmed strain from overshooting 20% of their initial length. 

3.2.4.1 Fixing Ratio and Recovery Ratio 

Fixing ratio was calculated as 

𝑅𝑓(%) =
ε𝑢(𝑁)

ε𝑚(𝑁)
× 100 

and recovery ratio calculated as 

𝑅𝑟(%) =
ε𝑢(𝑁)−ε𝑝(𝑁)

ε𝑢(𝑁)−ε𝑝(𝑁−1)
× 100, 

where ε𝑢 is strain after unloading, ε𝑚 is the strain after deformation, and ε𝑝 is the permanent 

strain following recovery20,21. Ideal shape memory behavior is considered Rf = Rr = 100%, and 

while the specific application of an SMP tends to determine what constitutes a sufficient fixing 

ratio or recovery ratio, generally close to 100% is considered favorable and necessary20. Values 

greater than 100% are possible for both fixing and recovery ratios and indicate expansion of the 
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material during fixing and recovery past the original length, respectively. Both effects can be 

caused by changes in crystalline alignment during solid-state phase transformation of the 

polymer chains when heated and cooled22. Fixing ratios of 100% indicate that an SMP has 

perfect fixing and maintains its exact temporary shape.  

3.2.5 Statistical Analysis 

Three independent samples were prepared and tested for all conditions (n=3). All 

comparisons were made using the R statistical analysis software (R Core Team, 2019). One-way 

ANOVA was performed with Tukey’s HSD for multiple comparison testing, and a two-way 

ANOVA was performed for comparisons with multiple variables. Temperature, multiplier, and 

fiber orientation data were analyzed as categorical factors. Means were considered statistically 

different for p < 0.05. Bartlett’s test or F-test was used to determine equal variance. Reported p-

values are from ANOVA unless otherwise indicated and p-values between two factors are 

indicated with a subscript (e.g. “pt,m” denotes p-value for interactions between temperature and 

multiplier, “p0˚,45˚” denotes p-value of fiber orientation levels comparing 0˚ and 45˚). 

3.3 Results 

3.3.1 Raster Printed Samples 

For the raster printed dogbone samples, fiber orientation had a significant effect on fixing 

ratio (p = 4.03  10-9) but no significant effect was found for temperature (p = 0.42), or any 

interactions (pt,m = 0.72, pt,f = 0.56, pm,f = 0.22). All fiber orientations were statistically different 

from one another (p0˚,45˚ = 0.02, p0˚,90˚ = 1.0  10-6 , p90˚,45˚ = 2.0  10-6 , Tukey’s HSD; Figure 3-

2). Additionally, increasing the degree of fiber orientation from 0˚ to 45˚ and to 90˚ resulted in a 

significant increase in the distribution of recovery ratio values (p0˚,45˚ = 6.6  10-4, p0˚,90˚ = 5.3  

10-7 , p90˚,45˚ = 0.01, Bartlett’s test; Figure 3-4). 
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3.3.2 Hot Pressed Samples 

 Consistent with our findings from the printed samples, temperature had no significant 

effect on fixing ratio (p = 0.98) or recovery ratio (p = 0.089).  

3.3.3 Punched Samples 

For punched samples, which control for raster printed edges, fiber orientation had a 

significant effect on fixing ratio (p = 0.004). Fixing ratios for 0˚ and 90˚ samples were 

statistically different from each other, as were those for 0˚ and 45˚ (p0˚,45˚ = 0.005, p0˚,90˚ = 0.01, 

Tukey’s HSD). Fiber orientations of 90˚ did not recover after programming, therefore recovery 

ratios could not be reported for those samples (see Discussion). The variance of recovery ratio 

values for 0˚ and 45˚ samples were significantly different (p0˚,45˚ = 1.67  10-5, F-test).  

3.3.4 Printed vs Punched 

There was a significant interaction between the effects of fiber orientation and fabrication 

method on fixing ratio (p = 0.01; Figure 3-5), where orientations of 0˚ and 90° showed no 

significant effect from fabrication method but there was a significant effect at 45˚ (p punch, r-print = 

0.004, Tukey’s HSD). When the fiber orientation was 45˚, there was a statistical difference 

between the 0˚ and 45˚ orientations that were punched (p0˚,45˚ = 0.0003, Tukey’s HSD), which 

does not appear when the samples were raster-printed (p0˚,45˚ = 0.55, Tukey’s HSD). Differences 

in recovery ratio were not statistically significant for any of the printing parameters. 

3.4 Discussion 

 The results reveal that printing parameters used in FFF can affect key shape memory 

properties of 3D printed SMPs. In raster printed samples, the fiber orientation was found to 

affect mean fixing ratio, but not mean recovery ratio, while temperature and multiplier did not 

significantly affect either ratio. The data showed that when strain direction was aligned with 

fiber direction (i.e., the 0˚ orientation), the average fixing ratio approached 100% (99.45 + 
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1.8%). At 45˚, fixing ratio was consistently in the upper 90% range with an average of 98%. The 

90˚ orientation had a less consistent fixing ratio and a range of 92–98%. While the mean 

recovery ratios were not statistically different for each fiber orientation, the data showed a trend 

of increasing variability in recovery ratio as the orientation increased from 0˚ to 90˚. This 

suggests that fiber orientation may affect the reliability of the shape memory behavior of a 

printed SMP. 

 Similar trends were found in the punched sample data, which revealed a fiber orientation 

effect on fixing ratio. Unlike the raster printed samples, there was no significant difference 

between 45˚ and 90˚ fiber orientation for fixing. Also, punched samples at 90˚ orientations did 

not recover once programmed during the one-way shape memory cycle. This suggests that the 

edge behavior of the raster print path contributes to the overall behavior of the shape memory 

sample. Additional support for this speculation was seen in the comparisons between the 

punched and the raster-printed samples that were fabricated at 225˚C and a multiplier of 1.0. 

Considering fixing ratio, when printed the 45˚ orientation had shape memory behavior similar to 

the printed 0˚ orientation, but when punched had shape memory behavior similar to that of the 

punched 90˚ orientation. 

Fiber orientation also affected the distribution of recovery ratios for both the raster-

printed and punched samples. For example, in the raster printed dogbones, 0˚ samples had 

recovery ratios ranging from 90-98%, 45˚ samples ranging from 85-102%, and 90˚ samples 

ranging from <80-104%. The standard deviation of each recovery ratio was significantly 

different than all others. The same trend is seen in the samples that were punched, where the 0˚ 

orientations had values tightly clustered around 95%, while the 45˚ orientation had a range from 

<10-109%. These findings suggest that fiber orientation can affect the distribution of recovery 
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ratio values and contribute to less reliable shape memory behavior when the fiber orientation is 

not aligned with the loading direction. 

A possible reason for why we see the trend in fiber orientation may be the mechanical 

deformation of the fusion regions between fibers. Bellehumeur et al. described these fusions as 

sintering or semi-molten coalescence of printed fibers23. They found that the strength of the 

bonding is highly dependent on printing temperature and that higher temperatures led to stronger 

bonding and greater contact area. However, they found that the fibers cool too rapidly to ensure 

complete bonding, and therefore the properties of the bonding region are different from those of 

the fibers. In the present study, as fiber orientation increased to 90˚, fibers became less aligned 

with the loading direction as applied during shape memory programming in the DMA. 

Therefore, at the higher angles, the strain increasingly occurred not only in the fiber but also in 

the width of the fusion points between fibers. If mechanical properties are weaker in the fusion 

region compared to the width of the fibers due to incomplete bonding and a smaller cross-

sectional area23,24 (Scheme 3-2C), the effects of fiber orientation observed in our study could be 

explained by plastic deformation in the bonding regions. As fiber orientation increases to 90˚, 

plastic deformation in the bonding regions would affect the ability of the sample to remain fixed 

and to recover, due to local material damage including chain disentanglement21 and micro-

cracks25. The extra material that is laid down in a raster-printed edge could stabilize the 45˚ and 

90˚ samples because the additional loop of material stretches in the direction of strain and 

reduces the concentration of stress in the bonding regions. This lessens the severity of the plastic 

deformation of the material in the bonding regions, which would allow better fixing and recovery 

of the SMP. This has implications regarding the size of the printed object. For example, had our 
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study used a larger dogbone, the size of the loops relative to the dimensions of the sample cross-

section would be smaller, which would presumably diminish the edge effects.   

Temperature, multiplier, and fiber orientation are among the most common user-adjusted 

print settings, and in order to produce high fidelity SMP parts via 4D printing, it is critical to 

understand how even a small change in setting might impact shape memory behavior. Polymers 

can be printed within a range of temperatures and our preliminary studies revealed the SMP used 

in this work can be printed as low as 210˚C and as high as 230˚C. As printing temperatures 

approach the low end of the range, the molten polymer becomes increasingly viscous and leads 

to nozzle clogging. On the other hand, the high end of the range causes both bubbles in the 

extruded fiber and material degradation. Temperatures of 215˚C and 225˚C were chosen because 

both are well within the printing range and have enough separation to prevent any over or under-

shooting (a consequence from the sensitivity of the printer’s temperature sensor) of the 

temperature from overlapping, or falling outside of the printing range. The small temperature 

range for this particular SMP deemed the analysis of additional temperatures unnecessary. 

The extrusion multiplier parameter controls the material flow rate and adjusts the volume 

of polymer extruded from the nozzle per unit time. Multiplier has been shown to influence the 

porosity of 3D printed objects and is commonly adjusted for part quality purposes.   In most FFF 

3D printers, including the MakerBot used in this work, the flow rate is automatically calibrated 

by the printing software to ensure adequate material extrusion for the travel speed specified by 

the user19. An increase or decrease in multiplier will increase or decrease the rotation speed of 

the feed gears, respectively. For our SMP we used 1.0 (printer default equal to the calculated 

gear rotation speed), and 0.95, (95% of the calculated gear rotation speed).  
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As the popularity of employing SMPs for basic science26–30 and biomedical 

applications31–34 grows, and as 3D printing of SMPs grows simultaneously35–37, the ability to 

precisely control the shape memory behavior of a printed SMP part is crucial. For example, the 

potential exists for implementing SMPs in applications such as minimally invasive surgery, 

where laparoscopes place small SMP devices which are then expanded to a larger, permanent 

form once positioned5. However, printing parameters during fabrication could render a device 

ineffective or even dangerous to patients if a 3D printed cardiovascular stent38 was to only 

partially, or not reliably, recover—thereby not opening the vessel. The inability to hold a 

temporary shape would be equally detrimental, as the stent could start expanding in the body 

before reaching the deployment site. 3D printed SMP bone anchor device would have similar 

challenges, where poor fixing and unreliable recovery would prevent a proper fit39.  

The 4D printing field is growing rapidly, and investigations of 4D printed SMPs beyond 

the fundamental considerations in this work include studies to evaluate printing parameters’ 

effect on pre-strain in the printed SMP18,40. The pre-strain is used as a programming mechanism 

for the SMP during printing and has the potential to create self-morphing objects and parts. 

Before such advancement can be regularly implemented in the field, we must have a robust 

understanding of how the parameters impact the shape memory behavior of printed objects.  

Here, we have provided insight into the effects of printing parameters using commercially 

available SMP and FFF technology, and our findings suggest that other available 4D printing 

technology should be similarly evaluated. 

3.5 Conclusion 

This study demonstrated the impact of printing parameters on the shape memory behavior 

of 3D printed SMPs.  We found that fiber orientation has the most significant effect on shape 
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memory properties, where an increase in fiber orientation from 0˚ to 90˚ decreases the fixing 

ratio and increases the variance in recovery ratios, likely due to local plastic deformations of the 

bonding regions between fibers.  These findings indicate it is essential to carefully plan the print 

path of a 3D printed SMP part so that the fibers orient optimally with the direction of 

programmed strain for the prescribed application. Failure to do so could result in poor fixing and 

recovery, resulting in an SMP device with a questionable ability to perform its intended function.  
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Scheme 3-1. Study design overview. Following fabrication of filament by melt-spinning, 

dogbones are fabricated by printing, by punching from a printed sheet, or by hot-pressing. All 

samples were characterized using a one-way shape memory cycle (1WSMC) analysis. Fixing 

ratios were calculated for all samples. Recovery ratios were only calculated for 0˚ and 45˚ 

samples due to plastic deformation in 90˚ samples. 
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Scheme 3-2. Raster-printed dogbone schematic showing fiber orientations. Insets: (A) raster-

print edge showing continuous loops at the edge of the sample, (B) punched edge showing no 

loops, and (C) sample cross section showing the fiber bonding regions. For A/B and C, 0˚ and 

90˚ samples are used for illustrative purposes, but the edge effects and bonding regions shown 

are relevant to all fiber orientations. 

  



48 

 

 

Table 3-1. Sample set combinations of fiber orientation, extrusion speed, and temperature 

printed into a type IV dogbone. 
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Figure 3-1. Images comparing (1) pre-stretching versus (2) post-stretching to show material and 

fiber fusion behavior of punched and raster-printed samples at 45˚ (A, C) and 90˚ (B, D) 

orientations. 
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Figure 3-2. Fiber orientation affects fixing ratio in both raster-printed and punched samples. 

Cross bars on standard deviations show group means (* p < 0.05; *** p < 0.001, Tukey’s HSD 

post hoc). No significant effects were found for the hot-pressed control groups.  
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Figure 3-3. Fiber orientation significantly affects the variance of recovery ratio of both raster-

printed and punched samples. Cross bars on standard deviations show group means (* p < 0.050 

by Bartlett’s test for raster-printed samples and F-test for punched samples). No significant 

effects were found for the hot-pressed control groups. 

  



52 

 

 

Figure 3-4. Interactions between fiber orientation and fabrication method have a significant 

effect on fixing ratio for samples printed at 225˚C with a multiplier of 1.0. Cross bars on 

standard deviations show group means (* p < 0.05; ** p < 0.005; NS p > 0.05, Tukey’s HSD 

post hoc). 
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Chapter 4: Programming via Printing 

 

4.1 Introduction  

Despite the demonstrated potential of SMPs across diverse fields, programming 

limitations have challenged wide-spread implementation of 4D printing. Traditionally, 

programming an SMP object, 3D printed or otherwise, is a separate and manual step, which 

requires a physical deformation of the SMP object1,2. Current programming techniques (e.g., 

stretching or compressing) only produce simple, often uniaxial, strains in the object, which limit 

shape changing to expansion, shrinkage, folding or twisting. More impactful and complicated 

part functions and geometries could require a more complex strain pattern within the object, such 

as localized strains or strain gradients, but are near impossible to manually create, especially in 

small and/or intricate geometries.  

A means by which this limitation could potentially be overcome has been suggested in 

recent reports, which demonstrate induced strains during printing3–5. A localized stretching 

programming step is mimicked when the material is heated and extruded out of the nozzle, strain 

is induced in the material as it is pulled and cooled, similar to what we have observed in SMP 

electrospinning6–8. While trapped strains are often seen as a flaw in the 3D printing process due 

to potential warped or contracted final objects, the application of the strain trapping mechanism 

during printing to create devices that can change shape directly after printing has been largely 

unexplored. Achievement of self-morphing, 3D devices could lead to a fully automated 

fabrication process for 4D printed parts9,10. However, before that potentially transformative 

breakthrough can be realized, fundamental understanding of the extent to which strain can be 

trapped during the printing process must be achieved.  
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The goal of this study was to evaluate the extent to which strains can be intentionally 

trapped in the fibers during printing to achieve shape change without a manual programming 

step. To achieve this, SMP single line (1D) and single layer rectangular (2D) samples were 

printed while systematically varying temperature, extrusion speed, and fiber orientation. Samples 

were measured before and after recovery to calculate strain, and changes in shape (i.e., 1D to 2D, 

2D to 3D) were observed. Later in this chapter (section 4.5), we demonstrate a proof of concept 

in 3D, multi-layer cubic (3D) samples were printed using the findings from 1D and 2D samples. 

The recovery behavior of the printed objects were also modeled with the long term goal of 

predicting shape change when using programming via printing (PvP). 

4.2 Methods 

4.2.1 Experimental Design 

To determine the amount of strain that could be trapped into a single fiber, single 1D 

lines were printed at a constant speed with systematically varied temperatures and multipliers in 

order to evaluate factors that contribute to trapped strain. Additionally, single layer 2D rectangles 

were printed using the same temperatures and multipliers as the single line geometries and 

additionally printed with varied fiber orientations to determine the amount of trapped strain that 

could be programmed into a single layer of fibers and identify the resulting geometries once 

recovered. 2D samples were recovered uniaxially and freely to determine the linear strain and the 

strain in the fiber and the final geometry.  

Lastly, 3D samples were printed using the results from the 1D and 2D samples to 

demonstrate a new programming approach, during fabrication, for ready-to-trigger SMP objects 

to use in vitro (see 4.5). Several 3D geometries were designed in CAD and printed: a cube that 

keeps a porous gradient upon recovery; prototype cell scaffolds using grid and hexagonal infill 
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patterns and a log pile to create pores that contract upon recovery; and finally, a hinge that bends 

upon recovery.  

4.2.2 Materials 

The shape-memory thermoplastic polyurethane filament (MM4520 described in chapter 

2) with a Tg of 45˚C was printed using a modified (see Chapter 2) Makerbot Replicator 2X. 

4.2.3 Sample Preparation 

4.2.3.1 Single Line Samples (1D) 

To trap strain into 1D fibers during printing, single lines (12 mm x 0.3 mm x 0.2 mm) 

were printed at a constant speed of 4200 mm/min using temperatures of 215˚C and 225˚C and an 

extrusion multiplier of 0.95 and 1.00. Five samples of each temperature and multiplier 

combination were printed. The build plate remained unheated for all printing in this chapter. 

4.2.3.2 Single Layer Rectangular Samples (2D) 

Single-layer rectangular samples (28 mm x 8 mm x 0.2 mm) were printed at 4200 

mm/min with the same temperatures and multipliers as the single line samples (4.2.3.1). 

Additionally, we varied the fiber orientation of each sample to 0˚, 45˚, or 90˚ (hereafter referred 

to as 0˚, 45˚, or 90˚ samples) with respect to the long axis. Eight samples of each set of 

parameters were printed. 

4.2.4 Recovery and Strain Characterization 

4.2.4.1 Single Line Samples (1D) 

Samples were imaged and measured using a Hirox Digital Microscope (Model KH-

8700). The linear measurement tool was used to measure the length of the original geometry. 

Samples were then recovered in a water bath at 70˚C for 5 minutes. After recovery, the samples 

were re-measured. Programmed strain in each geometry was calculated by using the following 

equation: 
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𝜀 =
𝑙𝑖−𝑙0

𝑙0
 , 

where l0 is the length before recovery and li is the length after recovery. 

4.2.4.2 Single Layer Rectangular Samples (2D) 

Five samples of each experimental group were recovered using the DMA to determine 

uniaxial strain. Samples were fastened to the tension clamp and the temperature was ramped to 

70˚C at 5˚C /min and held isothermally for 5 minutes, then ramped down 5˚C /min to 25˚C. 

Initial and recovered lengths were recorded and the strain was calculated using the equation 

above (4.2.4.1).  The remaining three samples in each group were recovered freely in the water 

bath at 70˚C to observe the final geometries.  

4.2.5 Modeling 

To model the shape change due to the strains trapped within the object, a simple, hyper-

elastic model adopted by decomposing the deformation gradient tensor 𝑭 into elastic and active 

components, which are characterized by 𝑭𝑒 and 𝑭𝑝, respectively, such that 

𝑭 = 𝑭𝑒𝑭𝑝,                                                                 (1) 

where 𝐹𝑖𝑗 =
𝜕𝑥𝑖

𝜕𝑋𝑗
, 𝑖, 𝑗 = 1,2,3, and 𝑿 and 𝒙 are the configurations before and after deformation, 

respectively.  

From our experiments, we observed contraction in the fiber direction (𝒏p), with little 

change along its orthogonal direction (𝒎p), and expansion in the normal direction 𝐞z due to the 

Poisson effect. From this, the active component 𝑭𝑝was chosen as 

𝑭𝑝 = (1 − 𝜖p)𝒏p⨂𝒏p+𝒎p⨂𝒎p +
1

(1−𝜖p)
𝒆z⨂𝐞z,                                 (2) 
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where, 𝒏p is the printing direction, 𝒎p is the orthogonal direction of 𝒏p on the printing plane, 𝐞z 

is the normal direction of the printing plane, and 𝜖p is the residual strain. Furthermore, the strain 

energy density was expressed in terms of the elastic component 𝑭𝑒 

𝑈 =
1

2
𝜇(𝐼1

𝑒 − 3 − 2𝑙𝑛𝐽) +
𝜆

2
(𝑙𝑛𝐽)2,                                             (3) 

where 𝜇 is the shear modulus, 𝜆 is the Lame constant, 𝐼1
𝑒 = tr(𝑭𝑒𝑇𝑭𝑒) is the first invariant of the 

right Cauchy-Green deformation tensor associated with 𝑭𝑒 and 𝐽 = det(𝑭) = det(𝑭𝑒) by 

noticing det(𝑭𝑝) = 1. The shape changes were simulated using finite element analysis with 

implementation of the material model in the package FEniCS. 

3.2.6 Statistical Analysis 

Data from the 1D lines and 2D rectangular samples were evaluated using 2-way 

ANOVA, followed by Tukey post-hoc. Bars show sample standard deviation, and means were 

considered statistically different at p< 0.05.  

4.3 Results 

4.3.1 Single Line Samples (1D) 

The single line samples curled upon recovery and transitioned from the original straight 

line into arcs and circles. Temperature had a significant effect on trapped strain (p = 0.02) 

however, multiplier did not (p = 0.94). Samples printed at a lower temperature trapped a higher 

mean strain (7.3 ± 3.1%) compared to those printed a higher temperature (4.9 ± 2.4%) (Figure 4-

1, 4-2).  

4.3.2 Single Layer Rectangular Samples (2D) 

The 0˚ rectangular samples transitioned upon recovery from the original flat geometry 

into tubes along the short axis. The trapped strain in the rectangles was significantly affected by 

temperature (p = 0.0088), with the lower temperature yielding higher mean strain (27.5 ± 8.7%) 
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compared to the higher temperature (16.3 ± 7.8%) (Figure 4-3, 4-4). Neither multiplier, nor any 

interactions between temperature and multiplier were found to be significant.  

 The 45˚ rectangular samples also curled upon free recovery along the diagonal of the 

rectangle, specifically, along the fiber direction. Temperature had a significant effect on strain (p 

= 0.022) with the lower temperature producing higher mean strain (14.7 ± 8.3%) than the higher 

temperature (6.3 ± 4.4%). Multiplier and interactions did not have a significant effect. 

 The 90˚ rectangular samples curled into tubes along the long axis in the direction of the 

fibers. Neither temperature nor multiplier had a significant effect on the amount of strain trapped 

in the long axis, and mean strains of all experimental groups withing this fiber orientation were 

approximately zero percent. 

4.3.3 Models 

The simulation successfully captured the bending of the single line geometry, which is 

consistent with what was observed in our experiments. The bending is likely due to a non-

uniform relaxation during printing, which upon cooling causes a gradient of trapped strain. As, 

such, linearly distrusted residual strain field along the z-direction was adopted, (Figure 4-5) and 

an example of a printed single line was simulated with length (L) as 12 mm, thickness (t) as 0.3 

mm, and width (w) as 0.3. The residual strain was set to 0.15 at the bottom surface (z=0) and 

0.03 at top surface (z=t).  The 2D rectangle was simulated with length (L) as 28 mm, width (w) 

as 8 mm, and thickness (t) as 0.2 mm. The printing direction is set up 1350 (Figure 4-6A). As the 

value of residual strain was increased, the rectangle wrapped into a helix (Figure 4-6B). 

4.4 Discussion 

We aimed to evaluate an approach to program SMP fibers during the printing process 

through systematic varying of printing parameters. Temperature was found to affect the strain 
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programmed in both 1D and 2D geometries. This could be explained by the fibers being drawn 

out of the nozzle, as the nozzle moves and the SMP cools, making it stretch. The cooler 

temperature creates a more viscous fiber, which then is pulled more, and creates more strain, 

than at higher temperatures with less viscous fibers.  

Uniaxially-measured strain in the 2D samples were dependent on fiber orientation, likely 

due to anisotropy withing the printed samples. All 2D rectangular samples were clamped into the 

DMA so that recovery was through the long axis of the sample. The fibers in the 0˚ samples were 

directly aligned with the recovery direction and, when the sample recovered, the entire 

contraction was measured. The fibers in the 45˚ samples were offset from the recovery direction 

by 45˚ and therefore the full fiber contraction was not entirely reflected in the recovery of the 

sample, showing a smaller amount of trapped strain in the sample for the same recovery 

direction. The samples printed at 90˚ were not affected by temperature or multiplier, likely 

because the programming direction was orthogonal to the recovery measuring direction. The 

averages were very close to 0˚, and samples of both temperature and multiplier groups exhibited 

some negative strains. This is potentially the result of a small Poisson effect, where, as the fibers 

contract in length they expand in diameter and cause small increase in the length of the rectangle. 

Alternatively, it could be a result of anisotropic mechanical properties, where the material 

stretched due to the weight of the DMA clamp.  

Fiber bending was present in recovered geometries of both 1D and 2D samples. This 

bending could potentially be explained by the cooling of the single layer, where the midline of 

the bottom portion (closest to the build plate) of the fiber cools more slowly due to the distance 

from the air. The material in all other outer surfaces of the fiber allow for faster cooling. Similar 

bending was found in 3D samples and was explained to be due to different trapped strain values 
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due to the different conditions that exist at each layer during the printing process3,4. For example, 

lower and middle layers are reheated as the nozzle deposits more molten polymer on top of them. 

Layers at the top do not get additional heat. Bodaghi et al. takes advantage of this process and 

has used this heating gradient model to predict the final geometry of solid 4D printed parts using 

input parameters of temperature and printing speed11.  

The results from these experiments indicate that large strains can be programmed into 4D 

printed SMP objects when using a low printing temperature. This work also suggests that the 

greatest contraction of a 3D object will likely be in the direction of the printed fibers. Based on 

these outcomes, we performed a proof of concept study to demonstrate how PvP behaves in 3D, 

and how it could be implemented biomedical applications. 

4.5 Ready-to-Trigger 4D printed SMPs using PvP 

4.5.1 Sample Preparation 

  Based on our findings from the previous experiments, all subsequent 3D samples were 

printed at 215˚C with a multiplier of 1.0 and with the same speed and build plate settings as 

before. 

4.5.1.1 Porous Gradient Cube 

A 16 x 15 x 16 mm cube with pores of three different sizes (0.9 mm2, 6.5 mm2, and 0.48 

mm2) was printed to observe changes in pore size and gradient (Figure 4-7). The fiber orientation 

was held constant in each layer, so that contraction would occur in only one direction. 

4.5.1.2 Porous Cell Scaffolds 

To print a porous cell scaffold, cubes measuring 9.5 x 9.5 x 9.5 mm were printed at 65% 

infill with a fiber orientation alternating between 0° and 90° per layer (Figure 4-8A). A 
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hexagonal infill was also used in some scaffolds to determine if a different contraction would 

occur (Figure 4-8B). 

Additionally, an alternative porous scaffold was produced by printing a log pile, where 

each log (of the pile) was printed as a solid beam with a lengthwise uniform fiber orientation 

(Figure 4-9). Logs were rotated between 0° and 90° per layer to make a 7.5 x 7.0 x 4.6 mm 

porous cube. 

4.5.1.3 Hinge 

Lastly a porous hinge was printed using 50% infill with alternating 0° and 90° fiber 

orientation per layer to demonstrate a bending effect. The hinge consisted of two 5 x 5 x 2.5 mm 

towers connected by a 3 x 5 x 1 mm rectangle at their base (Figure 4-10).  

4.5.2 Characterization 

4.5.2.1 Porous cubes and scaffolds 

The post-printed cube dimensions and pores were measured with the Hirox microscope, 

then recovered in the water bath at 70˚C for 10 min. The dimensions and pores were remeasured, 

and the change in area was calculated using the following equation: 

𝜀A =
A0−Ai

A0
 , 

where A0 is the area before recovery and Ai is the area after recovery. The pores sizes of the 

hexagonally infilled scaffolds were measured using ImageJ. 

4.5.4 Results 

4.5.4.1 Porous Gradient Cube 

 The cube contracted in the direction of printing and the dimensions changed from 16 x 15 

x 16 mm to 16 x 12 x 18 mm. The total area of the top of the cube changed by 20%. Large pores 

contracted to 33.0 ± 2.9% of their original area, while the medium and small pores contracted 
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55.3 ± 18.3% and 51.9 ± 8.2%, respectively. The pore gradient remained intact even after 

contraction. 

4.5.4.2 Porous Cube Scaffolds 

The scaffold cube with fiber orientation alternating between 0˚ and 90˚ contracted in both 

fiber directions for a 35.4% change in area (change in L x W was 1.48 mm x 1.86 mm) and the 

area of the pores decreased 49.9 ± 3.2%. The scaffold cube with hexagon fiber orientation 

contracted in both fiber directions for a 34.8% change in area (change in L x W was 1.95 mm x 

1.89 mm) while the area of the pores decreased 80.6 ± 6.3%.  

4.5.4.3 Log Pile 

The scaffold cube with fiber orientation alternating between 0° and 90° contracted in both 

fiber directions for a 25.9% change in area (change in L x W was 0.93 mm x 0.71 mm) and the 

area of the pores decreased 74.6 ± 7.3%.  

4.5.4.4 Hinge 

 The hinge bent from the center of the hinge through its length to a 120˚ angle. No 

secondary bending in the orthogonal direction was present. 

4.5.4.5 Modeling 

 A cube with a porous lattice was simulated where fiber orientation was in a uniform 

direction (along x-axis) (Figure 4-11). Upon triggering there is contraction in the x direction and 

expansion in the z direction, while the y direction remains unchanged, which was what we 

observed in our porous gradient cube geometry. 

4.5.5 Discussion 

While Bodaghi et al. suggested a potentially promising way to produce ready-to-trigger 

SMP parts, it did not account for porous structures, which are desirable in biomedical 
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applications for roles such as cell and tissue scaffolds or wound and defect filling constructs. All 

of our 3D samples exhibited strain release upon recovery, even with the addition of pores and 

fibers stretching across gaps. The porous cube with three different pore sizes yielded a geometry 

with its pore sized reduced up to 55% with the pore gradient still intact post recovery.  

The porous cube scaffolds demonstrated that strains could be programed in single fibers 

that reach across gaps. We saw a 35.4% change in area, however the contractions in the 0° and 

90° directions were not uniform. This suggests that the fusion points where each fiber connects 

to its orthogonal neighbor acts as an anchor and impedes the strain release, potentially due to a 

2D Poisson effect. This prompted us to print an auxetic cube, that is, a structure with a negative 

Poisson’s ratio. The cube with the hexagon infill had a similar total areal contraction, however, 

contractions in the 0° and 90° direction were much more uniform and amount of contraction of 

the pores increased greatly. This could have implications in tissue engineering applications to 

create small pore sizes that are physiologically relevant to cells considering the inadequate 

resolution of many off-the-shelf printers. 

The log pile showed how beams or “logs” of solid material would behave over gaps. As 

described above, Bodaghi showed a bending phenomenon as trapped strains are released from 

solid 4D printed SMPs3. Here, we did not see bending logs, likely due to the multiple contact 

points of orthogonal logs. However, the pores in the log pile contracted 74%, which was about 

25% larger than what was observed in the scaffold cube. This could be due to the combined 

contraction of the log lengths and increase in log width due to the Poisson effect.  

 The hinge bent the opposite direction of the 2D samples, that is, it bent down towards the 

first layer, rather than up towards the top layer. We speculate that this largely due to the 

geometry. Unlike the 2D rectangles, the base of the hinge is porous (i.e., individual fibers in 
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contact with the build plate) which could contribute to more rapid cooling, similar to the single 

line bending, which also curled downwards. We also did not observe any secondary bending 

along the short axis, which could be attributed to additional material at the ends of the hinge (i.e, 

the tower height) act as a passive constraint that prevents bending. 

4.6 Conclusions 

 This work demonstrated a critical first step in achieving self-morphing SMP parts. We 

successfully quantified and modeled the strains trapped in 1D, 2D, and 3D SMP objects during 

the printing process. From these experiments, it was revealed that the shape change of the 

recovered geometries is due to contraction of the fibers, and therefore the largest strains were 

observed in the direction of the fiber orientation. In chapter 5, we used our findings from these 

experiments to show how PvP could be advantageous in a biomedical application. 

 

Additional acknowledgements for this chapter: Prof. Teng Zhang and his students, Di Liu and 

Hongyu Fan, for their modeling and simulation work; Paul Chando and Dr. Pranav Soman for 

their expertise in 3D printing fabrication, and Chi Chi Tong for his assistance with CAD and 

printing preparation. 
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Figure 4-1. Temperature affects trapped strain in single line samples. Lower printing 

temperature led to an increase in mean trapped strain. (* p < 0.05; two-way ANOVA). 
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Figure 4-2. Representative images of the single line geometry before and after recovery when 

printed at temperatures of 215˚C (A, C) or 225˚C (B, D) with an extrusion multiplier of 1.0 (A, 

B) or 0.95 (C, D). 
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.  

Figure 4-3. Printing temperature affects trapped strain in 2D samples with fiber orientations of 

0˚ (A) and 45˚ (B) when measured along the long axis. Temperature had no significant impact on 

the strain in the 90˚ orientation (C).  (* p < 0.05; ** p < 0.01, two-way ANOVA). Note: scales on 

the Strain (%) axis change.  
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Figure 4-4. Representative images of the free recovery behavior in 2D rectangular samples 

printed with varied printing parameters (printing temperature/multiplier) by row: (A) 215˚C/1.0, 

(B)225˚C/1.0, (C) 215˚C/0.95, (D) 225˚C/0.95. In addition to bending in the long axis, a 

secondary bend can be seen along the short axis, particularly in the 90˚ samples.  
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Figure 4-5. (a) The schematic of a 1D printed fiber. (b) Gradient of the residual strain along the 

z-direction (normal to the printing plane). (c) A representative example of curved fiber after 

triggering (w is the width of the fiber). The color indicates the displacement of z-direction. 

Figure provided by Zhang Lab. 
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Figure 4-6. (a) The schematic of a 2D printed plate with the fiber orientation as 45 degrees and 

thickness (t) as 0.2 mm. (b) Deformed configurations of the plate at different levels of the 

residual strain. The color indicates the displacement of z-direction. Figure provided by Zhang 

Lab. 
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Figure 4-7. Representative image of the cube with three different pore sizes (small, medium, 

large, from bottom). All pores contracted in the direction of the fibers and the pore gradient was 

conserved. 
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Figure 4-8. Representative image of cubes printed for cell scaffolding with (A) alternating 0˚ 

and 90˚, and (B) hexagonal infill. The hexagonal infill led to a more uniform contraction upon 

recovery. 
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Figure 4-9. Representative image of top and side views of the log pile cell scaffold. Pore size 

decreased dramatically after recovery, and a Poisson effect is seen in the side view. 
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Figure 4-10. Representative image of the porous hinge. Top panel shows a CAD drawing of the 

hinge geometry. A large, downward, bending can be seen after recovery. 
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Figure 4-11. (a) The initial structure of a cube lattice. (b) Deformed configurations of the cube. 

The color indicates the displacement of x-direction. Figure provided by Zhang Lab. 
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Chapter 5: Confirming Cytocompatibility and Utilizing PvP in Vitro  

5.1 Introduction and Background 

 Prior reports on the cytocompatibility of shape memory polyurethanes and cell 

interaction both in vivo and in vitro have been well documented1,2. Fare et al studied human 

fibroblast cells lines and the cytotoxicity of SMP MM5520 (Tg = 55℃), a similar material from 

the same manufacturer as MM4520 (Tg = 45℃)3. Another study by De Nardo studied both SMP 

MM5520 and SMP MM3520 (Tg of 35℃) and reported low cytotoxicity and good cell 

colonization on both materials4. While both studies make a good case for cytocompatibility, the 

material substrates were not 3D printed. There are fewer reports on the cytocompatibility of SMP 

MM45205. As few reports of 3D printed SMP MM4520 contain cytotoxicity assays, we were 

interested in the potential effects of printing parameters on cell viability, along with conduction 

our own confirmation of the low cytotoxicity of SMP MM4520.  

Additionally, in this chapter, we demonstrate a potential in vitro application of 

programming via printing (PvP). 3D cell culture is used in vitro because it imitates in vivo 

environments and provides proper microenvironments and cell-cell interactions compared to 2D 

culture6–12. These characteristics make 3D culture a potentially powerful research tool, however, 

it is not without limitations.  A known issue in developing robust tissues from 3D scaffolds is 

obtaining an even cell distribution6. Tissues grown from non-uniform and low cell densities are 

often inferior to their uniform/high cell density counterparts13. To remedy this, common practice 

is to use active cell seeding techniques, such as vacuum or spin seeding, however, such methods 

can potentially damage cells due to high shear stress, which can lead to a loss in viability14,15. In 

chapter 4 we observed large pore contractions in our 4D printed scaffold cubes. Here, we use this 
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understanding to print an open, porous, 3D scaffold passively seeded with cells, which is then 

contracted during culture to obtain smaller pores. 

This chapter contains three studies using SMP MM4520 and cells to address the 

following objectives: first, to confirm the low cytotoxicity of SMP MM4520; second, to 

determine the extent to which the printing parameters utilized in chapter 3 affected cell viability; 

and third, to demonstrate a potential biomedical application for the PvP work in chapter 4. 

5.2 Methods 

5.2.1 Cytocompatibility of SMP MM4520  

 To confirm previous reported cytocompatibility of SMP MM4520, flat 9.0 x 9.0 x 0.4 

mm samples were hot-pressed at 225℃ or printed at 225℃. Control samples were cut from 

tissue culture polystyrene (TCPS) into 9 x 9 mm pieces. All SMP and control samples were 

sterilized in ethanol for 1 hour and dried for 24 hours, then rinsed in sterile PBS and conditioned 

with Basal Medium Eagle (BME) with 10% fetal bovine serum for 1 hour to help with cell 

attachment. 

C3H10T1/2 murine fibroblasts (ATCC) were cultured in Basal Medium Eagle (BME) 

supplemented with 10% Fetal Bovine Serum (FBS), 1% GlutaMAX, and 1% Penicillin-

Streptomycin (all purchased from Invitrogen). Cells were sub-cultured at 70% confluence 

following ATCC recommendations. Cells were collected and used for experiments at passage 

number fifteen. Cells were droplet seeded 15,000 cells/mL onto all samples and incubated at 

37℃ for 48 hours. Samples were then stained with LIVE/DEAD (Invitrogen) reagents, Calcein 

AM and Ethidium Homodimer, as per the manufacturer’s instructions, and imaged at 10X 

through a Leica DMI 4000B inverted fluorescent microscope with a Leica DFC 340FX camera. 

Cells were counted manually, and viability was calculated by dividing the number of live cells 
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by the total number of cells. This method was repeated for the cytocompatibility study with 

varied printing parameters.  

5.2.2 Cytocompatibility of 3D Printed SMP MM4520 Using Varied Parameters 

To determine the extent to which printing parameters affect cell viability on the 3D 

printed SMP, flat 9.0 x 9.0 x 0.4 mm samples were printed with the same systematically varied 

temperature (215℃ or 225℃) and multiplier (0.95 or 1.0) while speed and infill were held 

constant at 3600 mm/min and 100%, respectively. Fiber orientation was not studied because it is 

a macroscopic, not microscopic, property and not expected to affect cell behavior. Control 

samples, cell culture and seeding, and viability assays were carried out as described in the 

previous section (see 5.2.1).  

5.2.3 Distribution of Cells in SMP Scaffold Using Programming via Printing 

 To demonstrate the impact of PvP in 3D cell culture, the distributions of fibroblasts 

through 3D printed SMP scaffolds were analyzed. Based on our findings in Chapter 4, that lower 

temperatures lead to increased strains and therefore higher contractions, a 9 x 9 x 8 mm scaffold 

was designed to be printed at 210℃ with a multiplier of 1.0. Infill was set to 65% with a 

hexagonal pattern, which was rotated 90° each layer to create pores. The scaffolds were sterilized 

in ethanol and conditioned as described above (see 5.2.2). Scaffolds were divided into four 

groups: pre-triggered 40℃, active 40℃, pre-triggered 70℃, and active 70℃. Pre-triggered 

scaffolds were recovered in sterile PBS at 40℃ or 70℃ before conditioning and seeding. 

 Cells were droplet seeded onto the scaffolds at 30,000 cells/cm3 and incubated at 30℃. 

After 2 hours, the active 40℃ scaffolds were transferred to a 40℃ incubator for 22 hours to fully 

recover. The active 70℃ and both pre-triggered groups remained in the 30℃ incubator for the 

entire 24 hours.  Afterwards, cells were fixed to their scaffolds using 4% paraformaldehyde. The 

active 70℃ were then recovered in 70℃ PBS. Next, three scaffolds from each group were cut 
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with a razor blade from top to bottom through the center. Cells were treated with triton solution 

to permeate the cells, and DAPI stain (Invitrogen) was applied following the manufacturer’s 

instructions. 

 Cells were imaged using the multi acquisition option in micromanager. The X-Y position 

was manually set in order to image the entire scaffold cross section and Z-stacks of images were 

taken at each position with nine 100 um increments for a total depth of field of 0.9 mm through 

the 5X lens. To create a single image with the entire depth of field, each z-stack was loaded into 

ImageJ and run through the “Extended Depth of Field” plugin16. To isolate the cells in the image, 

the threshold was manually adjusted and run through the “Watershed” function17. Then, to both 

count and record the positions the cells, the adjusted image was run through the “Analyze 

Particles” function17. The labeled Y positions of the cells were normalized with respect to the 

length of their scaffolds, and the number of cells in the top, middle, and bottom third was 

quantified. 

5.2.4 Analysis and Statistics 

5.2.4.1 Cytocompatibility 

 Comparisons between viability of cells on pressed, printed, and TCPS control samples 

were made via one-way ANOVA, while comparisons of viability on 3D printed samples with 

varied parameters were made using two-way ANOVA. Means were considered statistically 

different at p < 0.05.  

5.2.4.2 Distribution 

 Student’s t-test was used to determine if the difference in cell number was significant in 

each third of the scaffold. A t-test was also used to determine if the total number of cells was 

significant. Results were considered significant at p < 0.05.  
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5.3 Results 

5.3.1 Cytocompatibility of SMP MM4520 

There was a significant difference between printed samples and the pressed and control 

samples (p = 0.008 and p = 0.009, respectively) (Figure 5-1). No significant difference was 

detected between the pressed and control samples (p = 0.9). The total cell numbers for all 

scaffold types were not significantly different (p = 0.4). The hot-pressed MM4520 samples had a 

mean viability of 97.8 ± 0.75% and a total cell count ranging from 129 to 340 cells/sample field 

of view with a mean total cell count of 204 ± 122 cells/sample field of view. The printed 

MM4520 samples had a mean viability of 94.7 ± 0.99% and a total cell count ranging from 120 

to 271 cells/sample with a mean total cell count of 206 ± 55 cells/sample field of view. The 

TCPS control samples had a mean viability of 97.8 ± 0.66% and a total cell count ranging from 

257 to 353 cells/sample field of view with a mean total cell count of 296 ± 60 cells/sample field 

of view.  

5.3.2 Cytocompatibility of 3D Printed SMP MM4520 Using Varied Parameters 

Multiplier was found to significantly affect viability (p = 0.0003). There was no 

significant difference detected for temperature (p = 0.46) or interactions (p = 0.69)(Figure 5-2). 

The total cell numbers for all samples were not significantly different (p > 0.05). The cell 

viability of all samples was >90% which suggests reasonable cytocompatibility. The samples 

printed at 215℃ and a multiplier of 1.0 had a mean viability of 93.2 ± 0.89% and a total cell 

count ranging from 107 to 558 cells/sample with a mean total cell count of 270 ± 150 

cells/sample field of view. The samples printed at 215℃ and a multiplier of 0.95 had a mean 

viability of 95.6 ± 1.24% and a total cell count ranging from 121 to 352 cells/sample field of 

view with a mean total cell count of 212 ± 121 cells/sample field of view. The samples printed at 

225℃ and a multiplier of 1.0 had a mean viability of 92.4 ± 0.51% and a total cell count ranging 



88 

 

from 209 to 314 cells/sample field of view with a mean total cell count of 263 ± 53 cells/sample 

field of view. The samples printed at 225℃ and a multiplier of 0.95 had a mean viability of 96.3 

± 0.42% and a total cell count ranging from 151 to 240 cells/sample field of view with a mean 

total cell count of 203 ± 46 cells/sample field of view.  

5.3.3 Distribution of Cells in SMP Scaffold Using Programming via Printing 

5.3.3.1 Active and Pre-triggered 40℃ 

 Scaffold pores contacted by a mean of 32.3 ± 4.1% compared to the as-printed pore size. 

There was a significant difference between the PvP scaffolds and the pre-triggered scaffolds with 

the top third and bottom third (p = 0.012 and p = 0.0006, respectively). No significant difference 

was found for the total number of cells in each scaffold. The active 40℃ scaffolds contained a 

mean of 33 ± 3.6 cells, 32 ± 4.0 cells, and 35 ± 1.0 cells in the top, middle, and bottom thirds of 

the scaffold (per depth of field), respectively (Figure 5-3A; Figure 5-4B). The total average cell 

count for the depth of field was 135 ± 18.0 cells. The pre-triggered 40℃ samples contained a 

mean of 42 ± 2.0 cells, 36 ± 3.0 cells, and 22 ± 2 cells in the top, middle, and bottom thirds of 

the scaffold (per depth of field), respectively (Figure 5-4). The total average cell count for the 

depth of field was 146 ± 10.0 cells (Figure 5-3B).   

5.3.3.2 Active and Pre-triggered 70℃  

Scaffold pores contacted by a mean of 79.1 ± 5.3% compared to the as-printed pore size. 

There was a significant difference between the active and pre-triggered scaffolds within the top 

third and middle third (p = 0.0005 and p = 0.00006, respectively) (Figure 5-3C; Figure 5-4D). 

There was also a significant difference detected between the total number of cells in each 

scaffold (p = 0.0004). The active 70℃ scaffolds contained a mean of 29 ± 2.0 cells, 40 ± 2.0 

cells, and 30 ± 1.0 cells in the top, middle, and bottom thirds of the scaffold (per depth of field), 



89 

 

respectively (Figure 5-4C). The total average cell count for the depth of field was 164 ± 5.0 cells 

(Figure 5-3D). The pre-triggered 70℃ scaffolds contained a mean of 37 ± 1.0 cells, 31 ± 1.0 

cells, and 32 ± 2 cells in the top, middle, and bottom thirds of the scaffold (per depth of field), 

respectively. The total mean cell count for the depth of field was 102 ± 8.0 cells.     

5.4 Discussion 

5.4.1 Cytocompatibility of SMP MM4520 

 We confirmed compatibility of SMP MM4520 in vitro. The C3H10T1/2 cell line was 

chosen because of its previous use in the development and applications of cytocompatible 

SMPs18,19. The cell viability of SMP MM4520 under different fabrication methods was greater 

than 90% and considered to have good cytocompatibility. These numbers are similar to those 

reported by Fare et al, who, through use of a lactate dehydrogenase (LDH) assay, found that 

there were negligible levels of LDH activity from a period of 3h to 7 days of exposure to the 

MM5520 material, indicating very low cytotoxicity.   

Low total cell numbers between MM4520 and the TCPS control is likely due to cell 

attachment. TCPS is treated to promote attachment, while the MM4520 samples were only 

conditioned with media, thus in the washing portions of the staining process, the cells became 

detached. Similar findings were reported by Fare, et al who ran adhesion tests on non-coated and 

protein coated (Fn, Fbg, CI, CII) disks of MM5520 and found that coating increased adhesion. 

5.4.2 Cytocompatibility of 3D Printed SMP MM4520 Using Varied Parameters 

 We also confirmed the cytocompatibility of the SMP under various printing conditions.  

Cell viability for all printed samples was above 90%, representative of a high degree of viability, 

which supports the low cytotoxicity findings from previous reports. A reduced multiplier 

contributed to a higher cell viability, which could potentially be explained by the resulting 

reduction in fiber diameter that could produce small spaces between the fibers and create a 
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suitable microenvironment that includes qualities such as proximity to other cells, minimal 

stress, increased adhesion, and maintenance of temperature and nutrients. 

5.4.3 Distribution of Cells in SMP Scaffold Using Programming via Printing 

 In this work, a preliminary investigation of the application of PvP in vitro was conducted. 

Distribution was quantified by counting the number of cells in each third of the scaffold. The 

number of cells in the top third portions of the active 40℃ scaffolds were significantly different 

from that of the pre-triggered 40℃. This suggests that the active scaffolds, which had a larger 

pore size upon cell seeding, allowed the cells to travel through the scaffold with less difficulty, 

than the smaller pores of the pre-triggered scaffold. A reduction in area led to some pores 

becoming very narrow, which could also inhibit cell travel. This could also explain the 

significant increase in cells in the bottom third of the active scaffold compared to the pre 

triggered, as more cells could easily navigate through to reach the bottom.  

 Similar to the 40℃ groups, the scaffolds contracted at 70℃ showed a significant 

difference in cell percentage in the top third of the scaffold. Again, this is likely attributed to the 

ability of the cells to travel through the PvP scaffold. The total number of cells present in the PvP 

scaffold was significantly greater than that of the pre-triggered. In the 70℃ scaffolds, the 

average decrease in pore size was 75%. This could account for the difference in cell numbers 

because when the cells were seeded on to the pre- triggered scaffold, the cells were not able to 

travel through the smaller pores as easily as the PvP scaffold, and many may have remained on 

the scaffold surface. 

We chose to study active and pre-triggered scaffolds at 70℃ because a greater 

contraction is obtained at higher temperature20. This is likely due to rapid heating of the structure 

which allows the fibers in the scaffold to contract in unison. Conversely, the increase in 

temperature from 30℃ to 40℃ may not have been powerful enough to transition the entire 
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scaffold to its rubbery phase, resulting in partial strain release. This shows how PvP could be 

advantageous, especially with very small pores. To obtain a similar effect during cell culture, a 

SMP with a lower Tg could be used. 

 This work offers a demonstration of PvP to obtain increased cell distribution within a 3D 

scaffold and has implications in vitro, where getting an even distribution of cells through a 3D 

scaffold is difficult without additional techniques such as vacuum seeding. PvP could be a 

valuable tool in tissue engineering and regenerative medicine, where scaffolds of high cell 

density and uniform distribution are needed to produce tissues, whereas lower densities and non-

uniform cells contribute to substandard tissues21. 

5.5 Conclusion 

 Through the experiments conducted in this chapter, we confirmed cytocompatibility of 

SMP MM4520 across different modes of substrate preparation. Among the 3D printed samples, 

we showed that a lower extrusion multiplier lead to an increased cell viability. Additionally, we 

were able to successfully demonstrate the use of a PvP scaffold to increase the percentage of 

cells that travel through a 3D scaffold. This helps confirm potential for using PvP to optimize 

cell seeding of in vitro 3D scaffolds to produce uniform tissues. Together, the studies in this 

chapter support the use of 3D printing SMP MM4520 in biomedical applications. 

 

Additional acknowledgements for this chapter: Tackla Winston and Plansky Hoang for assisting 

with troubleshooting, and Shelby Buffington and Michelle Pede for general guidance with, and 

training for cell culture assays. 
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Figure 5-1. SMP MM4520 has good cytocompatibility on both substrate fabrication methods. A 

significant difference was found only for the substrates that were 3D printed compared to the 

TCPS control. (* p < 0.05; one-way ANOVA). 
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Figure 5-2. Multiplier affects viability of cells on 3D printed substrates. A lower multiplier led 

to a significant increase in viability at both temperature settings, but all printing parameter 

combinations showed high viability above 90%. (* p < 0.05; two-way ANOVA).  
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Figure 5-3. Cells present in the top, middle, and bottom thirds of (A) 40℃ and (C) 70℃ 

scaffolds with corresponding total cell per field of view (B) 40℃ and (D) 70℃. (* p < 0.05; ** p 

< 0.01; *** p < 0.001, Student’s t-test). 
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Figure 5-4. Representative figure of x position (from left) and y position (from top) of 

normalized cell distribution within cross section of (A) 40℃ pre triggered (B) 40℃ active, (C) 

70℃ pre-triggered and (D) 70℃ active scaffolds. Diamond marker shows cell position centroid.  
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Chapter 6: Concluding Remarks and Future Work 

6.1 Overall Conclusions and Contributions 

The goal of this dissertation was to advance 4D printing in the biomedical field by 

utilizing a commercially available FDM printer and SMP to fill gaps in the understanding of how 

the printing process affects the shape memory behavior of SMPs and the extent to which strains 

could be programmed during the printing process to create ready-to-trigger SMP parts. In order 

to create robust SMP devices, it is critical to understand how printing parameters could 

potentially affect the ability of the device to function. Results from our studies can be expected 

to help further the utilization of high performing SMP devices in biomedical applications. 

6.1.1 Material Selection and Filament Fabrication 

In chapter 2, a method was developed for creating spools of 3D printer compatible 

filament from small quantities of SMP. We did this by repurposing a melt-spinner, which had 

been originally designed to spin PEEK fibers into a single strand1. The spooler on the device 

drew fibers out of a six-point die. We fabricated a single point die and used the plunger to push 

the SMP out of the die, in other words, we transitioned the melt-spinner into a small extruder. 

This was a reliable filament making method and is suitable for producing spools of custom made 

SMP materials in small quantities, which has implications in research labs. 

 Through this work we were also able to establish that SMP MM4520 is an appropriate 

SMP to use in 4D printing research. This material can be implemented in future research projects 

because of its availability and reliable performance during extrusion, printing, and 

cytocompatibility testing (see 6.1.4). 
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6.1.2 Printing Parameters Affect Key Properties of 4D Printed Shape Memory Polymers 

 A major conclusion in this thesis is that printing parameters affect the shape memory 

behavior of the SMP. Specifically, as fiber orientation deviates from the programming axis, 

fixity decreases and recovery becomes more variable. This indicates that the print path is critical 

to SMP performance and, to achieve the greatest amount of fixing and recovery, should be in the 

direction of the intended programming. We also observed that raster printed edges contribute to 

the behavior of the SMPs, which is likely a product of the small cross-section of the dogbones. A 

scaled-up dogbone, with a wider cross-section, may behave more similarly to our punched 

samples. 

6.1.3 Programming via Printing   

 Our goal in chapter 4 was to quantify the extent to which strains can be trapped in an 

SMP part through the printing process. With the long-term goal of programming ready-to-trigger 

SMP parts during printing rather than following printing, this was a critical step to determine 

both the ability of the printer to trap strains in, and the recovery behavior of, 1D, 2D, and 3D 

samples. We successfully demonstrated that the FDM printing process can produce strains in 

SMP fibers. The degree to which strains can be trapped in SMP fibers is dependent on printing 

temperature, where lower temperatures trap higher strains. This concept was then applied to 3D 

structures, where we printed porous, self-contracting scaffolds that could be applied to in vitro 

applications. 

6.1.4 Confirming Cytocompatibility and Utilizing PvP in Vitro 

 In chapter 5 we confirmed the cytocompatibility of the commercially available SMP 

MM4520, which supports its future use as an easily obtainable and printable SMP for biomedical 

applications. Furthermore, we showed that the SMP has good viability under different printing 

conditions and that implementing a lower multiplier, which decreases fiber diameter, can 
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potentially create microenvironments within the substrate, which contribute to increased cell 

viability. 

 PvP cell scaffolds were used as active 3D cell culture platforms to present an in vitro 

application of a self-contracting SMP part. The printing parameters for the scaffold were realized 

through our results from chapter 4. Here, we successfully demonstrated using PvP as a means to 

increase the cell distribution through a 3D porous scaffold.  

6.2 Recommendations for Future Work 

In this dissertation, we used a commercially available shape memory thermoplastic 

polyurethane, SMP MM4520. While this SMP met our selection criteria for printing and 

processing and has been successful in the 4D printing and biomedical literature2–4, an SMP with 

a transition temperature closer to cell culture conditions may be more beneficial for future, 

biomedical, PvP studies. The manufacturer of SMP MM4520, SMP Technologies Inc., also 

synthesizes an SMP with a Tg of 35℃. Because the transition temperature is closer to body 

temperature, it could exhibit greater strain release when triggering in vitro, thus creating a more 

pronounced contraction in PvP active cell culture platforms.  

The study in chapter 3 revealed that fiber orientation affects both the fixity and recovery 

of a 4D printed SMP. This could be further studied with additional samples printed with a 

combination of fiber orientations (e.g., a dogbone with fiber orientation alternating by layer), to 

determine the extent to which a more complex print path could affect shape memory behavior. 

Additionally, as previously mentioned, a geometry with a greater cross-sectional area could be 

studied for the effects of the raster-printed edges. 

 The development of PvP in this dissertation provides exciting opportunities for future 

study. In the work presented, we studied a constant strain (i.e., no gradient) with varying pore 
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sizes. A future experiment could program a strain gradient using different printing temperatures 

at various points in the printing process. Additionally, the modeling could be added upon to 

include the anisotropic material properties, and more studies could be performed to explore 

quantify trapped strain with relation to printing thickness.  At the cellular level, it could be 

beneficial to fabricate a PvP scaffold with a smaller, more cell-relevant pore size5,6. Our study 

was limited to the macroscopic regime by the resolution of the printer (200 µm), however, the 

similar methods described in chapter 4 could be followed using a printer with higher resolution. 

Finally, 3D printers can print objects from medical imaging data (e.g., CT, MRI), which enables 

the fabrication of highly tailored devices. For example, a self-tightening custom bone cast or 

self-expanding personalized stents7,8. Overall, the PvP process developed in this work can be 

anticipated to enable new strategies in personalized medicine, cellular research platforms, and 

elsewhere in the biomedical field. 
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