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Abstract

The focus of this work is to construct theoretical methods or approaches to tackle computa-

tionally challenging problems in quantum chemistry. The primary topic of the work will focus

on efficient theories that allow for capturing electron-correlation in semiconductor or metallic

nanoparticles. These systems are computationally challenging due to the size of the systems,

the number of electrons per atom, and the degeneracy of the particle-hole states. Three meth-

ods presented here are aimed at providing novel theoretical methods towards computationally

inexpensive electronic excited state calculations. The frequency-dependent geminal-screened

electron-hole interaction kernel (FD-GSIK) method provides a real-space approach towards

eliminating the virtual space reducing the computational effort present in most excited state

methods. Dressed molecular orbital basis is presented to compress the configuration space

in metallic nanoparticles, resulting in a cheap multi-reference approach to obtaining electron-

correlation. Finally, the moment generated molecular orbital basis is derived to provide an

alternative approach that utilizes moments of the reference function to decouple particle and

hole states. A secondary focus within this work is to provide efficient Monte Carlo sam-

pling techniques for modeling and integration. Monte Carlo provides an efficient pathway

to sampling experimental models and evaluation of complicated integrals which are normally

computationally costly. The theoretical developments presented in this work allow for un-

derstanding theoretical properties in semiconductor or metallic nanoparticles which normally

would be computationally prohibited.
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Chapter 1

Introduction

1.1 Scope

Quantum chemistry is an area within chemistry that focuses on obtaining theoretical insight into

chemical systems with the use of quantum mechanics. In general, quantum chemistry research

lies in obtaining answers accurately and efficiently. Accuracy in quantum chemistry begins by

trying to minimize the energy within the system to match the ground-state energy or lowest energy

state. But in addition, efficiency is of high importance within quantum chemistry to obtain results

as quickly as possible. Where efficiency is measured by the computational effort needed for the

theoretical investigation for the particular system. Typically, computational effort refers to the

memory requirements, floating point operations, or speed of the calculation, method or algorithm.

Throughout this presented work, path to efficient algorithms or computational methods is of key

importance towards advancing the field of quantum chemistry.

A foundation within quantum chemistry is the Hartree-Fock method which provides a frame-

work for calculating the energy of the chemical system from a wave-function and the Schrödinger

equation. Hartree-Fock method captures about 99% of the total electronic energy of the system,

and 95% of the wavefunction thereby contributing as a primary starting point for more advance

quantum chemistry methods. [1] The goal of advance methods are to collect the remaining 1% of

energy to complete the theoretical understanding of the system, and accuracy. In general, the en-
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ergy differences in chemical and spectroscopic properties of interest are smaller than the missing

1% of electronic energy therefore it is crucial to develop methods that correct for the remaining

energy. The energy that is not obtained in the Hartree-Fock method is the correlation energy and

is defined as the energy missing from the Hartree-Fock model to matching the exact energy. The

Hartree-Fock method is an introductory method and key baseline for much of quantum chemistry

and provides the starting point for much of the presented work and discussed in Chapter 2 along

with the correlation energy.

A key aspect to appreciating and understanding the presented work comes from comprehen-

sion of the mathematical notation within the theory. I dedicate all of Chapter 3 to second quan-

tization which is a useful representation in quantum mechanics. It provides a simplistic notation

towards more complicated equations and is used throughout the presented work. Once I have pro-

vided second quantization I will immediately use it to provide brief insight into many popular and

commonly used electronic excited state methods, in Chapter 4. The chapter will not be in-depth

derivations of each method, but provide a primer to key mathematical expressions that define the

methods. This chapter sets up the main motivation of the presented work, along with the problems

faced towards obtaining correlation energy in modern quantum chemistry. Background material

provided in Chapter 2, Chapter 3, and Chapter 4 will allow for understanding of the presented

work in Chapter 5, Chapter 6, Chapter 7, and Chapter 9.

In Chapter 5, the frequency-dependent geminal-screened electron-hole interaction kernel (FD-

GSIK) method for describing electron-hole correlation in electronically excited many-electron

systems is presented. The FD-GSIK is a parameter-free, first-principle method derived from ex-

cited state wavefunction that was both frequency-dependent and r12-explicitly correlated. The

FD-GSIK avoids using unoccupied orbitals for kernel construction by performing an infinite-

order summation of particle-hole excitation and representing it as a compact real-space opera-

tor. It bypasses the computationally demanding steps of evaluation, storage, and transformation

of atomic-orbital integrals by directly evaluating molecular orbital integrals in real space using

the stratified Monte Carlo method. This chapter will demonstrate and discuss the advantages of

this method by presenting excitation and electron-hole binding energies of large nanoparticles in-
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cluding Pb140S140, Pb140Se140, Cd144Se144, and Cd72S72. This work was recently accepted for

publication in Journal of Chemical Theory and Computation DOI:10.1021/acs.jctc.9b01238.

In Chapter 6, a dressed molecular orbital basis approach will be presented. I present a dressed

particle-hole basis that allows for compression of the configuration space, allowing for a compu-

tationally efficient representation for investigation of multi-reference characteristics in electronic

excitations. Multi-reference wavefunctions are approximations to the full configuration interaction

(FCI) wavefunction, which is desirable since it provides an exact solution to the many-electron

problem. The FCI is in practice computationally prohibitive for many-electron systems due to

the number of excited determinants. In general, truncation of the configuration space is limited

to the singly or doubly excited determinants for construction of the multi-reference wavefunc-

tion. Or by limiting the active space of the occupied or unoccupied orbitals thereby limiting the

number of possible excited determinants. The objective of the presented work is to construct

a molecular orbital basis that includes information for all particle-hole orbitals as well as com-

pressing the configuration space without the use of truncation. The derived basis will be used in

conjunction with the developed frequency-dependent geminal-screened electron-hole kernel (FD-

GSIK) method to obtain electron-correlated excitation energies in silver nanowires, Agn where

n = 2,4,6,8,10,12,20,40,60,80,100. These metallic like systems are of great interest due to

there electronic properties but are computationally challenging due to the number of electrons and

their highly degenerate molecular orbitals. The presented work aims to provide an approach that

can efficiently understand mutli-reference excitation characteristics within this system. This work

is in preparation for submission to The Journal of Chemical Physics.

In Chapter 7, a derivation for a moment generated molecular orbital basis for obtaining electron-

correlation is presented. This approach serves as an alternative to the frequency-dependent geminal-

screened electron-hole interaction kernel reported in previous chapters. The operator in the method

are the moments of the ground state particle or hole state, enabling a simplistic operator for decou-

pling the single particle-hole reference state. The benefit of the derived method would be that the

operator is not limited by the choice of reference states.

In Chapter 8, I will briefly present the permutation sampling Monte Carlo integration method
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and focus on the computational implementation of the method. The primary goal of the method

is to decouple the dimensionality in integration to provide an efficient and accurate evaluation

of numerical integrals. Within quantum chemistry numerical integration is ever-present and a

key computational bottleneck within calculations. The main focus within this chapter will be the

theory and computer science in efficient implementation of the permutation sampling Monte Carlo

method. Providing insight into design decisions towards programming efficient software that is

general purpose for future development but versatile in functionality. The use of permutation

sampling Monte Carlo towards understanding a 12+1 dimensional Green’s function integral is in

preparation for journal submission.

In Chapter 9, various theoretical investigations within collaborative projects will be presented.

These studies are centered around nanoparticles, which are of huge interest amongst many groups

of science, including chemistry, biology and engineering. These nanoparticles that contain a large

number of electrons are computationally limited with commercial electronic structure software

packages. Therefore theoretical properties are a challenge to obtain and often avoided. The pre-

sented work will focus on the development of quantum chemical calculations for these large chem-

ical systems. The first investigation will present the preliminary results for the collaborative inves-

tigation of Ag nanoclusters. The Ag nanoclusters were formed in a polymer film by direct-laser

writing. It was found that these nanoclusters exhibited unique optical properties. This investiga-

tion will present theoretical insight on the HOMO-LUMO gap energies for large Ag nanoclusters

to support the experimental observations. The next work will provide an insight into the theoreti-

cal works provided for understanding Mn2+ dopant migration in CdS/ZnS quantum dots. The goal

of the theoretical investigation is to provide insight into dopant migration versus dopant ejection

within these systems. The presented work will focus on the theoretical method developed towards

understanding the thermodynamics of this molecular system in a computationally efficient manner.

The work with Mn2+ dopant migration in CdS/ZnS quantum dots was recently accepted into The

Journal of Physical Chemistry Letters.

Finally, Chapter 10 will cover an overall conclusion to the presented work within this thesis

and the future investigations of this work.
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Chapter 2

Quantum Chemistry Background

2.1 Hartree-Fock approximation

I begin by briefly introducing the Hatree-Fock method as this is the foundation for most of the work

that I have developed. The common nomenclature and conventions for describing many-electron

wave functions for quantum chemists is a single Slater determinant, Φ,

Φ =
1√
N!

∣∣∣∣∣∣∣∣∣∣∣∣∣

χ1(1) χ2(1) · · · χN(1)

χ1(2) χ2(2) · · · χN(2)
...

... . . . ...

χ1(N) χ2(N) · · · χN(N)

∣∣∣∣∣∣∣∣∣∣∣∣∣
(2.1)

= A|χ1(1)χ2(2) · · ·χN(N)|. (2.2)

In Equation 2.1, there is a normalization factor, 1√
N!

, the antisymmetrizer, A, and a spin orbital,

χi(µ). The spin orbital describes both the spatial distribution and spin of the µth electron. Elec-

trons can have either be spin up (α) or spin down (β ) within a spin orbital. The Slater determinant

is the initial convention of choice for a physical wave function for several crucial reasons. First,

the antisymmetry rule is followed by construction of the determinant. The antisymmetry rule is

simply that interchange of both space and spin of two electrons must be opposite wave functions,
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∣∣∣∣∣∣∣∣∣∣∣∣∣

χ1(1) χ2(1) · · · χN(1)

χ1(2) χ2(2) · · · χN(2)
...

... . . . ...

χ1(N) χN(N) · · · χN(N)

∣∣∣∣∣∣∣∣∣∣∣∣∣
=−

∣∣∣∣∣∣∣∣∣∣∣∣∣

χ1(2) χ2(2) · · · χN(2)

χ1(1) χ2(1) · · · χN(1)
...

... . . . ...

χ1(N) χN(N) · · · χN(N)

∣∣∣∣∣∣∣∣∣∣∣∣∣
(2.3)

Where by interchanging the first two rows in Equation 2.1 yields a negative sign. The next reason is

that a Slater determinant follows the Pauli exclusion principle, which is that two electrons can not

occupy the same spin orbital. This occurs in a Slater determinant when two columns are exactly

equal, which results in the determinant being zero.

The Hatree-Fock equation, in atomic units allows for optimization of the spin orbitals through

minimization of the spin orbital energies,

f̂ χi = εiχi. (2.4)

With the Fock operator f̂ ,

f̂ = ĥ+ v̂HF (2.5)

f̂ = ĥ+
Nelec.

∑
j=1

(Ĵ j− K̂ j) (2.6)

containing the one-electron Hamiltonian,

ĥ = [t̂ + v̂ne] (2.7)

ĥ =−1
2

∇
2
i −

M

∑
A=1

ZA

riA
(2.8)

and the two-electron Coulomb (Ĵ) and exchange (K̂) operators,

Ĵ j(1)χi(1) = 〈χ j(2)|
1

r12
|χ j(2)〉χi(1) (2.9)
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K̂ j(1)χi(1) = 〈χ j(2)|
1

r12
|χi(2)〉χ j(1). (2.10)

The Coulomb and exchange operators are an effective one-electron potential operator called the

Hartree-Fock potential,

νHF =
Nelec.

∑
j=1

(Ĵ j− K̂ j) (2.11)

The νHF is simply an average potential felt by the µth electron from the other electrons. By

minimizing the energy of the spin orbitals a Slater determinant is obtained that is a good first

approximation to electronic wave function. [2, 1]

The truth is that the exact wave function, χexact, for a many-electron interacting system is not a

single Slater determinant but a combination of Slater determinants as there are many combinations

of Slater determinants which can be formed. The use of one single Slater determinant is a good

approximation to the ground state of a many-electron system for which the N electrons occupy the

lowest N spin orbitals but neglects correlation affects.

2.2 Electron Correlation

Electron correlation is the correction to the Hartree-Fock wave function that is needed to obtain

the exact wave function,

Ψexact = ΦHF +χCorr (2.12)

In general, interest lies with trying to obtain the correlation energy, which is the energy required to

correct the Hartree-Fock energy, EHF to the exact energy Eexact,

∆Ecorr = Eexact−EHF (2.13)
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Since the instantaneous correlation of the electrons due to their repulsion is missing within the

Hartree-Fock model, where the motion of the electron is described by an average field with respect

to the other electrons. This limitation of the Hartree-Fock model is easily seen in bond dissociation

energies, for which it fails. [2, 1, 3]
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Chapter 3

Second quantization

A formulation that will be used throughout the presented work is second quantization. This for-

mulation allows for a compact and convenient notation of representing wave-functions (i.e. Slater

determinants) and operators, while providing a simplified way of manipulating the functions and

operators.

3.1 Creation and Annihilation operators

Let’s begin with the a normalized Slater determinant,

Φ = Φi jk...N ≡ A|χiχ jχk . . .χN | ≡ |χiχ jχk . . .χN〉 ≡ |i jk . . .N〉 (3.1)

with the antisymmetrizer A, and a spin orbital χ , for each particle. The above notations (Equa-

tion 3.1) are all equivalent but the last notation will be of primary use throughout this work when

utilizing second quantization formulation. This notation is just the simplest notation by dropping

χ symbol for every spin orbital. It is important to note that occupancy within second quantization

is denoted by the presence of a basis spin orbital in the determinant, for example the spin orbitals

i jk . . .N are occupied in Equation 3.1 and all other spin orbitals are unoccupied.

The creation or annihilation of a particle represent the addition or removal of a spin orbital

through the creation and annihilation operators. The creation operator is designated by the dagger
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symbol, (†) and creates a particle in a specific spin orbital at the beginning of the Slater determi-

nant. The removal of a particle from the determinant is done through the annihilation operator on

a specific spin orbital. The notations for creation and annihilation:

creation operator for spin orbital χi, i† (3.2)

annihilation operator for spin orbital χi, i (3.3)

These operators can be used on the Slater determinant, | jk . . .N〉, as follows:

i†| jk . . .N〉= |i jk . . .N〉 (3.4)

i|i jk . . .N〉= | jk . . .N〉 (3.5)

thereby creating a particle in i (Equation 3.4), then removing that particle from i (Equation 3.5). It

is relevant to point out that creating a particle in an already occupied spin orbital or annihilating a

particle that does not exist within the Slater determinant will result in a invalid determinant.

i†|i jk . . .N〉= 0 (3.6)

i| jk . . .N〉= 0 (3.7)

In general a lexical order of the spin orbitals is convenient,

|i jk . . .N〉, where i < j < k < · · ·< N (3.8)

but we must discuss the creation and annihilation of a particle that is out of lexical order, for

example creation/annihilation of p. The consequences of this is demonstrated below,

p†|i jk . . .N〉= |pi jk . . .N〉= (−1)σ(p)|i jk . . . p . . .N〉 (3.9)

p|i jk . . . p . . .N〉= (−1)σ(p)|pi jk . . .N〉= (−1)σ(p)|i jk . . .N〉 (3.10)
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where (−1)σ(p) is needed to maintain the antisymmetry principle in Slater determinants for which

an interchange of the spin orbital p with the other spin orbitals i jk . . . results in a negative sign

occurring σ(p) times. With all this points we can now define a vacuum Slater determinant, denoted

as |〉, which is a determinant with no spin orbitals. This can be constructed through successive

operations on a Slater determinant,

i jk . . .N|i jk . . .N〉= |〉 (3.11)

We can also create a Slater determinant from the vacuum Slater determinant through successive

creation operations. [2, 1]

i† j†k† . . .N†|〉= |i jk . . .N〉 (3.12)

3.2 Anticommutation relations

With the definition of creation and annihilation operators let us now look at anticommutation rela-

tions of these operators. Let us first consider the creation operators p† and q†. The order of which

these two operators can performed are as follows:

p†q†|i jk . . .〉= |pqi jk . . .〉 (3.13)

q† p†|i jk . . .〉= |qpi jk . . .〉=−|pqi jk . . .〉 (3.14)

This is valid for any Slater determinant for which χp or χq does not exist in |i jk . . .〉, as the product

would be zero. We then get the anticommutation relation for the two creation operators as,

p†q† =−q† p† (3.15)

[p†,q†]+ ≡ p†q† +q† p† = 0 (3.16)
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which can be generically written as:

[Â, B̂]+ ≡ ÂB̂+ B̂Â (3.17)

is the anticommutator of Â and B̂ and commonly written as {Â, B̂}. It is important to point out

the case of p = q this relation still holds true because p† p† = 0 (Equation 3.6). The creation

anticommutation relation is unique as [Â, B̂]+ = [B̂, Â]+ which for a normal commutator [Â, B̂]+ =

−[B̂, Â]+.

Now we can move onto the anticommutation relations for the annihilation operator. Let us now

consider the annihilation operators p and q:

pq|qpi jk . . .〉= p|pi jk . . .〉= |i jk . . .〉 (3.18)

qp|qpi jk . . .〉=−qp|qpi jk . . .〉=−p|pi jk . . .〉=−|i jk . . .〉 (3.19)

Note that if χp or χq are in the interior of the Slater determinant then a sign change will occur

as described in Equation 3.10, for both cases of above equations (Equation 3.18,Equation 3.19).

If χp and/or χq are not present within the Slater determinant the resulting determinant is zero.

(Equation 3.7) Therefore we arrive at the anticommutator relation for the annihilation operator,

pq =−qp (3.20)

[p,q]+ = 0 (3.21)

The last case to consider is a creation and annihilation operator pair, p†q when p 6= q:

p†q|qi jkl . . .〉= p†|i jkl . . .〉= |pi jkl . . .〉 (3.22)

qp†|qi jkl . . .〉= q|pqi jkl . . .〉=−q|qpi jkl . . .〉=−|pi jkl . . .〉 (3.23)

This operation removes the particle from spin orbital q to put it into spin orbital p but there is
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difference of a negative sign between the two expressions. Therefore we have the relation:

[p†,q]+ = 0 (p 6= q) (3.24)

Let us now look at the case when p = q in which p does or doesn’t exist within the initial Slater

determinant,

p† p|pi jkl . . .〉= p†|i jkl . . .〉= |pi jkl . . .〉 (3.25)

pp†|pi jkl . . .〉= 0 (3.26)

p† p|i jkl . . .〉= 0 (3.27)

pp†|i jkl . . .〉= p†|pi jkl . . .〉= |i jkl . . .〉 (3.28)

Which generalized shows that,

(
p† p+ pp†

)
| . . .〉= | . . .〉 (3.29)

For which we obtain the relation:

[p†, p]+ = [p, p†]+ = 1 (3.30)

In the case of a creation and annihilation operator pair we then have the final anticommutation

relation,

[p†,q]+ = [p,q†]+ = δpq (3.31)

that contains the Kronecker-delta operator, δpq. The Kronecker-delta operator is a commonly used

operator that differentiates the expression for the instances when p 6= q or p = q resulting in zero

or 1, respectively.[2, 1, 4]
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In summary there are three anticommutation relations for creation and annihilation operators,

[p†,q†]+ = 0 (3.32)

[p,q]+ = 0 (3.33)

[p†,q]+ = [p,q†]+ = δpq (3.34)

3.3 Second quantized operators

The benefit with second quantization as presented so far allows is that we have presented a notation

for a many-electron wave function without the need of Slater determinants. We can now represent a

many-electron wave function simply through creation and annihilation operators, anticommutation

relations, and the vacuum state. Our focus now shifts to the second quantization representation

of many-particle operators, O1 and O2 for one-particle and two-particle operators, respectively.

This will allow for representation of theory of many-electron systems without the use of Slater

determinants by obtaining the second quantization equivalent of the matrix elements of 〈K|O|L〉.

The second quantization expression for O1, which will be the sum of one-electron operators

(Equation 2.5) and for O2 the total coulomb repulsion between electrons are:

O1 =
N

∑
i

ĥ(i) =⇒ ∑
i j
〈i|ĥ| j〉i† j (3.35)

O2 =
1
2

N2

∑
i6= j

K̂(i, j) =⇒ 1
2 ∑

i jkl
〈i j|kl〉i† j†lk (3.36)

The left expression in Equation 3.35 and Equation 3.36 are the wave function representation of the

operators, where the right hand side are the second quantization representation. The eloquence and

benefit of second quantization is easily expressed from these expressions in terms of the summation

of over the spin orbitals. For the wave function representation operators depend on the summation

of each particle, where for second quantization the number of particles is independent of number

of particles. This is one of the main benefits of second quantization as the expressions are not
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limited by number of particles, on the other hand with wave function representation expressions

depend on the number of particles. Therefore when dealing with large many-electron systems,

the expressions in second quantization are simple while becoming burdensome in wave function

representation.[1]

3.4 Particle-hole formulation

We are now able to fully describe theory of many-electron wave functions and operators in terms

of second quantization. The reference state that we have constructed up to this point is a vacuum

Slater determinant, Equation 3.11 and Equation 3.12. It will be more convenient if we had a fixed

reference state that contained occupied spin orbitals, where all other Slater determinants can be

constructed from this reference. The reference state that we will use is the Fermi vacuum defined

as,

|0〉 ≡ |Φ0〉= |i jk . . .N〉 (3.37)

The Fermi vacuum is typically the ground state determinant obtained from Hatree-Fock. Within the

particle-hole formulation the spin orbitals i, j,k, . . .N, in Equation 3.37 are the hole states(occupied

orbitals). Particle states (unoccupied orbitals) are defined as a,b,c, . . . , the indices p,q,r,s, . . . are

used to describe states that can be either hole or particle states.

The construction of the Fermi vacuum can easily be demonstrated through Figure 3.1. Starting

with the many-particle picture there is a ground state which contains particles filling spin orbitals

χi, according to the Pauli exclusion principle. The highest filled orbital is then designated the

Fermi level, as εF . There is an example of an excited state for the many-particle picture, where

the particle below the Fermi level, χ3 has been excited above the Fermi level, χ9. Applying the

Fermi vacuum as the reference, the ground state in the particle-hole picture appears empty. But

in the particle-hole formulation we are only interested in changes from the ground state reference.

Therefore the depiction of the excited state in the particle-hole picture contains a particle in χ9 and
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a hole (the empty circle) in χ3 as these are the only changes from the Fermi vacuum.
2

P
article states

Ground State Excited State Ground State Excited State

Many-Particle Picture Particle-Hole Picture

H
o

le states

Figure 3.1: Diagram of the particle-hole representation. The left side is the many-particle picture
for the ground state and excited state. While the right shows the particle-hole picture for the same
ground and excited state of the many-particle picture.

This now allows us to describe excited state determinants with respect to the Fermi vacuum,

(single excitation) |Φa
i 〉 ≡ a†i|0〉= |a jk . . .N〉 (3.38)

(double excitation) |Φab
i j 〉 ≡ a†b† ji|0〉= |abk . . .N〉 (3.39)

(electron removal) |Φi〉 ≡ i|0〉= | jk . . .N〉 (3.40)

(electron attachment) |Φa〉 ≡ a†|0〉= |ai jk . . .N〉 (3.41)

with particle-hole representation operators that are hole or particle creators and annihilators.

i†−hole annihilator (3.42)

i−hole creator (3.43)

a†−particle creator (3.44)
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a−particle annihilator (3.45)

It is important to note that a hole can not be annihilated if the hole doesn’t exist within the reference

state, that is,

i†|i jk . . .N〉= 0 (3.46)

also a particle can not be destroyed if it doesn’t exist,

a|i jk . . .N〉= 0 (3.47)

Therefore, when describing a single excitation in particle-hole formalism like in Equation 3.38,

first a hole is created in i by removing the particle from spin orbital i, then that particle is created in

spin orbital a. This has allowed for creation of single excited state determinant that only contains

a hole annihilator, particle creator and the Fermi vacuum reference state. Likewise in describing

a double excitation (Equation 3.39) the hole states are creating first by removing i then j, and

creating the particles in b then a.

The order which these operators occur is through normal ordering of the pseudo-creation op-

erators to the left of all pseudo-annihilation operators. The pseudo-creation operators are the

operators in the particle-hole formalism that create, i and a†. These are referenced as pseudo-

creation operators because they both create but both do not contain the † symbol, which referees

to creation in section 3.1. The opposite is true for the pseudo-annihilation operators, i† and a as

these operators annihilate. The process of moving all the pseudo-creation operators to left of the

pseudo-annihilation operators is done through the anticommutation relations described in Equa-

tion 3.32-Equation 3.34,

[p†,q†]+ = 0 (3.48)

[p,q]+ = 0 (3.49)
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[p†,q]+ = [p,q†]+ = δpq (3.50)

which were also written as,

p†q† =−q† p† (3.51)

pq =−qp (3.52)

p†q = δpq−qp† (3.53)

as these will relations keep track of the sign changes that occur during the reordering of the oper-

ators. Let us start with this simple example,

p†q =⇒ p†q (3.54)

in this case the operators are already in normal order, therefore no sign change is required. Now

consider the follow case,

qp† =⇒ −p†q (3.55)

following the anticommutation relation in Equation 3.53 a negative sign is obtained during the nor-

mal ordering. Normal ordering particle-hole operators is crucial when evaluating matrix elements

in second quantization.[1]
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Chapter 4

Electronic Excited State Methods

A key component of the present work is to develop excited state methods to obtain electron-

correlation energy to correct for the Hartree-Fock approximation to the exact Schrödinger wave-

function. Within this chapter I will be presenting the underlying theory of many common excited

state methods to serve as a introduction to the challenges addressed within the presented work after

I have derived the linear response matrices. The derivation of each of these formulations nor their

ranking in terms of accuracy are within the nature of this work, but their overall computational

performance for excited state calculations is our primary interest and will be summarized towards

the end.

4.1 Configuration Interaction Singles

Configuration interaction singles (CIS) is the most simplistic wave-function based ab initio method

for electronic excited states, both conceptually and computationally. We will first start with our

best single Slater determinant,

|Φ0〉= |χ1χ2 . . .χN〉 (4.1)
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where χi corresponds to a spin orbital with N number of electrons. |Φ0〉 is obtained by solving the

time-independent HF equation, Equation 2.5,

F̂ |Φ0〉= E0|Φ0〉 (4.2)

where,

F̂ =
Nelec.

∑
i

f̂i (4.3)

In configuration interaction singles, the electronic wave-function is a combination of the singly

excited determinants generated through all possible single particle creator and single hole creator

operators.

|ΨCIS〉= ∑
ia

ca
i a†i|Φ0〉 (4.4)

|ΨCIS〉= ∑
ia

ca
i |Φa

i 〉 (4.5)

The summation in Equation 4.4 is over all ia pairs which have a size of number of occupied

(Nocc.) times number of virtual orbitals (Nvir.), commonly refereed to as the configuration space.

This many-body wave function is then substituted into the exact time-independent electronic

Schrödinger equation,

Ĥ|Ψ〉=
[
T̂ +V̂elec−nucl +V̂elec−elec

]
|Ψ〉= E|Ψ〉 (4.6)

where the electronic Hamiltonian contains the kinetic energy operator, (T̂ )

T̂ =−
Nelec.

∑
i

1
2

∇
2
i (4.7)
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the electron-nuclei attraction, (V̂elec−nucl)

V̂elec−nucl =−
Nelec.

∑
i

Nnuc.

∑
K

ZK

|ri−RK|
(4.8)

where i is iterating through all electrons and K runs over all nuclei, that have a nuclear charge, ZK .

Finally the electron-electron interaction term, (V̂elec−elec)

V̂elec−elec =
Nelec.

∑
i

Nelec.

∑
j>i

1
|ri− r j|

(4.9)

Then by projecting onto Equation 4.6 or multiplication of 〈Φb
j | on the right hand side,

Nocc.,Nvir.

∑
i,a
〈Φb

j |Ĥ|Φa
i 〉ca

i = ECIS

Nocc.,Nvir.

∑
i,a

ca
i δi jδab (4.10)

where a single term within the left summation is

〈Φb
j |Ĥ|Φa

i 〉= (E0 + εa− εi)δi jδab + 〈i j| fH(r1,r2)|ab〉A (4.11)

where fH(r1,r2) = 1/|r1− r2| is the Hartree kernel. The full expression is then defined as,

Nocc.,Nvir.

∑
i,a

{
(E0 + εa− εi)δi jδab + 〈i j| fH(r1,r2)|ab〉A

}
ca

i = ECIS

Nocc.,Nvir.

∑
ia

ca
i δi jδab (4.12)

which can be simplified with the equation for the excitation energy ωCIS = ECIS−E0,

Nocc.,Nvir.

∑
i,a

{
(εa− εi)δi jδab + 〈i j| fH(r1,r2)|ab〉A

}
ca

i = ωCIS ∑
ia

ca
i δi jδab (4.13)

in the above expression ε is the orbital energy of the χa or χi orbitals, and 〈i j| fH(r1,r2)|ab〉A is

the antisymmetrized two-electron integrals defined as,

〈i j| fH(r1,r2)|ab〉A = 〈i j| fH(r1,r2)|ab〉−〈i j| fH(r1,r2)|ba〉 (4.14)
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〈i j| fH(r1,r2)|ab〉=
∫ ∫

dr1dr2χ∗i (r1)χ∗j (r2) fH(r1,r2)χa(r1)χb(r2) (4.15)

〈i j| fH(r1,r2)|ba〉=
∫ ∫

dr1dr2χ∗i (r1)χ∗j (r2) fH(r1,r2)χb(r1)χa(r2) (4.16)

The expression Equation 4.13 can be more conveniently written in matrix notation,

AX = ωX (4.17)

as an eigenvalue equation that uses A for the matrix representation of Equation 4.11. ω is the

diagonal matrix of the excitation energies, and X is the matrix of the CIS expansion coefficients.

The matrix elements of A are,

Aia, jb = (εa− εi)δi jδab + 〈i j| fH(r1,r2)|ab〉A (4.18)

The excitation energies can be obtained by,

(A−ω)X = 0 (4.19)

or diagonalization of A.[3]

4.2 Linear Response Matrices

4.2.1 Casida Equations

Within section 4.1 the derivation of A matrix was the primary focus. This matrix is of key impor-

tance for linear response theory for excited state calculations. The A matrix is only one component

of what is commonly refereed to as the Casida equations or linear response matrices,[5, 3]

A B

B∗ A∗


X

Y

= ω

1 0

0 −1


X

Y

 (4.20)
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From the perspective of Time-dependent Hatree-Fock (TD-HF) the matrix elements are defined as

follows,

Aia, jb = (εa− εi)δi jδab + 〈i j| fH(r1,r2)|ab〉A (4.21)

Bia, jb = 〈ib| fH(r1,r2)|a j〉A (4.22)

or more generically written and known as,

Aia, jb = (εa− εi)δi jδab +Kia, jb (4.23)

Bia, jb = Kia,b j (4.24)

with the electron-hole interaction kernel (Keh) or coupling matrix,

Kpq,rs = 〈pr|K̂eh|qs〉−〈pr|K̂eh|sq〉 (4.25)

Where we have seen the terms for the A matrix which describes the resonant coupling between the

excitations, but now have a non-resonant coupling matrix in the form of B between the excitations

and de-excitations. It is very common to set B = 0 in Equation 4.20, this is commonly refereed

to as the Tamm-Dancoff aproximation (TDA)[4, 6]. When the TDA is applied to Equation 4.20 it

reduces to the CIS formulation Equation 4.17. The last term in both the matrices is response of the

nonlocal HF exchange potential, which yields a Coulomb-like term.

4.2.2 Limitations

It is important to note some key computational cost features of these response matrices as these

are a primary focus of the present research. The first being the size of these matrices, they are

(Nocc.)
2× (Nvir)

2 in size, where Nocc. and Nvir. is the number of occupied molecular orbitals and

number of virtual orbitals, respectively. The size of these matrices are inherently linked to the

square of the occupation space of the system, because ia iterates through all single particle ex-
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citation’s in the system. The next computational cost arises in the construction of the coupling

matrix, where the atomic-orbital to molecular-orbital (AO-to-MO) integral transformation is re-

quired. Where the integral transformation is,

[
χp(r1)χq(r1)|K̂eh|χr(r2)χs(r2)

]
=

NAO

∑
µ=1

NAO

∑
ν=1

NAO

∑
λ=1

NAO

∑
σ=1

Cµ pCνqCλ rCσs
[
φµ(r1)φν(r1)|K̂eh|φλ (r2)φσ (r2)

]
(4.26)

For which the linear combination of atomic orbitals (LCAO) is a summation over the number of

atomic orbitals (NAO). This transformation has the scaling of O(N5
b ), where Nb is the number

of basis functions for the system. [2] To put these limitations into perspective, Table 4.1 shows

some numerical data to better describe the computational effort for the response matrices. The

Table 4.1: Size of excited state calculation based on basis function and active electrons

Molecule Number of
Active Electrons

Basis
Functions

Singly Exited
Configurations

Two-Electron
Transformation

H2O 10 19 (6-31G*) 140 2,476,099
CdSe 18 26 (LANL2DZ) 153 11,881,376
Cd12Se12 216 312 (LANL2DZ) 22,032 2,956,466,552,832
Cd250Se250 4,500 6,750 (LANL2DZ) 10,125,000 14,012,604,492,187,500,000

data provided in Table 4.1 shows the unfavorable scaling of the singly excited configurations and

two-electron integral transformation for a system of experimental interest, Cd250Se250 which is

approximately a 2 nm quantum dot. A key limitation to also take note of is the computational effort

in regards to storage of this information which can greatly exceed general use devices rapidly.

In the following sections I will go over how various other excited state methods reduce the

computational effort examined here in the Hartree-Fock linear response matrices. Each method

can arrive at the Casida equations but I will only be presenting the form of the A and B matrices.

4.3 Time-Dependent Density Funtional Theory

Time-dependent density functional theory (TD-DFT) is a very common excited state method due

to the widespread use of DFT for ground state calculations. Since the ground state reference is
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constructed through DFT, there requires a treatment of the exchange-correlation (xc) functional

which has replaced the HF exchange potential. In LR-TD-DFT the A and B matrices are defined

as,

Aia, jb = (εa− εi)δi jδab + 〈i j| fH(r1,r2)|ab〉+ 〈i j| fxc|ab〉 (4.27)

Bia, jb = 〈ib| fH(r1,r2)|a j〉+ 〈ib| fxc|a j〉 (4.28)

where the last term is the response of the chosen xc potential. The response to the xc potential is

the second functional derivative of the exchange-correlation energy, known as the xc kernel,

〈i j| fxc|ab〉=
∫

d3r1d3r2χ∗i (r1)χ∗j (r2)
∂ 2Eex

∂ρ(r1)∂ρ(r2)
χa(r1)χb(r2) (4.29)

The limitations of LR-TD-DFT are still consistent with those described in subsection 4.2.2

regarding the size of the A and B matrices, along with the AO-to-MO transformation. But in

addition there is now the computational effort in calculation and storage of the xc kernel. Also,

since the exact xc potential is not know, but approximated in use the choice of density functional

is an inherited limitation of using DFT based excited state methods.[3]

4.4 GW Bethe-Salpeter equation

The GW formulation is a correction to the ground state Kohn-Sham(KS) DFT orbitals utilizing the

energy-dependent Σ(E) self-energy as follows,[7, 8, 9]

εGW
n = εKS

n + 〈φ KS
n |Σ(εGW

n )−V xc|φ KS
n 〉 (4.30)

where V xc is the DFT exchange-correlation potential. Where the self energy is defined as follows,

Σ(r,r′;E) =
i

2π

∫
dωeiω0+G(r,r′;E +ω)W (r,r′;ω) (4.31)

G(r,r′;E) = ∑
n

φn(r)φ∗n (r′)
E− εn +0+× sgn(εn−E f )

(4.32)
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W (r,r′;ω) = ν(r,r′)+
∫

dr1dr2ν(r,r1)P0(r1,r2;ω)W (r2,r′;ω) (4.33)

P0(r,r′;ω) = ∑
i, j
( fi− f j)

φ∗i (r)φ j(r)φ∗j (r′)φi(r′)
εi− ε j−ω− i0+

(4.34)

containing a screened Coulomb potential W , where ν(r,r′) is the bare Coulomb potential, G is

the time-ordered one-body Green’s function, P0 the independent-electron susceptibility, 0+ is an

infinitesimally small positive number, and { f} are occupation numbers.[10] The above equations

obtain corrected ground state orbitals, through construction of the self-energy. But the best Σ will

be the one in which the left and right εGW
n in Equation 4.30 are equal, therefore self-consistent.

The computational effort needed to construct the ground state reference in GW is important in

terms of understanding overall computational cost in calculation of excited state excitations as the

self energy is a 6-dimensional integral. With the construction of the ground state reference it is at

this point that the Bethe-Salpeter equations (BSE) are used to obtain the linear response matrices,

Aia, jb =
(

εGW
a − εGW

i

)
δi jδab + 〈i j| fH(r1,r2)|ab〉+ 〈i j|W |ab〉 (4.35)

Bia, jb = 〈ib| fH(r1,r2)|a j〉+ 〈ib|W |a j〉 (4.36)

which look familiar to the LR-TD-DFT formulation except for the last term, which instead of the

response the xc functional, there is now a response to the screened Coulomb potential, W . With

GW-BSE the ground state reference is corrected but the excited state calculations have not gained

much in terms of computational cost reduction. The size of A and B are still linked to number of

singly excited states and the cost of the AO-to-MO integral transformation has not been addressed.

4.5 Coupled-Cluster methods

Couple cluster methods deal with the coupled-cluster (CC) wave-function,[1, 11]

Ψ = eT̂ |0〉 (4.37)
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where |0〉 is the reference wave-function and

T̂ = T̂1 + T̂2 + T̂3 + . . . (4.38)

Which are m-body cluster operators given as,

T̂m =
1

(m!)2 ∑
i j...
ab...

tab...
i j...

{
a†ib† j . . .

}
(4.39)

where m is the pairs of creation and annihilation operators, producing m-fold excitations. The

benefit of this exponential ansatz is that if expanded in a Taylor series,

eT̂ = 1+
1
2

T̂ 2 +
1
3!

T̂ 3 + . . . (4.40)

and then by expanding T̂ ,

Ψ = |0〉+ T̂1|0〉+ T̂2|0〉+ . . . (4.41)

+
1
2!

T̂ 2
1 |0〉+ T̂1T̂2|0〉+

1
2!

T̂ 2
2 |0〉+ . . . (4.42)

+
1
3!

T̂ 3
1 |0〉+

1
2!

T̂ 2
1 T̂2|0〉+

1
2!

T̂1T̂ 2
2 |0〉+

1
3!

T̂ 3
2 |0〉+ . . . (4.43)

+ . . . (4.44)

for which one can obtain a wave-function that has m-tuple excitations from a single ground state

reference Slater determinant. This is the general description of a CC wave-function, in practice

the excitation operator is limited to singles and/or doubles as the expansion in T̂ can be costly, but

provides a quality description of the ground state reference. With the ground state reference in CC

described I present the response matrices,

Aai,b j =
(

εCC
a − εCC

i

)
δi jδab + 〈i j| fH(r1,r2)|ab〉A (4.45)

Bai,b j = 〈ib| fH(r1,r2)|a j〉A (4.46)
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for which look similar to that obtained in TDHF but the wave-functions are CC wave-functions,

therefore contain more information on the m-tuple excitations in T̂ .

4.6 Multi-Reference

Multi-reference (MR) approaches deal with construction of a wave-function from a collection of

Slater determinants mainly from the Full CI wave-function,

|Ψ〉= c0|Φ0〉+∑
ia

ca
i |Φa

i 〉+
(

1
2!

)2

∑
i jab

cab
i j |Φab

i j 〉+
(

1
3!

)2

∑
i jkabc

cabc
i jk |Φabc

i jk 〉+ . . . (4.47)

which fully permutes the lowest Slater determinant to n-tuply excited determinants. The number

of n-tuply excited determinants is determined by the number of spin orbitals (2K), number of

occupied orbitals, Nocc. with Nvir. = 2K −Nocc., number of virtual orbitals. Since we can also

choose from Nvir. the number of n-tuply excited determinants is,

Nocc.

Nvir.


2K−Nocc.

Nvir.

 (4.48)

which for many-electron systems with a large number of one-electron basis sets result in poor

computational scaling, [2] recall the scaling of the just the singly excited determinants in Table 4.1.

The MR approach that I wish to discuss briefly is the complete active space (CAS) approach,

which constructs a CI like wave-function through restriction of the number of excitations in the

expansion. Within CAS the molecular orbital space is separated into subspaces containing: inac-

tive, active and secondary (virtual) orbitals. Where the inactive space are doubly occupied orbitals,

typically core orbitals and the virtual orbitals are unoccupied in all possible configurations. Finally

the active orbitals have variable occupancy of 0, 1 or 2. The CI space then contains all possible

determinants that can be constructed from the active orbitals. Therefore when utilizing CAS there

is an inherited choice in the active space for construction of the wave-function.
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4.7 Summary

The limitations and computational cost of these methods reduce to several components: a) form of

the reference wave function, b) size of configuration space, c) number of excitation permutations,

d) limit of the virtual space, e) two-electron integral transformation, see Table 4.2

Table 4.2: Non-linear scaling of various excited state methods.

Method Exponential Scaling of
basis functions

CIS O(N4) [3]
TD-DFT O(N4) [3]
EOM-CCS(D) O(N4) (O(N6)) [12]
GW-BSE O(N4) [7]
CASPT2 O(N4) [13]
LPNO O(N5) [14]

The reference wave function can be as simple as the HF/DFT wave function or in the case of

MR or CC methods a set of configurations. All configurations in a many-electron system consist

of all possible permutations of electron-hole n-tuple excitations. But often these reference config-

urations are reduced to a set of single, double or triple electron-hole excitation’s near the Fermi

level.[11, 15] Which in practice leads to complications with user-experience in choosing appropri-

ate active spaces.[16, 17] This reference configuration is then subject to n-tuple excitations up to

the limit of the virtual space, which is restricted by the size of the basis set. When for the exact

solution the virtual space is infinite.[2] Each of the configurations are formed through an atomic

orbital to molecular orbital transformation, (AO-to-MO), which is limited by the two-electron in-

tegral transformation. The two-electron transformation is in general the slowest computational

step with a O(N5) scaling, with N related to the number of basis functions.[2, 3, 18, 5, 19] In some

methods there is a basis transformation from molecular orbitals basis to a different basis that can re-

duce computational scaling, like pair natural orbitals (PNOs).[20] While some methods utilize the

resolution-of-the-identity (RI) approximation to reduce the scale of the transformation.[21, 3, 5]
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Chapter 5

Compact real-space representation of excited states

using frequency-dependent explicitly-correlated

electron-hole interaction kernel

5.1 Introduction

Accurate treatment of electron-hole interaction and inclusion of electron-correlation effect is cen-

tral for describing electronic excitation states. Development of efficient theoretical methods for

excited states continues to be an active field of research. The construction of the electron-hole in-

teraction kernel Keh(ω) is the main source of difference for various approaches including: config-

uration interaction (CI),[3, 22] coupled-cluster (CC),[12, 23] GW-Bethe-Salpeter equation (GW-

BSE), [24, 25, 26, 27] time-dependent density functional theory (TDDFT), [28, 29, 30, 31] mul-

tireference (MRCI), [15] pair natural orbitals (PNO), [32, 33] and explicity-correlated Hartree-

Fock methods.[34, 35, 36, 37]

The steep computational cost originates from various components including: a) treatment of

electron-electron correlation, b) number of particle-hole excitations, c) form of the Keh(ω) , and

d) two-electron AO-to-MO integral transformation. The number of particle-hole states effects

the size of the A and B response matrices, that arise in various theories including, TDDFT, GW-

BSE, EOM-CCSD, and CIS methods.[5, 3] Various strategies exist to obtain a compact repre-
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sentation of the basis. Information from the polarization propagator,[38] 1-particle reduced den-

sity matrix, [32, 33] and Cholesky decomposition (CD)[39] have been used for calculation of

excited states. A different strategy using stochastic basis functions has been demonstrated in

GW-BSE,[40, 41] many-body perturbation theory (MBPT),[42] and TDDFT formulations.[43,

44] Another alternative approach is to move away from occupation-number representation and

use real-space representation.[45, 37] Methods such as reduced-density matrix,[46] electron-hole

explicitly-correlated Hartree-Fock,[34, 35, 36] geminal screened electron-hole interaction kernel,[45,

37] electron-correlator method, [47] and geminal-augmented MCSCF[48] have successfully demon-

strated the efficacy of real-space representation.

The goal of this work is to present an efficient and practical method to account for electron-

hole correlation in large semiconductor NPs without using a large number of particle-hole states.

Using Löwdin’s partitioning technique,[49] we have derived a real-space, frequency-dependent,

explicitly-correlated, electron-hole interaction kernel (FD-GSIK method) that is capable of de-

scribing the dynamical screening of electrons and holes in a many-electron system. The method

was implemented by performing real-space Monte Carlo (MC) integration for computation of all

matrix elements. We demonstrate that the FD-GSIK method provides a compact representation of

Keh(ω) while avoiding the steep N5 computational cost of performing AO-to-MO integral trans-

formation, and circumventing storing and evaluating frequency-dependent AO integrals. The FD-

GSIK addresses the need for a first-principle excited-state method that does not exhibit the steep

scaling of the computational cost with increasing system size.

5.2 Theory

5.2.1 Construction of frequency-dependent electron-hole-interaction kernel

The effective many-body electron-hole Hamiltonian has the general form [50, 51, 52, 35, 53, 54]

Heh = H0
e +H0

h +Vee +Vhh +Veh (5.1)
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where

H0
e = ∑

e1e2

〈e1| f e|e2〉e†
1e2 (5.2)

H0
h = ∑

h1h2

〈h1| f h|h2〉h†
1h2 (5.3)

Vee = ∑
e1e2e3e4

〈e1e2|wee|e4e3〉e†
1e†

2e3e4 (5.4)

Vhh = ∑
h1h2h3h4

〈h1h2|whh|h4h3〉h†
1h†

2h3h4 (5.5)

Veh = ∑
h1h2e1e2

〈e1h1|veh|e2h2〉e†
1h†

1h2e2 (5.6)

where e† and h† are particle and hole creation operators, and fe and fh are the Fock operators.

The electron-hole Hamiltonian can be factored into a sum of non-interaction terms and interaction

terms. For a 1-particle 1-hole state, further simplification can be achieved and the total Hamiltonian

can be expressed as

Heh = H0
eh +Veh (5.7)

The non-interacting Hamiltonian H0
eh is obtained from the Fock operator whose eigenfunctions are

(uncorrelated) particle-hole excited states

H0
eh = ω0

P|P〉= (εa− εi)|χh
i χe

a〉 (5.8)
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We are interested in calculating the many-body correction to ω0
P due to electron-hole correlation in

the system. We start by defining the zeroth-order approximation of the electron-hole wavefunction

as,

|ΨX〉(0) = |P〉 (5.9)

and the correlated electron-hole wavefunction ΨX is defined as

|ΨX〉=CP|P〉+C⊥|P⊥〉 (5.10)

where CP and C⊥ are expansion coefficients and P⊥ is the correlated wavefunction that exists in the

orthogonal subspace of P. This is a very general form of the wavefunction and both MBPT and CI

wavefunctions can be expressed in this form, where choice and construction of P⊥ differentiates

between treatment of electron-hole correlation within different methods. Here, we will define an

electron-hole correlator operator Λ and express the P⊥ as,

|ΨX〉=CP|P〉+CQΛ(ω,reh)|Q〉 (5.11)

where CP and CQ are expansion coefficients, |P〉 and |Q〉 are two eigenvectors of H0
eh operators

with eigenvalues ω0
P and ω0

Q, respectively and 〈P|Q〉 = 0. These two eigenvectors represent two

different particle-hole excitation of the form |P〉 = |χh
i χe

a〉 and |Q〉 = |χh
j χe

b〉 which are obtained

from applying the following particle-hole excitation operators {a†i} and {b† j}, as shown in Fig-

ure 5.1. The central quantity of interest is the Λ(ω,reh) operator, a frequency-dependent, r12-

explicitly correlated operator which operates simultaneously on both particle and hole states and is

responsible for capturing electron-hole correlation. Construction of Λ and determination of |Q〉 are

presented in subsection 5.2.4 and subsection 5.2.2, respectively. In this section, we will focus on

the construction of the Keh(ω) and its derivation is independent of the specific form of Λ. The two

conditions that Λ must satisfy are: (1) frequency-dependent, and (2) explicitly-correlated. Both

the expansion coefficients (CP,CQ) and Λ(ω,reh) are obtained from the solution of the resulting
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Figure 5.1: Interacting and non-interacting Hamiltonian

electron-hole pseudo eigenvalue equation,

Heh|ΨX(ω)〉= ω|ΨX(ω)〉 (5.12)

where,

|ΨX〉=CP|P〉+CQΛ(ω)|Q〉 (5.13)

and |P〉 and |Q〉 are eigenkets of the non-interacting electron-hole Hamiltonian H0
eh.

H0
eh|P〉= ω0

P|P〉 (5.14)

H0
eh|Q〉= ω0

Q|Q〉 (5.15)

Because Λ(ω,reh) is frequency-dependent and depends on the eigenvalue ω , the solution is ob-

tained iteratively. We have used the Löwdin’s partitioning scheme[49] to obtain the analytical ex-

pression of Keh(ω) in terms of the relevant matrix elements associated with Veh and Λ(ω,reh). The

step-by-step derivation of the frequency-dependent electron-hole interaction kernel using Löwdin’s
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partitioning technique is presented below. We start with projection on the subspace of 〈P| and 〈Q|,

and using orthonormalization of 〈P|Q〉= δPQ we get,

〈P|Heh|P〉 〈P|HehΛ(ω)|Q〉

〈Q|Heh|P〉 〈Q|HehΛ(ω)|Q〉


CP

CQ

= ω

1 〈P|Λ(ω)|Q〉

0 〈Q|Λ(ω)|Q〉


CP

CQ

 (5.16)

Performing Löwdin’s partitioning,

HPPCP + H̃PQCQ = ωCP +ω S̃PQCQ (5.17)

HQPCP + H̃QQCQ = ω S̃QQCQ (5.18)

where the tilde terms are defined as:

S̃PQ = 〈P|Λ(ω)|Q〉 (5.19)

S̃QQ = 〈Q|Λ(ω)|Q〉 (5.20)

H̃PQ = 〈P|HehΛ(ω)|Q〉= ω0
PS̃PQ−〈P|r−1

12 Λ(ω)|Q〉 (5.21)

H̃QQ = 〈Q|HehΛ(ω)|Q〉= ω0
QS̃QQ−〈Q|r−1

12 Λ(ω)|Q〉 (5.22)

Rearranging Equation 5.17 and Equation 5.18,

HPPCP +
[
H̃PQ−ω S̃PQ

]
CQ = ωCP (5.23)[

H̃QQ−ω S̃QQ
]
CQ =−HQPCP (5.24)
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Therefore,

CQ =− HQP

H̃QQ−ω S̃QQ
CP (5.25)

We obtain the equation for the electron-hole interaction kernel,

[HPP +KPP(ω)]CP = ωCP (5.26)

where KPP(ω) is the electron-hole interaction kernel and is defined as

KPP(ω) =−
[
H̃PQ−ω S̃PQ

]
HQP

H̃QQ−ω S̃QQ
(5.27)

Substituting the definitions of the tilde operators defined in Equation 5.19 - Equation 5.22, the

closed-form analytical expression for [Keh(ω)]PP is given by

KPP(ω) =−
[
〈P|r−1

12 Λ(ω)|Q〉A− (ω0
P−ω)〈P|Λ(ω)|Q〉

]
〈Q|r−1

12 |P〉A
〈Q|r−1

12 Λ(ω)|Q〉A +(ω0
Q−ω)〈Q|Λ(ω)|Q〉

(5.28)

where 〈. . .〉A represents anti-symmetrized matrix elements. The expression for [Keh(ω)]PP can be

further simplified by performing Gram - Schmidt orthogonalization to make 〈P|Λ|Q〉 = 0. This

can be achieved by replacing

Λ|Q〉 → Λ|Q〉−〈P|Λ|Q〉|P〉 (5.29)

in the expression for KPP in Equation 6.27. The orthogonalization procedure imposes intermediate

normalization condition for the electron-hole wave

〈P|ΨX〉= 1 (5.30)

The [Keh(ω)]PP terms has two sources of frequency-dependency. The first are the (ω0
P−ω) and

(ω0
Q−ω) terms from the operator inversion step in the Löwdin’s partitioning. The second is the
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frequency-dependency from Λ(ω,reh) and this feature is the main content of this article. Indeed,

setting Λ = 1 results in a simple 2×2 configuration-interaction singles (CIS) expression.

5.2.2 Determination of the |Q〉 state

The zeroth-order electron-hole wavefunction is given by |ΨX〉(0) = |P〉 and the choice of the |Q〉

plays an important role in accurate description of electron-hole correlation and calculation of

electron-hole binding energies. In this work, we determine |Q〉 by minimizing the trace T [Q]

of the 2×2 uncorrelated Hamiltonian.

HPQ =

〈P|Heh|P〉 〈P|Heh|Q〉

〈Q|Heh|P〉 〈Q|Heh|Q〉

 (5.31)

where, the trace is given by

T [Q] = ω0
P +ω0

Q + 〈P|veh|P〉+ 〈Q|veh|Q〉 (5.32)

and the search for Q is only restricted to states ω0
P ≤ ω0

Q. Since, Q is a uncorrelated particle-hole

state, the last two terms in the previous expression, can be written in terms of particle and hole

densities,

T [ρh
Q,ρ

e
Q] = ω0

P +ω0
Q−〈ρh

Pρe
Pr−1

eh 〉−〈ρh
Qρe

Qr−1
eh 〉 (5.33)

The search for the optimal Q scales Nocc×Nvir and requires searching over all 1p-1h states |χ jχb〉.

To reduce the computational cost, we define an approximate trace operator given by T̃

T̃ [ρ̃h
Q, ρ̃

e
Q] = ω0

P +ω0
Q−〈ρh

Pρe
Pr−1

eh 〉−〈ρ̃h
Qρ̃e

Qr−1
eh 〉 (5.34)
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which uses approximate densities ρ̃h
Qρ̃e

Q. The densities ρ̃h
Qρ̃e

Q are the Gaussian approximation to

the true densities ρh
Qρe

Q

ρ̃e,h
Q =

1

σ e,h
Q

√
2π

e
− 1

2

(
r−µe,h

Q

σe,h
Q

)
(5.35)

and are obtained by minimizing the Kullback–Leibler divergence[55] between the true densities

ρh
Qρe

Q and the Gaussian probability distribution functions.

DKullback−Leibler =
∫

V
drρe,h

Q ln

[
ρe,h

Q

ρ̃e,h
Q

]
(5.36)

The computational effort for determination of approximate densities ρ̃h
Qρ̃e

Q scales linearly with

(Nocc+Nvir) and the calculation of 〈ρ̃h
Qρ̃e

Qr−1
eh 〉 is performed analytically. Both of these steps allow

us search for the optimal |Q〉 state at a reduced computational cost.

5.2.3 Reducing the number of particle-hole states

The Λ(ω,reh) operator introduces the electron-hole correlation and add correction beyond the

zeroth-order approximation to the electron-hole wavefunction. Motivated by both CIS and MBPT

theory for excited states, we represent Λ in project space of 1p-1h states as

Λ =
Nocc

∑
i j

∞

∑
ab

Λi jab{a†i}|0〉〈0|{ j†b} (5.37)

The action of Λ(ω,reh) in the electron-hole wavefunction can be interpreted as a compact represen-

tation of an infinite-order particle-hole excitation operator in the occupation-number representation

[37]

Λ(ω,reh)|Q〉=
∞

∑
K=0

cΛ
K(ω)|K〉 (5.38)
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where the expansion coefficient cΛ
K(ω) is a functional of Λ and are calculated from the ma-

trix element 〈K|Λ|Q〉. In the present work, we will use the explicitly-correlated Slater-geminal

function for constructing the Λ operator in real-space representation. Both Slater-geminal and

Guassian-geminal functions have been used extensively for many-electron,[56, 48, 47] electron-

proton[57, 58], and electron-hole systems[34, 35, 36, 45, 37] and provide a compact representation

for construction of correlated many-particle wavefunction. The correlation operator, Λ(ω,reh) has

the general form of,

Λ(ω,reh) =
(ω0

P−ω)

γ
e−rehγ (5.39)

where γ = 〈P|r−1
eh |P〉. The most important feature of the above expression for Λ is the complete

absence of any adjustable parameters. All quantities needed to define the operator are calculated

during the course of the calculations. The explicit correlation comes from the Slater-geminal

function e−γr/γ . We have made γ proportional to the Coulomb interaction of the electron-hole

pair in |P〉 by setting γ = 〈P|r−1
eh |P〉. The Slater-geminal is scaled by the

(
ω0

P−ω
)

and is the

frequency dependence of Λ. Although ω0
P is known before start of the calculation, ω is the final

result and therefore, determination of ω requires a self-consistent solution of the equation derived

in Equation 5.12.

5.2.4 Eliminating the AO-to-MO integral transformation

One of the principle computational bottleneck in performing first-principle excited state calculation

is the evaluation of matrix elements. Traditionally, for atom-centered basis functions, the integrals

are evaluated in AO representation and are later transformed in MO basis after the SCF step. This is

an expensive transformation that scales as N5. In this work, such a procedure is impractical because

of three reasons. First, the scaling of the AO-to-MO is computationally impractical for large NPs

that have > 200 heavy atoms with > 1000 basis functions. Second, as shown in Equation 6.28,

the matrix elements depends on Slater-geminal function which are more complicated than the

conventional 2-electron integrals and further adds to the already high computational cost. Third,
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the matrix elements depend on the final solution ω and consequently needs to be evaluated multiple

times during the course of the calculations. In this work, we have addressed all these challenges

by calculating the necessary integrals directly in the MO basis using MC numerical integration

procedure. Specifically,

〈ψr(r)ψs(r)|Λ(r12,ω)|ψu(r)ψv(r)〉=
∫

dr1dr2 ψr(r1)ψs(r2)Λ(r12,ω)ψu(r1)ψv(r2) (5.40)

=
(
ω0

P−ω
)∫

dr1dr2 F(r) (5.41)

=

(
ω0

P−ω
)

Nsample
∑

ri∈ρpdf

[
F(ri)

ρpdf(ri)

]
(5.42)

where the MOs at any point in r in 3D space is obtained by ψr(r) = ∑
NAO
µ=1Cµrφµ(r). The MC

step can be performed either using importance or stratified sampling and the details of the MC

procedure used in this work has been described earlier, Bayne et. al.[59] . Additionally, the

knowledge of analytic solution of the AO integrals using the explicitly correlated function is not

needed and the method is not restricted by the choice of explicitly correlated function used in Λ .

5.2.5 Summary of steps in the overall calculation

Step 1 - Performing Hartree-Fock calculation: The first step involved the calculation of single-

particle states and orbital energies which provided the zeroth-order description of the electronic

excitation. We demonstrate the overall procedure using the Hartree-Fock (HF) method, however,

both Kohn-Sham and pseudo-potential methods can be used as well.

Step 2 - Selection of the zeroth-order state: The next step involved selection of the P and Q

states. Here, we are interested in investigating the effect of electron-hole correlation on the lowest

excitation energy and therefore the HOMO-LUMO excitation in the non-interaction system was

selected. Specifically, |P〉 was set to P = χh
HOMOχe

LUMO. The orthogonal space |Q〉 was selected

using the procedue described in subsection 5.2.2. The zeroth-order excitation energy ω0
P is given

by the HOMO-LUMO gap. It is important to note that this is a conventional HF procedure using
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conventional AO integrals. No explicitly-correlated integrals were evaluated in this step.

Step 3 - Evaluation of spatial molecular orbitals at point r: The MC integration required eval-

uation of the spatial MOs ψ(r) at any point in 3D space and was achieved by pre-computing the

values of the MOs on a spatial grid before the start of the MC step. This made the implementation

potable and demonstrated universal applicability, as it did not require source-code modification of

electronic structure packages.

Step 4 - Performing the 1st Monte Carlo integration for construction of Λ: After the MOs

were obtained on a 3D grid, MC integration was performed to calculate 〈P|r−1
eh |P〉. This quantity

is needed for construction of the explicitly-correlated function in Λ as shown in Equation 6.28.

In this work, we advocate the stratified-sampling approach and used the combined control-variate

stratified sampling method (CCVSS) for evaluating two-electron integrals. [59]

Step 5 - Performing the 2nd Monte Carlo integration for construction H[Λ(ω)] and S[Λ(ω)]:

After Λ(ω) was constructed from ω0
P and 〈P|r−1

eh |P〉, the matrix elements in Equation 6.27 were

calculated numerically using the MC integration method described above. Since both P and Q

states are eigenvectors of H0
eh, matrix elements involving the reference Hamiltonian were ob-

tained analytically. The remaining matrix elements are of the general form 〈∗|r−1
eh |∗〉, 〈∗|Λ|∗〉,

〈∗|r−1
eh Λ|∗〉, and were evaluated simultaneously in a single MC integration step.

Step 6 - Calculation of the excitation energy from the iterative solution of the projected equa-

tion: In the final step, matrix elements calculated previously were used to construct the Keh(ω)

using Equation 6.27. The excitation energy ω was obtained iteratively by evaluation of the left-

hand-side of Equation 5.26 by setting ω = ω0
P as the starting guess.
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5.3 Results

5.3.1 Chemical system and system setup

The FD-GSIK method was used to calculate excitation energy on a series of common NPs: PbS,

PbSe, CdS, and CdSe up to 2.5 nm in diameter. The chemical formulas for the NPs investigated

range from Pb4S4-Pb140S140, Pb4Se4-Pb140Se140, Cd3S3-Cd87S87, Cd3Se3-Cd144Se144, totaling

in 48 unique structures. Details of the NPs including (1) chemical formula, (2) ω0
p energies,

(3) electron-hole binding energies, (4) ωFD−GSIK excitations, (5) standard deviation of ωFD−GSIK,

and (6) computational cost are presented in Appendix A. Geometries for the NPs were generated

by cutting dots of the desired size from bulk solid structure: for PbS and PbSe using the rock-salt

crystal structure, while for CdS and CdSe the wurtzite crystal structure. The ground state single-

particle states were obtained using the Q-CHEM package[60] using LANL2DZ basis and ECP.

The 3D spatial grid for the MOs was generated with 100 points per dimension to generate a 106

point grid to obtain a dense grid for the integral evaluation. The grid boundary was determined

by imposing a cutoff of |ψ(r)| ≤ 10−12 at the grid edges. The quality of the 3D spatial grid was

verified by evaluating the normalization integral 〈ψ|ψ〉 before start of the MC calculations.

5.3.2 Scaling of FD-GSIK cost

The computational effort of the FD-GSIK method was compared to CIS calculation (Figure 5.2),

for a series of PbS quantum dots (Pb4S4−Pb80S80). Unsurprisingly, we found evidence of O(N5)-

scaling of computational cost for the CIS calculations. In contrast, the FD-GSIK method exhibited

linear-scaling of the computational cost with increasing system size. Comparison of the excita-

tion energies between FD-GSIK and CIS (Table 5.1) shows that the FD-GSIK energies are always

lower than the CIS values. This trend is consistent with both MBPT and coupled-cluster formula-

tions where we expect inclusion of electron-hole correlation to decrease the excitation energies.
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Figure 5.2: The single-core timing comparison of CIS and FD-GSIK calculations for the PbS
series (Pb4S4−Pb80S80) using LANL2DZ basis.

Table 5.1: Comparison of the first excitation energy (eV) obtained from CIS and the FD-GSIK
method for PbS nanoparticles.

Chemical Formula ωCIS ωFD−GSIK
Pb4S4 3.7386 3.2915

Pb16S16 3.1944 2.4134
Pb28S28 3.1370 2.8188
Pb44S44 3.3432 3.0030
Pb68S68 2.4257 1.6547
Pb80S80 3.1582 3.1496

Table 5.2: Comparison of electron-hole binding energies (eV) obtained from EOM-CCSD,
ADC(3), and FD-GSIK method for PbS nanoparticles.

EOM-CCSD ADC(3) FD-GSIK
Chemical Electron-hole binding Time Electron-hole binding Time Electron-hole binding Time
Formula eV hour eV hour eV hour

Pb4S4 5.5922 0.0137 4.4832 0.008 5.0621 0.129
Pb16S16 4.5701 127.311 3.2128 1.372 3.9938 0.144
Pb28S28 − − 3.3213 13.333 3.6390 0.132

5.3.3 Comparison of FD-GSIK with correlated methods

To further inspect the impact of electron-hole correlation operator in the FD-GSIK method, we

performed calculations on a small subset of the PbS nanoparticles using EOM-CCSD and ADC(3)
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methods [61, 62] and the comparison of the electron-hole binding energies are presented in Ta-

ble 5.2. These results showed two key insights; first, that FD-GSIK is successfully able to capture

electron-hole correlation within the same magnitude as other correlated methods. Specifically,

as compared to EOM-CCSD, the FD-GSIK method was found to capture 91% and 87% of the

electron-hole binding energies. Second, the total time needed to perform the FD-GSIK calcula-

tions for these systems scales sub-linearly with respect to increasing system size. The FD-GSIK

results were also compared with GW-BSE calculations[63] for CdSe clusters (Table 5.3) and were

found to be in good agreement with the GW-BSE results. The results from Table 5.2 and Table 5.3

demonstrate that that the FD-GSIK is able to capture electron-hole correlation that is comparable

to high-level many-body methods at a significantly low computational cost that has a favorable

scaling with respect to system size.

Table 5.3: Comparison of excitation energy (eV) obtained from FD-GSIK method and GW-
BSE[63] for small CdSe nanoparticles.

Chemical Formula ωFD−GSIK ωGW−BSE[63]
Cd3Se3 3.75 3.99
Cd6Se6 3.31 3.33

5.3.4 Electron-hole binding energy

The FD-GSIK method was used to calculate electron-hole binding energies for PbS, PbSe, CdS,

and CdSe NPs of varying sizes and the results are presented in Figure 5.3 as a function of ω0
P

energies. The complete list of excitation energies and electron-hole binding energies for these

NPs is also available in Appendix A. We found that electron-hole binding energy exhibit a strong

correlation with the non-interaction excitation energy (ω0
P) and increased with increasing HOMO-

LUMO gap.

5.3.5 Error analysis of the FD-GSIK method

The relationship between unbiased estimation of numerical error in the integral from the standard

deviation of the integration kernel in MC method is well-known[59]. In the FD-GSIK method,
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Figure 5.3: Electron-hole binding energy obtained using FD-GSIK method for Pb4S4-Pb140S140,
Pb4Se4-Pb140Se140, Cd3S3-Cd87S87, and Cd3Se3-Cd144Se144 as a function of ω0

P .

Table 5.4: Maximum and minimum standard deviation (eV) of FD-GSIK excitation energy for
each nanoparticle series.

Standard Deviation PbS PbSe CdS CdSe
Maximum 0.018 0.042 0.064 0.059
Minimum 0.002 0.002 0.005 0.006

this relationship allows us to monitor and reduce the error in the calculated excitation energies.

In Table 5.4, the maximum and minimum standard deviation is provided for each semiconducting

NP series. The results from the standard deviation demonstrate the FD-GSIK method is able to

achieve meV level of accuracy for all the NPs investigated in this work. The detailed description

of errors for each NPs are presented in Appendix A.

5.3.6 Summary of results from the FD-GSIK calculations
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Table 5.5: FD-GSIK results for PbS nanoparticles.

Chemical Formula ω0
P Electron-hole Binding ωFD−GSIK Std. Dev. of ωFD−GSIK Time

eV eV eV eV Hours
Pb4S4 8.35357 5.06212 3.29145 0.01781 0.12903

Pb16S16 6.40714 3.99376 2.41338 0.00590 0.14436
Pb28S28 6.45783 3.63899 2.81884 0.00889 0.13147
Pb44S44 6.29512 3.29209 3.00304 0.00440 0.12013
Pb68S68 4.90833 3.25367 1.65466 0.01082 0.13333
Pb80S80 5.28516 2.13558 3.14958 0.00194 0.12999
Pb88S88 2.88694 1.48855 1.39839 0.00360 0.11765
Pb96S96 2.56988 1.43828 1.13160 0.00801 0.13228

Pb104S104 4.57152 2.20100 2.37052 0.00720 0.12742
Pb110S110 3.95853 2.16843 1.79010 0.01080 0.12437
Pb116S116 3.11239 2.43603 0.67636 0.01776 0.14637
Pb122S122 5.73418 2.58570 3.14848 0.00688 0.15156
Pb128S128 2.89678 1.21088 1.68590 0.00434 0.11909
Pb140S140 5.66474 2.36135 3.30339 0.00396 0.12660

Table 5.6: FD-GSIK results for PbSe nanoparticles.

Chemical Formula ω0
P Electron-hole Binding ωFD−GSIK Std. Dev. of ωFD−GSIK Time

eV eV eV eV Hours
Pb2Se2 6.85533 6.58847 0.26686 0.04166 0.13833
Pb4Se4 4.80834 3.2009 1.60744 0.00526 0.14786
Pb7Se7 5.46048 4.31369 1.14679 0.03670 0.12674
Pb8Se8 2.1203 1.92466 0.19564 0.00368 0.11353

Pb11Se11 5.5160 4.58155 0.93445 0.01665 0.12359
Pb17Se17 2.46372 1.85218 0.61154 0.00695 0.14408
Pb21Se21 2.37579 2.05145 0.32434 0.02217 0.12609
Pb25Se25 4.65940 1.89550 2.76389 0.00643 0.11488
Pb29Se29 3.01619 1.76997 1.24622 0.00489 0.14735
Pb39Se39 4.13753 1.63465 2.50287 0.00221 0.14521
Pb44Se44 1.56409 1.49666 0.06742 0.00865 0.13585
Pb52Se52 2.18492 1.07936 1.10556 0.00197 0.12230
Pb63Se63 2.74999 1.20218 1.54780 0.00201 0.14599
Pb82Se82 2.71174 1.42091 1.29083 0.00321 0.15032

Pb140Se140 2.20412 0.83281 1.37131 0.00033 0.15515

Table 5.7: FD-GSIK results for CdS nanoparticles.

Chemical Formula ω0
P Electron-hole Binding ωFD−GSIK Std. Dev. of ωFD−GSIK Time

eV eV eV eV Hours
Cd3S3 6.97115 5.57372 1.39743 0.06397 0.14822
Cd6S6 2.81942 2.73266 0.08676 0.01682 0.13336

Cd12S12 3.04753 2.98927 0.05826 0.02259 0.13933
Cd15S15 5.50360 3.15073 2.35286 0.02525 0.13288
Cd24S24 2.98365 2.57143 0.41221 0.00626 0.14498
Cd33S33 2.08133 1.80746 0.27386 0.00539 0.13671
Cd39S39 2.19995 1.88188 0.31806 0.00566 0.10922
Cd45S45 3.73826 1.09407 2.64420 0.00084 0.12661
Cd72S72 1.32678 1.01447 0.31231 0.00052 0.13217
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Table 5.8: FD-GSIK results for CdSe nanoparticles.

Chemical Formula ω0
P Electron-hole Binding ωFD−GSIK Std. Dev. of ωFD−GSIK Time

eV eV eV eV Hours
Cd3Se3 6.45328 6.17198 0.28129 0.05927 0.11632
Cd6Se6 2.53726 2.21264 0.32462 0.00402 0.14679

Cd15Se15 5.18003 3.10078 2.07925 0.01406 0.11319
Cd24Se24 2.76076 2.17122 0.58954 0.00348 0.16356
Cd33Se33 2.18953 1.95920 0.23033 0.01078 0.16583
Cd42Se42 1.83354 1.51175 0.32179 0.00310 0.11716
Cd45Se45 3.42302 1.06525 2.35778 0.00141 0.12704
Cd54Se54 2.15215 1.84267 0.30948 0.01002 0.11883
Cd66Se66 1.61582 1.14503 0.47079 0.00056 0.12920

Cd144Se144 1.71432 1.46049 0.25383 0.01236 0.12726
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5.4 Discussion

5.4.1 Low-scaling excited state method

In this work we present a frequency-dependent electron-hole interaction kernel that does not ex-

hibit steep scaling of computational cost with increasing system size. Traditional occupation-

Table 5.9: Largest clusters investigated using LANL2DZ basis.

Cluster Diameter (nm) Number of AOs Number of 1p-1h states
Cd144Se144 2.5 3744 3.17×106

Cd87S87 2.0 1392 1.16×106

Pb140Se140 2.5 2240 1.08×106

Pb140S140 2.5 2240 1.08×106

number approaches that use particle-hole excitation basis for excitation energy calculation suffer

from high computational cost because the number of basis functions increase as (Nocc×Nvir). As

an example, this point is illustrated in Table 5.9 for the largest NPs investigated in this work. The

last column of Table 5.9 shows that for all systems investigated in this work, use of the conventional

method would require a particle-hole basis that is at least 106 or higher in size. In addition to that,

the number of 2-electron integrals needed to construct the A−matrix increases as (Nocc +Nvir)
2

which further contributes to the increasing the cost of the calculation. Finally, the AO-to-MO inte-

gral transformation which scales as (Nocc+Nvir)
5 is a major contributor to the computational cost.

All these factors contribute to the steep increase in the overall computational cost and is captured

in Figure 5.2, where CIS line shows the cost of the conventional CIS calculation. The FD-GSIK

line in Figure 5.2 showcases computation cost of the method developed in this work.

5.4.2 Frequency dependent kernel

The importance of frequency dependence for describing chemical systems is well-understood and

have been studies extensively both in the context of MBPT[38, 40, 41] and TDDFT[64, 65, 66, 67].

In the FD-GSIK method, the frequency dependence in the interaction kernel allows the electron-

hole interaction to change dynamically for different excitation and for different chemical systems.
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The expression for the Keh derived in Equation 6.27 is general and is applicable to a wide variety

of choices for Λ by users.

5.4.3 Absence of adjustable parameters

Another significant feature of this work is that the kernel does not have adjustable parameters. The

functional form presented here allows only two parameters, both of which are calculated during the

course of the calculation. The inclusion on (ω0
P−ω) makes the kernel dependent on the difference

between the reference and the interacting system. The quantity 〈P|r−1
eh |P〉 is equal to the first-order

correction in Rayleigh-Schrödinger perturbation theory (RSPT). Both of these terms modify the

kernel dynamically with respect to the strength of the electron-hole interaction.

5.4.4 Future directions and extensions

In terms of directions for future research, the FD-GSIK kernel presents opportunities for exten-

sions in other excited state phenomenons. Specifically, it is well-known in linear-response treat-

ment of excited states that frequency-dependence in the electron-hole interaction kernel is cru-

cial for describing two-electron excitations[68] and the present method can be extended to study

biexcitonic interactions in semiconductor nanoparticles. Application to biexcitonic systems will

involve defining |P〉 as the non-interacting 2p-2h reference state. The state |Q〉 will be obtained

from the search in orthogonal 2p-2h space similar to procedure described here for 1p-1h systems.

The FD-GSIK method can also be combined with electron-hole multicomponent coupled-cluster

theory (eh-mcCC)[53, 54] for studying biexcitonic and multiexcitonic states. The FD-GSIK in its

present form is not size-consistent and combining it with eh-mcCC will require a size-consistent

formulation of the method.

The FD-GSIK method can also be extended to study systems that exhibit high density of states

near the HOMO-LUMO gap such as gold and silver metallic clusters and large quantum dots.

The issue of performing excited-state calculations in the presence of high density of particle-hole

states is challenging and would require modification of the method presented here. One promising

strategy is to use an orbital-optimized version of the present method, where dressed particle and
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hole state are obtained from a linear-combination of the bare particle-hole states.

|h̃〉= ∑
i

ci|i〉 (5.43)

|ẽ〉= ∑
a

ca|a〉 (5.44)

where the c are obtained by minimizing 〈h̃ẽ|H0 +Veh|h̃ẽ〉. Preliminary studies using this approach

on gold nanoclusters were found to be promising and is currently being pursued.

5.5 Conclusions

In summary, the FD-GSIK method presented here implements a series of theoretical strategies to

reduce the cost of an excited state calculation while maintaining the accuracy of the method. First,

we have reduced the number of particle-hole states needed to describe the electron-hole interaction

kernel by using an explicitly-correlated ansatz. Second, we have avoided the storage, evaluation,

and transformation of atomic orbital integrals by performing evaluating the molecular orbitals

integrals directly using the Monte Carlo method. Third, we have developed a frequency-dependent

term in the electron-hole interaction kernel to account for dynamically screening. Finally, the FD-

GSIK method is a first-principle method that is free of external parametrization and all required

information is evaluated during the course of the calculation. The FD-GSIK method was applied

to a series of quantum dots and the results from the calculations demonstrate the efficacy of the

FD-GSIK method for reducing the scaling of computational effort with respect to system size.
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Chapter 6

Investigation of Dense Manifold of Particle-Hole

Excitations in Metallic Nanowires Using

r12-Correlated Frequency Dependent Electron-Hole

Interaction Kernel

6.1 Introduction

Noble metal nanoparticles, in particular silver and gold are of great interest for their applications in

biomedicine,[69, 70, 71, 72, 73] catalysis,[74] energy conversion,[75, 76, 77, 78] and sensing.[79,

80, 81, 82] The potential in the above applications stems from strong absorption peaks in the

visible to near IR region called surface plasmon resonance (SPR). [83, 84] A SPR is collective

oscillations of electronic transitions due to the density of states within these metallic-like systems.

Noble metal nanoparticles have been extensively studied both experimentally[85, 86, 87, 88] and

theoretically [89, 90] to better understand the plasmonic nature.

The effect of composition, [91, 92] environment, [93] size,[94, 95, 96] and shape [97, 98, 95,

96] of noble metal nanoparticles is of particular interest as these cause tunability in the absorption

peaks. In particular, nanorods and nanowires are of great interest due to the impact on their optical

properties as a function of increased length. [99, 100, 101] Where a longitudinal mode along the
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main axis and a transverse mode perpendicular to the main axis are known to have varying affects

due to increasing chain length. For which the longitudinal peak red shifts as length is increased

and there is minimal effect of energy on the transverse peak.[102, 103]

A proper treatment of electron-correlation is then imperative towards better understanding

these systems. Configuration interaction (CI) provides a simplistic method towards capturing

electron-correlation. It is well known that with the limit of infinite basis, full configuration interac-

tion (FCI) will exactly solve electron-correlation in the Schrödinger equation. The challenges are

also well known with CI in the dramatically increasing computational cost for CI space. Tackling

the challenge of size configuration space is a vast field of interest with various methods: Quan-

tum Monte Carlo (QMC),[104] complete active space configuration interaction (CASCI) method,

[105] geminal-projected configuration interaction (GP-CI) method,[45] many-body expanded full

configuration interaction (MBE-FCI) method,[106, 107] multireference configuration interaction

(MRCI), [108, 109, 110] multireference self consistent field (MR-SCF) theory,[111, 112] mul-

tireference second-order perturbation (MRMP2) theory, [113, 114] multi-state complete active

space perturbation (MS-CASPT2) theory,[115] and rank-reduced full configuration interaction

(RR-FCI).[116] The general goal within these methods and theories is to either restrict the the

number of configurations through limiting the active space, or selecting only important configura-

tions. The use of CI for nanoparticles is also limited by the cost of CI space, due to the number

of single-particle states.[117, 118, 119] Time-dependent density-functional theory (TD-DFT) has

demonstrated impactful insight into understanding the plasmon resonance within many noble metal

nanowires and nanoparticles in obtaining electron-correlation.[120, 121, 122, 123, 124, 125, 126,

127, 128, 103] Though these TD-DFT studies have been useful, there still exist limitation for the-

oretical investigations for complex noble metal. There exists a class of ”magic clusters” that are

theoretically investigated simply due to the use of high-symmetry within the structure to eliminate

computational effort.[129, 130, 96] In general, noble metal systems can contain many electrons

which require the use of many basis functions, thereby increasing the number of single-particle

excitations increasing the computational effort to obtain electron-correlation. The limitations with

CI and TD-DFT to investigate plasmon resonance within truly unique noble metal nanoparticles
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requires the development of new theoretical methods.[131]

In this work we will present an orbital-optimized dressed particle-hole basis, that allows us

to compress the configuration space in a many-electron system but still capture the contribu-

tion to electron-hole correlation from all the single-particle excitations. The ideal of orbital-

optimized excited states methods is not new, and is an area of interest with orbital-optimized

Møller-Plesset perturbation (OO-MP) theory,[132, 133, 134] orbital-optimized coupled-cluster

(OO-CC) methods,[135, 136] and various others theories.[137, 138, 139, 140, 141, 142] The

goal of this work is to provide a formulation that captures the electron-hole correlation for plas-

monic systems, or systems with highly degenerate orbitals with computational efficiency in mind

by compression of the CI space. We will utilize our recently developed first-principle method,

the frequency-dependent geminal-screened electron-hole interaction kernel method (FD-GSIK) to

capture electron correlation which provides us a computational cost that is independent of system

size. This work presented will not focus on the derivation of FD-GSIK but the formulation of our

dressed molecular orbital basis and its application to silver nanowires to obtain correlated excita-

tion energy for the longitudinal peak, the highest occupied molecular orbital (HOMO) to lowest

unoccupied molecular orbital (LUMO) gap.

6.2 Theory

6.2.1 Dressed Molecular Orbitals

The effective many-body electron-hole Hamiltonian has the general form [50, 51, 52, 35, 53, 54]

Heh = H0
e +H0

h +Vee +Vhh +Veh (6.1)

where

H0
e = ∑

e1e2

〈e1| f e|e2〉e†
1e2 (6.2)
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H0
h = ∑

h1h2

〈h1| f h|h2〉h†
1h2 (6.3)

Vee = ∑
e1e2e3e4

〈e1e2|wee|e4e3〉e†
1e†

2e3e4 (6.4)

Vhh = ∑
h1h2h3h4

〈h1h2|whh|h4h3〉h†
1h†

2h3h4 (6.5)

Veh = ∑
h1h2e1e2

〈e1h1|veh|e2h2〉e†
1h†

1h2e2 (6.6)

where e† and h† are particle and hole creation operators, and fe and fh are the Fock operators.

The electron-hole Hamiltonian can be factored into a sum of non-interaction terms and interaction

terms. For a 1-particle 1-hole state, further simplification can be achieved and the total Hamiltonian

can be expressed as

Heh = H0
eh +Veh (6.7)

The non-interacting Hamiltonian H0
eh is obtained from the Fock operator whose eigenfunctions are

(uncorrelated) particle-hole excited states

H0
eh|P〉= ω0

P|P〉= (εa− εi)|χh
i χe

a〉 (6.8)

We are interested in understanding the many-body correction to a collection of single-particle

excitations {ω0
P}, which are made up from all possible single-particle excitations from a set of

particle states and a set of hole states as described below.

{I}= {i, j, . . . ,Nh} (6.9)
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{A}= {a,b, . . . ,Ne} (6.10)

{ω0
P}= {ω0

Pi
, . . . ,ω0

PN
} (6.11)

The set of particle states ({I}) and set of hole states ({A}) do not have to contain all the particle

or hole states, respectively, but in general consist of a subset of all particle/hole states. We then

define the set of particle/hole states that do not exist in {I} and {A} as,

{J}= {i′, j′, . . . ,Nh′} (6.12)

{B}= {a′,b′, . . . ,Ne′} (6.13)

Note, that 〈{I}|{J}〉= 0 and that {I} and{J} contain all hole states for the system, these relations

are the case for for the particle states as well. The wave-function for this collection of single-

particle excitations is defined as,

|P̃〉= |he〉 (6.14)

|h〉= ∑
i∈{I}

ci|i〉 (6.15)

|e〉= ∑
a∈{A}

ca|a〉 (6.16)

in which we introduce a dressed uncorrelated molecular orbital , |P̃〉. Where the summations run

over Nh
P̃ and Ne

P̃ number of hole orbitals and particle orbitals in set {I} and {A}, respectively that

contribute to the collective excitation for which we want to correct, along with coefficients ci and

ca. Since we are interested in the collective excitation, the coefficients used in |P̃〉 are weighted so

each particle/hole state contributes uniformly. From this point on in this presented work, a tilde

will refer to dressed states as described in Equation 6.14.

We start by defining the zeroth-order approximation of the electron-hole wavefunction as,

|ΨX〉(0) = |P̃〉 (6.17)
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We now define the correlated electron-hole wavefunction ΨX as

|ΨX〉=CP̃|P̃〉+C⊥|P̃⊥〉 (6.18)

where CP̃ and C⊥ are expansion coefficients and P̃⊥ is the correlated wavefunction that exists in the

orthogonal subspace of P̃. This is a very general form of the wavefunction and both MBPT and CI

wavefunctions can be expressed in this form, where choice and construction of P̃⊥ differentiates

between treatment of electron-hole correlation within different methods. Here, we will define an

electron-hole correlator operator Λ and express the P̃⊥ as,

|ΨX〉=CP̃|P̃〉+CQ̃Λ(ω,reh)|Q̃〉 (6.19)

where we define |Q̃〉 as,

|Q̃〉= |h′e′〉 (6.20)

|h′〉= ∑
j∈{J}

c j| j〉 (6.21)

|e′〉= ∑
b∈{B}

cb|b〉 (6.22)

where |Q̃〉 contains all particle-hole states not used in construction of |P̃〉 and 〈P̃|Q̃〉= 0.

6.2.2 Frequency-dependent geminal-screened electron-hole interaction kernel

At this point we have derived dressed molecular orbital basis and how we construct our correlated

electron-hole wavefunction, ΨX as

|ΨX〉=CP̃|P̃〉+CQ̃Λ(ω,reh)|Q̃〉 (6.23)
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and are interested in solving,

Heh|ΨX〉= ω|ΨX〉 (6.24)

In this next section we will discuss briefly the frequency-dependent geminal-screened electron-

hole interaction (FD-GSIK) method in terms of our correlated wavefunction. Full details of the

derivation are in our previous work. FD-GSIK starts by projecting of 〈P̃| and 〈Q̃| on the subspace

and utilizing orthonormalization, 〈P̃|Q̃〉= 0 to obtain,

〈P̃|Heh|P̃〉 〈P̃|HehΛ(ω)|Q̃〉

〈Q̃|Heh|P̃〉 〈Q̃|HehΛ(ω)|Q̃〉


CP̃

CQ̃

= ω

1 〈P̃|Λ(ω)|Q̃〉

0 〈Q̃|Λ(ω)|Q̃〉


CP̃

CQ̃

 (6.25)

After performing Löwdin’s partitioning, we are able to obtain a equation for the electron-hole

interaction kernel,

[HP̃P̃ +KP̃P̃(ω)]CP̃ = ωCP̃ (6.26)

where we obtain a closed-form analytical expression for our electron-hole interaction kernel,

KP̃P̃(ω) is defined as,

KP̃P̃(ω) =−

[
〈P̃|r−1

12 Λ(ω)|Q̃〉A− (ω0
P̃−ω)〈P̃|Λ(ω)|Q̃〉

]
〈Q̃|r−1

12 |P̃〉A
〈Q̃|r−1

12 Λ(ω)|Q̃〉A +(ω0
Q̃
−ω)〈Q̃|Λ(ω)|Q̃〉

(6.27)

where 〈. . .〉A represents anti-symmetrized matrix elements and Λ(ω,reh) is,

Λ(ω,reh) =
(ω0

P̃−ω)

γ
e−rehγ (6.28)

where γ = 〈P̃|r−1
eh |P̃〉. Some key features to point out in FD-GSIK, first is the form of Λ(ω,reh),

which is absent of any adjustable parameters and is an infinite-order particle-particle excitation

operator in real space representation.[37] Next is that our electron-hole interaction kernel has two
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forms of frequency dependency, first were obtained through the Löwdin’s partitioning and the

second is in the Λ(ω,reh) operator. Therefore obtaining ω is performed through the iterative

solution of Equation 6.26 by utilizing a starting guess of ω = ω0
P̃ in KP̃P̃(ω).

6.2.3 Optimization of |Q̃〉 Dressing Coefficients

The zeroth-order electron-hole wavefunction is given by |ΨX〉(0) = |P̃〉 and the choice of the |Q̃〉

plays an important role in accurate description of electron-hole correlation. In this work, we

construct |Q̃〉 as,

|Q̃〉= |h′e′〉 (6.29)

|h′〉= ∑
j∈{J}

c j| j〉 (6.30)

|e′〉= ∑
b∈{B}

cb|b〉 (6.31)

where a coefficient is calculated as,

cr =
e−α∆E2

r

∑
r

e−α∆E2
r

(6.32)

with ∆E2
r = (ε0

s − εr)
2 where ε0

s is the particle/hole energies from the lowest single-particle exci-

tation (ω0
Q) in |Q〉.

Determination of~c is done by minimizing the first-order corrected excitation energy of a given

dressed molecular orbital,

min
α

[
〈Q̃|Heh|Q̃〉

]
= ω0

Q̃ + 〈Q̃|veh|Q̃〉 (6.33)

since Q̃ is an uncorrelated particle-hole basis the last term can be expressed in terms of density,

〈Q̃|veh|Q̃〉= 〈ρQ̃r−1
eh 〉 (6.34)
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where the density, ρQ̃ is defined as,

ρQ̃(1,2) = Q̃(1,2)Q̃(1,2) (6.35)

= h′(1)e′(2)h′(1)e′(2) (6.36)

= h′(1)h′(1)e′(2)e′(2) (6.37)

ρQ̃(1,2) = ρh′(1)ρe′(2) (6.38)

which provides particle and hole densities of the dressed states. These particle and hole densities

are obtained through,

ρh′(1) = ∑
j∈{J}

c2
jρ

h′
j (1) (6.39)

ρe′(2) = ∑
b∈{B}

c2
bρe′

b (2) (6.40)

using the particle and hole densities that eigenfunctions of the Fock operator. The search for the

coefficients scales as Nα×(Nh′
Q̃ ×Ne′

Q̃ ) requiring search over all states. We reduce the computational

cost by approximating the true densities ρh′
j ρe′

b , through a Gaussian approximation such that,

ρe,h
r ≈ ρG;e,h

r =
1

σ e,h
r
√

2π
e
− 1

2

(
r−µe,h

r
σe,h

r

)
(6.41)

and are obtained by minimizing the Kullback–Leibler divergence[55] between the true densi-

ties ρh′
j ρe′

b and the Gaussian probability distribution functions.

DKullback−Leibler =
∫

V
drρh′

j ρe′
b ln

[
ρh′

j ρe′
b

ρG;h′
j ρG;e′

b

]
(6.42)

The computational effort for determination of approximate densities ρG;h′
r ,ρG;e′

r scales linearly

with Nα×(Nh′
Q̃ +Ne′

Q̃ ) and the calculation of 〈ρQ̃r−1
eh 〉 is performed analytically. Where Nh′

Q̃ and Ne′
Q̃

are the number of particle/hole orbitals in set {J} and {B}. Both of these steps allow us to search
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for the optimal α in construction of the ~c coefficients at a reduced computational cost. Once the

coefficients are obtained construction of |Q̃〉 is performed numerically.

6.3 Results and Discussion

6.3.1 Computational Details

The current work utilizes the above derivation of orbital-optimized dressed molecular orbitals

and our FD-GSIK method to obtain correlated excitation energies of Agn nanowires where n =

2,4,6,8,10,12,20,40,60,80,100 using FD-GSIK method. The nanowires were constructed using

a bond distance of 3.51 Å which was obtained by using the central Ag-Ag bond distance obtained

from a Hartree-Fock (HF) optimized Ag100 calculation with LANL2DZ basis and effective core

potential (ECP). The uncorrelated ground state single-particle states were calculated using HF

method and LANL2DZ basis and ECP for the nanowires with the TERACHEM package. [143]

The spatial MOs, ψ(r) were generated with 100 points per dimension to generate a 106 point

grid to obtain a dense grid for construction of the dressed molecular orbitals, ψ̃(r). The grid

boundary was set by imposing a cutoff tolerance of |ψ(r)| ≤ 10−12. The Monte Carlo integration

was performed in decuplicate for obtaining maximum and minimum errors on the order of meV.

Within this work we performed two sets of calculations utilizing different |P̃〉 states. In the first set

of calculations we were interested in only the HOMO-LUMO gap, therefore |P̃〉= |P〉. As this gap

was either the highest or second highest oscillator strength for all Ag nanowires. The next set of

calculations looked into |P̃〉 that included all the single-particle excitations that were within 1 eV

of the HOMO-LUMO gap (ω0
P). This therefore gave us a collection of single-particle excitations

near the band edge of the system. The dressed molecular orbitals were calculated as described in

subsection 6.2.3 to obtain the |Q̃〉 state for FD-GSIK.

6.3.2 HOMO-LUMO Gap for Ag Nanowires

The first investigation utilizing dressed molecular orbitals was to obtain electron-correlation for a

specific excitation, the HOMO-LUMO gap. Which is classified as the longitudinal peak in vari-
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ous reported works,[102, 103] and known to red shift as length is increased. We are interesting

in understanding this trend for longer Ag nanowires and comparing to results from the previously

reported TD-DFT work of Guidez and Aikens.[144] Utilizing FD-GSIK allows for calculation of

excitation energies where the computational cost is independent of system size, therefore if the

ground state wavefunction can be obtained, FD-GSIK can provide correlated excitation energies.

This allowed for an investigation up to Ag100, Figure 6.1. The reported HOMO-LUMO gap (ωHF
P )
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Figure 6.1: Excitation energy of Ag nanowires using FD-GSIK for the HOMO-LUMO gap in
comparison to reported TD-DFT results. †[144]

shows a red shift in the energy as system size increases. In addition, the first order corrected ex-

citation defined by ω(1)
P = ωHF

P − 〈P|r−1
12 |P〉, is reported. Also observed is that ωFD−GSIK

P and

ωT D−DFT
P are in great agreement for the nanowires up to Ag40, replicating the trend that is com-

monly reported for this small nanowire series. Interestingly as the number of Ag atoms increases

the trend is non-convergent and there is an increase in energy, or a blue shift, in the excitation as

the system approaches Ag100. The use of dressed molecular orbitals and FD-GSIK has allowed for

investigation of larger nanowires and demonstrates a non-obvious trend in the excitation energy

with respect to system length. This was accomplished by the computationally efficient FD-GSIK
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method which was developed for computationally challenging systems through the use of a com-

pressed molecular orbital basis.

6.3.3 Collection of single-particle excitations for Ag Nanowires

In addition we were interested in the set of single-particle excitations near the HOMO-LUMO

gap. As this set will give us insight into the effect of the multi-reference nature of high density of

states near the HOMO-LUMO gap, this is easily observed for Ag100 in, Figure 6.2. Which shows
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Figure 6.2: Histogram of molecular orbital energies for Ag100 near the HOMO-LUMO gap.

a clear HOMO-LUMO gap but that there exist numerous orbitals that lie near each other around

the HOMO-LUMO gap. Clear breaks in the continuum of energy is not observed until -10 eV and

15 eV for the occupied and virtual space, respectively. In this work we are mainly interested in the

single-particle excitations that exist within 1 eV of the HOMO-LUMO gap, as these are the most

contributing to the degeneracy near the HOMO-LUMO gap. This defines our |P̃〉 state, in which

each unique hole/particle state is evenly weighted and |Q̃〉 consists of every particle-hole state not

in |P̃〉. The results are shown in Figure 6.3. Observed is a red shift in the collective excitation up to

Ag40 and then an increase in energy for Ag60 and Ag70 with a slight decrease in energy for Ag100.
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Figure 6.3: Comparison of the uncorrelated gap to the first-order corrected and FD-GSIK corre-
lated excitation obtained for |P̃〉 in Ag nanowires.

The uncorrelated ground state energies are in general higher due to the multi-reference excitation

energy used in construction of the dressed molecular orbital basis.

6.3.4 Error analysis and timing data

With FD-GSIK the use of Monte Carlo integration allows us to reduce the error in the excitation

energies in a computationally efficient approach. Presented in Table 6.1 and Table 6.2 are the stan-

dard deviations of the FD-GSIK excitation energies for all the systems presented. In addition, the

single-core total cumulative CPU time is reported for each system for the 1+10 MC integration’s,

one run to evaluate 〈P̃|r−1
12 |P̃〉 and then ten FD-GSIK integrations. These standard deviations result

in meV errors, providing confidence in the reported energies. The error within a FD-GSIK calcu-

lation are systematically improvable through additional MC integrations, which can be performed

in at low computational cost due to the construction of the dressed molecular orbital and FD-GSIK

method.
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Table 6.1: The standard deviation of ωFD−GSIK
P from 1+10 runs of the Monte Carlo integration

with total single-core CPU computational time.

Chemical ωFD−GSIK
P Standard Total CPU

Formula (eV) Deviation (meV) Time (Hours)
Ag2 1.5835 3.68E-01 1.31
Ag4 1.2387 1.57E-01 1.35
Ag6 1.0766 1.97E-01 1.36
Ag8 0.8822 3.52E-01 1.35
Ag10 0.8690 2.62E-01 1.32
Ag12 0.7757 4.75E-01 1.33
Ag20 0.5217 3.70E-01 1.34
Ag40 0.4805 6.96E-01 1.32
Ag60 0.6695 5.50E-01 1.33
Ag80 0.8671 4.44E-01 1.35
Ag100 1.8456 2.59E-01 1.33

Table 6.2: The standard deviation of ωFD−GSIK
P̃ from 1+10 runs of the Monte Carlo integration

with total single-core CPU computational time.

Chemical ωFD−GSIK
P̃ Standard Total CPU

Formula (eV) Deviation (meV) Time (Hours)
Ag10 2.7217 5.32E-02 1.34
Ag20 2.5120 9.68E-02 1.36
Ag40 2.3287 3.38E-01 1.34
Ag60 2.7574 1.30E-01 1.35
Ag80 2.8929 1.56E-01 1.34
Ag100 2.6626 1.84E-01 1.34

6.4 Conclusions

The dressed molecular orbital basis was presented to compress the configuration space for un-

derstanding multi-reference single-particle excitations. Allowing for a computationally efficient

multi-reference molecular orbital basis that can tackle large many-electron systems which have

many single-particle excitations. The use of dressed molecular orbitals allowed us to investigate a

highly degenerate metallic like system, silver nanowires. But in general, this formulation can be

used for other chemical systems in which multi-reference characteristics are of interest. In con-

junction with the frequency-depend geminal-screened electron-hole interaction kernel (FD-GSIK)

method we were able to obtain electron-correlated excitation energies for the HOMO-LUMO gap
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and a collection of excitations near the HOMO-LUMO gap up to Ag100. Observed within the pre-

sented work is a non-obvious trend in the energy of the HOMO-LUMO gap which blue shifts at

longer nanowire lengths.
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Chapter 7

Derivation of Moment Generated Molecular Orbital

Basis

7.1 Introduction

Presented in this chapter is a derivation for the moment generated molecular orbital basis. The

purpose of this derived work serves as an alternative to the frequency-dependent geminal-screened

electron-hole interaction kernel presented in Chapter 5 and Chapter 6. The main limitation within

FD-GSIK is that the Λ(ω,reh) projection operator will not project to particle-hole states lower than

the specified |Q〉 state. Therefore the selection of |Q〉 is limited to a particle-hole state that is in

general the next particle-hole state after |P〉. The goal of the moment generate molecular orbital

basis was to provide an electron-correlated approach that was free of the Λ(ω,reh) projection

operator and utilized the moments of the particle/hole states to capture electron-correlation. The

body of this chapter is entirely the derivation of the method and will contain no results to validate

the method.
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7.2 Theory

The effective many-body electron-hole Hamiltonian has the general form

Heh = H0
e +H0

h +Vee +Vhh +Veh (7.1)

where

H0
e = ∑

e1e2

〈e1| f e|e2〉e†
1e2 (7.2)

H0
h = ∑

h1h2

〈h1| f h|h2〉h†
1h2 (7.3)

Vee = ∑
e1e2e3e4

〈e1e2|wee|e4e3〉e†
1e†

2e3e4 (7.4)

Vhh = ∑
h1h2h3h4

〈h1h2|whh|h4h3〉h†
1h†

2h3h4 (7.5)

Veh = ∑
h1h2e1e2

〈e1h1|veh|e2h2〉e†
1h†

1h2e2 (7.6)

where e† and h† are particle and hole creation operators, and fe and fh are the Fock operators.

The electron-hole Hamiltonian can be factored into a sum of non-interaction terms and interaction

terms. For a 1-particle 1-hole state, further simplification can be achieved and the total Hamiltonian

can be expressed as

Heh = H0
eh +Veh (7.7)
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The non-interacting Hamiltonian H0
eh is obtained from the Fock operator whose eigenfunctions are

(uncorrelated) particle-hole excited states

H0
eh = ω0

P|P〉= (εe
a− εh

i )|Φh
0Φ

e
0〉 (7.8)

We are interested in calculating the many-body correction to ω0
P due to electron-hole correlation

in the system.

Heh|ΨX〉= ω|ΨX〉 (7.9)

We start by defining the zeroth-order approximation of the electron-hole wavefunction as,

|ΨX〉(0) = |P〉 (7.10)

and the correlated electron-hole wavefunction ΨX is defined as

|ΨX〉= cP|P〉+ cQ|Q〉 (7.11)

where,

|P〉= Φ
h
0Φ

e
0 (7.12)

|Q〉=
(

ΩhΦ
h
0

)(
ΩeΦ

e
0

)
(7.13)

In this presented derivation Ωe,h is a moment operator that is defined as Ωe,h =
(

rm
e,h−〈rm

e,h〉
)

,

where m is the moment. The moment operator has the following property,

〈Φe,h
0 |Ωe,h|Φe,h

0 〉= 0 (7.14)

〈Φe,h
0 |
(

rm
e,h−〈rm

e,h〉
)
|Φe,h

0 〉= 〈Φ
e,h
0 |rm

e,h|Φe,h
0 〉−〈rm

e,h〉= 0 (7.15)
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therefore ΩhΩe in Equation 7.13 can be expanded as,

ΩhΩe = (rm
h −〈rm

h 〉)
(

rm′
e −〈rm′

e 〉
)

(7.16)

=
(

rm
h rm′

e + 〈rm
h 〉〈rm′

e 〉− rm
h 〈rm′

e 〉−〈rm
h 〉rm′

e

)
(7.17)

where m and m′ are different moments for the hole and particle state respectively. Projecting 〈P|

and 〈Q| onto Equation 7.9 results in the following matrix expression,

〈P|Heh|P〉 〈P|HehΩhΩe|Q〉

〈Q|Heh|P〉 〈Q|HehΩhΩe|Q〉


CP

CQ

= ω

1 0

0 〈Q|ΩhΩe|Q〉


CP

CQ

 (7.18)

simplified as,

HPP HPQ

HPQ HQQ


CP

CQ

= ω

1 0

0 SQQ


CP

CQ

 (7.19)

for which H can be expanded as,

HPP HPQ

HPQ HQQ

=

H0
PP H0

PQ

H0
PQ H0

QQ

+
VPP VPQ

VPQ VQQ

 (7.20)

for which the definitions of the matrix elements are as follows:

VPP = 〈Φh
0Φ

e
0|r−1

12 |Φh
0Φ

e
0〉 (7.21)

VPQ = 〈Φh
0Φ

e
0|r−1

12 ΩhΩe|Φh
0Φ

e
0〉 (7.22)

VQQ = 〈Φh
0Φ

e
0|ΩhΩer−1

12 ΩhΩe|Φh
0Φ

e
0〉 (7.23)

H0
PP = ω0

P (7.24)

H0
PQ = 〈P|H0

eh|Q〉= ω0
P〈P|Q〉= 0 (7.25)

H0
QQ = 〈Q|H0

eh|Q〉= 〈ΩhΦ
h
0ΩeΦ

e
0|H0

h +H0
e |ΩhΦ

h
0ΩeΦ

e
0〉 (7.26)
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= 〈ΩhΦ
h
0|H0

h |ΩhΦ
h
0〉〈Φe

0|ΩeΩe|Φe
0〉+ 〈ΩeΦ

e
0|H0

e |ΩeΦ
e
0〉〈Φh

0|ΩhΩh|Φh
0〉 (7.27)

H0
QQ = ∑

k
c2

kE0,h
k ∑

k
c2

k +∑
k

c2
kE0,e

k ∑
k

c2
k (7.28)

with ck = 〈k|rm|0〉.

7.3 Conclusion

That concludes the derivation of moment generated molecular orbital basis which allows for ob-

taining electron-correlation for any given |P〉 and |Q〉 state. The advantage of the presented deriva-

tion is that the choice of |P〉 and |Q〉 is not restricted by the correlated operator, unlike the work

presented in Chapter 5 and Chapter 6. The implementation and validation of the presented deriva-

tion is still in order, but the derivation in its presented form is still a novel approach for efficient

implementation of electron-hole interaction kernel.
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Chapter 8

Implementation of Permutation Sampling Monte

Carlo Integration Method

8.1 Introduction

The permutation sampling Monte Carlo method is a universal integration technique that was de-

veloped within the Chakraborty reserach group to tackle the challenges of multi-dimensional in-

tegrals. Within the research group we are heavily interested in avoiding the atomic-orbital to

molecular-orbital integral transformation. While developing new excited state methods for the

grid based approaches, integrals become burdensome in higher dimensions. This chapter will fo-

cus on the computer science of the recent code implementation in C++ for permutation sampling

Monte Carlo method as key decisions were made to program a code that was computationally

efficient, portable, and multi-purpose.

8.2 Theory

The theory presented here is to briefly introduce the concepts of the permutation sampling Monte

Carlo integration method which is a part of a larger investigation in ionization energies using
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Green’s function within the group. To begin, let us evaluate a simple 1-D Gaussian function,

∫
∞

−∞

e−x2
dx =

√
π (8.1)

using Monte Carlo method of a million uniform random points. This is a simple enough task as

we can easily evaluate these million points in a matter of seconds, the accuracy of the integral

evaluation is very reasonable with error of 1x10−3. Now lets move up to a 3-D Gaussian function,

∫
∞

−∞

e−r2
dr (8.2)

where r2 = x2 + y2 + z2, therefore the 3-D Gaussian integral is a product of three 1-D Gaussian

functions.

∫
∞

−∞

e−r2
dr =

∫
∞

−∞

e−x2
dx×

∫
∞

−∞

e−y2
dy×

∫
∞

−∞

e−z2
dz (8.3)

=
√

π×
√

π×
√

π = π
3
2 (8.4)

Now a choice must be made in terms of evaluating this 3-D integral with respect to the number of

Monte Carlo points. If we want to maintain the initial conditions from the 1-D integral that means

the 3-D integral could be evaluated with 3.0E6 Monte Carlo points. This choice in evaluation

will result is great accuracy of the integral value, but the cost of the calculation is high, NM.C.
3,

a couple of hours. The other choice to be made in terms of evaluating the integral would be to

maintain a million points between all three dimensions. The computational cost is now (NM.C.
3 )3

which is now a few minutes. But the accuracy of the integral evaluation will be on the order

of 1.0E0. As this simple example demonstrates dimensionality of the integral evaluation can be

computationally burdensome, even for 3-D. But what if someone is interested in two particle or

four particle complex integrals that are 6-D or 12-D as is the nature of the work discussed in

Chapter 5
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Let us consider an generic 12-dimensional integral,

I =
∫

D
dr1dr2dr3dr4ρ(r1,r2d,r3d,r4)

Λ(r1,r2,r3,r4)

ρ(r1,r2,r3,r4)
(8.5)

where Λ(r1,r2,r3,r4) is a 4-particle function which is evaluated through sampling from ρ(r1,r2,r3,r4),

where ρ(r1,r2,r3,r4) is a valid probability distribution function that is defined as,

∫
D

dr1dr2dr3dr4ρ(r1,r2,r3,r4) = 1 (8.6)

ρ(r1,r2,r3,r4)≥ 0 (8.7)

Permutation sampling Monte Carlo begins by decoupling the dimensionality of the N-dimensional

point for evaluation by choosing each dimension of the N dimensions based on the probability

distribution within each N dimension. In essence, instead of sampling each Monte Carlo point

from a N-dimensional probability distribution, the N-dimensional point is constructed from un-

coupled N probability distributions. The decoupling starts with a coordinate transformation where

r1,r2,r3,r4 corresponds to q values, such that q ∈ [0,1].

I =
∫

∞

−∞

dr1dr2dr3dr4Λ(r1,r2,r3,r4) (8.8)

=
∫ 0

1
dq1dq2dq3 . . .dq12Λ(q1q2q3 . . .q12)J(q1q2q3 . . .q12) (8.9)

where J is the Jacobian associated with the coordinate transformation. This allows for the integra-

tion to occur in intervals of [0,1] instead of infinite bounds. This coordinate transformation also

allows for the decoupling of the ρ(r1,r2,r3,r4) distribution that will be sampled from in Equa-

tion 8.5 by making ρ to be a product of 12 one-dimensional probability distribution functions in

q-space. In essence, instead of sampling each Monte Carlo point from a N-dimensional probability

distribution, the N-dimensional point is constructed from uncoupled N probability distributions,

ρ(q) = ρ1(q1)×ρ2(q2)×ρ3(q3)× . . .ρ12(q12) (8.10)
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The next key component to permutation sampling Monte Carlo is how these individual distri-

butions, generically labeled as ρd(qd) are evaluated to sample, ρ(q) in Equation 8.8. Imagine that

each distribution, ρd(qd) is a deck of cards, and a hand (ρ(q)) is dealt by drawing the top card of

each unique deck. This can be demonstrated as,

ρ1 ρ2 ρ3 · · · ρ12

↓ ↓ ↓ ↓

qA
1 qA

2 qA
3 · · · qA

12

qB
1 qB

2 qB
3 · · · qB

12
...

...
...

...

qZ
1 qZ

2 qZ
3 · · · qZ

12

(8.11)

where the superscripts A,B, . . . ,Z are the number of hands dealt. In this situation a hand would then

be the r1,r2,r3,r4 point to be evaluated during Monte Carlo integration. The next Monte Carlo

point will then be the next hand dealt from the 12 one-dimensional probability distribution func-

tions. To improve the accuracy of the integral value each deck could then be shuffled continuing

to evaluate Monte Carlo points as described, thereby allowing for redistribution of the probability

distribution function.

ρ1 ρ2 ρ3 · · · ρ12

↓ ↓ ↓ ↓

qG
1 qF

2 qT
3 · · · qW

12

qD
1 qI

2 qM
3 · · · qV

12
...

...
...

...

qP
1 qL

2 qX
3 · · · qA

12

(8.12)

Permutation sampling Monte Carlo then allows for evaluation of complex multi-dimensional

integrals as a one-dimensional integral in q-space. The derivation of permutation sampling Monte

Carlo was demonstrated for a 12-dimensional generic integral with an undefined Λ function. In
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practice permutation sampling Monte Carlo is N-dimensional and the choice of function is inde-

pendent to the sampling. Permutation sampling Monte Carlo is a generic integration technique that

can be applied to any choice of integral evaluation.

8.3 Object-Oriented Programming

As stated, the theory of permutation sampling Monte Carlo is generic in terms of the number of

dimensions for integration and the function of choice. Therefore it was a great coding project to

practice the programming paradigm, object-oriented programming (OOP). OOP is a programming

paradigm based on creating ”objects” that contains both data and the functions for the data. [145]

In general objects are instances of classes, which are definitions of the data format and available

procedures within the class. Objects and classes are readily seen within the real world and not

simply in programming. There are major principles to discuss with regards to OOP, they are

polymorphism, composition and inheritance, abstraction, and encapsulation.

8.3.1 Polymorphism

Polymorphism is one of many forms. For example, think of a hydrogen, helium and sodium atom,

each of these are objects. They all belong to a element class, which contains the information

on their name, symbol, atomic number, atomic weight, etc. The individual response each atom

has to electromagnetic radiation is an example of a procedure as the electromagnetic radiation

is information going to the atom, the atom then has its own procedure on what to do with that

information. Polymorphism allows for construction of multiple objects from the same class.

8.3.2 Composition and Inheritance

Let us now consider dimers of the atoms, creating structure of two atoms. The structure can be

stored in a class molecule, which contains information on the number of atoms, the position of

the atoms and which atoms are bonded to each other. In the example I have created a new class
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that that contains two instances of class atoms. But the way the molecule class interacts with these

atom classes has two different forms, composition or inheritance.

First is composition, where the molecule class is composed of two simple atoms classes. Com-

position is a useful tool when developing in that the top level object can be constructed through a

complex network of other objects. When information is asked to the molecule class about the prop-

erties contained in the atom class, molecule will ask the atom class for that information. Second

is inheritance where the molecule class has inherited two atom classes and their separate func-

tionality. The key difference comes with how the molecule class uses the information from each

atom class. In inheritance the information and functionality that is unique of an atom class can be

utilized by molecule class. Therefore molecule class can take responsibility for passing informa-

tion of atomic number or weight without have to ask the atom class. The doctrine of composition

over inheritance was implemented within permutation sampling Monte Carlo. This doctrine means

objects were responsible for their own functionality and their information.

8.3.3 Abstraction

Abstraction is the idea that the complexity associated with a function or information within a ob-

ject is obscured by the requester of the information. For example in the theory of permutation

sampling Monte Carlo, there was a discussion between integrating a Gaussian or a complex quan-

tum chemistry problem. The user defined function is the example of the top level object, as this

is the information that is needed when sampling the integral, i.e. what is the value of the integral

at this position. In the case of a Gaussian it is simply, f (r) = e−r2
, but for a complex quantum

chemistry problem the value at position r needs information on molecular orbitals at χ(r). This is

beneficial because it allows classes to be dynamic in their use as long as they contain the matching

procedures at the top-level. But in terms of the implementation of permutation sampling Monte

Carlo, it has no preference to how the value is being calculated, it just needs to know what value

to update within the calculation. Abstraction is hiding internal implementation details to other

objects when information is requested.
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8.3.4 Encapsulation

Encapsulation is how the data within the object is made private to other objects. The principle of

encapsulation is about which objects can obtain or modify data that is owned by another class. The

information within an object can be public or private data. Where public data can just be utilized

by outside objects, but private data can not be easily accessed. That does not mean private data is

never recoverable, but has to be requested and it is up to owner of the data if that information can

be passed along. Encapsulation is in the same light as abstraction but is further restrictive towards

the access to information.

8.4 C++ Language Features

With this programming paradigm framework set, the natural programming language of choice was

C++, a language that was built by Bjarne Stroustrup as ”C with Classes”. As it easily allows many

of the principles of OOP in quick and easily implementation as seen in Figure 8.1. In addition

C++ allows much more creative and beneficial features such as references, encapsulation of copy

constructor and portability to CUDA C. References are denoted with ”&” and used as an alias

to an already existing variable. References are important within coding in that references reduce

the memory footprint of a code. Notice in Line 7 (Figure 8.1) the declaration and assignment of

memory of two double variables (atm1 weight and atm2 weight). These variables are then passed

by reference (Line 23) to the function get weight() , which allows the function to directly effect

the data stored in memory for get weight() . If these variables were passed by value, a copy

of the values would be sent to get weight() where any modifications would not be reflected in

Line 7 as these values are copies of the original data, atm1 weight and atm2 weight. Utilizing

references within permutation sampling Monte Carlo allows for dramatic memory reduction as

duplication of information is not performed. The next benefit within C++ is the encapsulation of

the copy constructor for classes. This is demonstrated in Line 26 were the copy constructor is put

into private information contained within atom class. This therefore enforces that any instance of

the atom class must be passed by reference. Therefore any large object that is created will not be
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Figure 8.1: Generic C++ class that demonstrates OOP principles.

1 class Molecule {

2 public: //Public access for information

3 //Functions that provide private information

4 void get_number_atoms( int &natm) { natm = natm_ ; } ;

5 void get_molecular_weight(double &weight) =

6 {

7 double atm1_weight, atm2_weight ;

8 // Request for information from Atom class [Composition and

Abstraction]

9 atm1_get_weight(atm1_weight) ;

10 atm2_get_weight(atm2_weight) ;

11 weight = atm1_weight + atm2_weight;

12 } ;

13 [...]

14 private: //Private information denoted with ’_’ at end [Encapsulation]

15 int natm_ ;

16 //[Polymorphism]

17 Atom atm1_ ;

18 Atom atm2_ ;

19 [..]

20 };

21 class Atom {

22 public:

23 void get_weight(double &weight) { weight = weight_ ;} ;

24 [...]

25 private:

26 double weight_ ;

27 Atom(const Atom& rhs) ; //Copy Constructor

28 [...]

29 };

copied as it is passed to other objects and functions. The final reason for using C++ in development

of permutation sampling Monte Carlo was for the portability to graphics processing units (GPU)

using Compute Unified Device Architecture [CUDA] C. Which is a parallel computing platform

in the C language created by NVIDIA as a tool for parallel programming on GPU’s. The end

goal of this project is to utilize GPU acceleration, allowing for massive parallization in a integral

calculations resulting in fast sampling and compute time.
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8.5 Conclusions

The coding project resulted in approximately 6,000 lines of code, the biggest coding project within

the presented research, which is completely object-oriented for the groups future integral needs.

Included in Figure 8.2 is the full source code for the main code for permutation sampling Monte

Carlo. Which shows the techniques discussed in the previous sections within this chapter. It is

important to deconstruct this source code to truly understand some of the complexity, first from

Lines 16-22 is just preparation of how data will be printed and starting a timer to be used for

calculation of run time. Next from Lines 32-36 there is declaration of all the classes that are

needed for the code. The Lines 44-52 build each of these classes, then once building is complete a

check is performed to ensure continuity within the code. [For example that number of dimensions

is equal throughout each object] Next is Line 53 which is the run of the permutation sampling

code. It isn’t until this line that the calculation begins. Then there is the print results in Line 54, all

the steps needed in run are abstracted, for once the run is complete results are ready to be printed.

Finally are the lines 64-73 which calculate run time internally and proceed to normal termination

of the code.

In addition I have included a graphical hierarchy of the class structure within the permutation

sampling Monte Carlo code, Figure 8.3. This graphically depicts how classes are related within the

code. The way information and data flows is designated by pointed arrows. As seen in the figure

all the arrows flow downwards, this exemplifies composition over inheritance and encapsulation

as no arrows are bi-directional.

Included in Appendix A is the manual for permutation sampling Monte Carlo.
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Figure 8.2: Main source code for permutation sampling Monte Carlo

Figure 8.3: Graphical Hierarchy of the class structure from the main source code
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Chapter 9

Collaborative Projects

9.1 Introduction

This chapter will introduce collaborative projects that I was apart of during my time at Syracuse

University. I had the great opportunity to work on projects with the Dr. Pranav Soman group at

the Syracuse Biomaterials Institute and the Dr. Weiwei Zhang group within the Department of

Chemistry. I will provide brief introduction into the collaborative work and the results that I was

able to contribute to the projects.

9.2 Investigation of Optical Properties of Silver Nanoclusters

9.2.1 Introduction

Recently a synthetic method was developed by Kunwar et. al.[146, 147] which demonstrated

the creation of silver nanoclusters in a polymer film by direct-laser writing. Their method was

able to create highly photostable Ag nanoclusters of various sizes entrapped in the polymer film.

This synthetic procedure allows for size-controlled Ag nanocluster formation that is dependent on

irradiation time. Since the Ag nanoclusters are trapped in a polymer matrix aggregation of the

nanoclusters is prevented. Thereby allowing for the novel examination of the optical properties as

a function of time and size, see Figure 9.1. They observe a sharp increase in fluorescent intensity to
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a maximum, followed by a gradual decay in intensity during Ag nanocluster formation. Currently,

their experimental studies are limited in definitely providing information of the Ag nanocluster

structure. Hence, they are unable to prove the transition of these Ag nanocluster to nanoparticles

to bulk material.

Figure 9.1: (a) Fluorescence intensity of Ag polymer matrix during irradiation. The inset demon-
strates the effect of fluorescent intensity with various irradiation intensities. (b) Fluorescence mi-
croscopy images at time points 1-8 from (a). (Figure 1)[146]

9.2.2 Results

The intent of the presented work will be to provide collaborative theoretical support for their

experimental claims. The theoretical investigation will primarily focus on understanding excited

state properties like oscillator strength and excitation energy as a function of increasing number of

atoms. This will hopefully gain insight into the experimental claims that the an increased florescent

intensity can be observed within a series of silver clusters.

Since the theoretical investigation is trying to understand the fluorescent quenching from ex-

periment, the Hartree-Fock calculations will need to account for Ag clusters ranging from <1 nm
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to 5 nm (16 ∼ 14000 atoms). This equates to a range of 752 to 658,000 total electrons, which is

computationally expensive and impractical. The use of CRENBS basis and effective core potential

(ECP) will assist with the theoretical choke by limiting the number of active electrons from 47 per

atom to 11 per atom.[148] The use of ECP will allow for a significant reduction in the number

of basis functions by approximating the core electrons as a psuedopotential as compared to a full

electron basis like 3-21G, Table 9.1. Utilizing CRENBS basis and ECP also significantly reduces

the number of basis functions to just the valence shell. Even though we are using a very minimal

basis set, we are limited by the SCF procedure to (>2 nm) Ag clusters in size.

Table 9.1: The number of basis functions for 2nm Ag cluster

Basis set Nb Nelec
3-21G 17280 11280
CRENBS ECP 4320 2640

The presented work will focus on a range of Ag clusters under <2 nm in diameter, Table 9.2.

The initial geometries for the clusters were generated by cutting dots of the desired size from metal-

lic Ag structure.[149] The SCF procedure was performed using the Q-CHEM package[150] with

CRENBS basis and ECP. Instead of performing geometry optimization calculations that would

likely fail or be too computationally expensive, a systematic approach was taken to obtain the

lowest energy structure.

Table 9.2: Computational impact of Ag clusters.

Natm Nb Nelec
2 36 22

16 288 176
44 792 484
68 1224 748
80 1440 880
92 1656 1012

104 1872 1144
116 2088 1276
128 2304 1408

In order to keep the cost of the SCF procedure at a minimum it was decided that we would like
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to preserve as much symmetry of the cluster as possible. Since the geometry was cut from a pristine

bulk structure it was expected that the average distance of the silver atoms should increased to relax

the structure. Therefore it was decided that scaling the distance of the atoms from the origin would

be the grounds for the geometry optimization. Where the inner shell is defined as the atoms that

had a distance ≤ r
2 , where r is the radius of the cluster and the outer shell where distances > r

2 .

The inner shell will be scaled by α and the outer shell by β to allow the cluster to be dynamically

scaled. The various permutations of α and β from the initial structure were then run to obtain

their total SCF energy to find the lowest energy structure. This was then used to construct an

energy surface for Ag80 in, Figure 9.2, where the blue dot was the lowest energy geometry from

the systematic geometry search. This geometry search was performed for all the structures. This

Figure 9.2: A plot of the total SCF energy for Ag80 at various geometries that were systematically
searched for by a scalar radial approach.

radial scaling consisted of two components, which were separated by the inner shell and outer shell

of the cluster.

A key excited state property that will aid in understanding the experimental observations is the

oscillator strength. The oscillator strength is the probability of an excitation between an occupied

and unoccupied orbital. If we can understand the oscillator strength as a function of increasing

atom size, then the theoretical work can help understand the experimental observations. The os-

cillator strength was calculated for all single excitation permutations for the 10 highest energy
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occupied and 10 lowest energy unoccupied Hartree-Fock orbitals. These results were then his-

togrammed according the calculated oscillator strength to better interpret the results, Figure 9.3.

The width of the bins are related to the energy of the excitation, therefore a narrow bin is the lowest

excitation. These results show that as the number of silver atoms increase there is a point, Ag68,

for which there is a sharp increase in oscillator strength. Which is the exact observation seen from

Kunwar et. al.[146, 147].

0

10

20

30

40

50

60

Ag2
Ag16

Ag44

Ag68

Ag80

Ag92

Ag104

Ag116

Ag128

  

 

frequency

if
2

Figure 9.3: A plot which shows a histogram of oscillator strengths for the 10 highest occupied and
10 lowest unoccupied orbitals of silver nanoclusters.

9.2.3 Conclusion

The challenge within the presented Ag nanoclusters was in regards to the next interest in obtaining

electron-correlated excitation energies. It was at this junction that development began on the previ-

ously reported work in Chapter 5 to assist within this collaborative project. The true advancement

towards this project lies in the dressed molecular orbitals method presented in ??. With these two

methods developed the understanding of the excited states for the various Ag nanoclusters could

continue.
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9.3 Understanding Mn2+ Dopant Migration in CdS/ZnS Quantum Dots

9.3.1 Introduction

They were interested in gathering a computational understanding of dopant migration versus dopant

ejection in incorporated dopants in core/shell quantum dots for a manuscript in preparation. This

thermodynamic study expands on their previously reported work.[151] The goal of the compu-

tational work was to determine if Mn2+ dopant ion in a CdS/ZnS core/shell quantum dot was

migrating or ejecting from the dot to provide further conclusions to the experimental work. The

difference is subtle but is all dependent on the thermodynamics of the interaction of the dopant ion

to the core/shell lattice. Dopant migration is an activated processes where energy is needed for the

dopant to move over energy barriers. Dopant ejection is not an activated process and requires no

energy for the dopant to traverse the quantum dot. Below I am providing the theoretical details

and results for these studies that are being prepared for publication.

9.3.2 Theory

The thermodynamics of the dopant migration was investigated computationally by evaluating

the relative effective radial Helmholtz free energy, ∆Aeff(r) experienced by the dopant ion. The

∆Aeff(r) provided key thermodynamic insight into effect of dopant ion at the core/shell interface

and the experimentally observed temperature dependence of the migration. To calculate ∆Aeff(r)

, we define the radial configuration integral Z(r,T ) which is mathematically expressed as Equa-

tion 9.1

Z(r,T ) =
∫ +∞

−∞

∂r′exp
[−Udopant−lattice(r′)

kBT

]
∂ (|r′|− r) (9.1)

where, T is temperature, kB is Boltzmann constant. The relationship between the Helmholtz free

energy and the configuration integral is well-known [152] and the free energy is proportional to
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the logarithm of the configuration integral

A(r,T ) ∝−RT ln [Z(r,T )] (9.2)

Using Z(r,T ), we define the change in the radial Helmholtz free energy ∆A(r) as

∆Aeff(r) = A(r)−A(r0) =−RT ln
[

Z(r,T )
Z(r0,T )

]
(9.3)

where r0 is some reference point. The free energy barrier associate with the migration of the

dopant was used to calculate the rate constant of the transition using transistion state theory as

shown below,

k(T ) =
kBT

h
e−

∆A†
kBT (9.4)

where k(T ) is the rate constant, ∆A† is the free enregy barrier along the transition path and h is the

Planck’s constant.

9.3.3 Computational Details

Computational investigation of the Mn2+ migration in the CdS/ZnS host lattice was performed at

quantum mechanical level using density functional theory (DFT). The Q-CHEM electronic struc-

ture package [60] was used and the DFT calculation were performed using the B3LYP functional

with LANL2DZ effective-core potential and basis set. The core/shell QD with the stoichiometric

formula of Cd288S288/Zn2488S2488, having a core radius of 1.5 nm and a dot radius of 3.0 nm was

constructed from the bulk crystal structures. Analysis of the quantum mechanics data revealed

that the interaction of the Mn2+ with the host lattice can be predominantly described by a pairwise

ion-dipole interaction potential as shown in Equation 9.5,
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Udopant−lattice = ∑
i

C
|rdopant−Rlattice

i |2 (9.5)

where Rlattice is the center of the dipole, r is the position of the dopant, and C is an adjustable

parameter optimized to fit the DFT data. The integrals needed for calculating ∆Aeff(r) were eval-

uated numerically using Monte Carlo sampling. Specifically,

[
Z(r,T )

Z(r0,T )

]
≈

∑
Nsample
i=1

[−Udopant−lattice(rη̂i)
kBT

]
∑

Nsample
i=1

[−Udopant−lattice(r0η̂i)
kBT

] (9.6)

where, {η̂i} is a set of unit vectors distributed randomly on a unit sphere. The vectors {rη̂i}

uniformly sampled points that are distance r from the center of the dot. For each value of the r, a

million randomly generated points were used for performing Monte Carlo sampling, this procedure

was repeated for 10 additional runs to provide data to obtain averages for each temperature. The

for the Helmholtz free energy , was selected at the local minima in the core region of the QD. The

calculated values of the relative Helmholtz free energy is presented in Figure S16 and S17 as a

function of the dopant distance r from the center of the QD.

9.3.4 Results and Discussion

The calculated radial free energy for the movement of Mn dopants in CdS/ZnS QDs exhibits a lo-

cal minimum at the core/shell interface of -0.111 eV at 573 K (r = 1.5 nm, Figure 9.4, Figure 9.5)

Therefore, the dopant migration from the interior of the core towards the interface is due to de-

crease in the overall free energy. However, this decrease in the free energy is not monotonic and

the minima at the core/shell interface is preceded by a free energy barrier within the CdS core, with

a barrier height of 4.25E-3 eV at r = 0.8 nm at 573 K. The presence of this barrier indicates that

dopant migration requires thermal activation to overcome the barrier within the core (Figure 9.5).

The plot of the relative radial free energy also shows the presence of a high energy barrier with
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Figure 9.4: Density function theory calculation of Mn:CdS core QDs dispersed in hexane. (a) The
average relative potential the Mn(II) ion experiences at various radial positions in the CdS core and
solution and (b) The average relative free energy of the Mn(II) ion, CdS core, and solvent system
as the Mn(II) ion moves radial through the system at the lowest (393 K) and highest temperature
(573 K) from the experimental study.

the height of 1.59E-2 eV in the ZnS shell region (r = 1.5 - 3 nm, 573 K) for the ejection of the

dopants from the core/shell minimum to solvent minimum. The barrier for dopant ejection was

broader and higher than the migration to the core/shell interface, by 1.16E-2 eV, which is consis-

tent with fact that higher temperature required for dopant ejection than dopant migration observed

in our experiments. The rate constants of reactions for CdS/ZnS show that the rate limiting step

is the interface to solvent reaction (kInte f ace) step, Figure 9.5. The ratio of the rate of reactions for

the CdS/ZnS QD show that the rate for Mn dopant migration from kCore, is 1.7 times higher than

migration from interface to solvent (kInter f ace) at lower temperatures, demonstrating that dopant

migration to interface is faster than Mn dopant ejection to solvent.

The dopant migration was also computationally evaluated for core-only CdS QDs in solvent

without ZnS shell and core/shell interface, Figure 9.6. The plot of the radial free energy (Figure

S17b) shows a free energy barrier in the CdS QD with the highest free energy barrier of 2.69E-3

eV at r = 0.8 nm. This demonstrates that dopant ejection in the simple doped CdS QDs still require

high thermal activation. The difference between CdS and CdS/ZnS is the presence of the core/shell

minimum and shell to solvent barrier in the CdS/ZnS QDs (Figure 6a). The rate constant of for

the migration of the dopant (kCore) in the CdS QDs from the core region was found to be slower
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Figure 9.5: (a) The free energy profile along the reaction coordinate for Mn(II) ion migration in the
CdS/ZnS and CdS host lattice at 573 K. The green, yellow, and purple regions indicate the core,
shell, and solvent regions, respectively for the CdS/ZnS QDs. Two distinct barriers are observed
in the CdS/ZnS QDs, first from the core to core/shell interface and second from the core/shell
interface to solvent. In contrast, only one barrier from core to solvent, is observed for CdS QDs.
(b) Rate constants of reactions for Mn(II) ion in both CdS/ZnS and CdS host lattice systems as a
function of temperature.

than the corresponding (kCore) in CdS/ZnS QDs (Figure 9.5). This observation indicates that the

presence of the core/shell interface has a positive impact of increasing the rate constant of the

migration of the dopant from the core region.
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Figure 9.6: Density function theory calculation of Mn:CdS/ZnS core/shell QDs dispersed in hex-
ane. (a) The average relative potential the Mn(II) ion experiences at various radial positions in the
quantum dot and solution and (b) The average relative free energy of the Mn(II) ion, quantum dot,
and solvent system as the Mn(II) ion moves radial through the system at the lowest and highest
temperature from the experimental study.
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9.3.5 Conclusion

In summary, the presented work shows that dopant migration is the primary reaction within these

quantum dot systems. That dopant ejection is not present since thermal energy barriers exist within

the Helmholtz free energy of the system. The presented theoretical work on Mn2+ dopant migra-

tion was added as part of the larger experimental work from the Zheng group that was recently

accepted for publication. The theoretical method that was introduced has its own merit for fur-

ther theoretical investigations into other dopant migration models. It provides a simplistic Monte

Carlo method that can be used for large many-atom systems for understanding thermodynamic

properties.
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Chapter 10

Conclusions and Future Work

In this work, 5 methods were presented. In Chapter 5, the frequency-dependent geminal-screened

electron-hole interaction kernel (FD-GSIK) method was presented. Within this work the FD-GSIK

method was able to demonstrate new development towards efficient implementation of electron-

hole interaction kernel. The method provided a frequency-dependent kernel which greatly reduced

the computational effort in excited state calculations, demonstrated by large many-electron semi-

conductor quantum dots. In Chapter 6, the dressed molecular orbital basis was introduced. This

method was an advancement of the FD-GSIK method by providing a basis to be used to un-

derstand the multi-reference nature of highly degenerate systems. The dressed molecular orbital

basis provided a compression of the configuration space to reduce computational effort in the ex-

cited state calculations. This method was demonstrated with silver nanowires, which demonstrate

highly degenerate orbitals, particularly near the HOMO-LUMO gap. With this approach I was

able to demonstrate a blue shift in excitation energy for long silver nanowires. In Chapter 7, the

derivation of moment generated molecular orbital basis was presented. This approach provides a

method for obtaining electron-correlation through moments of a reference particle/hole state with-

out the use of the projector operator Λ(ω,reh). In Chapter 8, the permutation sampling Monte

Carlo integration method was presented. The permutation sampling Monte Carlo method provides

a sampling technique that decouples dimensionality within integrals. The presented work focuses

on the design and implementation of the algorithm towards developing a integration tool that is
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computationally efficient. This was demonstrated through a graphical hierarchy that depicts the

use of object-oriented programming paradigm. The final method was presented within Chapter 9

which contained the theoretical investigations within collaborative efforts. The method presented

was a Monte Carlo sampling technique that allowed for modeling the thermodynamic interactions

between Mn2+ and CdS/ZnS quantum dot. This approach allowed for determining that free en-

ergy barriers exist within the system which demonstrated that dopant migration was the dominate

process. Rather than the expected dopant ejection which requires no energy.

Efficient implementations, particularly in the excited state calculations are of key focus within

the presented work. Understanding the challenges in modern excited state theories are essential to

the motivation of all the presented work. Chapter 4 provided a brief introduction to the theory and

implementations of popular methods. Second quantization in Chapter 3 provides an understanding

of the notation used throughout the thesis. Finally Chapter 2 provided background information to

the main challenge within quantum chemistry obtaining a ground state wave function and electron

correlation energy.

The future of the presented methods include utilizing FD-GSIK to investigate chemically in-

teresting systems, that are computationally prohibited by existing excited state methods. Much of

the work presented with FD-GSIK was towards validation of the theory and implementation. An

example of a future investigation with FD-GSIK is to use it towards understanding the effect of

distance between asphaltene dimers. The FD-GSIK can also advance with trying to understand

thermal broadening due to Boltzmann distribution of structures. Since FD-GSIK is a computation-

ally cheap excited state method, investigations into understanding an ensemble of structure can

provide insight into experimental comparisons. In addition, dressed molecular orbital basis can be

used to understand the energy transfer between two quantum dots. The dressed molecular orbital

basis provides an approach to deal with high degeneracy that can be present in separated quantum

dots interacting with each other. With the implementation of dressed molecular orbitals and FD-

GSIK investigation into silver nanoclusters could continue. These two presented methods provide

essential theory that was not developed during the collaborative work but could prove useful for

understanding the experimental observations in the optical properties. The future of moment gener-
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ate basis is to implement the theory to validate the approach towards obtaining electron-correlated

excitation energies. The approached used for understanding dopant migration in quantum dots

can also be used for other systems. The method was not derived specifically for the collaborative

work, and has its own merit towards understanding thermodynamic properties in molecular sys-

tems. The future of permutation sampling Monte Carlo method is to integrate to a GPU platform

through CUDA. The development was focused on providing GPU acceleration towards providing

a fast and efficient integration package. Development will also include providing more functional-

ity to the sampling techniques used within permutation sampling Monte Carlo, to provide a more

accurate integration but maintain computational efficiency.
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Appendix A

Monte Carlo Variance Reduction

Monte Carlo integration was an key component of many methods presented. It is relevant to

take note of several key variance reduction techniques used throughout the works that improve

on the quality of the Monte Carlo method. Within Monte Carlo integration, error variance has

the form σ2/n, where σ2 is the variance within a sample and n is the number of samples. The

final error variance and thereby the quality of the method can be improved in two ways, first by a

larger value of n which comes at the cost of computational time, or by reducing σ . The variance

reduction techniques that will be presented are antithetic sampling, stratification, control variate

and importance sampling.

A.0.1 Antithetic Sampling

Suppose that the goal of the Monte Carlo integration is to evaluate the following integral,

∫ π

−π
sin(x)dx = 0 (A.1)

The exact solution of 0 is due to the symmetry of the function at x = 0, which means that,

f (xi) =− f (−xi). If we were to evaluate this integral using Monte Carlo, cancellation of sample xi

of would not occur until−xi is sampled, which isn’t guaranteed unless n→∞. Antithetic sampling

is based on improving cancellation of error within the Monte Carlo method by increasing the num-

ber of sampling points. This done by enforcing that for every sample, the equally probably opposite
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sample is also evaluated. So from the example, for every sample of xi, −xi will also be evaluated,

thereby ensuring cancellation within the integral evaluation since f (x1)+ f (x1) =− f (−x1) = 0.

In antithetic sampling the overall number of sampling points is increased exponentially based on

the dimensionality of the sampling point, n ∗ (2)Ndim . Therefore even though antithetic sampling

is useful for variance reduction, the dimensionality of the Monte Carlo integration could prove

burdensome and computationally costly for evaluating all antithetic points.

A.0.2 Stratification

Stratified sampling is the idea of splitting up the sampling region into separate regions to create a

fair distribution. Imagine that a Gaussian function, g(x) is going to be evaluated through Monte

Carlo sampling of random points, Figure A.1. Notice that the region where g(x) would provide
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Figure A.1: A graph of a normalized Gaussian function.

any significant contribution to the calculation is from −2 ≤ x ≤ 2, since g(x) ≈ 0 when |x| >

2. Stratification takes advantage of this by creating strata, or regions in which sampling would

occur. In the case of Figure A.1, strata could be constructed that are from the regions of x < −2,

−2 ≤ x ≤ 2, and x > 2. From these strata the Monte Carlo sampling will be restricted to these

regions, whether the sampling will be uniform or weighted. Since the function is known, we could

therefore sample the 2nd strata significantly more than the other two strata. This way our sampling

is improving σ of the overall calculation by directly improving the evaluate within each strata since

the σ of strata 1 and 2 would not significantly change since g(x)≈ 0. In the long run stratification
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will also improve the cost of the Monte Carlo sampling by ensuring that efficient sampling is taking

place in strata that are significant.

A.0.3 Control Variate

The next variance reduction technique of interest is control variate. The purpose of a control

variate is to improve the error in our desired calculation by understanding the error obtained from

a known quantity. Say we want to know 〈 f (x)〉 of function, f (x) and we have a second function,

h(x) for which we know 〈h(x)〉, exactly. As we sample f (x) we are going to subtract h(x) and add

〈h(x)〉 to the end of the Monte Carlo integration,

〈 f (x)〉= 1
n

n

∑
i=1

[ f (xi)−h(xi)]+ 〈h(x)〉 (A.2)

What this does is that the error obtained at h(xi) is removed from f (xi), thereby leading to cancel-

lation of errors from the whole integration because in the end of the evaluation we should have,

〈 f (x)〉= 1
n

n

∑
i=1

[ f (xi)−h(xi)]+ 〈h(x)〉 (A.3)

〈 f (x)〉= 〈 f (x)〉−〈h(x)〉MC + 〈h(x)〉exact if 〈h(x)〉MC = 〈h(x)〉exact (A.4)

〈 f (x)〉= 〈 f (x)〉 (A.5)

Note the distinction of 〈h(x)〉MC = 〈h(x)〉exact , for evaluation of h(x) through Monte Carlo sam-

pling and exactly. The use of control variate allows for cancellation in the error obtained in

〈h(x)〉MC from the Monte Carlo procedure by correcting with the exact result, 〈h(x)〉exact . This

in turn improves the error obtained for our desired calculation of 〈 f (x)〉 by simply evaluating an-

other function during each Monte Carlo step. The use of control variate also allows for easily

evaluation of the quality of the Monte Carlo procedure as 〈h(x)〉MC can quantify if sampling was

sufficient.
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A.0.4 Importance Sampling

The final variance reduction technique that is of note is importance sampling. Importance sampling

is simply taking a distribution, ρ with a known expectation value and creating a biased use of ρ

that provides a different expectation value. Imagine that we have a ”fair” 6-sided die, which is

a die that has a fair probability of 1/6 for rolling any value and therefore an expectation value

of 3.5. Now think of a probability, ρ ′ for which is a distribution of a ”biased” die, that has an

expectation value lower than 3.5. This distribution is created when the rolls of the die are unfair

and more heavily weighted toward lower values on the die, resulting in a lower expectation value.

The key to importance sampling is creating an expectation value of the ”biased” die using ρ from

the ”fair” die, by weighting the importance of a die roll or by sampling the ”important” values

more frequently. If the important values are sampled more frequently then the variance in the

expectation value will be lower.
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Appendix A

Manual for Permutation Sampling Monte Carlo
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Chapter 1

Class Index

1.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

CoordParam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
FileParam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Matrix< T > . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
MCParam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
MCRunDriver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
MOGrid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
RandUtils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
RandWrapper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
RTVariables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
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Chapter 2

File Index

2.1 File List

Here is a list of all files with brief descriptions:

001_main.cpp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
100_MCRunDriver.cpp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
100_MCRunDriver.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
400_RTVariables.cpp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
400_RTVariables.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
500_MCParam.cpp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
500_MCParam.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
800_CoordParam.cpp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
800_CoordParam.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
800_MOGrid.cpp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
800_MOGrid.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
900_FileParam.cpp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
900_FileParam.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
900_RandUtils.cpp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
900_RandUtils.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
999_col_major_idx.cpp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Matrix.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
RandWrapper.cpp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
RandWrapper.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
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Chapter 3

Class Documentation

3.1 CoordParam Class Reference

#include <800_CoordParam.h>



6 Class Documentation

Collaboration diagram for CoordParam:

CoordParam

+ CoordParam()
+ ~CoordParam()
+ build()
+ check_all()
+ print_info()
+ get_vol()
+ calc_volume()
+ get_xmin()
+ get_xmax()
+ set_xmin()
+ set_xmax()
+ get_ndim()
+ transform_t_to_x()
- CoordParam()
- operator=()

double

 -vol_

std::vector< double >

 +elements

int

 -ndim_
 -xmax_
-xmin_
-length_

std::vector< T >

 < double >

T

 +elements

Public Member Functions

• CoordParam ()
• ∼CoordParam ()
• void build (const string &infile)
• void check_all () const
• void print_info () const
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• void get_vol (double &vol) const
• void calc_volume ()
• void get_xmin (vector< double > &xmin) const
• void get_xmax (vector< double > &xmax) const
• void set_xmin (vector< double > &xmin)
• void set_xmax (vector< double > &xmax)
• void get_ndim (int &ndim) const
• void transform_t_to_x (const vector< double > &tvec, vector< double > &xvec) const

Private Member Functions

• CoordParam (const CoordParam &rhs)
• CoordParam & operator= (const CoordParam &rhs)

Private Attributes

• int ndim_
• double vol_
• vector< double > xmin_
• vector< double > xmax_
• vector< double > length_

3.1.1 Detailed Description

Definition at line 12 of file 800_CoordParam.h.

3.1.2 Constructor & Destructor Documentation

3.1.2.1 CoordParam::CoordParam ( )

Definition at line 13 of file 800_CoordParam.cpp.

3.1.2.2 CoordParam::∼CoordParam ( )

Definition at line 18 of file 800_CoordParam.cpp.

3.1.2.3 CoordParam::CoordParam ( const CoordParam & rhs ) [private]

3.1.3 Member Function Documentation

3.1.3.1 void CoordParam::build ( const string & infile )

Definition at line 23 of file 800_CoordParam.cpp.

3.1.3.2 void CoordParam::calc_volume ( )

Definition at line 142 of file 800_CoordParam.cpp.

3.1.3.3 void CoordParam::check_all ( ) const

Definition at line 160 of file 800_CoordParam.cpp.
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8 Class Documentation

3.1.3.4 void CoordParam::get_ndim ( int & ndim ) const

Definition at line 150 of file 800_CoordParam.cpp.

3.1.3.5 void CoordParam::get_vol ( double & vol ) const

Definition at line 155 of file 800_CoordParam.cpp.

3.1.3.6 void CoordParam::get_xmax ( vector< double > & xmax ) const

Definition at line 101 of file 800_CoordParam.cpp.

3.1.3.7 void CoordParam::get_xmin ( vector< double > & xmin ) const

Definition at line 88 of file 800_CoordParam.cpp.

3.1.3.8 CoordParam& CoordParam::operator= ( const CoordParam & rhs ) [private]

3.1.3.9 void CoordParam::print_info ( ) const

Definition at line 65 of file 800_CoordParam.cpp.

3.1.3.10 void CoordParam::set_xmax ( vector< double > & xmax )

Definition at line 128 of file 800_CoordParam.cpp.

3.1.3.11 void CoordParam::set_xmin ( vector< double > & xmin )

Definition at line 114 of file 800_CoordParam.cpp.

3.1.3.12 void CoordParam::transform_t_to_x ( const vector< double > & tvec, vector< double > & xvec ) const

Definition at line 75 of file 800_CoordParam.cpp.

3.1.4 Member Data Documentation

3.1.4.1 vector<double> CoordParam::length_ [private]

Definition at line 34 of file 800_CoordParam.h.

3.1.4.2 int CoordParam::ndim_ [private]

Definition at line 30 of file 800_CoordParam.h.

3.1.4.3 double CoordParam::vol_ [private]

Definition at line 31 of file 800_CoordParam.h.
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3.1.4.4 vector<double> CoordParam::xmax_ [private]

Definition at line 33 of file 800_CoordParam.h.

3.1.4.5 vector<double> CoordParam::xmin_ [private]

Definition at line 32 of file 800_CoordParam.h.

The documentation for this class was generated from the following files:

• 800_CoordParam.h

• 800_CoordParam.cpp

3.2 FileParam Class Reference

#include <900_FileParam.h>

Generated on Tue Jun 23 2020 13:55:23 for Permutation_Sampling_Code by Doxygen



10 Class Documentation

Collaboration diagram for FileParam:

FileParam

+ FileParam()
+ ~FileParam()
+ build()
+ build()
+ check_all()
- FileParam()
- operator=()

std::string

 +usr_func_file_
+mcrun_file_

+mohfile_
+usr_rangefile_

+binfile_
+moefile_
+mohinfo_
+moeinfo_

std::basic_string<
 char >

Public Member Functions

• FileParam ()
• ∼FileParam ()
• void build ()
• void build (const string &gridfile, const string &mohfile, const string &moefile, const string &usr_rangefile,

const string &mcrun_file, const string &binfile)
• void check_all () const

Public Attributes

• string mohinfo_
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• string moeinfo_
• string mohfile_
• string moefile_
• string usr_rangefile_
• string mcrun_file_
• string binfile_
• string usr_func_file_

Private Member Functions

• FileParam (const FileParam &rhs)
• FileParam & operator= (const FileParam &rhs)

3.2.1 Detailed Description

Definition at line 8 of file 900_FileParam.h.

3.2.2 Constructor & Destructor Documentation

3.2.2.1 FileParam::FileParam ( )

Definition at line 10 of file 900_FileParam.cpp.

3.2.2.2 FileParam::∼FileParam ( )

Definition at line 15 of file 900_FileParam.cpp.

3.2.2.3 FileParam::FileParam ( const FileParam & rhs ) [private]

3.2.3 Member Function Documentation

3.2.3.1 void FileParam::build ( )

Definition at line 20 of file 900_FileParam.cpp.

Here is the caller graph for this function:

FileParam::build main

3.2.3.2 void FileParam::build ( const string & gridfile, const string & mohfile, const string & moefile, const string &
usr_rangefile, const string & mcrun_file, const string & binfile )

Definition at line 33 of file 900_FileParam.cpp.
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12 Class Documentation

3.2.3.3 void FileParam::check_all ( ) const

Definition at line 46 of file 900_FileParam.cpp.

Here is the caller graph for this function:

FileParam::check_all main

3.2.3.4 FileParam& FileParam::operator= ( const FileParam & rhs ) [private]

3.2.4 Member Data Documentation

3.2.4.1 string FileParam::binfile_

Definition at line 26 of file 900_FileParam.h.

3.2.4.2 string FileParam::mcrun_file_

Definition at line 25 of file 900_FileParam.h.

3.2.4.3 string FileParam::moefile_

Definition at line 23 of file 900_FileParam.h.

3.2.4.4 string FileParam::moeinfo_

Definition at line 21 of file 900_FileParam.h.

3.2.4.5 string FileParam::mohfile_

Definition at line 22 of file 900_FileParam.h.

3.2.4.6 string FileParam::mohinfo_

Definition at line 20 of file 900_FileParam.h.

3.2.4.7 string FileParam::usr_func_file_

Definition at line 27 of file 900_FileParam.h.
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3.2.4.8 string FileParam::usr_rangefile_

Definition at line 24 of file 900_FileParam.h.

The documentation for this class was generated from the following files:

• 900_FileParam.h
• 900_FileParam.cpp

3.3 Matrix< T > Class Template Reference

#include <Matrix.h>

Inheritance diagram for Matrix< T >:

Matrix< T >

- nrow_
- ncol_
- A_

+ Matrix()
+ Matrix()
+ ~Matrix()
+ init()
+ ncol()
+ nrow()
+ get()
+ set()
+ get_raw_ptr()
- Matrix()
- operator=()

Matrix< double >

- nrow_
- ncol_
- A_

+ Matrix()
+ Matrix()
+ ~Matrix()
+ init()
+ ncol()
+ nrow()
+ get()
+ set()
+ get_raw_ptr()
- Matrix()
- operator=()

 < double >

Matrix< int >

- nrow_
- ncol_
- A_

+ Matrix()
+ Matrix()
+ ~Matrix()
+ init()
+ ncol()
+ nrow()
+ get()
+ set()
+ get_raw_ptr()
- Matrix()
- operator=()

 < int >
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14 Class Documentation

Collaboration diagram for Matrix< T >:

Matrix< T >

+ Matrix()
+ Matrix()
+ ~Matrix()
+ init()
+ ncol()
+ nrow()
+ get()
+ set()
+ get_raw_ptr()
- Matrix()
- operator=()

int

 -nrow_
-ncol_

vector< T >

 -A_

Public Member Functions

• Matrix ()
• Matrix (const int &nrow, const int &ncol)
• ∼Matrix ()
• void init (const int &nrow, const int &ncol)
• int ncol () const
• int nrow () const
• void get (const int &irow, const int &icol, T &val) const
• void set (const int &irow, const int &icol, const T &val)
• void get_raw_ptr (T ∗&ptr)

Private Member Functions

• Matrix (const Matrix &rhs)
• Matrix & operator= (const Matrix &rhs)

Private Attributes

• int nrow_
• int ncol_
• vector< T > A_

Generated on Tue Jun 23 2020 13:55:23 for Permutation_Sampling_Code by Doxygen



3.3 Matrix< T > Class Template Reference 15

3.3.1 Detailed Description

template<class T>class Matrix< T >

Definition at line 14 of file Matrix.h.

3.3.2 Constructor & Destructor Documentation

3.3.2.1 template<class T> Matrix< T >::Matrix ( ) [inline]

Definition at line 16 of file Matrix.h.

3.3.2.2 template<class T> Matrix< T >::Matrix ( const int & nrow, const int & ncol ) [inline]

Definition at line 17 of file Matrix.h.

3.3.2.3 template<class T> Matrix< T >::∼Matrix ( ) [inline]

Definition at line 20 of file Matrix.h.

3.3.2.4 template<class T> Matrix< T >::Matrix ( const Matrix< T > & rhs ) [private]

3.3.3 Member Function Documentation

3.3.3.1 template<class T> void Matrix< T >::get ( const int & irow, const int & icol, T & val ) const [inline]

Definition at line 37 of file Matrix.h.

Here is the caller graph for this function:

Matrix::get

MCRunDriver::mc_shuffle

MCRunDriver::mc_engine

RandUtils::calc_randmat MCRunDriver::mc_with
_fixed_dist

3.3.3.2 template<class T> void Matrix< T >::get_raw_ptr ( T ∗& ptr ) [inline]

Definition at line 54 of file Matrix.h.

3.3.3.3 template<class T> void Matrix< T >::init ( const int & nrow, const int & ncol ) [inline]

Definition at line 22 of file Matrix.h.
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16 Class Documentation

3.3.3.4 template<class T> int Matrix< T >::ncol ( ) const [inline]

Definition at line 30 of file Matrix.h.

Here is the caller graph for this function:

Matrix::ncol RandUtils::calc_randmat MCRunDriver::mc_with
_fixed_dist

3.3.3.5 template<class T> int Matrix< T >::nrow ( ) const [inline]

Definition at line 33 of file Matrix.h.

Here is the caller graph for this function:

Matrix::nrow RandUtils::calc_randmat MCRunDriver::mc_with
_fixed_dist

3.3.3.6 template<class T> Matrix& Matrix< T >::operator= ( const Matrix< T > & rhs ) [private]

3.3.3.7 template<class T> void Matrix< T >::set ( const int & irow, const int & icol, const T & val ) [inline]

Definition at line 46 of file Matrix.h.

Here is the caller graph for this function:

Matrix::set

MCRunDriver::mc_shuffle

RTVariables::get_npt
_per_dim_bin

MCParam::get_bin_wt

RandUtils::calc_randmat

MCRunDriver::mc_with
_fixed_dist

RTVariables::set_user
_defined_seg_wt MCRunDriver::run main

3.3.4 Member Data Documentation

3.3.4.1 template<class T> vector<T> Matrix< T >::A_ [private]

Definition at line 64 of file Matrix.h.
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3.4 MCParam Class Reference 17

3.3.4.2 template<class T> int Matrix< T >::ncol_ [private]

Definition at line 63 of file Matrix.h.

3.3.4.3 template<class T> int Matrix< T >::nrow_ [private]

Definition at line 62 of file Matrix.h.

The documentation for this class was generated from the following file:

• Matrix.h

3.4 MCParam Class Reference

#include <500_MCParam.h>
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18 Class Documentation

Collaboration diagram for MCParam:

MCParam

+ MCParam()
+ ~MCParam()
+ build()
+ check_all()
+ calc_bin_index()
+ get_mc_nloop_wt_update()
+ get_ndim()
+ get_nbin()
+ get_nshuffle()
+ get_ibin_start()
+ get_tgt_npt()
+ get_mc_base_pts()
+ get_mc_nloop_randmat
_update()
+ get_mc_max_xnpt()
+ get_mc_randmat_npt()
+ get_bin_wt()
+ get_bin_start()
- MCParam()
- operator=()
- read_mc_info()
- read_bin_wt()
- check_bin_wt_read()
- bin_init()
- normalize_binwts()
- mc_init()

Matrix< double >

+ Matrix()
+ Matrix()
+ ~Matrix()
+ init()
+ ncol()
+ nrow()
+ get()
+ set()
+ get_raw_ptr()
- Matrix()
- operator=()

 -bin_wt_

int

 -mc_wtdist_npt_
-num_shuffle_

-ndim_
-nbin_

-mc_base_npt
_

-mc_nloop_wt
_update_

-mc_nloop_randmat
_update_

-mc_randmat_npt_

 -nrow_
-ncol_

Matrix< T >

+ Matrix()
+ Matrix()
+ ~Matrix()
+ init()
+ ncol()
+ nrow()
+ get()
+ set()
+ get_raw_ptr()
- Matrix()
- operator=()

 -nrow_
-ncol_

std::vector< double >

 -bin_start_

 -A_

double

 -vol_
-mc_max_xnpt_

 +elements

std::vector< T >

 < double >

T

 +elements

 < double >

vector< T >

 -A_

Public Member Functions

• MCParam ()
• ∼MCParam ()
• void build (const FileParam &myFile, const UserParam &myUser)
• void check_all () const
• void calc_bin_index (const vector< double > &tvec, vector< int > &tvec_binidx) const
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3.4 MCParam Class Reference 19

• void get_mc_nloop_wt_update (int &nloop) const
• void get_ndim (int &ndim) const
• void get_nbin (int &nbin) const
• void get_nshuffle (int &nshuffle) const
• void get_ibin_start (const int &ibin, double &bin_val) const
• void get_tgt_npt (int &tgt_npt) const
• void get_mc_base_pts (int &base_pts) const
• void get_mc_nloop_randmat_update (int &mc_nloop_randmat_update) const
• void get_mc_max_xnpt (double &max_xnpt) const
• void get_mc_randmat_npt (int &mc_randmat_npt) const
• void get_bin_wt (Matrix< double > &some_mat) const
• void get_bin_start (vector< double > &bin_start) const

Private Member Functions

• MCParam (const MCParam &rhs)
• MCParam & operator= (const MCParam &rhs)
• void read_mc_info (const string &mcrun_file)
• void read_bin_wt (const string &binfile)
• void check_bin_wt_read (const int &ndim_local, const int &nbin_local) const
• void bin_init ()
• void normalize_binwts ()
• void mc_init ()

Private Attributes

• int ndim_
• int nbin_
• int num_shuffle_
• int mc_randmat_npt_
• int mc_base_npt_
• int mc_wtdist_npt_
• int mc_nloop_randmat_update_
• int mc_nloop_wt_update_
• double mc_max_xnpt_
• double vol_
• vector< double > bin_start_
• Matrix< double > bin_wt_

3.4.1 Detailed Description

Definition at line 13 of file 500_MCParam.h.

3.4.2 Constructor & Destructor Documentation

3.4.2.1 MCParam::MCParam ( )

Definition at line 18 of file 500_MCParam.cpp.

3.4.2.2 MCParam::∼MCParam ( )

Definition at line 23 of file 500_MCParam.cpp.
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3.4.2.3 MCParam::MCParam ( const MCParam & rhs ) [private]

3.4.3 Member Function Documentation

3.4.3.1 void MCParam::bin_init ( ) [private]

Definition at line 169 of file 500_MCParam.cpp.

3.4.3.2 void MCParam::build ( const FileParam & myFile, const UserParam & myUser )

Definition at line 28 of file 500_MCParam.cpp.

Here is the caller graph for this function:

MCParam::build main

3.4.3.3 void MCParam::calc_bin_index ( const vector< double > & tvec, vector< int > & tvec_binidx ) const

Definition at line 306 of file 500_MCParam.cpp.

Here is the caller graph for this function:

MCParam::calc_bin_index MCRunDriver::mc_engine

3.4.3.4 void MCParam::check_all ( ) const

Definition at line 372 of file 500_MCParam.cpp.

Here is the caller graph for this function:

MCParam::check_all main
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3.4 MCParam Class Reference 21

3.4.3.5 void MCParam::check_bin_wt_read ( const int & ndim_local, const int & nbin_local ) const [private]

Definition at line 346 of file 500_MCParam.cpp.

3.4.3.6 void MCParam::get_bin_start ( vector< double > & bin_start ) const

Definition at line 294 of file 500_MCParam.cpp.

Here is the caller graph for this function:

MCParam::get_bin_start MCRunDriver::mc_with
_fixed_dist

3.4.3.7 void MCParam::get_bin_wt ( Matrix< double > & some_mat ) const

Definition at line 283 of file 500_MCParam.cpp.

Here is the call graph for this function:

MCParam::get_bin_wt Matrix::set

Here is the caller graph for this function:

MCParam::get_bin_wt RTVariables::set_user
_defined_seg_wt MCRunDriver::run main

3.4.3.8 void MCParam::get_ibin_start ( const int & ibin, double & bin_val ) const

Definition at line 248 of file 500_MCParam.cpp.
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Here is the caller graph for this function:

MCParam::get_ibin_start MCRunDriver::calc_ref
_density_using_binidx

3.4.3.9 void MCParam::get_mc_base_pts ( int & base_pts ) const

Definition at line 258 of file 500_MCParam.cpp.

Here is the caller graph for this function:

MCParam::get_mc_base_pts MCRunDriver::calc_npt
_per_seg

3.4.3.10 void MCParam::get_mc_max_xnpt ( double & max_xnpt ) const

Definition at line 273 of file 500_MCParam.cpp.

Here is the caller graph for this function:

MCParam::get_mc_max_xnpt MCRunDriver::mc_with
_fixed_dist

3.4.3.11 void MCParam::get_mc_nloop_randmat_update ( int & mc_nloop_randmat_update ) const

Definition at line 263 of file 500_MCParam.cpp.
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Here is the caller graph for this function:

MCParam::get_mc_nloop
_randmat_update

MCRunDriver::mc_with
_fixed_dist

3.4.3.12 void MCParam::get_mc_nloop_wt_update ( int & nloop ) const

Definition at line 233 of file 500_MCParam.cpp.

Here is the caller graph for this function:

MCParam::get_mc_nloop
_wt_update MCRunDriver::run main

3.4.3.13 void MCParam::get_mc_randmat_npt ( int & mc_randmat_npt ) const

Definition at line 268 of file 500_MCParam.cpp.

Here is the caller graph for this function:

MCParam::get_mc_randmat_npt

MCRunDriver::mc_with
_fixed_dist

MCRunDriver::mc_shuffle

MCRunDriver::mc_engine

3.4.3.14 void MCParam::get_nbin ( int & nbin ) const

Definition at line 243 of file 500_MCParam.cpp.
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Here is the caller graph for this function:

MCParam::get_nbin

MCRunDriver::calc_npt
_per_seg

MCRunDriver::mc_with
_fixed_dist

MCRunDriver::mc_shuffle

MCRunDriver::mc_engine

MCRunDriver::calc_ref
_density_using_binidx

RTVariables::build main

3.4.3.15 void MCParam::get_ndim ( int & ndim ) const

Definition at line 238 of file 500_MCParam.cpp.

Here is the caller graph for this function:

MCParam::get_ndim

MCRunDriver::calc_npt
_per_seg

MCRunDriver::mc_with
_fixed_dist

MCRunDriver::mc_shuffle

MCRunDriver::mc_engine

MCRunDriver::calc_ref
_density_using_binidx

RTVariables::build main
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3.4.3.16 void MCParam::get_nshuffle ( int & nshuffle ) const

Definition at line 278 of file 500_MCParam.cpp.

Here is the caller graph for this function:

MCParam::get_nshuffle MCRunDriver::mc_shuffle

3.4.3.17 void MCParam::get_tgt_npt ( int & tgt_npt ) const

Definition at line 253 of file 500_MCParam.cpp.

Here is the caller graph for this function:

MCParam::get_tgt_npt MCRunDriver::calc_npt
_per_seg

3.4.3.18 void MCParam::mc_init ( ) [private]

Definition at line 218 of file 500_MCParam.cpp.

3.4.3.19 void MCParam::normalize_binwts ( ) [private]

Definition at line 188 of file 500_MCParam.cpp.

3.4.3.20 MCParam& MCParam::operator= ( const MCParam & rhs ) [private]

3.4.3.21 void MCParam::read_bin_wt ( const string & binfile ) [private]

Definition at line 110 of file 500_MCParam.cpp.

3.4.3.22 void MCParam::read_mc_info ( const string & mcrun_file ) [private]

Definition at line 61 of file 500_MCParam.cpp.
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3.4.4 Member Data Documentation

3.4.4.1 vector<double> MCParam::bin_start_ [private]

Definition at line 45 of file 500_MCParam.h.

3.4.4.2 Matrix<double> MCParam::bin_wt_ [private]

Definition at line 46 of file 500_MCParam.h.

3.4.4.3 int MCParam::mc_base_npt_ [private]

Definition at line 39 of file 500_MCParam.h.

3.4.4.4 double MCParam::mc_max_xnpt_ [private]

Definition at line 43 of file 500_MCParam.h.

3.4.4.5 int MCParam::mc_nloop_randmat_update_ [private]

Definition at line 41 of file 500_MCParam.h.

3.4.4.6 int MCParam::mc_nloop_wt_update_ [private]

Definition at line 42 of file 500_MCParam.h.

3.4.4.7 int MCParam::mc_randmat_npt_ [private]

Definition at line 38 of file 500_MCParam.h.

3.4.4.8 int MCParam::mc_wtdist_npt_ [private]

Definition at line 40 of file 500_MCParam.h.

3.4.4.9 int MCParam::nbin_ [private]

Definition at line 36 of file 500_MCParam.h.

3.4.4.10 int MCParam::ndim_ [private]

Definition at line 35 of file 500_MCParam.h.

3.4.4.11 int MCParam::num_shuffle_ [private]

Definition at line 37 of file 500_MCParam.h.
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3.4.4.12 double MCParam::vol_ [private]

Definition at line 44 of file 500_MCParam.h.

The documentation for this class was generated from the following files:

• 500_MCParam.h
• 500_MCParam.cpp

3.5 MCRunDriver Class Reference

#include <100_MCRunDriver.h>

Collaboration diagram for MCRunDriver:

MCRunDriver

+ MCRunDriver()
+ ~MCRunDriver()
+ build()
+ run()
+ check_all()
- MCRunDriver()
- operator=()
- calc_npt_per_seg()
- calc_npt_using_wt_1d()
- mc_with_fixed_dist()
- mc_shuffle()
- mc_engine()
- calc_ref_density_using
_binidx()
- check_for_underflow()

Public Member Functions

• MCRunDriver ()
• ∼MCRunDriver ()
• void build ()
• void run (const FileParam &myFile, const UserParam &myUser, const MCParam &myMCParam, RTVariables

&myRTV)
• void check_all () const

Private Member Functions

• MCRunDriver (const MCRunDriver &rhs)
• MCRunDriver & operator= (const MCRunDriver &rhs)
• void calc_npt_per_seg (RTVariables &myRTV, const MCParam &myMCParam)
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• void calc_npt_using_wt_1d (RTVariables &myRTV, const int &ndim, const int &nbin, const int &mc_base_pts,
const int &mc_tgt_npt, const int &idim)

• void mc_with_fixed_dist (const UserParam &myUser, const MCParam &myMCParam, RTVariables &myRTV,
RandUtils &myRNG)

• void mc_shuffle (const UserParam &myUser, const MCParam &myMCParam, RTVariables &myRTV, const
RandUtils &myRNG, Matrix< double > &randmat)

• void mc_engine (const UserParam &myUser, const MCParam &myMCParam, RTVariables &myRTV, Matrix<
double > &randmat)

• void calc_ref_density_using_binidx (const MCParam &myMCParam, const RTVariables &myRTV, const
vector< int > &idx, double &rho)

• void check_for_underflow (double &val)

3.5.1 Detailed Description

Definition at line 17 of file 100_MCRunDriver.h.

3.5.2 Constructor & Destructor Documentation

3.5.2.1 MCRunDriver::MCRunDriver ( )

Definition at line 20 of file 100_MCRunDriver.cpp.

3.5.2.2 MCRunDriver::∼MCRunDriver ( )

Definition at line 25 of file 100_MCRunDriver.cpp.

3.5.2.3 MCRunDriver::MCRunDriver ( const MCRunDriver & rhs ) [private]

3.5.3 Member Function Documentation

3.5.3.1 void MCRunDriver::build ( )

Definition at line 30 of file 100_MCRunDriver.cpp.

Here is the caller graph for this function:

MCRunDriver::build main

3.5.3.2 void MCRunDriver::calc_npt_per_seg ( RTVariables & myRTV, const MCParam & myMCParam ) [private]

Calculates the number of points per segment of ρ

Definition at line 64 of file 100_MCRunDriver.cpp.
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Here is the call graph for this function:

MCRunDriver::calc_npt
_per_seg

MCParam::get_nbin

MCParam::get_ndim

MCParam::get_mc_base_pts

MCParam::get_tgt_npt

RTVariables::print
_seg_tgt_npt

3.5.3.3 void MCRunDriver::calc_npt_using_wt_1d ( RTVariables & myRTV, const int & ndim, const int & nbin, const int &
mc_base_pts, const int & mc_tgt_npt, const int & idim ) [private]

Determines the number of points to assign to a segment of ρ based on the weights

Definition at line 83 of file 100_MCRunDriver.cpp.

Here is the call graph for this function:

MCRunDriver::calc_npt
_using_wt_1d

RTVariables::get_nbin

RTVariables::fill_seg_wt

RTVariables::check
_seg_tgt_npt

3.5.3.4 void MCRunDriver::calc_ref_density_using_binidx ( const MCParam & myMCParam, const RTVariables & myRTV,
const vector< int > & idx, double & rho ) [private]

Calculate the N-dimensional density for a point in space from ρ of each dimension.

Definition at line 237 of file 100_MCRunDriver.cpp.

Generated on Tue Jun 23 2020 13:55:23 for Permutation_Sampling_Code by Doxygen



30 Class Documentation

Here is the call graph for this function:

MCRunDriver::calc_ref
_density_using_binidx

MCParam::get_ndim

MCParam::get_nbin

MCParam::get_ibin_start

RTVariables::get_rho_wt

3.5.3.5 void MCRunDriver::check_all ( ) const

Assertions of the MCRunDriver object.

Definition at line 274 of file 100_MCRunDriver.cpp.

3.5.3.6 void MCRunDriver::check_for_underflow ( double & val ) [private]

Check for underflow of a value

Definition at line 263 of file 100_MCRunDriver.cpp.

3.5.3.7 void MCRunDriver::mc_engine ( const UserParam & myUser, const MCParam & myMCParam, RTVariables &
myRTV, Matrix< double > & randmat ) [private]

Main Monte Carlo engine were the random matrix is now used to generate N-Dimensional points in space that
will be evaluated within User defined function. The value of the function at each position is then updated in the
evaluation of the integral.

Definition at line 180 of file 100_MCRunDriver.cpp.
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Here is the call graph for this function:

MCRunDriver::mc_engine

MCParam::get_ndim

MCParam::get_nbin

MCParam::get_mc_randmat_npt

Matrix::get

MCParam::calc_bin_index

RTVariables::update
_RTV_avg

3.5.3.8 void MCRunDriver::mc_shuffle ( const UserParam & myUser, const MCParam & myMCParam, RTVariables &
myRTV, const RandUtils & myRNG, Matrix< double > & randmat ) [private]

Take the random matrix and shuffle the ρ along the dimension in each shuffle loop.

Definition at line 145 of file 100_MCRunDriver.cpp.
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Here is the call graph for this function:

MCRunDriver::mc_shuffle

MCParam::get_nshuffle

MCParam::get_ndim

MCParam::get_nbin

MCParam::get_mc_randmat_npt

Matrix::get

RandUtils::shuffle_vec

Matrix::set

3.5.3.9 void MCRunDriver::mc_with_fixed_dist ( const UserParam & myUser, const MCParam & myMCParam, RTVariables
& myRTV, RandUtils & myRNG ) [private]

Using the ρ constructed, evaluate a random matrix that contains position values with the same distribution of ρ
within each loop. During each loop pass the random matrix to be used for evaluation of the integral. Updating the
integral value and error until the max number of Monte Carlo points has been achieved.

Definition at line 104 of file 100_MCRunDriver.cpp.
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Here is the call graph for this function:

MCRunDriver::mc_with
_fixed_dist

MCParam::get_ndim

MCParam::get_nbin

MCParam::get_mc_nloop
_randmat_update

MCParam::get_mc_randmat_npt

MCParam::get_mc_max_xnpt

RTVariables::get_mc_xnpt

RTVariables::get_xsum
_npt_per_idim

RTVariables::get_npt
_per_dim_bin

MCParam::get_bin_start

RandUtils::calc_randmat

RTVariables::mc_calc
_integral_and_error

Matrix::set

Matrix::nrow

Matrix::ncol

Matrix::get

3.5.3.10 MCRunDriver& MCRunDriver::operator= ( const MCRunDriver & rhs ) [private]

3.5.3.11 void MCRunDriver::run ( const FileParam & myFile, const UserParam & myUser, const MCParam & myMCParam,
RTVariables & myRTV )

Main run driver that calculates a probabilty distribution, ρ from weights for each Monte Carlo cycles to perform

Definition at line 35 of file 100_MCRunDriver.cpp.
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Here is the call graph for this function:

MCRunDriver::run

RandUtils::build

MCParam::get_mc_nloop
_wt_update

RTVariables::set_user
_defined_seg_wt

RTVariables::calc_wt
_for_rho

RTVariables::mc_calc
_integral_and_error

MCParam::get_bin_wt Matrix::set

Here is the caller graph for this function:

MCRunDriver::run main

The documentation for this class was generated from the following files:

• 100_MCRunDriver.h

• 100_MCRunDriver.cpp

3.6 MOGrid Class Reference

#include <800_MOGrid.h>
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Collaboration diagram for MOGrid:

MOGrid

+ MOGrid()
+ ~MOGrid()
+ build()
+ check_all()
+ get_ndim()
+ get_ngrid()
+ get_nmo()
+ get_volume()
+ get_npt_1d_at_idim()
+ get_xmin_at_idim()
+ get_xmax_at_idim()
+ get_imoval_at_igrid_imo()
+ get_ieng()
+ get_rvec_from_xyzgrid()
+ get_imoval_at_rvec()
- MOGrid()
- operator=()
- read_gridinfo()
- read_gridfile()
- init_info_vectors()
- init_grid_vectors()
- check_read_grid()
- calc_volume()
- get_grid_index_3d()
- get_grid_index_1d()

Matrix< double >

+ Matrix()
+ Matrix()
+ ~Matrix()
+ init()
+ ncol()
+ nrow()
+ get()
+ set()
+ get_raw_ptr()
- Matrix()
- operator=()

 -mo_

int

 -npt_total_
-ndim_
-ngrid_
-nmo_

 -nrow_
-ncol_

Matrix< T >

+ Matrix()
+ Matrix()
+ ~Matrix()
+ init()
+ ncol()
+ nrow()
+ get()
+ set()
+ get_raw_ptr()
- Matrix()
- operator=()

 -nrow_
-ncol_

std::vector< int >

 +elements

std::vector< double >

 -grid_x_
-grid_y_
-grid_z_

-delta_1d_
-xmax_
-xmin_
-eng_

-length_

 -A_

double

 -vol_

 +elements

std::vector< T >

 < double > < int >

T

 +elements

 < double >

vector< T >

 -A_

 -npt_1d_

Public Member Functions

• MOGrid ()
• ∼MOGrid ()
• void build (const string &infofile, const string &gridfile)
• void check_all () const
• void get_ndim (int &ndim) const
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• void get_ngrid (int &ngrid) const
• void get_nmo (int &nmo) const
• void get_volume (double &vol) const
• void get_npt_1d_at_idim (int &idim, int &npt_val) const
• void get_xmin_at_idim (int &idim, double &xmin_val) const
• void get_xmax_at_idim (int &idim, double &xmax_val) const
• void get_imoval_at_igrid_imo (const int &igrid, const int &imo, double &mo_val) const
• void get_ieng (const int &imo, double &ieng) const
• void get_rvec_from_xyzgrid (const int &xyz, vector< double > &rvec) const
• void get_imoval_at_rvec (const int &imo, const vector< double > &rvec, double &moval) const

Private Member Functions

• MOGrid (const MOGrid &rhs)
• MOGrid & operator= (const MOGrid &rhs)
• void read_gridinfo (const string &infile)
• void read_gridfile (const string &infile)
• void init_info_vectors ()
• void init_grid_vectors ()
• void check_read_grid (const int &ngrid_local, const int &ndim_local, const int &nmo_local) const
• void calc_volume ()
• void get_grid_index_3d (const vector< double > &rv, int &gidx) const
• void get_grid_index_1d (const int &idim, const double &x, int &idx) const

Private Attributes

• int ndim_
• int ngrid_
• int nmo_
• int npt_total_
• double vol_
• vector< int > npt_1d_
• vector< double > xmin_
• vector< double > xmax_
• vector< double > length_
• vector< double > delta_1d_
• vector< double > grid_x_
• vector< double > grid_y_
• vector< double > grid_z_
• vector< double > eng_
• Matrix< double > mo_

3.6.1 Detailed Description

Definition at line 11 of file 800_MOGrid.h.

3.6.2 Constructor & Destructor Documentation

3.6.2.1 MOGrid::MOGrid ( )

Definition at line 23 of file 800_MOGrid.cpp.
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3.6.2.2 MOGrid::∼MOGrid ( )

Definition at line 28 of file 800_MOGrid.cpp.

3.6.2.3 MOGrid::MOGrid ( const MOGrid & rhs ) [private]

3.6.3 Member Function Documentation

3.6.3.1 void MOGrid::build ( const string & infofile, const string & gridfile )

Definition at line 33 of file 800_MOGrid.cpp.

3.6.3.2 void MOGrid::calc_volume ( ) [private]

Definition at line 173 of file 800_MOGrid.cpp.

3.6.3.3 void MOGrid::check_all ( ) const

Definition at line 314 of file 800_MOGrid.cpp.

3.6.3.4 void MOGrid::check_read_grid ( const int & ngrid_local, const int & ndim_local, const int & nmo_local ) const
[private]

Definition at line 285 of file 800_MOGrid.cpp.

3.6.3.5 void MOGrid::get_grid_index_1d ( const int & idim, const double & x, int & idx ) const [private]

Definition at line 199 of file 800_MOGrid.cpp.

3.6.3.6 void MOGrid::get_grid_index_3d ( const vector< double > & rv, int & gidx ) const [private]

Definition at line 182 of file 800_MOGrid.cpp.

Here is the call graph for this function:

MOGrid::get_grid_index_3d row_major_idx_3d

3.6.3.7 void MOGrid::get_ieng ( const int & imo, double & ieng ) const

Definition at line 253 of file 800_MOGrid.cpp.
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3.6.3.8 void MOGrid::get_imoval_at_igrid_imo ( const int & igrid, const int & imo, double & mo_val ) const

Definition at line 226 of file 800_MOGrid.cpp.

3.6.3.9 void MOGrid::get_imoval_at_rvec ( const int & imo, const vector< double > & rvec, double & moval ) const

Definition at line 274 of file 800_MOGrid.cpp.

3.6.3.10 void MOGrid::get_ndim ( int & ndim ) const

Definition at line 233 of file 800_MOGrid.cpp.

3.6.3.11 void MOGrid::get_ngrid ( int & ngrid ) const

Definition at line 238 of file 800_MOGrid.cpp.

3.6.3.12 void MOGrid::get_nmo ( int & nmo ) const

Definition at line 243 of file 800_MOGrid.cpp.

3.6.3.13 void MOGrid::get_npt_1d_at_idim ( int & idim, int & npt_val ) const

Definition at line 259 of file 800_MOGrid.cpp.

3.6.3.14 void MOGrid::get_rvec_from_xyzgrid ( const int & xyz, vector< double > & rvec ) const

Definition at line 264 of file 800_MOGrid.cpp.

3.6.3.15 void MOGrid::get_volume ( double & vol ) const

Definition at line 248 of file 800_MOGrid.cpp.

3.6.3.16 void MOGrid::get_xmax_at_idim ( int & idim, double & xmax_val ) const

Definition at line 220 of file 800_MOGrid.cpp.

3.6.3.17 void MOGrid::get_xmin_at_idim ( int & idim, double & xmin_val ) const

Definition at line 215 of file 800_MOGrid.cpp.

3.6.3.18 void MOGrid::init_grid_vectors ( ) [private]

Definition at line 163 of file 800_MOGrid.cpp.

3.6.3.19 void MOGrid::init_info_vectors ( ) [private]

Definition at line 92 of file 800_MOGrid.cpp.
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3.6.3.20 MOGrid& MOGrid::operator= ( const MOGrid & rhs ) [private]

3.6.3.21 void MOGrid::read_gridfile ( const string & infile ) [private]

Definition at line 102 of file 800_MOGrid.cpp.

3.6.3.22 void MOGrid::read_gridinfo ( const string & infile ) [private]

Definition at line 41 of file 800_MOGrid.cpp.

3.6.4 Member Data Documentation

3.6.4.1 vector<double> MOGrid::delta_1d_ [private]

Definition at line 48 of file 800_MOGrid.h.

3.6.4.2 vector<double> MOGrid::eng_ [private]

Definition at line 52 of file 800_MOGrid.h.

3.6.4.3 vector<double> MOGrid::grid_x_ [private]

Definition at line 49 of file 800_MOGrid.h.

3.6.4.4 vector<double> MOGrid::grid_y_ [private]

Definition at line 50 of file 800_MOGrid.h.

3.6.4.5 vector<double> MOGrid::grid_z_ [private]

Definition at line 51 of file 800_MOGrid.h.

3.6.4.6 vector<double> MOGrid::length_ [private]

Definition at line 47 of file 800_MOGrid.h.

3.6.4.7 Matrix<double> MOGrid::mo_ [private]

Definition at line 53 of file 800_MOGrid.h.

3.6.4.8 int MOGrid::ndim_ [private]

Definition at line 39 of file 800_MOGrid.h.

3.6.4.9 int MOGrid::ngrid_ [private]

Definition at line 40 of file 800_MOGrid.h.
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3.6.4.10 int MOGrid::nmo_ [private]

Definition at line 41 of file 800_MOGrid.h.

3.6.4.11 vector<int> MOGrid::npt_1d_ [private]

Definition at line 44 of file 800_MOGrid.h.

3.6.4.12 int MOGrid::npt_total_ [private]

Definition at line 42 of file 800_MOGrid.h.

3.6.4.13 double MOGrid::vol_ [private]

Definition at line 43 of file 800_MOGrid.h.

3.6.4.14 vector<double> MOGrid::xmax_ [private]

Definition at line 46 of file 800_MOGrid.h.

3.6.4.15 vector<double> MOGrid::xmin_ [private]

Definition at line 45 of file 800_MOGrid.h.

The documentation for this class was generated from the following files:

• 800_MOGrid.h

• 800_MOGrid.cpp

3.7 RandUtils Class Reference

#include <900_RandUtils.h>
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Collaboration diagram for RandUtils:

RandUtils

+ RandUtils()
+ ~RandUtils()
+ build()
+ check_all()
+ calc_randmat()
+ shuffle_vec()
+ rand_num()
+ rand_num()
+ rand_num()
- RandUtils()
- operator=()
- gen_rnd_seed()

RandWrapper

+ RandWrapper()
+ ~RandWrapper()
+ build()
+ build()
+ build()
+ build()
+ rand_num_uniform()
+ rand_num_uniform()
+ rand_vec_uniform()
+ rand_vec_antithetic
_uniform()
+ rand_num_normal()
+ rand_vec_normal()
+ rand_vec_antithetic
_normal()
+ shuffle_vec()
+ shuffle_vec()
+ get_seed()
- RandWrapper()
- operator=()

 -myRW_

double

 -mu_
-sigma_

int

 -iseed_

 -iseed_

default_random_engine *

 -generator_

Public Member Functions

• RandUtils ()
• ∼RandUtils ()
• void build ()
• void check_all () const
• void calc_randmat (const int &ndim, const int &nbin, const int &mc_randmat_npt, const vector< int > &xsum-

_npt_per_idim, const Matrix< int > &npt_per_dim_bin, const vector< double > &bin_start, Matrix< double
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> &randmat)
• void shuffle_vec (vector< double > &some_vec) const
• void rand_num (double &r) const
• void rand_num (const double &xmin, const double &xmax, double &r) const
• void rand_num (const int &imin, const int &imax, int &r) const

Private Member Functions

• RandUtils (const RandUtils &rhs)=delete
• RandUtils & operator= (const RandUtils &rhs)=delete
• void gen_rnd_seed ()

Private Attributes

• RandWrapper myRW_
• int iseed_

3.7.1 Detailed Description

Definition at line 13 of file 900_RandUtils.h.

3.7.2 Constructor & Destructor Documentation

3.7.2.1 RandUtils::RandUtils ( )

Definition at line 20 of file 900_RandUtils.cpp.

3.7.2.2 RandUtils::∼RandUtils ( )

Definition at line 25 of file 900_RandUtils.cpp.

3.7.2.3 RandUtils::RandUtils ( const RandUtils & rhs ) [private], [delete]

3.7.3 Member Function Documentation

3.7.3.1 void RandUtils::build ( )

Definition at line 30 of file 900_RandUtils.cpp.

Here is the caller graph for this function:

RandUtils::build MCRunDriver::run main
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3.7.3.2 void RandUtils::calc_randmat ( const int & ndim, const int & nbin, const int & mc_randmat_npt, const vector< int > &
xsum_npt_per_idim, const Matrix< int > & npt_per_dim_bin, const vector< double > & bin_start, Matrix< double
> & randmat )

Definition at line 70 of file 900_RandUtils.cpp.

Here is the call graph for this function:

RandUtils::calc_randmat

Matrix::nrow

Matrix::ncol

Matrix::get

Matrix::set

Here is the caller graph for this function:

RandUtils::calc_randmat MCRunDriver::mc_with
_fixed_dist

3.7.3.3 void RandUtils::check_all ( ) const

Definition at line 168 of file 900_RandUtils.cpp.

3.7.3.4 void RandUtils::gen_rnd_seed ( ) [private]

Definition at line 41 of file 900_RandUtils.cpp.

3.7.3.5 RandUtils& RandUtils::operator= ( const RandUtils & rhs ) [private], [delete]

3.7.3.6 void RandUtils::rand_num ( double & r ) const

Definition at line 48 of file 900_RandUtils.cpp.
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3.7.3.7 void RandUtils::rand_num ( const double & xmin, const double & xmax, double & r ) const

Definition at line 53 of file 900_RandUtils.cpp.

3.7.3.8 void RandUtils::rand_num ( const int & imin, const int & imax, int & r ) const

Definition at line 60 of file 900_RandUtils.cpp.

3.7.3.9 void RandUtils::shuffle_vec ( vector< double > & some_vec ) const

Definition at line 163 of file 900_RandUtils.cpp.

Here is the caller graph for this function:

RandUtils::shuffle_vec MCRunDriver::mc_shuffle

3.7.4 Member Data Documentation

3.7.4.1 int RandUtils::iseed_ [private]

Definition at line 38 of file 900_RandUtils.h.

3.7.4.2 RandWrapper RandUtils::myRW_ [private]

Definition at line 37 of file 900_RandUtils.h.

The documentation for this class was generated from the following files:

• 900_RandUtils.h

• 900_RandUtils.cpp

3.8 RandWrapper Class Reference

#include <RandWrapper.h>
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Collaboration diagram for RandWrapper:

RandWrapper

+ RandWrapper()
+ ~RandWrapper()
+ build()
+ build()
+ build()
+ build()
+ rand_num_uniform()
+ rand_num_uniform()
+ rand_vec_uniform()
+ rand_vec_antithetic
_uniform()
+ rand_num_normal()
+ rand_vec_normal()
+ rand_vec_antithetic
_normal()
+ shuffle_vec()
+ shuffle_vec()
+ get_seed()
- RandWrapper()
- operator=()

double

 -mu_
-sigma_

int

 -iseed_

default_random_engine *

 -generator_

Public Member Functions

• RandWrapper ()
• ∼RandWrapper ()
• void build ()
• void build (const int &seed)
• void build (const double &mu, const double &sigma)
• void build (const int &seed, const double &mu, const double &sigma)
• void rand_num_uniform (double &r) const
• void rand_num_uniform (const int &imin, const int &imax, int &r) const
• void rand_vec_uniform (vector< double > &vec) const
• void rand_vec_antithetic_uniform (vector< double > &vec) const
• void rand_num_normal (double &r) const
• void rand_vec_normal (vector< double > &vec) const
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• void rand_vec_antithetic_normal (vector< double > &vec) const
• void shuffle_vec (vector< double > &some_vec) const
• void shuffle_vec (vector< int > &some_vec) const
• void get_seed (int &seed) const

Private Member Functions

• RandWrapper (const RandWrapper &rhs)
• RandWrapper & operator= (const RandWrapper &rhs)

Private Attributes

• int iseed_
• double mu_
• double sigma_
• default_random_engine ∗ generator_

3.8.1 Detailed Description

Definition at line 11 of file RandWrapper.h.

3.8.2 Constructor & Destructor Documentation

3.8.2.1 RandWrapper::RandWrapper ( ) [inline]

Definition at line 13 of file RandWrapper.h.

3.8.2.2 RandWrapper::∼RandWrapper ( )

Definition at line 10 of file RandWrapper.cpp.

3.8.2.3 RandWrapper::RandWrapper ( const RandWrapper & rhs ) [private]

3.8.3 Member Function Documentation

3.8.3.1 void RandWrapper::build ( )

Definition at line 16 of file RandWrapper.cpp.

3.8.3.2 void RandWrapper::build ( const int & seed )

Definition at line 26 of file RandWrapper.cpp.

3.8.3.3 void RandWrapper::build ( const double & mu, const double & sigma )

Definition at line 35 of file RandWrapper.cpp.

3.8.3.4 void RandWrapper::build ( const int & seed, const double & mu, const double & sigma )

Definition at line 45 of file RandWrapper.cpp.
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3.8.3.5 void RandWrapper::get_seed ( int & seed ) const

Definition at line 145 of file RandWrapper.cpp.

3.8.3.6 RandWrapper& RandWrapper::operator= ( const RandWrapper & rhs ) [private]

3.8.3.7 void RandWrapper::rand_num_normal ( double & r ) const

Definition at line 101 of file RandWrapper.cpp.

3.8.3.8 void RandWrapper::rand_num_uniform ( double & r ) const

Definition at line 56 of file RandWrapper.cpp.

3.8.3.9 void RandWrapper::rand_num_uniform ( const int & imin, const int & imax, int & r ) const

Definition at line 62 of file RandWrapper.cpp.

3.8.3.10 void RandWrapper::rand_vec_antithetic_normal ( vector< double > & vec ) const

Definition at line 115 of file RandWrapper.cpp.

3.8.3.11 void RandWrapper::rand_vec_antithetic_uniform ( vector< double > & vec ) const

Definition at line 79 of file RandWrapper.cpp.

3.8.3.12 void RandWrapper::rand_vec_normal ( vector< double > & vec ) const

Definition at line 107 of file RandWrapper.cpp.

3.8.3.13 void RandWrapper::rand_vec_uniform ( vector< double > & vec ) const

Definition at line 71 of file RandWrapper.cpp.

3.8.3.14 void RandWrapper::shuffle_vec ( vector< double > & some_vec ) const

Definition at line 135 of file RandWrapper.cpp.

3.8.3.15 void RandWrapper::shuffle_vec ( vector< int > & some_vec ) const

Definition at line 140 of file RandWrapper.cpp.

3.8.4 Member Data Documentation

3.8.4.1 default_random_engine∗ RandWrapper::generator_ [private]

Definition at line 35 of file RandWrapper.h.
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3.8.4.2 int RandWrapper::iseed_ [private]

Definition at line 32 of file RandWrapper.h.

3.8.4.3 double RandWrapper::mu_ [private]

Definition at line 33 of file RandWrapper.h.

3.8.4.4 double RandWrapper::sigma_ [private]

Definition at line 34 of file RandWrapper.h.

The documentation for this class was generated from the following files:

• RandWrapper.h

• RandWrapper.cpp

3.9 RTVariables Class Reference

#include <400_RTVariables.h>
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Collaboration diagram for RTVariables:

RTVariables

- vol_
- integral_value_ft_
- integral_error_ft_
- integral_error_f0_
- sigma_ft_

+ RTVariables()
+ ~RTVariables()
+ build()
+ build()
+ check_all()
+ print_results()
+ print_seg_tgt_npt()
+ set_user_defined_seg_wt()
+ calc_wt_for_rho()
+ mc_with_fixed_dist()
+ fill_seg_wt()
+ check_seg_tgt_npt()
+ check_seg_tgt_npt()
+ get_nbin()
+ get_mc_xnpt()
+ get_rho_wt()
+ get_xsum_npt_per_idim()
+ get_npt_per_dim_bin()
+ update_avg()
+ update_RTV_avg()
+ mc_calc_integral_and
_error()
- RTVariables()
- operator=()
- calc_idim_xsum_tgt_npt()

Matrix< double >

+ Matrix()
+ Matrix()
+ ~Matrix()
+ init()
+ ncol()
+ nrow()
+ get()
+ set()
+ get_raw_ptr()
- Matrix()
- operator=()

 -seg_wt_
-rho_wt_

-seg_est_wt_
-seg_xnpt_

-seg_sigma_
-seg_avg_ftsq

_
-seg_avg_ft_

int

 -ndim_
-nbin_

 -nrow_
-ncol_

Matrix< T >

+ Matrix()
+ Matrix()
+ ~Matrix()
+ init()
+ ncol()
+ nrow()
+ get()
+ set()
+ get_raw_ptr()
- Matrix()
- operator=()

 -nrow_
-ncol_

std::vector< int >

 +elements

Matrix< int >

+ Matrix()
+ Matrix()
+ ~Matrix()
+ init()
+ ncol()
+ nrow()
+ get()
+ set()
+ get_raw_ptr()
- Matrix()
- operator=()

 -nrow_
-ncol_

std::vector< double >

 -A_

double

 -integral_value_f0
_

-mc_xnpt_
-sigma_f0_
-avg_f0sq_
-avg_ftsq_

-variance_f0_
-avg_f0_
-avg_ft_

-tot_sampl_npt
_

-variance_ft
_
...

 +elements

std::vector< T >

 < double >  < int >

T

 +elements

 < double >  < int >

vector< T >

 -A_

 -seg_idim_xsum_tgt_npt_

 -A_

 -seg_tgt_npt_

Public Member Functions

• RTVariables ()
• ∼RTVariables ()
• void build (const FileParam &myFile, const UserParam &myUser, const MCParam &myMCParam)
• void build (const int &ndim, const int &nbin, const double &vol, const MCParam &myMCParam)
• void check_all () const
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• void print_results () const
• void print_seg_tgt_npt () const
• void set_user_defined_seg_wt (const MCParam &myMCParam)
• void calc_wt_for_rho (const MCParam &myMCParam)
• void mc_with_fixed_dist (const MCParam &myMCParam, const UserParam &myUser)
• void fill_seg_wt (const int &idim, const int &ibin, const int &ndim, const int &nbin, const int &mc_base_pts,

const int &mc_tgt_npt, int &xsum_npts, int &idx_max, double &max_wt)
• void check_seg_tgt_npt (const int &idim_max, const int &ibin_max, const int &xsum_npts, const int &mc_tgt-

_npt)
• void check_seg_tgt_npt (const int &idim, const int &xsum_npts, const int &mc_tgt_npt)
• void get_nbin (int &nbin) const
• void get_mc_xnpt (double &mc_xnpt) const
• void get_rho_wt (const int &idim, const int &ibin, double &val) const
• void get_xsum_npt_per_idim (vector< int > &xsum_npt_per_idim) const
• void get_npt_per_dim_bin (Matrix< int > &npt_per_dim_bin) const
• void update_avg (const double &xnum, const double &xval, double &avg)
• void update_RTV_avg (const double &kernel_ft_1, const double &kernel_ft_2, const double &kernel_f0_1,

const double &kernel_f0_2, const vector< int > &tvec_binidx)
• void mc_calc_integral_and_error (const UserParam &myUser, const MCParam &myMCParam)

Private Member Functions

• RTVariables (const RTVariables &rhs)
• RTVariables & operator= (const RTVariables &rhs)
• void calc_idim_xsum_tgt_npt (const int &idim)

Private Attributes

• int ndim_
• int nbin_
• double vol_
• double integral_value_ft_
• double integral_error_ft_
• double integral_value_f0_
• double integral_error_f0_
• double mc_xnpt_
• double avg_ft_
• double avg_ftsq_
• double avg_f0_
• double avg_f0sq_
• double variance_ft_
• double variance_f0_
• double sigma_ft_
• double sigma_f0_
• double tot_sampl_npt_
• vector< int > seg_idim_xsum_tgt_npt_
• Matrix< int > seg_tgt_npt_
• Matrix< double > seg_xnpt_
• Matrix< double > seg_avg_ft_
• Matrix< double > seg_avg_ftsq_
• Matrix< double > seg_sigma_
• Matrix< double > seg_wt_
• Matrix< double > seg_est_wt_
• Matrix< double > rho_wt_
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3.9.1 Detailed Description

Definition at line 14 of file 400_RTVariables.h.

3.9.2 Constructor & Destructor Documentation

3.9.2.1 RTVariables::RTVariables ( )

Definition at line 17 of file 400_RTVariables.cpp.

3.9.2.2 RTVariables::∼RTVariables ( )

Definition at line 22 of file 400_RTVariables.cpp.

3.9.2.3 RTVariables::RTVariables ( const RTVariables & rhs ) [private]

3.9.3 Member Function Documentation

3.9.3.1 void RTVariables::build ( const FileParam & myFile, const UserParam & myUser, const MCParam & myMCParam )

Definition at line 27 of file 400_RTVariables.cpp.

Here is the call graph for this function:

RTVariables::build

MCParam::get_ndim

MCParam::get_nbin

Here is the caller graph for this function:

RTVariables::build main

3.9.3.2 void RTVariables::build ( const int & ndim, const int & nbin, const double & vol, const MCParam & myMCParam )

Definition at line 79 of file 400_RTVariables.cpp.
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3.9.3.3 void RTVariables::calc_idim_xsum_tgt_npt ( const int & idim ) [private]

Definition at line 131 of file 400_RTVariables.cpp.

3.9.3.4 void RTVariables::calc_wt_for_rho ( const MCParam & myMCParam )

Definition at line 143 of file 400_RTVariables.cpp.

Here is the caller graph for this function:

RTVariables::calc_wt
_for_rho MCRunDriver::run main

3.9.3.5 void RTVariables::check_all ( ) const

Definition at line 429 of file 400_RTVariables.cpp.

Here is the caller graph for this function:

RTVariables::check_all main

3.9.3.6 void RTVariables::check_seg_tgt_npt ( const int & idim_max, const int & ibin_max, const int & xsum_npts, const int &
mc_tgt_npt )

Definition at line 188 of file 400_RTVariables.cpp.

Here is the caller graph for this function:

RTVariables::check
_seg_tgt_npt

MCRunDriver::calc_npt
_using_wt_1d
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3.9.3.7 void RTVariables::check_seg_tgt_npt ( const int & idim, const int & xsum_npts, const int & mc_tgt_npt )

Definition at line 202 of file 400_RTVariables.cpp.

3.9.3.8 void RTVariables::fill_seg_wt ( const int & idim, const int & ibin, const int & ndim, const int & nbin, const int &
mc_base_pts, const int & mc_tgt_npt, int & xsum_npts, int & idx_max, double & max_wt )

Definition at line 171 of file 400_RTVariables.cpp.

Here is the caller graph for this function:

RTVariables::fill_seg_wt MCRunDriver::calc_npt
_using_wt_1d

3.9.3.9 void RTVariables::get_mc_xnpt ( double & mc_xnpt ) const

Definition at line 296 of file 400_RTVariables.cpp.

Here is the caller graph for this function:

RTVariables::get_mc_xnpt MCRunDriver::mc_with
_fixed_dist

3.9.3.10 void RTVariables::get_nbin ( int & nbin ) const

Definition at line 291 of file 400_RTVariables.cpp.

Here is the caller graph for this function:

RTVariables::get_nbin MCRunDriver::calc_npt
_using_wt_1d
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3.9.3.11 void RTVariables::get_npt_per_dim_bin ( Matrix< int > & npt_per_dim_bin ) const

Definition at line 318 of file 400_RTVariables.cpp.

Here is the call graph for this function:

RTVariables::get_npt
_per_dim_bin Matrix::set

Here is the caller graph for this function:

RTVariables::get_npt
_per_dim_bin

MCRunDriver::mc_with
_fixed_dist

3.9.3.12 void RTVariables::get_rho_wt ( const int & idim, const int & ibin, double & val ) const

Definition at line 301 of file 400_RTVariables.cpp.

Here is the caller graph for this function:

RTVariables::get_rho_wt MCRunDriver::calc_ref
_density_using_binidx

3.9.3.13 void RTVariables::get_xsum_npt_per_idim ( vector< int > & xsum_npt_per_idim ) const

Definition at line 306 of file 400_RTVariables.cpp.
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Here is the caller graph for this function:

RTVariables::get_xsum
_npt_per_idim

MCRunDriver::mc_with
_fixed_dist

3.9.3.14 void RTVariables::mc_calc_integral_and_error ( const UserParam & myUser, const MCParam & myMCParam )

Definition at line 248 of file 400_RTVariables.cpp.

Here is the caller graph for this function:

RTVariables::mc_calc
_integral_and_error

MCRunDriver::run

MCRunDriver::mc_with
_fixed_dist

main

3.9.3.15 void RTVariables::mc_with_fixed_dist ( const MCParam & myMCParam, const UserParam & myUser )

3.9.3.16 RTVariables& RTVariables::operator= ( const RTVariables & rhs ) [private]

3.9.3.17 void RTVariables::print_results ( ) const

Definition at line 365 of file 400_RTVariables.cpp.

Here is the caller graph for this function:

RTVariables::print
_results main

Generated on Tue Jun 23 2020 13:55:23 for Permutation_Sampling_Code by Doxygen



56 Class Documentation

3.9.3.18 void RTVariables::print_seg_tgt_npt ( ) const

Definition at line 234 of file 400_RTVariables.cpp.

Here is the caller graph for this function:

RTVariables::print
_seg_tgt_npt

MCRunDriver::calc_npt
_per_seg

3.9.3.19 void RTVariables::set_user_defined_seg_wt ( const MCParam & myMCParam )

Definition at line 166 of file 400_RTVariables.cpp.

Here is the call graph for this function:

RTVariables::set_user
_defined_seg_wt MCParam::get_bin_wt Matrix::set

Here is the caller graph for this function:

RTVariables::set_user
_defined_seg_wt MCRunDriver::run main

3.9.3.20 void RTVariables::update_avg ( const double & xnum, const double & xval, double & avg )

Definition at line 330 of file 400_RTVariables.cpp.

3.9.3.21 void RTVariables::update_RTV_avg ( const double & kernel_ft_1, const double & kernel_ft_2, const double &
kernel_f0_1, const double & kernel_f0_2, const vector< int > & tvec_binidx )

Definition at line 339 of file 400_RTVariables.cpp.
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Here is the caller graph for this function:

RTVariables::update
_RTV_avg MCRunDriver::mc_engine

3.9.4 Member Data Documentation

3.9.4.1 double RTVariables::avg_f0_ [private]

Definition at line 76 of file 400_RTVariables.h.

3.9.4.2 double RTVariables::avg_f0sq_ [private]

Definition at line 77 of file 400_RTVariables.h.

3.9.4.3 double RTVariables::avg_ft_ [private]

Definition at line 74 of file 400_RTVariables.h.

3.9.4.4 double RTVariables::avg_ftsq_ [private]

Definition at line 75 of file 400_RTVariables.h.

3.9.4.5 double RTVariables::integral_error_f0_ [private]

Definition at line 72 of file 400_RTVariables.h.

3.9.4.6 double RTVariables::integral_error_ft_ [private]

Definition at line 70 of file 400_RTVariables.h.

3.9.4.7 double RTVariables::integral_value_f0_ [private]

Definition at line 71 of file 400_RTVariables.h.

3.9.4.8 double RTVariables::integral_value_ft_ [private]

Definition at line 69 of file 400_RTVariables.h.

3.9.4.9 double RTVariables::mc_xnpt_ [private]

Definition at line 73 of file 400_RTVariables.h.
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3.9.4.10 int RTVariables::nbin_ [private]

Definition at line 67 of file 400_RTVariables.h.

3.9.4.11 int RTVariables::ndim_ [private]

Definition at line 66 of file 400_RTVariables.h.

3.9.4.12 Matrix<double> RTVariables::rho_wt_ [private]

Definition at line 93 of file 400_RTVariables.h.

3.9.4.13 Matrix<double> RTVariables::seg_avg_ft_ [private]

Definition at line 88 of file 400_RTVariables.h.

3.9.4.14 Matrix<double> RTVariables::seg_avg_ftsq_ [private]

Definition at line 89 of file 400_RTVariables.h.

3.9.4.15 Matrix<double> RTVariables::seg_est_wt_ [private]

Definition at line 92 of file 400_RTVariables.h.

3.9.4.16 vector<int> RTVariables::seg_idim_xsum_tgt_npt_ [private]

Definition at line 84 of file 400_RTVariables.h.

3.9.4.17 Matrix<double> RTVariables::seg_sigma_ [private]

Definition at line 90 of file 400_RTVariables.h.

3.9.4.18 Matrix<int> RTVariables::seg_tgt_npt_ [private]

Definition at line 86 of file 400_RTVariables.h.

3.9.4.19 Matrix<double> RTVariables::seg_wt_ [private]

Definition at line 91 of file 400_RTVariables.h.

3.9.4.20 Matrix<double> RTVariables::seg_xnpt_ [private]

Definition at line 87 of file 400_RTVariables.h.

3.9.4.21 double RTVariables::sigma_f0_ [private]

Definition at line 81 of file 400_RTVariables.h.
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3.9.4.22 double RTVariables::sigma_ft_ [private]

Definition at line 80 of file 400_RTVariables.h.

3.9.4.23 double RTVariables::tot_sampl_npt_ [private]

Definition at line 82 of file 400_RTVariables.h.

3.9.4.24 double RTVariables::variance_f0_ [private]

Definition at line 79 of file 400_RTVariables.h.

3.9.4.25 double RTVariables::variance_ft_ [private]

Definition at line 78 of file 400_RTVariables.h.

3.9.4.26 double RTVariables::vol_ [private]

Definition at line 68 of file 400_RTVariables.h.

The documentation for this class was generated from the following files:

• 400_RTVariables.h
• 400_RTVariables.cpp
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Chapter 4

File Documentation

4.1 001_main.cpp File Reference

#include <iostream>
#include <algorithm>
#include <fstream>
#include <ctime>
#include <iomanip>
#include "900_FileParam.h"
#include "600_UserParam.h"
#include "500_MCParam.h"
#include "400_RTVariables.h"
#include "100_MCRunDriver.h"
Include dependency graph for 001_main.cpp:

001_main.cpp

iostream

algorithm

fstream

ctime iomanip

900_FileParam.h600_UserParam.h

500_MCParam.h

400_RTVariables.h

100_MCRunDriver.h

stringvector

Matrix.h

cassert

900_RandUtils.h

RandWrapper.h

random memory

Functions

• int main ()

4.1.1 Function Documentation

4.1.1.1 int main ( )

Step1: Declaring all objects—// file param contains list of all files used user param wraps user defined functions mc-
param has all run-time param for performing mc calc intermediate and final results are stored in run-time-variables
(RTV) driver is the global object for running the entire mc calc declare as empty objects... we will build them in the
next step.



62 File Documentation

Step2: build all objects—// first get file names, then get data from those files always use check_all to verify consis-
tency information flow: file –> user_param –> mcrun_param –> RunTimeVariable –> driver

Step3: DO MC calculations-—//

Step4: print results

Step5: print time info and do normal termination

Definition at line 14 of file 001_main.cpp.

Here is the call graph for this function:

main

FileParam::build

FileParam::check_all

MCParam::build

MCParam::check_all

RTVariables::build

RTVariables::check_all

MCRunDriver::build

MCRunDriver::run

RTVariables::print
_results

MCParam::get_ndim

MCParam::get_nbin

RandUtils::build

MCParam::get_mc_nloop
_wt_update

RTVariables::set_user
_defined_seg_wt

RTVariables::calc_wt
_for_rho

RTVariables::mc_calc
_integral_and_error

MCParam::get_bin_wt Matrix::set

4.2 100_MCRunDriver.cpp File Reference

#include <iostream>
#include <cassert>
#include <string>
#include <fstream>
#include <algorithm>
#include <vector>
#include <chrono>
#include "Matrix.h"
#include "900_FileParam.h"
#include "900_RandUtils.h"
#include "600_UserParam.h"
#include "500_MCParam.h"
#include "400_RTVariables.h"
#include "100_MCRunDriver.h"
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Include dependency graph for 100_MCRunDriver.cpp:

100_MCRunDriver.cpp

iostream

cassertstring

fstream

algorithm

vector

chrono

Matrix.h900_FileParam.h

900_RandUtils.h

600_UserParam.h

500_MCParam.h

400_RTVariables.h

100_MCRunDriver.h

RandWrapper.h

random memory

4.3 100_MCRunDriver.h File Reference

#include <iostream>
#include <algorithm>
#include <vector>
#include <string>
#include <fstream>
#include "900_FileParam.h"
#include "900_RandUtils.h"
#include "600_UserParam.h"
#include "500_MCParam.h"
#include "400_RTVariables.h"
Include dependency graph for 100_MCRunDriver.h:

100_MCRunDriver.h

iostream

algorithm

vector string

fstream 900_FileParam.h

900_RandUtils.h

600_UserParam.h

500_MCParam.h

400_RTVariables.h

Matrix.hRandWrapper.h

cassertrandommemory

This graph shows which files directly or indirectly include this file:

100_MCRunDriver.h

001_main.cpp 100_MCRunDriver.cpp
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Classes

• class MCRunDriver

4.4 400_RTVariables.cpp File Reference

#include <iostream>
#include <vector>
#include <algorithm>
#include <iterator>
#include <math.h>
#include <cassert>
#include <iomanip>
#include "Matrix.h"
#include "900_FileParam.h"
#include "600_UserParam.h"
#include "500_MCParam.h"
#include "400_RTVariables.h"
Include dependency graph for 400_RTVariables.cpp:

400_RTVariables.cpp

iostream

vector

algorithm iterator math.h

cassert

iomanip

Matrix.h 900_FileParam.h600_UserParam.h

500_MCParam.h

400_RTVariables.h

string

fstream

4.5 400_RTVariables.h File Reference

#include <iostream>
#include <vector>
#include <string>
#include <fstream>
#include "900_FileParam.h"
#include "600_UserParam.h"
#include "500_MCParam.h"
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Include dependency graph for 400_RTVariables.h:

400_RTVariables.h

iostream

vectorstring

fstream900_FileParam.h 600_UserParam.h

500_MCParam.h

Matrix.h

cassert

This graph shows which files directly or indirectly include this file:

400_RTVariables.h

001_main.cpp

100_MCRunDriver.h

100_MCRunDriver.cpp

400_RTVariables.cpp

Classes

• class RTVariables

4.6 500_MCParam.cpp File Reference

#include <iostream>
#include <cassert>
#include <string>
#include <fstream>
#include <sstream>
#include <algorithm>
#include <vector>
#include <random>
#include "Matrix.h"
#include "900_FileParam.h"
#include "600_UserParam.h"
#include "500_MCParam.h"
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Include dependency graph for 500_MCParam.cpp:

500_MCParam.cpp

iostream

cassert string

fstream

sstream algorithm

vector

random

Matrix.h 900_FileParam.h 600_UserParam.h

500_MCParam.h

4.7 500_MCParam.h File Reference

#include <vector>
#include <string>
#include <fstream>
#include "Matrix.h"
#include "900_FileParam.h"
#include "600_UserParam.h"
Include dependency graph for 500_MCParam.h:

500_MCParam.h

vectorstring

fstream Matrix.h900_FileParam.h 600_UserParam.h

cassert

This graph shows which files directly or indirectly include this file:

500_MCParam.h

001_main.cpp

400_RTVariables.h

100_MCRunDriver.h

100_MCRunDriver.cpp

400_RTVariables.cpp

500_MCParam.cpp
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Classes

• class MCParam

4.8 800_CoordParam.cpp File Reference

#include <iostream>
#include <cassert>
#include <string>
#include <fstream>
#include <sstream>
#include <algorithm>
#include <vector>
#include "800_CoordParam.h"
Include dependency graph for 800_CoordParam.cpp:

800_CoordParam.cpp

iostream

cassert

string fstream

sstream

algorithm vector

800_CoordParam.h

4.9 800_CoordParam.h File Reference

#include <iostream>
#include <algorithm>
#include <vector>
#include <string>
#include <fstream>
Include dependency graph for 800_CoordParam.h:

800_CoordParam.h

iostream algorithm vector string fstream

Generated on Tue Jun 23 2020 13:55:23 for Permutation_Sampling_Code by Doxygen



68 File Documentation

This graph shows which files directly or indirectly include this file:

800_CoordParam.h

800_CoordParam.cpp

Classes

• class CoordParam

4.10 800_MOGrid.cpp File Reference

#include <iostream>
#include <exception>
#include <cassert>
#include <string>
#include <fstream>
#include <sstream>
#include <algorithm>
#include <vector>
#include <iomanip>
#include "800_MOGrid.h"
Include dependency graph for 800_MOGrid.cpp:

800_MOGrid.cpp

iostream exception

cassert

string fstream

sstream algorithm

vector

iomanip800_MOGrid.h

Matrix.h

Functions

• void col_major_idx_3d (const int &n1, const int &n2, const int &n3, const int &N1, const int &N2, const int
&N3, int &index)

• void row_major_idx_3d (const int &n1, const int &n2, const int &n3, const int &N1, const int &N2, const int
&N3, int &index)
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4.10.1 Function Documentation

4.10.1.1 void col_major_idx_3d ( const int & n1, const int & n2, const int & n3, const int & N1, const int & N2, const int & N3,
int & index )

Definition at line 21 of file 999_col_major_idx.cpp.

4.10.1.2 void row_major_idx_3d ( const int & n1, const int & n2, const int & n3, const int & N1, const int & N2, const int & N3,
int & index )

Definition at line 39 of file 999_col_major_idx.cpp.

Here is the caller graph for this function:

row_major_idx_3d MOGrid::get_grid_index_3d

4.11 800_MOGrid.h File Reference

#include <vector>
#include <string>
#include <fstream>
#include "Matrix.h"
Include dependency graph for 800_MOGrid.h:

800_MOGrid.h

vector

string fstream Matrix.h

cassert
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This graph shows which files directly or indirectly include this file:

800_MOGrid.h

800_MOGrid.cpp

Classes

• class MOGrid

4.12 900_FileParam.cpp File Reference

#include <iostream>
#include <string>
#include <fstream>
#include <cassert>
#include "900_FileParam.h"
Include dependency graph for 900_FileParam.cpp:

900_FileParam.cpp

iostream

string

fstream cassert 900_FileParam.h

4.13 900_FileParam.h File Reference

#include <string>
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Include dependency graph for 900_FileParam.h:

900_FileParam.h

string

This graph shows which files directly or indirectly include this file:

900_FileParam.h

001_main.cpp

500_MCParam.h

400_RTVariables.h

100_MCRunDriver.h

100_MCRunDriver.cpp

400_RTVariables.cpp

500_MCParam.cpp

900_FileParam.cpp

Classes

• class FileParam

4.14 900_RandUtils.cpp File Reference

#include <iostream>
#include <math.h>
#include <chrono>
#include <ctime>
#include <cassert>
#include <random>
#include <stdlib.h>
#include "RandWrapper.h"
#include "900_RandUtils.h"
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Include dependency graph for 900_RandUtils.cpp:

900_RandUtils.cpp

iostream

math.h chrono ctime

cassertrandom

stdlib.h

RandWrapper.h

900_RandUtils.h

vectormemory

string fstreamMatrix.h

Functions

• void col_major_idx_2d (const int &irow, const int &icol, const int &nrow, const int &ncol, int &index)

4.14.1 Function Documentation

4.14.1.1 void col_major_idx_2d ( const int & irow, const int & icol, const int & nrow, const int & ncol, int & index )

Definition at line 3 of file 999_col_major_idx.cpp.

4.15 900_RandUtils.h File Reference

#include <iostream>
#include <vector>
#include <string>
#include <fstream>
#include "Matrix.h"
#include "RandWrapper.h"
Include dependency graph for 900_RandUtils.h:

900_RandUtils.h

iostreamvector

string fstreamMatrix.h RandWrapper.h

cassert randommemory
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This graph shows which files directly or indirectly include this file:

900_RandUtils.h

100_MCRunDriver.h

100_MCRunDriver.cpp

900_RandUtils.cpp

001_main.cpp

Classes

• class RandUtils

4.16 999_col_major_idx.cpp File Reference

#include <cassert>
Include dependency graph for 999_col_major_idx.cpp:

999_col_major_idx.cpp

cassert

Functions

• void col_major_idx_2d (const int &irow, const int &icol, const int &nrow, const int &ncol, int &index)

• void col_major_idx_3d (const int &n1, const int &n2, const int &n3, const int &N1, const int &N2, const int
&N3, int &index)

• void row_major_idx_3d (const int &n1, const int &n2, const int &n3, const int &N1, const int &N2, const int
&N3, int &index)
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4.16.1 Function Documentation

4.16.1.1 void col_major_idx_2d ( const int & irow, const int & icol, const int & nrow, const int & ncol, int & index )

Definition at line 3 of file 999_col_major_idx.cpp.

Here is the caller graph for this function:

col_major_idx_2d

Matrix< int >::get

Matrix< int >::set

4.16.1.2 void col_major_idx_3d ( const int & n1, const int & n2, const int & n3, const int & N1, const int & N2, const int & N3,
int & index )

Definition at line 21 of file 999_col_major_idx.cpp.

4.16.1.3 void row_major_idx_3d ( const int & n1, const int & n2, const int & n3, const int & N1, const int & N2, const int & N3,
int & index )

Definition at line 39 of file 999_col_major_idx.cpp.

Here is the caller graph for this function:

row_major_idx_3d MOGrid::get_grid_index_3d

4.17 Matrix.h File Reference

#include <vector>
#include <cassert>
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Include dependency graph for Matrix.h:

Matrix.h

vector cassert

This graph shows which files directly or indirectly include this file:

Matrix.h

500_MCParam.h

100_MCRunDriver.cpp

400_RTVariables.cpp

500_MCParam.cpp 900_RandUtils.h

800_MOGrid.h

001_main.cpp

400_RTVariables.h

100_MCRunDriver.h 900_RandUtils.cpp

800_MOGrid.cpp

Classes

• class Matrix< T >

Functions

• void col_major_idx_2d (const int &irow, const int &icol, const int &nrow, const int &ncol, int &idx)

4.17.1 Function Documentation

4.17.1.1 void col_major_idx_2d ( const int & irow, const int & icol, const int & nrow, const int & ncol, int & idx )

Definition at line 3 of file 999_col_major_idx.cpp.
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Here is the caller graph for this function:

col_major_idx_2d

Matrix< int >::get

Matrix< int >::set

4.18 RandWrapper.cpp File Reference

#include <iostream>
#include <vector>
#include <algorithm>
#include <cassert>
#include "RandWrapper.h"
Include dependency graph for RandWrapper.cpp:

RandWrapper.cpp

iostream vector

algorithm cassertRandWrapper.h

random memory

4.19 RandWrapper.h File Reference

#include <iostream>
#include <vector>
#include <random>
#include <memory>

Generated on Tue Jun 23 2020 13:55:23 for Permutation_Sampling_Code by Doxygen



4.19 RandWrapper.h File Reference 77

Include dependency graph for RandWrapper.h:

RandWrapper.h

iostream vector random memory

This graph shows which files directly or indirectly include this file:

RandWrapper.h

900_RandUtils.h

900_RandUtils.cpp

RandWrapper.cpp

100_MCRunDriver.h

100_MCRunDriver.cpp001_main.cpp

Classes

• class RandWrapper
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[67] M. Thiele and S. Kümmel. Frequency dependence of the exact exchange-correlation kernel

of time-dependent density-functional theory. Phys. Rev. Lett., 112(8), 2014.

[68] M.A.L. Marques, N.T. Maitra, F.M.S. Nogueira, E.K.U. Gross, and A. Rubio. Fundamen-

tals of Time-Dependent Density Functional Theory. Lecture Notes in Physics. Springer

Berlin Heidelberg, 2012.

[69] A.J. Haes, S. Zou, G.C. Schatz, and R.P. Van Duyne. Nanoscale optical biosensor: Short

range distance dependence of the localized surface plasmon resonance of noble metal

nanoparticles. Journal of Physical Chemistry B, 108(22):6961–6968, 2004.

[70] A.O. Govorov and H.H. Richardson. Generating heat with metal nanoparticles. Nano Today,

2(1):30–38, 2007.

[71] P. Tallury, A. Malhotra, L.M. Byrne, and S. Santra. Nanobioimaging and sensing of infec-

tious diseases. Advanced Drug Delivery Reviews, 62(4-5):424–437, 2010.

[72] R. Sukirtha, K.M. Priyanka, J.J. Antony, S. Kamalakkannan, R. Thangam, P. Gunasekaran,

M. Krishnan, and S. Achiraman. Cytotoxic effect of green synthesized silver nanoparticles

using melia azedarach against in vitro hela cell lines and lymphoma mice model. Process

Biochemistry, 47(2):273–279, 2012.

[73] N.G. Khlebtsov and L.A. Dykman. Optical properties and biomedical applications of

plasmonic nanoparticles. Journal of Quantitative Spectroscopy and Radiative Transfer,

111(1):1–35, 2010.

[74] P. Kumar, M. Govindaraju, S. Senthamilselvi, and K. Premkumar. Photocatalytic degra-

dation of methyl orange dye using silver (ag) nanoparticles synthesized from ulva lactuca.

Colloids and Surfaces B: Biointerfaces, 103:658–661, 2013.

192



[75] F.J. Beck, A. Polman, and K.R. Catchpole. Tunable light trapping for solar cells using

localized surface plasmons. Journal of Applied Physics, 105(11), 2009.

[76] M.-G. Kang, T. Xu, H.J. Park, X. Luo, and L.J. Guo. Efficiency enhancement of or-

ganic solar cells using transparent plasmonic ag nanowire electrodes. Advanced Materials,

22(39):4378–4383, 2010.

[77] Y. Xiong, R. Long, D. Liu, X. Zhong, C. Wang, Z.-Y. Li, and Y. Xie. Solar energy

conversion with tunable plasmonic nanostructures for thermoelectric devices. Nanoscale,

4(15):4416–4420, 2012.

[78] G. Zengin, M. Wersäll, S. Nilsson, T.J. Antosiewicz, M. Käll, and T. Shegai. Realizing

strong light-matter interactions between single-nanoparticle plasmons and molecular exci-

tons at ambient conditions. Physical Review Letters, 114(15), 2015.

[79] J.L. West and N.J. Halas. Engineered nanomaterials for biophotonics applications: Im-

proving sensing, imaging, and therapeutics. Annual Review of Biomedical Engineering,

5:285–292, 2003.

[80] A.D. McFarland and R.P. Van Duyne. Single silver nanoparticles as real-time optical sensors

with zeptomole sensitivity. Nano Letters, 3(8):1057–1062, 2003.

[81] P.K. Jain, X. Huang, I.H. El-Sayed, and M.A. El-Sayed. Noble metals on the nanoscale:

Optical and photothermal properties and some applications in imaging, sensing, biology,

and medicine. Accounts of Chemical Research, 41(12):1578–1586, 2008.

[82] J. Feng, V.S. Siu, A. Roelke, V. Mehta, S.Y. Rhieu, G.T.R. Palmore, and D. Pacifici.

Nanoscale plasmonic interferometers for multispectral, high-throughput biochemical sens-

ing. Nano Letters, 12(2):602–609, 2012.

[83] S. Eustis and M.A. El-Sayed. Why gold nanoparticles are more precious than pretty gold:

Noble metal surface plasmon resonance and its enhancement of the radiative and nonradia-

193



tive properties of nanocrystals of different shapes. Chemical Society Reviews, 35(3):209–

217, 2006.

[84] L.M. Liz-Marzán. Tailoring surface plasmons through the morphology and assembly of

metal nanoparticles. Langmuir, 22(1):32–41, 2006.

[85] Y. Sonnefraud, A.L. Leen Koh, D.W. McComb, and S.A. Maier. Nanoplasmonics: En-

gineering and observation of localized plasmon modes. Laser and Photonics Reviews,

6(3):277–295, 2012.

[86] N.J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander. Plasmons in strongly coupled

metallic nanostructures. Chemical Reviews, 111(6):3913–3961, 2011.

[87] P. Geisler, E. Krauss, G. Razinskas, and B. Hecht. Transmission of plasmons through a

nanowire. ACS Photonics, 4(7):1615–1620, 2017.

[88] M.W. Knight, N.K. Grady, R. Bardhan, F. Hao, P. Nordlander, and N.J. Halas. Nanoparticle-

mediated coupling of light into a nanowire. Nano Letters, 7(8):2346–2350, 2007.

[89] P.K. Jain and M.A. El-Sayed. Plasmonic coupling in noble metal nanostructures. Chemical

Physics Letters, 487(4-6):153–164, 2010.

[90] A. Varas, P. Garcı́a-González, J. Feist, F.J. Garcı́a-Vidal, and A. Rubio. Quantum plasmon-

ics: from jellium models to ab initio calculations. Nanophotonics, 5(3):409–426, 2016.
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