
Syracuse University Syracuse University

SURFACE SURFACE

Dissertations - ALL SURFACE

August 2020

GPU Resource Optimization and Scheduling for Shared Execution GPU Resource Optimization and Scheduling for Shared Execution

Environments Environments

Ryan Seamus Luley
Syracuse University

Follow this and additional works at: https://surface.syr.edu/etd

 Part of the Engineering Commons

Recommended Citation Recommended Citation
Luley, Ryan Seamus, "GPU Resource Optimization and Scheduling for Shared Execution Environments"
(2020). Dissertations - ALL. 1243.
https://surface.syr.edu/etd/1243

This Dissertation is brought to you for free and open access by the SURFACE at SURFACE. It has been accepted for
inclusion in Dissertations - ALL by an authorized administrator of SURFACE. For more information, please contact
surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/etd
https://surface.syr.edu/
https://surface.syr.edu/etd?utm_source=surface.syr.edu%2Fetd%2F1243&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=surface.syr.edu%2Fetd%2F1243&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/etd/1243?utm_source=surface.syr.edu%2Fetd%2F1243&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

Abstract

 General purpose graphics processing units have become a computing workhorse for a

variety of data- and compute-intensive applications, from large supercomputing systems for

massive data analytics to small, mobile embedded devices for autonomous vehicles. Making

effective and efficient use of these processors traditionally relies on extensive programmer

expertise to design and develop kernel methods which simultaneously trade off task decomposition

and resource exploitation. Often, new architecture designs force code refinements in order to

continue to achieve optimal performance. At the same time, not all applications require full

utilization of the system to achieve that optimal performance. In this case, the increased capability

of new architectures introduces an ever-widening gap between the level of resources necessary for

optimal performance and the level necessary to maintain system efficiency.

 The ability to schedule and execute multiple independent tasks on a GPU, known generally

as concurrent kernel execution, enables application programmers and system developers to balance

application performance and system efficiency. Various approaches to develop both coarse- and

fine-grained scheduling mechanisms to achieve a high degree of resource utilization and improved

application performance have been studied. Most of these works focus on mechanisms for the

management of compute resources, while a small percentage consider the data transfer channels.

In this dissertation, we propose a pragmatic approach to scheduling and managing both types of

resources – data transfer and compute – that is transparent to an application programmer and

capable of providing near-optimal system performance.

 Furthermore, the approaches described herein rely on reinforcement learning methods,

which enable the scheduling solutions to be flexible to a variety of factors, such as transient

application behaviors, changing system designs, and tunable objective functions. Finally, we

describe a framework for the practical implementation of learned scheduling policies to achieve

high resource utilization and efficient system performance.

GPU RESOURCE OPTIMIZATION AND SCHEDULING
FOR SHARED EXECUTION ENVIRONMENTS

by

Ryan Luley

B.S., St. Lawrence University, 2001

M.S., Syracuse University, 2008

Dissertation

Submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in Computer and Information Science and Engineering

Syracuse University

August 2020

This is a work of the U.S Government and is not subject to copyright protection in the United

States. Foreign copyrights may apply.

DISCLAIMER

The views expressed in this dissertation are those of the author and do not reflect the

official policy or position of the United States Air Force, Department of Defense, or the U.S.

Government.

vi

Acknowledgements

I owe a great debt of gratitude to many people who have helped, guided, and encouraged

me in the completion of this endeavor.

First, to my advisor, Prof. Qinru Qiu – I am incredibly grateful for your patience and

guidance throughout my studies. I have learned a great deal about conducting research and

performing critical analysis over these years. I am appreciative of your support and

encouragement, and particularly your understanding of the demands of my professional career and

family life.

To my defense committee, Prof. Lixin Shen, Prof. Roger Chen, Prof. Yuzhe Tang, Prof.

Fanxin Kong, and Prof. Ehat Ercanli – thank you for taking the time to read my dissertation,

provide valuable feedback, and serve on the committee.

To the men and women of the Air Force Research Laboratory Information Directorate who

have helped make this possible. Though the names and faces have changed over time, my sincere

gratitude goes to all of those who encourage and support professional development and career

broadening educational opportunities. I do not know that I would have undertaken this rewarding

experience without the push. Many friends and colleagues have helped me along the way, but I

would like to offer specific appreciation to a few people. To my immediate supervisors over the

past several years, Joseph Caroli and Donald Telesca, both of whom encouraged and

accommodated this academic pursuit. Though at times it may have seemed interminable, they

never stopped encouraging me, and also continued to push me professionally. I am also indebted

to the Rome “HPC staff” – Cameron, Chris, Denise, Bryan, Alex, and others – who have always

ensured that I had access to the computer systems and software needed to perform this research.

vii

To current and former students in Prof. Qiu’s research group, particularly Dr. Qiuwen

Chen, Dr. Khadeer Ahmed, Dr. Zhe Li, and Amar Shrestha, though our interactions were atypical

of laboratory mates, I was always impressed by your technical skills and collaborative spirit. I

wish you all the best in your future pursuits.

To my parents, Frankie and Jim Luley, who taught me the value of hard work and made

sacrifices to give me every opportunity for success. To my siblings, Kate and Sean, for a sibling

rivalry built on love that continues to push us each in positive ways to be better.

Finally, there is an adage attributed to Confucius: It does not matter how slowly you go as

long as you do not stop. There is no doubt that this endeavor took longer than it should have, but

that was a sacrifice worth making to never miss a moment of being a husband and father. The

completion is doubly rewarding in that sense. To my wife Jennifer and our three children, Troy,

Aidan, and Cara – you are and will always be my greatest accomplishments. Thank you for the

enduring and unconditional love, support, and encouragement. Lastly, I love you all and now you

know about computers.

viii

Table of Contents
Acknowledgements .. vi

List of Figures ... xii

List of Tables .. xv

Chapter 1 Introduction ... 1

1.1 Thesis and Contributions .. 3

1.2 Dissertation Organization ... 4

Chapter 2 Background and Motivation ... 6

2.1 A Brief Introduction to GPU Architectures and Computing .. 6

2.2 GPU Scheduling.. 9

2.3 Multi-stream, Multi-kernel Scheduling .. 11

2.4 Opportunities and Benefits to Increasing Utilization and Throughput 13

2.5 Metrics .. 16

2.5.1 Average Normalized Turnaround Time ... 18

2.5.1 System Throughput .. 19

2.5.3 Transfer Bandwidth Utilization ... 20

2.5.4 Compute Resource Utilization ... 20

Chapter 3 Effective Utilization of CUDA Hyper-Q .. 22

3.1 An Approach to Effectively Utilize CUDA Hyper-Q Technology 24

3.1.1 Lazy Resource Utilization Policy .. 24

ix

3.1.2 Effective Memory Transfer Latency .. 25

3.1.3 Application Reordering .. 28

3.2 Hyper-Q Management Framework ... 31

3.3 Experiment Methodology ... 35

3.3.1 Benchmark Applications .. 35

3.3.2 Test Harness ... 36

3.4 Experimental Results .. 38

3.4.2 Effective Memory Transfer Latency .. 40

3.4.3 Application Reordering .. 42

3.5 Discussion ... 43

Chapter 4 Optimizing Data Transfer Bandwidth using Reinforcement Learning 45

4.1 Motivation ... 46

4.2 Bandwidth-Optimized Transfer Algorithm ... 49

4.2.1 Algorithm Description ... 50

4.2.2 Algorithm Implementation ... 55

4.3 Transfer Queue Model .. 57

4.4 Q-Learning .. 58

4.4.1 Monte Carlo Policy Evaluation and Iteration .. 59

4.5 Evaluation ... 61

4.5.1 Simulation Setup .. 62

x

4.5.2 Policy Evaluation and Iteration .. 63

4.5.3 Policy Improvement ... 68

4.6 Conclusion .. 69

Chapter 5 A Deep Q-Learning Approach to GPU Task Scheduling 70

5.1 Task Scheduling .. 71

5.1.1 Problem Formulation ... 72

5.2 Deep Reinforcement Learning .. 74

5.2.1 Deep Q-Learning Model .. 75

5.2.2 Implementation Details .. 78

5.3 Experiment Methodology ... 82

5.4 Experimental Results .. 84

5.5 Conclusions ... 88

Chapter 6 Related Work .. 90

6.1 Concurrent Kernel Execution and Compute Resource Scheduling 90

6.2 Data Transfer .. 94

6.3 Reinforcement Learning for Scheduling Problems ... 95

Chapter 7 Conclusion and Future Directions .. 97

7.1 Future Directions .. 98

7.1.1 Implementation Details .. 99

7.1.2 Multi-GPU Systems ... 100

xi

Appendix A GPU Scheduling Rules ... 101

Appendix B CUDA Method Intercept Examples .. 102

References 105

Vita 111

xii

List of Figures

Figure 1. Simplified depiction of NVIDIA GPU and Streaming Multiprocessor (SMX)

architecture. ... 7

Figure 2. Basic signatures for CUDA memory transfer and kernel method calls. 8

Figure 3. Multi-kernel scheduling hierarchy. ... 12

Figure 4. Performance and utilization comparison of serial (left) and concurrent (right)

execution. .. 15

Figure 5. Kernel run time (left) and GPU power consumption (right) for increasing number of

blocks and device utilization. .. 16

Figure 6. Illustration of task turnaround time components. .. 17

Figure 7. Representative profiler information showing interleaving of memory transfers

executions among independent streams. ... 26

Figure 8. Representative profiler information showing effect of mutex mechanism on memory

transfers executions among independent streams. .. 28

Figure 9. Application orderings under test. .. 30

Figure 10. HQ Runtime Environment. .. 33

Figure 11. GPU Kernel Execution Pattern. ... 37

Figure 12. Performance improvement of heterogeneous workloads as compared to serialized

execution under our lazy resource utilization policy. Performance is relative to serial execution,

and compares half-concurrent and full-concurrent scenarios. .. 38

Figure 13. Screen capture from NVIDIA Visual Profiler demonstrating overlap of five kernels on

five independent streams, despite total requests exceeding GPU resource limitations. 39

xiii

Figure 14. Effective memory transfer latency results. .. 40

Figure 15. Performance comparison of different scheduling orders for each heterogeneous

workload pair. ... 41

Figure 16. Performance comparison of different scheduling orders when adding memory

synchronization. .. 42

Figure 17. Example of non-commutative concurrency. .. 47

Figure 18. Memory transfer time relative to size of the transfer, for NVIDIA K40m GPU. 49

Figure 19. Memory transfer bandwidth relative to transfer size, for NVIDIA K40m GPU. 50

Figure 20. Average normalized turnaround time of two independent and concurrently executing

applications under different transfer policies, including multiple values for BWOPT threshold, τ.

Program A and Program B values represent the NTT for respective applications and Total

represents the combined ANTT for both applications. ... 54

Figure 21. Memory transfer aggregation implementation. ... 56

Figure 22. Reinforcement learning problem. .. 58

Figure 23. Generalized policy iteration and evaluation. ... 61

Figure 24. Distribution of simulated transfer sizes for all episodes in simulation. 62

Figure 25. Comparison of transfer scheduling algorithm performance. Deterministic algorithms

fcfs and bwop are compared to the result after 15 iterations of our Monte Carlo reinforcement

learning method, mcdp. (top left) Total number of transfers sent. (top right) Average achieved

transfer bandwidth. (bottom left) Sum of transfer durations for actual transfers sent. (bottom

right) Average per-task waiting time. ... 64

Figure 26. Evolution of performance metrics during MC learning process. 65

Figure 27. Episode response time for tested transfer policies. ... 67

xiv

Figure 28. Comparison of performance metrics during MC learning process using initial policy

definitions of deterministic (mcdp) or arbitrary (mcap). .. 68

Figure 29. GPU system deep Q-learning simulation architecture design. 78

Figure 30. Average normalized turnaround time performance by scheduling algorithm policy. . 84

Figure 31. System throughput performance by scheduling algorithm policy. 85

Figure 32. Average device utilization performance per scheduling policy. 86

Figure 33. Average normalized turnaround time versus average utilization performance. 87

Figure 34. Per-task average waiting time under different scheduling algorithms. 88

Figure 35. Proposed hierarchical framework for managing data transfer and compute task

scheduling on GPU devices. ... 98

xv

List of Tables

Table I. Comparison of NVIDIA GPU Architecture Specifications [10]. 8

Table II. NVIDIA GPU Technical Specifications by Compute Capability Generation [11]. 10

Table III. CUDA API calls resulting in synchronization effects. ... 25

Table IV. Encapsulated CUDA methods in our software framework. ... 31

Table V. Selected kernels applications from Rodinia 3.0 suite. ... 32

Table VI. Application kernel grid and block dimensions, thread and threads per block

requirements. ... 36

Table VII. Workload Trace Generation Parameters. .. 63

Table VIII. Rodinia kernel characterisitics. .. 83

Table IX. GPU Resource Specifications. .. 83

Table X. Scheduling Algorithm Performance Results. ... 86

1

Chapter 1 Introduction

Over the past two decades there has been a dramatic increase in the widespread adoption

of general purpose graphics processing units (GPGPUs, commonly shortened to GPUs), across

both computing platform varieties and application domains. Initially designed as an accelerator

for rendering high definition, three-dimensional graphics, the addition of programmability quickly

led to the scientific computing community finding ways to exploit the high parallelism and single-

instruction-multiple-data (SIMD) architecture to significantly accelerate computational

calculations which were traditionally executed on central processing units (CPUs) in distributed

or grid computing systems [1] [2]. The development of higher-level application programmer

interfaces (APIs) and software development kits (SDKs) more suited for the scientific programmer

than the graphics programmer lagged behind the increased demand for these types of applications,

but hardware vendors such as NVIDIA and AMD eventually began to adapt their architectures to

suit such needs. Thus, implementations of Compute Unified Device Architecture (CUDA),

introduced in 2007 [3], and the Open Computing Language (OpenCL), introduced in 2009 [4],

have supplanted Open Graphics Library (OpenGL) as the primary means to program GPUs.

Enabling a wider audience through these more generally-applicable frameworks, GPUs

have increasingly been adopted for numerous different applications across many different

domains, to include medical, financial, and cybersecurity. With this increase in potential

applications, the range and scale of hardware architectures has grown to match. Now, the largest

high performance computers (i.e., supercomputers) contain hundreds of GPU accelerators for the

highly parallel scientific codes [5], but the same architectures can be scaled down to meet the real-

time and low-power constraints necessary for the control of autonomous vehicles [6].

2

Regardless of what end of this spectrum is considered, two of the most important system-

level metrics are performance and power-efficiency. For supercomputing systems, which often

exhibit power consumption on the order of megawatts, efficient and effective utilization is

imperative, because it directly relates to the cost of operation. Furthermore, at the application

level, performance is critical as it pertains to job throughput, which can often be viewed through

the lens of resource contention and utilization. In both cases, we can even put a monetary value

on such performance. In the case of power efficiency, it has been reported that 1 megawatt costs

approximately 1 million USD [7]. Meanwhile, on the throughput side, in 2015 a new trans-Atlantic

cable was laid to connect stock traders between London and New York. This 300 million USD

cable reduced latency between the global markets by 5 milliseconds [8], showing the value of

seemingly small performance improvements.

The other end of the spectrum, the mobile, edge system, clearly shares the same critical

metrics despite different reasoning. In particular, the power efficiency concern is not due to the

cost but rather a hard system constraint. Most often these types of systems have a limited power

supply, and therefore computing implementations have a hard budget. As a result, efficient use

becomes a critical concern. At the same time, such systems are often real-time systems and must

meet certain performance guarantees, e.g., for safety reasons like collision avoidance in

autonomous vehicles. From this perspective, it is obvious that throughput is an equally critical

metric.

With similar end objectives in mind, but different constraints in the architectures which

can enable those objectives, it becomes a challenge to utilize general-purpose techniques. The

method in which application tasks are scheduled on a GPU are agnostic to the application or the

operating environment, instead choosing general-purpose, best-effort types of algorithms such as

3

the first-come, first-served (FCFS) approach. We will show in this research why such a general-

purpose approach is insufficient in scenarios which demand high task throughput and power

efficiency, and advocate for an approach that can adapt to a dynamic environment and achieve

optimal resource utilization to achieve the system objectives.

1.1 Thesis and Contributions

The subject of this dissertation is the job scheduling problem for enabling optimal

performance and utilization of GPUs within shared execution environments. The thesis of this

work is that it is possible to design and implement a practical framework for GPU task scheduling

where the following conditions are met:

1. System throughput and resource utilization are improved over established baseline

scheduling practices;

2. Task characterization relies primarily on development-time information, rather than

detailed profiling techniques; and

3. The resulting approach requires no user code transformations nor does it impose

modifications upon the GPU workload scheduler.

We define a novel approach to GPU job scheduling which is minimally obtrusive to a

programmer and does not require low-level device driver modifications. Furthermore, our

methods are flexible to dynamic application scenarios and are not constrained by preprogrammed

rules or heuristics which are aimed at achieving best average-case performance.

Compared to other methods proposed in related works, we claim two additional advantages

and contributions to the approach described in this dissertation. First, the scheduling framework

is transparent to the programmer. This implies that a new API or extension of existing APIs is not

4

necessary, in order to leverage the scheduling capability. Instead, we propose to utilize a method

call intercept approach [9] to provide our proposed capability. Second, our techniques are

constrained to abide by the existing capability in today’s NVIDIA hardware drivers. We do not

assume that we can effect changes in the low-level schedulers, i.e., thread block scheduler. While

the performance benefits we report are encouraging, there is insufficient evidence to suggest that

we can significantly influence the architecture design of a vendor such as NVIDIA. Therefore, we

believe our framework is possibly the most pragmatic and complete solution among related works

in this space.

1.2 Dissertation Organization

 The remainder of this dissertation is organized as follows:

• Chapter 2 includes a background of GPU computing and scheduling considerations, and

provides motivation for improvements to performance and energy efficiency;

• Chapter 3 evaluates the performance of the NVIDIA Hyper-Q technology towards enabling

greater shared resource scheduling, and demonstrates certain limitations to the current

approach with respect to data transfer dependencies and order of execution. We propose

solutions to improve the efficiency and effectiveness of Hyper-Q, which become the

foundation of our work in subsequent chapters;

• Chapter 4 describes the implementation of a reinforcement learning approach to managing

the data transfer resources for moving data to and from the GPU. Our work shows that a

shared transfer mechanism can be learned which maximizes the bandwidth utilization and

reduces transfer waiting times, to enable higher levels of concurrent execution on the GPU.

Our method is compared against the baseline approach, as well as a heuristic approach we

5

developed. The reinforcement learning approach represents an improvement over our

heuristic because it is flexible to the characteristics of the scenario;

• Chapter 5 describes the implementation and evaluation of a deep Q-learning approach for

scheduling jobs to the GPU. Our approach is formulated as a multi-objective optimization

problem in which we are simultaneously attempting to minimize the average normalized

turnaround time and maximize the GPU resource utilization. Our method is compared to

various scheduling algorithms and shows competitive performance under both objectives;

• Chapter 6 discusses previous research and relates it to the contributions claimed in this

dissertation; and

• Chapter 7 concludes the dissertation with a review and summary of the key concepts and

contributions of our research, and presents ideas for future work and application of the

proposed methods summarized in this thesis.

6

Chapter 2 Background and Motivation

 This chapter provides necessary background on GPU computing and scheduling, as a basis

for understanding the key concepts in the overall body of research. In addition, we highlight

motivating themes towards pursuing the solutions proposed herein.

2.1 A Brief Introduction to GPU Architectures and Computing

 An understanding of the utilization of a GPU device begins with understanding the

architecture design of a representative system. For the purposes of this research, we have restricted

our study to NVIDIA architectures. Through the generations of architecture designs – named for

famous scientists such as Fermi, Kepler, Maxwell, Pascal, Volta, and Turing – there have been

many changes in the capability while the underlying architectural design has remained relatively

the same. Figure 1 shows the basic design of these architectures, which can be primarily

decomposed into the computational unit called a symmetric multiprocessor (SMX). Each SMX

consists of a number of CUDA cores, with each core capable of executing a warp, i.e., a group of

threads. The SMX also contains a register file and shared memory, while the entire device contains

a large global memory for loading data from the host (i.e., CPU).

7

 Among the biggest changes that have occurred over the course of the many generations

of NVIDIA GPU designs is in the number of CUDA cores within a SMX, as well as the number

of SMX units contained on a device, as seen in Table I. The most recent generations, ceding to

the increasing popularity and demand from the artificial intelligence (AI) and machine learning

(ML) communities, have introduced the Tensor core as another functional unit of the SMX.

These units perform a specialized function for accelerating AI/ML calculations, but are not a

consideration in this research.

 It is also imperative to understand how applications are instantiated and executed on the

GPU device. We define an application as a group of smaller tasks, working in coordination to

achieve an overarching objective, e.g., to calculate the k-nearest neighbors of a data point. The

tasks which make up this application can be classified as either data transfer tasks or computation

tasks. Data transfer tasks move data from the host (CPU) to the device (GPU) for computation, or

in reverse when computation has completed (for readout or storage). Computation tasks, named

kernels, perform SIMD calculations on the data transferred to the device. Kernels are decomposed

into a number of thread blocks, each consisting of some uniform number of threads. This hierarchy

Figure 1. Simplified depiction of NVIDIA GPU and Streaming Multiprocessor (SMX) architecture.

8

defines certain data sharing limitations, as well as the basic schedulable unit for execution, which

is the thread block. The basic signatures of a memory transfer call and kernel method call are

shown in Figure 2.

Table I. Comparison of NVIDIA GPU Architecture Specifications [10].

 GPU Architecture
Technical Specifications Kepler Maxwell Pascal Volta

Compute Capability 3.5 5.2 6.0 7.0
Number of SMXs 15 24 56 80
FP32 Cores / SMX 192 128 64 64
FP32 Cores / GPU 2880 3072 3584 5120
FP64 Cores / SMX 64 4 32 32
FP64 Cores / GPU 960 96 1792 2560

Tensor Cores / SMX n/a n/a n/a 8
Memory Size Up to 12 GB Up to 24 GB 16 GB 16 GB

TDP 235 Watts 250 Watts 300 Watts 300 Watts
GPU Die Size 551 mm2 601 mm2 610 mm2 815 mm2

For the memory copy method, there are two forms depending on whether we wish to invoke

a synchronous or asynchronous copy. The first method, cudaMemcpy, is implicitly synchronous

and will be executed on the default stream, while the second method, cudaMemcpyAsync, is

executed on the specified stream and asynchronously with the host. Data of size bytes from

memory address src is copied to memory address dst. The transfer direction is specified by kind,

and can be one of: cudaMemcpyHostToHost, cudaMemcpyHostToDevice,

cudaMemcpyDeviceToHost, or cudaMemcpyDeviceToDevice.

Figure 2. Basic signatures for CUDA memory transfer and kernel method calls.

9

For the kernel method, gridSize refers to the number of thread blocks, and can be a 3-

dimensional configuration, while blockSize refers to the number of threads per thread block and

can likewise be 3-dimensional. The shared memory per block (shMemPerBlock) and stream

arguments are optional in general, though stream is required for concurrent execution. The

method arguments refer to the addresses in global memory for data on which the method operates.

As we will discuss in subsequent chapters, nearly all of the information required to enable

our proposed optimization techniques is contained within these method calls. We will contrast

this with alternative approaches proposed by previous works relevant to this problem.

2.2 GPU Scheduling

 To begin to understand the implications and difficulties of sharing a single GPU among

multiple independent applications, we first must understand how the GPU handles task scheduling

in general, for a single application. Scheduling is considered across both temporal and spatial

dimensions, i.e., deciding when and where the task should execute. Temporal scheduling is

determined by the aforementioned FCFS algorithm; when a task reaches the head of the queue, it

will be serviced (if sufficient resources are available). This scheduling is also non-preemptive –

once a block is dispatched to the device, execution cannot be pre-empted for another block.

Furthermore, as will be discussed later, this non-preemption applies at the task level as well.

Spatial scheduling determines on which of the SMX units a task can execute, based upon the dual

concerns of the task resource requirements and the resource availability on the SMX. Furthermore,

spatial scheduling is broken down to the thread block level as mentioned in the previous section.

 At the hardware scheduling level, the smallest schedulable unit is the thread block. This

means that an entire block’s resource requirements must be capable of being satisfied by some

10

SMX on the device in order for it to be dispatched for execution. Furthermore, it is not necessary

that all thread blocks of a kernel are able to be handled at one time. This introduces the concept

of an execution wave. If we view block scheduling as an instantaneous process, each wave

schedules the maximum allowable number of blocks based on the block requirements and device

resource availability. Once a wave has been scheduled, any remaining blocks are held in the

execution queue until some other execution completes on the device, freeing resources.

 There are many factors that go into deciding how many blocks can compose a complete

execution wave. The configuration of the kernel’s thread blocks is a significant factor, because

this determines the amount of each resource that is required. Another key limiting factor is a built-

in constraint on the number of resident thread blocks allowed per SMX. Such a constraint is

important to note, because it is often possible that other resources will not be completely exhausted

before the maximum number of resident blocks is reached. This is particularly likely in a

concurrent execution scenario consisting of kernels with different configurations and resource

requirements. Table II lists a number of the resource constraints per SMX over multiple

generations of NVIDIA GPUs.

Table II. NVIDIA GPU Technical Specifications by Compute Capability Generation [11].

Compute Capability 3.5 5.2 6.0 7.0
Maximum Threads / SMX 2048 2048 2048 2048

Maximum Thread Blocks / SMX 16 32 32 32
Maximum Threads per Block 1024 1024 1024 1024
Maximum Registers / SMX 65536 65536 65536 65536
Shared Memory per SMX 48 KB 96 KB 64 KB 96 KB

Though details of the spatial scheduling algorithm are unpublished, it is widely believed

that thread blocks are assigned to SMX units in a round-robin fashion [12] [13]. However, this

claim has been empirically refuted by other work [14]. In either case, there are multiple

11

considerations that this uncertainty presents, which we will address throughout this research. First,

the distribution of thread blocks across all SMX units ensures that certain techniques, e.g., power

gating, cannot be reliably applied to increase power efficiency. Second, the spatial scheduling

approach results in a nondeterministic pattern, which eliminates possible methods to increase

utilization and/or efficiency by mapping certain blocks to specific SMXs. Finally, under

concurrent scenarios, the disparate resource requirements of independent kernels result in

asymmetric utilization across the set of SMX units. In the following section, we will discuss this

point further as it pertains to a broader understanding of the hardware scheduling algorithm of

NVIDIA GPUs.

2.3 Multi-stream, Multi-kernel Scheduling

 Applying the aforementioned scheduling policy to a scenario in which multiple

independent applications share the GPU device creates a necessity to deconflict resource

contentions and ensure certain properties, such as fairness. One way that this is enabled in GPU

computing is through the construct of streams.

A GPU stream represents an independent flow of execution between the CPU and GPU,

similar to a CPU thread. Within a stream, operations are performed sequentially in the order which

they are called (i.e., FCFS). Between distinct streams, operations may be performed concurrently

or interleaved, depending on the availability of resources. Figure 3 shows an abstract

representation of the multi-stream scenario. The operations within the stream are scheduled into

12

a single work queue, with an operation only being dispatched to the next level device scheduler

once it has reached the front of the stream queue.

The next level scheduler represents either the execution queue (for kernels) or the copy

queue (for memory transfers). Again, operations within these queues are scheduled in a FCFS

manner, but with a number of caveats arising from certain device conditions. These caveats have

been empirically derived as a set of scheduling rules by [15] for the NVIDIA Jetson TX2

architecture, and validated for several other NVIDIA architectures [16]. We consolidate these

rules for reference in Appendix A.

Figure 3. Multi-kernel scheduling hierarchy.

13

The importance of understanding these scheduling rules is critical to enabling maximum

resource utilization and high system throughput. As an example, we discussed earlier how GPU

scheduling is non-preemptive at the kernel level. This is reflected by a combination of rules G3

and X1. Together, these rules state that once the blocks of a kernel have started to be dispatched

to the GPU (by X1), no other kernel can be scheduled until all of the first kernel’s blocks have

been dispatched (G3). This condition is most likely to occur when the first kernel is stalled in the

execution queue due to one of the resource rules not being satisfied (R1-R3). However, it is

entirely possible that the configuration of a subsequent kernel in the execution queue would satisfy

these resource rules. Thus an opportunity for increasing device utilization would be missed,

motivating the need for a more refined approach to execution queue scheduling. Without going

into similar explanation, we claim that these considerations also exist for the copy queue,

necessitating an analogous examination of alternative scheduling policies.

2.4 Opportunities and Benefits to Increasing Utilization and
Throughput

 Prior research [17] [18] provides motivation for further analysis of the utilization of GPU

resources for the purposes of achieving high performance and energy efficiency. In [17], the

authors categorize applications along two primary axes – those which are compute-bound and

those which are memory-bound – and show that the relationship between performance, utilization,

and energy efficiency varies relative to this characterization. Compute-bound applications exhibit

the property of strong scaling. For a fixed problem size, if the application is given more processing

cores, it will exhibit speedup proportional to the number of cores (i.e., complete same amount of

work in less time). Memory-bound applications, on the other hand, have the property of weak

scaling. In this case, performance is capped for a fixed problem size, and that the addition of more

14

processors can only boost performance if given a proportional increase in the problem size (i.e.,

complete more work in the same amount of time).

 Hong and Kim [17] show the relationship of these scaling properties to the performance

and power consumption of various GPU kernels, in an effort to derive the optimal number of cores

to utilize in an application. The claimed benefit of this approach is that optimal energy efficiency

is achieved at different utilizations based on the application type. For compute-bound applications,

the optimal point is at full utilization, while for memory-bound applications it is somewhere less

than that. The obvious conclusion is that many applications exist which do not require the full

complement of GPU resources to achieve optimal performance. Furthermore, the objective of the

approach in [17] is to develop a model to identify the optimal number of cores for a single kernel,

and is successful in demonstrating improvements in energy efficiency as a result. However, the

approach does not address concurrent execution scenarios or propose a method to exploit the

potential of underutilized GPU resources.

 The research presented in this dissertation builds upon both the insights on performance

demonstrated by [17], as well as the omission of techniques to mitigate the underutilization of the

GPU resources. To illustrate why this is an important consideration, consider the simple scenarios

presented in Figure 4. On the left we show a notional scenario of single-kernel execution (i.e., no

device sharing between independent kernels) and the resulting performance and utilization. In

particular, the device is only 62.5% utilized and the makespan of scheduled kernels is 4 time units.

However when we consider concurrent execution, as shown on the right, utilization increases to

83.3% and makespan decreases to 3 time units. While the illustrated scenario is an

oversimplification of a complex scheduling problem, particularly given the scheduling rules and

15

constraints discussed above, it provides the initial motivation to analyze and develop novel

techniques to maximally exploit the capability of GPU computing architectures.

 The benefit of exploiting concurrency and maximizing device utilization is further

validated when considering the power consumption characteristics of a typical GPU device. As

discussed above, work is assigned to the SMX units on the device in a round-robin or semi-round-

robin manner. As a result, the entirety of the device is powered during execution, and strategies

such as power-gating are generally not applicable. Certainly, there are a variety of factors that

determine the peak power consumption for kernel applications, to include thread operations,

memory accesses, etc., but we observed that the peak is often independent of the overall percentage

of the primary device resources being utilized. Figure 5 illustrates such an example.

 In this example, the peak performance of our kernel is achieved with less than full GPU

utilization. Similarly, the peak power consumption increases negligibly, approximately 5%, from

the lowest utilization level to the maximum utilization possible. This serves to empirically validate

the observations from [17], and allow us to make the claim that methods to increase system

throughput, i.e., completing more tasks in less time, will have a positive impact on system energy

Figure 4. Performance and utilization comparison of serial (left) and concurrent (right) execution.

16

efficiency without introducing any techniques that explicit manage power consumption. Given

these opportunities, the primary focus of this research is on the optimal scheduling of independent

GPU tasks for the purposes of increasing system throughput and resource utilization. In addition

to the aforementioned energy efficiency, benefits to such an approach also include improving

respective task performance as measured by the average normalized turnaround time. Finally,

though the focus of this research is on a single-GPU system, we discuss an expected benefit to

adopting this approach in a multi-GPU system for the purpose of reducing the amount of required

hardware, i.e., the total number of GPUs needed in the system to meet a performance objective.

2.5 Metrics

 Throughout this dissertation, we will discuss and measure performance of the GPU system

and our proposed solutions with regard to certain standardized metrics. Most of these metrics have

been similarly adopted by previous research in this area, and provide a meaningful comparison of

our approach to that of the other works.

 Scheduling performance for GPU tasks can primarily be determined by understanding the

composition of the segments of task execution that factor into the overall execution time.

Figure 5. Kernel run time (left) and GPU power consumption (right) for increasing number of blocks and device
utilization.

17

Illustrated in Figure 6, we can determine the basic measure of turnaround time, which is simply

calculated as the difference between task completion time and task arrival time, see (2-1).

𝑇𝑇𝑇𝑇𝑗𝑗 = 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑡𝑡𝑐𝑐 − 𝑡𝑡𝑎𝑎 (2-1)

 Task arrival time, ta, is an immutable property; there is no scheduling policy that can affect

the time at which new tasks arrive into the queue. Task completion time, tc, on the other hand, is

particularly affected by not only how long the task executes but also the length of time that the

task is required to wait for access to resources, i.e., to be scheduled, or dispatched. Task execution

time, Te, is measured as the difference between completion time (tc) and dispatch time (td). For

compute tasks, this difference is a function of the execution time per wave, tω, and the number of

waves, nω. An execution wave is the minimum number of thread blocks of the GPU kernel that

can be launched simultaneously on the compute device. For data transfer tasks, Te is a function of

the size of the data transfer. We will discuss this in detail in Chapter 4.

Given the objective of achieving optimal task performance, we can frame the problem as

one of simultaneously minimizing Tw and Te. Furthermore, we assume that we can accurately

Figure 6. Illustration of task turnaround time components.

18

measure or model the minimum value of Te – this is the performance observed given unfettered

access to the resources, i.e., no contention with other tasks. Therefore, the primary objective

should be to minimize Tw; certainly, as Tw approaches 0, we would expect TTj to be approximately

equivalent to Te. However, resource sharing may increase actual run time, therefore it is imperative

to develop solutions which balance the minimization of both segments.

We will take particular note of Tw as a key metric of task-level performance, since it is

most directly tied to scheduling algorithm policy. The following subsections also highlight

system-level metrics that are of interest in this research.

2.5.1 Average Normalized Turnaround Time

 The first metric we introduce is the average normalized turnaround time (ANTT) defined

by Eeckhout [19]. ANTT is particularly useful for measuring performance across a set of tasks,

rather than merely considering best- or worst-case performance, as it measures the average effect

of processor sharing across the set relative to the expected best-case performance per task when

each has exclusive access.

The first step in calculating ANTT is to be able to calculate the normalized turnaround time

for each task in the set. Normalized turnaround time (NTT) for a task or program is calculated as

the ratio between the single-program turnaround time and the multi-program turnaround time. The

single-program (SP) scenario occurs when the task or program has exclusive access to the

processing system, while multi-program (MP) occurs when the task or program shares the

processing system with one or more other tasks or programs. The equation for NTT is given in

(2-2).

19

𝑁𝑁𝑁𝑁𝑁𝑁 =
𝑇𝑇𝑇𝑇𝑀𝑀𝑀𝑀
𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆

 (2-2)

Given n tasks or programs, ANTT can be thus calculated as shown in (2-3). ANTT is a “lower-is-

better” metric where the optimal value is 1.0, indicating that MP performance is equivalent to SP

performance.

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
1
𝑛𝑛
�𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 (2-3)

2.5.1 System Throughput

 The second metric of interest for evaluating the system performance is System Throughput

(STP) defined by [19]. This metric is closely related to ANTT described above, and is therefore

calculated similarly. The system throughput defines the amount of progress that a set of tasks or

programs makes under processor sharing relative to exclusive execution.

 STP is calculated by first determining the normalized progress (NP) of each task or

program. NP is calculated as in (2-4), while STP for a set of n tasks or programs can subsequently

be calculated by (2-5).

𝑁𝑁𝑁𝑁 =
𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆
𝑇𝑇𝑇𝑇𝑀𝑀𝑀𝑀

 (2-4)

𝑆𝑆𝑆𝑆𝑆𝑆 = �𝑁𝑁𝑁𝑁𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 (2-5)

STP is a “higher-is-better” metric, and indicates the amount of single-program progress that is

achieved in a given amount of MP time.

20

2.5.3 Transfer Bandwidth Utilization

 With specific respect to the data transfer problem, we define a simple metric to measure

the transfer bandwidth utilization. First, we must distinguish that our utilization metric is relative

to the peak achieved bandwidth capacity. This value is often different, specifically less than, the

peak theoretical bandwidth capacity.

Therefore, given the peak achieved bandwidth, 𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚, we define the utilization, 𝐵𝐵𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢, as

shown in (2-6), where 𝐵𝐵𝑜𝑜𝑜𝑜𝑜𝑜 gives the observed bandwidth.

𝐵𝐵𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 =
𝐵𝐵𝑜𝑜𝑜𝑜𝑜𝑜
𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚

 (2-6)

2.5.4 Compute Resource Utilization

 The final metric of consideration in this research is the GPU compute resource utilization.

In particular, we focus on maximum residency of the four main computing resources noted in

Table II: blocks, threads, registers, and shared memory. The selection of this set of resources is

both consistent with related works in this area, as well as the GPU scheduling rules described in

[15].

 For a given GPU architecture, we can calculate the respective maximum resident values

for each resource r by simply multiplying the per SMX specification, 𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠
𝑖𝑖 , by the total number of

SMX units, 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠, as in (2-7) where i = {blocks, threads, registers, shared memory}.

𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚
𝑖𝑖 = 𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠

𝑖𝑖 ∗ 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠 (2-7)

Then, if we can determine the instantaneous value of the resource that is currently in use at time t,

given as 𝑟𝑟𝑖𝑖𝑖𝑖_𝑢𝑢𝑢𝑢𝑢𝑢
𝑖𝑖 , we can calculate a percentage of resource ri that is utilized by (2-8).

21

𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑟𝑟∗(𝑡𝑡) =
𝑟𝑟𝑖𝑖𝑖𝑖_𝑢𝑢𝑢𝑢𝑒𝑒
∗

𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚
∗ (2-8)

 Finally, the total device utilization is determined by summing the individual utilization

percentages and dividing by 4, shown by (2-9).

𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝐷𝐷(𝑡𝑡) =
∑𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑟𝑟∗(𝑡𝑡)

4
 (2-9)

Contrast this definition with the methods supported by hardware, in particular using the NVIDIA

System Management Interface, nvidia-smi [20] and the NVIDIA Profiler, nvprof [21]. With

nvidia-smi, we can query device utilization at a sampling rate between 166 milliseconds to 1

second. However, the query reports only the percentage of time in the past sampling window when

one or more kernels is executing on the GPU. The nvprof utility, on the other hand, reports an

achieved_occupancy metric. This value also does not suffice for our purposes, as it only

provides a ratio of the average active warps to the maximum active warps. Therefore, occupancy

is only measure in terms of thread resources. Neither metric measures precisely how much of the

device is being utilized in the sampling window, while our metric provides greater insight into the

total resource utilization performance.

22

Chapter 3 Effective Utilization of CUDA Hyper-Q

In this chapter, we evaluate the effective use of CUDA Hyper-Q Technology and describe the

foundation of the methodology which we will further develop in subsequent chapters. A key

understanding from this dissertation is that the primary limiting factors to optimal GPU

performance are due to implicit or explicit synchronizations. We make the claim that Hyper-Q

provides many improvements for certain explicit synchronizations, but lacks fine-grained control

which can inhibit optimal performance. Furthermore, we also propose a framework which aims

to mitigate, if not completely eliminate, the implicit synchronizations which may severely degrade

performance and are difficult to uncover. As a result, we advocate for a seamless integration

approach to enable complex behaviors of our methodology without requiring significant code

modification and rewriting. The research described in this chapter introduces the following

contributions:

• It demonstrates that Hyper-Q technology effectively manages the fragments of GPU

compute resources to increase overall system utilization and throughput.

• It shows the impact of memory transfer on concurrent kernel execution. First of all, due to

the contention for the single direct memory access (DMA) engine for each transfer

direction, false serialization may occur despite the availability of compute resources.

Furthermore, the interleaving of DMA transactions among different streams extends the

effective memory transfer time, and further delays kernel execution.

• It exploits other system level concurrency opportunities to improve overall throughput.

Our analysis of application behaviors show that by methodically pairing applications with

23

different execution patterns, we can significantly improve concurrency due to overlapping

of host-to-device and device-to-host memory transfers, or either memory transfer with

kernel execution.

• Finally, we propose a Hyper-Q management framework which abstracts many key API

methods which cause implicit synchronizations and reduces object creation or destruction

overheads through the use of pre-allocated object pools.

This work reveals the potential to further improve GPU resource utilization compared to

previous works by efficiently and effectively managing memory transfers and manipulating

application ordering to increase overlap potential. First, we focus on the limitations inherent in

the memory transfer architecture. With this as our underlying motivation, we develop a method

for mitigating these limitations and improving overall concurrency. Using standard benchmark

applications from the Rodinia suite [22] [23], we implement a modular testing application

infrastructure to evaluate the performance improvement of each part of our approach. In addition,

we examine the concurrent execution of heterogeneous applications with different GPU resource

requirements, and allow for scheduling of kernels which oversubscribe the GPU. While those

applications will be recommended for serial execution based on previous scheduling algorithms

[24] [25], our experimental results demonstrate that we can achieve better performance than

serialization by carefully scheduling the applications for concurrent execution. Improvement

under our strategy is measured relative to serialized execution. We show that each part of our

strategy is additive to overall performance improvement, attaining up to 59% improvement over

serial execution. Furthermore, the methods discussed below provide the foundational elements of

the memory transfer and compute optimization algorithms which we introduce in Chapters 4 and

5 respectively.

24

3.1 An Approach to Effectively Utilize CUDA Hyper-Q Technology

In this section, we describe the underlying tenets of our approach, which focuses on

exploiting the capabilities inherent in the GPU hardware and management API and manipulates

execution flow to produce more favorable conditions for device-level concurrency.

3.1.1 Lazy Resource Utilization Policy

Our initial approach follows a “lazy” method and exploits what is called Leftover policy

in [26] to implicitly manage GPU utilization, rather than by actively modifying kernel

configurations or virtually partitioning resources. Under this policy, the hardware will begin

scheduling thread blocks for an execution round, or wave, in the order in which they are received,

until one or more GPU resources is completely exhausted. In some cases, this may mean only

scheduling thread blocks from one application kernel. However, in the cases where an application

requires fewer resources, the GPU automatically schedules some thread blocks from another

stream in to the unutilized resource space. This behavior is consistent with the scheduling rules

outlined in [15], in particular rules X1 and R1.

This approach allows two or more kernels to be concurrently scheduled regardless of the

sum total of their resource requirements. We find that this provides some additional concurrency

improvement, while doing no worse than serialization, as might result from resource sharing

techniques such as that defined in [25].

Furthermore, we eliminate the need to develop highly detailed schedulers, which

micromanage GPU execution down to the thread block level as in [27]. Rather, we focus on

methods to eliminate the implicit and explicit synchronizations which inhibit concurrency between

independent threads and streams, and allow the Hyper-Q technology to manage block scheduling

25

at the lowest level. The effect of the synchronizations we have identified were also evaluated

around the same time as our initial work by Butler, et al. [28]. Explicit synchronizations are

intuitive to a programmer, typically because they are invoked in software code. Implicit

synchronizations on the other hand, are not obvious to a program and can cause particular anguish

when trying to determine why performance is limited under certain conditions. These type of

synchronizations often deal with software-level resource creation or destruction, e.g., memory,

streams, and events. Examples of both types of synchronizations are shown in Table III.

Table III. CUDA API calls resulting in synchronization effects.

Type of Synchronization CUDA API Call

Explicit cudaDeviceSynchronize, cudaStreamSynchronize,
cudaEventSynchronize, cudaEventRecord, cudaStreamWaitEvent,
cudaEventQuery

Implicit cudaMalloc, cudaMallocHost, cudaStreamCreate,
cudaStreamDestroy, cudaEventCreate, cudaEventDestroy

3.1.2 Effective Memory Transfer Latency

Current GPUs typically have two DMA engines, one for each transfer direction – host-to-

device (HtoD) and device-to-host (DtoH). While Hyper-Q mostly solves false serialization among

independent kernels with the creation of independent work queues, the constraint of only two

DMA engines can severely limit concurrency. This is due to the effect of data dependencies on

kernel execution. As demonstrated in Figure 7, representative of output from the NVIDIA Visual

Profiler, the serialization and interleaving of independent memory transfers stalls progress among

the work queues, in which the kernels must wait for required data to be fully transferred before

executing. In the figure we can see that small HtoD transfers serialize in a single copy queue,

despite having multiple execution streams and the availability of computing resources.

Furthermore, control of the copy queue is interleaved between memory transfers from different

26

threads and streams, which prevent any one of the applications from making progress to the point

that kernel execution could begin, i.e. all of the required data for that kernel has been transferred

to the device. However, once all HtoD transfers complete, kernel execution is significantly

parallelized across these execution streams.

 This inherent limitation must be addressed in conjunction with, or prior to, applying

resource sharing techniques from the existing research. It is not sufficient to simply create separate

streams for memory copies, since they will still be serialized due to the contention for the DMA

engine at hardware level. To mitigate this constraint, we introduce a host-side synchronization

mechanism between application threads. We do this by using a simple mutual exclusion (mutex)

object around the HtoD memory transfer stage of each application thread.

The mutex object provides a pseudo-burst transfer mechanism, in which all of the memory

transfers for an application are completed before an application on another stream can take control

of the copy queue. We believe this to be functionally equivalent to batched memory transfers,

which have been presented as a possible mechanism for optimizing memory transfers [29]. In

Figure 7. Representative profiler information showing interleaving of memory transfers executions among
independent streams.

27

addition, it has been shown that memory transfer time begins to scale linearly at transfer sizes of

8 KB [30]. We verified similar memory transfer performance for the Tesla K20. The benchmark

applications evaluated under this research each have total memory transfer requirements that

exceed 8 KB.

An alternative memory transfer approach, chunking, is proposed in [26]. Under this

technique, large memory transfers are broken into many smaller transfers, and actually take

advantage of the copy queue interleaving behavior. Under such conditions, applications with

smaller total memory transfers are allowed to proceed sooner and overall concurrency should be

improved. Pai, et al., [26] also focuses on applications with significantly larger, and mostly single,

memory transfers (e.g. up to 100 MB) than we explore here. In contrast, since the transfers we

experiment with are multiple and smaller in size, we seek to eliminate the interleaving behavior.

 To measure the effectiveness of our approach, we introduce a metric called effective

memory transfer latency. Given an application 𝐴𝐴𝑖𝑖, consisting of the set of operations given by

(3-1), where 𝑚𝑚𝐻𝐻𝐻𝐻 is a HtoD memory transfer, k is a kernel, and 𝑚𝑚𝐷𝐷𝐷𝐷 is a DtoH memory transfer,

we define this effective memory transfer latency, 𝐿𝐿𝑒𝑒, to be the total latency from the start time

(𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) of the first memory transfer to the completion (𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒) of the last memory transfer, as shown

in (3-2), where * can be replaced with either HD to DH.

𝐴𝐴𝑖𝑖 = {𝑚𝑚𝐻𝐻𝐻𝐻(1), … ,𝑚𝑚𝐻𝐻𝐻𝐻(𝐾𝐾),𝑘𝑘1(1), … ,𝑘𝑘𝑍𝑍(𝑛𝑛),𝑚𝑚𝐷𝐷𝐷𝐷(1), … ,𝑚𝑚𝐷𝐷𝐷𝐷(𝐾𝐾′)} (3-1)

𝐿𝐿𝑒𝑒(𝐴𝐴𝑖𝑖) = 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒[𝑚𝑚∗(𝐾𝐾)] − 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝑚𝑚∗(1)] (3-2)

28

 We calculate the average effective memory transfer latency, by summing 𝐿𝐿𝑒𝑒 for each

application 𝐴𝐴𝑖𝑖 on stream 𝑠𝑠𝑗𝑗, and dividing by the number of applications executed on that stream.

The overall average is then taken across all 𝑁𝑁𝑆𝑆 streams.

 Figure 8 demonstrates the improved concurrency due to memory transfer synchronization.

Transfers for applications from different streams are no longer interleaved, which reduces the

effective memory transfer latency and allows some applications to start kernel execution sooner

than in the previous case (Figure 7).

3.1.3 Application Reordering

Given the scheduling policies introduced in Chapter 2, we determine that another effective way

to improve system throughput without significant overhead is to address the order in which

independent streams are scheduled. First, we assume in general that tasks from two independent

streams arrive at the scheduler simultaneously. Then, the reordering approach should allow for

concurrency by overlapping task calls among the independent streams in the following ways:

Figure 8. Representative profiler information showing effect of mutex mechanism on memory transfers executions
among independent streams.

29

• Kernel execution and memory transfer

• Independent kernel executions (assuming available resources)

• Memory transfers in opposite directions, i.e. HtoD with DtoH

For example, among applications we evaluate in this work, we observed an execution pattern

which consists of an iteration over a sequence of kernels, with HtoD and DtoH memory transfers

inside the iteration loop. This type of application would be well-suited for concurrent execution

with an application that consists of kernels that might oversubscribe GPU resources, since each

application can overlap GPU accesses without directly competing for compute resources.

We examine the effects of the GPU’s inherent FCFS scheduling policy within pairs of

applications with different execution patterns by evaluating five distinct launch orderings. Each

experimental launch order is simulated through a test harness method to force the desired order of

selection within the hardware work queue, though each application executes from an independent

stream. The experimental launch orders we test are described below:

• Naïve FIFO, in which applications are scheduled straightforwardly in a first-in, first-out

(FIFO) manner. Given a set of applications Ω consisting of m copies of application AX and

n copies of AY, the Naïve FIFO scheduling approach results in the queue order given by

Figure 9 (a).

• Round-Robin, in which applications are queued by type, and then launched on child threads

in a round-robin fashion. Given the same set of applications Ω from above, the Round-

Robin scheduling approach results in the order shown in Figure 9 (b).

• Random Shuffle randomly rearranges the set of applications Ω in schedule SK. For this

technique, we start with the Naïve FIFO scheduling order, and then apply a random

30

permutation operation to the order to generate a randomly shuffled order. The respective

number of applications for AX and AY remains the same, with only the ordering affected. A

representative result of the shuffling is given by Figure 9 (c).

• Our final two scheduling approaches are Reverse FIFO and Reverse Round-Robin. In

these approaches, we take the results from FIFO and Round-Robin respectively, and

reverse the order of the pairs in the schedule. The resulting queue orders are showing in

Figure 9 (d) and (e), respectively.

The motivation for varying the queuing order is two-fold. First, this order represents the

order in which our framework allocates CUDA streams to the independent applications. In the

case where the number of applications scheduled is equal to the number of streams available,

then stream allocation order is trivial. However, when there exist fewer execution streams (NS)

than applications to be scheduled (NA), the scheduling mechanism enables us to control the order

in which applications are executed. This is due to the serialization dependency of application

tasks within a particular hardware execution queue, whether the individual tasks are independent

Figure 9. Application orderings under test.

31

from each other or not. Also, while feasible for small numbers of applications and streams, an

exhaustive analysis of all orderings is generally not possible and we prefer to evaluate an

average-case performance given by the proposed ordering methods.

While host-side thread execution order is non-deterministic, by varying the order in which

child threads are launched we aim to prejudice the execution order to follow the thread launch

order, and consequently provide greater opportunity for concurrent execution on the GPU. By

affecting the order in which applications are launched on child threads, we expect that we can

improve overlap potential by interleaving applications with differing execution patterns. In

addition, we expect that we could converge on an optimal ordering without exhaustively searching

all possible orderings.

Table IV. Encapsulated CUDA methods in our software framework.

CUDA API Method HQ Framework HQ Runtime Environment

cudaMallocHost allocateHostMemory
HostMemoryPool

cudaFreeHost freeHostMemory

cudaMalloc allocateDeviceMemory
DeviceMemoryPool

cudaFree freeDeviceMemory

cudaStreamCreate
StreamManager, Stream classes StreamPool

cudaStreamDestroy

3.2 Hyper-Q Management Framework

To efficiently implement the techniques described above, we develop a C++ management

framework which encapsulates CUDA API functionality and eliminates the implicit

synchronizations caused by certain API methods. This approach is relatively seamless to integrate

with existing code (i.e., does not require significant refactoring effort) and allows for pre-allocation

of certain object types to eliminate synchronizations and reduce overheads.

32

The initial implementation of this framework was used for the experiments described in

this chapter, and provided abstract method interfaces to the primary CUDA objects that can cause

implicit synchronizations [11]. A mapping of framework methods to these CUDA objects is given

in Table IV. Subsequently, we have matured this framework into what we call the HQ Runtime

Environment, shown in Figure 10.

Our framework expands on the PreAllocator concept introduced by [28]. As noted in the

work, the pre-allocation of certain resource pools enables the dynamic “creation” and “destruction”

of those resources in runtime, without causing synchronizations which would inhibit concurrent

execution on the GPU.

We ported a selection of benchmark applications from the Rodinia 3.0 suite, as shown in

Table V, and observed that the amount of programming effort is minimal, since we are not

modifying the actual functionality of the benchmark in a significant way.

The implementation of Rodinia benchmarks into our framework is technically distinct from

the source code transformation techniques, such as proposed by [26]. In each instance, our

implementation of a Rodinia application performs equivalently to its reference implementation.

We do not modify the .cu source code file in any significant way. Furthermore, the benchmark

kernel applications are logically decoupled from each other, and not merged into a super kernel to

manage execution.

Table V. Selected kernels applications from Rodinia 3.0 suite.

Benchmark Name CUDA Name
Gaussian Elimination gaussian

k-Nearest Neighbors nn

Needleman-Wunsch nw

Speckle reducing anisotropic diffusion srad_v2

33

The HQ Runtime Environment is also scalable, as each of the following pools can be

defined on a per-device basis. Therefore, in a multiple GPU scenario, independent object pools

for each device can be created to support execution across each GPU, without requiring the user

to keep track of the object-device relationships. In addition to the objects referenced in Table IV,

the HQ Runtime Environment also implements an object pool for CUDA events, which will be

required for managing aspects of our data transfer algorithm discussed in the following chapter.

Events Pool. The Events Pool creates a user-defined number of cudaEvent_t objects, which can

be used for tracking application progress. CUDA events also enable fine-grained synchronization

between independent streams without forcing device-wide synchronizations, such as

cudaDeviceSynchronize. As will be discussed in the transfer queue algorithm in the following

chapter, memory transfers are processed on a single stream (per direction), which is separate from

the independent streams which the applications execute upon. Therefore, inter-stream

Figure 10. HQ Runtime Environment.

34

synchronization is critical to enforce the proper order of operations within an application’s main

thread of execution. We will use events to handle the inter-stream synchronization.

Stream Pool. The Stream Pool allocates the maximum number of cudaStream_t objects allowed

by the hardware, less the number of streams required to serve the transfer queues (i.e., two, one

per transfer direction), for application execution. On the Tesla K20 used in this work, the

maximum number of hardware streams is 32 [31], thus the Stream Pool consists of 30 possible

application streams in our experiments.

Memory Pool. Possibly the most important aspect of the runtime environment is the memory pool

concept. In concurrent, shared execution environments, different applications are expected to

come in and out of service dynamically at varying times. Thus, as the application begins execution

the allocation of memory is necessary. Conversely, once the application ends the deallocation of

memory is required to free up resources. However, since such operations cause implicit

synchronization, it was critical to find a solution to eliminate that potential performance constraint.

It is worth noting that the memory pool solution developed here is not fully optimized for

performance. In particular, we do not address possible fragmentation, though we do implement

merging for contiguous free memory blocks. Furthermore, we noted during testing that the

overhead of allocation and deallocation using the memory pool method was not significant. On

the other hand, one advantage that is afforded through the use of the memory pool is to enable

memory resetting after deallocation, to avoid potential memory leaks as described in [32].

Considering the intended scenario for the proposed algorithm, i.e. shared execution environments,

we find this to be an additional incentive to utilize the memory pool mechanism.

35

3.3 Experiment Methodology

We evaluate our proposed approach using the Hyper-Q Management Framework defined

in the previous section. While we believe that the framework provides for cleaner management of

the various API function calls, and overall reduces the complexity of the test harness, we would

expect that our techniques would exhibit equivalent performance improvements on similarly

structured test applications that do not utilize our framework.

 In order to realize the potential of GPU concurrency using streams, it is necessary to

provide host multithreading. Our test harness uses C++ std::thread’s, which encapsulates

Pthread functionality on our test workstation. All experiments are conducted on a Tesla K20 series

GPU, with compute capability 3.5. In addition, our framework utilizes the C++11 standard and is

compiled using gcc 4.8.1.

3.3.1 Benchmark Applications

We selected a subset of applications from the Rodinia benchmark suite [22] for our

experiments. The applications were selected to represent various application domains, execution

patterns, and resource requirements.

• Gaussian Elimination: Linear algebra algorithm for solving a system of linear equations.

• k-Nearest Neighbors: Machine learning algorithm for clustering unstructured data.

• Needleman-Wunsch: Dynamic programming algorithm for protein alignment in DNA

sequencing applications.

• Speckle Reducing Anisotropic Diffusion (SRAD): Image processing algorithm for

removing speckle noise without destroying important image features.

36

Table VI. Application kernel grid and block dimensions, thread and threads per block requirements.

Application Kernel Data dim Calls
Grid dim
(x, y, z)

Block dim
(x, y, z) #TB #TPB

Gaussian Fan1 512 x 512 511 (1, 1, 1) (512, 1, 1) 1 512
Fan2 511 (32, 32, 1) (16, 16, 1) 1024 256

Needle needle_cuda_shared_1 512 x 512 16 (1, 1, 1) … (16, 1, 1) (32, 1, 1) 16 32
needle_cuda_shared_2 15 (15, 1, 1) … (1, 1, 1) (32, 1, 1) 15 32

Srad srad_cuda_1 512 x 512 10 (32, 32, 1) (16, 16, 1) 1024 256
srad_cuda_2 10 (32, 32, 1) (16, 16, 1) 1024 256

Knearest euclid 42764 1 (168, 1, 1) (256, 1, 1) 168 256

3.3.2 Test Harness

The execution flow of our test harness begins with loading an application scheduling order

to execute, instantiating a new class object for each separate application, allocating all host and

device memory, and initializing host memory. Then the parent thread launches each application

class instance on its own independent child thread. Within the child thread, each instance runs its

particular execution pattern. After all child threads have completed, the host parent thread frees

all host and device memory and destroys all stream objects.

Figure 11 shows the profiles of two generic execution patterns, from which most CUDA

applications can be abstracted. In general, all applications consist of ht transfers from host (CPU)

to device (GPU), K kernel method calls, and dt transfers from device to host, where ht, K, and dt

are all greater than or equal to 1, and ht and dt need not be equal. Furthermore, certain applications

may consist of inner looping over the kernel method calls and/or outer looping over the entire

pattern.

37

We examine both homogeneous workloads and heterogeneous workloads. A

homogeneous workload is defined as a set of applications in which each application thread

executes the same kernel functions on the same size data, and with the same grid/block

configuration. A heterogeneous workload is defined as a set of applications in which the

application threads take one or more different types. These types may have different data sizes

and grid/block configurations. However, among applications of the same type, the workload

should be considered homogeneous. For simplicity, we only look at heterogeneous workloads

with two different application types, but our framework supports the ability to test workloads with

a higher degree of application heterogeneity. The data sizes, grid and block dimensions used for

the set of applications we have ported, is given in Table VI.

The test harness iteratively executes all possible pairs of applications with an increasing

schedule length with NA applications, over a similarly increasing number of GPU streams, NS. This

varies execution from fully serialized (i.e. NA applications on a single stream) to fully parallelized

(i.e. NA applications on 32 streams). For brevity, we do not examine the scenarios where NS > NA,

since we expect no performance improvement to be observed from the addition of idle streams. In

the case of heterogeneous workloads, the number of applications is evenly split between the

different types in the test pair.

Figure 11. GPU Kernel Execution Pattern.

38

3.4 Experimental Results

Our results demonstrate that we can effectively utilize the built-in features of Hyper-Q

technology to achieve significant concurrency improvement with minimal algorithmic complexity

and without the need to transform kernel source code.

3.4.1 Lazy Resource Utilization

Figure 12 shows the performance improvements for each heterogeneous pairing under

increasing workload scenarios, when compared to the serial case. The normalized performance is

measured as the ratio of serial workload makespan to the multi-stream makespan. The results

demonstrate that we can achieve significant speedup without implementing specific resource

sharing techniques, because the Hyper-Q technology and GPU thread block scheduler work to

efficiently utilize the device resources when possible.

Figure 12. Performance improvement of heterogeneous workloads as compared to serialized execution under our
lazy resource utilization policy. Performance is relative to serial execution, and compares half-concurrent and full-
concurrent scenarios.

39

This can be seen in Figure 13, which shows overlapping kernel execution on five

independent streams. At the point of execution shown in the snapshot, Stream 17 launches 89

thread blocks of needle_cuda_shared_1, Stream 20 launches 88 thread blocks of

needle_cuda_shared_2, Streams 21 and 22 each launch one thread block of Fan1, and Stream

27 launches 1024 thread blocks of Fan2, for a total of 1203 thread blocks.

Under this scenario, and utilizing resource sharing techniques discussed above, these five

streams would not be scheduled to execute concurrently because they are requesting more than the

theoretical maximum number of thread blocks of 208. However by leveraging the Leftover policy,

we allow the device to pack as many thread blocks onto the SMX units as possible, increasing the

effective utilization to near 100%. In addition, the kernels Fan2, srad_cuda_1, srad_cuda_2,

and euclid all require more than one execution round to fully complete, since individually they

execute more thread blocks than can simultaneously occupy the GPU. In each case, the final

execution round does not fully occupy the GPU and the Leftover policy employed by the scheduler

Figure 13. Screen capture from NVIDIA Visual Profiler demonstrating overlap of five kernels on five independent
streams, despite total requests exceeding GPU resource limitations.

40

detects unutilized resources and launches waiting thread blocks from the device’s thread block

scheduler queue.

Our results from Figure 12 show that we achieve up to 56% improvement (23.6% average)

for the half-concurrent scenario, i.e. NA = 2 * NS, and up to 59% (24.8% average) for the full-

concurrent scenario, i.e. NA = NS. We note that this compares favorably to the average performance

improvements demonstrated by other techniques, without the additional overhead or complexity

of such techniques.

3.4.2 Effective Memory Transfer Latency

Figure 14 demonstrates the effectiveness of our HtoD memory synchronization approach.

We calculate the expected effective memory latency by taking the average performance of memory

Figure 14. Effective memory transfer latency results.

41

transfers from the homogeneous case for each application. To calculate the expected effective

memory transfer latency for heterogeneous workloads, we average the homogeneous results for

each application in the pairing. The results show that the average effective memory latency per

application increases up to 8 times over expectation in the baseline case. However, using our

approach we reduce the effective latency to be equivalent to the expected estimate.

The benefit of this reduction in effective latency is that applications can begin kernel

execution sooner (i.e., reduces waiting time), since kernel execution for an application is dependent

on all required memory transfers being completed. In addition, as the degree of concurrency

increases, this effectively improves overlap potential, as will be discussed in the next section.

Memory transfers and kernel executions from different streams can overlap in GPU execution,

Figure 15. Performance comparison of different scheduling orders for each heterogeneous workload pair.

42

therefore once an application’s entire memory requirements have been transferred, execution of

that application’s kernels can overlap with subsequent HtoD transfers from other streams.

3.4.3 Application Reordering

Figure 15 compares the performance impacts of the different scheduling techniques

introduced above for each workload pairing where NS = NA = 32. In addition, we use the default

memory transfer behavior. In this case, normalized performance is relative to the worst-case

schedule order for each particular pairing, to demonstrate the relative impacts of kernel ordering.

We observe that schedule order can affect up to 9.4% performance improvement and 3.8% on

average.

Figure 16. Performance comparison of different scheduling orders when adding memory synchronization.

43

Figure 16 compares the performance of our different scheduling techniques when adding

the memory synchronization technique defined in section 3.1.2. Under this scenario, we can

achieve up to 31.8% performance improvement and 7.8% improvement on average.

It is important to reiterate that these performance improvements are relative to the worst-

case scheduling performance among the orders we test, for a given pair of applications. We do

not exhaustively search all possible orderings, but demonstrate that order does play a significant

factor in concurrency performance, particularly as it relates to presenting greater opportunities for

operation overlap. A more exhaustive experiment could easily be conducted by providing many

more distinct random shuffle schedules. Furthermore, we conclude similarly to [33] that ordering

can provide even greater performance gains than Hyper-Q alone, while also examining more

potential orderings than in that work.

3.5 Discussion

We have presented a method for more effectively utilizing the CUDA Hyper-Q to improve

overall performance and power efficiency on a set of applications. Our results demonstrate that

leveraging the default concurrent techniques on the GPU can achieve greater performance when

coupled with effective methods for reducing memory transfer contention and manipulating

execution order through host-side scheduling approaches.

Our technique requires limited insight into the resource requirements of a particular

application or application kernel, and relies on Hyper-Q to handle most of the execution

concurrency. With these relatively simple adaptations, we demonstrated that we can achieve up

to 59.1% improvement in performance over serialized execution. By utilizing our memory transfer

44

synchronization method, we found that performance could be improved by an additional 31.8% in

certain cases.

Finally, we defined a management framework which is readily extensible for additional

applications, and would be expected to demonstrate similar performance improvements. Because

our technique does not rely on source code modification for effective resource sharing, there is

less effort required to enable concurrency with new applications.

In the following chapters we will extend beyond the existing framework we have

implemented and explore more robust methods for dynamically scheduling applications, i.e.,

managing the explicit synchronizations in GPU applications. These approaches are envisioned to

support dynamic execution of streaming workloads, rather than a finite set, and are capable of

learning specific system level objectives, such as greater throughput and lower power

consumption.

45

Chapter 4 Optimizing Data Transfer Bandwidth
using Reinforcement Learning

This chapter focuses on one of the often overlooked aspects of GPU sharing and utilization,

the memory transfer engines. In most architectures, there exists only a single engine for each

transfer direction, i.e., host-to-device or device-to-host. Furthermore, these engines are limited to

processing a single request per direction at a time. For scenarios in which more than one thread

and/or stream is present, this resource constraint can quickly become a limiting factor to optimal

performance, as demonstrated in the previous chapter. We believe that by focusing on optimal

utilization of the memory transfer engines, we can increase the degree of GPU compute resource

utilization and execution overlap, ultimately leading to greater overall system-level performance.

We begin with the motivation and goal of memory transfer optimization, and show that by simple

transfer aggregation and division, we can improve the utilization of transfer bandwidth and achieve

better performance at the application and system level. We then demonstrate that although the

proposed memory transfer optimization technique is effective in many cases of concurrent kernel

execution, it is sensitive to the setting of some hyperparameters, which would be determined by

memory subsystem characteristics. To design an effective memory transfer optimization scheme

usually requires detailed system characterization, which is time consuming. To improve its

flexibility, we extend the technique by utilizing reinforcement learning methods to learn a dynamic

policy that minimizes waiting time of the memory transfer tasks and increases bandwidth

utilization.

46

4.1 Motivation

CUDA streams enable concurrent execution under three scenarios: (i) overlap of data

transfer and kernel execution, (ii) overlap of independent kernel executions, and (iii) overlap of

data transfers in opposite directions [11]. The level of concurrency possible in each case is further

limited by the types or amount of resources that are currently available, compared to the type and

amount that are necessary to support execution of the concurrent operations. Resources can be

grouped in two main categories – compute and data transfer resources. The types of resources that

are considered compute resources include threads, registers, and shared memory. The amount of

each compute resource varies with the hardware generation. For data transfer resources, there is

only one type – the direct memory access (DMA) engine – of which there are typically two per

GPU. Each DMA engine supports transfer of data in only one direction, i.e. from host (CPU) to

device (GPU), or vice versa.

Compute resources have varying levels of granularity, and every kernel requires a different

proportion of the total resources based on the design of the algorithm. As a result, significant

attention has been given to managing this granularity to maximize resource utilization [24] [27]

[34]. On the other hand, the data transfer resources are either available or not. Due to fixed

overhead, PCIe transactions with different payload size have different bandwidth utilization.

However, there is no distinction between transactions that utilize the full PCIe bandwidth and those

that utilize only a fraction. Certainly, this constraint can limit the ability to full exploit overlap

opportunities, and thereby lead to underutilization of device resources. Yet, data transfer aware

scheduling on GPU has only recently received attention and it is still somewhat limited [35].

Finally, even with the concurrency capabilities provided through CUDA streams, CKE is

still largely affected by order-of-arrival since each of the underlying work queues is inherently

47

FCFS. This leads to the property of “non-commutative concurrency” described in [26], in which

the order of execution of concurrent GPU operations affects the total execution time. Figure 17

gives an example of this situation. In the example, task A is already executing when tasks B and

C arrive. We make the assumption that although both tasks are ready for execution, B arrives

“before” C, i.e., B is enqueued on the ready queue before C. One potential factor that can

contribute to the order precedence would be the respective data dependencies of each task – if data

Figure 17. Example of non-commutative concurrency.

48

for B is ready on the device before data for C. Thus, by the FCFS algorithm task B is served first.

Since B consumes all compute resources, task C must wait until B completes before executing.

Under a concurrency-aware approach, task C could be served first, consuming 50% of the

resources and allowing B to begin executing with the remaining 50% of resources. Once task C

completes the free resources will be assigned to B. The difference in schedules, Δ, reflects the non-

commutative nature of concurrency behavior.

In this work, we address data transfer resource contention in order to mitigate explicit

synchronizations on the copy engine. We seek for techniques that increase the concurrency of data

transfer by better utilizing the memory transfer bandwidth, and at the same time exploit the non-

commutative concurrency among the transfers. Our claim is that effective utilization of transfer

bandwidth and reduction of task waiting time due to serialization on the copy queue will enable

the additional measures to mitigate explicit synchronizations within the execution queue. The

algorithm we propose is refined through the use of reinforcement learning techniques to achieve a

dynamic approach which would be capable of adapting to workload characteristics on-the-fly.

49

4.2 Bandwidth-Optimized Transfer Algorithm

The proposed memory transfer optimization algorithm is derived from the following

observations of CUDA memory transfer performance in [36] which we have empirically validated

for the NVIDIA K40, shown in Figure 18 and Figure 19. First, as noted in [36], data transfer

execution time consists of two parts – a constant transfer overhead component (α) and a linear

component dependent on the transfer size d of the transfer and the PCIe bandwidth (β). In Figure

18, we note that for small transfers, where d ≤ 4 KB, the initial overhead to transfer data dominates

the execution time and performance is constant in this region. Conversely for large transfers, i.e.

d ≥ 2 MB, the execution time is dominated by the bandwidth dependent component, when the

Figure 18. Memory transfer time relative to size of the transfer, for NVIDIA K40m GPU.

50

available bandwidth is saturated, resulting in transfer time scaling linearly with increasing d value.

For the region between these points, the execution time scales slightly sublinearly and the available

bandwidth is underutilized.

4.2.1 Algorithm Description

Listing 1 describes the proposed heuristic which exploits these observations. We

categorize data transfers into one of the three regions mentioned above and execute the transfer

accordingly to achieve (i) maximum transfer bandwidth performance and (ii) shorter overall

response time, where response time is measured as the difference between completion time and

arrival time.

Figure 19. Memory transfer bandwidth relative to transfer size, for NVIDIA K40m GPU.

51

Listing 1. Bandwidth-optimized Transfer Policy Algorithm.

For each incoming data transfer, we inspect the size d and prescribe an action to take.

Action selection is based on comparison of d to a threshold value, τ. Best practice guidance from

Cook [37] suggests a threshold of 2 MB, however we set τ = 1 MB based on empirical analysis

52

which determined that transfers of this size achieve near-peak bandwidth at the lowest execution

time. If d = τ ± ε, where ε gives a window around the threshold (we use ε = 0.1 * τ), then the data

transfer is scheduled for immediate execution. If rather, d < τ – ε, the transfer is added to an

aggregation queue. Once the sum of transfer sizes on the aggregation queue exceeds τ – ε, the

waiting transfers are combined into a single message of size D and scheduled for execution.

Finally, if d > τ + ε, we schedule the data transfer to be disassembled from a parent transfer of size

d into k smaller child transfers of size (d/τ).

The foundation of these actions is based on the aforementioned properties of data transfer

performance. The data transfer time can be modeled by a linear equation described in [36] and

shown in (4-1), where T(d) is the time to transfer d bytes, and α and β are hardware parameters.

On the system we examine in this work, α is 4 μs and 1/β (i.e. the bandwidth) is 10.5 GB/s.

𝑇𝑇(𝑑𝑑) = 𝛼𝛼 + 𝛽𝛽𝛽𝛽 (4-1)

The sum of the execution time of n individual transfers (4-2) is strictly greater than the total transfer

time of an aggregate transfer (4-3).

�𝑇𝑇(𝑑𝑑𝑖𝑖) = (𝛼𝛼 + 𝛽𝛽𝑑𝑑1) + (𝛼𝛼 + 𝛽𝛽𝑑𝑑2) + ⋯+ (𝛼𝛼 + 𝛽𝛽𝑑𝑑𝑛𝑛) = 𝑛𝑛𝑛𝑛 + 𝛽𝛽Σ𝑑𝑑𝑖𝑖 (4-2)

𝑇𝑇(Σ𝑑𝑑𝑖𝑖) = 𝛼𝛼 + 𝛽𝛽(Σ𝑑𝑑𝑖𝑖) (4-3)

Comparing the execution time 𝑇𝑇(Σ𝑑𝑑𝑖𝑖) of the aggregated transfer with the execution time

Σ 𝑇𝑇(𝑑𝑑𝑖𝑖) of the non-aggregated transfer, the speed up ratio f can be calculated as in (4-4).

53

𝑓𝑓 =
∑𝑇𝑇(𝑑𝑑𝑖𝑖)
𝑇𝑇(∑𝑑𝑑𝑖𝑖)

= 𝑛𝑛 −
(𝑛𝑛 − 1)𝛽𝛽∑𝑑𝑑𝑖𝑖
𝛼𝛼 + 𝛽𝛽 ∑𝑑𝑑𝑖𝑖

 (4-4)

For significantly large transfers where d dominates α, the sum of execution times of disassembled

child transfers will approximately equal the total execution time of the larger parent transfer. For

all other cases, the ratio 𝛽𝛽∑𝑑𝑑𝑖𝑖
𝛼𝛼+𝛽𝛽∑𝑑𝑑𝑖𝑖

 is less than 1 and the speed up ratio f is greater than 1. The more

significant the overhead α is compared to the transfer time ∑𝑑𝑑𝑖𝑖, the higher the speed up ratio f will

be. This motivates us to aggregate transactions with smaller transfer size, i.e. d < τ – ε.

On the other hand, the disassembly approach breaks long transfers into smaller ones, to

allow interleaving between different transfer requests initiated from different streams. It acts as a

pseudo-preemption method to time-slice between transfers on different streams, which can reduce

serialization effects [26]. The disassembly approach is only applied to transactions with large

transfer size, i.e. d > τ + ε, where the speed up effect of aggregation is negligible.

Preliminary analysis of the BWOPT policy demonstrated effectiveness under a broad range

of execution conditions. However, it also highlighted areas where the policy caused degradation

in performance relative to the default FCFS policy. First of all, its effectiveness depends on the

selection of τ, as shown in Figure 20. In this example, we modeled two independent and

concurrently executing applications and varied the size of the memory transfers for each

application separately. We originally set τ = 2 MB, based on the bandwidth performance

observations discussed and in keeping with CUDA programming best practices described by [37].

However, for workload combinations in which the independent applications had similar memory

requirements consisting of transfers with d = 1 MB, this caused significant slowdown. In such a

case, the aggregation approach causes the transfer queue to combine two 1 MB transfers into a

single 2 MB transfer, which takes twice as long to transmit. This results in each program observing

54

a turnaround time that is approximately doubled, as compared to the FCFS performance. In this

case, the additional overhead of aggregation outweighs the potential gain, since there is very little

additional bandwidth to be consumed. Note that when we lowered the threshold τ to 1 MB, we

observed that the BWOPT outperformed FCFS. Full examination of the sensitivity of the threshold

to workload memory demands was not conducted, however we believe that the above example

provides sufficient motivation for exploring a dynamic approach.

We also note that the approach is particularly susceptible to the arrival rate of incoming

transfer requests, as well as the size distribution of those transfers. The hidden assumption of

aggregation method is that the extra latency for aggregation can be hidden by the large number of

Figure 20. Average normalized turnaround time of two independent and concurrently executing
applications under different transfer policies, including multiple values for BWOPT threshold, τ. Program
A and Program B values represent the NTT for respective applications and Total represents the combined
ANTT for both applications.

55

available threads in GPU and its quick context switching. However, if the arrival rate of tasks is

not sufficiently large, i.e. the period of time between transfer tasks exceeds the execution time of

the waiting threads, then the aggregation overhead will become problematic. Furthermore, the

size of transfers is an important factor, because in a limited period we may never receive enough

transfer requests to reach the threshold for sending an aggregation. In either case, we need to early

terminate the aggregation process and execute the memory transfer even though the transfer size

is not yet large enough to reach optimal bandwidth.

To address these limitations and avoid hand-tuning of the algorithm for all possible

scenarios, we apply the BWOPT algorithm within a reinforcement learning context using Monte

Carlo methods for policy evaluation and iteration, which will be described in the following section.

4.2.2 Algorithm Implementation

 The practical implementation of the BWOPT algorithm is enabled by the use of CUDA

events. In particular, we use events as a mechanism to transparently synchronize execution from

an application. For example, the code snippet in Figure 21 shows an example application code

and our proposed HQ Runtime Environment method. In the original code, a programmer would

utilize the standard CUDA API methods for handling data transfers and kernel execution. Within

our environment, using a call intercept method which we will describe in greater detail later, we

implement additional handling and synchronization to ensure valid execution. Specifically, the

cudaStreamWaitEvent ensures that execution on the application stream does not continue until

the data transfer has been completed.

 In our implementation, the host data is copied into a separate aggregate copy buffer

(h_agg). The aggregated buffer is eventually transferred once the size exceeds the packet

56

threshold, at which point a local copy is made to transfer segments of the buffer to the appropriate

device address (d_a). Once the aggregated transfer is copied from one side to the other, our

implementation involves an additional call to cudaMemcpyAsync to make a local copy of data to

the proper address location, where the cudaMemcpyKind is either

cudaMemcpyDeviceToDevice or cudaMemcpyHostToHost as appropriate. The overhead of

these copies is negligible for the size of transfers we evaluate, due to local memory bandwidth on

the order of 200 GB/s.

 The disassemble implementation is handled in a similar fashion, but does not require the

additional memory buffer. Instead, the intercept method creates m cudaMemcpyAsync calls,

where the source and destination addresses are relative to the original addresses a and d_a,

respectively, and the size value is num_bytes / m.

Figure 21. Memory transfer aggregation implementation.

57

4.3 Transfer Queue Model

In queuing theory, there are multiple system parameters which must be considered to

reason about the performance of the queue design. Such parameters include the service policy

(e.g. FCFS, earliest deadline first, etc.), the server capacity (e.g. single server, multiple servers)

and the number of queues.

In this work, we focus on queue service policies, which is a software controllable knob, for

queue optimization. Server capacity (i.e. the number of transfer channels) is not considered

because it represents a hardware constraint and cannot be managed by software. Furthermore,

this work focuses on single-GPU system, but we believe our technique can be applied in multi-

GPU scenarios with some extensions.

There are many different types of service policies in queuing theory, including the FCFS

approach used by GPU transfer queues. Other techniques include shortest-job-first (SJF) and

processor sharing (PS). The former incorporates reordering of tasks based on shortest execution,

while the latter serves multiple tasks simultaneously with each task receiving an equal proportion

of the server capacity. In addition to introducing certain risks (i.e. starvation), SJF also causes

non-commutative concurrency, hence we do not consider it as a plausible service policy for GPU

data transfers.

The approach we consider is an extension of the PS technique. While the transfer engine

constraint limits execution to a single data transfer per direction at a given time, there is no

theoretical limit to the size of the data transfer (there is a practical limit given the memory

capacities of host and device). Instead, we redefine capacity in this case to be in terms of the

available memory transfer bandwidth. Note, that while PS techniques typically give equal shares

58

to each task, our approach does not necessarily allot an equal share of the total packet size to each

task.

4.4 Q-Learning

All reinforcement learning problems have a basic structure as represented by Figure 22

[38], where an agent interacts with an environment to achieve some objective or goal. In particular,

at time t, given some representation of the environment state, st, the agent chooses an action, at, in

order to meet or make progress towards the goal. A measure of that progress is given through a

reward value, rt. Upon taking the action, the environment transitions to a new state, st+1, which is

communicated to the agent. This process continues for subsequent time steps, with the agent

receiving updated state information and reward feedback from the environment, until the agent has

met its objective or some other terminating condition is met.

The method by which an agent chooses actions is called the policy, π. Using a trial-and-

error approach indicative of model-free approaches, the agent seeks to learn the optimal policy,

Figure 22. Reinforcement learning problem.

59

π*, and thus the optimal action-value for a given state. This is referred to as Q-learning [39], where

the objective is to estimate the function Q(s,a) for π. Q represents the value (or, quality) of taking

action a from state s, and following π from then on. This estimate is given as the expected return

under those conditions, as shown in (4-5) from [38].

𝑄𝑄𝜋𝜋(𝑠𝑠, 𝑎𝑎) = 𝐸𝐸𝜋𝜋{𝑅𝑅𝑡𝑡|𝑠𝑠𝑡𝑡 = 𝑠𝑠,𝑎𝑎𝑡𝑡 = 𝑎𝑎} = 𝐸𝐸𝜋𝜋{∑ 𝛾𝛾𝑟𝑟𝑡𝑡+𝑘𝑘+1∞
𝑘𝑘=0 |𝑠𝑠𝑡𝑡 = 𝑠𝑠,𝑎𝑎𝑡𝑡 = 𝑎𝑎} (4-5)

Q-learning provides an approximation of the optimal policy, π*, without explicitly

following the policy and provides faster convergence. The additional benefit to a model-free

approach is that it does not require an explicit model of the environment and is therefore flexible

under many conditions.

4.4.1 Monte Carlo Policy Evaluation and Iteration

Monte Carlo (MC) reinforcement learning methods provide a model-free technique

through which we can learn state-action transitions and subsequent rewards through experience

rather than a known Markov Decision Process [38]. MC methods are episodic in nature, meaning

that an episode of experience must be completed before the rewards associated with each state-

action transition can be computed. This is helpful in our technique, because there is no guarantee

of an immediate reward for each action.

State: Each transfer request arrival is considered to be a new state (i.e. decision epoch) in the set

of states, S. We describe the state as a triple of (dt, dq, ρ) where dt is the data transfer size in bytes,

dq is the sum of the size of transfers on the aggregation queue in bytes, and ρ is the status of the

transfer channel resource (i.e. 0 = free, 1 = busy). For both dt and dq, we discretize the values by

log2, in order to avoid state-space explosion.

60

Actions: At each state, we select from a set of four actions, derived from the BWOPT algorithm

described above. Let the set of actions, A = {send, hold, aggregate, disassemble}. The send action

means to schedule the data transfer for immediate transfer. The hold action adds the data transfer

to the aggregation queue, while the aggregate action adds the transfer to the queue and then pops

the queue on to a larger aggregate transfer which is then sent. Finally, the disassemble action splits

the data transfer into k smaller transfers and schedules each smaller packet for immediate transfer.

Reward: We define the reward for a data transfer to be equal to 1/Tw, where Tw is the waiting time

of the transfer. Waiting time is defined as the difference between the service time, ts, and the

arrival time, ta, i.e. Tw = ts – ta. In the case when Tw = 0, we penalize the system by setting the

reward value to -1, since we seek to discourage immediate sending in case it does not maximize

bandwidth. When calculating the return at each state, we use a discount factor γ = 0.9, which has

the effect of weighting long-term rewards more heavily and results in returns which seek to

minimize the waiting time. From a system perspective, this results in reduced average waiting

time and increased bandwidth utilization due to few larger transfers, whereas nearsighted returns

favor smaller immediate transfers and behavior more equivalent to FCFS.

Policy: Our initial policy, π0, is a deterministic policy, such that π(s) = a, for some s ϵ S, a ϵ A, and

is based on the BWOPT policy described above. However, we use ε-soft MC methods in order to

explore new policies and escape local optima. Using the ε-soft approach allows for more

exploration of states to find optimal action values and maximize total reward. With this approach,

we will take the greedy action (a = argmaxa Q(s,a)) with probability 1 - ε + ε / |A| and some other

action with probability ε / |A|.

61

The objective of policy evaluation and iteration (Figure 23) is to continuously update our

estimate of Q(s,a) using (4-6) based on experience and update π accordingly until we reach the

optimal policy, π*.

𝑄𝑄(𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡) = 𝑄𝑄(𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡) + 𝛼𝛼(𝑟𝑟𝑡𝑡 + 𝛾𝛾max
𝑎𝑎

𝑄𝑄(𝑠𝑠𝑡𝑡+1,𝑎𝑎𝑡𝑡) − 𝑄𝑄(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡)) (4-6)

4.5 Evaluation

In this section we describe the experimental setup used to evaluate our proposed MC-based

approach and then present the results. We conclude with a demonstration of the use of our derived

optimal policy on a real workload.

Figure 23. Generalized policy iteration and evaluation.

62

4.5.1 Simulation Setup

Our simulation models only the host-to-device (HtoD) transfer engine. For simplicity, and

without loss of generality, we do not consider the device-to-host (DtoH) transfer engine in this

work. However, since the DtoH engine exhibits the same performance properties as HtoD, and

because data transfers in opposite directions is a condition under which concurrent execution

performs, we expect the results demonstrated for HtoD to be likewise applicable to DtoH.

We began by emulating real application traces as independent Poisson processes. Using

parameters of the application profiles listed in Table VII, we generated a workload trace of each

type, i.e., three independent traces. Within each type trace, the transfer task size is drawn from a

Gaussian distribution, where we are randomly generating the exponent value and all sizes are

powers of 2. The three traces are merged and sorted (by arrival time) into a single workload trace

Figure 24. Distribution of simulated transfer sizes for all episodes in simulation.

63

consisting of 125 transfer requests per episode of our simulation, and we generated 1000 such

episodes. The resulting distribution of transfer sizes for all episodes is shown in Figure 24.

Table VII. Workload Trace Generation Parameters.

Type Arrival Rate Transfer Size (d = 2y)
I λ = 100 μ = 13, σ = 1
II λ = 20 μ = 20, σ = 1
III λ = 5 μ = 24, σ = 1

4.5.2 Policy Evaluation and Iteration

The FCFS and BWOP policies can be categorized as fully deterministic policies, so a single

iteration of each trace is sufficient to characterize the respective performance. On the other hand,

we require multiple iterations of the Monte Carlo approach in order to benefit from the learning

on previous traces.

We begin with a semi-deterministic policy, which is based on the BWOP policy, however

we add ε-soft control to the algorithm to allow exploration of state-action pairs in the early stages

of evaluation. We simulate a new episode given an initial workload trace and apply the current

policy. After we have completed evaluation of the episode, we update our estimate of Q(s,a) and

update π. This procedure repeats for all 1,000 traces to obtain a reasonable exploration of potential

state-action transitions.

64

Each set of 1,000 episodes constitutes one iteration. On the first iteration, ε = 0.2 and we

reduce this value by 10% on each subsequent iteration, in order to balance exploration with

exploitation as we converge on the optimal policy. We initially ran this procedure out to 50

iterations, but found that the performance converged on an optimal solution after 15 iterations and

present our results to this point. Additional iterations exhibited signs of overfitting to prior

experience.

Figure 25. Comparison of transfer scheduling algorithm performance. Deterministic algorithms fcfs and bwop are
compared to the result after 15 iterations of our Monte Carlo reinforcement learning method, mcdp. (top left) Total
number of transfers sent. (top right) Average achieved transfer bandwidth. (bottom left) Sum of transfer durations
for actual transfers sent. (bottom right) Average per-task waiting time.

65

In Figure 25, we compare the performance of the three tested transfer policies across

multiple various system and task metrics. The first observation is shown by the plot in the upper

left, which indicates that the number of transfers sent is significantly reduced under the MC-DP

policy. Each episode contains 125 transfer requests, and the FCFS policy serves each request

separately. The aggregation and division methods in the BWOP and MC-DP policies allow for

fewer, larger transfers to be sent overall which simultaneously results in near-optimal utilization

of the transfer bandwidth, as shown in the upper right plot. The MC-DP policy provides 19.6%

improvement on bandwidth utilization over the FCFS policy.

Figure 26. Evolution of performance metrics during MC learning process.

66

The lower left plot of Figure 25 provides an empirical validation of our earlier claim in

(4-4) that serves as the basis of our transfer policy. Specifically, the aggregation of many smaller

transfers into few larger transfers results in an overall reduction of 4.1% of the total time to

complete the transfers in the episode. More precisely, the FCFS total transfer time can be

determined using (4-2), while the MC-DP policy is approximately equivalent to (4-3).

Finally, the lower right plot of Figure 25 demonstrates perhaps the most critical

improvement, where we compare the average waiting time. Recall, waiting time is the difference

between the arrival time of the task and the time it is served. For FCFS, waiting time is a measure

of resource-occupancy. On the other hand, for the BWOP and MC-DP policies waiting time also

measures the time spent waiting for aggregation. In BWOP, this could approach an infinitely long

time since we provide no guarantee that the aggregation queue will ever reach the threshold. We

can mitigate this with a timeout factor, though we do not implement that in simulation. Rather, at

the end of each episode, we immediately send any waiting aggregation transfer. MC-DP offers

the advantage that we can learn a different threshold for sending the aggregation depending on

prior experience and the dynamics of the workload. As a result, we observe 32.6% reduction in

the average waiting time for MC-DP policy. This is significant for shared execution scenarios,

since it can allow us to overcome non-commutative concurrency by enabling multiple independent

kernels access to the GPU compute resources simultaneously. Whereas in other techniques which

manage compute resource-sharing, data transfer dependencies could limit the effectiveness of the

approach, application of the MC-DP transfer policy in combination with those techniques could

lead to significant system efficiency. Figure 26 shows the evolution of the performance metrics

discussed above over the 15 iterations of our MC-DP learning process.

67

The gains discussed above do not come without some cost to system performance. In

particular, as shown in Figure 27, the effect of our MC-DP policy, in particular the aggregation of

transfers resulting in significant reduction of total transfers served, is to increase the episode

response time. Response time is a measure of the difference between the time of completion of

the tail task and the time of arrival of the leading task. However, we believe the increase in

response time of 5.5% is outweighed by the improved bandwidth utilization and, more

significantly, the reduced per-task waiting time.

Figure 27. Episode response time for tested transfer policies.

68

4.5.3 Policy Improvement

To demonstrate the general effectiveness of the Monte Carlo approach to transfer

optimization, we repeated the policy evaluation and iteration experiments using an arbitrary initial

policy. Unlike MC-DP, we did not precondition the policy with the BWOP heuristic. Rather the

Monte Carlo – Arbitrary Policy (MC-AP) was initialized with each action having equal probability

of being selected at each state.

Similar to MC-DP evaluation, we found that MC-AP converged on optimal performance

at 15 iterations. Figure 28 shows the comparison of MC-DP and MC-AP metrics and show that

Figure 28. Comparison of performance metrics during MC learning process using initial policy definitions of
deterministic (mcdp) or arbitrary (mcap).

69

while the MC-DP performance exceeds MC-AP in each case, the arbitrary case follows the same

trend in learning with each iteration. These results suggest that we can apply the MC-AP approach

on any new system that has not been previously characterized, as we have done in order to initialize

MC-DP. This saves significant time, while offering similar performance gains relative to the other

policies.

4.6 Conclusion

In this work we describe a method for improving the system throughput of GPUs under

shared execution scenarios by optimizing the data transfer methods. In particular, we describe a

heuristic which seeks to optimize the peak bandwidth of a known system, in an effort to improve

performance relative to the traditional FCFS approach to reduce the waiting time of pending data

transfers. We then improve on this approach using reinforcement learning techniques to overcome

limitations in the heuristic. Our results demonstrate that the MC-DP approach increases the

bandwidth utilization while significantly reducing the average waiting time for incoming transfers.

As a result, our transfer optimization approach would complement previously studied GPU

compute-resource sharing techniques.

Finally, we demonstrate that the absence of system characterization is not a limitation when

using the Q-learning approach, as we are able to achieve comparable performance improvement

starting from an arbitrarily-initialized policy.

We believe that this is the one of the few proposed techniques for increasing GPU shared-

execution efficiency through data transfer-aware methods, and is likely the first which applies

reinforcement learning techniques to optimize bandwidth utilization through aggregation

strategies.

70

Chapter 5 A Deep Q-Learning Approach to GPU
Task Scheduling

The field of high performance energy-efficient embedded computing (HPEEC) brings the

consideration of power consumption onto a level playing field with application performance [40].

HPEEC dictates that power consumption receive equivalent priority as an evaluation metric

through a variety of approaches, including hardware- and software-based techniques. The

objective of such techniques is often more nuanced than simply reducing the overall power

consumption; indeed, that is but one possible solution. However, to be energy-efficient need not

mean consuming less power overall, but rather to be judicious about that power which is

consumed, i.e., to ensure that none is wasted. HPEEC is critical to operational success across a

variety of domains, including in defense applications for both air [41] [42] and space [43] [44]

platforms. Such applications have both (near) real-time throughput requirements and hard power

limitations.

The introduction of concurrent kernel execution (CKE) enables the simultaneous use of

GPU resources by multiple independent application kernels to ensure higher resource utilization

[45] [46]. However, the current CKE task scheduling approach is simplistic and quite often

suboptimal. In this work, we propose a novel CKE task scheduling algorithm that simultaneously

optimizes the system throughput and GPU resource utilization. Our method uses a deep

reinforcement learning (DRL) approach called deep Q-learning to learn from experience, such that

we find a near-optimal scheduling order for a set of applications. We compare our approach to

multiple scheduling algorithms, including a dynamic programming-based approach [47] which

similarly seeks to solve a multi-objective optimization problem which we frame below. In addition

71

to achieving a more optimized scheduling order, our approach is also more readily adaptable to

changing dynamics in an HPEEC system because of its DRL design.

5.1 Task Scheduling

Traditionally, task scheduling algorithms (i.e., for CPU) have been designed with

simplicity, fairness, and/or throughput in mind [48]. The First-Come-First-Served (FCFS)

algorithm is an example of one which is simple to implement and understand, but has certain

shortcomings depending on the types of tasks in the scheduling queue. Preemptive scheduling

algorithms, such as Round-Robin (RR), exhibit fairness by ensuring that each task gets a

predetermined time slice to execute before giving up control to another task in the queue.

Throughput is a primary consideration for algorithms like Shortest Job First (SJF), which prevents

short tasks from waiting in the queue for disproportionately long periods of time. However, even

this approach has unintended negative consequences, for the case of arrival of new short-duration

tasks to the queue in which a single long-duration task is waiting.

On the other hand, very little attention has been given to the multiple objectives of

throughput and utilization for GPU task scheduling. The architectures studied here, i.e., NVIDIA

GPUs, are known to adopt the simpler scheduling approach of FCFS, while providing some

mechanisms for user-specified priority scheduling, e.g., CUDA stream priorities [11]. However,

prior work has motivated the need for a more nuanced approach, in order to both achieve optimal

throughput and to fully utilize the GPU.

Keeping in mind certain understood constraints about the manner in which tasks are

selected for execution [15], we define a scheduling algorithm which utilizes deep Q-learning to

converge on a near-optimal solution. The Q-learning is a model-free approach to finding an

72

optimal policy by finding the expected reward for a given state-action pair [38]. Using experience

observations, one builds out a matrix of expected future reward values when taking action a from

state s. This value defines the quality of that action (thus, Q). Deep Q-learning combines deep

neural network approaches with the traditional Q-learning method in order to learn the expected

value, Q(s,a), from a subset of prior experience observations.

By utilizing a deep Q-learning approach, our algorithm is expected to avoid certain

performance limitations which come with prescribed approaches as discussed above. Furthermore,

this algorithm is amenable to new hardware configurations and new types of tasks because it learns

from experience.

5.1.1 Problem Formulation

Let D be a GPU device with 𝑁𝑁𝑠𝑠𝑠𝑠 symmetric multiprocessors (SMX). Each SMX j has an

identical amount of compute resources, 𝑟𝑟𝑗𝑗. In particular, we focus on four specific resources: the

number of resident thread blocks (𝑟𝑟𝑏𝑏), the number of resident threads (𝑟𝑟𝑡𝑡), the number of registers

(𝑟𝑟𝑟𝑟), and the number of bytes of shared memory (𝑟𝑟𝑠𝑠). Therefore, for each SMX j we represent the

multiprocessor resources as a tuple, 𝑟𝑟𝑗𝑗 = (𝑟𝑟𝑗𝑗𝑏𝑏 , 𝑟𝑟𝑗𝑗𝑡𝑡 , 𝑟𝑟𝑗𝑗𝑟𝑟 , 𝑟𝑟𝑗𝑗𝑠𝑠). Then the total amount of compute

resources for D can be given as 𝑅𝑅𝐷𝐷 = 𝑁𝑁𝑠𝑠𝑠𝑠 ∗ 𝑟𝑟𝑗𝑗 = (𝑅𝑅𝐷𝐷𝑏𝑏 ,𝑅𝑅𝐷𝐷𝑡𝑡 ,𝑅𝑅𝐷𝐷𝑟𝑟 ,𝑅𝑅𝐷𝐷𝑠𝑠).

Device D also has a ready-task queue, 𝐾𝐾 = {𝑘𝑘0,𝑘𝑘1, … ,𝑘𝑘𝑛𝑛−1}, where |𝐾𝐾| = 𝑛𝑛. Each task

𝑘𝑘𝑖𝑖 can be represented by a tuple which describes the task’s compute resource requirements as

defined above, as well as the estimated execution time under unlimited resources. Therefore,

𝑘𝑘𝑖𝑖 = �𝑟𝑟𝑘𝑘𝑖𝑖
𝑏𝑏 , 𝑟𝑟𝑘𝑘𝑖𝑖

𝑡𝑡 , 𝑟𝑟𝑘𝑘𝑖𝑖
𝑟𝑟 , 𝑟𝑟𝑘𝑘𝑖𝑖

𝑠𝑠 , 𝑡𝑡𝑘𝑘𝑖𝑖
𝑒𝑒 � (5-1)

73

Compute resource requirements are easily determined from the task specification in code.

Estimated execution time can be determined through a variety of methods, including empirically-

derived methods. For this research we used the profiling results from execution of the selected

tasks when running with exclusive device access to verify the task characteristics.

In general, we assume that the order of tasks in K represents the order-of-arrival, i.e. given

arrival time 𝑡𝑡𝑎𝑎𝑖𝑖,

𝑡𝑡𝑎𝑎0 < 𝑡𝑡𝑎𝑎1 < ⋯ < 𝑡𝑡𝑎𝑎𝑛𝑛−1 (5-2)

Typically, arrival time would be the primary determining factor in selecting the next task

for execution, as in the FCFS algorithm. On the other hand, the SJF algorithm only considers the

estimated execution time for making task selections. Our algorithm relaxes the above assumptions,

and allows for any ready-task to be selected for execution.

Each task also has a dispatch time 𝑡𝑡𝑑𝑑𝑖𝑖, i.e., the time which the task’s first thread block is

dispatched to the device, and a completion time 𝑡𝑡𝑐𝑐𝑖𝑖, i.e., the time which the task’s latest thread

block completes execution on the device. These values are necessary for computing waiting time

and execution time, and are used in calculating performance metrics described below.

We use the metrics introduced in Chapter 2 to measure the effectiveness of the evaluated

scheduling algorithms, namely system throughput (STP) and average normalized turnaround time

(ANTT) for the application performance metrics, and our own metric to measure device utilization

using the average function value [49]. Given our definition for Util, to calculate the average device

utilization over the scheduling window we find the average function value for utilization during

74

the period between time T0 and time T1 using (5-3), where T0 is the dispatch time of the first task

and T1 is the completion time of the latest task.

𝐴𝐴𝐴𝐴𝐴𝐴.𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 =
1

𝑇𝑇1 − 𝑇𝑇0
� 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝐷𝐷(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑇𝑇1

𝑇𝑇0
 (5-3)

We compare each scheduling algorithm across all three metrics in experimental results given

below.

5.2 Deep Reinforcement Learning

When attempting to apply reinforcement learning techniques to problems with high-

dimensional state spaces or complex feature representations, many traditional techniques fail to

scale. The introduction of the combination of deep learning and reinforcement learning by Mnih,

et al., [50] has spawned a new subdomain of reinforcement learning called deep reinforcement

learning (DRL). In DRL, the intelligent agent uses deep learning methods to learn the optimal

action-value function, Q(s,a). Such models are called deep Q-networks, and the process in general

is referred to deep Q-learning.

In deep Q-learning, the similar setup to a traditional Q-learning problem exists, as

described in Section 4.4. The difference resides in the method by which Q is approximated.

Whereas in traditional Q-learning, we find the expectation over observed returns for an action

taken from a given state, in deep Q-learning the neural network model finds an approximation that

maps input states to output actions based on training from prior experience transitions. In

particular, we use the concept of experience replay, which stores a history of prior transitions of

the form (st, at, rt, st+1). Each training iteration selects a random subset of the prior experiences to

75

update the model approximation. Action selection by the agent is informed by the policy network,

which is an instance of the learned deep Q-network.

5.2.1 Deep Q-Learning Model

In structuring the problem within a reinforcement learning context, we define the agent as

the task scheduling engine and the environment to include the GPU resources and ready queue.

Below we describe how we define the state, actions, and reward in our implementation.

State: The state of the environment consists of the current resource utilization on the GPU and the

resource requirements of waiting tasks in the queue.

The device state is given by aggregating the utilized resources from each SMX at the device

level. Then, the state values represent the percentage of maximum resident resources which are in

use at a given system time. Thus, in our implementation the device state values lie within [0, 1].

𝑆𝑆𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = �
∑ 𝑟𝑟𝑗𝑗𝑏𝑏𝑗𝑗

𝑅𝑅𝐷𝐷𝑏𝑏
,
∑ 𝑟𝑟𝑗𝑗𝑡𝑡𝑗𝑗

𝑅𝑅𝐷𝐷𝑡𝑡
,
∑ 𝑟𝑟𝑗𝑗𝑟𝑟𝑗𝑗

𝑅𝑅𝐷𝐷𝑟𝑟
,
∑ 𝑟𝑟𝑗𝑗𝑠𝑠𝑗𝑗

𝑅𝑅𝐷𝐷𝑠𝑠
� = [𝑢𝑢𝑏𝑏,𝑢𝑢𝑡𝑡 ,𝑢𝑢𝑟𝑟 ,𝑢𝑢𝑠𝑠] (5-4)

The task state values represent the percentage of maximum resident resources being

requested. In many cases, the resource requirements may exceed the amount of maximum resident

resources, i.e., a condition known as oversubscription. Such a situation does not mean that a task

cannot execute on the chosen device. Rather, it requires that the task execute in waves, i.e., a series

of thread block dispatches which fully exhaust one or more resources. Values greater than 1.0

indicate an oversubscription condition.

𝑆𝑆𝑘𝑘𝑖𝑖 = �
𝑟𝑟𝑘𝑘𝑖𝑖
𝑏𝑏

𝑅𝑅𝐷𝐷𝑏𝑏
,
𝑟𝑟𝑘𝑘𝑖𝑖
𝑡𝑡

𝑅𝑅𝐷𝐷𝑡𝑡
,
𝑟𝑟𝑘𝑘𝑖𝑖
𝑟𝑟

𝑅𝑅𝐷𝐷𝑟𝑟
,
𝑟𝑟𝑘𝑘𝑖𝑖
𝑠𝑠

𝑅𝑅𝐷𝐷𝑠𝑠
� (5-5)

76

The environment state, S, is represented as a concatenation of the device state vector and

the task state vectors for each waiting task in the ready queue.

𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒 = [𝑆𝑆𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 𝑆𝑆𝑘𝑘0 , … , 𝑆𝑆𝑘𝑘𝑛𝑛−1] (5-6)

Note that each task can be in one of three conditions: waiting, dispatched, or completed.

The waiting task is one which is ready to execute but has not be selected for execution. The

dispatched task is one which has had some number of thread blocks dispatched for execution,

where the number of blocks dispatched is less than the total number of blocks. The completed task

is one which has had all thread blocks dispatched and all blocks completed execution. Dispatched

tasks remain on the ready queue, while completed tasks are removed (and the subsequent state for

that slot is a zero-tuple). A task which is fully dispatched but not fully completed is still treated

as completed for the purposes of scheduling.

Actions: Action selection identifies which of the waiting tasks should be dispatched to the device

next. Therefore, the set of valid actions can be viewed as 𝐴𝐴 = {0, 1, … ,𝑛𝑛 − 1}, where 𝑛𝑛 = |𝐾𝐾|.

The action value represents the slot in the ready queue from which the next task should be drawn.

We include one unique condition for action selection, in abiding by the GPU scheduling

rules as enumerated in [15]. If a task has begun execution by having a subset of thread blocks

dispatched to the device, that task moves to the head of the ready-queue and becomes the only

valid action selection until all blocks have been dispatched (i.e., rules G3 and X1).

Reward: Finally, we define reward through a combination of the device utilization and turnaround

time of waiting tasks. Both of these values are calculated with special attention to the effect of

certain scheduling decisions on the composition of an execution wave. In particular, for any kernel

77

in which one or more resource requirements exceeds the maximum resident capacity, execution is

divided up into multiple waves. For such cases, we consider the cumulative effects on utilization

and turnaround time in our reward, rather than only instantaneous effects from the next wave

period.

Therefore, device utilization 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝐷𝐷 is measured as the average utilization of total resources

over the number of execution waves, and 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝐷𝐷 ∈ [0, 1]. We update the definition of turnaround

time to include the cumulative effect of waiting and call this effective turnaround time (ETT). First,

we measure the estimated turnaround time of each waiting task kw by adding the run time of the

selected action to the waiting time of kw. Then we recalculate an estimated normalized turnaround

time (𝑁𝑁𝑁𝑁𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒) for kw. Finally, we calculate the 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒 value for the set of waiting tasks by

averaging the per-task 𝑁𝑁𝑁𝑁𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒 values. This value is then normalized to restrict it to a [0, 1] range

similar as utilization. We use the results from FCFS experimentation to determine the minimum

and maximum limits for ANTT normalization.

Since device utilization is a higher-is-better metric and turnaround time is a lower-is-better

metric we put them on an equivalent scale by defining 𝐸𝐸𝐸𝐸𝐸𝐸 = 1 − 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒. Our implementation

includes weighting factors for each term to allow for solutions which value the metrics

disproportionately. Finally, we multiply the weighted sum of reward terms by -1, since negative

rewards encourage early solution completion rather than reward accumulation [38].

Given any moderate size ready queue, the potential number of states is exponential and

therefore trying to use traditional reinforcement learning methods becomes untenable. However,

our objective remains to be developing task scheduling solutions which can be adaptive and

flexible.

78

Our DQN model is a simple, three-layer neural network. The size of the input layer is

determined by the size, n, of the ready queue, but in general can be written as 4 + (n * 4), which is

also the size of the environment state vector, 𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒. The intermediate layers are fully-connected

with ReLU activation. The output layer size is equal to n, corresponding to |𝐴𝐴|. We use masking

to eliminate certain action selections, i.e., if the corresponding slot in the ready queue is empty.

The DQN model is trained using experience replay. The replay memory logs the initial

state, selected action, reward, and next state transitions for each decision point in our algorithm.

We exclude the deterministic transitions given by constraints discussed above, namely the

adherence to rules G3 and X1. Therefore, each episode consists of a finite set of n actions.

5.2.2 Implementation Details

 We developed a custom discrete event simulation to evaluate the selected scheduling

algorithms and simulate the GPU device and task queue dynamics. The simulation is developed

in Python 3.5 and uses PyTorch 1.4 for the DQN learning. An architecture diagram of the

simulation is shown in Figure 29.

Main. The primary functionality of the Main module is to execute the basic implementation of

reinforcement learning process, shown in pseudocode in Listing 2. This execution flow is

Figure 29. GPU system deep Q-learning simulation architecture design.

79

consistent with many similar implementations of deep Q-learning, including the DeepRM

proposed by [51].

GpuEnv. Utilizing the reinforcement learning concept presented in Chapter 4 (Figure 22), we model

the environment as the combination of the GPU device, i.e., compute resources, and the execution

queue. The Device object allows us to manage the state of compute resources by assigning blocks

of a task to the first available SMX processor, and releasing completing blocks from the respective

processors. The parameters used to construct the Device object and its component SmxProcessors

are drawn from the DeviceType object. At runtime, we can specify a certain GPU type, providing

the resource parameters shown in Table II, making the experimentation flexible to evaluate several

different GPU architectures. We also implement a state method, which returns the instantaneous

utilization of the device as defined in Section 2.5.4. The ExecQueue object manages the list of

Tasks waiting to execute on the GPU. Because we allow for selection from any slot, the queue is

actually implemented as an array. We include a state method to return a vector representation

of the states of tasks waiting on the queue. The Task object is a simple data structure that contains

data members representing resource requirements and execution time, as well as performance

metrics (arrival, dispatch, and completion times) for experimental analysis. The Task state

method returns the vector representation shown above in (5-5).

ScheduleAgent. The ScheduleAgent object provides an abstract base class from which we can

implement multiple scheduling policy agents. The base class provides interface methods which

are not implemented by most of the derived class agents, but allow for runtime selection of

scheduling policy during experimentation. Every agent does implement the act method, which

differentiates the policy decision for selecting the next task to be executed.

80

set up the environment
env = env.GpuEnv(device_type, queue_length, weight_slowdown, weight_util)
state_size = env.state_space
action_size = env.action_space

initialize the agent
agent = initializeAgent(policy, state_size, action_size, batch_size, gamma,
learning_rate)

done = False

run many episodes to evaluate different behaviors
for e in range(num_episodes):

 # reset the environment for the new episode
 state = env.reset()

for a certain amount of time steps, continue choosing actions
for wave in count():

select and perform an action
action = agent.act(state)
next_state, reward, done = env.step(action)

store the transition in memory
agent.remember(state, action, reward[2], next_state, done)

move to the next state
state = next_state

perform one step of optimization (on the target network)

 agent.optimize()

if done:
progress the environment until all running tasks are completed
while tasks_running:

t0, t1, next_state = env.progress()
 state = next_state

if agent.epsilon > agent.epsilon_min:
agent.epsilon *= agent.epsilon_decay

break

 # Update the target network, copying all weights and biases in DQN
 if e % target_update == 0:
 agent.update()

Listing 2. GPU system simulation Main module for deep Q-learning evaluation.

81

 The FcfsAgent implementation of act method simply returns the first task in the execution

queue. The SjfAgent performs similarly, i.e., returns the first task in the queue, but with the

additional step that this agent is initialized such that the execution queue is reordered from initial

arrival sequence to one arranged by increasing estimated task execution time. The KnapAgent

implements the algorithm proposed by [47]. Similar to SjfAgent, upon initialization of the

KnapAgent the execution queue is reordered to the resulting solution to the knapsack 0-1 approach.

Finally, the DqnAgent implements the deep Q-learning based approach described in this chapter.

The agent initializes an initial neural network architecture (Net) which we use to map environment

states to agent actions. We also keep a ReplayMemory that stores the experience replay, i.e.,

transitions, described above. The act method implements a ε-greedy approach for selecting the

next action.

By utilizing the developed GPU model we have a fully-customizable module that can be

used to represent a variety of NVIDIA GPU architectures, and is controllable to ensure repeatable

performance. With the smallest units being SMX processors, we can construct a detailed

representation of the GPU architecture, including a mapping of thread blocks to processors. The

scheduling module abides by well understood GPU scheduling rules, though the underlying

algorithms have not been published. In particular, we use a round-robin approach to assigning

thread blocks to processors. Furthermore, we restrict scheduling to ensure that only tasks which

can fit within the processors resource footprint will get dispatched. Finally, we observe the

scheduling rules as defined in [15] to ensure validity and consistency.

For the DQN module, we begin with randomly initialized policy and target networks [50].

Action decisions are selected using the policy network, while the target network allows for a stable

82

estimation of values for Q(s,a) by holding weights fixed for a period of time. Every 10 episodes,

we update the target network with a copy of the current policy network.

The replay memory can store 40,000 transitions, which allows us to retain as many

observations from our experiments as possible [52]. This memory prioritizes recent observations,

therefore if we exhaust the space older observations will be dropped off in favor of more recent

transitions. We use a batch size of 128 for selecting transitions from the replay memory for

training.

Each episode of our experiment uses ε-greedy method for choosing the next action. The

action selected is determined either randomly from among eligible waiting tasks, or by using the

policy network. At the end of each episode we multiply ε by a decay rate of 0.999. The effect of

this is to allow an adequate amount of exploration early in the learning process, but then shift the

focus to exploitation – by following the policy network – in the later stages.

5.3 Experiment Methodology

 The experiments in this research focus on scheduling a ready queue of size, n = 8. Each

task in the queue is independent and unique, and characteristics of each are described in Table

VIII. Tasks are drawn from the Rodinia benchmark suite [22] [23]. We model a NVIDIA TITAN

X GPU, with compute resources given in Table IX.

 In addition to the DQN algorithm proposed here, we include three other scheduling

algorithms for comparison. The first algorithm is the FCFS approach which is the baseline method

used by current GPU architectures. Solving for an optimal solution using exhaustive search is

intractable in practice, even for small n. Consider at n = 8, there exist 40,320 possible orderings

of tasks in the queue. We evaluate all possible orderings in this experiment to illustrate the upper

83

and lower bounds of performance, since all other solutions will come from this set, but note that

this is not a feasible solution in a real-time system.

Table VIII. Rodinia kernel characterisitics.

Task
ID

Kernel
name

Number of
thread blocks

Number of
blocks per

thread

Number of
registers per

thread

Size of shared
memory per

block
Execution
Time (ms)

0 lud 1 16 32 1024 26
1 hs3 1024 56 36 0 110
2 srad 16384 256 21 5120 560
3 pf 463 256 13 2048 55
4 bfs 1954 512 19 0 20
5 hs2 1849 256 38 3072 156
6 knn 3840 256 8 0 41
7 hw 51 256 38 11872 12055

Table IX. GPU Resource Specifications.

 TITAN X GRA113Q
Number of Symmetric Multiprocessors (SMX) 24 5
Maximum number of resident blocks per SMX 32 16
Maximum number of resident threads per SMX 2048 2048
Maximum number of registers per thread block 64K 64K
Maximum amount of shared memory per SMX 96KB 48KB

The second algorithm we evaluate is the SJF approach. SJF is a well understood, non-

preemptive algorithm that favors high throughput. However, there is no accommodation for

resource utilization within the algorithm, hence it cannot be considered an equivalent solution to

the problem we pose.

The final algorithm we compare to is the Knapsack 0-1 approach as described by [47].

This approach is most similar to ours because it simultaneously considers resource utilization and

turnaround time as optimization objectives. In this algorithm, the knapsack capacity is represented

84

by the available GPU resources, while the item weights are given by task resource requirements

and item values are given by the ratio of resource requirements to execution time.

In the cases of the SJF and Knapsack algorithms for a static schedule, we can determine in

advance the order of execution, regardless of the original order of arrival. Therefore, we preload

the solution order into our experimental task queue, and do not run the algorithm during execution.

We evaluate our DQN algorithm over 5000 episodes. Given the initial and threshold values

for epsilon and the decay rate per episode, we determined that 5000 episodes ensures that we reach

the threshold and then conduct many episodes which purely follow the DQN algorithm.

5.4 Experimental Results

By running all 40,320 possible orders in the FCFS algorithm, we are able to evaluate all

solutions to the scheduling problem and identify the optimal ordering. Each of the other three

algorithms, including our proposed approach, derives an ordering which is in the set of all orders

evaluated under FCFS. In Figure 30, Figure 31, and Figure 32, we show where each solution falls

Figure 30. Average normalized turnaround time performance by scheduling algorithm
policy.

85

in the range of FCFS outcomes. Of particular note is the average performance in both ANTT

(Figure 30) and utilization (Figure 32). Because exhaustive search is not a feasible solution to task

scheduling, we should expect the average performance results to be most representative of the

FCFS performance.

We also show the best- and worst-case results for each metric under FCFS method. Note

that these results do not correlate across metrics – we show the best-case ANTT, but this solution

ordering does not coincide with the best-case utilization. Rather, we show these results to show

what is theoretically possible.

The algorithms evaluated all exhibit approximately 80% improvement over the average

FCFS performance in ANTT. In addition, all are very close to the optimal ANTT found at 1.887,

with the SJF algorithm achieving the lowest ANTT. When compared in device utilization, we

again observe that all three algorithms present an improvement over the average FCFS

performance, with the DQN algorithm providing the largest increase. Results are summarized in

Table X.

Figure 31. System throughput performance by scheduling algorithm policy.

86

Figure 33 shows the multi-objective performance from a different perspective. In this

figure, Normalized ANTT is defined as the reciprocal of the measured ANTT. The light gray dots

show the results of every possible ordering evaluated under FCFS algorithm. We highlight the

specific solution orders for each of the special cases identified above: the three other algorithms

under test, plus the optimal solution from FCFS. Values at the upper right of this plot are

considered optimal, for they represent solutions which equally balance utilization and ANTT

performance. The proposed DQN solution falls within this quadrant, and represents an

improvement over the alternative algorithms evaluated.

Table X. Scheduling Algorithm Performance Results.

Algorithm ANTT STP Util Q Score Makespan (µs)
FCFS avg 10.818 0.418 0.082 0.008 12528
FCFS optimal 1.887 0.612 0.249 0.132 12406
SJF 1.818 0.604 0.151 0.083 13025
Knapsack 2.216 0.562 0.175 0.079 13012
DQN 2.166 0.570 0.202 0.093 12391

The Q Score column from Table X corresponds to the product of the normalized ANTT

and normalized Utilization values, giving a single value with which to measure the schedule

Figure 32. Average device utilization performance per scheduling policy.

87

performance, i.e., higher is better. Of the three algorithms evaluated, the DQN solution is nearest

to the optimal ordering found under exhaustive evaluation of FCFS.

A last perspective on the relative performance of each algorithm comes in the form of per-

task performance, in particular the observed waiting time per task as shown in Figure 34. In this

figure we show the worst- and average-case waiting time for FCFS (best-case for each task would

be 0 when the task is first in order, and is therefore trivial), along with SJF, Knapsack, and DQN.

We observe that in general, the three algorithms under test outperform the average case, with the

exception of SJF and Knapsack on task 7. This task happens to be the one with the longest

execution time (see Table VIII), and these results suggest a bias against longer running tasks. This

Figure 33. Average normalized turnaround time versus average utilization performance.

88

is expected for SJF, but somewhat surprising for the Knapsack algorithm. Furthermore, we

observe that nearly all tasks under the DQN approach are bounded in wait time below the overall

average wait time. Such performance is indicative of a fair algorithm and could provide quality-

of-service guarantees as well.

5.5 Conclusions

 The results in the previous section demonstrate that our proposed DQN algorithm for GPU

task scheduling outperforms other scheduling algorithms for effectively balancing both GPU

resource utilization and application turnaround time. Our algorithm achieves a higher degree of

resource utilization and lower average normalized turnaround time than the Knapsack 0-1

algorithm proposed by [47]. Furthermore, our approach is more adaptable and flexible to changing

dynamics in a system. For example, should a new task be inserted in to the system, our approach

will make an action selection based on the current DQN model whereas other methods require a

completely new iteration of the algorithm.

We also expect advantages to our approach when applied to both the variety of GPU

architectures that currently exist, as well as the continually evolving options expected in the future.

Figure 34. Per-task average waiting time under different scheduling algorithms.

89

In particular, through transfer learning we believe that we could quickly adapt an existing model

to a new architecture and achieve near optimal results. The knapsack approach from [47] can

similarly be applied to different architectures, but the weights and values must all be recalculated,

rendering the knapsack matrix nontransferable. In future work, we would explore this

transferability by simulating multiple different architectures. We would also explore evaluating

the proposed algorithm on real GPU hardware to validate the performance results reported here.

A key direction of future research would be to combine compute resource allocation and

task scheduling with the optimization and scheduling of data transfer tasks. As demonstrated by

the rules specified by [15], the order of execution in most cases relies on underlying dependencies

between data transfer and compute tasks. Our prior work, and that of Belviranli, et al., [35] has

demonstrated the effectiveness of different techniques for reordering data transfer tasks in order to

achieve optimal transfer bandwidth and reduce system waiting time.

Finally, optimization for a single GPU system presents only a first step to solving a larger

problem, as these computational resources are primarily utilized in large-scale systems. Therefore,

the ability to optimize the allocation and scheduling of tasks to a multi-GPU system could be

constructed as a hierarchical problem. Research on such problems using DRL [53] has shown

performance benefits, and could be combined with the algorithm we propose here to formulate a

multilevel DRL solution.

90

Chapter 6 Related Work

This chapter discusses previous works on GPU tasks scheduling under concurrent kernel

execution scenarios. In section 6.1, we compare these techniques with contributions presented in

Chapters 3 and 5. In section 6.2, we present related work in data transfer approaches and compare

to the contributions of Chapter 4. Finally in section 6.3, we discuss the application of

reinforcement learning and deep reinforcement learning to resource allocation and task scheduling

problems to provide context for the solutions we develop in Chapters 4 and 5.

6.1 Concurrent Kernel Execution and Compute Resource
Scheduling

Many of earliest works to address GPU system performance focused on methods for

maximizing the potential of concurrent kernel execution. Some of these approaches predate the

introduction of CUDA Hyper-Q technology; others propose solutions which are in opposition to

one of the core tenets of our approach, in particular to not require modifications to either source

code or hardware drivers.

Pai, et. al., [26] defines the concept of an “elastic kernel” which consists of a wrapper around

original kernels to enable logical grid and block sizes that are separate from physical grid and

block configurations that actually execute on the GPU. Similarly, Jiao, et al., [54] describes a

kernel pairing strategy that simultaneously optimizes performance and power consumption for

energy efficiency optimization. The resource sharing and concurrent kernel execution is enabled

through a kernel slicing technique [55], which requires an intermediate step to generate the CUDA

code for the smaller kernel slices. A main limitation to these types of approaches is that they

91

require code transformation to enable the resource sharing technique, implying that it must be

enabled at development time, whereas our approach is transparent to the developer and therefore

backwards-compatible with existing applications.

Li, et al., [24] develops a performance model to evaluate resource-sharing among different

types of single-program multiple-data (SPMD) applications. In this work, the authors characterize

applications into four categories based on the resource utilization of the kernels relative to the per

SMX constraints. These categories define how unutilized or underutilized resources can be shared

with other programs. The authors then define optimization strategies to maximize performance

based on an application’s category, to include overlapping kernel execution with input/output

(I/O), changing grid dimensions, and splitting the same work among multiple smaller kernels. The

effectiveness of the proposed techniques are limited in scope to only homogeneous kernels. By

contrast, our analysis considers applications with different kernel behaviors and GPU resource

requirements.

In a following work, Li, et al., [25] defines a greedy algorithm to schedule concurrent kernels

by examining relative GPU resource utilization and calculating a “symbiosis score” between pairs

of kernels. This symbiosis score is meant to rate how efficient a pair of kernels could utilize the

GPU if selected to execute concurrently. Some parameters required to calculate the symbiosis

score require offline analysis of each kernel, which could presumably be stored in a lookup table

for the runtime scheduler. When compared to the naïve (first-come, first-served) scheduler, their

approach computes a near-optimal kernel launch sequence for performance and energy efficiency.

A limitation of this approach is that it penalizes kernels which oversubscribe GPU resources.

Oversubscribing is defined as any scheduling of concurrent kernels which requires greater than the

maximum hardware resources available, typically in terms of thread blocks, threads, registers, or

92

shared memory. In other words, for two kernels to be scheduled concurrently, the sum total of

their resource requests must be less than or equal to the total resources available on the GPU. For

realistic application kernels with sufficiently large resource requirements, this approach will

almost always result in serialized execution.

Liang, et al., [27] develops a dynamic programming approach to pairing concurrent kernels

based on maximum execution latency improvement. Using the results of the temporal scheduling,

each kernel’s thread blocks are scheduled to execute using a leaky bucket algorithm, which

artificially interleaves the kernels by merging them into a single kernel. The resultant schedule is

evaluated against Hyper-Q performance and demonstrated an average 17% performance

improvement. However, the authors note that the practical implementation requires hardware

support, and in lieu of such support the solution relies on a software emulation framework which

increases the GPU resource requirements by introducing extra variables and global memory for

storing the interleaved schedule.

Wang, et al., [34] define Simultaneous Multikernel (SMK) which exploits heterogeneity of

independent kernels to fully utilize compute resources. In particular, through the use of “dominant

resource fairness” allocation decisions are made in order to equalize resource usage of kernels and

make thread block to symmetric multiprocessor (SM) assignments. Lee, et. al., [56] proposes two

forms of thread block scheduling – Lazy CTA scheduling and Block CTA scheduling – which vary

how thread blocks are assigned to SMX resources. Both approaches assume fine-grained control

over the assignment of thread blocks to SMX processors, an assumption that we do not make in

our solution.

Reordering mechanisms achieve improved performance in the most pragmatic way by

substituting for the specific scheduling algorithm used by the execution queue, rather than the

93

thread block scheduler. Wende, et al., [57] develops a kernel reordering technique which aims to

overcome the limitations of Fermi GPUs (i.e. false serialization) by having each thread insert its

kernel executions into separate CPU queues associated with a GPU stream. The reordering

algorithm launches kernels in a round-robin fashion across these queues, until all kernels have

been scheduled. Thus, an advantage to this technique is that it is backward compatible to GPUs

without Hyper-Q support. The authors compare this approach with Hyper-Q performance and

note that, when both approaches are combined it achieves close to optimal efficiency [33]. The

authors conclude that Hyper-Q alone was not sufficient, since the kernel execution queues were

not all equally favored for GPU execution. This work is similar to ours because it describes a host-

side reordering technique that affects the order in which executions are launched to the GPU, but

does not attempt to explicitly control execution order on the device. However, the differences

between this work and ours are two-fold. First, their work only examines a round-robin reordering

technique, while we examine several orderings and demonstrate that different orderings are more

optimal for different application pairings. Second, their technique associates each CPU thread

with a specific GPU stream, which may result in host-side serialization within thread queues,

whereas we allow for an independent thread for each application, and dynamically assign GPU

streams to these threads as they are needed.

Cruz, et al. [47] proposed a dynamic programming approach using a knapsack 0-1 algorithm.

We have compared our method to this work by implementing a version of the algorithm as

described in Chapter 5. One subtle difference between our approach and [47] is the required

estimate of kernel execution time. For the knapsack algorithm, this is critical information to

determine the value, vi, to be used, whereas we only use estimated execution time for our

simulation and it is not a feature in our deep Q-learning model. While learning an estimate over

94

time is possible, the reliance on this information makes the approach susceptible to inaccuracies,

whereas all of the features we utilize are fixed values.

6.2 Data Transfer

Despite early research that showed that data transfer performance is a critical factor for

consideration in the evaluation of application performance [58], not a great deal of research on

GPU performance optimization has focused this area. Efforts have been made to model the PCIe

transfer time in order to describe optimal communication and computation overlap strategies [59],

or to develop more accurate performance models [36], but have not focused on maximizing

available bandwidth as we have done.

As discussed in Chapter 3, Butler, et al. [17] studied the effects of implicit and explicit

synchronizations on performance of concurrently executing kernels on GPU. In particular, as part

of the proposed Sync-Free GPU (SF-GPU) runtime mechanism that aims to bypass both types of

synchronizations, the authors describe a method of double-buffer memory pools. This approach

is most similar to our bandwidth-optimized transfer algorithm, using a fixed buffer size where we

had a fixed threshold value, τ. Our reinforcement learning algorithm overcomes this limitation to

both approaches.

Belviranli, et al. [8] defines the CUDA Multi-Application Sharing (CuMAS) framework which

intercepts certain CUDA API function calls and re-orders the calls in order to improve the resource

utilization. Notably, this work appears to be the first to explicitly treat the host-to-device and

device-to-host transfer channels as separate resources to be efficiently optimized. However, the

authors consider each CUDA API call in the user program as an individual operation. Due to the

overhead of the PCIe bus, this may lead to suboptimal performance. Furthermore, dynamic

95

programming is used to solve the scheduling problem, although it is much faster than brute force

approach, the complexity is still too high to be used for online scheduling.

Message aggregation as a means of improving performance and mitigating resource contention

has been studied in the past [60] [61]. These approaches often make underlying assumptions about

the message characteristics and are generally too application-specific to be applied in the context

presented here.

The key distinction between these previous works and the research presented in Chapter 4 is

the specific focus on the optimization and efficient utilization of the data transfer engines between

the host and device. Compared to some of the recent works, our approach considers more detailed

hardware limitations and online scheduling has much higher simplicity.

6.3 Reinforcement Learning for Scheduling Problems

Finally, reinforcement learning has gained increasing attention recently following the trends

of machine learning in general [62], and techniques to apply RL to resource management. Mao,

et al., [51] presents an approach to use deep reinforcement learning to the job scheduling problem.

This work seems to be complementary to our work, as the approach considers a more abstract

assignment of jobs to resources to improve performance (i.e. decrease average job slowdown) on

clusters, but does not explicitly consider resource utilization a key metric. Furthermore, the system

specification is abstract and not specific to the GPU, making our model a more concrete

representation.

Liu, et al., [53] examines a hierarchical approach to managing resource allocation and power

management in a cloud computing system. Again we consider this to be complementary to our

approach since we consider a much finer level of granularity in the job-to-resource allocation

96

strategy. Huang, et al., [63] describes a deep reinforcement learning approach to manage task

offloading and resource allocation in edge computing. The primary focus of this algorithm is on

the cost of offloading, whereas as our approach is focused on resource utilization and performance.

97

Chapter 7 Conclusion and Future Directions

In this dissertation, we studied the optimization and scheduling of GPU resources to maximize

resource utilization and increase system throughput. By enabling gains in these critical metrics,

we allow for improvements in system efficiency, both in terms of energy efficiency and a reduction

in the number of compute devices required.

In Chapter 2, we introduced the key concepts relative to GPU programming and scheduling

which are necessary to develop a feasible scheduling algorithm. We introduce the challenges of

multi-kernel, multi-stream scheduling, particularly with respect to resource contentions, and

provided motivational examples which highlighted the opportunities for performance

improvements and the benefits of introducing a new scheduling approach.

In Chapter 3, we explored the ways in which one can make effective use of the CUDA Hyper-

Q technology to increase throughput via concurrent kernel execution. In particular, we identified

a key limitation to performance due to memory transfer interleaving and proposed a novel

approach for mitigating this restraint. We also showed that application launch ordering can

significantly affect task overlap potential, requiring a more fine-grained approach to application

task scheduling.

Chapter 4 introduced a reinforcement learning-based approach to managing memory transfers

to maximize the transfer bandwidth utilization. This approach introduced methods for aggregating

or disassembling memory transfers into optimally-sized packets, while balancing the effect of

aggregation wait times on the turnaround time of independent transfer tasks. Our approach

98

outperformed other techniques in mean waiting time and provided significant increase in

bandwidth utilization over the baseline FCFS algorithm.

 Finally, in Chapter 5 we developed a deep Q-learning algorithm for managing task scheduling

to maximize the utilization of GPU compute resources while finding a launch ordering with near-

optimal ANTT. Our approach is competitive with the best-case performance of the baseline FCFS

algorithm, which could only be identified via the infeasible solution of exhaustive search, and is

adaptable to changing GPU and task characteristics, unlike other approaches.

7.1 Future Directions

With the successful demonstration of reinforcement learning approaches to managing both

the data transfer and compute resource scheduling problems, the natural next step is to combine

these approaches into a hierarchical scheduler which can effectively and efficiently schedule task

requests to the GPU. The design of such a framework is given in Figure 35.

This framework brings together all of the key concepts discussed in this dissertation into a

logical hierarchy that can be seamlessly integrated on a GPU system without requiring either

application source code or hardware device driver modifications.

Figure 35. Proposed hierarchical framework for managing data transfer and compute task scheduling on GPU
devices.

99

7.1.1 Implementation Details

 The implementation of this framework would be accomplished using the method call

intercept approach. An example of this type of an approach using CUDA API methods is shown

by [9]. With this approach, we can provide a layer between the developer’s application code and

the CUDA Runtime which is transparent to the system. In this layer, we can extract all of the

necessary information for the proposed scheduling algorithms, such as data size for the transfer

scheduler or the resource requirements for the compute task scheduler, directly from CUDA API

method calls.

 Appendix B provides source code implementation details of the primary CUDA API

methods that would need to be intercepted to enable this framework. For the HQ Runtime

Environment discussed in Chapter 3, this includes the memory, stream, and events creation and

destruction methods. For data transfer tasks, we intercept all cudaMemcpy* methods. Finally,

for the kernel execution tasks, we must intercept two methods – cudaConfigureCall, which

specifies the grid and block dimensions and signals that the kernel is ready to execute, and

cudaLaunch, which actually launches the specified kernel function for execution on the GPU.

 The insertion of the described methods in this dissertation into this type of hierarchical

framework is certainly nontrivial, but also does not require any modifications to either the

hardware device drivers or user application code in order to reap the performance benefits. In fact,

once developed, the framework would be provided as a shared library object and inclusion of its

features is simply enabled through a LD_PRELOAD command such as the following:

LD_PRELOAD=/path/to/lib/libmyframework.so ./your-program

100

Thus, we restate our earlier claim that the approach described herein is the most pragmatic

and comprehensive approach proposed in this domain.

7.1.2 Multi-GPU Systems

 While all of the research in this dissertation, as well as the proposed framework above,

focuses on a single-GPU system, we also expect significant benefits to come from applying these

methods to a multi-GPU system. Providing another level in the hierarchy would enable more

optimal scheduling across multiple devices while introducing additional complexity. The highest

level scheduler is envisioned to serve more like traditional load-balancing techniques, handling

coarse-grained assignment of applications to devices, whereas our scheduling framework manages

fine-grained task scheduling.

In addition, because one of our primary objectives is to maximize device utilization, we believe

this multi-GPU, hierarchical approach could drive system designs that require fewer number of

GPUs than similarly tasked systems with a naïve multi-device scheduler. This type of design

brings considerations about size, weight, and power (SWaP) to a macro (system) level, while

simultaneously managing efficiency at the micro (device) level.

101

Appendix A GPU Scheduling Rules

The following rules are consolidated from [15] and provided here for quick reference.

Identifier Rule
G1 A copy operation or kernel is enqueued on the stream queue for its stream when

the associated CUDA API function (memory transfer or kernel launch) is invoked.
G2 A kernel is enqueued on the EE queue when it reaches the head of its stream

queue.
G3 A kernel at the head of the EE queue is dequeued from that queue once it becomes

fully dispatched.
G4 A kernel is dequeued from its stream queue once all of its blocks complete

execution.
X1 Only blocks of the kernel at the head of the EE queue are eligible to be assigned.
R1 A block of the kernel at the head of the EE queue is eligible to be assigned only if

its resource constraints are met.
R2 A block of the kernel at the head of the EE queue is eligible to be assigned only if

there are sufficient thread resources available on some SM.
R3 A block of the kernel at the head of the EE queue is eligible to be assigned only if

there are sufficient shared-memory resources available on some SM.
C1 A copy operation is enqueued on the CE queue when it reaches the head of its

stream queue.
C2 A copy operation at the head of the CE queue is eligible to be assigned to the CE.
C3 A copy operation at the head of the CE queue is dequeued from the CE queue

once the copy is assigned to the CE on the GPU.
C4 A copy operation is dequeued from its stream queue once the CE has completed

the copy.
N1 A kernel Kk at the head of the NULL stream queue is enqueued on the EE queue

when, for each other stream queue, either that queue is empty or the kernel at its
head was launched after Kk .

N2 A kernel Kk at the head of a non-NULL stream queue cannot be enqueued on the
EE queue unless the NULL stream queue is either empty or the kernel at its head
was launched after Kk

A1 A kernel can only be enqueued on the EE queue matching the priority of its
stream.

A2 A block of a kernel at the head of any EE queue is eligible to be assigned only if
all higher-priority EE queues (priority-high over priority-low) are empty.

102

Appendix B CUDA Method Intercept Examples

Example B-1. Intercepting cudaSetDevice and cudaDeviceReset for initialization and shutdown of
proposed framework.
//----< environment setup/cleanup intercepts >-----------------------------------
typedef cudaError_t (*cudaSetDevice_t)(int device);
typedef cudaError_t (*cudaDeviceReset_t)(void);

//----< environment setup/cleanup intercepts >-----------------------------------
static cudaSetDevice_t realCudaSetDevice = NULL;
static cudaDeviceReset_t realCudaDeviceReset = NULL;

extern "C" cudaError_t cudaSetDevice(int device)
{
 if (realCudaSetDevice == NULL)
 realCudaSetDevice = (cudaSetDevice_t)dlsym(RTLD_NEXT, "cudaSetDevice");

 assert(realCudaSetDevice != NULL && "cudaSetDevice is null");

 // implement framework initialization procedures

 return realCudaSetDevice(device);
}

extern "C" cudaError_t cudaDeviceReset(void)
{
 if (realCudaDeviceReset == NULL)
 realCudaDeviceReset = (cudaDeviceReset_t)dlsym(RTLD_NEXT, "cudaDeviceReset");

 assert(realCudaDeviceReset != NULL && "cudaDeviceReset is null");

 // implement framework shutdown procedures

 return realCudaDeviceReset();
}

Example B-2. Intercepting cudaMemcpy, cudaMemcpyAsync to pass to data transfer
optimization algorithm.
//----< memory transfer intercepts >---
typedef cudaError_t (*cudaMemcpy_t)(void* dst, const void* src,
 size_t count, enum cudaMemcpyKind kind);
typedef cudaError_t (*cudaMemcpyAsync_t)(void* dst, const void* src,
 size_t count, enum cudaMemcpyKind kind,
 cudaStream_t stream);

//----< native CUDA API function pointers >--------------------------------------
static cudaMemcpy_t realCudaMemcpy = NULL;
static cudaMemcpyAsync_t realCudaMemcpyAsync = NULL;

//----< Memory transfer intercepts >---

103

extern "C" cudaError_t cudaMemcpy(void* dst, const void* src, size_t count, enum
cudaMemcpyKind kind)
{
 if (realCudaMemcpy == NULL)
 realCudaMemcpy = (cudaMemcpy_t)dlsym(RTLD_NEXT, "cudaMemcpy");

 assert(realCudaMemcpy != NULL && "cudaMemcpy is null");

 // implement data transfer algorithm handling

 return realCudaMemcpy(dst, src, count, kind);
}

extern "C" cudaError_t cudaMemcpyAsync(void* dst, const void* src, size_t count, enum
cudaMemcpyKind kind, cudaStream_t stream)
{
 if (realCudaMemcpyAsync == NULL)
 realCudaMemcpyAsync = (cudaMemcpyAsync_t)dlsym(RTLD_NEXT, "cudaMemcpyAsync");

 assert(realCudaMemcpyAsync != NULL && "cudaMemcpyAsync is null");

 // implement data transfer algorithm handling

 return realCudaMemcpyAsync(dst, src, count, kind, stream);
}

Example B-3. Intercepting cudaConfigureCall and cudaLaunch for compute resource optimization
and task scheduling algorithm.
// cudaConfigureCall
typedef cudaError_t (*cudaConfigureCall_t)(dim3, dim3, size_t, cudaStream_t);
static cudaConfigureCall_t realCudaConfigureCall = NULL;

extern "C"
cudaError_t cudaConfigureCall(dim3 gridDim, dim3 blockDim, size_t sharedMem=0,
cudaStream_t stream=0)
{

 if (realCudaConfigureCall == NULL)
 realCudaConfigureCall =
(cudaConfigureCall_t)dlsym(RTLD_NEXT,"cudaConfigureCall");

 assert(realCudaConfigureCall != NULL && "cudaConfigureCall is null");

 // extract kernel resource requirements for queue state values

 return realCudaConfigureCall(gridDim, blockDim, sharedMem, stream);
}

// cudaLaunch
typedef cudaError_t (*cudaLaunch_t)(const void* func);
static cudaLaunch_t realCudaLaunch = NULL;

extern "C"

104

cudaError_t cudaLaunch(const void* func)
{
 if (realCudaLaunch == NULL)
 realCudaLaunch = (cudaLaunch_t)dlsym(RTLD_NEXT,"cudaLaunch");

 assert(realCudaLaunch != NULL && "cudaLaunch is null");

 // implement task scheduling and resource optimization algorithm handling

 return realCudaLaunch(func);
}

105

References

[1] M. Macedonia, "The GPU enters computing's mainstream," Computer, vol. 36, no. 10, pp.
106-108, 10 2003.

[2] Z. Fan, F. Qiu, A. Kaufman and S. Yoakum-Stover, "GPU Cluster for High Performance
Computing," in SC '04: Proceedings of the 2004 ACM/IEEE Conference on
Supercomputing, Pittsburgh, PA, USA, 2004.

[3] NVIDIA Corp., "NVIDIA CUDA Compute Unified Device Architecture, Programming
Guide," 2007.

[4] "The OpenCL Specification," Khronos Group, 2009.

[5] S. S. Vazhkudai, B. R. De Supinski, A. S. Bland, A. Geist, J. Sexton, J. Kahle, C. J.
Zimmer, S. Atchley, S. Oral, D. E. Maxwell, V. G. Larrea, A. Bertsch, R. Goldstone, W.
Joubert, C. Chambreau, D. Appelhans, R. Blackmore, B. Casses, G. Chochia, G. Davison,
M. A. Ezell, T. Gooding, E. Gonsiorowski, L. Grinberg, B. Hanson, B. Hartner, I. Karlin,
M. L. Leininger, D. Leverman, C. Marroquin, A. Moody, M. Ohmacht, R. Pankajakshan,
F. Pizzano, J. H. Rogers, B. Rosenburg, D. Schmidt, M. Shankar, F. Wang, P. Watson, B.
Walkup, L. D. Weems and J. Yin, "The design, deployment, and evaluation of the CORAL
pre-exascale systems," in Proceedings - International Conference for High Performance
Computing, Networking, Storage, and Analysis, SC 2018, 2019.

[6] W. Cunningham, "Cars drive autonomously with Nvidia X1-based computer," 2015.
[Online]. Available: https://www.cnet.com/roadshow/news/cars-drive-autonomously-with-
nvidia-x1-based-computer/.

[7] J. H. Laros III, K. Pedretti, S. M. Kelly, W. Shu, K. Ferreira, J. Van Dyke and C. Vaughan,
Energy-Efficient High Performance Computing, 1st ed., London: Springer-Verlag, 2013.

[8] M. Philips, "Stock Trading Is About to Get 5.2 Milliseconds Faster; A new ultrafast
Atlantic cable will cater to electronic traders," Bloomberg, 29 March 2012. [Online].
Available: https://www.bloomberg.com/news/articles/2012-03-29/stock-trading-is-about-
to-get-5-dot-2-milliseconds-faster.

[9] N. Chong, "cudahook," 2014. [Online]. Available: https://github.com/nchong/cudahook.

[10] NVIDIA Corp., "NVIDIA Tesla V100 GPU Architecture," 2017.

[11] NVIDIA Corp., "CUDA C Programming Guide, Design Guide," 2018.

106

[12] A. Jog, O. Kayiran, A. K. Mishra, M. T. Kandemir, O. Mutlu, R. Iyer and C. R. Das,
"Orchestrated Scheduling and Prefetching for GPGPUs," SIGARCH Comput. Archit. News,
vol. 41, no. 3, pp. 332-343, 6 2013.

[13] A. Jog, O. Kayiran, N. Chidambaram Nachiappan, A. K. Mishra, M. T. Kandemir, O.
Mutlu, R. Iyer and C. R. Das, "OWL: Cooperative Thread Array Aware Scheduling
Techniques for Improving GPGPU Performance," SIGPLAN Not., vol. 48, no. 4, pp. 395-
406, 3 2013.

[14] B. Wu and X. Shen, "Software-level task scheduling on GPUs," in Advances in GPU
Research and Practice, 1st ed., San Francisco, CA, USA, Morgan Kaufmann Publishers
Inc., 2016.

[15] T. Amert, N. Otterness, M. Yang, J. H. Anderson and F. D. Smith, "GPU Scheduling on
the NVIDIA TX2: Hidden Details Revealed," in 2017 IEEE Real-Time Systems Symposium
(RTSS), 2017.

[16] J. Bakita, N. Otterness, J. H. Anderson and F. D. Smith, "Scaling Up: The Validation of
Empirically Derived Scheduling Riles on NVIDIA GPUs," in OSPERT'18, 2018.

[17] S. Hong and H. Kim, "An integrated GPU power and performance model," in Proceedings
of the 37th annual international symposium on Computer architecture, 2010.

[18] J. T. Adriaens, K. Compton, N. S. Kim and M. J. Schulte, "The case for GPGPU spatial
multitasking," in IEEE International Symposium on High-Performance Comp Architecture,
2012.

[19] L. Eeckhout, "Computer architecture performance evaluation methods," Synthesis Lectures
on Computer Architecture, vol. 5, no. 1, pp. 1-145, 2010.

[20] NVIDIA Corp., "nvidia-smi - NVIDIA System Management Interface program," [Online].
Available: https://developer.download.nvidia.com/compute/DCGM/docs/nvidia-smi-
367.38.pdf.

[21] NVIDIA Corp., "CUDA Profiler Users Guide v10.2," 2019.

[22] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee and K. Skadron, "Rodinia:
A Benchmark Suite for Heterogeneous Computing," in 2009 IEEE international
symposium on workload characterization (IISWC), 2009.

[23] S. Che, J. W. Sheaffer, M. Boyer, L. G. Szafaryn, L. Wang and K. Skadron, "A
Characterization of the Rodinia Benchmark Suite with Comparison to Contemporary CMP
Workloads," in IEEE International Symposium on Workload Characterization (IISWC'10),
2010.

107

[24] T. Li, V. K. Narayana and T. El-Ghazawi, "Exploring graphics processing unit (GPU)
resource sharing efficiency for high performance computing," Computers, vol. 2, no. 4, pp.
176-214, 2013.

[25] T. Li, V. K. Narayana and T. El-Ghazawi, "Symbiotic scheduling of concurrent GPU
kernels for performance and energy optimizations," in Proceedings of the 11th ACM
Conference on Computing Frontiers, 2014.

[26] S. Pai, M. J. Thazhuthaveetil and R. Govindarajan, "Improving GPGPU concurrency with
elastic kernels," ACM SIGARCH Computer Architecture News, vol. 41, no. 1, pp. 407-418,
2013.

[27] Y. Liang, H. P. Huynh, K. Rupnow, R. S. M. Goh and D. Chen, "Efficient GPU spatial-
temporal multitasking," IEEE Transactions on Parallel and Distributed Systems, vol. 26,
no. 3, pp. 748-760, 2014.

[28] M. Butler, K. Sajjapongse and M. Becchi, "Improving application concurrency on GPUs by
managing implicit and explicit synchronizations," in Proceedings of the International
Conference on Parallel and Distributed Systems - ICPADS, 2016.

[29] M. Harris, "How to Optimize Data Transfers in CUDA C/C++," 2012. [Online]. Available:
http://devblogs.nvidia.com/parallelforall/how-optimize-data-transfers-cuda-cc/.

[30] M. Boyer, "Memory transfer overhead," [Online]. Available:
https://www.cs.virginia.edu/~mwb7w/cuda_support/memory_transfer_overhead.html.

[31] NVIDIA Corp., "NVIDIA's Next Generation CUDA Computer Architecture: Kepler
GK110/210," 2014.

[32] R. Di Pietro, F. Lombardi and A. Villani, "CUDA leaks: Information leakage in GPU
architectures," arXiv preprint arXiv:1305.7383, 2013.

[33] F. Wende, T. Steinke and F. Cordes, "Multi-threaded Kernel Offloading to GPGPU Using
Hyper-Q on Kepler Architecture," 2014.

[34] Z. Wang, J. Yang, R. Melhem, B. Childers, Y. Zhang and M. Guo, "Simultaneous
multikernel GPU: Multi-tasking throughput processors via fine-grained sharing," in 2016
IEEE International Symposium on High Performance Computer Architecture (HPCA),
2016.

[35] M. E. Belviranli, F. Khorasani, L. N. Bhuyan and R. Gupta, "CuMAS: Data transfer aware
multi-application scheduling for shared GPUs," in Proceedings of the International
Conference on Supercomputing, 2016.

108

[36] M. Boyer, J. Meng and K. Kumaran, "Improving GPU Performance Prediction with Data
Transfer Modeling," in 2013 IEEE International Symposium on Parallel & Distributed
Processing, Workshops and Phd Forum, 2013.

[37] S. Cook, CUDA programming: a developer's guide to parallel computing with GPUs,
Newnes, 2012.

[38] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction, MIT press, 2018.

[39] C. Watkins, "Learning from delayed rewards," University of Cambridge, England, 1989.

[40] A. Munir, S. Ranka and A. Gordon-Ross, "High-performance energy-efficient multicore
embedded computing," IEEE Transactions on Parallel and Distributed Systems, vol. 23,
no. 4, pp. 684-700, 2012.

[41] C. L. Usmail, M. O. Little and R. E. Zuber, "Evolution of embedded processing for wide
area surveillance," IEEE Aerospace and Electronic Systems Magazine, vol. 29, no. 1, pp. 6-
13, 2014.

[42] M. Barnell, C. Raymond, C. Capraro and D. Isereau, "Agile Condor: A Scalable High
Performance Embedded Computing Architecture," in 2015 IEEE Conference on High
Performance Extreme Computing (HPEC), Waltham, MA, USA, 2015.

[43] A. C. Pineda, J. K. Mee, P. M. Cunio and R. A. Weber, "Benchmarking image processing
for space: Introducing the SPACER architecture laboratory," in 2016 IEEE Aerospace
Conference, 2016.

[44] E. Kain, D. Wildenstein and A. C. Pineda, "Embedded GPU Cluster Computing
Framework for Inference of Convolutional Neural Networks," in 2019 IEEE High
Performance Extreme Computing Conference (HPEC '19), Waltham, MA, USA, 2019.

[45] S. Rennich, "CUDA C/C++ Streams and Concurrency," 2011. [Online]. Available:
http://on-demand.gputechconf.com/gtc-
express/2011/presentations/StreamsAndConcurrencyWebinar.pdf.

[46] M. Harris, "GPU Pro Tip: CUDA 7 Streams Simplify Concurrency," 2015. [Online].
Available: https://devblogs.nvidia.com/gpu-pro-tip-cuda-7-streams-simplify-concurrency/.

[47] R. A. Cruz, C. Bentes, B. Breder, E. Vasconcellos, E. Clua, P. M. de Carvalho and L. M.
Drummond, "Maximizing the GPU resource usage by reordering concurrent kernels
submission," in Concurrency Computation , 2019.

[48] P. B. Hansen, Operating System Principles, USA: Prentice-Hall, Inc., 1973.

[49] G. Strang, Calculus, Wellesley, MA: Wellesley-Cambridge Press, 1991.

109

[50] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland and G. Ostrovski, "Human-level control through deep
reinforcement learning," Nature, vol. 518, no. 7540, pp. 529-533, 2015.

[51] H. Mao, M. Alizadeh, I. Menache and S. Kandula, "Resource management with deep
reinforcement learning," in HotNets 2016 - Proceedings of the 15th ACM Workshop on Hot
Topics in Networks, 2016.

[52] L.-J. Lin, "Self-improving Reactive Agents Based on Reinforcement Learning, Planning
and Teaching," Machine Learning, vol. 8, no. 3-4, pp. 293-321, 1992.

[53] N. Liu, Z. Li, J. Xu, Z. Xu, S. Lin, Q. Qiu, J. Tang and Y. Wang, "A Hierarchical
Framework of Cloud Resource Allocation and Power Management Using Deep
Reinforcement Learning," in Proceedings - International Conference on Distributed
Computing Systems, 2017.

[54] Q. Jiao, M. Lu, H. P. Hyunh and T. Mitra, "Improving GPGPU Energy-Efficiency through
Concurrent Kernel Execution and DVFS," in Proceedings of the 2015 Annual IEEE/ACM
International Symposium on Code Generation and Optimization (CGO) : CGO 2015, San
Francisco, California, USA, 2015.

[55] J. Zhong and B. He, "Kernelet: High-Throughput GPU Kernel Executions with Dynamic
Slicing and Scheduling," IEEE Transactions on Parallel and Distributed Systems, vol. 25,
no. 6, pp. 1522-1532, 2014.

[56] M. Lee, S. Song, J. Moon, J. Kim, W. Seo, Y. Cho and S. Ryu, "Improving GPGPU
resource utilization through alternative thread block scheduling," in 2014 IEEE 20th
International Symposium on High Performance Computer Architecture (HPCA), 2014.

[57] F. Wende, F. Cordes and T. Steinke, "On improving the performance of multi-threaded
CUDA applications with concurrent kernel execution by kernel reordering," in Symposium
on Application Accelerators in High-Performance Computing, 2012.

[58] C. Gregg and K. Hazelwood, "Where is the data? Why you cannot debate CPU vs. GPU
performance without the answer," in (IEEE ISPASS) IEEE International Symposium on
Performance Analysis of Systems and Software, 2011.

[59] B. V. Werkhoven, J. Maassen, F. J. Seinstra and H. E. Bal, "Performance models for CPU-
GPU data transfers," in Proceedings - 14th IEEE/ACM International Symposium on
Cluster, Cloud, and Grid Computing, CCGrid 2014, 2014.

[60] M. Martinasso, G. Kwasniewski, S. R. Alam, T. C. Schulthess and T. Hoefler, "A PCIe
congestion-aware performance model for densely populated accelerator servers," in SC'16:
Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, 2016.

110

[61] M. Chetlur, N. Abu-Ghazaleh, R. Radhakrishnan and P. A. Wilsey, "Optimizing
communication in Time-Warp simulators," in Proceedings. Twelfth Workshop on Parallel
and Distributed Simulation PADS'98 (Cat. No. 98TB100233), 1998.

[62] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J.
Schrittwieser, I. Antonoglou, V. Panneershelvam and M. Lanctot, "Mastering the game of
Go with deep neural networks and tree search," nature, vol. 529, no. 7587, p. 484, 2016.

[63] L. Huang, X. Feng, L. Qian and Y. Wu, "Deep reinforcement learning-based task
offloading and resource allocation for mobile edge computing," in Lecture Notes of the
Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering,
LNICST, 2018.

111

Vita

Author’s Name: Ryan Seamus Luley

Place of Birth: New Hartford, NY, USA

Date of Birth: April 21, 1979

Degrees Awarded:

• Bachelor of Science, Mathematics and Computer Science, St. Lawrence University, 2001

• Master of Science, Computer Engineering, Syracuse University, 2008

Professional Experience:

• Senior Mathematician, Air Force Research Laboratory Information Directorate, January 2019 – present

• Mathematician, Air Force Research Laboratory Information Directorate, May 2008 – January 2019

• Mathematician, Air Force Research Laboratory Sensors Directorate, Jan 2007 – May 2008

• Associate Mathematician, Air Force Research Laboratory Sensors Directorate, Mar 2003 – Jan 2007

• Software Engineer Associate, Lockheed Martin Management & Data Systems, Aug 2001 – Mar 2003

	GPU Resource Optimization and Scheduling for Shared Execution Environments
	Recommended Citation

	Acknowledgements
	List of Figures
	List of Tables
	Chapter 1 Introduction
	1.1 Thesis and Contributions
	1.2 Dissertation Organization

	Chapter 2 Background and Motivation
	2.1 A Brief Introduction to GPU Architectures and Computing
	2.2 GPU Scheduling
	2.3 Multi-stream, Multi-kernel Scheduling
	2.4 Opportunities and Benefits to Increasing Utilization and Throughput
	2.5 Metrics
	2.5.1 Average Normalized Turnaround Time
	2.5.1 System Throughput
	2.5.3 Transfer Bandwidth Utilization
	2.5.4 Compute Resource Utilization

	Chapter 3 Effective Utilization of CUDA Hyper-Q
	3.1 An Approach to Effectively Utilize CUDA Hyper-Q Technology
	3.1.1 Lazy Resource Utilization Policy
	3.1.2 Effective Memory Transfer Latency
	3.1.3 Application Reordering

	3.2 Hyper-Q Management Framework
	3.3 Experiment Methodology
	3.3.1 Benchmark Applications
	3.3.2 Test Harness

	3.4 Experimental Results
	3.4.2 Effective Memory Transfer Latency
	3.4.3 Application Reordering

	3.5 Discussion

	Chapter 4 Optimizing Data Transfer Bandwidth using Reinforcement Learning
	4.1 Motivation
	4.2 Bandwidth-Optimized Transfer Algorithm
	4.2.1 Algorithm Description
	4.2.2 Algorithm Implementation

	4.3 Transfer Queue Model
	4.4 Q-Learning
	4.4.1 Monte Carlo Policy Evaluation and Iteration

	4.5 Evaluation
	4.5.1 Simulation Setup
	4.5.2 Policy Evaluation and Iteration
	4.5.3 Policy Improvement

	4.6 Conclusion

	Chapter 5 A Deep Q-Learning Approach to GPU Task Scheduling
	5.1 Task Scheduling
	5.1.1 Problem Formulation

	5.2 Deep Reinforcement Learning
	5.2.1 Deep Q-Learning Model
	5.2.2 Implementation Details

	5.3 Experiment Methodology
	5.4 Experimental Results
	5.5 Conclusions

	Chapter 6 Related Work
	6.1 Concurrent Kernel Execution and Compute Resource Scheduling
	6.2 Data Transfer
	6.3 Reinforcement Learning for Scheduling Problems

	Chapter 7 Conclusion and Future Directions
	7.1 Future Directions
	7.1.1 Implementation Details
	7.1.2 Multi-GPU Systems

	Appendix A GPU Scheduling Rules
	Appendix B CUDA Method Intercept Examples
	Example B-1. Intercepting cudaSetDevice and cudaDeviceReset for initialization and shutdown of proposed framework.
	Example B-2. Intercepting cudaMemcpy, cudaMemcpyAsync to pass to data transfer optimization algorithm.
	Example B-3. Intercepting cudaConfigureCall and cudaLaunch for compute resource optimization and task scheduling algorithm.

	References
	Vita

