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ABSTRACT  

The purpose of this dissertation is to investigate how regulation and deregulation impacts 

hospital performance, its persistence effect and the different impact on drug markets. The 

authorities designed programs and policies to regulate hospitals and pharmaceutical markets, 

aiming at improving hospital performance and control drug prices, while in reality, the programs 

and policies generate consequences, the effect varies across different types of the hospitals and 

drugs. 

The dissertation consists of three essays. The first essay proposes a propensity score 

matching-difference in difference framework of program evaluation of Value Based Purchasing 

program. This framework first applies the propensity score matching method to find a treated 

group whose characteristics are comparable to our control group (hospitals in Maryland). Next, I 

used the difference in difference method to evaluate whether and how the VBP program impacts 

hospitals performance in terms of quality, satisfaction, safety and efficiency. Our empirical 

analysis using 5 years of hospital performance data from various sources. The results showed that, 

under the program of VBP, hospitals that are impacted did show improvements in patient 

experience, but in terms of experience dimensions, only pain control scores were improved 

significantly. Regarding safety, cost efficiency and conformance quality, the impacted hospitals 

did not show significant improvements. The sensitivity check supports our conclusion.  

The second essay studies the state dependence effect of payment adjustments on hospitals 

to see whether the effect exist and how it varies across hospitals of different characteristics, socio-

economic factors and geo-locations. The program adjusts the payment as follows: First, the 

program reduces a portion of the hospital`s Medicare payments in a specific fiscal year and then 

by the end of the same fiscal year, the amount of the payment reductions will be awarded to the 

hospitals based on the total performance score, thus the hospitals that do not receive the reward 

will lose the portion of money reduced by Medicare. In this essay, I apply the theory of state 

dependence and use the dynamic random effect probit model to estimate this effect. The results 

show that the hospital payment adjustment dynamics have a very significant state dependence 

effect (0.341), that means, hospitals that received a reward in previous year are 34.1% more 



probably to receive a reward this year than the ones that received a penalty in previous year. 

Meanwhile, I also find that the state dependence effect varies significantly across hospitals with 

different ownership (proprietary/government owned/voluntary nonprofit), the results show that 

voluntary nonprofit hospitals exhibit largest effect of state dependence (0.370), while government 

owned hospitals exhibit lowest effect of state dependence (0.293) and proprietary hospitals are in 

the middle. Among the factors that influence the likelihood a hospital receive a reward, I find that 

teaching hospitals with large number of beds (>400), are less likely be rewarded; in terms of 

ownership, I find that voluntary nonprofit hospitals are more likely be rewarded; in terms of 

demographic factors, hospitals where the average household income are higher within the region 

are more likely be rewarded.  

The third essay studies the effect of deregulation of price cap in pharmaceutical market. 

Price regulation (either through price cap or reference price) is common practice in pharmaceutical 

market but recently there are increasing voices calling for deregulation claiming that deregulation 

could help with lowering drug price and increase revenue of pharmaceutical firms. Upon those 

callings, Chinese government removed the price cap regulation in June 2015. In this essay, I 

applied the interrupted time series analysis (ITSA) on the sales revenue data of nine categories of 

both generic and branded drugs in China from March 2011 to August 2016 (the time frame includes 

both before and after of the initialization of the deregulation) and analyzed the effect of 

deregulation. The results showed that, whether the revenue of drugs will increase or decrease after 

the deregulation of price cap depends on the level of competition and the change of patterns of the 

branded and generic drugs are different. When HHI is sufficiently low (competition is high), 

revenue does not change as a result of deregulation, when HHI is moderately low (moderate 

competition), revenue from generic drugs will decrease significantly and revenue from branded 

drugs will increase significantly, when HHI is high (low competition), revenue from generic drugs 

will increase significantly and revenue from branded drugs will decrease significantly. 
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CHAPTER ONE: OVERVIEW OF DISSERTATION 

INTRODUCTION 

This dissertation consists of three essays about authorities` regulation and deregulation 

policies in face of performance shortfalls. Hospitals have long been criticized for ignoring patient 

experience and satisfaction, the payment model of healthcare also have long been blamed for 

focusing on quantity not on quality. In face of the critics and challenges, Center for Medicare & 

Medicaid Services (CMS) designed and launched the Hospital Value Based Purchasing (HVBP) 

program, which is the first nationwide pay-for-performance (P4P) program aiming at 

transforming the traditional payment model with a focus on quantity to a new payment model 

with a focus on quality, improving hospital performance four folds: conformance quality, cost 

efficiency, safety and patient experience. In 2003, CMS tested the Premier Hospital Quality 

Incentive Demonstration, a pay-for-performance pilot project involving more than 200 hospitals, 

which provided financial incentives to physician groups that performed well on quality and cost 

measures (Damberg et al. 2014). In 2005, it launched Hospital Compare database with public 

reporting of process measures of hospital quality, later extending this reporting to include clinical 

outcomes such as mortality rates too.  

However, balancing different resource management strategies to improve performance is 

not an easy task for the hospitals. Inclusion of patient experience of care or patient satisfaction 

has led to a vigorous debate in the industry. Advocates for inclusion of patient satisfaction 

contend that it measures critical components of care that only patients can report, such as 

whether pain was addressed effectively or if patients received clear communication from 

physicians and nurses. This makes it an essential measure of how well a health care system 

function. In an industry where the patient should be the primary focus, the content of their 

experiences can help clinicians to better mobilize around their needs. This builds trust in the 
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healthcare system from the perspective of the patient and promotes collaborative practices 

between clinicians and patients (Chatterjee et al. 2015). Prior studies in multiple healthcare 

settings have shown that poor patient satisfaction with the health care system is associated with 

slower recovery from illness and a lower likelihood of compliance with prescribed treatment 

regimens. Consequently, suboptimal patient experience has important implications not only for 

the health of patients but also for health care costs, which increase when patients use more health 

care services because of poor recovery and non-compliance (Chatterjee et al. 2012). When 

patients have a better experience, they are more likely to comply with treatments, return for 

follow-up appointments, and engage with the healthcare system by seeking appropriate care 

(Chatterjee et al. 2015).  

Critics of including patient satisfaction in HVBP program argue that doing so is driving 

physicians to focus on the wrong priorities whereby hospitals end up behaving as hotels. Using 

patient satisfaction as a metric shifts provider attention away from delivering technically 

effective care to fulfilling patient expectations and demands (Chatterjee et al. 2015). By 

conflicting with the clinical practice guidelines higher patient satisfaction, in fact, may be 

associated with a higher rate of inpatient admissions, higher overall healthcare costs, and 

increased mortality. For example, providing a prescription may result in a satisfied patient but 

increase the cost of care and may contribute to ills such as antibiotic resistance and opioid crisis 

(Lindsay 2017).  

Due to these concerns, Medicare stopped using pain management questions as inputs in 

its payment formula. I collected multi-year data from six diverse data sources, employed 

propensity score matching to obtain comparable groups, and estimated difference-in-difference 

models to show that, in fact, pain management was the only measure to improve in response to 
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pay-for-performance system. No other input measure showed significant improvement. Thus, 

removing pain management from the formula risks rendering the entire program ineffective. I 

suggest two divergent paths for Medicare to make the program more effective.  

Furthermore, I would like to analyze is there a state dependence effect in the payment 

adjustment for the HVBP program. In the second essay, I apply the theory of state dependence 

and use the dynamic random effect probit model to estimate this effect. The results show that the 

hospital payment adjustment dynamics have a very significant state dependence effect (0.341), 

that means, hospitals that received a reward in previous year are 34.1% more probably to receive 

a reward this year than the ones that received a penalty in previous year. Meanwhile, I also find 

that the state dependence effect varies significantly across hospitals with different ownership 

(proprietary/government owned/voluntary non profit), the results show that voluntary non profit 

hospitals exhibit largest effect of state dependence (0.370), while government owned hospitals 

exhibit lowest effect of state dependence (0.293) and proprietary hospitals are in the middle. 

Among the factors that influence the likelihood a hospital receive a reward, we find that teaching 

hospitals with large number of beds (>400), are less likely be rewarded; in terms of ownership, 

we find that voluntary non profit hospitals are more likely be rewarded; in terms of demographic 

factors, hospitals where the average household income are higher within the region are more 

likely be rewarded. 

The third essay studies the opposite of regulation—deregulation effect. Price regulation is 

common practice in drug markets with the hope of containing drug price from increasing too 

rapidly. In terms of drug price regulation, two mechanisms are commonly used: reference pricing 

and price cap. According to a report by WHO (2015), 24 of 30 OECD countries and 20 of 27 

European Union countries use the reference price regulation to control drug price. UK and China 
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adopted the price cap regulation system. But since pharmaceutical spending continues to grow 

despite of price regulation, recently there are many callings to de-regulate. Since June 1st, 2015, 

Chinese government decided to remove price cap regulation in pharmaceutical market and offers 

us an opportunity to study the effect of de-regulation. In this essay, I applied an Interrupted Time 

Series Analysis (ITSA) approach to study the effect of de-regulation of price cap in China`s 

pharmaceutical market. Data is obtained from Sinopharm Group, the largest distributor in 

China`s pharmaceutical market. A total of nine categories of drugs were analyzed and the results 

showed a clear pattern between industry HHI and revenue change of the drugs. The results 

showed that, whether the revenue of drugs will increase or decrease after the deregulation of 

price cap depends on the level of competition and the change of patterns of the branded and 

generic drugs are different. When HHI is sufficiently low (competition is high), revenue does not 

change as a result of deregulation, when HHI is moderately low (moderate competition), revenue 

from generic drugs will decrease significantly and revenue from branded drugs will increase 

significantly, when HHI is high (low competition), revenue from generic drugs will increase 

significantly and revenue from branded drugs will decrease significantly. 
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CHAPTER TWO:  

THE ROLE OF PATIENT SATISFACTION IN HOSPITALS` MEDICARE 

REIMBURSEMENTS 
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INTRODUCTION 

In 1998, the Institute of Medicine formed The Committee on Quality of Health Care in 

America aimed at developing a strategy for its improvement. This committee prepared two 

reports that have driven many of the changes in healthcare in the past two decades. The first 

report, “To Err Is Human: Building a Safer Health System” published in 2000, aimed at 

improving the safety of healthcare provided in the US. The second report published in 2001, 

“Crossing the Quality Chasm: A New Health System for the 21st Century,” outlined a 

framework for improving the quality of healthcare (Lindsay 2017). It highlighted the physician 

and hospital payment system as a big cause of quality problems in healthcare and a barrier to 

health reform. In the Medicare program, clinicians had perverse incentives to focus on doing 

more rather than doing better. Since this report, Centers for Medicare & Medicaid Services 

(CMS) has gradually moved in the direction of a more value-based pay-for-performance (P4P) 

system requiring hospitals to evaluate and demonstrate service delivery effectiveness (Lee et al. 

2017).  

In 2010, as a part of the Patient Protection and Affordable Care Act (ACA) CMS 

introduced the Hospital Value-Based Purchasing (HVBP) program. It connected the Medicare 

payment system directly to patient care delivery and perceived quality measures. The program's 

purpose was to reduce cost and improve healthcare quality. To do so, Medicare imposed 

reimbursement penalties or provided reimbursement bonuses based on a hospital’s annual quality 

measures and actual healthcare outcomes in prior years (Lee et al. 2017). It went into effect in 

fiscal year 2013 and is mandatory for all acute-care hospitals, public and private, in the US 

except hospitals in Maryland which operate under a different all-payer model. Under HVBP 
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program, Medicare withholds a percentage of its reimbursements (starting with 1 percent in 2013 

and increasing by a quarter percent each year to reach the target of 2 percent in 2017) from 

hospitals that do not perform well on a set of pre-specified healthcare quality measures. 

Hospitals that do perform well receive reimbursement bonuses. It is a budget-neutral program 

such that the total amounts of the rewards and penalties are equal. In 2018, the HVBP funding 

pool held an estimated $1.9 billion. (Lee et al. 2017).  

Over the years, the program’s emphasis gradually shifted from process-based quality 

measures toward outcome-based quality measures. In the first year of HVBP 70 percent of the 

measures were process measures, whereas now it rewards or penalizes hospitals based on their 

performance on multiple domains of care, including clinical processes, clinical outcomes (i.e., 

30-day mortality rate), cost efficiencies (i.e., cost per discharge), and patient satisfaction 

(Figueroa et al. 2016b). The evidence for effectiveness of this program in improving the 

specified quality measures is mixed.  

Patient satisfaction, which carries a weight of 25 percent in the HVBP payment formula, 

is obtained from the Hospital Consumer Assessment of Healthcare Providers and Systems 

(HCAHPS) survey, which is the first national, standardized, publicly reported survey of patients’ 

experience of hospital care. Although inducted into the HVBP program in 2012 only, the survey 

data have been collected since 2006 and publicly reported since 2008 (Tefera, Lehrman, and 

Conway 2016).  

The HCAHPS survey asks patients about their recent hospital stay and attempts to score 

their overall experience and eight specific dimensions of their experience of care. One of these 

dimensions is patient perception of the quality of pain care during hospitalization. Research has 

shown that managing patient expectations about pain during and after surgical procedures can 
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reduce patients’ distress, reduce the number of signs and symptoms, and improve their functional 

status. It can also result in positive emotional outcomes for patients such as a decrease in anxiety 

and depression and an increase in a sense of well-being (Glowacki 2015). However, many 

healthcare providers expressed concern about the questions on pain management in the survey 

saying that these questions wrongly equated pain management with prescription of a painkiller 

(Lowes 2016).1 They reported feeling pressured to prescribe opioids to boost their hospital's 

survey scores and, in turn, their hospital’s reimbursements. The American Hospital Association 

was among several prominent healthcare associations asking CMS to stop considering pain 

management questions in the HCAHPS survey when calculating payments under HVBP program 

(Dickson 2016). According to this school of thought incentivizing aggressive pain management 

has contributed to the overprescribing of opioids in the US and to the country’s larger struggle 

with opioid addiction and overdose (Hall Render 2016).  

In response to these concerns and to remove any perceived incentives of prescribing 

opioids, in July 2016 CMS announced that pain management questions of the HCAHPS survey 

will no more be considered in HVBP calculation. CMS has however stressed that robust pain 

control is an appropriate part of routine inpatient care and it is conducting research to see if the 

HCAHPS survey is indeed associated with the opioid epidemic. Depending on the findings, it 

may develop new questions to bring back pain dimension in HVBP calculation in future (Hall 

Render 2016).   

In this paper, we utilized analytics tools to study the effectiveness of HVBP program at 

improving patient satisfaction. Most of the existing studies in this domain fail to account for 

wide heterogeneity of more than three thousand HVBP hospitals when comparing them to a 

small control group of less than fifty non-HVBP hospitals in Maryland. Furthermore, a large 
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number of studies depend on one year of data only to observe changes in quality measures. We 

address both these limitations by collecting data over multiple years and employing propensity 

score matching to obtain a matched treatment group of HVBP hospitals before comparing them 

with the control group of hospitals in Maryland.  

We integrated multi-year data from six diverse publicly available large data sources: 

patient satisfaction data from Hospital Compare database of CMS, clinical measures and clinical 

outcomes data from Medicare website, cost efficiency data from Hospital Inpatient Prospective 

Payment System (IPPS) of CMS, hospital characteristics from CMS Impact Files, and 

demographic data from the 2010 US census. Then we utilized difference-in-difference estimation 

framework to see if HVBP program actually led to improvement in patient satisfaction at the 

treatment group of hospitals compared with control group of hospitals. Our findings show that 

the only dimension of patient satisfaction that showed significant improvement is patient 

experience with pain management during hospitalization. After removal of this measure from 

penalty and bonus calculation, the HVBP program is essentially rendered ineffective at 

improving patient satisfaction, which is one of the key goals of the program.  

We suggest two divergent paths for CMS to address this. Either CMS should again start 

including pain management in the HVBP payment formula. To address the potential association 

between these questions and opioid prescriptions, it should separately track opioid prescriptions 

at each hospital. Alternatively, CMS should completely remove patient satisfaction measures 

from HVBP program. Doing so will allow hospitals to focus their resources and attention back 

on clinical processes and outcomes. It will also deliver cost savings for CMS by getting rid of 

administering the survey and gathering responses from more than three million patients every 

year. 
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BACKGROUND 

Hospital Value-Based Purchasing (HVBP) Program 

CMS took the next step in these efforts in 2010. As a part of the Affordable Care Act 

(ACA), it introduced the Hospital Value-Based Purchasing (HVBP) program to improve 

healthcare quality and reduce costs. The program went into effect in fiscal year 2013 and is 

mandatory for all acute care hospitals, public and private, in the US except hospitals in 

Maryland, which operate under a different all-payer model. In this program, Medicare imposes 

reimbursement penalties or provides reimbursement bonuses based on a hospital’s performance 

on a set of pre-defined quality measures. Medicare withholds a percentage of its reimbursements 

(starting with 1 percent in 2013 and increasing by a quarter percent each year to reach the target 

of 2 percent in 2017) from hospitals that do not perform well and distributes this money as 

performance bonus to hospitals that perform well on its quality measures. Hence, it is intended to 

be a budget-neutral program.  

The Total Performance Score (TPS), which is used as the basis for calculation of 

reimbursement bonus or penalty, comprises four dimensions of healthcare delivery: clinical 

processes, clinical outcomes (i.e., 30-day mortality rate), cost efficiencies (i.e., cost per 

discharge), and patient satisfaction. Half of the score is based on clinical measures with clinical 

outcomes contributing 40 percent to the total score and clinical processes contributing 10 

percent. The rest of the score is obtained equally from cost efficiency and patient satisfaction 

(i.e., patient experience of care) with both contributing 25 percent each. Whereas other 

dimensions of care delivery are objective, patient satisfaction is obtained from a survey named 

the Hospital Consumer Assessment of Healthcare Providers and Systems (HCAHPS). The 

survey is composed of 32 questions and is administered to a random sample of adult inpatients 
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between 48 hours and 6 weeks after discharge from short-term, acute care hospitals (Tefera and 

Lehrman 2017). It is the first national, standardized, publicly reported survey of patients’ 

experience of hospital care. Each hospital in the program gets two sets of scores on each of the 

four dimensions – one for achievement (hospital’s own performance compared with the 50th 

percentile of all hospitals’ performance) and one for improvement (hospital’s performance 

compared with its own performance in the previous period). The higher of the two scores on 

each dimension is utilized in the calculation of TPS which is a weighted average of the four 

dimensions.  

Inclusion of patient experience of care or patient satisfaction has led to a vigorous debate 

in the industry. Advocates for inclusion of patient satisfaction contend that it measures critical 

components of care that only patients can report, such as whether pain was addressed effectively 

or if patients received clear communication from physicians and nurses. This makes it an 

essential measure of how well a health care system functions. In an industry where the patient 

should be the primary focus, the content of their experiences can help clinicians to better 

mobilize around their needs. This builds trust in the healthcare system from the perspective of 

the patient and promotes collaborative practices between clinicians and patients (Chatterjee et al. 

2015). Prior studies in multiple healthcare settings have shown that poor patient satisfaction with 

the health care system is associated with slower recovery from illness and a lower likelihood of 

compliance with prescribed treatment regimens. Consequently, suboptimal patient experience 

has important implications not only for the health of patients but also for health care costs, which 

increase when patients use more health care services because of poor recovery and non-

compliance (Chatterjee et al. 2012). When patients have a better experience, they are more likely 
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to comply with treatments, return for follow-up appointments, and engage with the healthcare 

system by seeking appropriate care (Chatterjee et al. 2015).  

Critics of including patient satisfaction in HVBP program argue that doing so is driving 

physicians to focus on the wrong priorities whereby hospitals end up behaving as hotels. Using 

patient satisfaction as a metric shifts provider attention away from delivering technically 

effective care to fulfilling patient expectations and demands (Chatterjee et al. 2015). By 

conflicting with the clinical practice guidelines higher patient satisfaction, in fact, may be 

associated with a higher rate of inpatient admissions, higher overall healthcare costs, and 

increased mortality. For example, providing a prescription may result in a satisfied patient but 

increase the cost of care and may contribute to ills such as antibiotic resistance and opioid crisis 

(Lindsay 2017).  

Pain Management under HVBP and the Opioid Crisis 

Within the broad criticism of including patient satisfaction, one item in particular has 

come under harsh scrutiny. The HCAHPS survey asks patients about their recent hospital stay 

and attempts to score nine dimensions of the experience of care they received. One of these 

dimensions is patient perception of the quality of pain management care during hospitalization.  

In 2016, approximately 100 million people suffered from pain in the US out of which 9 to 

12 million complained of chronic pain. Others reported short-term pain from injuries, diseases, 

or medical procedures (Stoicea et al. 2019). Not managing patient expectations about pain during 

and after surgical procedures can result in poorer clinical and psychological outcomes for the 

patients. Patients in pain also have negative perceptions of healthcare they receive. Egbert et al. 

(1964) reported that patients who received pain education required 50 percent fewer narcotics 
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during hospitalization and were discharged sooner than patients who did not receive pain 

education (cf. Glowacki 2015).  

In 1996 the American Pain Society labeled pain as the “fifth vital sign” and developed a 

national quality improvement program emphasizing measurable patient outcomes of effective 

pain management such as decreased length of stay, reduced hospital costs, and increased patient 

satisfaction (Glowacki 2015). In 2000, the Joint Commission on Accreditation of Healthcare 

Organizations released new pain management standards that asserted that pain control was a 

patient’s right, highlighted it as a perceived gap in clinician education and training, encouraged 

an aggressive approach to pain assessment, and emphasized safe pain management (Chidgey et 

al. 2019). The commission established that both acute and chronic pain were major causes of 

patients’ dissatisfaction in the US health care system (Glowacki 2015).  

In 2010, the HVBP program instituted reforms that included financial incentives for 

higher patient satisfaction scores. Patient satisfaction is strongly associated with their 

perspectives on management of signs and symptoms of their condition. They are more likely to 

experience dissatisfaction if they perceive a lack of validation in their pain experience or 

negative attitudes from their providers (Glowacki 2015). The HCAHPS survey contained three 

questions focused on pain management. Some physicians expressed concern that the questions 

wrongly equated pain management with prescription of a painkiller (Lowes 2016). These 

questions placed pressure on hospital staff to prescribe more opioids in order to achieve higher 

scores on the survey (Hall Render 2016). Furthermore, patients complete the survey during a 

time when many are filling post-discharge opioid prescriptions. This timing could also 

inadvertently incentivize providers to overprescribe opioids after discharge to ensure satisfactory 

ratings (Lee et al. 2017). Although pain management may constitute only a small part of the 
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survey but respondents do not necessarily separate out with which piece of the experience they 

were unhappy. If they were in pain and the hospital did not give them a painkiller despite their 

request, they may conclude that the hospital did not take good care of them. This can affect their 

responses to the whole HCAHPS survey (Tefera and Lehrman 2016). Thus, many physicians 

said they felt pressured to overprescribe opioids to boost their hospital's survey scores and, in 

turn, their hospital's reimbursements.  

The Opioid Crisis 

The current opioid crisis started taking shape in the 1990s. From the late 1990s until 

2012, opioid prescriptions written each year in the US steadily rose to an annual peak of 225 

million (Chidgey et al. 2019). Centers for Disease Control and Prevention reports that deaths 

attributable to prescription opioids more than tripled in the US during the 1999-2014 period 

(Dickson and Blesch 2016; Jena et al. 2016). Around 6 percent of the US population (15 to 64 

years old) reported some type of opioid abuse in 2015, and more than 42,000 people died of 

opioid overdose in 2016 alone (Stoicea et al. 2019; Volkow et al. 2019).  

Prescribing opioids at the time of discharge from an acute hospitalization represents an 

important but under-described potential avenue through which patients may develop long-term 

use of opioids. Use of opioids during and shortly after hospitalization is warranted in some 

clinical settings such as in patients undergoing surgery. Opioids are “powerful pain-reducing 

medications” which administered at appropriate doses are effective at not only eliminating pain 

but also further preventing its recurrence in long-term recovery scenarios (Stoicea et al. 2019). 

Failure to appropriately manage pain in such cases may delay discharge from the hospital, 

interfere in postoperative rehabilitation, and in general adversely affect patient’s quality of life. 
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However, use of opioids is also associated with both short- and long-term risks including 

developing dependence (Jena et al. 2016).  

Opioid overprescribing has been frequently identified as a major cause of the current 

opioid crisis (Chidgey et al. 2019). Overprescribing has been attributed to misinformation and 

outside pressure from both pharmaceutical companies and accreditation bodies such as the Joint 

Commission on Accreditation of Healthcare Organizations. Caught between regulatory 

requirements aimed at eliminating pain and aggressive marketing campaigns along with a shift in 

cultural beliefs about pain control, physicians became unwitting accomplices in the opioid crisis 

(Chidgey et al. 2019). In fact, the Promoting Responsible Opioid Prescribing Act of 2016 

suggested that the pain management measure in HCAHPS survey could have incentivized both 

greater inpatient use of opioids and the prescribing of opioids at the time of discharge (Jena et al. 

2016).  

Another school of thought believes the evidence on the link between the HCAHPS 

survey and opioid prescription is inconclusive. For example, a study conducted in Michigan 

found no correlation between postoperative opioid prescribing and scores on HCAHPS pain 

measures (Lee et al. 2017). A coalition that included several pain-medicine societies such as the 

American Pain Society and the American Academy of Pain Medicine lobbied the CMS to retain 

the three questions; at least until better ones were drafted. They warned that in the absence of any 

conclusive evidence, eliminating pain-related questions would be a step back in proper pain 

management. It would deprive researchers of valuable data that could improve pain management 

(Lowes 2016).  

CMS also offered defense of its decision to include patient perception of pain 

management in HCAHPS survey, and consequently in HVBP program. Historical data shows 
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that the sharp increase in opioid prescription in mid-1990s coincided with the conceptualization 

of “Pain as the 5th Vital Sign” by the American Pain Society, and pharmaceutical industry’s 

campaign to falsely detail opioid prescribing as safe, reasonable, and effective for chronic pain 

while downplaying the risks of opioid dependence, abuse, and overdose. The crisis thus began 

years before the HCAHPS Survey was launched in 2006. There is no noticeable acceleration in 

opioid prescription in 2006 or in 2008, when public reporting of hospital scores started (Tefera 

and Lehrman 2017).  

Regarding the use of HCAHPS survey, CMS is not aware of any empirical evidence that 

physicians prescribe opioids to inpatients with an intention to obtain better scores on the pain 

management questions, or patients who receive opioids rate their hospital experience more 

positively than those who do not (Tefera and Lehrman 2016). Nothing in the survey suggests that 

opioids are a preferred way to control pain. In fact, good nurse and physician communication, a 

critical issue from the patient perspective, are strongly associated with better HCAHPS scores 

(Tefera, Lehrman, and Conway 2016). There is no evidence that experience with pain 

management dominates patients’ overall assessment of their hospital experience. Moreover, the 

way HCAHPS survey contributes to HVBP makes the pain management dimension negligible as 

far as its impact on the overall payment to the hospital – it is one of the eight equally weighted 

dimensions of patient satisfaction and determines less than one-tenth of one percent of total 

payment to the hospital (Tefera and Lehrman 2016). In fact, patients diagnosed with substance 

abuse disorders are not included for the scoring of HVBP (Dickson and Blesch 2016).  

Nonetheless, bowing to consistent criticism from healthcare providers, in July 2016 CMS 

announced the pain management questions of the HCAHPS survey will not be considered in 

HVBP to remove any perceived incentives of prescribing opioids. Given the complexity of the 
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issue straddling two national challenges – of adequate pain management and opioid 

overprescribing – and the need for additional research, CMS will continue to survey patients 

about pain management and provide participating hospitals with valuable patient feedback. 

However, these pain dimension results are not a part of the HVBP calculation (Tefera and 

Lehrman 2017).  

Empirical Evidence for Effectiveness of HVBP program 

HVBP program was instituted with an intention to improve healthcare outcomes and 

patient experience and reduce costs. However, evidence about the effectiveness of the program 

to achieve these goals is mixed.  

A study comparing data in HCAHPS surveys in 2008 and 2009 found improvements in 

all measures in patient experience except doctors’ communication (Elliott et al. 2010). Staff 

responsiveness and whether patients received discharge information saw the largest 

improvements. Westbrook et al. (2014) used factor analysis to show that all dimensions of 

HCAHPS survey except discharge information significantly influenced patient satisfaction. 

However, the study was based on data from two hospitals only. A study using difference-in-

difference estimation methodology found that participating hospitals did not show significant 

improvement in any of the quality measures (Ryan et al. 2015). Some studies have compared 

participating hospitals in HVBP program with various control groups to see if the program made 

a relative difference in the quality of healthcare they deliver. A study comparing the participating 

hospitals to critical-care hospitals and hospitals in Maryland (these two categories of hospitals 

are not required to participate in HVBP) found no improvement in clinical outcomes as measured 

by 30-day mortality rates (Figueroa et al. 2016a). Another study comparing the participating 

hospitals to critical-care hospitals found no significant differences in the improvement in clinical 
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processes and patient experience across the two groups (Ryan et al. 2017). Papanicolas et al. 

(2017) found only moderate improvement in patient experience among HVBP hospitals but even 

this improvement had occurred mostly before the intervention period.  

Several other studies have compared groups of hospitals based on some underlying 

characteristics and demonstrated that while one group shows an improvement the other does not. 

For example, Jha et al. (2008) found substantial differences in the patients’ experiences across 

different geographical regions which they attributed to the style of caregiving and organizational 

leadership. A study using data from 2009 to 2011 found that hospitals catering largely to older 

white female patients who underwent relatively fewer procedures did better under the program 

(Johnston et al. 2015). These hospitals were predominantly non-teaching smaller urban hospitals 

owned by the government or religious organizations. Another study comparing penalty or reward 

status of safety net hospitals’ with other hospitals’ using data from year 2014 found that safety-

net hospitals were more likely to be penalized under the HVBP program (Gilman et al. 2015; 

Joynt, Zuckerman, and Epstein 2017).  

A large number of these studies suffer from two limitations that could have biased their 

results. First, a number of them used data for a single year only which is not sufficient to capture 

the evolving dynamics in processes and outcomes of healthcare quality. Multiple years of data 

are required to capture any improvement. Second, most studies do not account for heterogeneity 

in HVBP hospitals when comparing them to a small control group of hospitals. Comparing more 

than three thousand hospitals under HVBP, which have a broad range of unique hospital and 

geo-locational characteristics with a small group of less than fifty hospitals all of which are 

located in Maryland can lead to biased results. Ideally, one should first obtain a matching sample 

of treatment group (i.e., hospitals participating in HVBP) before comparing them with the 
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control group so that one can minimize the role of hospital characteristics in any changes in their 

healthcare delivery quality.  

In this study, we address both these limitations. We employ multiple years of data for 

model estimation and use propensity score matching to obtain a matched treated group of HVBP 

hospitals to compare with control group of hospitals in Maryland.  

METHODOLOGY 

Data 

Using analytics tools we integrated multi-year data from six diverse publicly available 

large data source: patient satisfaction data from HCAHPS, clinical measures and clinical 

outcomes data from Medicare website, cost efficiency data from Hospital Inpatient Prospective 

Payment System (IPPS) of CMS, hospital characteristics from CMS Impact Files, and 

demographic data from the 2010 US census.  

Main variables of interest related to patient satisfaction in HCAHPS survey are obtained 

from the Hospital Compare data from years 2011 to 2015 available at CMS website. All short-

term, acute-care, non-specialty hospitals including hospitals in Maryland are required to 

participate in the survey. The survey is a 27-item tool administered after discharge to a random 

sample of adult inpatients, creating standardized, publicly reported measures that allow fair 

comparisons of patient experience in hospitals across the nation. The 9 HCAHPS measures 

derived from the survey reported on the Hospital Compare website assess physicians’ and 

nurses’ quality of communication, responsiveness of hospital staff to patient needs, quality of 

pain management, communication about medication, required information at the time of 

discharge, cleanliness and quietness of patient rooms, and overall rating (Lindsay 2017). The 

survey is administered by hospitals or their contracted vendors who send the data to the CMS, 
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which validates, analyzes, and publicly reports the results. The scores that CMS reports reflect 

hospital-level patient experience during a 12-month period (Tefera and Lehrman 2017). The 

survey is widely used with more than 31,000 patients across 4,100 participating hospitals every 

day. After removal of ineligible patients, the survey has a 30 percent response rate that translates 

to 8,500 surveys completed daily. Meta-analyses have established that there is no nonresponse 

bias in the survey. Because HCAHPS adjusts for patient characteristics, the data provide 

statistically valid results that may help inform patient’s choice of hospital and drive quality 

improvement at the hospital level. The official HCAHPS scores reported on the CMS Hospital 

Compare website are based on 3.1 million completed surveys each year (Tefera, Lehrman, and 

Conway 2016).  

We obtained clinical measures and clinical outcomes data from Medicare website 

(medicare.gov). The dataset named “Complications and Deaths – Hospital” provides clinical 

outcomes as evaluated by the HVBP program – 30-day mortality rates for pneumonia, heart 

attack, and heart failure patients. The dataset named “Hospital Value-Based Purchasing (HVBP) 

– Clinical Care Domain Scores” provides clinical process scores.  

Cost efficiency data are obtained from Hospital Inpatient Prospective Payment System 

(IPPS) of CMS. It provides a summary of hospital overall cost and total number of discharges 

from which cost per discharge was calculated.  

Characteristics of hospitals such as the number of beds, the number of employees, 

resident-to-bed ratio, case mix index, number of discharges, and locational data are obtained 

from CMS Impact Files. According to CMS, the impact files are “generally prepared in the 

summer preceding the Federal fiscal year and are based on the best data available at the time. 
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The files are used in estimating payment impacts of various policy changes to the IPPS proposed 

and finalized in the Federal Register.”  

Demographic data were obtained from the 2010 US census available at census.gov and 

matched with each hospital by 10-mile radius within the zip code.  

To evaluate the effectiveness of HVBP program while also overcoming the limitations of 

existing research as mentioned earlier, we took several steps. We obtained data from 2011 to 

2015, which was the last full year before CMS announced that pain management questions 

would no longer be used in HVBP calculations. Using multiple years of data allow us to capture 

improvement in various quality measures.  

Propensity Score Matching 

We used propensity score matching to obtain a matched treated group of HVBP hospitals 

to compare with control group of hospitals in Maryland.   

Previous research has shown that various measures of hospital performance may be 

correlated with such factors as hospital characteristics and socio-economic characteristics in 

hospital’s vicinity. For example, patients of different races or ethnicities tend to rate their 

satisfaction level toward a hospital very differently (Weech-Maldonado et al. 2003). Even 

aggregate patient characteristics such as gender, household income, and health status 

significantly affect the satisfaction rating of hospitals (Haviland et al. 2005; Weech-Maldonado 

et al. 2003). Clinical outcome measures such as mortality rates have been shown as significantly 

higher at for-profit hospitals (Hartz et al. 1989) and at major teaching hospitals while 

significantly lower at large urban hospitals (Keeler et al. 1992). Thus, comparing all the HVBP 

hospitals, which are heterogeneous with respect to these characteristics, with a small 

geographically concentrated control group can lead to biased findings.  
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We used hospitals in Maryland as a control group because Maryland does not participate 

in HVBP program. The Medicare waiver (codified in Section 1814(b) of the Social Security Act) 

exempted Maryland from the Inpatient Prospective Payment System (IPPS) and Outpatient 

Prospective Payment System (OPPS) and allowed it to set rates for these services. Given the 

long-standing Medicare waiver for its own rate setting system, Maryland`s hospitals are 

exempted from the Medicare VBP program and operate on all-payer hospital rate regulation 

system. It thus allows for the most obvious choice as a control group for the purpose of 

comparison.  

We used nearest-neighbor propensity score matching to obtain a group of HVBP 

hospitals comparable to hospitals in the control group. To avoid problem of endogeneity, we 

based this matching on a set of characteristics that are not subject to change due to participation 

in the HVBP program. These included hospital ownership (government owned, voluntary non-

profit, or proprietary), geo-location (large urban, other urban, or rural) and socio-economic 

characteristics within 10 mile radius of the hospital (white population, black population, 

Hispanic population, number of males and females, and average household income).  

The dataset contains 45 hospitals from Maryland. However, five hospitals did not meet 

the minimum data requirement established by CMS for valid results; CMS requires a minimum 

of 100 surveys from patients of a hospital to report clinical quality measures. Five hospitals did 

not pass this threshold hence we used the remaining 40 hospitals in Maryland as our control 

group. We employed one-to-one nearest neighbor matching to form a treatment group of 40 

HVBP hospitals. As figure 2.1 shows, overlap of control group’s propensity scores is 

significantly better with scores of matched treated group of HVBP hospitals than with scores of 

all HVBP hospitals.  
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 [----------Figure 2.1 about here----------] 

Figure 2.2 presents the comparison between the three groups of hospitals from 2011 to 

2015 on clinical outcomes (30-day mortality rates), cost efficiency (cost per discharge), clinical 

process (conformance quality), and three dimensions of patient satisfaction namely overall 

experience, nurse communication, and pain experience. This comparison clearly demonstrates 

the bias that can afflict findings from studies comparing all the HVBP hospitals to a control 

group of hospitals.  

 [----------Figure 2. 2 about here----------] 

Table 2.1 presents a detailed comparison of various characteristics of both treatment and 

control groups as well as all HVBP hospitals in FY 2011. This comparison further validates the 

importance of obtaining a matched group of hospitals before making the comparison with a 

control group of hospitals. Obtaining a matched treated group using propensity scores can help 

reduce the selection bias and strengthen causal arguments.  

 [----------Table 2.1 about here----------] 

 Model Estimation and Results 

We perform a difference-in-difference estimation for the effectiveness of HVBP program 

using the data on 40 hospitals each from treated group and control group. We specify the 

following model:  

𝒚𝑖𝑡 = 𝛼𝑖 + 𝜆𝑡 + 𝛽𝐷𝑖𝑡 + 𝜂𝒖𝑖𝑡 + 𝑒𝑖𝑡 

 

where  

𝒚𝑖𝑡 is a vector of the average score of each performance measure for hospital i at time t,  

𝐷𝑖𝑡 is a dummy variable that equals 1 if time is after the institution of HVBP program (i.e., 
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after 2013) and the hospital participates in the HVBP program, 0 otherwise,  

𝛽 is the coefficient for the 𝐷𝑖𝑡 which indicates if there is a significant difference in the 

performance measures of hospitals belonging to two groups after the institution of the program,  

𝒖𝑖𝑡 is a vector of characteristics for each hospital i at time t controlled for in the model,  

𝛼𝑖 is the hospital unit fixed effects, 

𝜆𝑡 is the time fixed effects, 

𝑒𝑖𝑡 is the error term.  

We estimated this model to compare both the matched group of HVBP hospitals as well 

as the entire set of all HVBP hospitals with the control group. Results from both estimations 

show that patient perception of pain management is the only quality measure that showed 

consistent significant improvement in HVBP hospitals (βMatched = 1.46; p < .01 and βAll = .77; p 

< .05) (see table 2.2). There is no significant difference in any other quality measure across the 

two groups of hospitals in matched samples. 

 [----------Table 2.2 about here----------] 

Overall, our results suggest that out of four broad quality measures utilized in HVBP 

there was no significant improvement in clinical processes, clinical outcomes, or cost efficiency 

when compared with control group of hospitals located in Maryland which did not participate in 

the program. In patient satisfaction too, the only factor that showed significant improvement was 

patient perception of pain management during hospitalization.  

Sensitivity Analysis 

    The key assumption behind diff-in-diff framework is: In the absence of treatment, the 

average change in the response variable would have been the same for both the treatment and 

control groups (parallel trends). As is pointed out by Ashenfelter (1978), one concern in diff-in-
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diff study is that, there is often a “dip” in outcomes (earnings, employment, etc.) in the period 

before the treatment. For example, people lose their jobs just before joining the treated group and 

the people in the control group don`t. A pre-treatment “dip” or “trend” that is special to the 

treated units would lead to biased estimates. To test this, I applied the method used by Autor 

(2003) by estimating treatment impacts at the timings before real treatment happens (including 

leads in the estimation framework), if the treatment effect is significant in previous years, it 

shows that there is a slope change for the units that are about to become treated and it is a sign of 

violation of the parallel trends assumption (sometimes called a modified “Granger Causality” 

test). Another extension I made here is to include lags of treatment. Lags are included to analyze 

whether the treatment effect changes over time after treatment. 

     

𝒚𝑖𝑡 = 𝛼𝑖 + 𝜆𝑡 + 𝛽−1𝐷𝑖,𝑡−1 + 𝛽𝐷𝑖𝑡 + 𝛽1𝐷𝑖,𝑡+1 + 𝜂𝒖𝑖𝑡 + 𝑒𝑖𝑡 

where  

𝒚𝑖𝑡 is a vector of the average score of each performance measure for hospital i at time t,  

𝐷𝑖𝑡 is a dummy variable that equals 1 if time is the institution of HVBP program (i.e., 2013) 

and the hospital participates in the HVBP program, 0 otherwise,  

𝐷𝑖,𝑡−1 is a dummy variable that equals 1 if time is one year before the institution of HVBP 

program (i.e., 2012) and the hospital participates in the HVBP program, 0 otherwise, 

𝐷𝑖,𝑡+1 is a dummy variable that equals 1 if time is one year after the institution of HVBP 

program (i.e., 2014) and the hospital participates in the HVBP program, 0 otherwise, 

𝛽 is the coefficient for the 𝐷𝑖𝑡 which indicates if there is a significant difference in the 

performance measures of hospitals belonging to two groups after the institution of the program,  

𝛽−1 is the coefficient for 𝐷𝑖,𝑡−1 which indicates if there is a significant difference in the 
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performance measures of hospitals belonging to two groups one year before the institution of the 

program (sign of violation of the parallel trend assumption),  

𝛽1 is the coefficient for 𝐷𝑖,𝑡+1 which indicates if there is a significant difference in the 

performance measures of hospitals belonging to two groups one year after the institution of the 

program, 

𝛼𝑖 is the hospital unit fixed effects, 

𝜆𝑡 is the time fixed effects, 

𝒖𝑖𝑡 is a vector of characteristics for each hospital i at time t controlled for in the model, and 

𝑒𝑖𝑡 is the error term.  

We estimated this model to compare the matched group of HVBP hospitals with the control 

group. Results from estimations show that the estimation of patient perception of pain 

management is valid (𝛽−1 is not significant). 

[----------Table 2.3 about here----------] 

Robustness Check 

We tested for the robustness of our findings by obtaining matched groups of HVBP 

hospitals using other propensity score matching methods and re-estimating our models using 

these matched groups. The nearest neighbor matching method is a “greedy” method, in which the 

closest control unit for each treated unit is chosen one at a time, without trying to minimize the 

global distance measure. Hence, one could argue that the matched group of hospitals may still 

differ significantly from the control group in underlying characteristics.  

We used two other propensity score matching methods – optimal matching and genetic 

matching – to obtain matched group of hospitals and re-estimated our model. Optimal matching 

method locates the matched units with the smallest average absolute distance across all the 
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matched pairs. It can be particularly useful when there may not be an appropriately matched 

control unit for a treated unit. Genetic matching, on the other hand, is a general multivariate 

matching method that automates the process of finding a good matching group. It is a 

generalization of propensity score and Mahalanobis distance matching. The idea is to use a 

genetic search algorithm to find a set of weights for the covariates to maximize the balance 

between matched treated and control units. The main advantage of this method is that it 

optimizes covariate balance directly. We used the same set of characteristics as in nearest 

neighbor method to match the groups in optimal and genetic matching too. Next, we used the 

two matched treated groups along with the control group of hospitals in Maryland to repeat 

difference-in-difference analysis using the same set of covariates. The results shown in table 2.4 

are consistent in showing that the only measure that significantly differs between the two groups 

is patient perception of pain management.  

 [----------Table 2.4 about here----------] 

CONCLUSION 

    In 2010, as a part of the Patient Protection and Affordable Care Act (ACA) CMS 

introduced a pay-for-performance system called Hospital Value-Based Purchasing (HVBP) 

program. The purpose was to reduce costs and improve healthcare quality by linking the 

Medicare payment system directly to a pre-defined set of quality measures. It went into effect in 

fiscal year 2013 and covered all acute-care hospitals except those in Maryland. The program 

calculates each hospital’s bonus or penalty based on their performance on four domains of care: 

clinical processes, clinical outcomes (i.e., 30-day mortality rate), cost efficiency (i.e., cost per 

discharge), and patient satisfaction. Patient satisfaction, which carries a weight of 25 percent in 

the formula, is obtained from the HCAHPS survey. Besides other dimensions of patient 
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satisfaction, this survey captures patient experience with pain management during 

hospitalization. This pain management dimension has come under criticism because some 

physicians have reported feeling pressured to prescribe opioid painkillers to boost their hospital's 

survey scores and, in turn, their hospital’s reimbursements. This is thought to have contributed to 

the overprescribing of opioids in the US and, consequently, to the opioid crisis. In response to 

this criticism and to remove any perceived incentives of prescribing opioids, in July 2016 CMS 

announced that pain management questions of the HCAHPS survey will no more be considered 

in HVBP calculation.  

In this paper, we studied the effectiveness of HVBP program at improving patient 

satisfaction. Using analytics tools we collected data over multiple years and employed propensity 

score matching to obtain a matched treatment group of HVBP hospitals to compare with the 

control group of hospitals in Maryland. Then we utilized difference-in-difference estimation 

framework to see if HVBP program actually led to improvement in patient satisfaction at the 

treatment group of hospitals compared with control group of hospitals. Our findings show that 

the only dimension of patient satisfaction that showed significant improvement is patient 

experience with pain management during hospitalization. In fact, other components of the 

payment formula – clinical processes, clinical outcomes, and cost efficiency – also showed no 

significant improvement under HVBP program. These findings are broadly consistent with a 

number of other studies that have failed to show any improvement in quality measures after 

HVBP introduction.  

After removal of this measure from penalty and bonus calculation, the HVBP program is 

essentially rendered ineffective at improving patient satisfaction, which is one of the key goals of 

the program. We suggest two divergent paths for CMS to address this. Either CMS should again 
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start including pain management in the HVBP payment formula. In fact, the redesigned pain 

management questions that CMS used in 2019 seem suitable for re-inclusion in the formula: they 

have no apparent link to prescription of a painkiller.2 This change can remove any perceived 

pressure on the physicians to prescribe opioids and allow them to choose the best option for a 

patient in their particular situation. That best option may be non-pharmaceutical, a non-opioid 

pharmaceutical, or even an opioid (Tefera and Lehrman 2016). Additionally, to lay at rest any 

potential suspect association between even these new questions and opioid prescriptions, CMS 

should separately track opioid prescriptions at each hospital. Given that the rates of fatalities due 

to opioid overdose vary markedly by state (Volkow et al. 2019), a one-size-fits-all decision of 

removing pain management anyway may not be optimal.  

Alternatively, CMS should completely remove patient satisfaction measures from HVBP 

program. Doing so will allow hospitals to focus their resources and attention back on clinical 

processes and outcomes. It will also deliver cost savings for CMS by getting rid of administering 

the survey and gathering responses from more than three million patients every year. Critics have 

argued that HVBP program lacks design features of a successful pay-for-performance program. 

It should be focused on a small number of high-value measures to motivate clinicians to engage 

in good practice and have a simple enough design for hospitals and clinicians to know how they 

are doing. The clinical outcomes and patient’s functional status are good choices for measures 

that can be included or retained in the payment formula (Jha 2017). Given its ineffectiveness at 

improving almost any health measure, HBVP should increase the stakes for hospitals by 

increasing the performance penalty/bonus amount to 5 to 10 percent of total Medicare payments 

of the hospital. That may be one way to focus hospital’s attention at improving health measures 

(Jha 2017).  
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FIGURES AND TABLES FOR CHAPTER TWO  

Table 2.1: Characteristics of Hospitals in Various Groups (FY 2011) 

 All HVBP 

Hospitals 

Matched HVBP 

Hospitals 

Control 

Group 

Number of hospitals 2912 40 40 

Avg. number of hospital beds  200 282 268 

Avg. number of hospital employees 1261 1835 1878 

Avg. number of hospital discharges 9638 17786 16240 

Percent of Medicare/Medicaid patients 49.5 54.2 53.5 

Number of White residentsa  17.39 14.14 14.91 

Number of Black residentsa  3.15 8.72 9.02 

Number of Hispanic residentsa  4.15 2.28 1.67 

Number of malesa  11.43 12.20 12.31 

Number of femalesa 11.94 13.03 13.31 

Avg. household income  44.90 55.92 55.89 

Median age of males 33.06 33.60 32.48 

Median age of females 35.38 35.85 34.84 

Teaching status .06 .07 .06 

Avg. case mix index 1.45 1.43 1.42 

Avg. overall patient experience score 70.6 69.6 66.1 

Avg. nurse communication score 77.2 74.2 73.8 

Avg. doctor communication score 80.2 78.4 77.4 

Avg. staff responsiveness score 64.3 59.7 57.3 

Avg. medicine explanation score 62.2 57.8 57.2 

Avg. pain management score 69.6 67.0 66.6 

Avg. discharge information score 84.5 79.7 82.3 

Avg. cleanliness score 71.1 69.1 64.7 

Avg. quietness score 58.5 55.6 55.1 

Avg. 30-day mortality rate 12.7 12.2 12.4 

Avg. cost per discharge 15441 15039 15279 

Avg. clinical quality score 95.5 96.6 94.5 
aValues are in thousands. 

  



 

31 

 

 

 

Table 2.2: Results from Difference-in-Difference Model Estimation 

 Matched HVBP Group 

vs Control Group 

 All HVBP Group 

vs Control Group 

Performance measure Coeff. S.E.  Coeff. S.E. 

Doctor communication .64 .42  .01 .03 

Nurse communication .93 .50  .36 .32 

Staff responsiveness .91 .71  1.04** .47 

Medicine explanation .67 .61  .31 .47 

Pain control 1.46*** .62  .77** .39 

Discharge information −.35 .47  −.34 .29 

Cleanliness 1.14 .76  .68 .45 

Quietness 1.31 .87  .69 .46 

Mortality rate −.03 .13  .07 .09 

Cost per discharge −385.32 430.57  773.94 13788 

Conformance quality .58 .64  1.06 1.07 

Note: ***p<0.01, **p<0.05 
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Table 2.3: Results from Sensitivity Analysis 

 Matched HVBP Group vs 

Control Group 

 

Performance measure 𝛽−1 𝛽 𝛽1 

Doctor communication  -.52      .71 .36 

 (.53)    (.52) (.56) 

Nurse communication    -.37                  .94  .08 

 (.62)     (.62) (.66) 

Staff responsiveness -.20 1.46 .53 

 (.86) (.85) (.91) 

Medicine explanation .28 .74 .63 

 (.90) (.90) (.96) 

Pain control    .13 1.76*  .42 

  (.78) (.78) (.83) 

Discharge information .006 -.14 -.68 

 (.59) (.59) (.63) 

Cleanliness -.15      .74 .76 

 (.96) (.95) (.1.01) 

Quietness -1.14      .13 1.14 

  (.85) (.85)  (.90) 

Mortality rate .30* .07 .05 

 (.13) (.13) (.14) 

Cost per discharge 386.76 390.37 28.8 

 (379.76) (378.72) (402.29) 

Conformance quality .13 .54 .25 

 (.60) (.61) (.61) 

Note: ***p<0.01, **p<0.05 

 

Table 2.4: Results from Difference-in-Difference Model Estimation Using Matched 

Treated HVBP Hospitals vs Control Group 

 

 Optimal 

Propensity Matching 

 Genetic 

Propensity Matching 

Performance measure Coeff. S.E.  Coeff. S. E. 

Doctor communication .05 .52  .29 .59 

Nurse communication .06 .59  .21 .65 

Staff responsiveness .46 .92  1.46 1.02 

Medicine explanation .38 .67  .22 .73 

Pain control 1.24*** .48  .90** .42 

Discharge information −.47 .75  −.1.08 .76 

Cleanliness −.08 .81  .78 .89 

Quietness −.32 .84  .58 .93 

Mortality rate .06 .08  −.05 .12 
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Cost per discharge 360.64 341.75  −373.51 372.76 

Conformance quality −.15 1.47  .75 1.62 

Note: ***p<0.01, **p<0.05 
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Figure 2.1: Propensity Scores Before and After Matching 

 

Notes:  

HVBP hospitals are the Treated group and Maryland hospitals are the control group.  

Raw Treated group includes all HVBP hospitals; Matched Treated group includes 40 HVBP 

hospitals obtained using propensity score matching.  
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Figure 2.2: Comparison of Quality Measures Between Maryland Hospitals, 

Matched HVBP Hospitals, and All HVBP Hospitals 
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MEASUREING STATE DEPENDENCE EFFECT IN HOSPITAL PAYMENT 

ADJUSTMENT 

  



 

41 

 

 

 

INTRODUCTION 

Since FY 2013, as a part of the Affordable Care Act (ACA) program, the Hospital Value-

Based Purchasing (HVBP) program adjusts Medicare`s payments to hospitals based on the total 

performance score of the hospital. First, the program reduces a portion of the hospital`s Medicare 

payments in a specific fiscal year and then by the end of the same fiscal year, the amount of the 

payment reductions will be awarded to the hospitals based on the total performance score, thus 

the hospitals that do not receive the reward will lose the portion of money reduced by Medicare. 

In this research, the authors apply the theory of state dependence and use the dynamic random 

effect probit model to estimate this effect. The results show that the hospital payment adjustment 

dynamics have a very significant state dependence effect (0.341), that means, hospitals that 

received a reward in previous year are 34.1% more probably to receive a reward this year than 

the ones that received a penalty in previous year. Meanwhile, I also find that the state 

dependence effect varies significantly across hospitals with different ownership 

(proprietary/government owned/voluntary nonprofit), the results show that voluntary nonprofit 

hospitals exhibit largest effect of state dependence (0.370), while government owned hospitals 

exhibit lowest effect of state dependence (0.293) and proprietary hospitals are in the middle. 

Among the factors that influence the likelihood a hospital receive a reward, I find that teaching 

hospitals with large number of beds (>400), are less likely be rewarded; in terms of ownership, I 

find that voluntary nonprofit hospitals are more likely be rewarded; in terms of demographic 

factors, hospitals where the average household income are higher within the region are more 

likely be rewarded. 

BACKGROUND 

State dependence effect, proposed by Heckman (1981), refers to the phenomenon that the 

realization of an event affects the probability that the same event occurring in the future, it can be 
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caused by two reasons. The first explanation is that, through experiencing a past event, certain 

behavior, for example, preference of a consumer, R&D investment of a firm, are altered. In this 

explanation, the past experience has a genuine behavioral effect that will lead the individual to 

behave differently as opposed to the same individual who has not experienced that event. 

Heckman termed this as “true state dependence” or “structural state dependence”. The second 

explanation is that, individuals may differ in unobserved factors (for example, lack of 

motivation, low level of capability) that affect their likelihood of experiencing an event (that has 

nothing to do with whether an individual has experienced that event in the past or not). Heckman 

termed this as “spurious state dependence”. In his paper, he also proposed a model to distinguish 

between the true state dependence and spurious state dependence. 

Heckman`s paper has aroused a lot of attention in economics, finance, health care and 

other areas. Researchers studied this effect in labor force participation, unemployment 

persistence and poverty/low pay persistence, dynamics of health, persistence of R&D 

investment, etc. I list some phenomenon regarding state dependence effect studied before in this 

literature part. 

Effect of the VBP Program 

Since the introduction of the CMS VBP program, it has aroused a lot of attention both 

from practioners and researchers about the impact of the program. However, the results are 

mixed, and the impact on different perspectives of the program are different. Ryan (2015) 

studied the early effects of the VBP program, using a diff-in-diff framework, he compared the 

hospital performance in terms of clinical quality and patient experience in 2012 with the baseline 

period 2011 and found that, hospitals that are impacted by the VBP program show no 

improvement in both dimensions (clinical quality and patient experience), he conclude that, in 
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the first implementation period (2011 to 2012), there is no improvement in hospital performance, 

the reason could be that, the low magnitude and complex design of financial incentive. However, 

this study suffers from the short study period (only 1 year), if the period is long enough, there 

could be more improvements in hospital performance. 

Figueroa (2016) studied the impact of VBP program on patient mortality of three 

conditions (acute myocardial infraction, heart failure and pneumonia) using a total of 4267 acute 

care hospitals in US, among them 1348 were not eligible to participate in the VBP program 

(critical access hospitals and hospitals in Maryland). He found that, for the hospitals that were 

impacted by the program, the mortality rates decreased at 0.13% and for the hospitals that were 

not impacted by the program, the mortality rates dereased at 0.14%. The difference between the 

mortality trend of the impacted and the non impacted hospitals was not significant. He concluded 

that, there is a lack of evidence for that the VBP program will lead to a lower mortality rate and 

he suggested alternative models to achieve a lower mortality rate. 

Ryan (2017) further studied the impact of the VBP program in the first four years since 

its introduction in terms of clinical quality, patient experience and mortality using a diff-in-diff 

framework, where the critical access hospital (not eligible to participate in the program) is used 

as a control group. The results show that the improvements on clinical care measures and patient 

experience measures were not significant comparing the hospitals exposed to the VBP program 

and the hospitals that are not exposed to the program. In terms of mortality rates, the reduction in 

mortality rate of heart failure or acute myocardial infarction is not significant, while the 

reduction in mortality of pneumonia is significant. 

Bonfrer (2018) did an observational study comparing hospitals that volunteered to 

participate in the Premier Hospital Quality Incentive Demonstration (PHQID, the pilot program 
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of VBP) and the hospitals whose incentives were implemented later in the VBP program. The 

sample of study include 214 hospitals that were impacted by the PHQID program since 2003 and 

975 matched hospitals that were impacted by the VBP program since 2013. Their results showed 

that, early adopters and late adopters of the program did not differ significantly in terms of 

clinical quality or mortality. They concluded that, being impacted for a longer time in the 

program did not likely make the hospitals perform better.  

Since the research on the effect of the VBP program largely show no or little 

improvements on hospital performance, researchers began to investigate why the VBP program 

is not effective, Markovitz (2017) reviewed the literature to assess whether area factors, 

organizational and structural factors play a role in hospital performance. Their results showed 

that, hospitals are not responding strategically to the incentives of the VBP program and the VBP 

program needs to increase the financial incentive while at the same time clarify the incentive 

structure. They also suggested that, although some heterogeneity across organization types may 

mask the main effect of the program, the variation is not sufficient enough to alter the conclusion 

that VBP program does not meet its original goal.  

State Dependence, Unemployment and Poverty  

A prominent example of the state dependence effect is unemployment persistence, 

whether past experience of unemployment affect the likelihood of future unemployment. Lynch 

(1985) examined the state dependence effect in youth unemployment and she found a significant 

state dependence effect that past unemployment duration has on future unemployment. She 

estimated that, a white male worker with mean values of expected income, given one week of 

unemployment, has a re-employment probability of 36.09% comparing with only 8.4% if this 

same individual has 10 weeks of unemployment experience. 
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Narendranathan, Wiji, and Peter Elias (1993) studied whether there is a causal 

relationship between past unemployment experience and future unemployment, they used a 

sample of 4067 males born in 1958 and their employment history between the year 1974 and 

1981 (seven years), duration of unemployment, and other socio-economic factors. The results 

showed a significant state dependence effect, the probability of becoming unemployed are 2.3 

times higher for people who were unemployed last year than for people who were not 

unemployed. Among other factors, they found that the probability that an individual with a 

below average math score will be unemployed this year is 1.8 times higher compared to an 

individual who has an above average math score. With regard to reading scores, this figure is 1.6. 

Also, comparing to the people who are not married, the people who are married are less likely 

being unemployed. 

Flaig, Licht and Steiner (1993) studied the state dependence effect in male 

unemployment behavior with the first six waves of the German Socio-Economic Panel through a 

dynamic random effect probit model. Their result showed a significant state dependence effect 

regarding both incidence and duration of unemployment controlling for observed and 

unobserved heterogeneity. The authors suggested a person`s previous unemployment history 

have a long term effect because it leads to a depreciation of human capital or acts as a screening 

device in future employers` hiring decisions.   

Arulampalam, Booth and Taylor (2000) studied unemployment persistence with data 

from British Household Panel Survey through a dynamic panel model, the econometric issues of 

unobserved heterogeneity and initial conditions are discussed. They found a strong effect of state 

dependence—an individual`s previous unemployment experience has effect on his future 
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unemployment. They suggested that policies reducing short term unemployment incidence will 

have long term effect on unemployment. 

Later, Arulampalam (2001) further studied this effect and found that, not only did 

previous unemployment experience has state dependence effect on future unemployment, but 

also that previous unemployment experience will have an effect on wage received in the future. 

The author estimated that an incidence of unemployment will lead to a wage penalty of about 6% 

on re-employ in Britain, and three years later, they earned 14% less compared to what they 

would have received in the absence of past unemployment.  

Another often studied phenomenon that exhibits state dependence effect is low wage 

employment and poverty persistence. Stewart and Swaffield (1999) studied the state dependence 

effect in low pay dynamics, they found that the probability of being low paid strongly depends 

on whether being low paid last year. In terms of econometric issues, they found that omitting the 

initial state will lead to overstatement of the effects of explanatory variables. 

Cappellari and Jenkins (2004) studied low income transitions with data from a British 

panel survey, the results showed that there is substantial state dependence effect in poverty. They 

also estimated low income transition rates and the lengths of poverty for different person. 

Later, Stewart (2007) examined the extent of state dependence in unemployment and low 

wage employment. He found that, previous experience of low wage employment and 

unemployment have almost as large effect on future prospects. He suggested that obtaining a 

high wage job will decrease the probability of repeated unemployment significantly. 

Prowse (2012) studied the effect of previous employment outcomes on future 

employment by distinguishing full time and part time employment, considering unobserved 
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heterogeneity, children and education. The results showed variation in effect of children and 

education. The author found that, comparing temporary part time employment and full time 

employment, the part time employment has a higher state dependence effect in future 

employment than full time employment.  

State Dependence, R&D, and Innovation 

The persistence of innovation refers to the influence of past innovation activities on 

current and future innovation behavior and success. State dependence theory suits well into the 

research on persistence of innovation and it has been studied since 1990s. Flaig and Stadler 

(1994) studied the product and process innovations of private firms with a dynamic random 

effects probit model. They found that, firms` probability of innovation depend on market 

structure, unobserved heterogeneity, and realized innovations in the previous year. The positive 

significant effect of past innovation on future innovation suggested there is strong state 

dependence.  

Cefis and Orsenigo (2001) examined the persistence of innovative activities with panel 

data from six different countries in the period of 1978-1993. By applying a transition probability 

matrix approach, they found evidence of persistence in innovative activities and they also found 

that, the effect of persistence declined as time passes. They also suggested that, both innovators 

and non-innovators have a high persistence to remain in their state.   

Peters (2009) investigated firms` innovative behavior from 1994 to 2002 with a panel of 

German manufacturing firms. He found that the persistence at the firm level is significant in both 

manufacturing firms and service firms by applying a dynamic random effect model. Moreover, 
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he found that among the factors of firms, the knowledge provided by skilled employees is the 

most important factor in explaining the innovative behavior of the firms.       

Ganter and Hecker (2013) studied persistence of technological and organizational types 

of innovation with moderating effects of firm level characteristics and evaluated the sources of 

state dependence. The results showed that, For organizational innovation, the model shows the 

firm’s propensity to adopt technological innovations significantly increases with previous 

adoption of technological innovation, firm size, and public support in financing innovations; 

while organizational innovations does not show the same pattern. The authors suggested that, in 

terms of technological innovation, there is a strong state dependence effect, past success of 

innovation will have an impact on the adoption of new technological innovation, however, 

organizational innovation does not show the same effect. 

Triguero and Corcoles (2013) studied persistence of innovation with a panel of 

manufacturing firms from Spain in the period of 1990-2008. They applied a dynamic random 

effects probit model controlling for initial conditions and unobserved heterogeneity. The results 

showed that both R&D and innovation have strong persistence at the firm level. Regarding 

specific factors, firm size and outsourcing have positive effects on R&D and innovation. 

Pere Arque-Castells (2013) measured the state dependence in R&D based on a panel of 

Spanish manufacturing firms from 1998 to 2009. The results showed positive significant state 

dependence effect. Moreover, they found that R&D subsidies can generate on average 9% of 

inducement effects and this effect varies from small to large firms, they concluded that the 

amount of subsidies needed to generate the same inducement effects for small firms are larger. 

State Dependence and Marketing 
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The state dependence effect has been studied by marketing scholars since 1990s. 

Conventionally, marketing scholars tend to believe that brand choice behavior of the majority of 

consumers were consistent with the zero-order process, meaning that there is no significant 

causal relation between past purchase and current purchase (Bass 1974, 1984).  In applying state 

dependence theory, Michael Keane (1997) first studied the persistence in brand choice and found 

a substantial state dependence effect using Nielsen data after controlling for heterogeneity. Also 

he concluded that this effect tend to decline as time passes, suggesting that the long term effect 

of promotion is positive but small. 

Seetharaman, P. B., Andrew Ainslie, and Pradeep K. Chintagunta (1999) investigated the 

household state dependence effect across different categories through a Bayesian variance 

component approach. The results showed that household exhibited strong state dependence effect 

in four of the five categories studied (one category does not show effect). The authors found that, 

sensitivity to marketing mix and category expenditure variables are associated with greater state 

dependence while household demographics such as family size or income did not have an 

influence on state dependence.  

Seetharaman, P. B (2004) proposed a new utility theoretic brand choice model with 

different sources of state dependence effect incorporated: structural state dependence (effect of 

previous brand choice), correlated error terms in random utility function (effect of habit type 1), 

correlations between utility maximizing alternatives (effect of habit type 2) and carryover effects 

(effect of previous marketing mix variables). By using scanner data, the author showed that 

structural state dependence to be the most important effect among the four proposed effects. 

Meanwhile, the author showed that lagged promotions have carryover effects on habit 

persistence. 
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Che, Hai, K. Sudhir, and P. B. Seetharaman (2007) investigated the pricing behavior of 

manufacturers and retailers with a demand that is state dependent. They estimated the effect with 

household level scanner data and found that, omission of state dependence in demand will lead to 

biased inference of firm behavior and observed retail prices are consistent with a pricing model 

where both manufacturers and retailers are forward looking, based on this, they suggested that 

even a myopic pricing model with state dependence effect accounted in demand will be a 

reasonable approximation. 

Dubé, Jean‐Pierre, Günter J. Hitsch, and Peter E. Rossi (2010) studied the phenomenon 

of consumer inertia with an explanation from state dependence theory. They found significant 

structural state dependence using data from margarine and refrigerated orange juice purchase. 

The authors suggested three economic explanations for the state dependence, preference change 

due to the loyalty, search and learning induced by past purchase experience, the data used by the 

authors supported the loyalty explanation. 

Pavlidis, Polykarpos, and Paul B. Ellickson (2017) explored the importance of parent 

brand state dependence effect on pricing outcomes of forward looking multi product firms. 

Through numerical simulation, the authors found that loyalty to the parent brand lead to 

decreased prices and reduced profits of the joint profit maximization relative to sub brand profit 

maximization and state dependence effect to the sub-brand will mediate this.  

State Dependence and Health 

While the state dependence theory have been well applied in unemployment dynamics, 

income dynamics, innovation dynamics and brand choice dynamics, the application in health is 

less well established. With the first paper came out in 2000s. Contoyannis, Paul, Andrew M. 
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Jones, and Nigel Rice (2004) studied health dynamics using British Household Panel Survey 

(BHPS) data from 1991 to 1998. The authors applied both static and dynamic panel probit 

models allowing for both state dependence effect and unobserved heterogeneity. The results of 

dynamic panel probit models showed significant positive state dependence effect. 

Halliday (2008) studied the persistence in the evolution of health over the life cycle and 

two sources of persistence are allowed: unobserved heterogeneity and state dependence. The 

author used data from PSID (Panel Study of Income Dynamics) and the main variables used are 

self reported health status, age and gender. The results showed modest level of state dependence 

in half the population and for the other half the state dependence is found to be near unity. The 

author explained that this could be due to the large number of people who never exit healthy 

states. Among the factors that influence an individual`s health, the authors concluded that the 

early adulthood health and before have a far reaching effect. 

Contoyannis, Paul, and Jinhu Li (2011) studied the health outcome persistence from 

childhood to adolescence using data from Canadian National Longitudian Survey of Children 

and Youth. The authors suggested that positive significant state dependence exist in health 

dynamics of children and further ,the results showed that children living in poorer/lower 

education level neighborhoods tend to experience poor health status for longer, and children tend 

to experience health drops living in neighborhoods where more families headed by lone-parents 

living in rental accommodations.  

Roy and Schurer (2013) examined the persistence in mental health problems using a 

panel data from Australia applying different approaches including GMM and correlated random 

effects. Their results showed that, an individual who had a problem of depression before is five 

times more likely to experience depression a year later, indicating a strong evidence of state 
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dependence. Among the factors, low income is a significant factor for depression for both men 

and women. 

Carro and Traferri (2014) examined the persistence in self reported health status using a 

dynamic ordered probit model with two fixed effects controlling for unobserved health status and 

reporting behavior. The authors found strong state dependence effects in self reported health 

status. A small but significant effect of income on health status is found among other 

socioeconomic variables. 

Hospital Value Based Purchasing (VBP) Program and Payment Adjustment 

Established by Section 1886 of the Social Security Act, the HVBP program is the first 

national pay for performance (P4P) program implemented and administrated by CMS (Center for 

Medicare & Medicaid Services). The quality of care are evaluated in four domains: safety, 

efficiency, clinical care and patient experience. Different measures are used to evaluate the 

performance on the four domains (detailed measures of the four domains are in the appendix). 

CMS assesses the hospital`s performance by comparing the hospital`s achievement points 

(awarded by comparing a hospital`s rates during the performance period with all hospitals` rates 

during the baseline period) and improvement points (awarded by comparing a hospital`s rates 

during the performance period with the hospital`s self rates during the baseline period). The 

greater of the two (achievement point and improvement point) is used to calculate the total 

performance score (TPS). The weight of the four domains are adjusted from year to year.  

For example, the total performance score for FY 2015 is calculated as: 

𝑇𝑃𝑆2015 = 0.20 ∗ 𝐶𝑙𝑖𝑛𝑖𝑐𝑎𝑙 𝐶𝑎𝑟𝑒 𝑆𝑐𝑜𝑟𝑒 + 0.30 ∗ 𝑃𝑎𝑡𝑖𝑒𝑛𝑡 𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 𝑆𝑐𝑜𝑟𝑒 + 0.20

∗ 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑆𝑐𝑜𝑟𝑒 + 0.30 ∗ 𝑆𝑎𝑓𝑒𝑡𝑦 𝑆𝑐𝑜𝑟𝑒 
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And the total performance score for FY 2016 is calculated as: 

𝑇𝑃𝑆2016 = 0.10 ∗ 𝐶𝑙𝑖𝑛𝑖𝑐𝑎𝑙 𝐶𝑎𝑟𝑒 𝑆𝑐𝑜𝑟𝑒 + 0.25 ∗ 𝑃𝑎𝑡𝑖𝑒𝑛𝑡 𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 𝑆𝑐𝑜𝑟𝑒 + 0.25

∗ 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑆𝑐𝑜𝑟𝑒 + 0.40 𝑆𝑎𝑓𝑒𝑡𝑦 𝑆𝑐𝑜𝑟𝑒 

The program will first reduce a portion of the hospital`s Medicare payments and then 

distribute this portion of money to the hospitals based on the quality of care provided to patients. 

For FY 2013, the portion is 1 percent of total Medicare payments and the percent will increase 

0.25 each subsequent year. For FY 2017 and later, the portion is set at 2 percent. In terms of total 

amount of money distributed by the program, for FY 2013, it is $963 million and for FY 2017, it 

is $ 1.8 billion.    

METHODOLOGY 

To model this type of state dependence effect, we apply the following model: 

𝑦𝑖𝑡 = 𝑥𝑖𝑡
′ 𝛽 + 𝑟𝑦𝑖𝑗−1 + 𝛼𝑖 + 𝑢𝑖𝑡 

where 𝒚𝒊𝒕 is the binary outcome of whether a hospital receive a reward (equals 1) or a 

panelty (equals 0),𝒚𝒊𝒕−𝟏 is whether the hospital receive a reward or panelty last year (lag of 

dependent variable), 𝒙𝒊𝒕 is the vector of observed hospital characteristics, 𝛂𝒊 captures the 

unobserved heterogeneity and 𝒖𝒊𝒕 is the error term. The null is there is no state dependence (𝛾 

=0). The estimate of parameter 𝛾 is the average state dependence over time and is our 

focus.,Several assumptions are contained in the equation. First, the dynamics are first order, i.e. 

𝑦𝑖𝑗−2 does not have an effect on 𝑦𝑖𝑗 ; Second, 𝑥𝑖𝑡are appropriately strictly exogenous, conditional 

on unobserved heterogeneity. The assumptions are the same as Wooldridge (2005). 

Given the two assumptions (dynamics are first order; 𝑥𝑖𝑡are strict exogenous), let 

ft(yt|xt, yt−1, α; β) be the corretly specified density, then the density of  (𝑦𝑖1, … , 𝑦𝑖𝑇) is 
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∏ ∏ 𝑓𝑡(𝑦𝑖𝑡

𝑇

𝑡=1

|𝑥𝑖𝑡 , 𝑦𝑖𝑡−1, 𝛼𝑖; 𝛽0)

𝑁

𝑖=1

                                      

To get an estimate of parameter β, we need to face the fact that it depends on 

unobservables, αi. To solve this, we can treat 𝛼𝑖 as parameters to be estimated, this leads to the 

maximization of the log likelihood function  

∑ ∑ 𝑙𝑜𝑔

𝑇

𝑡=1

𝑁

𝑖=1

𝑓𝑡(𝑦𝑖𝑡|𝑥𝑖𝑡 , 𝑦𝑖𝑡−1, 𝛼𝑖; 𝛽) 

As is pointed out by Hsiao (1986), the initial conditions will not be a problem if T is 

large, unfortunately in our dataset comparing with i, T is small. So we need to endogenize and 

model the initial condition to obtain consistent estimate. In previous research, three ways have 

been proposed to solve the problem of handling the initial conditions in dynamic nonlinear 

models, as is summarized by Hsiao (1986, section 7.4), the first one is to treat the initial 

conditions for each unit as nonrandom, however this requires very strong assumptions that the 

initial condition  𝒚𝒊𝟎 is independent of unobserved heterogeneity. 

 The second approach, proposed by Hsiao (1986, section 4.3) is to use the joint 

distribution of outcomes on the response condition on unobserved heterogeneity and observed 

variables and allow the initial condition to be random. The main difficulty in this approach is to 

specifying the distribution of initial condition based on unobserved heterogeneity. The last one is 

to approximate the conditional distribution of the initial condition, as is proposed by Heckman 

(1981) but it is more difficult computationally to obtain estimate of parameters and average 

effects. 

Here we apply the Wooldridge (2005) approach to handle this problem, which is to 

model the distribution of unobserved heterogeneity conditional on observed exogenous variables 
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and initial values (use the density of (𝑦𝑖1, … , 𝑦𝑖𝑇) conditional on (𝑦𝑖0, 𝑥𝑖) , i.e., specifying 

𝑓(𝛼|𝑦𝑖0, 𝑥𝑖)). Under this approach, assume ℎ(𝑐|𝑦0, 𝑧; 𝛿) is a correctly specified model for the 

density of 𝐷(𝑐𝑖|𝑦𝑖0, 𝑧𝑖), the density of (𝑦𝑖1, … , 𝑦𝑖𝑇) given (𝑦𝑖0 = 𝑦0, 𝑥𝑖 = 𝑥 ) is: 

∫ (∏ ft(yt|xt, yt−1, α; β0)

T

t=1

) h(α|
RJ

y0, x; δ0)η(dα)                    

Which leads to the log-likelihood function conditional on (𝒚𝒊𝟎, 𝒙𝒊 ) to be: 

li(β, δ) = log [∫ (∏ ft(yt|xt, yt−1, α; β)

T

t=1

) h(α|
RJ

yi0, xi; δ)η(dα)]           

After this we sum up the log-likelihood function with respect to i = 1, . . ., N and 

maximize with respect to β, δ, we get estimate of β0, δ0. The result conditional MLE is √N 

consistent and asymptotic normal under standard regularity conditions. 

To obtain the estimate of partial effect, let q(yt) be a scalar function of yt, then the 

average partial effects across the distribution of αi is: 

μ(xt, yt−1) = E[m(xt, yt−1, αi; β0)]                           

where 

m(xt, yt−1, αi; β0) = E[q(yit)|xit = xt, yi,t−1 = yt−1, αi = α]

= ∫ q(yt)ft(yt|xt, yt−1, α; β0)v(dyt)           
RG

 

A consistent estimator can be obtained by 

μ̂(xt, yt−1) = N−1 ∑ r(xt, yt−1, xi, yi0; β̂, δ̂)
N

i=1
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Where r(xt, yt−1, xi, yi0; β0,δ0) = E[m(xt, yt−1, αi; β0)|yi0, xi]] 

The entry probability is 𝑒𝑖𝑡 ≡ P r(𝑦𝑖𝑡 = 1|𝑦𝑖𝑡−1 = 0, 𝑥𝑖𝑡 ) = 𝛷[(𝑥𝑖𝑡
′ 𝛽)(1 − 𝜌)0.5]    

The persistence probability is  

𝑠𝑖𝑡 ≡ P r(𝑦𝑖𝑡 = 1|𝑦𝑖𝑡−1 = 1, 𝑥𝑖𝑡 ) = 𝛷[(𝛾 + 𝑥𝑖𝑡
′ 𝛽)(1 − 𝜌)0.5]      

Where Φ[ ] is the standard normal cumulative distribution function and ρ is the fraction 

of variance that attributes to the variation in the time-invariant individual effects. 

By comparing the raw persistence and predicted persistence, we can derive the 

percentage of the raw persistence explained by the state dependence effect is 

P r(𝑦𝑖𝑡 = 1|𝑦𝑖𝑡−1 = 1, 𝑥𝑖𝑡 ) − P r(𝑦𝑖𝑡 = 1|𝑦𝑖𝑡−1 = 0, 𝑥𝑖𝑡 ) P r(𝑦𝑖𝑡 = 1|𝑦𝑖𝑡−1 = 1) − P r(𝑦𝑖𝑡 = 1|𝑦𝑖𝑡−1 = 0)⁄  

DATA  

The data are obtained from three main sources: characteristics of hospitals (for example 

number of employees, number of beds, number of discharge) are obtained from CMS Impact File 

and payment adjustment data come from Hospital Inpatient Prospective Payment System (IPPS), 

demographics data within 10 miles radius come from the Census Bureau. 

Number of hospitals participating in the program, average adjustment factor, number of 

hospitals received award/penalty are shown in the Table 3.1: 

[Table 3.1 about here]  

Total number of hospitals vary from year to year because CMS has established a 

minimum data requirement for number of cases, measures, surveys, etc. For example, for the 

patient experience domain, hospital must report at least 100 patient surveys in order to receive a 
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score for this domain. Inclusion of data that do not meet the requirement could skew the results 

and further impact the calculation of total performance score. 

CMS do not publish the exact amount of money that are awarded or penalized for each 

hospital, only in FY 2016, they published the distribution in Table 3.2 and 3.3: 

[Table 3.2 about here]  

[Table 3.3 about here]  

Here I construct a balanced panel with 2471 hospitals from year 2013 to 2018, total 

14826 observations. As is mentioned in the theory part of state dependence, there are two 

reasons that the realization of an event affects the probability that the same event occurring again 

in the future. The first one is that, the experience has a genuine behavioral effect that will lead 

the hospital to behave differently as opposed to the same hospital who has not experienced that 

event (i.e. true state dependence). The second one is individuals may differ in unobserved factors 

(unobserved heterogeneity or spurious state dependence).  

Since I have the data of whether the hospitals get reward through the six years (2013 to 

2018), I can calculate the conditional probabilities of a hospital that receive a reward this year, 

conditional on last year`s reward status. If there is no difference on the two conditional 

probabilities, then there is model free evidence that last year`s reward status has no effect on this 

year`s status. Table 3.4 shows the conditional probabilities: 

[Table 3.4 about here]  

Comparing Column 3 and 4 of the Table 3.4, I can see that, if in the previous year, a 

hospital got rewarded, then next year, its probability of receiving a reward again is about twice of 
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the hospital who got a penalty last year. So I can see that there is a considerable state dependence 

in hospitals` payment adjustment by HVBP program. 

In Table 3.5 I summarize the dependent variable and explanatory variables used in this 

study, with their mean value and standard error. 

[Table 3.5 about here]  

RESULTS 

In Table 3.6 I show results of estimates based on simple pooled probit estimator, random 

effects probit estimator and the Wooldridge estimator. The hospitals in the category of 

rural/proprietary/lowest CMI/none teaching/lowest bed capacity of New England are used as the 

benchmarking ones. 

[Table 3.6 about here]  

The lag of dependent variable (reward t-1) is positive significant across the three 

estimators, suggesting there is a positive significant state dependence. 

The preferred model (Wooldridge model) gives an average marginal effect of 0.341, 

which means that hospitals that received a reward in previous year are 34.1% more probably to 

receive a reward this year than the ones that received a penalty in previous year.  This explains 

77.1% of the persistence observed in the data.  

For other explanatory variables, some hospital characteristics are significantly associated 

with the likelihood of receiving a reward from CMS, for example, number of employees show a 

significant positive effect, number of beds show a significant negative effect, teaching status 

show a significant negative effect, percent of Medicare/Medicaid discharge show a moderate 
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negative effect. Comparing with proprietary hospitals, voluntary nonprofit and government 

owned hospitals are more likely to receive a reward. 

Among demographic variables, I observe a moderate significant negative effect from 

number of black and Hispanic population, household income shows a significant positive effect 

on the probability of a hospital receive a reward, and competition show a moderate significant 

positive effect. 

For geographic factors, I do observe that, comparing with hospitals located in rural area, 

hospitals located in urban areas are less likely to receive a reward, comparing with hospitals 

located in New England area, the hospitals located in Mid Atlantic, West South Central show a 

significant less likelihood of receiving a reward, the hospitals located in East South Central show 

a moderate significant less likelihood of receiving a reward, while hospitals located in other 

areas do not show a significant difference.  

Above are the estimates from the three estimators based on the whole sample. I 

controlled for the hospital ownership and located areas with a set of dummy variables. However, 

this state dependence effect may differ over the different ownership and geographic areas. So I 

analyzed the interaction terms between lag of reward status and dummy variables of hospital 

ownership and geo location. A test of equality of coefficients is performed to examine if the state 

dependence effect across different ownership/geographic areas are the same or not. If the state 

dependence effect is different across those, then there is evidence to suggest the policy design 

across different kind of ownership and different geographic areas should be different. By 

performing the Wald test, I obtained the results in Table 3.7: 

[Table 3.7 about here]  
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The test of equality of coefficient shows a chi-2 value of 8.98 and a p value of 0.011, 

which means that the state dependence effect are significantly different between large 

urban/other urban/rural hospitals. 

I further performed pair wise comparison test to see if the effect is equal between pairs of 

large urban/other urban, large urban/rural, other urban/rural hospitals, the results of the chi-2 and 

p value can be found in the last two rows of Table 3.8, I can see that among the three pairs, the 

state dependence effect differ significantly between hospitals located in large urban areas and 

other urban areas, for other pairs, it is not significantly different. 

[Table 3.8 about here]  

The test of equality of coefficient shows a chi-2 value of 7.34 and a p value of 0.026, 

which means that the state dependence effect are significantly different across hospitals of 

different ownership. For pair wise comparison, I found that, the state dependence effect is 

significantly different between voluntary nonprofit hospitals and proprietary hospitals, also, for 

voluntary nonprofit hospitals and government owned hospitals, it is also significantly different, 

for other pair wise comparison, I don`t found a significant difference. 

Analysis of Hospitals that are Penalized or Rewarded every year 

In this section, I considered only the hospitals that were penalized or rewarded every year 

from 2013 to 2018 and built a model to find out if there is a relationship between the hospital 

characteristics and the amount of penalty or reward. 

For the hospitals that were penalized every year from 2013 to 2018, there are 280 

hospitals (out of the total number 2471). I estimate the following model: 
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𝑃𝑖𝑡 = 𝑥𝑖𝑡
′ 𝛿 + 𝜆𝑖 + 𝜖𝑖𝑡 

where 𝑃𝑖𝑡 is the extent of penalty paid by the hospital i in year t (between 0 and 1, larger 

𝑃𝑖𝑡 equals more penalty paid), 𝑥𝑖𝑡
′  is the same hospital characteristics I used in previous section, 

𝜆𝑖 is the hospital specific random effect and 𝜖𝑖𝑡 is the individual specific random effect. 

Also, I considered the hospitals that received a reward from the program every year from 

2013 to 2018, there are 345 hospitals in total. Again, I estimated the same model as above with 

the extent of reward received as the dependent variable. The results of the two model estimates 

are in the following table: 

[Table 3.9 about here]  

From the results I can see that, among the hospitals that were penalized every year, 

number of employees, number of discharges and competition play a key role: number of 

employees shows a negative significant effect, meaning that, for the hospitals that received a 

penalty each year, the larger the number of employees, the smaller the amount of penalty; 

number of discharges has a positive significant effect, meaning that, for the hospitals that 

received a penalty each year, the smaller the number of discharges, the smaller the amount of 

penalty; competition (measured by the number of people per hospital in the 10 miles radius) has 

a negative significant effect, meaning that, the smaller the competition, the smaller the penalty. 

Other factors do not show a significant effect. 

Among the hospitals that were rewarded every year, the factors that have a significant 

effect are: number of employees, number of discharges, number of white people, number of 

household income, bed capacity, case mix index and geo-regions. For number of employees I 

found a positive significant effect, meaning that for hospitals that received a reward each year, 
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the larger the number of employees, the larger the amount of reward; for number of discharges I 

found a negative significant effect, meaning that for hospitals that received a reward each year, 

the smaller the number of discharges, the larger the amount of reward; For socio economic 

factors, I found that the larger the number of white people, the smaller the amount of reward, the 

larger the number of household income, the larger the amount of reward; For patient 

characteristics, I found the more the clinical complexity, the larger the amount of reward; For 

geo-region factors, I found that comparing with hospitals located in rural area, the hospitals 

located in urban areas received a smaller amount of reward; comparing with hospitals in New 

England area, hospitals located in Mid Atlantic and East South Central received a smaller 

amount of reward. 

CONCLUSION 

Hospital Value Based Purchasing (HVBP) program, launched and administrated by CMS 

(center for Medicare and Medicaid Services), is the first national level p4p program for hospitals 

in US. Although some research suggests moderate to none improvement in hospital quality, how 

the payment adjustment decision is made, whether the payment adjustment has a long last effect 

(other than just immediate effect) on hospital has not been studied. In this research, I applied a 

dynamic probit random effects model to analyze the state dependence effect in hospital payment 

adjustment. I ask the question that, does hospitals` payment adjustment status depends on last 

year`s status, and what are the factors that influence the hospitals` likelihood of receiving a 

reward in this program. The results showed a positive significant state dependence effect across 

the three different models I estimated and is significant with hospitals located in different geo 

areas (large urban/other urban/rural) and with hospitals of different ownerships (government 

owned/voluntary non profit/proprietary).  
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For the factors that impact the likelihood that a hospital receive a reward from the HVBP 

program, I found that number of employees show a significant positive effect, suggesting that as 

the number of employees get larger, hospitals have more labor resources, and can manage to 

improve upon the quality measures to reach a reward; number of beds and discharges show a 

significant negative effect, suggesting that as patient volumn get heavier, hospitals become 

unable to meet the quality criteria, suggesting there is a potentially a negative network effect. 

Teaching status show a significant negative effect, this makes sense because residents in 

hospitals are still in their training stage and may not be able to perform in a quality level that is 

required by the program. Percent of Medicare/Medicaid discharge show a moderate negative 

effect. Comparing with proprietary hospitals, voluntary non profit and government owned 

hospitals are more likely to receive a reward. 

Among demographic variables, I observe a moderate significant negative effect from 

number of black and Hispanic population, household income show a significant positive effect 

on the probability of a hospital receive a reward, and competition show a moderate significant 

positive effect. 

For geographic factors, I do observe that, comparing with hospitals located in rural area, 

hospitals located in urban areas are less likely to receive a reward, comparing with hospitals 

located in New England area, the hospitals located in Mid Atlantic, West South Central show a 

significant less likelihood of receiving a reward, the hospitals located in East South Central show 

a moderate significant less likelihood of receiving a reward, while hospitals located in other 

areas do not show a significant difference.  
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FIGURES AND TABLES FOR CHAPTER THREE  

Table 3.1: Number of Hospitals Awarded and Penalized 

Year No of Hospital 

Penalized 

No of Hospital 

Awarded 

Total 

Number 

of 

Hospital 

Min 

Adjustment 

Factor 

Max Adjustment 

Factor 

2013 1426 1557 2984 0.991 1.008 

2014 1473 1255 2728 0.989 1.007 

2015 1375 1714 3089 0.987 1.021 

2016 1235 1806 3041 0.983 1.024 

2017 1343 1612 2955 0.982 1.032 

2018 1211 1597 2808 0.983 1.030 
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Table 3.2: Distribution of Change of Payments for FY 2016 

Change of Payment Number of Hospitals 

>$150,000 284 

$120,001 to $150,000 103 

$90,001 to $120,000 172 

$60,001 to $90,000 217 

$30,001 to $60,000 366 

$1 to $30,000 652 

$0 to $0 0 

$-30,000 to $-1 391 

$-60,000 to $-30,001 182 

$-90,000 to $-60,001 138 

$-120,000 to $-90,001 98 

$-150,000 to $-120,001 73 

<=-$150,000 349 

 

 

Table 3.3: Distribution of Percentage Change of Payments for FY 2016 

Change of Percentage of Payment Number of Hospitals 

1.0% < x 316 

0.9% < x ≤ 1.0% 77 

0.8% < x ≤ 0.9% 92 

0.7% < x ≤ 0.8% 94 

0.6% < x ≤ 0.7% 108 

0.5% < x ≤ 0.6% 123 

0.4% < x ≤ 0.5% 174 

0.3% < x ≤ 0.4% 194 
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0.2% < x ≤ 0.3% 194 

0.1% < x ≤ 0.2% 212 

0.0% < x ≤ 0.1% 210 

0.00% 0 

 -0.1% < x ≤ 0.0% 222 

 -0.2% < x ≤ -0.1% 227 

 -0.3% < x ≤ -0.2% 197 

 -0.4% < x ≤ -0.3% 162 

 -0.5% < x ≤ -0.4% 133 

 -0.6% < x ≤ -0.5% 85 

 -0.7% < x ≤ -0.6% 105 

 -0.8% < x ≤ -0.7% 42 

 -0.9% < x ≤ -0.8% 37 

 -1.0% < x ≤ -0.9% 13 

 x ≤ -1.0% 8 

 

Table 3.4: Conditional and Unconditional Probabilities that a Hospital Receive a Reward 

Year Unconditional 

(𝑷𝒊𝒕 = 𝟏) 

Awarded at t-1 

(𝑷𝒊𝒕 = 𝟏|𝑷𝒊𝒕−𝟏 = 𝟏) 

Penalized at t-1 

(𝑷𝒊𝒕 = 𝟏|𝑷𝒊𝒕−𝟏 = 𝟎) 

2014 0.467 0.677 0.246 

2015 0.516 0.675 0.377 

2016 0.553 0.786 0.285 

2017 0.511 0.717 0.257 

2018 0.548 0.815 0.268 

 

Table 3.5: Summary of Dependent and Explanatory Variables 

Variable Name Description Mean SD 

Dependent Variable  
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Reward Status Whether a hospital was 

rewarded (binary variable) 

0.518  

Explanatory Variable  

Geographic 

Characteristics 

 

New England CT, ME, MA, NH, RI, VT 0.048  

Mid Atlantic NJ, NY, PA 0.129  

East North Central IL, IN, MI, OH, WI 0.174  

West North Cenral IA, KS, MN, MO, NE, 

ND, SD 

0.082  

South Atlantic DE, FL, GA, MD, NC, 

SC, VA, DC, WV 

0.178  

East South Central AL, KY, MS, TN 0.084  

West South Central AR, LA, OK, TX 0.120  

Mountain AZ, CO, ID, MT, NV, 

NM, UT, WY 

0.065  

Pacific AL, CA, HI, OR, WA 0.140  

Large Urban Area Hospital located in a large 

urban area 

0.418  

Other Urban Area Hospital located in other 

(small) urban area 

0.339  

Rural Area Hospital located in a rural 

area 

0.243  

Demographic 

Characteristics 

 

White Population Number of white residents 

in the zip code (in 

thousands) 

18.21 10.81 

Black Population Number of black residents 

in the zip code (in 

thousands) 

3.21 4.64 

Hispanic Population Number of Hispanic 

residents in the zip code 

(in thousands) 

4.16 7.43 

Household Income Average Household 

income in the zip code (in 

thousands) 

45.70 19.77 

Competition Number of people per 

hospital in 10-mile radius 

of a hospital (in 

thousands) 

5.23 7.11 

Hospital Characteristics  

Ownership  

Government Owned  Hospitals owned by 

government 

0.154  
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(district/local/state/federal) 

Voluntary non-profit Voluntary non profit 

hospitals owned by 

churches or other private 

entities 

0.655  

Proprietary Proprietary hospitals 0.191  

Bed Capacity Number of beds in a 

hospital 

226.34 191.41 

Small Hospitals with<100 beds 0.251  

Medium Hospitals with 100 to 399 

beds 

0.611  

Large Hospitals with ≥400 beds 0.138  

Teaching Status resident-to-bed ratio in a 

hospital 

0.072 0.166 

None Hospitals with no 

residents 

0.636  

Very Minor Hospitals with resident-to-

bed ratio between 0.001 

and 0.049 

0.109  

Minor Hospitals with resident-to-

bed ratio between 0.050 

and 0.249 

0.155  

Major Hospitals with resident-to-

bed ratio between 0.250 

and 0.599 

0.07  

Very Major Hospitals with resident-to-

bed ratio≥0.600 

0.03  

Case Mix Index diversity, clinical 

complexity, and the need 

for resources in a 

hospital 

1.539 0.266 

Quartile 1 Hospitals with CMI≤1.254 0.131  

Quartile 2 Hospitals with CMI 

between 1.255 and 1.446 

0.255  

Quartile 3 Hospitals with CMI 

between 1.447 and 1.645 

0.298  

Quartile 4 Hospitals with CMI≥1.646 0.316  

Number of Employees Number of total paid 

employees in a hospital 

1460.53 1861.51 

Number of Discharges Total number of 

discharges in a year for a 

hospital 

10986.35 10541.99 

Percent of 

Medicare/Medicaid 

Discharge 

The ratio of 

Medicare/Medicaid 

discharge over total 

0.470 0.132 
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number of discharge 

 

Table 3.6: Results of Model Estimates of State Dependency 

 Pooled Probit RE Probit Wooldridge 

reward t-1 1.087 (0.025)*** 0.973 (0.033)*** 0.867 (0.035)*** 

reward 0   0.248 (0.035)*** 

No of Employees t-1 0.073 (0.039)*** 0.079 (0.017)*** 0.085 (0.018)*** 

No of Discharges t-1 -0.008 (0.003)* -0.009 (0.004)* -0.009 (0.004)* 

Percent of 

Medicare/Medicaid 

Discharge t-1 

0.019 (0.118) -0.038 (0.135)* 0.074 (0.140)* 

Bed Capacity Medium 

t-1 

-0.296 (0.039)*** -0.331 (0.045)*** -0.329 (0.047)*** 

Bed Capacity Large t-

1 

-0.421 (0.071)*** -0.464 (0.082)*** -0.467 (0.086)*** 

CMI Q2 t-1 0.034 (0.045) 0.051 (0.050) 0.042 (0.052) 

CMI Q3 t-1 0.021 (0.049) 0.044 (0.056) 0.033 (0.058) 

CMI Q4 t-1 0.009 (0.055) 0.034 (0.062) 0.024 (0.064) 

Government Owned 0.072 (0.043) 0.075 (0.051) 0.104 (0.054)* 

Voluntary non-profit 0.209 (0.034)*** 0.226 (0.040)*** 0.260 (0.042)*** 

Very Minor Teaching 

t-1 

-0.121 (0.043)** -0.139 (0.049)** -0.143 (0.052)** 

Minor Teaching t-1 -0.134 (0.039)** -0.154 (0.045)** -0.145 (0.047)** 

Major Teaching t-1 -0.171 (0.059)** -0.195 (0.068)** -0.204 (0.070)** 

Very Major Teaching 

t-1 

-0.162 (0.088) -0.190 (0.101) -0.173 (0.106) 

White Population 0.001 (0.001) 0.002 (0.002) 0.002 (0.002) 

Black Population -0.008 (0.003)* -0.009 (0.003)* -0.009 (0.004)* 

Hispanic Population -0.005 (0.002)* -0.006 (0.003)* -0.006 (0.003)* 

Household Income 0.004 (0.001)*** 0.005 (0.001)*** 0.005 (0.001)*** 

Competition 0.003 (0.001)* 0.003 (0.001)* 0.003 (0.001)* 

reward t-1*LURBAN -0.033 (0.063) -0.056 (0.067) -0.057 (0.068) 

reward t-1*OURBAN 0.138 (0.066) 0.131 (0.070) 0.126 (0.072) 

reward t-

1*Government Owned 

-0.085 (0.070) -0.106 (0.074) -0.113 (0.076) 

reward t-1*Voluntary 

Non Profit 

-0.164 (0.063)** -0.178 (0.067)** -0.172 (0.068)** 

Large Urban Area -0.150 (0.044)*** -0.163 (0.051)*** -0.175 (0.054)*** 

Other Urban Area -0.158 (0.039)*** -0.173 (0.046)*** -0.190 (0.048)*** 

Mid Atlantic -0.281 (0.068)*** -0.310 (0.079)*** -0.314 (0.084)*** 

East North Central -0.023 (0.067) -0.015 (0.078) -0.038 (0.083) 

West North Cenral 0.016 (0.074) 0.024 (0.086) 0.017 (0.091) 

South Atlantic -0.025 (0.068) -0.016 (0.078) -0.037 (0.083) 
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East South Central -0.183 (0.075)* -0.192 (0.088)* -0.210 (0.092)* 

West South Central -0.194 (0.072)** -0.208 (0.083)** -0.234 (0.088)** 

Mountain -0.149 (0.079) -0.172 (0.092) -0.184 (0.096) 

Pacific -0.071 (0.072) -0.087 (0.084) -0.067 (0.088) 

Average Partial Effect  0.427 0.381 0.341 

(***p<0.01, **p<0.05, *p<0.1) 

Table 3.7: Comparison of State Dependence Effect across Different Geo-area 

 Large Urban Hospitals Other Urban 

Hospitals 

Rural Hospitals 

reward t-1 0.749 (0.053)*** 0.962 (0.061)*** 0.935 (0.069)*** 

number of hospitals 1033 838 600 

number of 

observations 

6198 5028 3600 

estimated state 

dependence effect 

0.297 0.375 0.365 

test of equality of 

coefficient 

 

chi-2 8.98 

p value 0.011 

pair wise 

comparison 

LURBAN/OURBAN OURBAN/RURAL RURAL/LURBAN 

chi-2 8.84 3.47 0.70 

p value 0.003*** 0.06 0.40 

(***p<0.01, **p<0.05, *p<0.1) 

Table 3.8: Comparison of State Dependence Effect across Different Ownership 

 Government Owned 

Hospitals 

Voluntary non profit 

Hospitals 

Proprietary 

Hospitals 

reward t-1 0.648 (0.091)*** 0.953 (0.043)*** 0.752 (0.076)*** 

number of hospitals 380 1618 473 

number of 

observations 

2280 9708 2838 

estimated state 

dependence effect 

0.265 0.371 0.293 

test of equality of 

coefficient 

 

chi-2 7.34 

p value 0.026 

pair wise 

comparison 

G/V V/P P/G 

chi-2 8.42 6.39 2.23 
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p value 0.001*** 0.01* 0.14 

(***p<0.01, **p<0.05, *p<0.1) 

Table 3.9: Results of Model Estimates of Extent of Penalty/Reward 

 Extent of Reward Extent of Penalty 

No of Employees t-1 0.04 (0.03)* -0.02 (0.01)** 

No of Discharges t-1 -0.01 (0.005)*** 0.007 (0.002)*** 

Percent of 

Medicare/Medicaid 

Discharge t-1 

-0.4 (0.1)* -0.02 (0.08) 

Bed Capacity Medium 

t-1 

-0.1 (0.03)*** 0.04 (0.04) 

Bed Capacity Large t-1 -0.0009 (0.09) 0.07 (0.05) 

CMI Q2 t-1 0.1 (0.03)*** 0.008 (0.04) 

CMI Q3 t-1 0.2 (0.04)*** 0.03 (0.04) 

CMI Q4 t-1 0.2 (0.04)*** 0.08 (0.05) 

Government Owned -0.06 (0.04) 0.05 (0.03) 

Voluntary non-profit -0.01 (0.04) 0.02 (0.02) 

Very Minor Teaching t-

1 

-0.01 (0.04) -0.008 (0.02) 

Minor Teaching t-1 0.06 (0.04) -0.004 (0.02) 

Major Teaching t-1 -0.05 (0.06) -0.02(0.03) 

Very Major Teaching t-

1 

0.04 (0.1) -0.01 (0.04) 

White Population -0.003 (0.001)*** -0.0002 (0.001) 

Black Population 0.004 (0.005) 0.001 (0.001) 

Hispanic Population -0.0002 (0.003) 0.001 (0.001) 

Household Income 0.002 (0.0008)*** -0.0007(0.0005) 

Competition 0.0001(0.001) -0.002 (0.0008)*** 

Large Urban Area -0.2 (0.04)*** -0.01 (0.03) 

Other Urban Area -0.1(0.03)*** -0.009 (0.03) 

Mid Atlantic -0.1 (0.07)* 0.06(0.04) 

East North Central -0.04 (0.06) 0.02 (0.03) 

West North Cenral 0.01 (0.06) -0.04 (0.05) 

South Atlantic -0.07 (0.06) 0.02 (0.05) 

East South Central -0.1 (0.07)* 0.04 (0.05) 

West South Central -0.1 (0.06)** -0.02 (0.05) 

Mountain -0.1(0.07) -0.04 (0.05) 

Pacific -0.02 (0.07) -0.01 (0.05) 

(***p<0.01, **p<0.05, *p<0.1) 
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CHAPTER FOUR:  

EFFECT OF DEREGULATION ON DRUG MARKET 
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INTRODUCTION 

Pharmaceutical industry impacts the health of a population and economics of a nation 

significantly. U.S. pharmaceutical spending grows by 2.5% in 2019, reaching $370 billion. Fitch 

Solutions (2019) estimates that by 2023, pharmaceutical spending will reach $420 billion, 

account for nearly 1.7% of the national GDP. This growth in pharmaceutical spending has 

exceeded GDP growth in United States as well as many other countries (Schumock 2019). Due 

to the prominence of the pharmaceutical industry, it is highly regulated and deeply impacted by 

public policies from approval of new drugs, drug pricing to drug distribution, among others. 

In terms of drug price regulation, two mechanisms are commonly used: reference pricing 

and price cap. According to a report by WHO (2015), 24 of 30 OECD countries and 20 of 27 

European Union countries use the reference price regulation to control drug price. UK and China 

adopted the price cap regulation system. But since pharmaceutical spending continues to grow 

despite of price regulation, recently there are many callings to de-regulate. Since June 1st, 2015, 

Chinese government decided to remove price cap regulation in pharmaceutical market and offers 

us an opportunity to study the effect of de-regulation. 

In this research, we applied an Interrupted Time Series Analysis (ITSA) approach to 

study the effect of de-regulation of price cap in China`s pharmaceutical market. Data is obtained 

from Sinopharm Group, the largest distributor in China`s pharmaceutical market. A total of nine 

categories of drugs were analyzed and the results showed a clear pattern between industry HHI 

and revenue change of the drugs.  

The rest of the chapter is organized as follows. We started with a literature review on 

branded drugs/generic drugs competition, reference price regulation, price cap regulation and 

their effects. After this, we described the China`s pharmaceutical market, our data and 
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methodology. Then we presented the analysis and the results for the nine categories of drugs 

after price cap deregulation. Lastly we conclude with discussions, implications of the price cap 

deregulation in terms of government price regulation as well as the drug company pricing 

practice. 

BACKGROUND 

Competition between Branded Drugs and Generic Drugs 

Generic drugs are copies of branded drugs that have the same dosage, intended use, 

effects, side effects, risks, safety, and strength. In other words, their pharmacological effects are 

the same as those of their branded counterparts. Branded drugs come with patent protection, or 

so called “exclusivity period”, which protects the branded drugs from the competition of generic 

drugs. The length of exclusivity period varies from 3 years to 7 years, according to U.S. Food & 

Drug Administration (2018), depends on the level of innovation of the branded drugs. After the 

exclusivity period, the production of generic drugs is allowed thus bring competition to branded 

drugs. 

This competition from generic drugs to branded drugs arouse many attentions from 

academia and industry. Aronsson (2001) analyzed how market shares for brand name drugs are 

affected by generic competition. They used data for twelve different branded drugs, which are all 

subject to generic competition. For five of these drugs, they find that the price of the branded 

drugs relative to the average price of the generic ones significantly affects the market share of the 

branded drug. Lexchin (2004) studied whether brand-name manufacturers compete on price once 

generic competitors become available in the market. He identified 81 brand-name drugs that 

lacked generic competition in July 1990 but had acquired generic competitors by December 

1998. He compared and analyzed the price changes, the results showed no statistically significant 
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change in brand-name prices when generic competition started. Gonzalez (2008) studied how 

physician characteristics and prescribing decisions impact competition among branded drugs of a 

therapeutic class once generic drugs enter the market. They found that generic entry in the 

analyzed category would not only lead to the decrease in the prescription of the branded drugs 

bioequivalent to the generics, but also lead to increase of non-bioequivalent branded drugs as 

detailing-sensitive physicians switched from the contested drugs to these other branded 

alternatives. Vandoros (2014) studied whether there is a switch in total (branded and generic) 

consumption after generic entry from molecules that face generic competition towards other 

molecules of the same class, which are still in-patent. Data from six European countries for the 

time period 1991 to 2006 are used to study the cases of angiotensin-converting enzyme inhibitors 

and proton pump inhibitors. Empirical evidence shows that patent expiry led to a switch in total 

(branded and generic) consumption towards other in-patent angiotensin-converting enzyme 

inhibitors, whereas patent expiry of omeprazole led to a switch in consumption towards other 

proton pump inhibitors. 

Regulation on Drug Prices and the Effect 

Pharmaceutical markets are regulated heavily. Most countries regulate manufacturer 

prices for pharmaceuticals either through price cap regulation or reference price regulation. As is 

stated by Danzon (2006), the rationale for drug price regulation derives from pervasive insurance 

or third party payment, which makes patients insensitive to prices, hence creating incentives for 

suppliers to charge higher prices than would occur without insurance. To counteract this supplier 

moral hazard that applies to all insured health services, including drugs, both private and public 

insurers limit the prices that they will pay for all insured health services. 
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Price cap regulation refers to the practice that under which, the regulatory body sets a 

maximum price that can be charged for a drug. The price cap may be based on cost plus a profit 

margin, prices for the same product in other countries, or prices for therapeutic alternatives. 

Previous research on the effect of price cap regulation has focused on the price of the drugs, sales 

of drugs and how this regulation undermines or increase competition. Dalen (2006) used  

monthly data over the period 1998–2004 for the six drugs in Norwegian pharmaceutical market 

that were included in the price cap regulation, a structural model was estimated to examine the 

impact of the regulation on both demand and market power. The results suggested that under the 

price cap regulation, the market shares of generic drugs were increased, price competition 

between generic and branded drugs were increased. Stremersch (2009) used 84 months of sales 

data of newly introduced medicine and found that, manufacturer price controls, has a positive 

effect on drug sales. The effect of manufacturer price controls is similar for newly launched and 

mature drugs. Brekke (2015) used a dataset of monthly sales and price data of 165 on-patent 

substances. Their findings suggested that, stricter price cap regulation reduces competition from 

parallel imports, and has no (strictly negative) effect on producer profits in the presence 

(absence) of parallel imports.  

Reference price regulation refers to the practice that under which, the reference price is 

the maximum reimbursement for a group of drugs. According to a report by WHO (2015), 24 of 

30 OECD countries and approximately 20 of 27 European Union countries use the reference 

price regulation to control drug price. This regulation regime also arouses many attentions. 

Ekelund (2003) used a data set consisting of all new chemical entities (NCEs) launched in 

Sweden between 1987 and 1997, the ratio of launch price to the average price of existing 

branded substitutes and the same ratio four years later are used as the dependent variable. Their 
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results showed that, reference pricing regulation leads to higher launch price and faster decline of 

real price. Moreno-Torres (2009) studied the effect of reference pricing on number of entries of 

generic firms in Spanish pharmaceutical market. He used dummies for reference pricing, number 

of generic firms in the market, number of branded competitors in the market, revenues and age of 

product as explanatory variables. The results showed the system of reference pricing restrains 

generic entry. Brekke (2011) studied the effect of reference pricing using off-patent prescription 

drugs within the 40 largest therapeutic groups from 1st of January 2001 to 31st of December 

2004. The results showed that reference pricing significantly reduces both brand-name and 

generic prices, and results in significantly lower brand-name market shares. Kaiser (2014) 

studied the effects of reference pricing using a dataset from 2003 to 2007 in Denmark where the 

reference price became effective in 2005. They found that the reference pricing led to substantial 

reductions in drug prices as well as decreases in overall producer revenues and health care 

expenditures.  

Chinese Pharmaceutical Market and Regulation Practice 

Chinese pharmaceutical market is the second largest (following United States as the 

largest one) in the world, with over 122 billion value in USD by the year 2017 and it projected to 

reach 180 billion value in USD by the year 2020. From 2010 to 2015 the compound annual 

growth rate is about 15.5 percent and from 2016 to 2020, the compound annual growth rate is 

about 8 percent (IMS Institute 2015). Although in recent years the growth slows down but it 

continues to be above the growth of GDP. 

Historically, government healthcare payments are lower than personal payments. Since 

the public insurance plan named New Co-operative Medical Scheme (NCMS) was launched in 

2003, the government payments has been growing and it exceeded private payments. In 2015, 
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the total government healthcare expenditure reached 1422.5 billion in RMB (about 330.3 billion 

in USD), that equals about 330.3 USD per capita and 4.98% of total GDP according to World 

Health Organization (WHO 2016). Although the government expenditure on healthcare is 

projected to grow but comparing to OECD countries, the number is still low. The NCMS plan 

now covers about 96 percent of people in 2019 according to the latest news release by the 

National Health Commission of China.  

Generic drugs are the mainstay of Chinese pharmaceutical industry, according to a report 

by Deloitte (Deloitte 2015), in 2015, the sales of generic drugs reached about 614 billion in RMB 

(about 88 billion in USD), representing about 85% of the total pharmaceutical sales. The 

compound annual growth rate of sales of generic drugs is projected around 14%. In 2015 the 

total sales of branded drugs is 112.7 billion in RMB (about 16.1 billion in USD, representing 

about 15% of the total pharmaceutical sales) and compound annual growth rate of sales of 

branded drugs is projected around 25%. While the government relys upon widespread 

prescription of generics in the public insurance plan to control the overall healthcare 

expenditures, the growth of economy and household income, Chinese customers will likely to 

switch from the domestic generic drugs to imported branded drugs. 

China has used price cap regulation set by the NDRC (National Development and 

Reform Commission) for many years (Mossialos 2016). Research about this price cap regulation 

in China are rare, and the results are mixed. Han (2013) studied the impact of price cap 

regulation of the Chinese government on pharmaceutical expenses. They used the data for 

systemic antibiotics of 12 hospitals in Beijing from 1996 to 2005 and analyzed the effect on price 

change and the volume change. The results showed that the price cap regulation lowered the 

prices, but the expenditure on antibiotics was raised because more expensive drugs in the same 
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therapeutic category were prescribed. Wu (2015) used a macro-level data between 1997 and 

2008 to evaluate the effects of China's pharmaceutical price cap regulations. The results showed 

that the regulations have short-run effects on pharmaceutical price indexes, reducing them by 0.5 

percentage points. The price regulations fail to reduce household health expenditures and the 

average profitability of the pharmaceutical industry was not impacted. 

DATA AND METHODOLOGY 

The data came from Sinopharm Group, the largest distributor of Chinese pharmaceutical 

market. In 2015, the company`s revenue reached 227 billion in Chinese RMB (about 35 billion 

in USD). The company provided us with the sales data to 535 hospitals in Jinlin Province from 

March 2011 to August 2016, a total of 66 monthly sales data. Since June 1st, 2015, Chinese 

government decided to remove price cap regulation in pharmaceutical market. There are 14 

months data after the deregulation policy, 52 months data before the deregulation policy. Our 

price data were extracted from db.yaozh.com, a database that contains price data of the Chinese 

pharmaceutical market. Our data consists of nine categories of drugs, each categories of drugs 

include both branded and generic drugs in it. 

Method 

We used interrupted time-series analysis (ITSA) method for each drugs (both generic and 

branded) of each category to assess the change in sales associated with the deregulation of the 

price cap. ITSA is a quasi-experimental design useful to evaluate the longitudinal effects of 

interventions occurring at a fixed point in time on a population level, such as the 

regulation/deregulation of a policy. The date of removal of the price cap in the pharmaceutical 

market (June 1st, 2015) was regarded as the intervention time point for ITS analyses. 

The estimation framework is as follows: 
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𝑌𝑡 = 𝛽0 + 𝛽1𝑇𝑡 + 𝛽2𝑋𝑡 + 𝛽3𝑋𝑡𝑇𝑡 + 𝜖𝑡 

𝑌𝑡 is the outcome variable that measures the sales in month t, 𝑋𝑡 the time is the dummy 

variable representing the intervention (equals 1 if the time is after the intervention, equals 0 if the 

time is before the intervention), and 𝑋𝑡𝑇𝑡 is the interaction term, 𝜖𝑡 is the error term. 

𝛽0 represents the intercept or starting level of the outcome variable, 𝛽1 is the slope or 

trend of the outcome variable until the introduction of the intervention. 𝛽2 represents the change 

in the level of the outcome that occurs in the period immediately following the introduction of 

the intervention. 𝛽3 represents the difference between pre-intervention and post-intervention 

slopes of the outcome. Thus, a significant P value in 𝛽2 is an indicator of immediate treatment 

effect and a significant P value in 𝛽3 is an indicator of a treatment effect over time. 

RESULTS AND DISCUSSION 

We analyzed a total of nine categories of drugs, I listed the detailed results of 

antidiabetics and oncology drugs, the results for this estimation analysis are presented in Table 

3.1 and 3.2. 

[Table 3.1 about here]  

[Table 3.2 about here]  

As we can see, the trend change are different, depends on what kind of drugs it is, 

whether it is branded or generic. We further calculated each categories` Herfindahl-Hirschman 

Index (HHI) to see whether this is related to the level of competition. The HHI is calculated as 

follows: 

HHI = 𝑠1
2+𝑠2

2 + 𝑠3
2 + ⋯ + 𝑠𝑛

2 
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where 𝑠𝑛  is the market share percentage of firm n expressed as a whole number. 

According to the U.S. Department of Justice (2018), a market with an HHI of less than 1,500 is 

considered a competitive marketplace, an HHI of 1,500 to 2,500 is considered a moderately 

concentrated marketplace, and an HHI of 2,500 or greater is considered a highly concentrated 

marketplace. The higher the HHI is, the lower the level of competition. The results of the trend 

change and the respective HHI are listed in Table 3.3. 

[Table 3.3 about here]  

   The results of our estimation framework show that, when HHI is relatively low 

(competition is high), after deregulation of the price cap, the revenue of drugs does not show a 

significant change (as in the case of antibiotics and gastrointestinal medications); as HHI 

increases (competition becomes lower), we observe that, after deregulation of the price cap, the 

revenue of generic drugs show a significant decrease (as in the case of oncology, cardio 

medications, immunosuppressant, immunostimulant and eye condition medications) and the 

revenue of branded drugs show a significant increase; when HHI grows really high (competition 

is low), we observe an increase in the revenue of the generic drugs, however, the revenue of 

branded drugs will decrease (as in the case of antidiabetics and antithrombotics). Upon price 

change, when HHI is relatively low (competition is high), price change is not significant; when 

HHI is high (competition is low), branded drugs will increase the price and generic drugs will 

lower the price. 

Discussions and Implications  

Previous studies on price regulation of pharmaceutical industry usually focus on how 

different price regulation regime will affect drug prices and how the effect of price regulation 

differ between generic and branded drugs (Brekke 2009, Kaiser 2014), with only a few others 
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studied the effect of price regulation on market share (Podnar 2007), corporate R&D investment 

(Eger 2014) and physician`s prescribing behavior (Han 2015). With only one paper talking about 

pharmaceutical revenue (Neeraj 2008), but the paper`s focus is on national level of 

pharmaceutical revenue, not on level of drugs. In this paper, we obtained data from Sinopharm 

Group on revenues of different categories of drugs from 2011 to 2016 and thus applied a natural 

policy experiment study on the deregulation of price cap starting from June 2015. A direct 

relation between level of competition (represented by HHI) and revenue of drugs was found. 

The deregulation of price cap in China`s pharmaceutical market is a unique policy 

practice since most countries are regulating price instead of de-regulating and thus it provides us 

with some unique implications. First, competition does help with shaping the market 

characteristics. In our results, when HHI is low (meaning competition is high), for the two 

categories of drugs (antibiotics, gastrointestinal medications), after price cap deregulation, we 

don`t observe a significant change both in drug price and revenue, suggesting that the 

competition itself plays the role of regulation; Second, after price cap was removed, for the other 

seven categories where competition is not as high as antibiotics and gastrointestinal medications, 

branded drugs will increase the price and generic drugs will decrease the price, suggesting that 

branded drugs have more confidence in their pricing power comparing with generic drugs, 

generic drugs will lower their price with the hope of increasing the quantity; Third, although 

branded drugs have more confidence in their pricing power and thus increase their price, they 

don`t always end up with an increase in revenue, for the two categories (antithrombotics and 

antidiabetics) where HHI is high (meaning competition is low), they raise the price more than 

10% and at last suffer from a decrease in revenue; while on the contrary, the generic drugs gain 

an increase in revenue.  
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FIGURES AND TABLES FOR CHAPTER FOUR 

 

Table 4.1: Estimates of Changes in Revenue for Antidiabetics Following the Deregulation of 

Price Cap 

 𝛽 SD P Value Branded/Generic Price 

change 

Recombinant Insulin 

Glargine Injection 

Baseline level 

37324.65 17013.99 0.032 G -6.27% 

Baseline trend 10057.47 999.54 0.000   

Level change -2249.81 74073.24 0.976   

Trend change 15070.25 7340.79 0.044**   

Mixture Recombinant 

Human Insulin 

Injection 50 R 

Baseline level 

820.67 4030.36 0.839 G -3.11% 

Baseline trend 1973.77 200.95 0.000   

Level change -25413.66 9250.59 0.008***   

Trend change 2471.07 867.08 0.006***   

Humulin NPH 70/30  

Baseline level 

84992.35 20921.10 0.000 B +8.56% 

Baseline trend 14056.01 717.87 0.000   

Level change -117664.6 48859.96 0.019**   

Trend change -21659.64 4362.71 0.000***   

Mixture Recombinant 

Human Insulin 

Injection R 

Baseline level 

-12532.07 4732.04 0.010 G -9.17% 

Baseline trend 2094.81 241.47 0.000   

Level change 14821.86 18552.61 0.427   

Trend change 3139.08 1550.58 0.047*   

Humalog Mix50 

Baseline level 

-7046.32 5466.26 0.202 B +5.28% 

Baseline trend 4708.50 291.39 0.000   

Level change -13635.79 21448.34 0.527   

Trend change -5230.03 1622.26 0.002***   
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Repaglinide Tablets 

Baseline level 

19437.78 7386.97 0.011 B +8.62% 

Baseline trend 3161.81 338.82 0.000   

Level change -20927.98 16744.86 0.216   

Trend change -4679.34 1305.31 0.001***   

(***p<0.01, **p<0.05, *p<0.1) 

 

Table 4.2: Estimates of Changes in Revenue for Oncology Drugs Following the Deregulation 

of Price Cap 

 𝛽 SD P Value Branded/Generic Price 

change 

Pharmorubicin 

Baseline level 

291309 38359.33 0.000 B +7.06% 

Baseline trend 1870.87 1608.40 0.249   

Level change -124538.7 61750.98 0.048**   

Trend change 13932.4 5624.9 0.016**   

Oxaliplatin 

Baseline level 

305583.2 66531.84 0.000 B +3.32% 

Baseline trend 8730.21 2504.19 0.001   

Level change -61612.82 117144.5 0.601   

Trend change 31832.04 14316.37 0.030**   

Irinotecan 

Hydrochloride for 

Injection 

Baseline level 

113697.5 14346.94 0.000 G -2.49% 

Baseline trend 3332.28 630.80 0.000   

Level change -10341.76 26747.65 0.700   

Trend change -7086.19 2871.34 0.016**   

Hydroxycamptothecin 

Baseline level 

112180.6 17302.41 0.000 G -1.15% 

Baseline trend -60.53 764.66 0.937   

Level change 42652.07 27414.63 0.125   

Trend change -4630.35 1650.08 0.007***   

Capecitabine 

Baseline level 

60078.88 22192.46 0.009 G -6.16% 
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Baseline trend 8178.39 1383.25 0.000   

Level change 39184.26 101936.1 0.702   

Trend change -26051.72 8149.62 0.002***   

Icotinib Hydrochloride 

Tablets 

Baseline level 

182593.7 35938.62 0.000 B +3.99% 

Baseline trend 3984.15 1450.76 0.008   

Level change -275451.4 51875.56 0.000***   

Trend change 11542.01 4845.82 0.021**   

(***p<0.01, **p<0.05, *p<0.1) 

 

Table 4.3: Estimates of Changes in Revenue and Price for the Nine Categories of Drugs 

 𝑹𝑮 𝑹𝑩 𝑷𝑮 𝑷𝑩 HHI 

Antibiotics no change no change no change no change 385.47 

Gastrointestinal 

Medications 

no change no change no change no change 675.54 

Oncology - + -11.33% +5.89% 730.58 

Cardiac Medications - + -10.53% +6.54% 1007.49 

Immunosuppressant - + -13.44% +6.18% 1206.16 

Eye Condition 

Medications 

- + -11.9% +7.88% 1273.17 

Immunostimulant - + -12.88% +7.01% 1304.87 

Antithrombotics + - -6.15% +11.36% 1955.62 

Antidiabetics + - -6.34% +14.24% 2338.10 
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Figure 4.1: Recombinant Insulin Glargine Injection (G) 
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Figure 4.2: Mixture Recombinant Human Insulin Injection (G) 
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Figure 4.3: Mixture Recombinant Human Insulin Injection R (G) 
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Figure 4.4: Humulin NPH (B) 
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Figure 4.5: Humalog Mix 50 (B) 
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Figure 4.6: Repaglinide Tablets (B) 
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