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Abstract

The focus of this work is to construct theoretical methods or approaches to tackle computa-

tionally challenging problems in quantum chemistry. The primary topic of the work will focus

on efficient theories that allow for capturing electron-correlation in semiconductor or metallic

nanoparticles. These systems are computationally challenging due to the size of the systems,

the number of electrons per atom, and the degeneracy of the particle-hole states. Three meth-

ods presented here are aimed at providing novel theoretical methods towards computationally

inexpensive electronic excited state calculations. The frequency-dependent geminal-screened

electron-hole interaction kernel (FD-GSIK) method provides a real-space approach towards

eliminating the virtual space reducing the computational effort present in most excited state

methods. Dressed molecular orbital basis is presented to compress the configuration space

in metallic nanoparticles, resulting in a cheap multi-reference approach to obtaining electron-

correlation. Finally, the moment generated molecular orbital basis is derived to provide an

alternative approach that utilizes moments of the reference function to decouple particle and

hole states. A secondary focus within this work is to provide efficient Monte Carlo sam-

pling techniques for modeling and integration. Monte Carlo provides an efficient pathway

to sampling experimental models and evaluation of complicated integrals which are normally

computationally costly. The theoretical developments presented in this work allow for un-

derstanding theoretical properties in semiconductor or metallic nanoparticles which normally

would be computationally prohibited.
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Chapter 1

Introduction

1.1 Scope

Quantum chemistry is an area within chemistry that focuses on obtaining theoretical insight into

chemical systems with the use of quantum mechanics. In general, quantum chemistry research

lies in obtaining answers accurately and efficiently. Accuracy in quantum chemistry begins by

trying to minimize the energy within the system to match the ground-state energy or lowest energy

state. But in addition, efficiency is of high importance within quantum chemistry to obtain results

as quickly as possible. Where efficiency is measured by the computational effort needed for the

theoretical investigation for the particular system. Typically, computational effort refers to the

memory requirements, floating point operations, or speed of the calculation, method or algorithm.

Throughout this presented work, path to efficient algorithms or computational methods is of key

importance towards advancing the field of quantum chemistry.

A foundation within quantum chemistry is the Hartree-Fock method which provides a frame-

work for calculating the energy of the chemical system from a wave-function and the Schrödinger

equation. Hartree-Fock method captures about 99% of the total electronic energy of the system,

and 95% of the wavefunction thereby contributing as a primary starting point for more advance

quantum chemistry methods. [1] The goal of advance methods are to collect the remaining 1% of

energy to complete the theoretical understanding of the system, and accuracy. In general, the en-
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ergy differences in chemical and spectroscopic properties of interest are smaller than the missing

1% of electronic energy therefore it is crucial to develop methods that correct for the remaining

energy. The energy that is not obtained in the Hartree-Fock method is the correlation energy and

is defined as the energy missing from the Hartree-Fock model to matching the exact energy. The

Hartree-Fock method is an introductory method and key baseline for much of quantum chemistry

and provides the starting point for much of the presented work and discussed in Chapter 2 along

with the correlation energy.

A key aspect to appreciating and understanding the presented work comes from comprehen-

sion of the mathematical notation within the theory. I dedicate all of Chapter 3 to second quan-

tization which is a useful representation in quantum mechanics. It provides a simplistic notation

towards more complicated equations and is used throughout the presented work. Once I have pro-

vided second quantization I will immediately use it to provide brief insight into many popular and

commonly used electronic excited state methods, in Chapter 4. The chapter will not be in-depth

derivations of each method, but provide a primer to key mathematical expressions that define the

methods. This chapter sets up the main motivation of the presented work, along with the problems

faced towards obtaining correlation energy in modern quantum chemistry. Background material

provided in Chapter 2, Chapter 3, and Chapter 4 will allow for understanding of the presented

work in Chapter 5, Chapter 6, Chapter 7, and Chapter 9.

In Chapter 5, the frequency-dependent geminal-screened electron-hole interaction kernel (FD-

GSIK) method for describing electron-hole correlation in electronically excited many-electron

systems is presented. The FD-GSIK is a parameter-free, first-principle method derived from ex-

cited state wavefunction that was both frequency-dependent and r12-explicitly correlated. The

FD-GSIK avoids using unoccupied orbitals for kernel construction by performing an infinite-

order summation of particle-hole excitation and representing it as a compact real-space opera-

tor. It bypasses the computationally demanding steps of evaluation, storage, and transformation

of atomic-orbital integrals by directly evaluating molecular orbital integrals in real space using

the stratified Monte Carlo method. This chapter will demonstrate and discuss the advantages of

this method by presenting excitation and electron-hole binding energies of large nanoparticles in-
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cluding Pb140S140, Pb140Se140, Cd144Se144, and Cd72S72. This work was recently accepted for

publication in Journal of Chemical Theory and Computation DOI:10.1021/acs.jctc.9b01238.

In Chapter 6, a dressed molecular orbital basis approach will be presented. I present a dressed

particle-hole basis that allows for compression of the configuration space, allowing for a compu-

tationally efficient representation for investigation of multi-reference characteristics in electronic

excitations. Multi-reference wavefunctions are approximations to the full configuration interaction

(FCI) wavefunction, which is desirable since it provides an exact solution to the many-electron

problem. The FCI is in practice computationally prohibitive for many-electron systems due to

the number of excited determinants. In general, truncation of the configuration space is limited

to the singly or doubly excited determinants for construction of the multi-reference wavefunc-

tion. Or by limiting the active space of the occupied or unoccupied orbitals thereby limiting the

number of possible excited determinants. The objective of the presented work is to construct

a molecular orbital basis that includes information for all particle-hole orbitals as well as com-

pressing the configuration space without the use of truncation. The derived basis will be used in

conjunction with the developed frequency-dependent geminal-screened electron-hole kernel (FD-

GSIK) method to obtain electron-correlated excitation energies in silver nanowires, Agn where

n = 2,4,6,8,10,12,20,40,60,80,100. These metallic like systems are of great interest due to

there electronic properties but are computationally challenging due to the number of electrons and

their highly degenerate molecular orbitals. The presented work aims to provide an approach that

can efficiently understand mutli-reference excitation characteristics within this system. This work

is in preparation for submission to The Journal of Chemical Physics.

In Chapter 7, a derivation for a moment generated molecular orbital basis for obtaining electron-

correlation is presented. This approach serves as an alternative to the frequency-dependent geminal-

screened electron-hole interaction kernel reported in previous chapters. The operator in the method

are the moments of the ground state particle or hole state, enabling a simplistic operator for decou-

pling the single particle-hole reference state. The benefit of the derived method would be that the

operator is not limited by the choice of reference states.

In Chapter 8, I will briefly present the permutation sampling Monte Carlo integration method
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and focus on the computational implementation of the method. The primary goal of the method

is to decouple the dimensionality in integration to provide an efficient and accurate evaluation

of numerical integrals. Within quantum chemistry numerical integration is ever-present and a

key computational bottleneck within calculations. The main focus within this chapter will be the

theory and computer science in efficient implementation of the permutation sampling Monte Carlo

method. Providing insight into design decisions towards programming efficient software that is

general purpose for future development but versatile in functionality. The use of permutation

sampling Monte Carlo towards understanding a 12+1 dimensional Green’s function integral is in

preparation for journal submission.

In Chapter 9, various theoretical investigations within collaborative projects will be presented.

These studies are centered around nanoparticles, which are of huge interest amongst many groups

of science, including chemistry, biology and engineering. These nanoparticles that contain a large

number of electrons are computationally limited with commercial electronic structure software

packages. Therefore theoretical properties are a challenge to obtain and often avoided. The pre-

sented work will focus on the development of quantum chemical calculations for these large chem-

ical systems. The first investigation will present the preliminary results for the collaborative inves-

tigation of Ag nanoclusters. The Ag nanoclusters were formed in a polymer film by direct-laser

writing. It was found that these nanoclusters exhibited unique optical properties. This investiga-

tion will present theoretical insight on the HOMO-LUMO gap energies for large Ag nanoclusters

to support the experimental observations. The next work will provide an insight into the theoreti-

cal works provided for understanding Mn2+ dopant migration in CdS/ZnS quantum dots. The goal

of the theoretical investigation is to provide insight into dopant migration versus dopant ejection

within these systems. The presented work will focus on the theoretical method developed towards

understanding the thermodynamics of this molecular system in a computationally efficient manner.

The work with Mn2+ dopant migration in CdS/ZnS quantum dots was recently accepted into The

Journal of Physical Chemistry Letters.

Finally, Chapter 10 will cover an overall conclusion to the presented work within this thesis

and the future investigations of this work.
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Chapter 2

Quantum Chemistry Background

2.1 Hartree-Fock approximation

I begin by briefly introducing the Hatree-Fock method as this is the foundation for most of the work

that I have developed. The common nomenclature and conventions for describing many-electron

wave functions for quantum chemists is a single Slater determinant, Φ,

Φ =
1√
N!

∣∣∣∣∣∣∣∣∣∣∣∣∣

χ1(1) χ2(1) · · · χN(1)

χ1(2) χ2(2) · · · χN(2)
...

... . . . ...

χ1(N) χ2(N) · · · χN(N)

∣∣∣∣∣∣∣∣∣∣∣∣∣
(2.1)

= A|χ1(1)χ2(2) · · ·χN(N)|. (2.2)

In Equation 2.1, there is a normalization factor, 1√
N!

, the antisymmetrizer, A, and a spin orbital,

χi(µ). The spin orbital describes both the spatial distribution and spin of the µth electron. Elec-

trons can have either be spin up (α) or spin down (β ) within a spin orbital. The Slater determinant

is the initial convention of choice for a physical wave function for several crucial reasons. First,

the antisymmetry rule is followed by construction of the determinant. The antisymmetry rule is

simply that interchange of both space and spin of two electrons must be opposite wave functions,
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∣∣∣∣∣∣∣∣∣∣∣∣∣

χ1(1) χ2(1) · · · χN(1)

χ1(2) χ2(2) · · · χN(2)
...

... . . . ...

χ1(N) χN(N) · · · χN(N)

∣∣∣∣∣∣∣∣∣∣∣∣∣
=−

∣∣∣∣∣∣∣∣∣∣∣∣∣

χ1(2) χ2(2) · · · χN(2)

χ1(1) χ2(1) · · · χN(1)
...

... . . . ...

χ1(N) χN(N) · · · χN(N)

∣∣∣∣∣∣∣∣∣∣∣∣∣
(2.3)

Where by interchanging the first two rows in Equation 2.1 yields a negative sign. The next reason is

that a Slater determinant follows the Pauli exclusion principle, which is that two electrons can not

occupy the same spin orbital. This occurs in a Slater determinant when two columns are exactly

equal, which results in the determinant being zero.

The Hatree-Fock equation, in atomic units allows for optimization of the spin orbitals through

minimization of the spin orbital energies,

f̂ χi = εiχi. (2.4)

With the Fock operator f̂ ,

f̂ = ĥ+ v̂HF (2.5)

f̂ = ĥ+
Nelec.

∑
j=1

(Ĵ j− K̂ j) (2.6)

containing the one-electron Hamiltonian,

ĥ = [t̂ + v̂ne] (2.7)

ĥ =−1
2

∇
2
i −

M

∑
A=1

ZA

riA
(2.8)

and the two-electron Coulomb (Ĵ) and exchange (K̂) operators,

Ĵ j(1)χi(1) = 〈χ j(2)|
1

r12
|χ j(2)〉χi(1) (2.9)
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K̂ j(1)χi(1) = 〈χ j(2)|
1

r12
|χi(2)〉χ j(1). (2.10)

The Coulomb and exchange operators are an effective one-electron potential operator called the

Hartree-Fock potential,

νHF =
Nelec.

∑
j=1

(Ĵ j− K̂ j) (2.11)

The νHF is simply an average potential felt by the µth electron from the other electrons. By

minimizing the energy of the spin orbitals a Slater determinant is obtained that is a good first

approximation to electronic wave function. [2, 1]

The truth is that the exact wave function, χexact, for a many-electron interacting system is not a

single Slater determinant but a combination of Slater determinants as there are many combinations

of Slater determinants which can be formed. The use of one single Slater determinant is a good

approximation to the ground state of a many-electron system for which the N electrons occupy the

lowest N spin orbitals but neglects correlation affects.

2.2 Electron Correlation

Electron correlation is the correction to the Hartree-Fock wave function that is needed to obtain

the exact wave function,

Ψexact = ΦHF +χCorr (2.12)

In general, interest lies with trying to obtain the correlation energy, which is the energy required to

correct the Hartree-Fock energy, EHF to the exact energy Eexact,

∆Ecorr = Eexact−EHF (2.13)
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Since the instantaneous correlation of the electrons due to their repulsion is missing within the

Hartree-Fock model, where the motion of the electron is described by an average field with respect

to the other electrons. This limitation of the Hartree-Fock model is easily seen in bond dissociation

energies, for which it fails. [2, 1, 3]
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Chapter 3

Second quantization

A formulation that will be used throughout the presented work is second quantization. This for-

mulation allows for a compact and convenient notation of representing wave-functions (i.e. Slater

determinants) and operators, while providing a simplified way of manipulating the functions and

operators.

3.1 Creation and Annihilation operators

Let’s begin with the a normalized Slater determinant,

Φ = Φi jk...N ≡ A|χiχ jχk . . .χN | ≡ |χiχ jχk . . .χN〉 ≡ |i jk . . .N〉 (3.1)

with the antisymmetrizer A, and a spin orbital χ , for each particle. The above notations (Equa-

tion 3.1) are all equivalent but the last notation will be of primary use throughout this work when

utilizing second quantization formulation. This notation is just the simplest notation by dropping

χ symbol for every spin orbital. It is important to note that occupancy within second quantization

is denoted by the presence of a basis spin orbital in the determinant, for example the spin orbitals

i jk . . .N are occupied in Equation 3.1 and all other spin orbitals are unoccupied.

The creation or annihilation of a particle represent the addition or removal of a spin orbital

through the creation and annihilation operators. The creation operator is designated by the dagger
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symbol, (†) and creates a particle in a specific spin orbital at the beginning of the Slater determi-

nant. The removal of a particle from the determinant is done through the annihilation operator on

a specific spin orbital. The notations for creation and annihilation:

creation operator for spin orbital χi, i† (3.2)

annihilation operator for spin orbital χi, i (3.3)

These operators can be used on the Slater determinant, | jk . . .N〉, as follows:

i†| jk . . .N〉= |i jk . . .N〉 (3.4)

i|i jk . . .N〉= | jk . . .N〉 (3.5)

thereby creating a particle in i (Equation 3.4), then removing that particle from i (Equation 3.5). It

is relevant to point out that creating a particle in an already occupied spin orbital or annihilating a

particle that does not exist within the Slater determinant will result in a invalid determinant.

i†|i jk . . .N〉= 0 (3.6)

i| jk . . .N〉= 0 (3.7)

In general a lexical order of the spin orbitals is convenient,

|i jk . . .N〉, where i < j < k < · · ·< N (3.8)

but we must discuss the creation and annihilation of a particle that is out of lexical order, for

example creation/annihilation of p. The consequences of this is demonstrated below,

p†|i jk . . .N〉= |pi jk . . .N〉= (−1)σ(p)|i jk . . . p . . .N〉 (3.9)

p|i jk . . . p . . .N〉= (−1)σ(p)|pi jk . . .N〉= (−1)σ(p)|i jk . . .N〉 (3.10)
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where (−1)σ(p) is needed to maintain the antisymmetry principle in Slater determinants for which

an interchange of the spin orbital p with the other spin orbitals i jk . . . results in a negative sign

occurring σ(p) times. With all this points we can now define a vacuum Slater determinant, denoted

as |〉, which is a determinant with no spin orbitals. This can be constructed through successive

operations on a Slater determinant,

i jk . . .N|i jk . . .N〉= |〉 (3.11)

We can also create a Slater determinant from the vacuum Slater determinant through successive

creation operations. [2, 1]

i† j†k† . . .N†|〉= |i jk . . .N〉 (3.12)

3.2 Anticommutation relations

With the definition of creation and annihilation operators let us now look at anticommutation rela-

tions of these operators. Let us first consider the creation operators p† and q†. The order of which

these two operators can performed are as follows:

p†q†|i jk . . .〉= |pqi jk . . .〉 (3.13)

q† p†|i jk . . .〉= |qpi jk . . .〉=−|pqi jk . . .〉 (3.14)

This is valid for any Slater determinant for which χp or χq does not exist in |i jk . . .〉, as the product

would be zero. We then get the anticommutation relation for the two creation operators as,

p†q† =−q† p† (3.15)

[p†,q†]+ ≡ p†q† +q† p† = 0 (3.16)
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which can be generically written as:

[Â, B̂]+ ≡ ÂB̂+ B̂Â (3.17)

is the anticommutator of Â and B̂ and commonly written as {Â, B̂}. It is important to point out

the case of p = q this relation still holds true because p† p† = 0 (Equation 3.6). The creation

anticommutation relation is unique as [Â, B̂]+ = [B̂, Â]+ which for a normal commutator [Â, B̂]+ =

−[B̂, Â]+.

Now we can move onto the anticommutation relations for the annihilation operator. Let us now

consider the annihilation operators p and q:

pq|qpi jk . . .〉= p|pi jk . . .〉= |i jk . . .〉 (3.18)

qp|qpi jk . . .〉=−qp|qpi jk . . .〉=−p|pi jk . . .〉=−|i jk . . .〉 (3.19)

Note that if χp or χq are in the interior of the Slater determinant then a sign change will occur

as described in Equation 3.10, for both cases of above equations (Equation 3.18,Equation 3.19).

If χp and/or χq are not present within the Slater determinant the resulting determinant is zero.

(Equation 3.7) Therefore we arrive at the anticommutator relation for the annihilation operator,

pq =−qp (3.20)

[p,q]+ = 0 (3.21)

The last case to consider is a creation and annihilation operator pair, p†q when p 6= q:

p†q|qi jkl . . .〉= p†|i jkl . . .〉= |pi jkl . . .〉 (3.22)

qp†|qi jkl . . .〉= q|pqi jkl . . .〉=−q|qpi jkl . . .〉=−|pi jkl . . .〉 (3.23)

This operation removes the particle from spin orbital q to put it into spin orbital p but there is
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difference of a negative sign between the two expressions. Therefore we have the relation:

[p†,q]+ = 0 (p 6= q) (3.24)

Let us now look at the case when p = q in which p does or doesn’t exist within the initial Slater

determinant,

p† p|pi jkl . . .〉= p†|i jkl . . .〉= |pi jkl . . .〉 (3.25)

pp†|pi jkl . . .〉= 0 (3.26)

p† p|i jkl . . .〉= 0 (3.27)

pp†|i jkl . . .〉= p†|pi jkl . . .〉= |i jkl . . .〉 (3.28)

Which generalized shows that,

(
p† p+ pp†

)
| . . .〉= | . . .〉 (3.29)

For which we obtain the relation:

[p†, p]+ = [p, p†]+ = 1 (3.30)

In the case of a creation and annihilation operator pair we then have the final anticommutation

relation,

[p†,q]+ = [p,q†]+ = δpq (3.31)

that contains the Kronecker-delta operator, δpq. The Kronecker-delta operator is a commonly used

operator that differentiates the expression for the instances when p 6= q or p = q resulting in zero

or 1, respectively.[2, 1, 4]
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In summary there are three anticommutation relations for creation and annihilation operators,

[p†,q†]+ = 0 (3.32)

[p,q]+ = 0 (3.33)

[p†,q]+ = [p,q†]+ = δpq (3.34)

3.3 Second quantized operators

The benefit with second quantization as presented so far allows is that we have presented a notation

for a many-electron wave function without the need of Slater determinants. We can now represent a

many-electron wave function simply through creation and annihilation operators, anticommutation

relations, and the vacuum state. Our focus now shifts to the second quantization representation

of many-particle operators, O1 and O2 for one-particle and two-particle operators, respectively.

This will allow for representation of theory of many-electron systems without the use of Slater

determinants by obtaining the second quantization equivalent of the matrix elements of 〈K|O|L〉.

The second quantization expression for O1, which will be the sum of one-electron operators

(Equation 2.5) and for O2 the total coulomb repulsion between electrons are:

O1 =
N

∑
i

ĥ(i) =⇒ ∑
i j
〈i|ĥ| j〉i† j (3.35)

O2 =
1
2

N2

∑
i6= j

K̂(i, j) =⇒ 1
2 ∑

i jkl
〈i j|kl〉i† j†lk (3.36)

The left expression in Equation 3.35 and Equation 3.36 are the wave function representation of the

operators, where the right hand side are the second quantization representation. The eloquence and

benefit of second quantization is easily expressed from these expressions in terms of the summation

of over the spin orbitals. For the wave function representation operators depend on the summation

of each particle, where for second quantization the number of particles is independent of number

of particles. This is one of the main benefits of second quantization as the expressions are not
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limited by number of particles, on the other hand with wave function representation expressions

depend on the number of particles. Therefore when dealing with large many-electron systems,

the expressions in second quantization are simple while becoming burdensome in wave function

representation.[1]

3.4 Particle-hole formulation

We are now able to fully describe theory of many-electron wave functions and operators in terms

of second quantization. The reference state that we have constructed up to this point is a vacuum

Slater determinant, Equation 3.11 and Equation 3.12. It will be more convenient if we had a fixed

reference state that contained occupied spin orbitals, where all other Slater determinants can be

constructed from this reference. The reference state that we will use is the Fermi vacuum defined

as,

|0〉 ≡ |Φ0〉= |i jk . . .N〉 (3.37)

The Fermi vacuum is typically the ground state determinant obtained from Hatree-Fock. Within the

particle-hole formulation the spin orbitals i, j,k, . . .N, in Equation 3.37 are the hole states(occupied

orbitals). Particle states (unoccupied orbitals) are defined as a,b,c, . . . , the indices p,q,r,s, . . . are

used to describe states that can be either hole or particle states.

The construction of the Fermi vacuum can easily be demonstrated through Figure 3.1. Starting

with the many-particle picture there is a ground state which contains particles filling spin orbitals

χi, according to the Pauli exclusion principle. The highest filled orbital is then designated the

Fermi level, as εF . There is an example of an excited state for the many-particle picture, where

the particle below the Fermi level, χ3 has been excited above the Fermi level, χ9. Applying the

Fermi vacuum as the reference, the ground state in the particle-hole picture appears empty. But

in the particle-hole formulation we are only interested in changes from the ground state reference.

Therefore the depiction of the excited state in the particle-hole picture contains a particle in χ9 and
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a hole (the empty circle) in χ3 as these are the only changes from the Fermi vacuum.
2

P
article states

Ground State Excited State Ground State Excited State

Many-Particle Picture Particle-Hole Picture

H
o

le states

Figure 3.1: Diagram of the particle-hole representation. The left side is the many-particle picture
for the ground state and excited state. While the right shows the particle-hole picture for the same
ground and excited state of the many-particle picture.

This now allows us to describe excited state determinants with respect to the Fermi vacuum,

(single excitation) |Φa
i 〉 ≡ a†i|0〉= |a jk . . .N〉 (3.38)

(double excitation) |Φab
i j 〉 ≡ a†b† ji|0〉= |abk . . .N〉 (3.39)

(electron removal) |Φi〉 ≡ i|0〉= | jk . . .N〉 (3.40)

(electron attachment) |Φa〉 ≡ a†|0〉= |ai jk . . .N〉 (3.41)

with particle-hole representation operators that are hole or particle creators and annihilators.

i†−hole annihilator (3.42)

i−hole creator (3.43)

a†−particle creator (3.44)
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a−particle annihilator (3.45)

It is important to note that a hole can not be annihilated if the hole doesn’t exist within the reference

state, that is,

i†|i jk . . .N〉= 0 (3.46)

also a particle can not be destroyed if it doesn’t exist,

a|i jk . . .N〉= 0 (3.47)

Therefore, when describing a single excitation in particle-hole formalism like in Equation 3.38,

first a hole is created in i by removing the particle from spin orbital i, then that particle is created in

spin orbital a. This has allowed for creation of single excited state determinant that only contains

a hole annihilator, particle creator and the Fermi vacuum reference state. Likewise in describing

a double excitation (Equation 3.39) the hole states are creating first by removing i then j, and

creating the particles in b then a.

The order which these operators occur is through normal ordering of the pseudo-creation op-

erators to the left of all pseudo-annihilation operators. The pseudo-creation operators are the

operators in the particle-hole formalism that create, i and a†. These are referenced as pseudo-

creation operators because they both create but both do not contain the † symbol, which referees

to creation in section 3.1. The opposite is true for the pseudo-annihilation operators, i† and a as

these operators annihilate. The process of moving all the pseudo-creation operators to left of the

pseudo-annihilation operators is done through the anticommutation relations described in Equa-

tion 3.32-Equation 3.34,

[p†,q†]+ = 0 (3.48)

[p,q]+ = 0 (3.49)
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[p†,q]+ = [p,q†]+ = δpq (3.50)

which were also written as,

p†q† =−q† p† (3.51)

pq =−qp (3.52)

p†q = δpq−qp† (3.53)

as these will relations keep track of the sign changes that occur during the reordering of the oper-

ators. Let us start with this simple example,

p†q =⇒ p†q (3.54)

in this case the operators are already in normal order, therefore no sign change is required. Now

consider the follow case,

qp† =⇒ −p†q (3.55)

following the anticommutation relation in Equation 3.53 a negative sign is obtained during the nor-

mal ordering. Normal ordering particle-hole operators is crucial when evaluating matrix elements

in second quantization.[1]
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Chapter 4

Electronic Excited State Methods

A key component of the present work is to develop excited state methods to obtain electron-

correlation energy to correct for the Hartree-Fock approximation to the exact Schrödinger wave-

function. Within this chapter I will be presenting the underlying theory of many common excited

state methods to serve as a introduction to the challenges addressed within the presented work after

I have derived the linear response matrices. The derivation of each of these formulations nor their

ranking in terms of accuracy are within the nature of this work, but their overall computational

performance for excited state calculations is our primary interest and will be summarized towards

the end.

4.1 Configuration Interaction Singles

Configuration interaction singles (CIS) is the most simplistic wave-function based ab initio method

for electronic excited states, both conceptually and computationally. We will first start with our

best single Slater determinant,

|Φ0〉= |χ1χ2 . . .χN〉 (4.1)
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where χi corresponds to a spin orbital with N number of electrons. |Φ0〉 is obtained by solving the

time-independent HF equation, Equation 2.5,

F̂ |Φ0〉= E0|Φ0〉 (4.2)

where,

F̂ =
Nelec.

∑
i

f̂i (4.3)

In configuration interaction singles, the electronic wave-function is a combination of the singly

excited determinants generated through all possible single particle creator and single hole creator

operators.

|ΨCIS〉= ∑
ia

ca
i a†i|Φ0〉 (4.4)

|ΨCIS〉= ∑
ia

ca
i |Φa

i 〉 (4.5)

The summation in Equation 4.4 is over all ia pairs which have a size of number of occupied

(Nocc.) times number of virtual orbitals (Nvir.), commonly refereed to as the configuration space.

This many-body wave function is then substituted into the exact time-independent electronic

Schrödinger equation,

Ĥ|Ψ〉=
[
T̂ +V̂elec−nucl +V̂elec−elec

]
|Ψ〉= E|Ψ〉 (4.6)

where the electronic Hamiltonian contains the kinetic energy operator, (T̂ )

T̂ =−
Nelec.

∑
i

1
2

∇
2
i (4.7)
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the electron-nuclei attraction, (V̂elec−nucl)

V̂elec−nucl =−
Nelec.

∑
i

Nnuc.

∑
K

ZK

|ri−RK|
(4.8)

where i is iterating through all electrons and K runs over all nuclei, that have a nuclear charge, ZK .

Finally the electron-electron interaction term, (V̂elec−elec)

V̂elec−elec =
Nelec.

∑
i

Nelec.

∑
j>i

1
|ri− r j|

(4.9)

Then by projecting onto Equation 4.6 or multiplication of 〈Φb
j | on the right hand side,

Nocc.,Nvir.

∑
i,a
〈Φb

j |Ĥ|Φa
i 〉ca

i = ECIS

Nocc.,Nvir.

∑
i,a

ca
i δi jδab (4.10)

where a single term within the left summation is

〈Φb
j |Ĥ|Φa

i 〉= (E0 + εa− εi)δi jδab + 〈i j| fH(r1,r2)|ab〉A (4.11)

where fH(r1,r2) = 1/|r1− r2| is the Hartree kernel. The full expression is then defined as,

Nocc.,Nvir.

∑
i,a

{
(E0 + εa− εi)δi jδab + 〈i j| fH(r1,r2)|ab〉A

}
ca

i = ECIS

Nocc.,Nvir.

∑
ia

ca
i δi jδab (4.12)

which can be simplified with the equation for the excitation energy ωCIS = ECIS−E0,

Nocc.,Nvir.

∑
i,a

{
(εa− εi)δi jδab + 〈i j| fH(r1,r2)|ab〉A

}
ca

i = ωCIS ∑
ia

ca
i δi jδab (4.13)

in the above expression ε is the orbital energy of the χa or χi orbitals, and 〈i j| fH(r1,r2)|ab〉A is

the antisymmetrized two-electron integrals defined as,

〈i j| fH(r1,r2)|ab〉A = 〈i j| fH(r1,r2)|ab〉−〈i j| fH(r1,r2)|ba〉 (4.14)
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〈i j| fH(r1,r2)|ab〉=
∫ ∫

dr1dr2χ∗i (r1)χ∗j (r2) fH(r1,r2)χa(r1)χb(r2) (4.15)

〈i j| fH(r1,r2)|ba〉=
∫ ∫

dr1dr2χ∗i (r1)χ∗j (r2) fH(r1,r2)χb(r1)χa(r2) (4.16)

The expression Equation 4.13 can be more conveniently written in matrix notation,

AX = ωX (4.17)

as an eigenvalue equation that uses A for the matrix representation of Equation 4.11. ω is the

diagonal matrix of the excitation energies, and X is the matrix of the CIS expansion coefficients.

The matrix elements of A are,

Aia, jb = (εa− εi)δi jδab + 〈i j| fH(r1,r2)|ab〉A (4.18)

The excitation energies can be obtained by,

(A−ω)X = 0 (4.19)

or diagonalization of A.[3]

4.2 Linear Response Matrices

4.2.1 Casida Equations

Within section 4.1 the derivation of A matrix was the primary focus. This matrix is of key impor-

tance for linear response theory for excited state calculations. The A matrix is only one component

of what is commonly refereed to as the Casida equations or linear response matrices,[5, 3]

A B

B∗ A∗


X

Y

= ω

1 0

0 −1


X

Y

 (4.20)
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From the perspective of Time-dependent Hatree-Fock (TD-HF) the matrix elements are defined as

follows,

Aia, jb = (εa− εi)δi jδab + 〈i j| fH(r1,r2)|ab〉A (4.21)

Bia, jb = 〈ib| fH(r1,r2)|a j〉A (4.22)

or more generically written and known as,

Aia, jb = (εa− εi)δi jδab +Kia, jb (4.23)

Bia, jb = Kia,b j (4.24)

with the electron-hole interaction kernel (Keh) or coupling matrix,

Kpq,rs = 〈pr|K̂eh|qs〉−〈pr|K̂eh|sq〉 (4.25)

Where we have seen the terms for the A matrix which describes the resonant coupling between the

excitations, but now have a non-resonant coupling matrix in the form of B between the excitations

and de-excitations. It is very common to set B = 0 in Equation 4.20, this is commonly refereed

to as the Tamm-Dancoff aproximation (TDA)[4, 6]. When the TDA is applied to Equation 4.20 it

reduces to the CIS formulation Equation 4.17. The last term in both the matrices is response of the

nonlocal HF exchange potential, which yields a Coulomb-like term.

4.2.2 Limitations

It is important to note some key computational cost features of these response matrices as these

are a primary focus of the present research. The first being the size of these matrices, they are

(Nocc.)
2× (Nvir)

2 in size, where Nocc. and Nvir. is the number of occupied molecular orbitals and

number of virtual orbitals, respectively. The size of these matrices are inherently linked to the

square of the occupation space of the system, because ia iterates through all single particle ex-
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citation’s in the system. The next computational cost arises in the construction of the coupling

matrix, where the atomic-orbital to molecular-orbital (AO-to-MO) integral transformation is re-

quired. Where the integral transformation is,

[
χp(r1)χq(r1)|K̂eh|χr(r2)χs(r2)

]
=

NAO

∑
µ=1

NAO

∑
ν=1

NAO

∑
λ=1

NAO

∑
σ=1

Cµ pCνqCλ rCσs
[
φµ(r1)φν(r1)|K̂eh|φλ (r2)φσ (r2)

]
(4.26)

For which the linear combination of atomic orbitals (LCAO) is a summation over the number of

atomic orbitals (NAO). This transformation has the scaling of O(N5
b ), where Nb is the number

of basis functions for the system. [2] To put these limitations into perspective, Table 4.1 shows

some numerical data to better describe the computational effort for the response matrices. The

Table 4.1: Size of excited state calculation based on basis function and active electrons

Molecule Number of
Active Electrons

Basis
Functions

Singly Exited
Configurations

Two-Electron
Transformation

H2O 10 19 (6-31G*) 140 2,476,099
CdSe 18 26 (LANL2DZ) 153 11,881,376
Cd12Se12 216 312 (LANL2DZ) 22,032 2,956,466,552,832
Cd250Se250 4,500 6,750 (LANL2DZ) 10,125,000 14,012,604,492,187,500,000

data provided in Table 4.1 shows the unfavorable scaling of the singly excited configurations and

two-electron integral transformation for a system of experimental interest, Cd250Se250 which is

approximately a 2 nm quantum dot. A key limitation to also take note of is the computational effort

in regards to storage of this information which can greatly exceed general use devices rapidly.

In the following sections I will go over how various other excited state methods reduce the

computational effort examined here in the Hartree-Fock linear response matrices. Each method

can arrive at the Casida equations but I will only be presenting the form of the A and B matrices.

4.3 Time-Dependent Density Funtional Theory

Time-dependent density functional theory (TD-DFT) is a very common excited state method due

to the widespread use of DFT for ground state calculations. Since the ground state reference is
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constructed through DFT, there requires a treatment of the exchange-correlation (xc) functional

which has replaced the HF exchange potential. In LR-TD-DFT the A and B matrices are defined

as,

Aia, jb = (εa− εi)δi jδab + 〈i j| fH(r1,r2)|ab〉+ 〈i j| fxc|ab〉 (4.27)

Bia, jb = 〈ib| fH(r1,r2)|a j〉+ 〈ib| fxc|a j〉 (4.28)

where the last term is the response of the chosen xc potential. The response to the xc potential is

the second functional derivative of the exchange-correlation energy, known as the xc kernel,

〈i j| fxc|ab〉=
∫

d3r1d3r2χ∗i (r1)χ∗j (r2)
∂ 2Eex

∂ρ(r1)∂ρ(r2)
χa(r1)χb(r2) (4.29)

The limitations of LR-TD-DFT are still consistent with those described in subsection 4.2.2

regarding the size of the A and B matrices, along with the AO-to-MO transformation. But in

addition there is now the computational effort in calculation and storage of the xc kernel. Also,

since the exact xc potential is not know, but approximated in use the choice of density functional

is an inherited limitation of using DFT based excited state methods.[3]

4.4 GW Bethe-Salpeter equation

The GW formulation is a correction to the ground state Kohn-Sham(KS) DFT orbitals utilizing the

energy-dependent Σ(E) self-energy as follows,[7, 8, 9]

εGW
n = εKS

n + 〈φ KS
n |Σ(εGW

n )−V xc|φ KS
n 〉 (4.30)

where V xc is the DFT exchange-correlation potential. Where the self energy is defined as follows,

Σ(r,r′;E) =
i

2π

∫
dωeiω0+G(r,r′;E +ω)W (r,r′;ω) (4.31)

G(r,r′;E) = ∑
n

φn(r)φ∗n (r′)
E− εn +0+× sgn(εn−E f )

(4.32)
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W (r,r′;ω) = ν(r,r′)+
∫

dr1dr2ν(r,r1)P0(r1,r2;ω)W (r2,r′;ω) (4.33)

P0(r,r′;ω) = ∑
i, j
( fi− f j)

φ∗i (r)φ j(r)φ∗j (r′)φi(r′)
εi− ε j−ω− i0+

(4.34)

containing a screened Coulomb potential W , where ν(r,r′) is the bare Coulomb potential, G is

the time-ordered one-body Green’s function, P0 the independent-electron susceptibility, 0+ is an

infinitesimally small positive number, and { f} are occupation numbers.[10] The above equations

obtain corrected ground state orbitals, through construction of the self-energy. But the best Σ will

be the one in which the left and right εGW
n in Equation 4.30 are equal, therefore self-consistent.

The computational effort needed to construct the ground state reference in GW is important in

terms of understanding overall computational cost in calculation of excited state excitations as the

self energy is a 6-dimensional integral. With the construction of the ground state reference it is at

this point that the Bethe-Salpeter equations (BSE) are used to obtain the linear response matrices,

Aia, jb =
(

εGW
a − εGW

i

)
δi jδab + 〈i j| fH(r1,r2)|ab〉+ 〈i j|W |ab〉 (4.35)

Bia, jb = 〈ib| fH(r1,r2)|a j〉+ 〈ib|W |a j〉 (4.36)

which look familiar to the LR-TD-DFT formulation except for the last term, which instead of the

response the xc functional, there is now a response to the screened Coulomb potential, W . With

GW-BSE the ground state reference is corrected but the excited state calculations have not gained

much in terms of computational cost reduction. The size of A and B are still linked to number of

singly excited states and the cost of the AO-to-MO integral transformation has not been addressed.

4.5 Coupled-Cluster methods

Couple cluster methods deal with the coupled-cluster (CC) wave-function,[1, 11]

Ψ = eT̂ |0〉 (4.37)
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where |0〉 is the reference wave-function and

T̂ = T̂1 + T̂2 + T̂3 + . . . (4.38)

Which are m-body cluster operators given as,

T̂m =
1

(m!)2 ∑
i j...
ab...

tab...
i j...

{
a†ib† j . . .

}
(4.39)

where m is the pairs of creation and annihilation operators, producing m-fold excitations. The

benefit of this exponential ansatz is that if expanded in a Taylor series,

eT̂ = 1+
1
2

T̂ 2 +
1
3!

T̂ 3 + . . . (4.40)

and then by expanding T̂ ,

Ψ = |0〉+ T̂1|0〉+ T̂2|0〉+ . . . (4.41)

+
1
2!

T̂ 2
1 |0〉+ T̂1T̂2|0〉+

1
2!

T̂ 2
2 |0〉+ . . . (4.42)

+
1
3!

T̂ 3
1 |0〉+

1
2!

T̂ 2
1 T̂2|0〉+

1
2!

T̂1T̂ 2
2 |0〉+

1
3!

T̂ 3
2 |0〉+ . . . (4.43)

+ . . . (4.44)

for which one can obtain a wave-function that has m-tuple excitations from a single ground state

reference Slater determinant. This is the general description of a CC wave-function, in practice

the excitation operator is limited to singles and/or doubles as the expansion in T̂ can be costly, but

provides a quality description of the ground state reference. With the ground state reference in CC

described I present the response matrices,

Aai,b j =
(

εCC
a − εCC

i

)
δi jδab + 〈i j| fH(r1,r2)|ab〉A (4.45)

Bai,b j = 〈ib| fH(r1,r2)|a j〉A (4.46)
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for which look similar to that obtained in TDHF but the wave-functions are CC wave-functions,

therefore contain more information on the m-tuple excitations in T̂ .

4.6 Multi-Reference

Multi-reference (MR) approaches deal with construction of a wave-function from a collection of

Slater determinants mainly from the Full CI wave-function,

|Ψ〉= c0|Φ0〉+∑
ia

ca
i |Φa

i 〉+
(

1
2!

)2

∑
i jab

cab
i j |Φab

i j 〉+
(

1
3!

)2

∑
i jkabc

cabc
i jk |Φabc

i jk 〉+ . . . (4.47)

which fully permutes the lowest Slater determinant to n-tuply excited determinants. The number

of n-tuply excited determinants is determined by the number of spin orbitals (2K), number of

occupied orbitals, Nocc. with Nvir. = 2K −Nocc., number of virtual orbitals. Since we can also

choose from Nvir. the number of n-tuply excited determinants is,

Nocc.

Nvir.


2K−Nocc.

Nvir.

 (4.48)

which for many-electron systems with a large number of one-electron basis sets result in poor

computational scaling, [2] recall the scaling of the just the singly excited determinants in Table 4.1.

The MR approach that I wish to discuss briefly is the complete active space (CAS) approach,

which constructs a CI like wave-function through restriction of the number of excitations in the

expansion. Within CAS the molecular orbital space is separated into subspaces containing: inac-

tive, active and secondary (virtual) orbitals. Where the inactive space are doubly occupied orbitals,

typically core orbitals and the virtual orbitals are unoccupied in all possible configurations. Finally

the active orbitals have variable occupancy of 0, 1 or 2. The CI space then contains all possible

determinants that can be constructed from the active orbitals. Therefore when utilizing CAS there

is an inherited choice in the active space for construction of the wave-function.
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4.7 Summary

The limitations and computational cost of these methods reduce to several components: a) form of

the reference wave function, b) size of configuration space, c) number of excitation permutations,

d) limit of the virtual space, e) two-electron integral transformation, see Table 4.2

Table 4.2: Non-linear scaling of various excited state methods.

Method Exponential Scaling of
basis functions

CIS O(N4) [3]
TD-DFT O(N4) [3]
EOM-CCS(D) O(N4) (O(N6)) [12]
GW-BSE O(N4) [7]
CASPT2 O(N4) [13]
LPNO O(N5) [14]

The reference wave function can be as simple as the HF/DFT wave function or in the case of

MR or CC methods a set of configurations. All configurations in a many-electron system consist

of all possible permutations of electron-hole n-tuple excitations. But often these reference config-

urations are reduced to a set of single, double or triple electron-hole excitation’s near the Fermi

level.[11, 15] Which in practice leads to complications with user-experience in choosing appropri-

ate active spaces.[16, 17] This reference configuration is then subject to n-tuple excitations up to

the limit of the virtual space, which is restricted by the size of the basis set. When for the exact

solution the virtual space is infinite.[2] Each of the configurations are formed through an atomic

orbital to molecular orbital transformation, (AO-to-MO), which is limited by the two-electron in-

tegral transformation. The two-electron transformation is in general the slowest computational

step with a O(N5) scaling, with N related to the number of basis functions.[2, 3, 18, 5, 19] In some

methods there is a basis transformation from molecular orbitals basis to a different basis that can re-

duce computational scaling, like pair natural orbitals (PNOs).[20] While some methods utilize the

resolution-of-the-identity (RI) approximation to reduce the scale of the transformation.[21, 3, 5]
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Chapter 5

Compact real-space representation of excited states

using frequency-dependent explicitly-correlated

electron-hole interaction kernel

5.1 Introduction

Accurate treatment of electron-hole interaction and inclusion of electron-correlation effect is cen-

tral for describing electronic excitation states. Development of efficient theoretical methods for

excited states continues to be an active field of research. The construction of the electron-hole in-

teraction kernel Keh(ω) is the main source of difference for various approaches including: config-

uration interaction (CI),[3, 22] coupled-cluster (CC),[12, 23] GW-Bethe-Salpeter equation (GW-

BSE), [24, 25, 26, 27] time-dependent density functional theory (TDDFT), [28, 29, 30, 31] mul-

tireference (MRCI), [15] pair natural orbitals (PNO), [32, 33] and explicity-correlated Hartree-

Fock methods.[34, 35, 36, 37]

The steep computational cost originates from various components including: a) treatment of

electron-electron correlation, b) number of particle-hole excitations, c) form of the Keh(ω) , and

d) two-electron AO-to-MO integral transformation. The number of particle-hole states effects

the size of the A and B response matrices, that arise in various theories including, TDDFT, GW-

BSE, EOM-CCSD, and CIS methods.[5, 3] Various strategies exist to obtain a compact repre-
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3.3 Matrix< T > Class Template Reference 15

3.3.1 Detailed Description

template<class T>class Matrix< T >

Definition at line 14 of file Matrix.h.

3.3.2 Constructor & Destructor Documentation

3.3.2.1 template<class T> Matrix< T >::Matrix ( ) [inline]

Definition at line 16 of file Matrix.h.

3.3.2.2 template<class T> Matrix< T >::Matrix ( const int & nrow, const int & ncol ) [inline]

Definition at line 17 of file Matrix.h.

3.3.2.3 template<class T> Matrix< T >::∼Matrix ( ) [inline]

Definition at line 20 of file Matrix.h.

3.3.2.4 template<class T> Matrix< T >::Matrix ( const Matrix< T > & rhs ) [private]

3.3.3 Member Function Documentation

3.3.3.1 template<class T> void Matrix< T >::get ( const int & irow, const int & icol, T & val ) const [inline]

Definition at line 37 of file Matrix.h.

Here is the caller graph for this function:

Matrix::get

MCRunDriver::mc_shuffle

MCRunDriver::mc_engine

RandUtils::calc_randmat MCRunDriver::mc_with
_fixed_dist

3.3.3.2 template<class T> void Matrix< T >::get_raw_ptr ( T ∗& ptr ) [inline]

Definition at line 54 of file Matrix.h.

3.3.3.3 template<class T> void Matrix< T >::init ( const int & nrow, const int & ncol ) [inline]

Definition at line 22 of file Matrix.h.
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16 Class Documentation

3.3.3.4 template<class T> int Matrix< T >::ncol ( ) const [inline]

Definition at line 30 of file Matrix.h.

Here is the caller graph for this function:

Matrix::ncol RandUtils::calc_randmat MCRunDriver::mc_with
_fixed_dist

3.3.3.5 template<class T> int Matrix< T >::nrow ( ) const [inline]

Definition at line 33 of file Matrix.h.

Here is the caller graph for this function:

Matrix::nrow RandUtils::calc_randmat MCRunDriver::mc_with
_fixed_dist

3.3.3.6 template<class T> Matrix& Matrix< T >::operator= ( const Matrix< T > & rhs ) [private]

3.3.3.7 template<class T> void Matrix< T >::set ( const int & irow, const int & icol, const T & val ) [inline]

Definition at line 46 of file Matrix.h.

Here is the caller graph for this function:

Matrix::set

MCRunDriver::mc_shuffle

RTVariables::get_npt
_per_dim_bin

MCParam::get_bin_wt

RandUtils::calc_randmat

MCRunDriver::mc_with
_fixed_dist

RTVariables::set_user
_defined_seg_wt MCRunDriver::run main

3.3.4 Member Data Documentation

3.3.4.1 template<class T> vector<T> Matrix< T >::A_ [private]

Definition at line 64 of file Matrix.h.
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3.4 MCParam Class Reference 17

3.3.4.2 template<class T> int Matrix< T >::ncol_ [private]

Definition at line 63 of file Matrix.h.

3.3.4.3 template<class T> int Matrix< T >::nrow_ [private]

Definition at line 62 of file Matrix.h.

The documentation for this class was generated from the following file:

• Matrix.h

3.4 MCParam Class Reference

#include <500_MCParam.h>
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18 Class Documentation

Collaboration diagram for MCParam:

MCParam

+ MCParam()
+ ~MCParam()
+ build()
+ check_all()
+ calc_bin_index()
+ get_mc_nloop_wt_update()
+ get_ndim()
+ get_nbin()
+ get_nshuffle()
+ get_ibin_start()
+ get_tgt_npt()
+ get_mc_base_pts()
+ get_mc_nloop_randmat
_update()
+ get_mc_max_xnpt()
+ get_mc_randmat_npt()
+ get_bin_wt()
+ get_bin_start()
- MCParam()
- operator=()
- read_mc_info()
- read_bin_wt()
- check_bin_wt_read()
- bin_init()
- normalize_binwts()
- mc_init()

Matrix< double >

+ Matrix()
+ Matrix()
+ ~Matrix()
+ init()
+ ncol()
+ nrow()
+ get()
+ set()
+ get_raw_ptr()
- Matrix()
- operator=()

 -bin_wt_

int

 -mc_wtdist_npt_
-num_shuffle_

-ndim_
-nbin_

-mc_base_npt
_

-mc_nloop_wt
_update_

-mc_nloop_randmat
_update_

-mc_randmat_npt_

 -nrow_
-ncol_

Matrix< T >

+ Matrix()
+ Matrix()
+ ~Matrix()
+ init()
+ ncol()
+ nrow()
+ get()
+ set()
+ get_raw_ptr()
- Matrix()
- operator=()

 -nrow_
-ncol_

std::vector< double >

 -bin_start_

 -A_

double

 -vol_
-mc_max_xnpt_

 +elements

std::vector< T >

 < double >

T

 +elements

 < double >

vector< T >

 -A_

Public Member Functions

• MCParam ()
• ∼MCParam ()
• void build (const FileParam &myFile, const UserParam &myUser)
• void check_all () const
• void calc_bin_index (const vector< double > &tvec, vector< int > &tvec_binidx) const
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3.4 MCParam Class Reference 19

• void get_mc_nloop_wt_update (int &nloop) const
• void get_ndim (int &ndim) const
• void get_nbin (int &nbin) const
• void get_nshuffle (int &nshuffle) const
• void get_ibin_start (const int &ibin, double &bin_val) const
• void get_tgt_npt (int &tgt_npt) const
• void get_mc_base_pts (int &base_pts) const
• void get_mc_nloop_randmat_update (int &mc_nloop_randmat_update) const
• void get_mc_max_xnpt (double &max_xnpt) const
• void get_mc_randmat_npt (int &mc_randmat_npt) const
• void get_bin_wt (Matrix< double > &some_mat) const
• void get_bin_start (vector< double > &bin_start) const

Private Member Functions

• MCParam (const MCParam &rhs)
• MCParam & operator= (const MCParam &rhs)
• void read_mc_info (const string &mcrun_file)
• void read_bin_wt (const string &binfile)
• void check_bin_wt_read (const int &ndim_local, const int &nbin_local) const
• void bin_init ()
• void normalize_binwts ()
• void mc_init ()

Private Attributes

• int ndim_
• int nbin_
• int num_shuffle_
• int mc_randmat_npt_
• int mc_base_npt_
• int mc_wtdist_npt_
• int mc_nloop_randmat_update_
• int mc_nloop_wt_update_
• double mc_max_xnpt_
• double vol_
• vector< double > bin_start_
• Matrix< double > bin_wt_

3.4.1 Detailed Description

Definition at line 13 of file 500_MCParam.h.

3.4.2 Constructor & Destructor Documentation

3.4.2.1 MCParam::MCParam ( )

Definition at line 18 of file 500_MCParam.cpp.

3.4.2.2 MCParam::∼MCParam ( )

Definition at line 23 of file 500_MCParam.cpp.
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20 Class Documentation

3.4.2.3 MCParam::MCParam ( const MCParam & rhs ) [private]

3.4.3 Member Function Documentation

3.4.3.1 void MCParam::bin_init ( ) [private]

Definition at line 169 of file 500_MCParam.cpp.

3.4.3.2 void MCParam::build ( const FileParam & myFile, const UserParam & myUser )

Definition at line 28 of file 500_MCParam.cpp.

Here is the caller graph for this function:

MCParam::build main

3.4.3.3 void MCParam::calc_bin_index ( const vector< double > & tvec, vector< int > & tvec_binidx ) const

Definition at line 306 of file 500_MCParam.cpp.

Here is the caller graph for this function:

MCParam::calc_bin_index MCRunDriver::mc_engine

3.4.3.4 void MCParam::check_all ( ) const

Definition at line 372 of file 500_MCParam.cpp.

Here is the caller graph for this function:

MCParam::check_all main
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3.4.3.5 void MCParam::check_bin_wt_read ( const int & ndim_local, const int & nbin_local ) const [private]

Definition at line 346 of file 500_MCParam.cpp.

3.4.3.6 void MCParam::get_bin_start ( vector< double > & bin_start ) const

Definition at line 294 of file 500_MCParam.cpp.

Here is the caller graph for this function:

MCParam::get_bin_start MCRunDriver::mc_with
_fixed_dist

3.4.3.7 void MCParam::get_bin_wt ( Matrix< double > & some_mat ) const

Definition at line 283 of file 500_MCParam.cpp.

Here is the call graph for this function:

MCParam::get_bin_wt Matrix::set

Here is the caller graph for this function:

MCParam::get_bin_wt RTVariables::set_user
_defined_seg_wt MCRunDriver::run main

3.4.3.8 void MCParam::get_ibin_start ( const int & ibin, double & bin_val ) const

Definition at line 248 of file 500_MCParam.cpp.
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Here is the caller graph for this function:

MCParam::get_ibin_start MCRunDriver::calc_ref
_density_using_binidx

3.4.3.9 void MCParam::get_mc_base_pts ( int & base_pts ) const

Definition at line 258 of file 500_MCParam.cpp.

Here is the caller graph for this function:

MCParam::get_mc_base_pts MCRunDriver::calc_npt
_per_seg

3.4.3.10 void MCParam::get_mc_max_xnpt ( double & max_xnpt ) const

Definition at line 273 of file 500_MCParam.cpp.

Here is the caller graph for this function:

MCParam::get_mc_max_xnpt MCRunDriver::mc_with
_fixed_dist

3.4.3.11 void MCParam::get_mc_nloop_randmat_update ( int & mc_nloop_randmat_update ) const

Definition at line 263 of file 500_MCParam.cpp.
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Here is the caller graph for this function:

MCParam::get_mc_nloop
_randmat_update

MCRunDriver::mc_with
_fixed_dist

3.4.3.12 void MCParam::get_mc_nloop_wt_update ( int & nloop ) const

Definition at line 233 of file 500_MCParam.cpp.

Here is the caller graph for this function:

MCParam::get_mc_nloop
_wt_update MCRunDriver::run main

3.4.3.13 void MCParam::get_mc_randmat_npt ( int & mc_randmat_npt ) const

Definition at line 268 of file 500_MCParam.cpp.

Here is the caller graph for this function:

MCParam::get_mc_randmat_npt

MCRunDriver::mc_with
_fixed_dist

MCRunDriver::mc_shuffle

MCRunDriver::mc_engine

3.4.3.14 void MCParam::get_nbin ( int & nbin ) const

Definition at line 243 of file 500_MCParam.cpp.

Generated on Tue Jun 23 2020 13:55:23 for Permutation_Sampling_Code by Doxygen



24 Class Documentation

Here is the caller graph for this function:

MCParam::get_nbin

MCRunDriver::calc_npt
_per_seg

MCRunDriver::mc_with
_fixed_dist

MCRunDriver::mc_shuffle

MCRunDriver::mc_engine

MCRunDriver::calc_ref
_density_using_binidx

RTVariables::build main

3.4.3.15 void MCParam::get_ndim ( int & ndim ) const

Definition at line 238 of file 500_MCParam.cpp.

Here is the caller graph for this function:

MCParam::get_ndim

MCRunDriver::calc_npt
_per_seg

MCRunDriver::mc_with
_fixed_dist

MCRunDriver::mc_shuffle

MCRunDriver::mc_engine

MCRunDriver::calc_ref
_density_using_binidx

RTVariables::build main
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3.4.3.16 void MCParam::get_nshuffle ( int & nshuffle ) const

Definition at line 278 of file 500_MCParam.cpp.

Here is the caller graph for this function:

MCParam::get_nshuffle MCRunDriver::mc_shuffle

3.4.3.17 void MCParam::get_tgt_npt ( int & tgt_npt ) const

Definition at line 253 of file 500_MCParam.cpp.

Here is the caller graph for this function:

MCParam::get_tgt_npt MCRunDriver::calc_npt
_per_seg

3.4.3.18 void MCParam::mc_init ( ) [private]

Definition at line 218 of file 500_MCParam.cpp.

3.4.3.19 void MCParam::normalize_binwts ( ) [private]

Definition at line 188 of file 500_MCParam.cpp.

3.4.3.20 MCParam& MCParam::operator= ( const MCParam & rhs ) [private]

3.4.3.21 void MCParam::read_bin_wt ( const string & binfile ) [private]

Definition at line 110 of file 500_MCParam.cpp.

3.4.3.22 void MCParam::read_mc_info ( const string & mcrun_file ) [private]

Definition at line 61 of file 500_MCParam.cpp.
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3.4.4 Member Data Documentation

3.4.4.1 vector<double> MCParam::bin_start_ [private]

Definition at line 45 of file 500_MCParam.h.

3.4.4.2 Matrix<double> MCParam::bin_wt_ [private]

Definition at line 46 of file 500_MCParam.h.

3.4.4.3 int MCParam::mc_base_npt_ [private]

Definition at line 39 of file 500_MCParam.h.

3.4.4.4 double MCParam::mc_max_xnpt_ [private]

Definition at line 43 of file 500_MCParam.h.

3.4.4.5 int MCParam::mc_nloop_randmat_update_ [private]

Definition at line 41 of file 500_MCParam.h.

3.4.4.6 int MCParam::mc_nloop_wt_update_ [private]

Definition at line 42 of file 500_MCParam.h.

3.4.4.7 int MCParam::mc_randmat_npt_ [private]

Definition at line 38 of file 500_MCParam.h.

3.4.4.8 int MCParam::mc_wtdist_npt_ [private]

Definition at line 40 of file 500_MCParam.h.

3.4.4.9 int MCParam::nbin_ [private]

Definition at line 36 of file 500_MCParam.h.

3.4.4.10 int MCParam::ndim_ [private]

Definition at line 35 of file 500_MCParam.h.

3.4.4.11 int MCParam::num_shuffle_ [private]

Definition at line 37 of file 500_MCParam.h.
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3.4.4.12 double MCParam::vol_ [private]

Definition at line 44 of file 500_MCParam.h.

The documentation for this class was generated from the following files:

• 500_MCParam.h
• 500_MCParam.cpp

3.5 MCRunDriver Class Reference

#include <100_MCRunDriver.h>

Collaboration diagram for MCRunDriver:

MCRunDriver

+ MCRunDriver()
+ ~MCRunDriver()
+ build()
+ run()
+ check_all()
- MCRunDriver()
- operator=()
- calc_npt_per_seg()
- calc_npt_using_wt_1d()
- mc_with_fixed_dist()
- mc_shuffle()
- mc_engine()
- calc_ref_density_using
_binidx()
- check_for_underflow()

Public Member Functions

• MCRunDriver ()
• ∼MCRunDriver ()
• void build ()
• void run (const FileParam &myFile, const UserParam &myUser, const MCParam &myMCParam, RTVariables

&myRTV)
• void check_all () const

Private Member Functions

• MCRunDriver (const MCRunDriver &rhs)
• MCRunDriver & operator= (const MCRunDriver &rhs)
• void calc_npt_per_seg (RTVariables &myRTV, const MCParam &myMCParam)
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• void calc_npt_using_wt_1d (RTVariables &myRTV, const int &ndim, const int &nbin, const int &mc_base_pts,
const int &mc_tgt_npt, const int &idim)

• void mc_with_fixed_dist (const UserParam &myUser, const MCParam &myMCParam, RTVariables &myRTV,
RandUtils &myRNG)

• void mc_shuffle (const UserParam &myUser, const MCParam &myMCParam, RTVariables &myRTV, const
RandUtils &myRNG, Matrix< double > &randmat)

• void mc_engine (const UserParam &myUser, const MCParam &myMCParam, RTVariables &myRTV, Matrix<
double > &randmat)

• void calc_ref_density_using_binidx (const MCParam &myMCParam, const RTVariables &myRTV, const
vector< int > &idx, double &rho)

• void check_for_underflow (double &val)

3.5.1 Detailed Description

Definition at line 17 of file 100_MCRunDriver.h.

3.5.2 Constructor & Destructor Documentation

3.5.2.1 MCRunDriver::MCRunDriver ( )

Definition at line 20 of file 100_MCRunDriver.cpp.

3.5.2.2 MCRunDriver::∼MCRunDriver ( )

Definition at line 25 of file 100_MCRunDriver.cpp.

3.5.2.3 MCRunDriver::MCRunDriver ( const MCRunDriver & rhs ) [private]

3.5.3 Member Function Documentation

3.5.3.1 void MCRunDriver::build ( )

Definition at line 30 of file 100_MCRunDriver.cpp.

Here is the caller graph for this function:

MCRunDriver::build main

3.5.3.2 void MCRunDriver::calc_npt_per_seg ( RTVariables & myRTV, const MCParam & myMCParam ) [private]

Calculates the number of points per segment of ρ

Definition at line 64 of file 100_MCRunDriver.cpp.
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Here is the call graph for this function:

MCRunDriver::calc_npt
_per_seg

MCParam::get_nbin

MCParam::get_ndim

MCParam::get_mc_base_pts

MCParam::get_tgt_npt

RTVariables::print
_seg_tgt_npt

3.5.3.3 void MCRunDriver::calc_npt_using_wt_1d ( RTVariables & myRTV, const int & ndim, const int & nbin, const int &
mc_base_pts, const int & mc_tgt_npt, const int & idim ) [private]

Determines the number of points to assign to a segment of ρ based on the weights

Definition at line 83 of file 100_MCRunDriver.cpp.

Here is the call graph for this function:

MCRunDriver::calc_npt
_using_wt_1d

RTVariables::get_nbin

RTVariables::fill_seg_wt

RTVariables::check
_seg_tgt_npt

3.5.3.4 void MCRunDriver::calc_ref_density_using_binidx ( const MCParam & myMCParam, const RTVariables & myRTV,
const vector< int > & idx, double & rho ) [private]

Calculate the N-dimensional density for a point in space from ρ of each dimension.

Definition at line 237 of file 100_MCRunDriver.cpp.
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Here is the call graph for this function:

MCRunDriver::calc_ref
_density_using_binidx

MCParam::get_ndim

MCParam::get_nbin

MCParam::get_ibin_start

RTVariables::get_rho_wt

3.5.3.5 void MCRunDriver::check_all ( ) const

Assertions of the MCRunDriver object.

Definition at line 274 of file 100_MCRunDriver.cpp.

3.5.3.6 void MCRunDriver::check_for_underflow ( double & val ) [private]

Check for underflow of a value

Definition at line 263 of file 100_MCRunDriver.cpp.

3.5.3.7 void MCRunDriver::mc_engine ( const UserParam & myUser, const MCParam & myMCParam, RTVariables &
myRTV, Matrix< double > & randmat ) [private]

Main Monte Carlo engine were the random matrix is now used to generate N-Dimensional points in space that
will be evaluated within User defined function. The value of the function at each position is then updated in the
evaluation of the integral.

Definition at line 180 of file 100_MCRunDriver.cpp.
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Here is the call graph for this function:

MCRunDriver::mc_engine

MCParam::get_ndim

MCParam::get_nbin

MCParam::get_mc_randmat_npt

Matrix::get

MCParam::calc_bin_index

RTVariables::update
_RTV_avg

3.5.3.8 void MCRunDriver::mc_shuffle ( const UserParam & myUser, const MCParam & myMCParam, RTVariables &
myRTV, const RandUtils & myRNG, Matrix< double > & randmat ) [private]

Take the random matrix and shuffle the ρ along the dimension in each shuffle loop.

Definition at line 145 of file 100_MCRunDriver.cpp.
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Here is the call graph for this function:

MCRunDriver::mc_shuffle

MCParam::get_nshuffle

MCParam::get_ndim

MCParam::get_nbin

MCParam::get_mc_randmat_npt

Matrix::get

RandUtils::shuffle_vec

Matrix::set

3.5.3.9 void MCRunDriver::mc_with_fixed_dist ( const UserParam & myUser, const MCParam & myMCParam, RTVariables
& myRTV, RandUtils & myRNG ) [private]

Using the ρ constructed, evaluate a random matrix that contains position values with the same distribution of ρ
within each loop. During each loop pass the random matrix to be used for evaluation of the integral. Updating the
integral value and error until the max number of Monte Carlo points has been achieved.

Definition at line 104 of file 100_MCRunDriver.cpp.
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Here is the call graph for this function:

MCRunDriver::mc_with
_fixed_dist

MCParam::get_ndim

MCParam::get_nbin

MCParam::get_mc_nloop
_randmat_update

MCParam::get_mc_randmat_npt

MCParam::get_mc_max_xnpt

RTVariables::get_mc_xnpt

RTVariables::get_xsum
_npt_per_idim

RTVariables::get_npt
_per_dim_bin

MCParam::get_bin_start

RandUtils::calc_randmat

RTVariables::mc_calc
_integral_and_error

Matrix::set

Matrix::nrow

Matrix::ncol

Matrix::get

3.5.3.10 MCRunDriver& MCRunDriver::operator= ( const MCRunDriver & rhs ) [private]

3.5.3.11 void MCRunDriver::run ( const FileParam & myFile, const UserParam & myUser, const MCParam & myMCParam,
RTVariables & myRTV )

Main run driver that calculates a probabilty distribution, ρ from weights for each Monte Carlo cycles to perform

Definition at line 35 of file 100_MCRunDriver.cpp.
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Here is the call graph for this function:

MCRunDriver::run

RandUtils::build

MCParam::get_mc_nloop
_wt_update

RTVariables::set_user
_defined_seg_wt

RTVariables::calc_wt
_for_rho

RTVariables::mc_calc
_integral_and_error

MCParam::get_bin_wt Matrix::set

Here is the caller graph for this function:

MCRunDriver::run main

The documentation for this class was generated from the following files:

• 100_MCRunDriver.h

• 100_MCRunDriver.cpp

3.6 MOGrid Class Reference

#include <800_MOGrid.h>
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Collaboration diagram for MOGrid:

MOGrid

+ MOGrid()
+ ~MOGrid()
+ build()
+ check_all()
+ get_ndim()
+ get_ngrid()
+ get_nmo()
+ get_volume()
+ get_npt_1d_at_idim()
+ get_xmin_at_idim()
+ get_xmax_at_idim()
+ get_imoval_at_igrid_imo()
+ get_ieng()
+ get_rvec_from_xyzgrid()
+ get_imoval_at_rvec()
- MOGrid()
- operator=()
- read_gridinfo()
- read_gridfile()
- init_info_vectors()
- init_grid_vectors()
- check_read_grid()
- calc_volume()
- get_grid_index_3d()
- get_grid_index_1d()

Matrix< double >

+ Matrix()
+ Matrix()
+ ~Matrix()
+ init()
+ ncol()
+ nrow()
+ get()
+ set()
+ get_raw_ptr()
- Matrix()
- operator=()

 -mo_

int

 -npt_total_
-ndim_
-ngrid_
-nmo_

 -nrow_
-ncol_

Matrix< T >

+ Matrix()
+ Matrix()
+ ~Matrix()
+ init()
+ ncol()
+ nrow()
+ get()
+ set()
+ get_raw_ptr()
- Matrix()
- operator=()

 -nrow_
-ncol_

std::vector< int >

 +elements

std::vector< double >

 -grid_x_
-grid_y_
-grid_z_

-delta_1d_
-xmax_
-xmin_
-eng_

-length_

 -A_

double

 -vol_

 +elements

std::vector< T >

 < double > < int >

T

 +elements

 < double >

vector< T >

 -A_

 -npt_1d_

Public Member Functions

• MOGrid ()
• ∼MOGrid ()
• void build (const string &infofile, const string &gridfile)
• void check_all () const
• void get_ndim (int &ndim) const
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• void get_ngrid (int &ngrid) const
• void get_nmo (int &nmo) const
• void get_volume (double &vol) const
• void get_npt_1d_at_idim (int &idim, int &npt_val) const
• void get_xmin_at_idim (int &idim, double &xmin_val) const
• void get_xmax_at_idim (int &idim, double &xmax_val) const
• void get_imoval_at_igrid_imo (const int &igrid, const int &imo, double &mo_val) const
• void get_ieng (const int &imo, double &ieng) const
• void get_rvec_from_xyzgrid (const int &xyz, vector< double > &rvec) const
• void get_imoval_at_rvec (const int &imo, const vector< double > &rvec, double &moval) const

Private Member Functions

• MOGrid (const MOGrid &rhs)
• MOGrid & operator= (const MOGrid &rhs)
• void read_gridinfo (const string &infile)
• void read_gridfile (const string &infile)
• void init_info_vectors ()
• void init_grid_vectors ()
• void check_read_grid (const int &ngrid_local, const int &ndim_local, const int &nmo_local) const
• void calc_volume ()
• void get_grid_index_3d (const vector< double > &rv, int &gidx) const
• void get_grid_index_1d (const int &idim, const double &x, int &idx) const

Private Attributes

• int ndim_
• int ngrid_
• int nmo_
• int npt_total_
• double vol_
• vector< int > npt_1d_
• vector< double > xmin_
• vector< double > xmax_
• vector< double > length_
• vector< double > delta_1d_
• vector< double > grid_x_
• vector< double > grid_y_
• vector< double > grid_z_
• vector< double > eng_
• Matrix< double > mo_

3.6.1 Detailed Description

Definition at line 11 of file 800_MOGrid.h.

3.6.2 Constructor & Destructor Documentation

3.6.2.1 MOGrid::MOGrid ( )

Definition at line 23 of file 800_MOGrid.cpp.
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3.6.2.2 MOGrid::∼MOGrid ( )

Definition at line 28 of file 800_MOGrid.cpp.

3.6.2.3 MOGrid::MOGrid ( const MOGrid & rhs ) [private]

3.6.3 Member Function Documentation

3.6.3.1 void MOGrid::build ( const string & infofile, const string & gridfile )

Definition at line 33 of file 800_MOGrid.cpp.

3.6.3.2 void MOGrid::calc_volume ( ) [private]

Definition at line 173 of file 800_MOGrid.cpp.

3.6.3.3 void MOGrid::check_all ( ) const

Definition at line 314 of file 800_MOGrid.cpp.

3.6.3.4 void MOGrid::check_read_grid ( const int & ngrid_local, const int & ndim_local, const int & nmo_local ) const
[private]

Definition at line 285 of file 800_MOGrid.cpp.

3.6.3.5 void MOGrid::get_grid_index_1d ( const int & idim, const double & x, int & idx ) const [private]

Definition at line 199 of file 800_MOGrid.cpp.

3.6.3.6 void MOGrid::get_grid_index_3d ( const vector< double > & rv, int & gidx ) const [private]

Definition at line 182 of file 800_MOGrid.cpp.

Here is the call graph for this function:

MOGrid::get_grid_index_3d row_major_idx_3d

3.6.3.7 void MOGrid::get_ieng ( const int & imo, double & ieng ) const

Definition at line 253 of file 800_MOGrid.cpp.
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3.6.3.8 void MOGrid::get_imoval_at_igrid_imo ( const int & igrid, const int & imo, double & mo_val ) const

Definition at line 226 of file 800_MOGrid.cpp.

3.6.3.9 void MOGrid::get_imoval_at_rvec ( const int & imo, const vector< double > & rvec, double & moval ) const

Definition at line 274 of file 800_MOGrid.cpp.

3.6.3.10 void MOGrid::get_ndim ( int & ndim ) const

Definition at line 233 of file 800_MOGrid.cpp.

3.6.3.11 void MOGrid::get_ngrid ( int & ngrid ) const

Definition at line 238 of file 800_MOGrid.cpp.

3.6.3.12 void MOGrid::get_nmo ( int & nmo ) const

Definition at line 243 of file 800_MOGrid.cpp.

3.6.3.13 void MOGrid::get_npt_1d_at_idim ( int & idim, int & npt_val ) const

Definition at line 259 of file 800_MOGrid.cpp.

3.6.3.14 void MOGrid::get_rvec_from_xyzgrid ( const int & xyz, vector< double > & rvec ) const

Definition at line 264 of file 800_MOGrid.cpp.

3.6.3.15 void MOGrid::get_volume ( double & vol ) const

Definition at line 248 of file 800_MOGrid.cpp.

3.6.3.16 void MOGrid::get_xmax_at_idim ( int & idim, double & xmax_val ) const

Definition at line 220 of file 800_MOGrid.cpp.

3.6.3.17 void MOGrid::get_xmin_at_idim ( int & idim, double & xmin_val ) const

Definition at line 215 of file 800_MOGrid.cpp.

3.6.3.18 void MOGrid::init_grid_vectors ( ) [private]

Definition at line 163 of file 800_MOGrid.cpp.

3.6.3.19 void MOGrid::init_info_vectors ( ) [private]

Definition at line 92 of file 800_MOGrid.cpp.
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3.6.3.20 MOGrid& MOGrid::operator= ( const MOGrid & rhs ) [private]

3.6.3.21 void MOGrid::read_gridfile ( const string & infile ) [private]

Definition at line 102 of file 800_MOGrid.cpp.

3.6.3.22 void MOGrid::read_gridinfo ( const string & infile ) [private]

Definition at line 41 of file 800_MOGrid.cpp.

3.6.4 Member Data Documentation

3.6.4.1 vector<double> MOGrid::delta_1d_ [private]

Definition at line 48 of file 800_MOGrid.h.

3.6.4.2 vector<double> MOGrid::eng_ [private]

Definition at line 52 of file 800_MOGrid.h.

3.6.4.3 vector<double> MOGrid::grid_x_ [private]

Definition at line 49 of file 800_MOGrid.h.

3.6.4.4 vector<double> MOGrid::grid_y_ [private]

Definition at line 50 of file 800_MOGrid.h.

3.6.4.5 vector<double> MOGrid::grid_z_ [private]

Definition at line 51 of file 800_MOGrid.h.

3.6.4.6 vector<double> MOGrid::length_ [private]

Definition at line 47 of file 800_MOGrid.h.

3.6.4.7 Matrix<double> MOGrid::mo_ [private]

Definition at line 53 of file 800_MOGrid.h.

3.6.4.8 int MOGrid::ndim_ [private]

Definition at line 39 of file 800_MOGrid.h.

3.6.4.9 int MOGrid::ngrid_ [private]

Definition at line 40 of file 800_MOGrid.h.
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3.6.4.10 int MOGrid::nmo_ [private]

Definition at line 41 of file 800_MOGrid.h.

3.6.4.11 vector<int> MOGrid::npt_1d_ [private]

Definition at line 44 of file 800_MOGrid.h.

3.6.4.12 int MOGrid::npt_total_ [private]

Definition at line 42 of file 800_MOGrid.h.

3.6.4.13 double MOGrid::vol_ [private]

Definition at line 43 of file 800_MOGrid.h.

3.6.4.14 vector<double> MOGrid::xmax_ [private]

Definition at line 46 of file 800_MOGrid.h.

3.6.4.15 vector<double> MOGrid::xmin_ [private]

Definition at line 45 of file 800_MOGrid.h.

The documentation for this class was generated from the following files:

• 800_MOGrid.h

• 800_MOGrid.cpp

3.7 RandUtils Class Reference

#include <900_RandUtils.h>
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Collaboration diagram for RandUtils:

RandUtils

+ RandUtils()
+ ~RandUtils()
+ build()
+ check_all()
+ calc_randmat()
+ shuffle_vec()
+ rand_num()
+ rand_num()
+ rand_num()
- RandUtils()
- operator=()
- gen_rnd_seed()

RandWrapper

+ RandWrapper()
+ ~RandWrapper()
+ build()
+ build()
+ build()
+ build()
+ rand_num_uniform()
+ rand_num_uniform()
+ rand_vec_uniform()
+ rand_vec_antithetic
_uniform()
+ rand_num_normal()
+ rand_vec_normal()
+ rand_vec_antithetic
_normal()
+ shuffle_vec()
+ shuffle_vec()
+ get_seed()
- RandWrapper()
- operator=()

 -myRW_

double

 -mu_
-sigma_

int

 -iseed_

 -iseed_

default_random_engine *

 -generator_

Public Member Functions

• RandUtils ()
• ∼RandUtils ()
• void build ()
• void check_all () const
• void calc_randmat (const int &ndim, const int &nbin, const int &mc_randmat_npt, const vector< int > &xsum-

_npt_per_idim, const Matrix< int > &npt_per_dim_bin, const vector< double > &bin_start, Matrix< double

Generated on Tue Jun 23 2020 13:55:23 for Permutation_Sampling_Code by Doxygen



42 Class Documentation

> &randmat)
• void shuffle_vec (vector< double > &some_vec) const
• void rand_num (double &r) const
• void rand_num (const double &xmin, const double &xmax, double &r) const
• void rand_num (const int &imin, const int &imax, int &r) const

Private Member Functions

• RandUtils (const RandUtils &rhs)=delete
• RandUtils & operator= (const RandUtils &rhs)=delete
• void gen_rnd_seed ()

Private Attributes

• RandWrapper myRW_
• int iseed_

3.7.1 Detailed Description

Definition at line 13 of file 900_RandUtils.h.

3.7.2 Constructor & Destructor Documentation

3.7.2.1 RandUtils::RandUtils ( )

Definition at line 20 of file 900_RandUtils.cpp.

3.7.2.2 RandUtils::∼RandUtils ( )

Definition at line 25 of file 900_RandUtils.cpp.

3.7.2.3 RandUtils::RandUtils ( const RandUtils & rhs ) [private], [delete]

3.7.3 Member Function Documentation

3.7.3.1 void RandUtils::build ( )

Definition at line 30 of file 900_RandUtils.cpp.

Here is the caller graph for this function:

RandUtils::build MCRunDriver::run main
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3.7.3.2 void RandUtils::calc_randmat ( const int & ndim, const int & nbin, const int & mc_randmat_npt, const vector< int > &
xsum_npt_per_idim, const Matrix< int > & npt_per_dim_bin, const vector< double > & bin_start, Matrix< double
> & randmat )

Definition at line 70 of file 900_RandUtils.cpp.

Here is the call graph for this function:

RandUtils::calc_randmat

Matrix::nrow

Matrix::ncol

Matrix::get

Matrix::set

Here is the caller graph for this function:

RandUtils::calc_randmat MCRunDriver::mc_with
_fixed_dist

3.7.3.3 void RandUtils::check_all ( ) const

Definition at line 168 of file 900_RandUtils.cpp.

3.7.3.4 void RandUtils::gen_rnd_seed ( ) [private]

Definition at line 41 of file 900_RandUtils.cpp.

3.7.3.5 RandUtils& RandUtils::operator= ( const RandUtils & rhs ) [private], [delete]

3.7.3.6 void RandUtils::rand_num ( double & r ) const

Definition at line 48 of file 900_RandUtils.cpp.
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3.7.3.7 void RandUtils::rand_num ( const double & xmin, const double & xmax, double & r ) const

Definition at line 53 of file 900_RandUtils.cpp.

3.7.3.8 void RandUtils::rand_num ( const int & imin, const int & imax, int & r ) const

Definition at line 60 of file 900_RandUtils.cpp.

3.7.3.9 void RandUtils::shuffle_vec ( vector< double > & some_vec ) const

Definition at line 163 of file 900_RandUtils.cpp.

Here is the caller graph for this function:

RandUtils::shuffle_vec MCRunDriver::mc_shuffle

3.7.4 Member Data Documentation

3.7.4.1 int RandUtils::iseed_ [private]

Definition at line 38 of file 900_RandUtils.h.

3.7.4.2 RandWrapper RandUtils::myRW_ [private]

Definition at line 37 of file 900_RandUtils.h.

The documentation for this class was generated from the following files:

• 900_RandUtils.h

• 900_RandUtils.cpp

3.8 RandWrapper Class Reference

#include <RandWrapper.h>
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Collaboration diagram for RandWrapper:

RandWrapper

+ RandWrapper()
+ ~RandWrapper()
+ build()
+ build()
+ build()
+ build()
+ rand_num_uniform()
+ rand_num_uniform()
+ rand_vec_uniform()
+ rand_vec_antithetic
_uniform()
+ rand_num_normal()
+ rand_vec_normal()
+ rand_vec_antithetic
_normal()
+ shuffle_vec()
+ shuffle_vec()
+ get_seed()
- RandWrapper()
- operator=()

double

 -mu_
-sigma_

int

 -iseed_

default_random_engine *

 -generator_

Public Member Functions

• RandWrapper ()
• ∼RandWrapper ()
• void build ()
• void build (const int &seed)
• void build (const double &mu, const double &sigma)
• void build (const int &seed, const double &mu, const double &sigma)
• void rand_num_uniform (double &r) const
• void rand_num_uniform (const int &imin, const int &imax, int &r) const
• void rand_vec_uniform (vector< double > &vec) const
• void rand_vec_antithetic_uniform (vector< double > &vec) const
• void rand_num_normal (double &r) const
• void rand_vec_normal (vector< double > &vec) const
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• void rand_vec_antithetic_normal (vector< double > &vec) const
• void shuffle_vec (vector< double > &some_vec) const
• void shuffle_vec (vector< int > &some_vec) const
• void get_seed (int &seed) const

Private Member Functions

• RandWrapper (const RandWrapper &rhs)
• RandWrapper & operator= (const RandWrapper &rhs)

Private Attributes

• int iseed_
• double mu_
• double sigma_
• default_random_engine ∗ generator_

3.8.1 Detailed Description

Definition at line 11 of file RandWrapper.h.

3.8.2 Constructor & Destructor Documentation

3.8.2.1 RandWrapper::RandWrapper ( ) [inline]

Definition at line 13 of file RandWrapper.h.

3.8.2.2 RandWrapper::∼RandWrapper ( )

Definition at line 10 of file RandWrapper.cpp.

3.8.2.3 RandWrapper::RandWrapper ( const RandWrapper & rhs ) [private]

3.8.3 Member Function Documentation

3.8.3.1 void RandWrapper::build ( )

Definition at line 16 of file RandWrapper.cpp.

3.8.3.2 void RandWrapper::build ( const int & seed )

Definition at line 26 of file RandWrapper.cpp.

3.8.3.3 void RandWrapper::build ( const double & mu, const double & sigma )

Definition at line 35 of file RandWrapper.cpp.

3.8.3.4 void RandWrapper::build ( const int & seed, const double & mu, const double & sigma )

Definition at line 45 of file RandWrapper.cpp.
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3.8.3.5 void RandWrapper::get_seed ( int & seed ) const

Definition at line 145 of file RandWrapper.cpp.

3.8.3.6 RandWrapper& RandWrapper::operator= ( const RandWrapper & rhs ) [private]

3.8.3.7 void RandWrapper::rand_num_normal ( double & r ) const

Definition at line 101 of file RandWrapper.cpp.

3.8.3.8 void RandWrapper::rand_num_uniform ( double & r ) const

Definition at line 56 of file RandWrapper.cpp.

3.8.3.9 void RandWrapper::rand_num_uniform ( const int & imin, const int & imax, int & r ) const

Definition at line 62 of file RandWrapper.cpp.

3.8.3.10 void RandWrapper::rand_vec_antithetic_normal ( vector< double > & vec ) const

Definition at line 115 of file RandWrapper.cpp.

3.8.3.11 void RandWrapper::rand_vec_antithetic_uniform ( vector< double > & vec ) const

Definition at line 79 of file RandWrapper.cpp.

3.8.3.12 void RandWrapper::rand_vec_normal ( vector< double > & vec ) const

Definition at line 107 of file RandWrapper.cpp.

3.8.3.13 void RandWrapper::rand_vec_uniform ( vector< double > & vec ) const

Definition at line 71 of file RandWrapper.cpp.

3.8.3.14 void RandWrapper::shuffle_vec ( vector< double > & some_vec ) const

Definition at line 135 of file RandWrapper.cpp.

3.8.3.15 void RandWrapper::shuffle_vec ( vector< int > & some_vec ) const

Definition at line 140 of file RandWrapper.cpp.

3.8.4 Member Data Documentation

3.8.4.1 default_random_engine∗ RandWrapper::generator_ [private]

Definition at line 35 of file RandWrapper.h.
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3.8.4.2 int RandWrapper::iseed_ [private]

Definition at line 32 of file RandWrapper.h.

3.8.4.3 double RandWrapper::mu_ [private]

Definition at line 33 of file RandWrapper.h.

3.8.4.4 double RandWrapper::sigma_ [private]

Definition at line 34 of file RandWrapper.h.

The documentation for this class was generated from the following files:

• RandWrapper.h

• RandWrapper.cpp

3.9 RTVariables Class Reference

#include <400_RTVariables.h>

Generated on Tue Jun 23 2020 13:55:23 for Permutation_Sampling_Code by Doxygen



3.9 RTVariables Class Reference 49

Collaboration diagram for RTVariables:

RTVariables

- vol_
- integral_value_ft_
- integral_error_ft_
- integral_error_f0_
- sigma_ft_

+ RTVariables()
+ ~RTVariables()
+ build()
+ build()
+ check_all()
+ print_results()
+ print_seg_tgt_npt()
+ set_user_defined_seg_wt()
+ calc_wt_for_rho()
+ mc_with_fixed_dist()
+ fill_seg_wt()
+ check_seg_tgt_npt()
+ check_seg_tgt_npt()
+ get_nbin()
+ get_mc_xnpt()
+ get_rho_wt()
+ get_xsum_npt_per_idim()
+ get_npt_per_dim_bin()
+ update_avg()
+ update_RTV_avg()
+ mc_calc_integral_and
_error()
- RTVariables()
- operator=()
- calc_idim_xsum_tgt_npt()

Matrix< double >

+ Matrix()
+ Matrix()
+ ~Matrix()
+ init()
+ ncol()
+ nrow()
+ get()
+ set()
+ get_raw_ptr()
- Matrix()
- operator=()

 -seg_wt_
-rho_wt_

-seg_est_wt_
-seg_xnpt_

-seg_sigma_
-seg_avg_ftsq

_
-seg_avg_ft_

int

 -ndim_
-nbin_

 -nrow_
-ncol_

Matrix< T >

+ Matrix()
+ Matrix()
+ ~Matrix()
+ init()
+ ncol()
+ nrow()
+ get()
+ set()
+ get_raw_ptr()
- Matrix()
- operator=()

 -nrow_
-ncol_

std::vector< int >

 +elements

Matrix< int >

+ Matrix()
+ Matrix()
+ ~Matrix()
+ init()
+ ncol()
+ nrow()
+ get()
+ set()
+ get_raw_ptr()
- Matrix()
- operator=()

 -nrow_
-ncol_

std::vector< double >

 -A_

double

 -integral_value_f0
_

-mc_xnpt_
-sigma_f0_
-avg_f0sq_
-avg_ftsq_

-variance_f0_
-avg_f0_
-avg_ft_

-tot_sampl_npt
_

-variance_ft
_
...

 +elements

std::vector< T >

 < double >  < int >

T

 +elements

 < double >  < int >

vector< T >

 -A_

 -seg_idim_xsum_tgt_npt_

 -A_

 -seg_tgt_npt_

Public Member Functions

• RTVariables ()
• ∼RTVariables ()
• void build (const FileParam &myFile, const UserParam &myUser, const MCParam &myMCParam)
• void build (const int &ndim, const int &nbin, const double &vol, const MCParam &myMCParam)
• void check_all () const
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• void print_results () const
• void print_seg_tgt_npt () const
• void set_user_defined_seg_wt (const MCParam &myMCParam)
• void calc_wt_for_rho (const MCParam &myMCParam)
• void mc_with_fixed_dist (const MCParam &myMCParam, const UserParam &myUser)
• void fill_seg_wt (const int &idim, const int &ibin, const int &ndim, const int &nbin, const int &mc_base_pts,

const int &mc_tgt_npt, int &xsum_npts, int &idx_max, double &max_wt)
• void check_seg_tgt_npt (const int &idim_max, const int &ibin_max, const int &xsum_npts, const int &mc_tgt-

_npt)
• void check_seg_tgt_npt (const int &idim, const int &xsum_npts, const int &mc_tgt_npt)
• void get_nbin (int &nbin) const
• void get_mc_xnpt (double &mc_xnpt) const
• void get_rho_wt (const int &idim, const int &ibin, double &val) const
• void get_xsum_npt_per_idim (vector< int > &xsum_npt_per_idim) const
• void get_npt_per_dim_bin (Matrix< int > &npt_per_dim_bin) const
• void update_avg (const double &xnum, const double &xval, double &avg)
• void update_RTV_avg (const double &kernel_ft_1, const double &kernel_ft_2, const double &kernel_f0_1,

const double &kernel_f0_2, const vector< int > &tvec_binidx)
• void mc_calc_integral_and_error (const UserParam &myUser, const MCParam &myMCParam)

Private Member Functions

• RTVariables (const RTVariables &rhs)
• RTVariables & operator= (const RTVariables &rhs)
• void calc_idim_xsum_tgt_npt (const int &idim)

Private Attributes

• int ndim_
• int nbin_
• double vol_
• double integral_value_ft_
• double integral_error_ft_
• double integral_value_f0_
• double integral_error_f0_
• double mc_xnpt_
• double avg_ft_
• double avg_ftsq_
• double avg_f0_
• double avg_f0sq_
• double variance_ft_
• double variance_f0_
• double sigma_ft_
• double sigma_f0_
• double tot_sampl_npt_
• vector< int > seg_idim_xsum_tgt_npt_
• Matrix< int > seg_tgt_npt_
• Matrix< double > seg_xnpt_
• Matrix< double > seg_avg_ft_
• Matrix< double > seg_avg_ftsq_
• Matrix< double > seg_sigma_
• Matrix< double > seg_wt_
• Matrix< double > seg_est_wt_
• Matrix< double > rho_wt_

Generated on Tue Jun 23 2020 13:55:23 for Permutation_Sampling_Code by Doxygen



3.9 RTVariables Class Reference 51

3.9.1 Detailed Description

Definition at line 14 of file 400_RTVariables.h.

3.9.2 Constructor & Destructor Documentation

3.9.2.1 RTVariables::RTVariables ( )

Definition at line 17 of file 400_RTVariables.cpp.

3.9.2.2 RTVariables::∼RTVariables ( )

Definition at line 22 of file 400_RTVariables.cpp.

3.9.2.3 RTVariables::RTVariables ( const RTVariables & rhs ) [private]

3.9.3 Member Function Documentation

3.9.3.1 void RTVariables::build ( const FileParam & myFile, const UserParam & myUser, const MCParam & myMCParam )

Definition at line 27 of file 400_RTVariables.cpp.

Here is the call graph for this function:

RTVariables::build

MCParam::get_ndim

MCParam::get_nbin

Here is the caller graph for this function:

RTVariables::build main

3.9.3.2 void RTVariables::build ( const int & ndim, const int & nbin, const double & vol, const MCParam & myMCParam )

Definition at line 79 of file 400_RTVariables.cpp.

Generated on Tue Jun 23 2020 13:55:23 for Permutation_Sampling_Code by Doxygen



52 Class Documentation

3.9.3.3 void RTVariables::calc_idim_xsum_tgt_npt ( const int & idim ) [private]

Definition at line 131 of file 400_RTVariables.cpp.

3.9.3.4 void RTVariables::calc_wt_for_rho ( const MCParam & myMCParam )

Definition at line 143 of file 400_RTVariables.cpp.

Here is the caller graph for this function:

RTVariables::calc_wt
_for_rho MCRunDriver::run main

3.9.3.5 void RTVariables::check_all ( ) const

Definition at line 429 of file 400_RTVariables.cpp.

Here is the caller graph for this function:

RTVariables::check_all main

3.9.3.6 void RTVariables::check_seg_tgt_npt ( const int & idim_max, const int & ibin_max, const int & xsum_npts, const int &
mc_tgt_npt )

Definition at line 188 of file 400_RTVariables.cpp.

Here is the caller graph for this function:

RTVariables::check
_seg_tgt_npt

MCRunDriver::calc_npt
_using_wt_1d
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3.9.3.7 void RTVariables::check_seg_tgt_npt ( const int & idim, const int & xsum_npts, const int & mc_tgt_npt )

Definition at line 202 of file 400_RTVariables.cpp.

3.9.3.8 void RTVariables::fill_seg_wt ( const int & idim, const int & ibin, const int & ndim, const int & nbin, const int &
mc_base_pts, const int & mc_tgt_npt, int & xsum_npts, int & idx_max, double & max_wt )

Definition at line 171 of file 400_RTVariables.cpp.

Here is the caller graph for this function:

RTVariables::fill_seg_wt MCRunDriver::calc_npt
_using_wt_1d

3.9.3.9 void RTVariables::get_mc_xnpt ( double & mc_xnpt ) const

Definition at line 296 of file 400_RTVariables.cpp.

Here is the caller graph for this function:

RTVariables::get_mc_xnpt MCRunDriver::mc_with
_fixed_dist

3.9.3.10 void RTVariables::get_nbin ( int & nbin ) const

Definition at line 291 of file 400_RTVariables.cpp.

Here is the caller graph for this function:

RTVariables::get_nbin MCRunDriver::calc_npt
_using_wt_1d

Generated on Tue Jun 23 2020 13:55:23 for Permutation_Sampling_Code by Doxygen



54 Class Documentation

3.9.3.11 void RTVariables::get_npt_per_dim_bin ( Matrix< int > & npt_per_dim_bin ) const

Definition at line 318 of file 400_RTVariables.cpp.

Here is the call graph for this function:

RTVariables::get_npt
_per_dim_bin Matrix::set

Here is the caller graph for this function:

RTVariables::get_npt
_per_dim_bin

MCRunDriver::mc_with
_fixed_dist

3.9.3.12 void RTVariables::get_rho_wt ( const int & idim, const int & ibin, double & val ) const

Definition at line 301 of file 400_RTVariables.cpp.

Here is the caller graph for this function:

RTVariables::get_rho_wt MCRunDriver::calc_ref
_density_using_binidx

3.9.3.13 void RTVariables::get_xsum_npt_per_idim ( vector< int > & xsum_npt_per_idim ) const

Definition at line 306 of file 400_RTVariables.cpp.
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Here is the caller graph for this function:

RTVariables::get_xsum
_npt_per_idim

MCRunDriver::mc_with
_fixed_dist

3.9.3.14 void RTVariables::mc_calc_integral_and_error ( const UserParam & myUser, const MCParam & myMCParam )

Definition at line 248 of file 400_RTVariables.cpp.

Here is the caller graph for this function:

RTVariables::mc_calc
_integral_and_error

MCRunDriver::run

MCRunDriver::mc_with
_fixed_dist

main

3.9.3.15 void RTVariables::mc_with_fixed_dist ( const MCParam & myMCParam, const UserParam & myUser )

3.9.3.16 RTVariables& RTVariables::operator= ( const RTVariables & rhs ) [private]

3.9.3.17 void RTVariables::print_results ( ) const

Definition at line 365 of file 400_RTVariables.cpp.

Here is the caller graph for this function:

RTVariables::print
_results main
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3.9.3.18 void RTVariables::print_seg_tgt_npt ( ) const

Definition at line 234 of file 400_RTVariables.cpp.

Here is the caller graph for this function:

RTVariables::print
_seg_tgt_npt

MCRunDriver::calc_npt
_per_seg

3.9.3.19 void RTVariables::set_user_defined_seg_wt ( const MCParam & myMCParam )

Definition at line 166 of file 400_RTVariables.cpp.

Here is the call graph for this function:

RTVariables::set_user
_defined_seg_wt MCParam::get_bin_wt Matrix::set

Here is the caller graph for this function:

RTVariables::set_user
_defined_seg_wt MCRunDriver::run main

3.9.3.20 void RTVariables::update_avg ( const double & xnum, const double & xval, double & avg )

Definition at line 330 of file 400_RTVariables.cpp.

3.9.3.21 void RTVariables::update_RTV_avg ( const double & kernel_ft_1, const double & kernel_ft_2, const double &
kernel_f0_1, const double & kernel_f0_2, const vector< int > & tvec_binidx )

Definition at line 339 of file 400_RTVariables.cpp.
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Here is the caller graph for this function:

RTVariables::update
_RTV_avg MCRunDriver::mc_engine

3.9.4 Member Data Documentation

3.9.4.1 double RTVariables::avg_f0_ [private]

Definition at line 76 of file 400_RTVariables.h.

3.9.4.2 double RTVariables::avg_f0sq_ [private]

Definition at line 77 of file 400_RTVariables.h.

3.9.4.3 double RTVariables::avg_ft_ [private]

Definition at line 74 of file 400_RTVariables.h.

3.9.4.4 double RTVariables::avg_ftsq_ [private]

Definition at line 75 of file 400_RTVariables.h.

3.9.4.5 double RTVariables::integral_error_f0_ [private]

Definition at line 72 of file 400_RTVariables.h.

3.9.4.6 double RTVariables::integral_error_ft_ [private]

Definition at line 70 of file 400_RTVariables.h.

3.9.4.7 double RTVariables::integral_value_f0_ [private]

Definition at line 71 of file 400_RTVariables.h.

3.9.4.8 double RTVariables::integral_value_ft_ [private]

Definition at line 69 of file 400_RTVariables.h.

3.9.4.9 double RTVariables::mc_xnpt_ [private]

Definition at line 73 of file 400_RTVariables.h.
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3.9.4.10 int RTVariables::nbin_ [private]

Definition at line 67 of file 400_RTVariables.h.

3.9.4.11 int RTVariables::ndim_ [private]

Definition at line 66 of file 400_RTVariables.h.

3.9.4.12 Matrix<double> RTVariables::rho_wt_ [private]

Definition at line 93 of file 400_RTVariables.h.

3.9.4.13 Matrix<double> RTVariables::seg_avg_ft_ [private]

Definition at line 88 of file 400_RTVariables.h.

3.9.4.14 Matrix<double> RTVariables::seg_avg_ftsq_ [private]

Definition at line 89 of file 400_RTVariables.h.

3.9.4.15 Matrix<double> RTVariables::seg_est_wt_ [private]

Definition at line 92 of file 400_RTVariables.h.

3.9.4.16 vector<int> RTVariables::seg_idim_xsum_tgt_npt_ [private]

Definition at line 84 of file 400_RTVariables.h.

3.9.4.17 Matrix<double> RTVariables::seg_sigma_ [private]

Definition at line 90 of file 400_RTVariables.h.

3.9.4.18 Matrix<int> RTVariables::seg_tgt_npt_ [private]

Definition at line 86 of file 400_RTVariables.h.

3.9.4.19 Matrix<double> RTVariables::seg_wt_ [private]

Definition at line 91 of file 400_RTVariables.h.

3.9.4.20 Matrix<double> RTVariables::seg_xnpt_ [private]

Definition at line 87 of file 400_RTVariables.h.

3.9.4.21 double RTVariables::sigma_f0_ [private]

Definition at line 81 of file 400_RTVariables.h.
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3.9.4.22 double RTVariables::sigma_ft_ [private]

Definition at line 80 of file 400_RTVariables.h.

3.9.4.23 double RTVariables::tot_sampl_npt_ [private]

Definition at line 82 of file 400_RTVariables.h.

3.9.4.24 double RTVariables::variance_f0_ [private]

Definition at line 79 of file 400_RTVariables.h.

3.9.4.25 double RTVariables::variance_ft_ [private]

Definition at line 78 of file 400_RTVariables.h.

3.9.4.26 double RTVariables::vol_ [private]

Definition at line 68 of file 400_RTVariables.h.

The documentation for this class was generated from the following files:

• 400_RTVariables.h
• 400_RTVariables.cpp
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Chapter 4

File Documentation

4.1 001_main.cpp File Reference

#include <iostream>
#include <algorithm>
#include <fstream>
#include <ctime>
#include <iomanip>
#include "900_FileParam.h"
#include "600_UserParam.h"
#include "500_MCParam.h"
#include "400_RTVariables.h"
#include "100_MCRunDriver.h"
Include dependency graph for 001_main.cpp:

001_main.cpp

iostream

algorithm

fstream

ctime iomanip

900_FileParam.h600_UserParam.h

500_MCParam.h

400_RTVariables.h

100_MCRunDriver.h

stringvector

Matrix.h

cassert

900_RandUtils.h

RandWrapper.h

random memory

Functions

• int main ()

4.1.1 Function Documentation

4.1.1.1 int main ( )

Step1: Declaring all objects—// file param contains list of all files used user param wraps user defined functions mc-
param has all run-time param for performing mc calc intermediate and final results are stored in run-time-variables
(RTV) driver is the global object for running the entire mc calc declare as empty objects... we will build them in the
next step.
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Step2: build all objects—// first get file names, then get data from those files always use check_all to verify consis-
tency information flow: file –> user_param –> mcrun_param –> RunTimeVariable –> driver

Step3: DO MC calculations-—//

Step4: print results

Step5: print time info and do normal termination

Definition at line 14 of file 001_main.cpp.

Here is the call graph for this function:

main

FileParam::build

FileParam::check_all

MCParam::build

MCParam::check_all

RTVariables::build

RTVariables::check_all

MCRunDriver::build

MCRunDriver::run

RTVariables::print
_results

MCParam::get_ndim

MCParam::get_nbin

RandUtils::build

MCParam::get_mc_nloop
_wt_update

RTVariables::set_user
_defined_seg_wt

RTVariables::calc_wt
_for_rho

RTVariables::mc_calc
_integral_and_error

MCParam::get_bin_wt Matrix::set

4.2 100_MCRunDriver.cpp File Reference

#include <iostream>
#include <cassert>
#include <string>
#include <fstream>
#include <algorithm>
#include <vector>
#include <chrono>
#include "Matrix.h"
#include "900_FileParam.h"
#include "900_RandUtils.h"
#include "600_UserParam.h"
#include "500_MCParam.h"
#include "400_RTVariables.h"
#include "100_MCRunDriver.h"
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Include dependency graph for 100_MCRunDriver.cpp:

100_MCRunDriver.cpp

iostream

cassertstring

fstream

algorithm

vector

chrono

Matrix.h900_FileParam.h

900_RandUtils.h

600_UserParam.h

500_MCParam.h

400_RTVariables.h

100_MCRunDriver.h

RandWrapper.h

random memory

4.3 100_MCRunDriver.h File Reference

#include <iostream>
#include <algorithm>
#include <vector>
#include <string>
#include <fstream>
#include "900_FileParam.h"
#include "900_RandUtils.h"
#include "600_UserParam.h"
#include "500_MCParam.h"
#include "400_RTVariables.h"
Include dependency graph for 100_MCRunDriver.h:

100_MCRunDriver.h

iostream

algorithm

vector string

fstream 900_FileParam.h

900_RandUtils.h

600_UserParam.h

500_MCParam.h

400_RTVariables.h

Matrix.hRandWrapper.h

cassertrandommemory

This graph shows which files directly or indirectly include this file:

100_MCRunDriver.h

001_main.cpp 100_MCRunDriver.cpp
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Classes

• class MCRunDriver

4.4 400_RTVariables.cpp File Reference

#include <iostream>
#include <vector>
#include <algorithm>
#include <iterator>
#include <math.h>
#include <cassert>
#include <iomanip>
#include "Matrix.h"
#include "900_FileParam.h"
#include "600_UserParam.h"
#include "500_MCParam.h"
#include "400_RTVariables.h"
Include dependency graph for 400_RTVariables.cpp:

400_RTVariables.cpp

iostream

vector

algorithm iterator math.h

cassert

iomanip

Matrix.h 900_FileParam.h600_UserParam.h

500_MCParam.h

400_RTVariables.h

string

fstream

4.5 400_RTVariables.h File Reference

#include <iostream>
#include <vector>
#include <string>
#include <fstream>
#include "900_FileParam.h"
#include "600_UserParam.h"
#include "500_MCParam.h"

Generated on Tue Jun 23 2020 13:55:23 for Permutation_Sampling_Code by Doxygen



4.6 500_MCParam.cpp File Reference 65

Include dependency graph for 400_RTVariables.h:

400_RTVariables.h

iostream

vectorstring

fstream900_FileParam.h 600_UserParam.h

500_MCParam.h

Matrix.h

cassert

This graph shows which files directly or indirectly include this file:

400_RTVariables.h

001_main.cpp

100_MCRunDriver.h

100_MCRunDriver.cpp

400_RTVariables.cpp

Classes

• class RTVariables

4.6 500_MCParam.cpp File Reference

#include <iostream>
#include <cassert>
#include <string>
#include <fstream>
#include <sstream>
#include <algorithm>
#include <vector>
#include <random>
#include "Matrix.h"
#include "900_FileParam.h"
#include "600_UserParam.h"
#include "500_MCParam.h"
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Include dependency graph for 500_MCParam.cpp:

500_MCParam.cpp

iostream

cassert string

fstream

sstream algorithm

vector

random

Matrix.h 900_FileParam.h 600_UserParam.h

500_MCParam.h

4.7 500_MCParam.h File Reference

#include <vector>
#include <string>
#include <fstream>
#include "Matrix.h"
#include "900_FileParam.h"
#include "600_UserParam.h"
Include dependency graph for 500_MCParam.h:

500_MCParam.h

vectorstring

fstream Matrix.h900_FileParam.h 600_UserParam.h

cassert

This graph shows which files directly or indirectly include this file:

500_MCParam.h

001_main.cpp

400_RTVariables.h

100_MCRunDriver.h

100_MCRunDriver.cpp

400_RTVariables.cpp

500_MCParam.cpp
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Classes

• class MCParam

4.8 800_CoordParam.cpp File Reference

#include <iostream>
#include <cassert>
#include <string>
#include <fstream>
#include <sstream>
#include <algorithm>
#include <vector>
#include "800_CoordParam.h"
Include dependency graph for 800_CoordParam.cpp:

800_CoordParam.cpp

iostream

cassert

string fstream

sstream

algorithm vector

800_CoordParam.h

4.9 800_CoordParam.h File Reference

#include <iostream>
#include <algorithm>
#include <vector>
#include <string>
#include <fstream>
Include dependency graph for 800_CoordParam.h:

800_CoordParam.h

iostream algorithm vector string fstream
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This graph shows which files directly or indirectly include this file:

800_CoordParam.h

800_CoordParam.cpp

Classes

• class CoordParam

4.10 800_MOGrid.cpp File Reference

#include <iostream>
#include <exception>
#include <cassert>
#include <string>
#include <fstream>
#include <sstream>
#include <algorithm>
#include <vector>
#include <iomanip>
#include "800_MOGrid.h"
Include dependency graph for 800_MOGrid.cpp:

800_MOGrid.cpp

iostream exception

cassert

string fstream

sstream algorithm

vector

iomanip800_MOGrid.h

Matrix.h

Functions

• void col_major_idx_3d (const int &n1, const int &n2, const int &n3, const int &N1, const int &N2, const int
&N3, int &index)

• void row_major_idx_3d (const int &n1, const int &n2, const int &n3, const int &N1, const int &N2, const int
&N3, int &index)
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4.10.1 Function Documentation

4.10.1.1 void col_major_idx_3d ( const int & n1, const int & n2, const int & n3, const int & N1, const int & N2, const int & N3,
int & index )

Definition at line 21 of file 999_col_major_idx.cpp.

4.10.1.2 void row_major_idx_3d ( const int & n1, const int & n2, const int & n3, const int & N1, const int & N2, const int & N3,
int & index )

Definition at line 39 of file 999_col_major_idx.cpp.

Here is the caller graph for this function:

row_major_idx_3d MOGrid::get_grid_index_3d

4.11 800_MOGrid.h File Reference

#include <vector>
#include <string>
#include <fstream>
#include "Matrix.h"
Include dependency graph for 800_MOGrid.h:

800_MOGrid.h

vector

string fstream Matrix.h

cassert
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This graph shows which files directly or indirectly include this file:

800_MOGrid.h

800_MOGrid.cpp

Classes

• class MOGrid

4.12 900_FileParam.cpp File Reference

#include <iostream>
#include <string>
#include <fstream>
#include <cassert>
#include "900_FileParam.h"
Include dependency graph for 900_FileParam.cpp:

900_FileParam.cpp

iostream

string

fstream cassert 900_FileParam.h

4.13 900_FileParam.h File Reference

#include <string>
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Include dependency graph for 900_FileParam.h:

900_FileParam.h

string

This graph shows which files directly or indirectly include this file:

900_FileParam.h

001_main.cpp

500_MCParam.h

400_RTVariables.h

100_MCRunDriver.h

100_MCRunDriver.cpp

400_RTVariables.cpp

500_MCParam.cpp

900_FileParam.cpp

Classes

• class FileParam

4.14 900_RandUtils.cpp File Reference

#include <iostream>
#include <math.h>
#include <chrono>
#include <ctime>
#include <cassert>
#include <random>
#include <stdlib.h>
#include "RandWrapper.h"
#include "900_RandUtils.h"
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Include dependency graph for 900_RandUtils.cpp:

900_RandUtils.cpp

iostream

math.h chrono ctime

cassertrandom

stdlib.h

RandWrapper.h

900_RandUtils.h

vectormemory

string fstreamMatrix.h

Functions

• void col_major_idx_2d (const int &irow, const int &icol, const int &nrow, const int &ncol, int &index)

4.14.1 Function Documentation

4.14.1.1 void col_major_idx_2d ( const int & irow, const int & icol, const int & nrow, const int & ncol, int & index )

Definition at line 3 of file 999_col_major_idx.cpp.

4.15 900_RandUtils.h File Reference

#include <iostream>
#include <vector>
#include <string>
#include <fstream>
#include "Matrix.h"
#include "RandWrapper.h"
Include dependency graph for 900_RandUtils.h:

900_RandUtils.h

iostreamvector

string fstreamMatrix.h RandWrapper.h

cassert randommemory
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This graph shows which files directly or indirectly include this file:

900_RandUtils.h

100_MCRunDriver.h

100_MCRunDriver.cpp

900_RandUtils.cpp

001_main.cpp

Classes

• class RandUtils

4.16 999_col_major_idx.cpp File Reference

#include <cassert>
Include dependency graph for 999_col_major_idx.cpp:

999_col_major_idx.cpp

cassert

Functions

• void col_major_idx_2d (const int &irow, const int &icol, const int &nrow, const int &ncol, int &index)

• void col_major_idx_3d (const int &n1, const int &n2, const int &n3, const int &N1, const int &N2, const int
&N3, int &index)

• void row_major_idx_3d (const int &n1, const int &n2, const int &n3, const int &N1, const int &N2, const int
&N3, int &index)
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4.16.1 Function Documentation

4.16.1.1 void col_major_idx_2d ( const int & irow, const int & icol, const int & nrow, const int & ncol, int & index )

Definition at line 3 of file 999_col_major_idx.cpp.

Here is the caller graph for this function:

col_major_idx_2d

Matrix< int >::get

Matrix< int >::set

4.16.1.2 void col_major_idx_3d ( const int & n1, const int & n2, const int & n3, const int & N1, const int & N2, const int & N3,
int & index )

Definition at line 21 of file 999_col_major_idx.cpp.

4.16.1.3 void row_major_idx_3d ( const int & n1, const int & n2, const int & n3, const int & N1, const int & N2, const int & N3,
int & index )

Definition at line 39 of file 999_col_major_idx.cpp.

Here is the caller graph for this function:

row_major_idx_3d MOGrid::get_grid_index_3d

4.17 Matrix.h File Reference

#include <vector>
#include <cassert>
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Include dependency graph for Matrix.h:

Matrix.h

vector cassert

This graph shows which files directly or indirectly include this file:

Matrix.h

500_MCParam.h

100_MCRunDriver.cpp

400_RTVariables.cpp

500_MCParam.cpp 900_RandUtils.h

800_MOGrid.h

001_main.cpp

400_RTVariables.h

100_MCRunDriver.h 900_RandUtils.cpp

800_MOGrid.cpp

Classes

• class Matrix< T >

Functions

• void col_major_idx_2d (const int &irow, const int &icol, const int &nrow, const int &ncol, int &idx)

4.17.1 Function Documentation

4.17.1.1 void col_major_idx_2d ( const int & irow, const int & icol, const int & nrow, const int & ncol, int & idx )

Definition at line 3 of file 999_col_major_idx.cpp.

Generated on Tue Jun 23 2020 13:55:23 for Permutation_Sampling_Code by Doxygen



76 File Documentation

Here is the caller graph for this function:

col_major_idx_2d

Matrix< int >::get

Matrix< int >::set

4.18 RandWrapper.cpp File Reference

#include <iostream>
#include <vector>
#include <algorithm>
#include <cassert>
#include "RandWrapper.h"
Include dependency graph for RandWrapper.cpp:

RandWrapper.cpp

iostream vector

algorithm cassertRandWrapper.h

random memory

4.19 RandWrapper.h File Reference

#include <iostream>
#include <vector>
#include <random>
#include <memory>
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Include dependency graph for RandWrapper.h:

RandWrapper.h

iostream vector random memory

This graph shows which files directly or indirectly include this file:

RandWrapper.h

900_RandUtils.h

900_RandUtils.cpp

RandWrapper.cpp

100_MCRunDriver.h

100_MCRunDriver.cpp001_main.cpp

Classes

• class RandWrapper
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[90] A. Varas, P. Garcı́a-González, J. Feist, F.J. Garcı́a-Vidal, and A. Rubio. Quantum plasmon-

ics: from jellium models to ab initio calculations. Nanophotonics, 5(3):409–426, 2016.
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