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Abstract

As indicated by the title, this is a thesis in two acts. The first act encapsulates a

study of the rigidity transition in frictional particle packings, or how a packing goes

from floppy-to-rigid as its particle density increases, for example. While consensus

has emerged regarding the nature of the rigidity transition in frictionless packings,

there is much less consensus with frictional packings. Therefore, I introduce two new

complementary concepts, frictional rigidity percolation and minimal rigidity prolifer-

ation, to help identify the nature of the frictional rigidity transition. To probe frictional

rigidity percolation, I construct rigid clusters using a (3,3) pebble game for sliding

and frictional contacts first on a honeycomb lattice with next-nearest neighbors, and

second on a hierarchical lattice. For both lattices, I find a continuous rigidity transi-

tion. My numerically obtained transition exponents for frictional rigidity percolation

on the honeycomb lattice are distinct from those of frictionless/central-force rigidity

percolation. I propose that localized motifs, such as hinges connecting rigid clusters

that are allowed only with friction, could give rise to this new frictional universality

class. I also develop a minimally rigid cluster generating algorithm invoking general-

ized Henneberg moves, dubbed minimal rigidity proliferation. For both frictional and

central-force rigidity percolation, these clusters appear to be in the same universality

class as connectivity percolation, suggesting superuniversality between all three tran-

sitions for such minimally rigid clusters. These combined results allow me to directly

compare two universality classes on the same lattice in rigidity percolation, for the

first time.



Grounded in this lattice work, I then turn towards identifying and analyzing rigid

clusters within experimental packings to determine what aspects of the simpler lattice

models are experimentally relevant. I use two approaches to identify the rigid clus-

ters. Both approaches, the force-based dynamical matrix and the coordination-based

rigidity percolation, agree with each other and identify similar rigid structures. As the

system becomes jammed, at a contact number of z = 2.4± 0.1, a rigid backbone inter-

spersed with floppy, particle-filled holes of a broad range of sizes emerges, creating a

sponge-like morphology. I also find that the pressure within rigid structures always

exceeds the pressure outside the rigid structures, i.e. that the backbone is load-bearing.

These findings show that continuous transition observed in the lattice models persists

in experiments and that mechanical stability arises through arch structures and hinges

at the mesoscale.

In the second act of this thesis, I turn towards biology for inspiration, namely bi-

ology in the form of the cell nucleus. The cell nucleus houses chromatin, which is

linked to a protein shell called the lamina. Protein motors and chromatin binding pro-

teins in the nucleus are thought to drive correlated chromatin dynamics and nuclear

shape fluctuations. To test this notion, we develop a minimalistic model in which an

active, crosslinked Rouse chain linked to a polymeric shell. System-scale correlated

motion occurs and requires both motor activity and crosslinks. Contractile motors, in

particular, enhance chromatin dynamics by driving anomalous density fluctuations.

Nuclear shape fluctuations depend on motor strength, crosslinking, and chromatin-

lamina linkage. Complex chromatin dynamics and nuclear shape, therefore, both

emerge from this minimal, yet composite, system.
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Chapter 1

Introduction

Let us begin with the first act on the nature of the frictional rigidity, or jamming, transi-

tion. I will first discuss the notion of emergence of rigidity in disordered networks and

then move on to discuss rigidity, or jamming, in particulate systems with no friction

in order to lay the groundwork for subsequent chapters.

1.1 Rigidity in networks

FIVE YEARS LATER as I face the computer, I remember that distant winter afternoon

when I borrowed Introduction to Percolation Theory from the library. At that time, I

was a second-year graduate student. Many department buildings, built on the hill

by Marshall Street with its many restaurants, were covered by snow and so white

and enormous, like works of art. Every weekend, one of my roommates, whose ma-

jor was chemistry, would pour lots of magnetic bars and steel balls on a large table

and would display how he constructed a large molecule from many small pieces. He

compressed or stretched the molecules and some times it deformed easily, while other

times it did not. "It’s simply a matter of waking up the structure’s rigidity." I explained.

——Homage to ONE HUNDRED YEARS OF SOLITUDE
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1.1.1 Connectivity percolation

For network structures at different length scales, from bridges to the cell cytoskeleton,

it is key for functionality to maintain shape under stress. Physicists are interested in

studying the process by which the rigidity of individual bars/springs/components

emerges in a network at the system-wide scale, i.e. spanning it. The concept of span-

ning is distinct from rigidity since it only relies on connectivity. The study of the

emergence of system-wide connectivity is called percolation, which was first devel-

oped by Flory and Stockmayer [1, 2] to describe how small molecules react to form

larger molecules. Later, this concept was applied to lattice models and the field of

connectivity percolation evolved rapidly. In a network composed of nodes and with

bonds between nodes, if there is no occupied bond, there is certainly no connected

path spanning the network. With increasingly more bonds on the network being oc-

cupied, finite clusters, or groups of connected occupied bonds but disconnected from

each other, emerge until, finally, at least one connected cluster spanning the entire net-

work emerges. This emergence is identified as the connectivity percolation transition.

An example of this emergence on a two-dimensional square lattice is shown in Fig 1.1.

FIGURE 1.1: Schematic for connectivity percolation in a finite 2d square
lattice. Bonds with same color belong to the same cluster. Dotted bonds
are not occupied. Left: Only a few bonds are occupied. Middle: Some
finite-sized clusters emerge. Right: There is a spanning cluster colored

red.

Usually in percolation theory, the number of occupied bonds is controlled by the
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probability for one bond to be occupied, denoted as p. There exists a critical pc at

which the percolation transition occurs. Specifically, for bond percolation on an in-

finitely large square lattice, pc = 1/2, i.e. the occupation probability at which an

infinitely-large cluster emerges. Typically, the probability that a bond a distance r

from an occupied bond belongs to the same finite cluster is to the order of exp(−r/ξ),

where ξ is defined as the correlation length. Near the transition point, ξ ∼ |p− pc|−ν

with ν as a key scaling exponent characterizing the connectivity percolation transition

and called the correlation length exponent. For percolation in two-dimensions, rigor-

ous arguments yield ν = 4/3 and serve as a check on the numerical results [3, 4, 5].

It turns out that the connectivity percolation transition is a continuous one, which is

consistent with the divergence of the correlation length at the transition.

Connectivity percolation requires only a connectivity between nodes via occupied

bonds, while rigidity in a network structure demands more than that. It demands

that the connected structure span the network and that the structure be rigid in the

sense that the connected structure retain its shape under some small amount of strain.

We can, of course, debate how small is small. I will sweep this technical point under

the rug for now. To probe this demand, the occupied bonds become springs to which

strain can be applied and one can study the emergence of a rigid, spanning structure,

i.e. a rigidity percolation transition. Given the above discussion about connectivity

percolation, we ask: What kind of transition is the rigidity percolation transition? Is it

a continuous transition? If so, it is in the same universality class as connectivity perco-

lation, i.e. the exponents, such as the correlation length exponents, are the same? Or,

is the rigidity percolation transition a discontinuous one? To answer these questions,

let me now be more specify, more concretely, rigidity percolation.
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1.1.2 Central-force rigidity percolation

Spring networks are the basis of many man-made materials. Network structures com-

posed of bars, or infinitely stiff springs, connected at nodes are very common in bridges,

scaffolds, and wood house roofs. Random spring networks are common in living sys-

tems, such as the cellular cytoskeleton. In such networks, rigidity is obtained because

it costs energy for the bars/springs in the network to stretch, compress or bend. Forces

due to the tensile or compressive stiffness of the bars belong to central forces, while

forces related to the bending of springs belong to angular forces. A randomly-diluted

lattice is considered as a simplified network to study various features of disordered

spring networks. By randomly occupying now springs in a triangular lattice, in Fig 1.2

I construct a two-dimensional minimal rigid structure between two plates that has a

nonzero bulk modulus under applied pressure. On the left, I use angular springs, and

on the right I use springs that can freely rotate at the nodes. With angular springs, we

only need two bonds occupied, which also trivially satisfies connectivity percolation,

while with central forces, a more complex structure is required to be rigid. Let us now,

therefore, focus on central-force rigidity percolation.

The simplest way to model a central-force network is to consider bonds between

neighboring nodes in a network to be identical springs. Rigidity percolation in such

elastic network is achieved once there is nonzero shear modulus and bulk modulus.

In 1984, Feng and Sen did numerical simulations to study central-force rigidity per-

colation in a diluted two-dimensional triangular lattice [6]. They found that the bulk

and shear modulus vanish with some scaling exponent at a threshold pc, which is crit-

ical bond occupancy probability (and different from the connectivity percolation pc).

Specifically K, G ∼ (p− pc) f when p > pc, where K and G are the bulk modulus and

the shear modulus, respectively. They also showed that pc and f varies for different
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FIGURE 1.2: Schematic for rigidity percolation. Left: minimal rigid struc-
ture in angular-force-dominated rigidity percolation. Right: minimal

rigid structure in central-force rigidity percolation.

lattice types. In addition to exponent f , there are other exponents ν and β to quan-

tify the rigidity transition. The correlation length ξ behaves as ξ ∼ |p− pc|−ν around

pc, just as with connectivity percolation. The fraction of bonds in the spanning rigid

cluster, denoted as P∞, behaves as P∞ ∼ (p− pc)β for p ≥ pc and near the transition.

The exponent β is known as the order parameter exponent. To understand central-

force rigidity percolation analytically, in 1985, Feng, Thorpe and Garboczi developed

an effective-medium theory of percolation in central-force elastic networks [7]. Even

though the theory demands that fluctuations in displacements vanish, i. e. it is a mean

field approach, the theory gives an description of the shear modulus and bulk modu-

lus that matches numerical results very well. See Fig. 1.3. This analysis suggests that

the central-force rigidity transition is a continuous transition.

Rather than going through the nuts and bolts of effective medium theory, let’s look

at an exactly solvable, yet somewhat artificial, model of central-force rigidity percola-

tion. Let us start with the construction of a particular hierarchical lattice known as the
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FIGURE 1.3: C11 and C44 represent the bulk and shear modulus respec-
tively from numerical results. Lines are from effective-medium theory.
The inset is fraction of zero-frequency modes averaged from triangular

networks. [7]

Berker lattice. [9] Given two points and a bond, as in Figure 2.11a, replace the bond

with some additional structure to generate the first generation hierarchical structure.

This replacement continues ad infinitum to arrive at a network with an infinite number

of sites between two initial points. For this particular lattice, the nth generation con-

tains 8n bonds (with the exception of n = 0). To embed this lattice in two-dimensions,

the bond length decreases with each generation.

To analyze rigidity in this hierarchical lattice, assume each bond has a probability

p < 1 to be occupied. In the n = 0 graph, the probability of having a spanning rigid

cluster between the two ends (black dots) is p0 = p. In the n = 1 graph, the probability

of being rigid between two ends can be found by subgraph counting: If all eight bonds

are occupied in the n = 1 network, there is a spanning rigid cluster between the two

ends. The probability of such a structure existing is p8, while the probability for any

bond belonging to the spanning rigid cluster is 1. All other subgraphs that contain



7

FIGURE 1.4: Central-force rigidity percolation on a hierarchical lattice. (a) First
three generations of hierarchical Berker lattice. (b) Subnetwork counting:
dashed bonds are not occupied. Every type of subnetwork is a way to
obtain a spanning rigid network between two ends(black dots) and its
probability is calculated, as well as the probability for an occupied bond

to be in the spanning rigid cluster. [8]

a spanning rigid cluster and their respective probabilities are listed in Figure 2.11b.

Summing up all ways of having a spanning rigid cluster between the two ends of the

n = 1 graph, we obtain p1 = 2p5 + 2p7 − 3p8. Given the hierarchical structure of the

lattice, it is trivial to generalize this relation to pn+1 = 2p5
n + 2p7

n− 3p8
n, from which we

can solve for a fixed point, pc = 0.9446, as the system approaches the thermodynamic

limit, i.e. pn+1 = pn.

In such way pn will converge to a step function which jumps from 0 to 1 at pc

as n goes to infinity. Meanwhile, we use PR(p) to denote the probability for a bond to

belong to the spanning rigid cluster. By similar argument we can obtain the recurrence

relation for PR(p) is PR,n+1(p) = λPR,n(p). Near pc, λ = 0.9554 < 1 demonstrates that

the probability of a bond belonging to the spanning rigid network will approach zero

as p approaches pc. This trend suggests a continuous transition, as discussed above.

Expanding about pc in both recurrence relations leads to (pn+1− pc) = λ1(pn− pc)
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and Pn+1(p) = λ2Pn(p) such that λ1 = b1/ν, λ2 = b−β/ν, and λ3 = bd f , where

d f is the fractal dimension of spanning rigid cluster at the transition and b is the

length scaling factor from one generation of the hierarchical lattice to the next. For

the Berker lattice, λ3 = 8. We can therefore determine β = −log(λ2)/log(λ1) and

νd f = log(λ3)/log(λ1) , which are both quantities that are independent of b, resulting

in β = 0.078 and νd f = 3.533. We now know the order parameter exponent β and a

relationship between two additional exponents.

1.1.3 Pebble game and rigid cluster decomposition

During a rigidity percolation process, with more and more springs being added to

the lattice, it is useful to think about how and when isolated springs are connected

locally and finally exhibit rigidity at the system-size scale. According to the Maxwell

counting method [10], in the d-dimensional central-force rigidity percolation problem,

a network with N nodes and B bonds/springs has dN free motion modes in total, i.e.

or dN degrees of freedom. These free motion modes can be constrained by springs.

A key quantity to understanding rigidity is, therefore, the number free/floppy modes

per degree of freedom, denoted as f . With enough constraints, f drops to zero such

that the network becomes rigid. Assuming the bond occupation probability is p and

the average coordination number of network is z, then f is given by f = (dN− 1
2 Nzp−

dNnr)/(dN) = 1− p/p∗+ nr, where nr represents the redundant bonds per degree of

freedom. Therefore, p∗c = 2d/z gives an approximation of the location of the rigidity

transition point, assuming nr = 0. This estimated p∗c , also known as the isostaticity

point, typically gives a lower bound of the rigidity transition point because not all

bonds are independent constraints and there are some redundant bonds. For exam-

ple, in a square with all four edge bonds and two diagonal bonds occupied, any five
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among six bonds are independent constraints and the sixth bond is a redundant con-

straint. Given this fact, developing a method to check bonds individually to determine

whether or not they are an independent constraint is necessary to pinpoint the location

of the rigidity transition.

In terms of small rigid structures, it’s easy to imagine that a triangle is the small-

est minimal rigid structure composed of multiple springs. But it’s hard to imagine

whether the structure can bear stress or not if there are hundreds of springs. Going

back to 1970, Laman investigated the combinatorial properties of rigid plane skeletal

structures and mathematically proved Laman’s theorem [11], which gives a neces-

sary and sufficient condition on rigidity. Specifically, a random network consists of N

nodes and B bonds, where B = 2N − 3, is rigid if and only if any sub-network with

n nodes and b bonds satisfies b = 2n − 3. Note that Laman’s theorem can identify

instantaneous rigidity of a network under infinitesimal perturbation regardless how

perturbation is applied. Also the theorem deals with connectivity but not position of

nodes, so it holds for generic networks, i.e network without any symmetry, and there

is no degeneracies of motion modes for nodes. In the two-dimensional central-force

rigidity percolation problem, this theorem offers a guideline that rigid structures in

a very large network can be found by checking the conditions stated in the theorem.

There are also other routes as well, such as Callandine’s theorem [12].

Invoking Laman’s theorem, in 1995 Jacobs and Thorpe implemented the pebble

game, which is a powerful algorithm to track rigidity in a random 2d central-force

network [13]. Generally, each node in the network is assigned with two pebbles, rep-

resenting the two free motion modes. Then they assign pebbles to bonds connecting

the nodes to mimic the process that the free motion modes are constrained by bonds

using rules that will be discussed in detail in Chapter 2. Finally, they count pebbles

left in the network to determine its rigidity. If there are only three free pebbles left, the
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network is rigid since two global translational modes and one global rotational mode

are trivially rigid. If there are more than 3 pebbles left, it is floppy. This algorithm is

called (2,3) pebble game with 3 trivial global free motions and 2 pebbles on each node.

The advantage of (2,3) pebble game is it can evaluate the rigidity of network in a pro-

grammed way and only relying on the connectivity, or topology, of the network. No

explicit forces are required. An example of rigid cluster decomposition using (2,3) peb-

ble game in a honeycomb lattice is shown in Fig 1.5. In this sample, bonds between

nearest neighbors and betweennext nearest neighbors(NNN) are occupied with the

same probability. Different colors represent different rigid clusters computed from the

(2,3) pebble game. Nodes colored black belong to the largest rigid cluster, while grey

belong to smaller rigid clusters. Note that from left to right rigid cluster spans the

system with only one bond added, shown in the red circle. The fraction of of bonds

in the largest rigid cluster jumps from a small number to almost 1, which indicates a

discontinuous rigidity transition. Details will be discussed in Chapter 2.

FIGURE 1.5: Rigid cluster decomposition in a honeycomb lattice with
next-nearest-neighbors. Left: Before the transition. Right: At the tran-

sition.

When Jacob and Thorpe applied the pebble game to the generic triangular lat-

tice [14], they found that the rigidity percolation occurs at pc = 0.6602± 0.0003. More-

over, the correlation length exponent is ν = 1.21± 0.06 and the fractal dimension of
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the spanning rigid cluster is d f = d− β/ν = 1.86± 0.02. The order parameter expo-

nent β = 0.18± 0.02. They concluded that central-force rigidity percolation is a con-

tinuous transition and is a different universality class from connectivity percolation

with ν = 4/3 and β = 5/36. In 1995 Moukarzel and Duxbury studied the stressed

backbone of random central-force systems [15]. They supplemented used a cluster

labeling algorithm. A key step in their algorithm is to determine whether a newly-

added bond is redundant with respect to the bonds that are already in the network.

In this way, a stressed backbone can be obtained. They estimated that ν = 1.16± 0.03

and d f = 1.78± 0.02, which are close, but a bit different to Jacob and Thorpe’s results.

These differences could come from their estimate of pc since pc in an infinite network

is unknown. It turns out that pc can be extracted from the finite-size scaling function

|pL
c − pc| ∼ L−1/ν after ν is extracted from ∆(L) =

√
pL

c
2 − pL

c
2 ∼ L−1/ν, where pL

c is

the critical probability found in a system with size L.

FIGURE 1.6: The probability of having a spanning rigid cluster as a func-
tion of occupation probability p is plotted with periodic(dots connected
by solid line) or free(dashed line) boundary condition for various system

sizes. [14]



12

In typical phase transition analysis, the above scaling relations and exponents as-

sociated with a diverging length scale, suggest a continuous transition. But signs of a

discontinuous transition are also found in rigidity percolation, depending on the type

of lattice. In addition to finding a discontinuity in the order parameter as a function

of p on the honeycomb lattice [16], if next nearest neighbor(NNN) bonds are added

to a square lattice, the system experiences a sharp first-order-like transition in terms

of the order parameter at which only one NNN bond can connect many small rigid

regions together and form a large rigid bulk structure in the lattice. Our work was,

in part, inspired by these findings and demonstrates that even central-force rigidity

percolation is so “simple”.

If a phenomenon seems complex, it is sometimes better to think more broadly. In

another type of materials called "granular materials", there is a transition similar to

the rigidity percolation transition. Can we extract some features from this type of

system to help understand the rigidity percolation transition and vice versa? In order

to understand similarities and differences between the two phenomena, first we are

going to review some of the history of jamming, or the rigidity transition in granular

materials (particulate packings).

1.2 Jamming in granular materials

In my childhood, I had an interesting experience. When I was pouring beans into

bottles through a funnel, I wished to do it well and fast, but I failed because my beans

got clogged if I poured too fast. This could be explained philosophically by "haste

brings no success" but was physically a mystery for me. When I was playing near

the sea, I liked to put my hand gently on the wet sand and see the sand "swallowing"

my hand slowly like a swamp. I enjoyed doing this but, for one moment, I wondered
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why people can still walk on beach safely. Such questions lingered in my mind until I

learned about "granular materials".

1.2.1 Jamming transition

Granular material refers to a system containing a large amount of athermal particles

with short-range interactions between neighboring particles, such like foams, non-

thermal colloids, or a pile of sand, or a bottle of beans. When driven by external

forces, such as compression or shear, the system experiences a transition from fluid-

like to solid-like behavior, which is called "jamming", just like beans getting clogged

when flowing through a funnel or sand becoming too hard to deform when being

compressed heavily. Dating back to 1980s, physicists already made some progress in

studying granular materials.

In 1987 Pusey and Megen studied concentrated suspensions in a liquid of solid

colloidal spheres with a narrow particle-size distribution [17]. During the experiment,

different phases were observed. The system was in a fluid phase at low packing frac-

tion and at glass phase at high packing fraction. Packing fraction, usually denoted

as φ, refers to volume fraction of colloidal spheres in the system space, which is a

key characteristic property in granular materials. In their experiment, they fluid-glass

transition packing fraction is around 0.56. Even though glass transition was observed

in suspensions, by that time the authors were not sure if the glass state was a long-

lived metastability or not.

Besides interests in solid granular materials, foams was considered to be a vechile

for doing surface treatments in paper coating, fabric finishing and the mobility nature

of foams in porous media was useful to oil and gas industry. The study of foam flow

under shear stress was motivated by these practical applications. By 1988 [18], yield

stress was already found that, below such shear stress, the deformation rate of foams
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is zero and viscosity goes to infinity. Many experiments were conducted and features

of data are represented by τy = σφ1/3
d F(φd)R̄b, where τy, σ, R̄b are yield stress, surface

tension, average bubble radius respectively. Also, φd represents dispersed-phase vol-

ume fraction and experimental determined function F(φd) increases by an order when

φd increases in the range between 0.75 and 0.98. This implies volume fraction plays an

important role in the mechanical and dynamical features. In 1990, Bolton and Weaire

developed code to simulate a disordered, two-dimensional soap froth with volume

fraction less than 1 [19]. Their major finding was that the critical value of gas fraction,

denoted as φc, is around 0.84. When the gas fraction approaches this critical fraction

from 1, the average contact number decreases from 6 to 4, yield stress and shear mod-

ulus vanishes smoothly.

Later in 1995 Durian also numerically studied foam mechanics at the bubble scale [20].

In this simulation, interactions between neighboring bubbles are modeled as center-

to-center forces and the foam is sheared in a quasi-static way. As shown in Fig 1.7,

above φc = 0.841 ± 0.002, the shear modulus and average contact number are well

described by G ∼ (φ− φc)θ and Z− Zc ∼ (φ− φc)θ, respectively, which are consistent

with Bolton and Weaire’s arguments. All of these studies pointed to a volume/area

fraction as characterizing the transition point between a rigid/jammed state and a

floppy/unjammed state. Meanwhile large external loads, for example stress larger

than some yield stress, could also “break” the jammed state.

In 1998, Liu and Nagel proposed a landmark phase diagram as shown in Fig1.8 [21].

This diagram ties different systems together and points out that the jamming transition

can be found in many types of systems. In the load-free scenario, there is a phase tran-

sition between liquid and glass as a function of temperature. In the zero-temperature

case, there exists a jamming transition in granular materials. Based on this diagram,

jamming can occur only when the packing fraction, or density, is high enough. One
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FIGURE 1.7: Left: Durian’s schematic of shearing process, arrows repre-
sent trajectories of bubble centers. Right: shear modulus G and average

contact number Z as function of packing fraction φ. [20]

can also unjam a jamming system by raising the temperature or applying more exter-

nal stress. This paper is titled Jamming is not just cool anymore.

1.2.2 A frictionless jamming model

From the jamming phase diagram Fig 1.8, the jamming transition condition in gran-

ular materials is controlled by three quantities. For different types of systems, it is

hard to compare their behavior near the transition quantitatively. So, in 2003, Corey

O’Hern and company numerically studied a system of repulsive soft particles in a

region around point J [22], which is shown in the left figure in Fig 1.9 and adapted

from Fig 1.8, representing the jamming transition point under zero external stress and



16

FIGURE 1.8: Phases separation depends on three properties: temperature,
density and load. [21]

temperature. They studied the systems’ behavior in both two-dimensional and three-

dimensional systems made up of particles interacting with finite range, repulsive po-

tentials expressed as:

V(rij) =

 ε(1− rij/σij)
α rij < σij

0 rij ≥ σij

(1.1)

where ε is typical scale of energy, rij is distance between particles i and j and σij is

the sum of radii of them. Different α represents different types of repulsive potentials.

Interactions between the particles are purely central forces, which means there is no

friction included. In their simulations, they measurde the static shear modulus G, by

applying a very small shear strain, minimizing the energy with the conjugate gradient

technique, and measuring the final induced stress. In all cases, no matter if the system

was 2D bidisperse, 3D bidisperse, or 3D monodisperse system, α = 3/2 or 2 or 5/2,

the fraction of jammed particles raise up to 1 when the packing fraction φ approaches

0.58 for a 3D packing and 0.80 for a 2D packing.

This implies that there exists a critical packing fraction φc which characterize the
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FIGURE 1.9: Left: adapted phase diagram. Right: relation between ex-
cess number of contacts per particle and distance to critical packing frac-

tion. [22]

jamming transition while being independent from the type of interactions between

particles. At this critical point the system is also an isostatic configuration such that

the number of contacts in the system equals to the number of force balance equations:

zcN/2 = Nd. Thus, zc = 2d at the transition point, where d is system dimension.

Below transition point z is zero and above transition point within a short range z has

a scaling relation to φ shown in fig 1.9. (z − zc) ∼ (φ − φc)β can be extracted from

the figure, where β = 0.50± 0.03 for all potentials, dimensions, and polydispersity

studied. Another impressive fact about z is that always equals to 0 for φ < φc, which

means z experiences a sudden change at transition point. This is due to relaxation

of overlapping between particles since there is no friction at all. If one analyzes the

rigid clusters in this frictionless packing, in two-dimensions, the onset of the rigid

cluster is discontinuous. So while the order parameter behaves discontinuously, there

are several diverging correlation lengths, demonstrating that the frictionless jamming

transition is a hybrid transition (a mix of continuous and discontinuous elements).

1.2.3 Shear jamming in frictional packings

In the framework described by the phase diagram in Fig 1.8, athermal granular materi-

als experience a jamming transition at a critical packing fraction φc, which is supported
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by frictionless simulatons. However, the role of friction in this transition is not readily

apparent. Majmudar and Behringer did experiments to look at the jamming transition

in frictional granular systems [23]. They studied a 2d bi-disperse system with ap-

proximately 3000 polymeric photoelastic disks. In their experiment, they compressed

the disks and measured the packing fraction and the pressure. After extracting the

contact number, their data fit to the power law relations (z − zc) ∼ (φ − φc)0.5 and

P ∼ (φ− φc)1.1, where the exponents are in good agreement with the frictionless sim-

ulations. But one difference between the frictional system from frictionless system

is that the isostatic point zc is modified. In the frictional case, there are more con-

straints from friction and ideally zc becomes 3 instead of 4 for strong friction in two-

dimensions. Typically, zc can be some value in between 3 and 4 (in two-dimensions).

Also, ascertaining that system is jammed requires non-zero pressure and stress and

the ability to resist any small incremental stress. This jammed state can be clearly

identified in the frictionless system due to the sudden change for z from 0 to zc = 4

at φc. But in the frictional case, the jammed state and unjammed state are not clearly

distinguishable.

To further investigate frictional packings, in 2011, Otsuki and Hayakawa studied

critical scaling laws near the jamming transition in frictional simulations [24]. Hys-

teresis was observed in the stress-strain rate curves. They found that scaling laws of

pressure, stress and contact number are characterized by two critical packing fractions

defined as φS and φJ . In that same year, Bi and company presented a generalized

jamming diagram in the stress-density plane as shown on the right in Fig 1.10 [25].

They discovered a shear jamming state and fragile state in frictional granular mate-

rials, which are located out of jamming region in original phase diagram. This shear

jamming phase diagram is supported by Otsuki and Hayakawa’s numerical results.

Since 2011, there have been many studies to understand how frictional jamming
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FIGURE 1.10: Original phase diagram and generalized jamming phase
diagram with shear jamming. Region labeled SJ represents shear jamming

states, F represents fragile states. [25]

extends beyond the traditional jamming phase diagram. In one such study, a rigid

cluster decomposition for frictional packings was developed and tested on simulated

packings [26]. They utilized concepts from rigidity percolation that I reviewed in first

part of this introduction and extended the pebble game algorithm to a frictional (3,3)

pebble game to adapt to friction contacts in two-dimensionalfrictional granular pack-

ings. Thus they were able to identify rigid clusters in quasi-statically sheared packings.

This methodology also allowed them to find microscopic relations between rigid clus-

ters, stresses and nonaffine motion. I will show in Chapter 2 that the frictional (3,3)

pebble game connects rigidity percolation and frictional jamming via lattice model

and, in Chapter 3 apply these methods to experimental packings for the first time.

1.3 Dynamics in the cell nucleus

And now for the introduction to Act 2 of the thesis.

"How many pairs of chromosomes do you have?" asked my teacher.

"25." I said.
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"What’s your purpose to come here on Earth?" asked my teacher.

1.3.1 Structure in cell nucleus

A cell nucleus houses its genetic material, or the instructions for building the proteins

that a cell needs to function. This material is meter-scale DNA plus proteins to form

chromatin and is packaged to fit inside a ∼10 µm-scale nucleus. The spatial structure

of chromatin, therefore, contains multiple scales as shown in fig 1.11. In a full cell

cycle, interphase lasts the longest. Structure and function of the interphase nucleus is

studied in experiments or numerical models, where chromatin exists as 30nm-fibers.

As shown in Fig 1.12 [27], the nucleus of all eukaryotic cells is bounded by a double

phospholipid membrane (purple) composed of an inner and outer leaflet. The nu-

clear envelope serves as (1) a physical barrier between the chromosomes (blue) and

the cell cytoplasm, (2) a structural scaffold for the nucleus, and (3) a permeability

barrier between the nucleoplasm and the cytoplasm. It is perforated by nuclear pore

complexes (pink) through which small molecules diffuse and larger molecules are se-

lectively transported. In human cells, the inner nuclear membrane is lined by the

nuclear lamina (red) to which heterochromatin(dark blue) and specific chromosome

domains are anchored, whereas euchromatin (light blue) is enriched in the nuclear

interior. Heterochromatin refers to part of chromosome that is densely packed and

genetically inactive while euchromatin refers to loosed packed and genetically active

part.

To dig into the microscopic spatial structure of chromatin, in 2009 Lieberman-

Aiden and company invented Hi-C [29], a method that probes the three-dimensional

architecture of whole genomes by coupling proximity-based ligation with massively

parallel sequencing. From the map constructed from the Hi-C method, they confirmed

the presence of chromosome territories, which is consistent with spatial structure of
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FIGURE 1.11: Different scales of DNA packaging in the cell nucleus. [28]

a fractal globule, a polymer model of chromatin that had been predicted years ear-

lier [30, 31]. the Fractal globule is a knot-free polymer conformation that enables

maximally dense packing while preserving the ability to easily fold and unfold any

genomic loci. In a fractal globule, the radius of gyration Rs of a subchain with length s

is scaled as Rs ∼ s1/3 while this relation in common-used globular equilibrium globule

is Rs ∼ s1/2 [32].

1.3.2 Modeling correlated motion

Not only does the spatial structure of chromatin matter for cell nucleus functionality,

chromatin is also moving inside the nucleus and such motion could cause rearrange-

ment of nuclear structure to potentially affect gene expression. The obvious example

is the transcriptional motor RNA polymerase II that walks along DNA. The unwind-

ing of DNA around histones is needed for transcription and so while there is dynam-

ics/motion of the DNA at the nanometer scale, is there larger scale motion? Nontrivial,
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FIGURE 1.12: Schematic of a human cell nucleus. [27]

larger scale chromatin motion indeed occurs. To be specific, correlated motion of ge-

nomic regions on the length scale of microns over the time scale of tens of seconds has

been observed [33]. In 2013, Zidovska, Weitz and Mitchison analyzed time-resolved

images of the nucleus and calculated the displacement correlation function [33]. This

function can be described by Cr(∆r) = A(∆r)ne−∆r/ξ , where Cr, ξ are correlation and

correlation length respectively. They found that such correlated motion spans across

around 4-5 microns for several seconds and is diminished under perturbation of AT-

Pases, such as DNA polymerase, RNA polymerase II, and topoisomerase II. This im-

plies that motor proteins consuming ATP are playing a role in the correlated motion

of chromatin.

The Rouse model is a simplest theory of polymer dynamics and it explains well
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the dynamical properties of polymer in the absence of hydrodynamics and entangle-

ments [34]. It is simply a string of beads connected by springs. Since the 30 nm chro-

matin fibers are polymer chains at a length scale larger than 30 nm, and there motors

acting on them, Osmanovic and Rabin modeled active forces as non-thermal random

forces on the Rouse chain [35]. They analytically found that random-direction active

forces on the Rouse chain induce an effective additional temperature. They also found

that the polymer is self-correlated over some timescale. They did not consider con-

finement in their calculations. There are other polymer models of chromatin under

confinement. In 2018, Saintillan, Shelley and Zidovska constructed a polymer model

of chromatin [36] including active force dipoles (one applied on polymer and the other

on liquid background), hydrodynamics, and fixed spherical boundary conditions. In

their model they obtained strong correlated motion for extensile activity (force dipole

back to back) and but not in the contractile active case (force dipole face to face) and

passive case (force dipole turned off). Clearly, hydrodynamics introduces long-range

correlations between different regions of the chromatin

In addition to activity and confinement, there are two additional features of chro-

matin that the 2018 chromatin model neglected: chromatin crosslinks and linkages

between chromatin and the lamina. Motor cluster complexes may provide a mecha-

nism for cross linking chromatin as indicated by inhibition of active RNAPII leading

to larger mean-squared displacements of nucleosomes, shown in Fig 1.13. Chromatin

binding proteins, such as heterochromatin protein 1 (HP1), also function as chromatin

crosslinkers[37]. Rheological studies found that chromatin crosslinks were required

in a computational model to replicate the force extension curves of isolated, stretched

nuclei [38]. Chromatin motors and binding proteins, thus, may remodel as well as
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crosslink, to arrive at a more collective picture of chromatin. Moreover, the cell nu-

cleus contains 10-30-nanometer thick [39, 40] filamentous network of intermediate fil-

aments, known as lamins, between the chromatin and the inner nuclear membrane. In-

teractions between the chromatin and lamin, such as lamin-associated domains along

chromatin, provide linkages of the chromatin to the filamentous, lamina shell.

FIGURE 1.13: A model for the formation of a loose spatial genome chro-
matin network via RNAPII-Ser5P, which can globally constrain chromatin

dynamics. [41]

Based on these, and earlier, developments, in Chapter 4 to understand how the cor-

related chromatin dynamics emerges and how nuclear shape is affected, I am going to

construct a model with motor activity for the composite chromatin-lamin system, with

the chromatin modeled as an active Rouse chain with excluded volume interactions

and the lamina as an elastic, polymeric shell with bindings between the chain and the

shell. I will also include chromatin crosslinks and linkages between the chromatin and

the lamina.
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1.4 Outline

In this thesis of two acts, first I will address a problem that seems to emerge in two

classes of systems in different ways in Chapters 2 and 3. A rigidity transition occurs

in central-force networks and a shear jamming transition occurs in granular packings.

Typically, the former is characterized by scaling exponents near the transition, such

as correlation length exponent ν and the order parameter exponent β, while the latter

is studied by evaluating the evolution of force chains or particle flows. My goal is

to unify these two transition by looking at their macroscopic behaviors and localized

motifs.

Specifically, in Chapter 2 I encode typical mechanical constraints in frictional par-

ticle packings into a lattice network. Within this framework, I study the frictional

rigidity percolation to identify the nature of the frictional jamming transition as well

as significantly broaden the scope of rigidity percolation. I construct rigid clusters us-

ing a frictional (3,3) pebble game algorithm on a honeycomb lattice with next-nearest

neighbors, and second on a hierarchical lattice. For both lattices, I find a continuous

rigidity transition. The numerically-obtained transition exponents for frictional rigid-

ity percolation on the honeycomb lattice are distinct from those of central-force rigid-

ity percolation. Some localized motifs are proposed and could give rise to this new

frictional universality class. And yet, the distinction between the exponents charac-

terizing the spanning rigid cluster for frictional and central-force rigidity percolation

is small, motivating me to search for mechanisms of superuniversality. I construct a

minimally rigid cluster generating algorithm invoking generalized Henneberg moves,

dubbed minimal rigidity proliferation. For both frictional and central-force rigidity

percolation, these clusters appear to be in the same universality class as connectiv-

ity percolation, suggesting superuniversality between all three transitions for such

minimally rigid clusters. These combined results allows me to directly compare two
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universality classes on the same lattice and to highlight unifying and distinguishing

concepts of rigidity transitions in disordered systems.

In the third chapter, I show how rigidity emerges in experiments of sheared fric-

tional granular materials by using generalizations of two methods for identifying rigid

structures. Both approaches, the force-based dynamical matrix and the connectivity-

based rigidity percolation, agree with each other and identify similar rigid structures.

As the system becomes jammed, a rigid backbone interspersed with floppy, particle-

filled holes of a broad range of sizes emerges, creating a sponge-like morphology. I

also found that the pressure within rigid structures always exceeds the pressure out-

side the rigid structures. These findings shows that it is necessary to look at emergence

of localized backbones to capture the physics of frictional jamming and also suggests

that mechanical stability arises through arch structures and hinges at the mesoscale.

The second part of this thesis, presented in Chapter 4, addresses chromatin dynam-

ics. Chromatin dynamics is believed to be very important in that it causes rearrange-

ments of the locus of genome. The pattern of chromatin dynamics is highly nontrivial

since spatial-temporal correlated motion was found between different chromosome

regions. Hydrodynamics is usually included in chromatin models exhibiting corre-

lated motion. Yet, chromosomes are linked to a protein shell called the lamina and

protein motors and chromatin binding proteins in the nucleus drive nuclear shape

fluctuations. In Chapter 4, a minimalistic chromatin-lamina model is developed in

which an active, crosslinked Rouse chain is locally linked to a polymeric shell. System-

sized correlated motions occur require both motor activity and crosslinks. Contractile

motors in particular enhance chromosome dynamics by driving anomalous density

fluctuations. Nuclear shape fluctuations depend on motor strength, crosslinking, and

chromosome-lamina binding. Complex chromatin dynamics and nuclear shape, there-

fore, both emerge from this minimal, composite chromosome-lamina system.
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Finally in Chapter 5, I will summarize the various results presented. To conclude,

I will end with a discussion of future directions and implications of rigidity in partic-

ulate system and dynamics in polymeric system.
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Chapter 2

Frictional rigidity percolation in lattice

model

This chapter is based on work primarily presented in the article “Frictional rigidity percolation:

A new universality class and its superuniversal connections through minimal rigidity prolif-

eration” co-authored by Silke Henkes and J. M. Schwarz and published in the journal Physical

Review X in the year 2019. We came up with the model together and I was responsible for

doing most of the numerical work. The paper itself was primarily written by J. M. Schwarz.

Silke Henkes and I also contributed to some editing.

2.1 Rigidity transition and jamming transition

At the heart of every rigidity transition is the emergence of a spanning rigid cluster–an

entity of interconnected bonds that are rigid with respect to each other. For disordered

systems, the starting point of choice has become randomly-diluted spring networks

with central-force interactions [6, 7, 42, 43]. As bonds are randomly diluted from a

triangular lattice, either a regular one or with slightly randomized lattice points (a

generic lattice), the system goes from rigid with a non-zero shear modulus to floppy

without this feature [44, 13, 14, 15]. Underlying this mechanical phase change is the
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transition from a system with a spanning rigid cluster to a system without one, as

identified by the combinatorial (2,3) pebble game [45]. The location of this rigidity

transition occurs approximately at isostaticity where the number of degrees of free-

dom are frozen out by the number of force-balance equation constraints, known as

Maxwell constraint counting [10].

The rigidity transition in the central-force, randomly bond-diluted triangular lat-

tice was numerically found to be a continuous one with a correlation length exponent,

ν = 1.21± 0.06, an order parameter exponent β = 0.18± 0.02, and a fractal dimen-

sion of the spanning rigid cluster, d f = 1.86± 0.02 [13, 14]. These exponents differ

slightly from two-dimensional connectivity percolation where ν = 4/3, β = 5/36,

and d f = 91/48 [46]. Despite the small difference in exponents, it was eventually ar-

gued that central force rigidity percolation (RP) is in a separate universality class since

there are nonlocal effects in terms of how rigid clusters grow that differ from con-

nectivity percolation [13, 14]. Meanwhile, Bethe lattices with no loops are amenable

to analytical treatment and demonstrate that the spanning rigid cluster at the transi-

tion is not fractal [47, 48]. To add to the complexity, numerical simulations of three-

dimensional lattices with central-force interactions indicate a discontinuous rigidity

transition as well, in contrast to the two-dimensional case [49]. Finally, central-force

models with next-neighbor springs can exhibit hybrid rigidity transitions with both

continuous and discontinuous features [16]. With this rather varied set of phase tran-

sitions when changing just the type of lattice, the general solution to the central-force

RP problem is far from clear, if it is even possible.

Rigidity percolation with bond-bending forces adds another “dimension” to the

problem [50, 51, 52, 52, 53, 54]. Numerical simulations of two-dimensional systems

measuring elastic properties suggest that bond-bending forces drive the transition into

a different universality class [55]. However, since there is currently no pebble game
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FIGURE 2.1: Rigid clusters in simulated frictional packings under slow shear.
Four snapshots from the molecular dynamics simulation showing par-
tially rigid systems close to the frictional rigidity transition. In black is
the largest rigid cluster, while floppy regions are colored gray. Blue, green
and red disks correspond to three, two and one leftover pebble, respec-
tively. The range of partial rigidity decreases with increasing friction co-
efficient µ, or equivalently, increasing q. (a) µ = 0.2, with a transition at
q = 0.78 and average coordination number z = 3.35. (b) µ = 0.3, with
a transition at q = 0.86 and z = 3.15, (c) µ = 0.5, with a transition at
q = 0.95 and z = 3.0, and finally (d) µ = 10 with a transition at q = 1.0
and z = 2.8. The last value is due to the large number of contactless

particles (rattlers) in the packing, visible in blue.

for bond-bending forces even in two-dimensions, a direct comparison to central-force

rigidity percolation in terms of ν, β, and d f has yet to be made.

Particle packings also undergo a rigidity transition as a function of the packing

fraction [20, 22, 56] and additionally feature contact network rearrangements, unlike

the randomly-diluted spring networks. The rigidity transition in such systems has

been labeled the jamming transition, where the system moves from a zero to non-zero

bulk and shear modulus with increasing packing fraction, suggesting the emergence

of a spanning rigid cluster [22]. This suggestion was made explicit by first extracting

the contact network of a two-dimensional frictionless (i.e. central forces only) particle

packing at jamming. Second, constructing the rigid clusters from this network via the

(2,3) pebble game shows that at the onset of rigidity/jamming every particle partici-

pating in the contact network is part of one rigid cluster, i.e. the spanning rigid cluster

is bulky at the transition [57].
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In frictional particle packings, jamming is even less understood. Recently two of us

[26] developed a new pebble game algorithm incorporating both particle translations

and rotations to compute rigid clusters for networks abstracted from two-dimensional

frictional particle packings. We applied it to molecular dynamics simulations of fric-

tional particle packings at a fixed packing fraction experiencing slow shear, and deter-

mined rigid clusters at constant strain intervals as the packing repeatedly goes through

jamming/unjamming. The size of the largest rigid cluster indicates a continuous tran-

sition, and so does the observation of a roughly power-law distribution of rigid cluster

sizes near the jamming transition [26]. Within the spanning rigid clusters, we found

regions of floppiness, showing partial rigidity. The floppy regions are also physically

relevant as the non-affine motion of the particles is smaller inside the rigid cluster com-

pared to outside, and the pressure is higher. We present four such rigid cluster images

close to the transition for four different values of the friction coefficient µ in Fig. 2.1.

The major open question arising from this recent study of frictional rigid clusters is

whether or not the rigidity transition is actually continuous or not, as a continuous

rigidity transition would be very different from the frictionless case. Unfortunately,

the molecular dynamics simulation could not tune the system to be arbitrarily close to

the rigidity transition, and so it remains difficult to assess the nature of the transition

using such simulations.

Here, we ascertain the nature of the rigidity transition in frictional systems with

the introduction of frictional RP, that is the study of rigid clusters constructed via the

frictional (3,3) pebble game, on randomly-diluted lattices with bonds denoted either as

frictional or sliding. We study two types of lattices: the honeycomb lattice with next-

nearest neighbors and a hierarchical lattice. The former can be studied numerically,

while the latter is amenable to analytical calculations. The results for both lattices can
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then be compared to results for central-force RP to arrive at the first direct compari-

son ever between different types of forces on the same lattice. In generalizing rigidity

percolation, we can now take a step back to look a broader set of problems to be more

readily able to identify special cases in a forest of rather eclectic trees.

The structure of the rest of chapter one is as follows. We first describe frictional

rigidity percolation on the honeycomb lattice with next-nearest neighbors and present

our results. We then describe frictional rigidity percolation on a hierarchical lattice and

discuss how our analytical calculations can help bolster the numerical results on the

honeycomb lattice. Moving on, we present minimal rigidity proliferation and argue

how its strategic bond occupation method is different enough from our earlier random

bond occupation to lead to superuniversality amongst the different models. We then

conclude with a discussion of the implications of our results. A graphical abstract is

provided in Fig. 2.2 and serves as a roadmap for the manuscript.

2.2 Lattice models

2.2.1 Honeycomb lattice with next-nearest neighbors

Model

To motivate the model we begin with by reviewing Maxwell constraint counting in

two-dimensional frictionless packings (or central-force spring networks) with N par-

ticles (vertices) and average coordination number z [10]. The total number of degrees

of freedom is 2N, while there are Nz
2 force-balance constraints. When the number of

degrees of freedom is equal to the number of force-balance constraints, the system is

minimally rigid, i.e.

2N − 3 =
zcN

2
, (2.1)
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where the number of global rigid body translations and rotations has been subtracted

out since they are trivial. This equation yields the critical average coordination num-

ber zc = 4 (as N → ∞) for the onset of rigidity. Much numerical work with frictionless

particle packings has shown that this counting is an extremely good method to de-

termine the rigidity transition point [58, 59, 60]. No states of self-stress are observed

in particle packings at the transition, since the values of the purely repulsive forces

are uniquely determined by the boundary conditions at this point, such that a more

involved constraint counting approach is not needed [11].

For two-dimensional frictional particle packings, some contacts are below the Coulomb

threshold with the magnitude of the tangential force less than the magnitude of the re-

pulsive, central force times the friction coefficient. At such contacts, two particles can

only rotate and translate with respect to one another just as a gear does, and these

are denoted as frictional contacts. There are also contacts at the Coulomb threshold

in which two particles slide with respect to each other. For these sliding contacts,

the magnitude of the tangential force is set by the magnitude of the repulsive, central

force, i.e. there is only one constraint. We distinquish between these two types of

contacts by denoting q to be the probability of having a frictional contact with 1− q

denoting the probability of having a sliding contact, i.e. if q = 1, all contacts are fric-

tional. Then, performing the Maxwell constraint counting as above, since each particle

has 3 translational and rotational degrees of freedom, there are 3(N − 1) total degrees

of freedom (subtracting out the trivial global degrees of freedom in which there is no

relative motion between the particles). Moreover, the interparticle forces yield z(1+q)N
2

total constraints. We, therefore, arrive at the minimal rigidity criterion, or

3N − 3 =
(1 + q)zcN

2
, (2.2)

where q denotes the probability of having a frictional bond. For N → ∞ and q = 1,
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all bonds are frictional and zc = 3. If q = 1/2, we have zc = 4. Therefore, Eq.

2.2 describes a line of transition points interpolating from zc = 3 to zc = 4 as the

ratio of frictional to sliding bonds changes. This method of counting is now known as

generalized isostaticity [61, 62]. Such bounds are indeed observed in experiments [63].

Note that increasing the friction coefficient µ increases q, and in addition, that one

cannot smoothly interpolate between frictional and frictionless packings as one cannot

smoothly interpolate between 2 and 3 local degrees of freedom.

To construct a lattice model for frictional particle packings, we consider a honey-

comb lattice with additional next-nearest neighbor (NNN) bonds. This modified hon-

eycomb lattice has a maximum coordination number of zmax = 9. We define p as the

probability of bond/contact occupation. The reason we employ the honeycomb lattice

with next-nearest neighbors is because we can explore geometry to determine whether

or not it is relevant for determining the nature of the phase transition. We do so by con-

structing and studying two different models for bond occupation, see Figure 2.3. For

the first model, we fully occupy the honeycomb backbone such that p = 1/3 and then

occupy the additional NNN bonds occupied randomly such that p ≥ 1/3. We dub

this first strategy of bond occupation HC1. We also implement a second strategy of

bond occupation in which the bonds, both nearest-neighbor or next-nearest-neighbor,

are occupied at random, which we dub HC2. For HC1, since the honeycomb backbone

is fully occupied, the central forces on each particle can be balanced, which is required

by local mechanical stability in frictionless, but not frictional, packings. Therefore,

HC1 will allow us to more readily compare with the geometry of frictionless packings

in order to see how frictionless differs from frictional. The frictional bonds are then

randomly assigned with probability q, and periodic boundary conditions are imple-

mented.

Now we address the frictional versus sliding bonds for this lattice model. Since
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frictional bonds randomly occur with probability q, using Eq. 2.2 the critical occupa-

tion probability predicted by Maxell constraint counting is

pc =
zc

zmax
=

2
3(1 + q)

. (2.3)

Equation 2.3 tells us how pc depends on q, therefore, denoting a phase transition line

between floppy and rigid phases just as in generalized isostaticity.

Once the frictional and sliding bonds have been identified, we construct a con-

straint network in which frictional bonds below the Coulomb criterion are denoted as

double bonds in the constraint network and sliding bonds at the Coulomb threshold

are denoted as single bonds in the constraint network. We then play the (3, 3) pebble

game on this constraint network in which the first number denotes the number of lo-

cal degrees of freedom and the second number denotes the number of trivial global

degrees of freedom, which does depend on boundary conditions. However, Ref. [26]

found that changing the number of trivial global degrees of freedom from 3 to 2 due

to periodic boundary conditions did not significantly affect the rigid cluster analysis

for both frictional and frictionless particles and so we stick with the (3, 3) and (2, 3)

pebble games.

We illustrate the (3, 3) pebble game algorithm using several very simple constraint

networks in Fig. 2.4. A more detailed explanation can be found in Appendix 2.4. Ex-

amples or the rigid clusters we find below, at, and above the rigidity transition for

both HC1 and HC2 are shown in Figure 2.5. To compare frictional RP with central

force RP, we complement our analysis with an approach where any double bond is

converted to a single bond and a (2,3) pebble game is played since each site contains

now only two degrees of freedom. Examples of the corresponding rigid clusters are

shown in Figure 2.6. Finally, we implement finite-size scaling analysis to quantify the

transition for HC1 and HC2 for different qs for the frictional (3, 3) pebble game and
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for the central-force (2, 3) pebble game.

Results

Spanning probability: We first identify the location of the rigidity transition by de-

termining whether or not there exists at least one spanning rigid cluster in the x or y

direction as both p and q are varied. We do this for all four variants, HC1 and HC2

for both the frictional (3, 3) game and the frictionless (2, 3) game. For HC2 we study

q = 0.5 and q = 1.0, the two extreme values of q. For q = 1, isostaticity predicts

pc(1) = 1
3 . For the HC1 model, this is identical to the initial occupation of the hon-

eycomb lattice backbone, and for this regular lattice, we expect one spanning rigid

cluster with a unity probability of spanning, i.e. a first-order transition. Therefore, for

HC1, we study q = 0.5 and q = 0.7 and do not explore the limit q→ 1 since q = 1 is a

special case.

Figure 2.7 plots the probability that the system contains at least one spanning rigid

cluster as a function of p for different system lengths L. Figure 7a presents data for

HC1 with q = 0.5, while Figure 7b presents data for HC1 with q = 0.7. In both

subfigures, different curves with different system sizes cross near a particular value

of p, which indicates the location of the transition point denoted hereafter as pc(q).

In particular, pc(0.5) ≈ 0.447(1) and pc(0.7) ≈ 0.396(1). These two critical points are

very close to the results from the generalized isostaticity counting in Equation 2.3 with

pc(0.5) = 4
9 ≈ 0.444 and pc(0.7) = 20

51 ≈ 0.392.

The probability of spanning for HC1 at pc(q) for both q = 0.5 and for q = 0.7, is

approximately 0.6. Since this value is significantly less than unity, our findings suggest

a continuous transition for the onset of the spanning rigid cluster. Typically, the value

of probability of spanning at the transition is not a universal quantity and depends
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on details of the model. For the frictionless version of HC1, shown in Figure 7c, the

crossing point is more difficult to determine but we estimate it to be near 0.448(1).

For the HC2 version of the model (bottom row of Fig. 2.7), we again find cross-

ing points near the predicted generalized isostaticity counting since the formula also

applies to this variant of the bond occupation. Since there is no ordered honeycomb

backbone that is initially occupied, we explore both the lower and upper bounds of q,

i.e. q = 0.5 and q = 1.0 (Figures 7d and 7e). Our results can be found in the first column

of the Table in Figure 2.9. We note that there is greater discrepancy of the estimated

pc from generalized isostaticity for HC2 than for HC1. We also note that the probabil-

ity of spanning at the transition (the crossing point) now differs between q = 0.5 and

q = 1.0, which does not imply a different universality class because the crossing point

depends on details of the lattice. The frictionless version of HC2 is plotted in Figure 7f.

Correlation length: The correlation length ξ quantifies how two distant parti-

cles/sites interact. In a continuous transition, the correlation length diverges at the

transition, while near the critical point, ξ ∼ |p − pc(q)|−ν on either side of the tran-

sition, where ν is the correlation length exponent. In a finite-size system and near

the transition, ξ is replaced by the system length L. For each realization, after this re-

placement, the system has a finite-size critical point pL
c (q) when the system contains a

spanning rigid cluster, with |pL
c (q)− p∞

c (q)| ∝ L−
1
ν . Since the location of the transition

fluctuates for each realization, we therefore obtain a distribution of finite-size critical

points as observed in Figure 2.7. The standard deviation of this distribution, ∆, yields

a measurement of the correlation length exponent [4]. More precisely,

∆(L) =
√

pL
c (q)2 − pL

c (q)
2 ∼ L−1/ν. (2.4)

Using error function fits to the data in Figure 2.7, we numerically differentiate the
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curves and fit to Gaussians to compute ∆(L) and extract the correlation length expo-

nents ν = 1.58± 0.13 for HC1 with q = 0.5 and ν = 1.48± 0.20 for q = 0.7. Both

values are within one standard deviation of each other. For the frictionless version

of HC1, we obtain ν = 1.50± 0.07. For HC2, we find ν = 1.48± 0.05 for q = 0.5,

ν = 1.43± 0.04 for q = 1.0, and ν = 1.33± 0.05 for the frictionless version. Figure

2.8e shows the width of the transition for the six different variations of the honeycomb

lattice model.

Spanning rigid cluster: We now study the properties of the spanning rigid cluster

using P∞, the fraction of occupied bonds in the spanning rigid cluster. Fig. 2.8a shows

P∞ for increasing p for different system lengths for HC1 with q = 0.5. We note that P∞

at pc(0.5) decreases as the system size increases, which, again, suggests that rigidity

transition here is continuous. The behavior of this curve just above the critical point

pc(q) is described by the order parameter exponent β with P∞ ∼ (p− pc(q))β for p ≥
pc(q), for an infinite size system. As long as L >> ξ, the equation applies and P∞ ∼
ξ−

β
ν . However, when L << ξ, the length scale will be set by L such that P∞ ∼ L−

β
ν . We

therefore introduce a universal scaling function f ( L
ξ ) that interpolates between these

two regimes, or

P∞(p, L, ξ) = (p− pc(q))β f (
L
ξ
)

= (p− pc(q))β f (L(p− pc(q))ν)

= L−
β
ν f̃ (L1/ν(p− pc(q))), (2.5)
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with f ( L
ξ ) = ( L

ξ )
− β

ν for L << ξ and a constant for L >> ξ. The universal scaling

function f̃ ( L
ξ ) can be obtained by rescaling

P∞L
β
ν = f̃ ((p− pc(q))L1/ν) (2.6)

as is done in Fig. 2.8b for q = 0.5, with ν = 1.56 and β = 0.18 used as fitting parameters

to obtain the optimal collapse. This estimate for ν is consistent with our previous

measurement for the same q from ∆(L) in Fig. 2.8e. The collapse supports the notion

of a continuous rigidity transition. We implement the same protocol for the remaining

cases to look for a continuous rigidity transition.

With the exception of the frictionless version of HC1, shown in Fig. 2.8c-d, the

order parameter exponent does not vary too much between the different models, as

summarised in Fig. 2.9c, though given the smallness of β, it is more difficult to measure

as precisely as ν. The small value of β ≈ 0.07 for the frictionless version of HC1

perhaps suggests that this model is similar to the square and kagome lattices with next-

nearest neighbors studied in Ref. [16]. There, a hybrid transition was found, where

the onset of the spanning cluster was discontinuous, but with a diverging correlation

length, though the correlation length exponent appeared to be unity.

In addition to the order parameter exponent, one can also measure the fractal di-

mension of the spanning cluster to determine whether or not it is, indeed, fractal. To

test for this possibility, the fractal dimension is determined by measuring the number

of bonds in the spanning rigid cluster, M, as a function of system length such that

M ∼ Ld f . In Figure 2.8f, we see that when q = 0.5, d f = 1.81± 0.06. For q = 0.7,

d f = 1.80± 0.05, so we observe little change in the fractal dimension with q, at least

for these system sizes, provided q is not close to unity. Similar fractal dimensions were

found for both the frictional and frictionless versions of the HC2 version of the model

and are listed in the table in Figure 9c.



40

Non spanning rigid clusters: In connectivity percolation, one typically investi-

gates the non spanning cluster size distribution, defined as the number of finite clus-

ters of size s per lattice site/bond, or ns [4]. At the transition, ns ∼ s−τ, where τ is

the cluster size exponent. For connectivity percolation, we hav the inequality τ > 2

strictly. How can we understand this result? We start with ∑∞
s=1 sns(p) + P∞(p) = p.

Since P∞(pc) = 0 for connectivity percolation, then ∑∞
s=1 sns(pc) = pc at the transition.

Using the assumption that ns ∼ s−τ and converting the sum to an integral, τ > 2 for

convergence to a finite value, i.e. pc.

In rigidity percolation, the situation is more complex because there are non-spanning

rigid clusters, spanning rigid cluster(s), and floppy regions. If both the non spanning

rigid cluster size distribution and the floppy cluster size distribution are power laws

independently at the transition, each exponent associated with the respective size dis-

tribution should be greater than 2. On the other hand, if one of the exponents is less

than 2, that would suggest a natural cutoff for that type of cluster and the more ten-

uous structure could still facilitate a continuous transition. If both exponents are less

than 2, then perhaps this aspect of the transition is discontinuous.

As detailed below, we cannot rely on hyperscaling relations for RP. Therefore, we

keep track of the non spanning rigid clusters only and posit that their size distribution

also behaves as a power law at the transition with exponent τ. If τ < 2, then there

is presumably a characteristic cutoff for the non spanning rigid cluster sizes at large

enough sizes with coupling to the floppy regions perhaps driving the continuity of the

transition. Figure 2.9a shows the probability for having a nonspannning rigid cluster

of size s as p is increased through the transition point for HC1 with q = 0.5 on a log-

log scale. Below the transition point, there are many small rigid clusters in the system.

As p increases, they merge into larger ones and the distribution broadens to approach
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a linear function on a log-log scale; the downward trend of the tail is due to finite

size effects. We obtain τ = 1.90± 0.03 < 2 from a linear fit to the relevant part of

the curve. Above pc(q), the spanning rigid cluster “swallows” the non spanning rigid

clusters and ultimately, as p is increased far beyond the transition point, there is only

one spanning rigid cluster left. We have measured τ for the six different cases and find

a persistent difference between the frictional and frictionless case in that τ > 2 for the

frictionless cases, while τ < 2 for all frictional versions (see Figs. 2.9b and c) indicative

of rather different ways the rigid clusters merge and grow in the two cases.

Rigid Cluster Merging Mechanisms

The results of our finite-size scaling analysis are summarized in the Table in Fig. 2.9.

We also include the exponents for central-force rigidity percolation using the (2,3) peb-

ble game on the triangular lattice (denoted as TL) and for connectivity percolation

(denoted as CP) on the triangular lattice for comparison. For the frictional versions

implementing the (3,3) pebble game, we find that HC1 and HC2 appear to be in the

same universality class, with the exception of the special case of HC1 at q = 1 in which

a discontinuous transition emerges as discussed earlier in Sec. II. We also conclude

that exponents associated with HC2 and the (2,3) pebble game are in the same uni-

versality class as the exponents for central-force rigidity percolation on the triangular

lattice obtained about twenty years ago. On the other hand, we find that the expo-

nents associated with HC1 and the (2,3) pebble game are potentially more related to

the square lattice plus braces (i.e., next-nearest neighbors) in which a hybrid transition

was found [16], so that this case is special, just as HC1 with q = 1 is special.

So while our (2,3) pebble game results are consistent with prior central-force rigid-

ity percolation results, our new frictional rigidity percolation compel us to ask the
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question what mechanism(s) could drive frictional rigidity percolation and central-

force rigidity percolation to be in distinct universality classes? To begin to answer this

question, we ask the following question: How do two rigid clusters combine to form

one larger rigid cluster?

Unlike in connectivity percolation, in rigidity percolation two independently rigid

clusters cannot become one rigid cluster by joining via a single bond. For a frictional

rigidity percolation example with q = 1, consider two triangles, which are individ-

ually rigid. If they are now joined by a double bond, 18 degrees of freedom of the

now 6 particles, minus 3 global degrees of freedom, are compared with 14 constraints

from 7 bonds to ultimately give one floppy mode. However, two distinct rigid clus-

ters connected by two double bonds makes a new rigid cluster (see Fig. 2.10b). Even

one double bond and one single bond connecting to the two triangles generates one

merged rigid cluster. The two spatially distinct bonds leading to rigid clusters merg-

ing in frictional rigidity percolation does not hold for central-force rigidity percolation.

For central-force rigidity percolation, at least three bonds are needed to merge two in-

dependently rigid clusters. One bond fixes the distance between the two rigid clusters,

the second bond the relative rotation between them and the third the shearing, pro-

vided the bonds are not all parallel with respect to each other. In the frictional case,

the one double bond between the two rigid clusters fixes both the distance and the rel-

ative rotation. Rigid hinges are another means by which two rigid clusters can merge

at a point and still be rigid. In central-force rigidity percolation, hinges consisting of

single bonds between rigid clusters are always floppy, and so rigid hinges cannot ex-

ist. However in frictional rigidity percolation, this is not the case, at least for a hinge

comprised of all double bonds, see Figs. 2.10b and d.

We conclude that two double bonds and the rigid hinge (composed of double

bonds) are distinct means of propagating rigidity in frictional rigidity percolation that
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do not occur in central-force rigidity percolation. Both frictional motifs are more spa-

tially localized than their central-force analogs even in the absence of floppy regions.

The presence of floppy regions indeed complicates matter, as they can become rigid

as well due to the merging of rigid clusters. This rigidification of floppy regions can

then trigger other rigid clusters to merge, until the rigidity cascade is complete. See

Figs. 2.10c, e, f. It is these very local motifs of connecting rigid clusters that can partici-

pate in a rigidity cascade to give rise to nonlocal, or distant, rigidity due to the addition

of one bond. While both types of models contain such an effect, we believe that the

zero-dimensional rigid cluster connector (the hinge) and the three- versus two-bond

rigid cluster connectors could potentially account for the difference in exponents rem-

iniscent of correlated percolation models such as k-core percolation where the k = 2

behavior is very different from the k = 3 behavior [64]. To more thoroughly under-

stand the differences the two types of forces in terms of how does rigidity propagate

through the system is combinatorially tricky. In the next subsection we will study a

hierarchical lattice where we are easily able to perform such a task.

In contrast, to the ν and τ exponents, the structure of the ultimate spanning rigid

cluster appears to not differ as dramatically between the two cases. Specifically, we ob-

serve little variation in β for the different models studied. We also observe little vari-

ation in d f for both HC1 and HC2 studied with just central forces and with frictional

forces. We will address this finding after presenting our hierarchical lattice results.

2.2.2 Hierarchical lattices

While we have presented predominantly numerical results so far for frictional RP and

argued for a distinct universality class from central-force RP, one exactly solvable RP

model is RP on hierarchical lattices. We can therefore analytically determine if indeed

the central force RP is in a different universality class than frictional RP. To do so, we
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will first review prior results using the (2, 3) pebble game with central forces only and

then generalize to the frictional version.

Review: central forces only

It has been previously shown that central-force RP transitions in such lattices exhibit

a continuous rigidity transition [65, 9]. To understand this finding, let us start with

the generation of a particular hierarchical lattice known as the Berker lattice [9]. Given

two points and a bond as in Figure 2.11a, replace the bond with some base structure to

generate a first generation hierarchical structure. This replacement continues ad infini-

tum to arrive at a network with an infinite number of sites between two initial points.

For this particular lattice, the nth generation contains 8n bonds (with the exception of

n = 0). To embed this lattice in two-dimensions, the bond length decreases with each

generation.

To analyze rigidity in this hierarchical lattice, assume each bond has a probability

p < 1 to be occupied. In the n = 0 graph, the probability of having a spanning rigid

cluster between the two ends (black dots) is p0 = p. In the n = 1 graph, the probability

of being rigid between two ends can be found by subgraph counting: If all eight bonds

are occupied in the n = 1 network, there is a spanning rigid cluster between the two

ends. The probability of such a structure existing is p8, while the probability for any

bond belonging to the spanning rigid cluster is 1. All other subgraphs that contain a

spanning rigid cluster, as determined by the (2, 3) pebble game, and their respective

probabilities are listed in Figure 2.11b. Summing up all ways of having a spanning

rigid cluster between the two ends of the n = 1 graph, we obtain

p1 = 2p5 + 2p7 − 3p8. (2.7)
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Given the hierarchical structure of the lattice, it is trivial to generalize this relation

to

pn+1 = 2p5
n + 2p7

n − 3p8
n, (2.8)

from which we can solve for a fixed point, pc = 0.9446, as the system approaches the

thermodynamic limit, i.e. pn+1 = pn.

In Fig. 2.11c, pn as a function of pn−1 is plotted for the first four generations. We

observe that the curves cross at p = pc and pn will converge to a step function which

jumps from 0 to 1 at pc as n goes to infinity. Meanwhile, we use PR(p) to denote the

probability for a bond to belong to the spanning rigid cluster. The recurrence relation

for PR(p) is

PR,n+1(p) =
1
4

(
5p4

n + 13p6
n − 14p7

n

)
PR,n = λPR,n(p), (2.9)

and near pc, λ = 0.9554 < 1 demonstrating that the probability of a bond belonging to

the spanning rigid network will approach zero as p approaches pc. This trend suggests

a continuous transition.

Expanding about pc in both Eqns. 2.8 and 2.9 leads to (pn+1 − pc) = λ1(pn − pc)

and Pn+1(p) = λ2Pn(p) such that λ1 = b1/ν, λ2 = b−β/ν, and λ3 = bd f , where b is

the length scaling factor from one generation of the hierarchical lattice to the next. For

the Berker lattice, λ3 = 8. We can therefore determine β = −log(λ2)/log(λ1) and

νd f = log(λ3)/log(λ1) , which are both quantities that are independent of b, resulting

in β = 0.078 and νd f = 3.533.

Frictional forces

Let us now consider a “frictional” hierarchical lattice with double and single bonds to

denote frictional and sliding contacts. Double bonds are introduced at random with
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probability q. When double bonds are taken into account, they affect subgraph con-

straint counting in the hierarchical lattice as we now play the (3, 3) pebble game to

determine whether or not a subgraph has a spanning rigid cluster. Since there is an

increased number of possible subnetworks in the frictional case given that the occu-

pied bonds can be either double or single bonds, let us first discuss the q = 1 case.

Here, there are several additional type of subgraphs containing a spanning rigid clus-

ter that were not allowed in the central force case, as shown in Fig. 2.12a, which we

can easily identify. For instance, one of the subgraphs is not allowed in the central

force case because it contains a hinge structure. In the frictional case, the frustrated

loops of odd numbers of vertices, or “gears”, prevent rotation. These additional rigid

subgraphs contribute an additional 16p6(1− p)2 to the probability of having a span-

ning rigid cluster above the central force case. Therefore, the counting for q = 1 leads

to the recursion relation

pn+1 = 13p8
n − 30p7

n + 16p6
n + 2p5

n. (2.10)

In the limit n → ∞, we find the unstable fixed point pc(q=1) = 0.8533, in addition to

two stable fixed points at p = 0 and p = 1. Moreover, we can compute PR,n+1(p, q=1)

to arrive at

PR,n+1 =
1
4
(5p4

n + 48p5
n − 83p6

n + 34p7
n)PR,n (2.11)

= λ2PR,n,

such that λ2(q = 1) = 0.3511. Since λ2(q = 1) < 1, the rigidity transition is continuous

with d f ν = 3.181. This value is indeed distinct from the central force value on the same lattice

thereby indicating two different universality classes.

Now we consider q < 1. After keeping track of what subgraphs are rigid between
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the two black circles in Figs. 2.11b and 2.12a in the presence of both double and single

bonds, we obtain

pn+1 = p8
n(35q8 − 244q7 + 474q6 − 312q5 + 60q4)

+ p7
n(84q7 − 210q6 + 96q5) + 16p6

nq6 (2.12)

+ p5
n(−8q5 + 10q4).

With q = 1, the unstable fixed point occurs at p = pc(q = 1) = 0.8533 with the two

stable fixed points at p = 0 and p = 1. Therefore, pn will converge to a step function

as n → ∞. However, for 0.8465 < q < 1, both the unstable and nonzero stable fixed

points, plower and phigher respectively, are smaller than 1 so that pn will converge to a

step function which jumps at plower from 0 to phigher. The reason that phigher is not unity

in these cases is because p denotes a double or a single bond such that when q = 1,

p = 1 translates to all double bonds; however, when q < 1 and p = 1, phigher depends

on the ratio of double to single bonds. When q = 0.8465, plower = phigher, which means

when q ≤ 0.8465, pn will always converge to zero and rigidity transition will vanish

entirely, showing that the existence of a rigidity transition in this hierarchical lattice

very much depends on q. We also compute d f ν (for q > 0.8465) and find that its value

depends on q, as shown in Fig. 2.12b. And while there is one value of q at which

the two d f ν values are the same, β may also be different. So, again, we find analytical

evidence for two distinct universality classes. In addition, the fact that the correlation

exponent depends continuously on q is not necessarily unique as has been found in

Ising models on hierarchical lattices, for example [66]. This sensitivity is presumably

due to the special nature of the hierarchical lattice, as detailed in Appendix 2.5.
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2.3 Minimal rigidity proliferation

For our numerical studies on the honeycomb lattice we found that the order parameter

exponent β and the fractal dimension of the spanning rigid cluster at the transition

d f are not very distinct between frictional and central-force RP. Are they in fact the

same, signalling features of superuniversality for the structure of the spanning rigid

cluster at the transition? Or is it the case that these exponents are indeed different

but the distinction is small, making it hard to detect studying finite-sized systems? If

we can find a model where the order parameter exponents are actually the same—

a model where the bonds are strategically placed as opposed to randomly placed,

for example—this strengthens the potential for superuniversality rather than relying

purely on numerical analysis, which has its limitations.

So let us now explore more explicitly connections between frictional RP and central-

force RP via a subset of rigid cluster configurations using an algorithmic approach

rather different from finite-size scaling. As will become clear below, connectivity per-

colation also enters the picture, since if we can construct spanning rigid clusters in the

same way as geometrically connecting clusters, then we have evidence for superuni-

versality across all three models.

We will first review invasion percolation, which is motivated by the problem of one

fluid displacing another from a random, porous medium [67]. More importantly for

us, invasion percolation allows one to create a spanning cluster on a lattice that has the

same properties as a spanning cluster in connectivity percolation. Next, we will review

the Henneberg moves [68], which are used to grow a large minimally rigid network

(a Laman graph) from a small minimally rigid network in the central force case. We

will then extend the Henneberg moves to include frictional forces and ultimately unify

the two concepts, invasion percolation and Henneberg moves. The final algorithm that

we introduce, minimal rigidity proliferation (MRP), allows us to grow minimally rigid
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networks that span a frictional system, and only grow such networks.

Invasion percolation is a modified version of connectivity percolation where the

spanning cluster grows along the path of smallest weights, with the following algo-

rithm:

1. Assign uniformly distributed random numbers ranging from 0 to 1 to bonds on

a lattice as their weights.

2. Occupy an initial bond, and create a list of all its neighbors. This list creates a

boundary of bonds.

3. Occupy the bond from the list that has the smallest weight.

4. Update the list so that it contains all unoccupied nearest neighbors of occupied

bond.

5. Repeat 3 and 4, until the occupied cluster spans the entire lattice.

The above algorithm reduces to the Leath algorithm [69], which creates the span-

ning cluster for bond connectivity percolation for p > pc in the following limit: In-

stead of occupying the boundary bond with the smallest weight, all boundary bonds

whose weight is less than p are accepted into the cluster, and then the boundary list

is updated. The algorithm terminates when there are no bonds on the boundary with

weights less than p. This modification from invasion percolation to the Leath algo-

rithm does not affect the large scale structure of the spanning cluster, i.e. they remain

part of the same universality class [70].

Let us also review the Henneberg moves for building a minimally rigid network with

central forces only. A minimally rigid graph in this case is also known as a Laman

graph. Minimal rigidity occurs when the degrees of freedom match the constraints and

there are no rendundant bonds, as determined through a (2, 3) pebble game. Starting
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from such a network G(N, NB) with NB bonds and N sites, one can extend it using

two basic Henneberg moves as illustrated in Figure 2.13 (top):

• add one site and two bonds between this site and two points in G , then G′(N +

1, NB + 2) is the new minimally rigid network (Type I move).

• or add one site and three bonds between this site and three prior sites in G, then

delete a prior bond between two of the selected three prior sites (Type II move).

Both moves simultaneously add two degrees of freedom and two constraints, which

results in a minimally rigid graph by induction.

Now we generalize, for the first time, Henneberg moves for the (3,3) pebble game in

order to propagate minimal rigidity. We focus on two cases: q = 1/2 and q = 1. For

q = 1/2, we consider only a Type I move by adding a site and then adding three bonds,

one double bond and one single bond (see Figure 2.13, middle). This move perpetuates

minimal rigidity since no dependent constraints are introduced. For q = 1, i.e. all

double bonds, we consider two Type II moves in series, if you will, by adding two

sites, where the first site connects to two existing sites and the second new site must

attach to the initial new site as well as an older site. Then, any one of the double bonds

between the first new site and either old site is removed, though not the bond between

the two new sites, to preserve minimal rigidity (see Figure 2.13, bottom).

Having discussed invasion bond percolation and the “growing” of minimal rigid-

ity via generalized Henneberg moves, we are now ready to introduce minimal rigidity

proliferation. We will first focus on (2, 3) minimal rigidity and then address (3, 3) min-

imal rigidity.
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2.3.1 Central force case

To create a spanning minimally rigid cluster as defined by the (2, 3) pebble game, we

combine the Henneberg move Type I and invasion bond percolation in the following

algorithm (see Fig. 2.14 for an illustration):

1. Assign uniformly distributed random numbers ranging from 0 to 1 to bonds on

the honeycomb lattice as their weights.

2. Begin by occupying a random triangle between three closest sites and create a

list of all nearest and next-nearest neighbor bonds of these sites.

3. Determine the sum of the weights of any two bonds from the sites on the list

that join at one site and the existing sites in the graph, find the smallest sum and

occupy those two bonds.

4. Update the bond list such that it contains any unlisted nearest and next-nearest

neighbor bonds of the newly added site.

5. Repeat 3 and 4, until the graph spans the lattice.

Though the graph is grown by adding two bonds at a time, as opposed to one, we

still expect that this process will fall under the connectivity percolation universality

class. Why? Because adding two bonds (with their additive weights) at a time involves

a simple rescaling of time in which two bonds are added in one time step as opposed

to two bonds in two time steps. With this simple rescaling of time, we do not expect the

structure of the spanning cluster to change between standard invasion percolation and minimal

rigidity proliferation, i.e. they are the same. Please also note that in MRP there are no

floppy regions and so there is no distant, or nonlocal, rigidity.

In Fig. 2.15 we show an example of a spanning minimally rigid cluster on the

honeycomb lattice with NNN bonds using minimal rigidity proliferation. We measure
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the fractal dimension by computing the number of sites in the cluster M as a function

of total number of sites N, as shown in Figure 2.16a, and obtain M = N0.958. Since N =

L2, this leads to a fractal dimension of the spanning rigid cluster at the critical point

of d f = 1.916, which is consistent with connectivity percolation. Figure 2.16b shows

P∞, the fraction of the system in the spanning cluster, converging to zero when system

becomes infinitely large, suggesting a continuous transition just as with connectivity

percolation.

2.3.2 Frictional case

Since we have extended the Henneberg moves to the (3, 3) pebble game for q = 1/2

and q = 1, we can generalize minimal rigidity proliferation to the frictional case. For

the q = 1 case, two Henneberg Type II moves are made in sequence to arrive at one

gowth step. With bond removal, it is not immediately clear that the minimally rigid

cluster growth results in the same cluster structure as the q = 1/2 case, and so we

leave this for future study. However, since the Type I move for q = 1/2 corresponds

precisely to the Type I move for the central force case just with one single and one

double bond, we expect the same configurations as above. Thus, both central-force per-

colation and frictional RP collapse to an identical construction in this case. Since we have

already argued in the central force case, that adding two bonds at a time is a simple

rescaling of time from adding one bond at a time, we also expect the q = 1/2 frictional

process to be in the same universality class as connectivity percolation via transitiv-

ity. In other words, within this subset of growing minimally rigid configurations, we

expect superuniversality to emerge: All three universality classes collapse into one all

with the same exponents!

Should we have expected this result? Indeed, we should have because this strategic

bond occupation does not contain floppy regions, so there is no nonlocal rigidity, and
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the minimal rigidity constraint maps to either adding one or two bonds at a time. In

other words, MRP is a simpler model than random bond occupation given that there is

no nonlocal rigidity. Interestingly, transfer matrix methods (not focusing on minimally

rigid clusters) argued that connectivity and central-force percolation were in the same

universality class but their results were later discounted [44, 13]. We now perhaps

have some understanding as to why some exponents appear to be quite close in value

in that one can add floppy, or redundant, bonds in some perturbative manner and

interpolate between the two limits.

2.4 The pebble game

Maxwell constraint counting discussed in Section II assumes that every bond/constraint

is an independent one. However, not every bond is an independent constraint in a ran-

dom network. There may exist some redundant bonds. In order to more accurately lo-

cate the critical point where RP occurs in two-dimensional networks by keeping track

of independent and redundant constraints, one can invoke the pebble game. This al-

gorithm was described in Ref. [45] and is rooted in the following Laman condition: A

two-dimensional network with N sites is minimally rigid if and only if it has 2N − 3

bonds and no subnetwork of k sites has more than 2k − 3 bonds [11]. To implement

the Laman condition numerically requires checking all possible subnetworks, which

is comptuationally expensive. The pebble game is a more computationally efficient

method with a running time proportional to the number of sites times the number of

bonds.

Here are a few more details of the pebble game. In a network extracted from a

frictionless particle packing, since each site has 2 local degrees of freedom and there

are 3 global degrees of freedom, one plays the (2,3) pebble game. Initially, there are
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two pebbles on each site, then these pebbles are assigned/covered to bonds one by

one based on specific rules. The rules stem from an alternate version of the Laman

condition, namely that the bonds in the network are independent from each other if

and only if for each bond, the network formed by quadrupling the bond has no in-

duced subnetwork of k sites and greater than 2k− 3 bonds. With this reformulation,

one can check when a new bond is added to the existing set of independent bonds

is itself independent via quadrupling the bond in question and invoking the Laman

condition. To do this, the pebble game quadruples the new bond and tries to find a

pebble covering for the 4 new bonds. If a pebble covering is not found, the new bond

is not an independent constraint from the others. More specifically, the pebble game

is as follows:

1. Start with a set of covered bonds and add a new bond.

2. Look at the sites emanating from the new bond. If any of those sites has a free

pebble, use it to cover the bond. Give a direction to this bond such that it points

away from the site that has given up the pebble. Continue with another copy

of the new bond. If the pebbles of the neighboring sites already cover existing

bonds, then search for free pebbles in the directed network of existing edges.

Once a free pebble is found, swap pebbles and reverse the arrows on the bonds

appropriately, so that the new bond is covered. Repeat this three more times. If a

free pebble is found for each of the 4 copies (the quadrupled bond), then remove

three of the copies and retain one bond (with its pebble and its direction) since it

is added to the existing set of independent bonds. If no free pebble is found for

any of the four copies, then the new bond is not independent of the current set

and it is not added to the independent set of bonds.
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3. Once all the bonds in the network have been tested, if 2N− 3 independent bonds

are found, then the network is minimally rigid. If there are less than 2N − 3 in-

dependent bonds and no free pebbles, the network is overconstrained, or simply

rigid, and if there are less than 2N − 3 independent bonds and free pebbles, the

network is underconstrained, or floppy.

To identify rigid clusters in the network, one introduces a new cluster label for

an unlabeled bond and gathers three pebbles at its two incident sites. Then, three

free pebbles are temporarily pinned down and the two incident sites marked as rigid.

For each new nearest neighbor site (to the two incident sites), a pebble search is per-

formed. If a free pebble is found, the nearest neighbor site is not mutually rigid with

respect to the initial bond nor is any other site that was encountered during a pebble

re-arrangement, all these sites are floppy with respect to the initial bond. However,

if a free pebble is not found, the site is mutually rigid with respect to the initial bond

as well as all other sites that make up the failed pebble search and so these sites are

marked as rigid. Then the next-nearest neighboring sites are visited until all nearest

neighbors to the set of rigid sites have been marked floppy. All bonds between pairs of

sites marked as rigid are given the same cluster label. Finally, floppy and rigid marks

are removed from all sites (since a site is not unique to a rigid cluster) and the pro-

cess continues until there are no unlabeled bonds. In mapping out the rigid clusters,

there will be two types of bonds: isostatic bonds and redundant bonds. Isostatic bonds

are critical for maintaining the rigidity of the cluster, while redundant bonds can be

removed without changed the overall rigidity. Only the redundant bonds can carry

stress.

For the frictional case, we must incorporate the additional rotational degree of free-

dom for each particle into the pebble game. In addition, to account for the additional

constraints due to tangential forces in the frictional case, we introduce a second bond
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for each frictional contact into the network. The pebble game then explores the net-

work to see if that additional rotational degree of freedom can be independently con-

strained. This second bond in the network is only added to frictional contacts below

the Coulomb threshold, i.e. where the normal and tangential forces are independent

of each other. For contacts at the Coulomb threshold, the tangential and normal forces

are no longer independent so that only one bond in the network is needed. We, there-

fore, arrive at a (3,3) pebble game where contacts below the Coulomb criterion are

denoted as double bonds in the network and contacts at the Coulomb threshold are

denoted as single bonds in the network. Two very simple networks were discussed

earlier.

2.5 General hierarchical lattices

Let us define a basic network motif with NB bonds in a hierarchical lattice as the gen-

eral first generation network and denote it by G0. Then perform the subnetwork count-

ing, as in Fig. 2.11b. Assuming that we find an rigid subnetworks which have n bonds

less than the full network motif G0, then, generically, the recurrence relation between

two generations is

pn+1 =
NB

∑
n=0

an pNB−n
n (1− pn)

n. (2.13)

Usually a0 = 1, and in the specific case we discussed in the manuscript, a1 = 8, a2 = 6,

a3 = 2, and the others are zeros. The critical point is determined by the crossing point

of plots of Eq. 2.13 and pn+1 = pn. In Fig. 2.17, we can see that we need at least the first

two terms of Eq. 2.13 to obtain a crossing point and that they dominate the remaining

terms in determining critical point pc. With the same method, we can obtain λ1 by
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taking derivative of Eq. 2.13, or

λ1 =
NB

∑
n=0

an(NB − n)pNB−n−1
c (1− pc)

n − annpNB−n
c (1− pc)

n−1, (2.14)

and use d f ν = log(NB)/ log(λ1) to find d f ν. The following table lists how pc, λ1 and

d f ν change when we add higher order terms to first two terms in Eq. 2.13:

number of terms pc λ1 d f ν

2 0.9577 1.8290 3.444

3 0.9449 1.8069 3.5149

4 0.9446 1.8016 3.5323

Now let’s investigate the first two terms in more detail: We have pn+1 = pNB +

a1pNB−1(1− p). To obtain a critical point, we require that

pNB
c + a1pNB−1

c (1− pc) = pc. (2.15)

To make this equation solvable in the range [0, 1], we can rewrite it as:

a1pNB−2
c =

1− pNB−1
c

1− pc
= 1 + pc + p2

c + ... + pNB−1
c . (2.16)

We know pc that is a number between 0 and 1, so a solution requires that a1 > NB − 1.

Since a1 is the number of rigid subnetworks when just one bond is taken away from

G0, we have a1 ≤ NB. Ultimately, we obtain the equality

a1 = NB, (2.17)

which gives a rough criterion whether a general hierarchical lattice has a critical point,

based on simple subnetwork counting.
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2.6 Discussion

We have now expanded the notion of rigidity percolation to include friction in two

dimensions with the extension of the (2, 3) pebble game to the (3, 3) pebble game and

the incorporation of double bonds representing contacts below the Coulomb thresh-

old. In doing so, we have uncovered a new universality class in the realm of rigidity

percolation, namely that of frictional RP, which is directly compared with central-force

RP on the same lattice. Such a direct comparison between two universality classes has

not been possible until now. By expanding the scope of RP, the direct comparison pre-

sented here should help to formulate a more general framework for rigidity transitions

just as there exists a general framework for spin systems, with and without disorder,

to understand how a transition in the 3-state Potts model is in a different universality

class from the one in the Ising model.

We make this direct comparison between central force RP and frictional RP on

honeycomb lattices with additional next-nearest bonds. We find different correlation

length and non spanning rigid cluster size distribution exponents ν and τ respectively

between the two cases, but a statistically similar order parameter exponent and fractal

dimension of the spanning rigid cluster at the transition. Given the different ν and τ,

we propose that local motifs, such as two double bonds and a rigid hinge composed

of double bonds, are ways to connect rigid clusters in frictional RP that are distinct

from central-force RP. Neither construct is rigid in central-force RP, and additional

supporting bonds are necessary. The less strict rigid cluster connection mechanisms

in frictional RP compared to central-force RP potentially drive the distinction between

universality classes. For the hierarchical lattice, not only are there two different uni-

versality classes, frictional and central-force RP, that can be shown analytically, the

exponents also depend continuously on the fraction of double bonds.

Motivated by the small difference in order parameter exponent in central-force
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and frictional RP, we combined Henneberg moves (here extended to the (3, 3) peb-

ble game) and invasion percolation to construct another new model, minimal rigidity

proliferation (MRP), that can be implemented for both types of forces. The rigid clus-

ter in MRP grows in a simple fashion, unlike in RP where rigid clusters surrounded

by floppy regions can lead to a rigidity cascade. With minimal rigidity proliferation,

there are no floppy or even redundant bonds—the spanning rigid cluster is built in a

“clever” way, which is to be contrasted with the tuning by pruning approaches [71],

where springs are removed while conserving the bulk modulus, for example, and the

jamming graph approach [72] where minimally rigid clusters follow the geometric

constraint of local mechanical stability. With the strategic bond growth in minimal

rigidity proliferation, the order parameter exponent is the same across connectivity,

central-force RP, and frictional RP. This would be the first time superuniversality is

observed in RP in a way that goes beyond transfer matrix methods [44]. Our work

also suggests that looking at minimally rigid configurations—a subset of all possible

configurations within RP—represents a new way of viewing phase transitions in the

sense that nested within two distinct universality classes there could be an underlying

superuniversality establishing deeper connections between the classes than previously

thought.

Since frictional RP was devised to explore the nature of the jamming transition in

frictional particle packings, this work compels us to make a rather strong claim that

the rigidity transition in frictionless particle packings with purely repulsive central

forces is of a different nature than the rigidity transition in frictional particle packings.

In fact, the frictionless case with purely repulsive central forces may indeed be a very

special case because even rigid cluster analysis of particle packings with both attrac-

tive and repulsive central forces indicates a continuous transition [73]. In frictionless

packings, there are no redundant bonds, which makes the constraint counting rather
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straightforward. However in frictional packings, redundant bonds emerge such that

the constraint counting is more intricate and, therefore, perhaps non-mean-field. It

will be interesting to apply the frictional (3,3) pebble game to experimental frictional

particle packings to test the applicability of our approach as well as to compare the

rigid clusters with dynamical matrix calculations. And very recently, the frictional

(3,3) pebble game has been applied to frictional packing derived beam networks to

predict fracture locations near the brittle-ductile transition [74].

Finally, we are currently exploring a limitation of the (3, 3) pebble game [75]. Specif-

ically, if there are four particles forming a square and all four contacts are below

Coulomb threshold, then we have a square with all double bonds (like the middle

image in Figure 2.4 without the diagonal bond). From the (3, 3) pebble game perspec-

tive, this configuration is floppy, and there is one floppy mode where the particles are

in a gearing motion. However these four particles are rigid under strain, since the pure

spin mode does not couple to translations, and so one can play a (3, 4) pebble if one is

interested only in translational rigidity. More generally, odd loops of double bonds do

not contain this pure spin mode, while even loops of double bonds do. This complica-

tion can be addressed by keeping track of even and odd loops of double bonds. Any

odd loop intersecting an even loop destroys the gearing mode, and we relabel the loop

as even. If there are no even loops after looking at intersections of even and odd loops,

then the original (3, 3) pebble game is robust at all length scales. Near the transition

where system-spanning length scales dominate, the initial version of the (3, 3) pebble

game is also robust as long as there is no cluster-spanning set of even loops, which is

unlikely due to the intersection with odd loops such as triangles. Note also that the

low-energy normal modes of rigid frictional packings show a rough equipartition be-

tween rotational and translational degrees of freedom and do not contain any purely

rotational modes [62].
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In closing, our work opens up many new avenues for exploration in rigidity per-

colation with new constraint counting methods and the discovery of potentially new

universality classes. It also invites us to explore not only rigid regions but floppy re-

gions as well, which may be the key in constructing field theories of continuous rigid-

ity percolation transitions. Finally, our new optimal rigid cluster growth algorithms

do not waste material and, therefore, perhaps have a chance of being realized in living

matter as well as provide mechanical examples for decision-based cluster growth that

may draw links with explosive percolation [76].
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FIGURE 2.2: Graphical abstract. In conjunction with the abstract and the
introduction, the above serves as a visual guide to the manuscript.
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HC1 HC2

FIGURE 2.3: Schematic frictional rigidity percolation models HC1 and HC2.
These random networks are constructed by either adding next-nearest
neighbor (NNN) bonds to an occupied honeycomb lattice (HC1) or
adding random first and second neighbor bonds (HC2), all with prob-
ability p. Double bonds denote frictional/gear-like bonds, which occur

with probability q, while single bonds denote sliding bonds.

FIGURE 2.4: Small minimally rigid clusters. For a triangular constraint net-
work with all double bonds, this network is minimally rigid via the (3, 3)
pebble game. For a four-site constraint network, there are 5 possible con-
figurations in which this network is minimally rigid via the (3, 3) pebble

game, two of which are presented.
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FIGURE 2.5: Rigid clusters in frictional rigidity percolation. Rigid clusters
below, at, and above the rigidity transition for HC1 and HC2 with q = 0.5.
Rigid clusters are colored, with the largest cluster in black, while floppy

regions are in grey.
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FIGURE 2.6: Rigid clusters in central-force rigidity percolation. Rigid clusters
below, at, and above the rigidity transition for HC1 and HC2. The black

indicates the largest rigid cluster, and floppy regions are gray again.
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FIGURE 2.7: Spanning rigid cluster probability. Probability of having a span-
ning rigid cluster as a function of p for lattices of different lengths L for
different models, with HC1 in the top row and HC2 in the bottom row
and the (3,3) pebble game results (frictional) on the left, while the (2,3)
pebble game results (central-force) are on the right. Solid lines are fits to
the data using an error function as a fitting function. Data points are aver-
aged over 2500 samples for the (3,3) game and over 1000 samples for the

(2,3) game.
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FIGURE 2.8: Finite-size scaling analysis to obtain exponents β, ν, and d f . (a)
For HC1 with q = 0.5, we plot P∞, the fraction of occupied bonds in
the largest rigid cluster, as a function of p for different system sizes. We
observe P∞ ∼ (p− pc(q))β just above critical point and tends towards p
further away from the transition. (b) Collapse of (a) using pc(q) = 0.448,
ν = 1.56, β = 0.18. (c) P∞ for HC1 with the (2, 3) pebble game as a
function of p for different system sizes. (d) Collapse of (c) using pc(q) =
0.448, ν = 1.54, β = 0.07. (e) ∆, as defined in eq. 2.4, versus system
length L for six different cases of the model. (f) Log-log plot of the number
of bonds in the spanning cluster M versus L for HC1 with q = 0.5 and

q = 0.7.
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FIGURE 2.9: Analysis to obtain exponent τ and summary table. (a) HC1 with
L = 320 and q = 0.5, the red squares show the probability for having
finite rigid clusters with different sizes very close to the transition point.
Blue circles and yellow triangles show the distribution below and above
rigidity transition, respectively. (b) Non spanning cluster size probability
distribution at pc for the six different cases of the model. (c) This table
lists the types of rigidity transitions and some critical exponents for the
different models defined as follows: ξ ∼ (p − pc,q)−ν is the correlation
length and diverges at critical point; the non spanning rigid clusters size
obeys a broad distribution, ns ∼ s−τ, at the critical point; d f is the fractal
dimension of spanning rigid cluster at the rigidity transition; β is the or-
der parameter exponent; q is the percentage of contacts as double bonds.
As a point of references, exponents in RP exponents from the triangular
lattice (TL) using the (2, 3) pebble game, as well as ordinary connectivity

percolation (CP) exponents are listed at the bottom of the table.
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FIGURE 2.10: Rigid cluster merging mechanisms for frictional rigidity percola-
tion. (b) Schematic hinge linking two rigid clusters. (a) Schematic double
bond linking two rigid clusters. (c) Merging three rigid clusters linked
by three floppy double bonds into one rigid structure with the addition
of one double bond indicated by the black arrow. (d) Example of a hinge
in HC2. (e)-(f) Adding exactly one double bond merges and grows five

smaller rigid clusters into a new spanning rigid cluster.
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FIGURE 2.11: Central-force rigidity percolation on a hierarchical lattice. (a)
First three generations of hierarchical Berker lattice. (b) Subnetwork
counting: dashed bonds are not occupied. Every type of subnetwork is
a way to obtain a spanning rigid network between two ends(black dots)
and its probability is calculated, as well as the probability for an occupied
bond to be in the spanning rigid cluster. (c) First four pn as function of p.
pn tends to converge to a step function at pc = 0.9446 which jumps from

0 to 1.

a b

FIGURE 2.12: Frictional rigidity percolation on a hierarchical lattice. (a) Al-
lowed rigid subgraphs for the q = 1 case with the (3, 3) pebble game that
are not allowed with the (2, 3) pebble game. (b) Plot of d f ν versus q for

frictional RP on the Berker hierarchical lattice.
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FIGURE 2.13: Henneberg moves. Schematic of Type I and Type II Hen-
neberg moves for the central-force (2,3) game (top) and for the frictional

(3,3) game (middle and bottom).

a b c d

FIGURE 2.14: Schematic of minimal rigidity proliferation (MRP). (a) Existing
rigid cluster (blue) surrounded by nearest and next-nearest bonds with
their respective weights (purple). (b) Minimal sum of weights from bond
pair has been associated to sites; candidate Henneberg move pairs are in
red. (c) The move is executed at the site with the lowest total weight. (d)

New rigid cluster surrounded by nearest and next-nearest bonds.
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FIGURE 2.15: Generated spanning clusters. An example of spanning rigid
cluster constructed using minimal rigidity proliferation; two examples of

rigid hinges are shown in more detail on the right.

a b

FIGURE 2.16: MRP cluster property analysis. (a) Log-log plot between size
of spanning cluster at the critical point M and size of whole system N.
The slope of less than one indicates that the spanning cluster at the critical
point has a fractal dimension d f = 1.916± 0.010. (b) As the system size
increases, P∞ goes to zero, suggesting a continuous transition. All plots

have been averaged from 935 samples.
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FIGURE 2.17: First four pn as function of p for the (3, 3) game on general
hierarchical lattices; pn needs at least the first two terms to generate a

crossing point.
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Chapter 3

Rigid clusters in frictional granular

packings

This chapter is based on work primarily presented in the manuscript “Sponge-like rigid struc-

tures in frictional granular packings” co-authored by Jonathan E. Kollmer, Karen E. Daniels, J.

M. Schwarz and Silke Henkes and is in peer review. Manuscript is available on arxiv. Jonathan

E. Kollmer and Karen E. Daniels operated all experiment related work. J. M. Schwarz, Silke

Henkes and I developed algorithms. Silke and I wrote codes for analysis and I performed all

analysis from experimental data. All our co-authors provided valuable suggestions and edits

to improve the presentation and the content of this manuscript.

3.1 Two approaches to rigidity

Rigidity is the ability of a system to resist imposed perturbations; for disordered mate-

rials, their detailed internal structure determines rigidity [77, 78]. The Maxwell count-

ing criterion [10], first developed for building girder frameworks in 19th century rail-

way bridges, has long been used to compute the stability of system by comparing the

number of constraints to the number of degrees of freedom [12]. This simple, effec-

tively mean-field, criterion also correctly predicts the onset of positive bulk and shear
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moduli in frictionless jamming of spherical particles (e.g. foams or emulsions) [22, 58,

79, 80]. However, when friction is introduced, as required for modeling granular mate-

rials, the counting argument no longer works, even with modifications [81, 82, 25]. In

particular, systems which acquire rigidity under shear do so at lower packing fractions

than those loaded isotropically, via the appearance of anisotropic, load-bearing force

chains, in a phenomenon known as shear-jamming [25]. These findings highlight the

importance of local structure, and raise the question of the suitability of a mean-field

criterion. The common practice of counting Maxwell constraints only after removing

the rattlers [22, 56] (particles with few contacts) has further obscured this issue.

A first approach to local rigidity, linear response theory, uses the detailed local ge-

ometry and forces to compute the dynamical matrix (or Hessian) of the system [83]. A

rigid packing will have no system-spanning zero-modes in the dynamical matrix, ex-

cept for global translations and rotations; conversely their presence indicates a lack of

rigidity. In frictionless systems, this method agrees with the result of Maxwell con-

straint counting, after removing rattlers [83]. In frictional systems, the same compari-

son was made using a dynamical matrix extended to include friction [84, 62]. In sim-

ulations of frictional packings equilibrated at constant pressure, the results from this

extended dynamical matrix match a generalised form of the constraint counting argu-

ment, creating a frictional jamming transition along a generalised isostaticity line [82,

62]. Other modified isostatic conditions have been proposed for frictional systems [85,

86], but none have yet been experimentally tested.

A second approach to quantifying local rigidity focuses on the spatial patterns of

rigid clusters, which are sets of connected bonds that are mutually rigid with respect

to one another [6]. In this rigidity percolation framework, the rigidity transition corre-

sponds to the emergence of a spanning rigid cluster in the contact network. In 2D,
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a b c d

FIGURE 3.1: (a) Schematic of the experimental setup with fixed walls
(blue) and moving walls (red). (b) Sample image, showing just the po-
larized channel (photoelastic respose). (c) Rigid region decomposition of
sample (b), computed using the dynamical matrix; the rigid region is pur-
ple, and floppy bonds are grey. (d) Rigid cluster decomposition of sample
(b), computed using the pebble game; it contains two large rigid clus-
ters (blue and red bonds), some smaller rigid clusters (other colors), and
regions of floppy bonds (grey). Blue particles are rattlers with zero con-

straints.

the pebble game [45] uses Laman’s theorem to construct a generic algorithm for de-

composing a network into rigid clusters and floppy regions. This theorem depends

only on the network topology and does not require information about forces and

contact geometry. Analysis of 2D systems show that frictionless packings exhibit a

discontinuous rigidity transition [87], while generic central-force networks exhibit a

continuous transition [13, 14]. Rigidity percolation has also provided insights into

the structure of colloidal gels with attractive interactions [73, 88, 89]. Recent work

[26] has extended the pebble game to frictional packings and showed that networks

derived from slowly-sheared frictional simulations generate rigid cluster structures

consistent with a continuous transition. Using a simplified network model, we have

additionally established the transition as continuous, but with exponents that differ

from standard (central-force) rigidity percolation [8]. Simulations on shear-jammed

states further indicate that the onset of shear jamming corresponds to the percolation

of overconstrained regions with a broad range of sizes [90]. Experimental tests of

rigidity percolation for frictional systems are absent.
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In this chapter, we apply both the dynamical matrix and the pebble game to data

from experiments on 2D frictional granular packings. We measure particle positions

and forces within a monolayer of quasi-statically sheared grains floating on a gentle

cushion of air [91, 92], with interparticle forces obtained using photoelasticity [93, 94].

We find that both the frictional dynamical matrix and the frictional pebble game agree

with each other, providing nearly identical decompositions of the packings into rigid

and floppy regions, and that there is a strong correlation between local pressure and

local rigidity. The transition in our finite-sized system occurs at zc = 2.4± 0.1, well

below the mean field value zc = 3. We discover that the rigid structures are sponge-

like, i.e. containing a broad range of floppy hole sizes, particularly near the transi-

tion, which is again a signature of a continuous transition inconsistent with mean-field

rigidity.

3.2 Experiments

We perform experiments on a monolayer of N = 826 photoelastic bidisperse disks

(Fig. 3.1a). The two particle radii are R1 = 5.5 mm and R2 = 7.7 mm (with R2/R1 =

1.4)), and the particles are initially confined to an area of approximately L = 0.5 ×
0.5 m2. Details about particles mechanical properties are discussed in Appendix 3.D.1.

Two of the confining walls are controlled by stepper motors; to impose simple shear,

one wall moves in while the other moves out in a series of quasi-static steps of size

∆x = 1.5 mm, with ∆y adjusted to maintain constant area A. After n steps, each

resulting in a shear strain ε = ∆x
L ≈ 0.003, the shear is reversed back to the initial

state. The number of steps is not fixed, but ranges from n = 8 (ending at a total stress

threshold) to n = 13 (pre-defined maximum). The floor of the shear cell is a porous frit

through which air flows to allow the particles to float on a gentle air cushion, creating
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a system without basal friction; this apparatus is largely the same as the one described

in [91, 92]. Therefore, the external load from the two walls is the only significant ex-

ternal stress. The complete dataset consists of 24 cyclic runs, with each run starting

from randomized particle positions and an initial barely-jammed volume. The pack-

ing fraction for each of the 24 runs is in the range 0.746 < φ < 0.760± 0.006. During

each cycle, contacts are created through shear during the first half of the cycle (dubbed

‘shear’), and partially released during the second half of the cycle (dubbed ‘unshear’);

due to shear-jamming [25, 95], the system does not return to its initial state after a com-

plete cycle. Datasets where we could not track all particles where discarded. A total

of 353 images are used in the analysis below. Since the particles are made of a birefrin-

gent material (Vishay PhotoStress PSM-4), we are able to use photoelasticity [93, 94] to

measure the vector contact forces on all particles; a sample image is shown in Fig. 3.1b.

The red channel (not shown) uses unpolarized light and measures particle positions,

and the green channel (shown) uses circularly polarized light to measure the photoe-

lastic signal. From the later, we determine the normal and tangential contact forces

( fn, ft) on each particle using our open-source algorithms [93, 96](see Appendix 3.A).

From measurements of the normal fn and tangential ft contact forces, we estimate a

friction coefficient of µ = 0.3 (see Appendix 3.D.3). The Coulomb threshold for the

mobilisation | ft|/µ fn determines whether a contact is sliding (≥ 1) or frictional (< 1);

its distribution has so far only been analysed in simulations [82]. The rigidity calcu-

lations, described below, depend sensitively on the correct determination of whether

two particles are in contact. Rest of sections in this chapter provides information on

how we determine the optimal parameters. In all cases, we find that values of the

mean coordination number are known to within ±0.1.
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FIGURE 3.2: Correlations between rigid clusters and regions, calculated
on the 353-image dataset. (a) Correlation between the rigid cluster frac-
tion and the rigid region fraction. (b) Adjusted Rand index (ARI) between
the rigid cluster decomposition and the rigid region decomposition. (c)
Fractions of rigid clusters and rigid regions as function of average coor-
dination number, z. Inset: Probability of a spanning rigid cluster. (d)

Histogram of cluster size s, taken for three different ranges of z.

3.3 Rigidity computations

We first compute the vibrational modes of the system, starting by expanding the equa-

tions of motion about mechanical equilibrium

δr̈i
α = −Dij

αβδrj
β + dissipation(δṙ) + O(δr2), (3.1)

where Dij
α,β = 1√mi,αmj,β

∂2Vij
∂ri,αrj,β

is the dynamical matrix of the system, the indices (i, j)

label all disks, (α, β) label the two spatial x, y components and the angular compo-

nent Rθ, and m denotes the particle mass. While frictional interactions are not con-

servative, one can nevertheless derive an effective potential in linear response (see

Appendix 3.C.2). We arrive at V f
eff =

1
2 Ktδt2 for a contact with stiffness Kt during tan-

gential contact loading, where δt is the tangential displacement at the contact point.

For a sliding contact at the Coulomb threshold, we approximate that the shear dynam-

ics does not reverse the sliding direction. We have verified this assumption in sheared

simulations and do not include the shear-reversal step in our analysis here. We ob-

tain V f
eff = ±µ fnδt, where fn is the value of the normal force at equilibrium. Then the
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effective potential becomes [84, 62]

Vij =
1
2

[
Kn(δr · n̂)2 − fn/|rij|

(
δr · t̂

)2
+ V f

eff

]
, (3.2)

with normal elastic stiffness Kn, and where the third term arises only for friction. To

construct the dynamical matrix for our experimental data, we use measured masses

for m, and estimate Kn from the elastic modulus of the material. To ensure that tangen-

tial and normal interactions contribute at the same order, we set Kt = Kn. Using the

particle positions and interparticle forces, we then construct the dynamical matrix and

compute its normalized eigenmodes(see Appendix 3.C.3). The zero eigenvalue modes

parametrise the floppy motions, and we determine translational and rotational relative

displacements at contacts between disk pairs. We then compute the mean square dis-

placement over floppy modes at individual bonds and mark all bonds with a displace-

ment below (above) a threshold value 2 · 10−5 as rigid (floppy); there is mild threshold

dependence (see Appendix 3.D.3). In the transition region, we obtain sets of contigu-

ous rigid bonds that form rigid regions, shown in Fig. 3.1c(more in Appendix 3.C.4).

Our second method of measuring rigidity is to decompose the system into rigid

clusters using the frictional pebble game. To do so, we extend the central force (k =

2, l = 3) pebble game applied to a contact network to a (k = 3, l = 3) pebble game

in order to incorporate the additional rotational degree of freedom made relevant by

the friction between disks. Moreover, each contact below the Coulomb threshold con-

tributes two constraints (one normal and one tangential), while each contact at the

threshold (freely sliding) only contributes a normal constraint [26, 8]. To this con-

straint network, we add an appropriate number of constraint bonds between the four

boundaries in the experiment and all contacting particles (see Appendix 3.B.1). A sam-

ple decomposition is shown in Fig. 3.1d.
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3.4 Results

Using the particle positions and inter-particle forces obtained from experiments, we

apply the dynamical matrix method and the frictional pebble game to determine rigid

regions and rigid clusters, respectively. Fig. 3.1c-d, performed on an image near the

onset of jamming, illustrates that the identified rigid clusters/regions are closely cor-

related. This correspondence remains true for our full dataset: Fig. 3.2a is a scatter

plot of the measured rigid cluster fraction against the rigid region fraction. All data

points are clustered around the diagonal, with no difference between the shear and un-

shear directions. We find that the pebble game detects a slightly higher rigid fraction

at high z, possibly due to boundary effects. This system-scale correspondence carries

over to the contact level (Fig. 3.2b), where we compute the adjusted Rand index (ARI)

[97, 98] to measure the bond-scale similarity of the detected clusters/regions. We find

ARI > 0 (correlation is present), with an average of 0.6 indicating strong positive cor-

relation and some differences again apparent at higher z. This robust high degree of

correspondence is significant since the rigid cluster method requires only information

about the contact graph (it is simply a topological measure), in contrast to the explicit

displacement computation in the dynamical matrix, which contains the full spatial in-

formation. The correspondence is not exact, and there are specific (known, but rare)

configurations where the two approaches give different results [75]. In Fig. 3.2c, we

observe that the rigid cluster/region fractions both indicate a continuous rigidity tran-

sition, and agree with each other within error bars. Using the probability of a spanning

rigid cluster (inset), we measure the transition point of zc = 2.4± 0.1. Fig. 3.2d shows

that the rigid cluster size distribution broadens with increasing z. While our data is

limited by finite system size and finite statistics, our distributions do not have a gap,

and strongly resemble the results found in simulations of frictional disks [26]. These

findings are consistent with a continuous rigidity percolation transition at a value of
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zc < 3, the mean-field Maxwell criterion with friction, and also with the mechanism

of shear jamming. Note that in all of our analyses, we do not remove rattlers, as they

are an integral part of the coexisting floppy and rigid regions and can become part of

the packing at some point during the shear.

3.5 Discussion

We have investigated the network structure of real, frictional granular materials un-

der shear using two distinct, but compatible, measures of rigidity. We find a frictional

jamming transition at zc = 2.4± 0.1, significantly below z = 3, the lower bound on

stable frictional packings given by mean-field constraint counting and also known

as random loose packing [99]. Within the constraints of small system size and lim-

ited statistics, we observe a rigid cluster size distribution consistent with a continuous

rigidity transition. Our zc is also lower than simulation results by [90] who observed

a rigid spanning cluster at zc ≈ 2.9 and the percolation of over-constrained bonds at

z = 3. Finally, our experimental results contrast with simulations modeling friction

with rough, but frictionless particles, for which the transition occurs at the isostatic

point [100, 101].

Open questions include what role the mechanics of these rigid structures plays in

local failure under shear. While strong force chains often surround a floppy hole with

an arch-like shape, we observed only partial correlation with pressure: not all forces

within floppy regions are weak. Our results need to be complemented with obser-

vations of force chains [102, 103, 104] and cycles [105] to more completely address

rigidity in their descriptions. This could be done through topological [106], geomet-

rical [107], or stress-space approaches [108]. Identifying rigid structures will also be

important for shear-thickening in dense granular suspensions, where a load bearing
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rigid cluster abruptly emerges via the exchange of frictionless, lubricated contacts for

frictional contacts [109, 110]. Our method provides a framework to go beyond mean-

field in particulate systems, to ultimately understand the delicate interplay between

constraints, forces, and geometry.

a b

FIGURE 3.3: (a) Mean pressure p as a function of z of the entire packing
(blue), within rigid clusters only (green), and with rattlers removed (pur-
ple). (b) Pressure inside rigid clusters (blue dots) and outside rigid clus-
ters (red squares) normalized by the mean pressure of the entire packing.
The fraction of rigid clusters (grey triangles) is also plotted for reference.

To show that the rigid clusters are mechanically relevant, we calculate the virial

pressure p from the contact forces (see Appendix 3.D.2). In Fig. 3.3a, we show p(z),

rattlers included: the blue curve rises gradually but z remains well below 3. For com-

parison, we also include the same data but with the rattlers removed, as is commonly

plotted [23]; this curve now crosses z = 3. In contrast, when (p, z) are calculated using

only bonds within the rigid clusters, we observe that z ≥ 3 except in some very small

clusters. In Fig. 3.3b, we compute the local pressure inside vs. outside the rigid clus-

ters, normalized by p for the entire packing. We find that pressure within rigid clusters

is always significantly higher than the mean pressure. In contrast, the pressure in the
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floppy regions is always below average and drops further for z > 2, while the mean

pressure, the rigid cluster fraction, and the rigid region fraction all start to rise. We

interpret Fig. 3.3 as an emerging rigid backbone, responsible for the rise in pressure

and carrying the majority of stress; this same mechanism was previously observed in

simulations [26].

>
<

FIGURE 3.4: (a) Rigid clusters (black bonds) decomposed into tiles of
closed loops; most colored tiles with h > 2 contain non-rigid particles;
z = 2.69. (b) Histogram of hole sizes, in units of average particle area and

histogram of hole shapes.

In Fig. 3.1d, rigid clusters surround large holes that contain floppy bonds and rat-

tler particles. To characterize these floppy holes, we decompose the rigid cluster graph

into a unique set of tiles, of which the larger ones correspond to the holes. Each tile cor-

responds to a face of the planar graph where the rigid bonds are the edges connecting

vertices at the particle centers. To examine hole statistics, we employ a simple cutoff in

hole size h > 2, in units of mean particle area, to exclude (most) simple interstices be-

tween particles; the remaining tiles are colored in Fig. 3.4a. Detail of floppy hole anal-

ysis is discussed in appendix 3.B.2 With increasing z, we observe both more and larger

holes (Fig. 3.4b), with the system size as an apparent cutoff in hole size for z > 1.9.

We quantify changes in shape using the dimensionless shape parameter p0 = P/
√

A,

where P is the hole perimeter and A is its area; a regular hexagon has p0 = 3.72

and larger values indicate less circular due to convexity changes and/or elongation.
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As z increases, we observe a broader range of shapes with some jaggedness emerg-

ing. Thus, the rigid structures resemble a sponge-like porous medium much like the

interior of sourdough bread. This finding is compatible with the presence of arch

structures, rigid bridges, and hinges linking up rigid clusters to form a spanning net-

work [8], and contrasts with the rigidity transition in frictionless packings, where such

floppy holes are not observed [87].

Appendix 3.A Robustness of contact identifications

Any analysis of a contact network depends crucially on having an accurate determi-

nation of whether or not two particles are in contact. Here, we describe how we (1)

validated our contact detection and (2) estimated uncertainties for measurements of

the mean contact number z. Fig. 3.5 displays examples of under- and over-detection

of contacts.

dtol = 15

b)

dtol = 4

a)

FIGURE 3.5: Example images showing the under- and over-detection of
contacts, as a result of a (a) too-strict or (b) too-lenient detection thresh-
old dtol. Bright areas show a photoelastic response from the particles and
yellow lines indicate identified contacts. False-negative and false-positive

contacts are highlighted by red arrows.
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FIGURE 3.6: Contact processing pipeline.

3.A.1 Sensitivity to parameter choices

The open-source PeGS software package [96, 93] consists of three main parts, the pre-

processor, the solver, and the postprocessor, as shown schematically in Fig. 3.6. Each

of these parts influences what is counted as a valid contact in the paper’s analyses.

The preprocessor detects the particle locations and radii using a Hough transform.

As shown in Fig. 3.7, our resolution is 0.1 pixels, or approximately R1/200, where R1

is the radius of the smaller particles.
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FIGURE 3.7: Histogram of noninteger parts of detected particle-
coordinates show distinct peaks at intervals of 0.1 pixels. This value sets

the precision of the center-detection of the particles.
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For each possible pair of particles, we compute the surface distance as the differ-

ence between the measured distance between their centers and the sum of the two

particle radii. If this difference is below a threshold dtol, that pair of particles is con-

sidered to have a possible contact. The quantity dtol is nonzero in order to account for

uncertainty in the particle positions and radius detection, not just particle deformation

during contacts. For each possible contact, we measure the G2 (gradient-squared) re-

sponse [93, 94] within a circular region of interest of radius LCR pixels centered around

the contact point. We set a threshold G2
th, above which the contact is accepted into the

list of contact points for the packing.

Note that inclusion on this list is a necessary, but not sufficient, condition for being

ultimately counted as a valid contact. It is still possible that the solver/postprocessor

later determines that a contact has a undetectable level of force, and is discarded from

the list. In the text that follows, we use the following values which we found to be

appropriate for this particular experiment (combination of particle material and ge-

ometry, apparatus, lens, and camera): dtol = 0.5R1, G2
th = 0.15, and LCR = 0.25R1.

The solver takes the list of possible contacts provided by the preprocessor, and uses

a model [96, 93] of the photoelastic response to determine, through optimization, the

vector contact force at each contact. For every contact on the list, the solver also returns

the residual e between the fit result and the experimental data. A smaller value of e

indicates a higher-quality of the fit, to be evaluated during the post processing step

(below).

The postprocessor creates the final list of valid contacts and forces in the form of

an adjacency matrix. To be excluded from this list, two de-selection criteria apply:

1. Force fit quality: if the residual e > emax, all forces from this particle are set to

zero, effectively removing the contact from consideration. The value of emax is

set empirically to exclude obvious fit errors.
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2. Force magnitude range: if the magnitude of the contact force falls outside a

specified range Fmin < |F| < Fmax, then that contact force is set to zero, effec-

tively removing the contact from consideration. Here, we set Fmin = 10−3 N and

Fmax = 2 N, where the lower limit corresponds to an undetectable force and the

upper limit is the force at which we are no longer able to properly resolve the

photoelastic fringes.

Setting these 3 values (emax, Fmin, Fmax), requires tuning by looking at the images

and the output under the particular lighting conditions used in that experiment. Through

visual inspection between what the algorithm detects and what is visible in the camera

image, we choose an acceptable set of values for each of these three parameters.

3.A.2 Robustness tests

To determine the uncertainty in our contact detection, we conducted a robustness test

to examine the sensitivity of contact detection to the choice of each of the parame-

ters describe above. We tested these sensitivities for the preprocessor and postproces-

sor steps in isolation, and then performed a combined test to evaluate the ability of

the solver to recover from poor-quality preprocessor data. We performed these tests

on images from two different initial particle configurations (named Dataset 22 and

Dataset 26), each under three different states of shear stress, for a total of 6 evalua-

tions.

Preprocessing: For each of the 6 representative images, we varied one of the three

parameters dtol, G2
th, LCR, while fixing the other two to their default values, and mea-

sured the average contact number z after completing only the preprocessor step. The

results are shown in Fig. 3.8.
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d) e) f)

G2
th (A.U.)

<latexit sha1_base64="AfixemVZkpiT7I5yfbJK5GAfc9Q=">AAACCHicbVC7TgJBFL2LL8QXamnhRjTBZrNLoyVqopaYCJgAktlhgAmzj8zcNZLN0tn4KzYWGmNn/AQ7Oz/F4VEoepKbnDnn3sy9xw0FV2jbn0ZqZnZufiG9mFlaXlldy65vVFQQScrKNBCBvHKJYoL7rIwcBbsKJSOeK1jV7Z0M/eoNk4oH/iX2Q9bwSMfnbU4JaqmZ3T67LjTjOrJbjLGbJIPBID9+HVllK9lvZnO2ZY9g/iXOhOSKu2+nXwBQamY/6q2ARh7zkQqiVM2xQ2zERCKngiWZeqRYSGiPdFhNU594TDXi0SGJuaeVltkOpC4fzZH6cyImnlJ9z9WdHsGumvaG4n9eLcL2YSPmfhgh8+n4o3YkTAzMYSpmi0tGUfQ1IVRyvatJu0QSijq7jA7BmT75L6kULMe2nAsnVzyGMdKwBTuQBwcOoAjnUIIyULiDB3iCZ+PeeDRejNdxa8qYzGzCLxjv3/ZLnCE=</latexit><latexit sha1_base64="M772wNuitheNWFEmvxgEYwUQSi8=">AAACCHicbVC7TgJBFJ31ifhatbRwI5pgs9ml0RI0UUtMXCABJLPDABNmH5m5aySbpbPxH/wCGwuNsTN+gp1/YO0XODwKBU9ykzPn3Ju597ghZxIs61ObmZ2bX1hMLaWXV1bX1vWNzZIMIkGoQwIeiIqLJeXMpw4w4LQSCoo9l9Oy2z0Z+OVrKiQL/EvohbTu4bbPWoxgUFJD3zm7yjXiGtAbiKGTJP1+Pzt6FUzHTA4aesYyrSGMaWKPSSa/93b69X1fKDb0j1ozIJFHfSAcS1m1rRDqMRbACKdJuhZJGmLSxW1aVdTHHpX1eHhIYuwrpWm0AqHKB2Oo/p6IsSdlz3NVp4ehIye9gfifV42gdVSPmR9GQH0y+qgVcQMCY5CK0WSCEuA9RTARTO1qkA4WmIDKLq1CsCdPnialnGlbpn1hZ/LHaIQU2ka7KItsdIjy6BwVkYMIukUP6Ak9a3fao/aivY5aZ7TxzBb6A+39B23Jnfk=</latexit><latexit sha1_base64="M772wNuitheNWFEmvxgEYwUQSi8=">AAACCHicbVC7TgJBFJ31ifhatbRwI5pgs9ml0RI0UUtMXCABJLPDABNmH5m5aySbpbPxH/wCGwuNsTN+gp1/YO0XODwKBU9ykzPn3Ju597ghZxIs61ObmZ2bX1hMLaWXV1bX1vWNzZIMIkGoQwIeiIqLJeXMpw4w4LQSCoo9l9Oy2z0Z+OVrKiQL/EvohbTu4bbPWoxgUFJD3zm7yjXiGtAbiKGTJP1+Pzt6FUzHTA4aesYyrSGMaWKPSSa/93b69X1fKDb0j1ozIJFHfSAcS1m1rRDqMRbACKdJuhZJGmLSxW1aVdTHHpX1eHhIYuwrpWm0AqHKB2Oo/p6IsSdlz3NVp4ehIye9gfifV42gdVSPmR9GQH0y+qgVcQMCY5CK0WSCEuA9RTARTO1qkA4WmIDKLq1CsCdPnialnGlbpn1hZ/LHaIQU2ka7KItsdIjy6BwVkYMIukUP6Ak9a3fao/aivY5aZ7TxzBb6A+39B23Jnfk=</latexit><latexit sha1_base64="y2nkNUOjkFq3L8qsN/RTcNBZpe8=">AAACCHicbVC7TsNAEDyHVwgvAyUFFhFSaCw7DZQBCiiDhJNIibHOl3NyyvmhuzUispyOhl+hoQAhWj6Bjr/h8iggYaSV5mZ2dbvjJ5xJsKxvrbC0vLK6VlwvbWxube/ou3sNGaeCUIfEPBYtH0vKWUQdYMBpKxEUhz6nTX9wOfab91RIFke3MEyoG+JexAJGMCjJ0w+v7qpe1gH6ABn083w0GlWmr3PTMfMTTy9bpjWBsUjsGSmjGeqe/tXpxiQNaQSEYynbtpWAm2EBjHCalzqppAkmA9yjbUUjHFLpZpNDcuNYKV0jiIWqCIyJ+nsiw6GUw9BXnSGGvpz3xuJ/XjuF4MzNWJSkQCMy/ShIuQGxMU7F6DJBCfChIpgIpnY1SB8LTEBlV1Ih2PMnL5JG1bQt076xy7WLWRxFdICOUAXZ6BTV0DWqIwcR9Iie0St60560F+1d+5i2FrTZzD76A+3zB998mdc=</latexit>

dtol & LCR (Rsmall)
<latexit sha1_base64="zr6WuMEzX80OavDTKiSW+S2EE/g=">AAACIXicbZDLTgIxFIY7eEO8oS7dNBINbsiMMZElkY0LF0jkkjCEdEqBhs4l7RkjmTCP4sZXceNCY9gZX8YCQ6LgnzT5851zcnp+JxBcgWl+Gam19Y3NrfR2Zmd3b/8ge3hUV34oKatRX/iy6RDFBPdYDTgI1gwkI64jWMMZlqf1xiOTivveA4wC1nZJ3+M9Tglo1MkWu53IBvYEEfhiPI5j+zyO7xasXJ2iOI+rC6JcInQfvuhkc2bBnAmvGisxOZSo0slO7K5PQ5d5QAVRqmWZAbQjIoFTwcYZO1QsIHRI+qylrUdcptrR7MIxPtOki3u+1M8DPKO/JyLiKjVyHd3pEhio5doU/ldrhdArtiPuBSEwj84X9UKBwcfTuHCXS0ZBjLQhVHL9V0wHRBIKOtSMDsFaPnnV1C8Lllmw7q9ypZskjjQ6Qacojyx0jUroFlVQDVH0jF7RO/owXow349OYzFtTRjJzjP7I+P4BxjOlrw==</latexit><latexit sha1_base64="zr6WuMEzX80OavDTKiSW+S2EE/g=">AAACIXicbZDLTgIxFIY7eEO8oS7dNBINbsiMMZElkY0LF0jkkjCEdEqBhs4l7RkjmTCP4sZXceNCY9gZX8YCQ6LgnzT5851zcnp+JxBcgWl+Gam19Y3NrfR2Zmd3b/8ge3hUV34oKatRX/iy6RDFBPdYDTgI1gwkI64jWMMZlqf1xiOTivveA4wC1nZJ3+M9Tglo1MkWu53IBvYEEfhiPI5j+zyO7xasXJ2iOI+rC6JcInQfvuhkc2bBnAmvGisxOZSo0slO7K5PQ5d5QAVRqmWZAbQjIoFTwcYZO1QsIHRI+qylrUdcptrR7MIxPtOki3u+1M8DPKO/JyLiKjVyHd3pEhio5doU/ldrhdArtiPuBSEwj84X9UKBwcfTuHCXS0ZBjLQhVHL9V0wHRBIKOtSMDsFaPnnV1C8Lllmw7q9ypZskjjQ6Qacojyx0jUroFlVQDVH0jF7RO/owXow349OYzFtTRjJzjP7I+P4BxjOlrw==</latexit><latexit sha1_base64="zr6WuMEzX80OavDTKiSW+S2EE/g=">AAACIXicbZDLTgIxFIY7eEO8oS7dNBINbsiMMZElkY0LF0jkkjCEdEqBhs4l7RkjmTCP4sZXceNCY9gZX8YCQ6LgnzT5851zcnp+JxBcgWl+Gam19Y3NrfR2Zmd3b/8ge3hUV34oKatRX/iy6RDFBPdYDTgI1gwkI64jWMMZlqf1xiOTivveA4wC1nZJ3+M9Tglo1MkWu53IBvYEEfhiPI5j+zyO7xasXJ2iOI+rC6JcInQfvuhkc2bBnAmvGisxOZSo0slO7K5PQ5d5QAVRqmWZAbQjIoFTwcYZO1QsIHRI+qylrUdcptrR7MIxPtOki3u+1M8DPKO/JyLiKjVyHd3pEhio5doU/ldrhdArtiPuBSEwj84X9UKBwcfTuHCXS0ZBjLQhVHL9V0wHRBIKOtSMDsFaPnnV1C8Lllmw7q9ypZskjjQ6Qacojyx0jUroFlVQDVH0jF7RO/owXow349OYzFtTRjJzjP7I+P4BxjOlrw==</latexit><latexit sha1_base64="zr6WuMEzX80OavDTKiSW+S2EE/g=">AAACIXicbZDLTgIxFIY7eEO8oS7dNBINbsiMMZElkY0LF0jkkjCEdEqBhs4l7RkjmTCP4sZXceNCY9gZX8YCQ6LgnzT5851zcnp+JxBcgWl+Gam19Y3NrfR2Zmd3b/8ge3hUV34oKatRX/iy6RDFBPdYDTgI1gwkI64jWMMZlqf1xiOTivveA4wC1nZJ3+M9Tglo1MkWu53IBvYEEfhiPI5j+zyO7xasXJ2iOI+rC6JcInQfvuhkc2bBnAmvGisxOZSo0slO7K5PQ5d5QAVRqmWZAbQjIoFTwcYZO1QsIHRI+qylrUdcptrR7MIxPtOki3u+1M8DPKO/JyLiKjVyHd3pEhio5doU/ldrhdArtiPuBSEwj84X9UKBwcfTuHCXS0ZBjLQhVHL9V0wHRBIKOtSMDsFaPnnV1C8Lllmw7q9ypZskjjQ6Qacojyx0jUroFlVQDVH0jF7RO/owXow349OYzFtTRjJzjP7I+P4BxjOlrw==</latexit>

dtol & LCR (Rsmall)
<latexit sha1_base64="zr6WuMEzX80OavDTKiSW+S2EE/g=">AAACIXicbZDLTgIxFIY7eEO8oS7dNBINbsiMMZElkY0LF0jkkjCEdEqBhs4l7RkjmTCP4sZXceNCY9gZX8YCQ6LgnzT5851zcnp+JxBcgWl+Gam19Y3NrfR2Zmd3b/8ge3hUV34oKatRX/iy6RDFBPdYDTgI1gwkI64jWMMZlqf1xiOTivveA4wC1nZJ3+M9Tglo1MkWu53IBvYEEfhiPI5j+zyO7xasXJ2iOI+rC6JcInQfvuhkc2bBnAmvGisxOZSo0slO7K5PQ5d5QAVRqmWZAbQjIoFTwcYZO1QsIHRI+qylrUdcptrR7MIxPtOki3u+1M8DPKO/JyLiKjVyHd3pEhio5doU/ldrhdArtiPuBSEwj84X9UKBwcfTuHCXS0ZBjLQhVHL9V0wHRBIKOtSMDsFaPnnV1C8Lllmw7q9ypZskjjQ6Qacojyx0jUroFlVQDVH0jF7RO/owXow349OYzFtTRjJzjP7I+P4BxjOlrw==</latexit><latexit sha1_base64="zr6WuMEzX80OavDTKiSW+S2EE/g=">AAACIXicbZDLTgIxFIY7eEO8oS7dNBINbsiMMZElkY0LF0jkkjCEdEqBhs4l7RkjmTCP4sZXceNCY9gZX8YCQ6LgnzT5851zcnp+JxBcgWl+Gam19Y3NrfR2Zmd3b/8ge3hUV34oKatRX/iy6RDFBPdYDTgI1gwkI64jWMMZlqf1xiOTivveA4wC1nZJ3+M9Tglo1MkWu53IBvYEEfhiPI5j+zyO7xasXJ2iOI+rC6JcInQfvuhkc2bBnAmvGisxOZSo0slO7K5PQ5d5QAVRqmWZAbQjIoFTwcYZO1QsIHRI+qylrUdcptrR7MIxPtOki3u+1M8DPKO/JyLiKjVyHd3pEhio5doU/ldrhdArtiPuBSEwj84X9UKBwcfTuHCXS0ZBjLQhVHL9V0wHRBIKOtSMDsFaPnnV1C8Lllmw7q9ypZskjjQ6Qacojyx0jUroFlVQDVH0jF7RO/owXow349OYzFtTRjJzjP7I+P4BxjOlrw==</latexit><latexit sha1_base64="zr6WuMEzX80OavDTKiSW+S2EE/g=">AAACIXicbZDLTgIxFIY7eEO8oS7dNBINbsiMMZElkY0LF0jkkjCEdEqBhs4l7RkjmTCP4sZXceNCY9gZX8YCQ6LgnzT5851zcnp+JxBcgWl+Gam19Y3NrfR2Zmd3b/8ge3hUV34oKatRX/iy6RDFBPdYDTgI1gwkI64jWMMZlqf1xiOTivveA4wC1nZJ3+M9Tglo1MkWu53IBvYEEfhiPI5j+zyO7xasXJ2iOI+rC6JcInQfvuhkc2bBnAmvGisxOZSo0slO7K5PQ5d5QAVRqmWZAbQjIoFTwcYZO1QsIHRI+qylrUdcptrR7MIxPtOki3u+1M8DPKO/JyLiKjVyHd3pEhio5doU/ldrhdArtiPuBSEwj84X9UKBwcfTuHCXS0ZBjLQhVHL9V0wHRBIKOtSMDsFaPnnV1C8Lllmw7q9ypZskjjQ6Qacojyx0jUroFlVQDVH0jF7RO/owXow349OYzFtTRjJzjP7I+P4BxjOlrw==</latexit><latexit sha1_base64="zr6WuMEzX80OavDTKiSW+S2EE/g=">AAACIXicbZDLTgIxFIY7eEO8oS7dNBINbsiMMZElkY0LF0jkkjCEdEqBhs4l7RkjmTCP4sZXceNCY9gZX8YCQ6LgnzT5851zcnp+JxBcgWl+Gam19Y3NrfR2Zmd3b/8ge3hUV34oKatRX/iy6RDFBPdYDTgI1gwkI64jWMMZlqf1xiOTivveA4wC1nZJ3+M9Tglo1MkWu53IBvYEEfhiPI5j+zyO7xasXJ2iOI+rC6JcInQfvuhkc2bBnAmvGisxOZSo0slO7K5PQ5d5QAVRqmWZAbQjIoFTwcYZO1QsIHRI+qylrUdcptrR7MIxPtOki3u+1M8DPKO/JyLiKjVyHd3pEhio5doU/ldrhdArtiPuBSEwj84X9UKBwcfTuHCXS0ZBjLQhVHL9V0wHRBIKOtSMDsFaPnnV1C8Lllmw7q9ypZskjjQ6Qacojyx0jUroFlVQDVH0jF7RO/owXow349OYzFtTRjJzjP7I+P4BxjOlrw==</latexit>

dtol & LCR (Rsmall)
<latexit sha1_base64="zr6WuMEzX80OavDTKiSW+S2EE/g=">AAACIXicbZDLTgIxFIY7eEO8oS7dNBINbsiMMZElkY0LF0jkkjCEdEqBhs4l7RkjmTCP4sZXceNCY9gZX8YCQ6LgnzT5851zcnp+JxBcgWl+Gam19Y3NrfR2Zmd3b/8ge3hUV34oKatRX/iy6RDFBPdYDTgI1gwkI64jWMMZlqf1xiOTivveA4wC1nZJ3+M9Tglo1MkWu53IBvYEEfhiPI5j+zyO7xasXJ2iOI+rC6JcInQfvuhkc2bBnAmvGisxOZSo0slO7K5PQ5d5QAVRqmWZAbQjIoFTwcYZO1QsIHRI+qylrUdcptrR7MIxPtOki3u+1M8DPKO/JyLiKjVyHd3pEhio5doU/ldrhdArtiPuBSEwj84X9UKBwcfTuHCXS0ZBjLQhVHL9V0wHRBIKOtSMDsFaPnnV1C8Lllmw7q9ypZskjjQ6Qacojyx0jUroFlVQDVH0jF7RO/owXow349OYzFtTRjJzjP7I+P4BxjOlrw==</latexit><latexit sha1_base64="zr6WuMEzX80OavDTKiSW+S2EE/g=">AAACIXicbZDLTgIxFIY7eEO8oS7dNBINbsiMMZElkY0LF0jkkjCEdEqBhs4l7RkjmTCP4sZXceNCY9gZX8YCQ6LgnzT5851zcnp+JxBcgWl+Gam19Y3NrfR2Zmd3b/8ge3hUV34oKatRX/iy6RDFBPdYDTgI1gwkI64jWMMZlqf1xiOTivveA4wC1nZJ3+M9Tglo1MkWu53IBvYEEfhiPI5j+zyO7xasXJ2iOI+rC6JcInQfvuhkc2bBnAmvGisxOZSo0slO7K5PQ5d5QAVRqmWZAbQjIoFTwcYZO1QsIHRI+qylrUdcptrR7MIxPtOki3u+1M8DPKO/JyLiKjVyHd3pEhio5doU/ldrhdArtiPuBSEwj84X9UKBwcfTuHCXS0ZBjLQhVHL9V0wHRBIKOtSMDsFaPnnV1C8Lllmw7q9ypZskjjQ6Qacojyx0jUroFlVQDVH0jF7RO/owXow349OYzFtTRjJzjP7I+P4BxjOlrw==</latexit><latexit sha1_base64="zr6WuMEzX80OavDTKiSW+S2EE/g=">AAACIXicbZDLTgIxFIY7eEO8oS7dNBINbsiMMZElkY0LF0jkkjCEdEqBhs4l7RkjmTCP4sZXceNCY9gZX8YCQ6LgnzT5851zcnp+JxBcgWl+Gam19Y3NrfR2Zmd3b/8ge3hUV34oKatRX/iy6RDFBPdYDTgI1gwkI64jWMMZlqf1xiOTivveA4wC1nZJ3+M9Tglo1MkWu53IBvYEEfhiPI5j+zyO7xasXJ2iOI+rC6JcInQfvuhkc2bBnAmvGisxOZSo0slO7K5PQ5d5QAVRqmWZAbQjIoFTwcYZO1QsIHRI+qylrUdcptrR7MIxPtOki3u+1M8DPKO/JyLiKjVyHd3pEhio5doU/ldrhdArtiPuBSEwj84X9UKBwcfTuHCXS0ZBjLQhVHL9V0wHRBIKOtSMDsFaPnnV1C8Lllmw7q9ypZskjjQ6Qacojyx0jUroFlVQDVH0jF7RO/owXow349OYzFtTRjJzjP7I+P4BxjOlrw==</latexit><latexit sha1_base64="zr6WuMEzX80OavDTKiSW+S2EE/g=">AAACIXicbZDLTgIxFIY7eEO8oS7dNBINbsiMMZElkY0LF0jkkjCEdEqBhs4l7RkjmTCP4sZXceNCY9gZX8YCQ6LgnzT5851zcnp+JxBcgWl+Gam19Y3NrfR2Zmd3b/8ge3hUV34oKatRX/iy6RDFBPdYDTgI1gwkI64jWMMZlqf1xiOTivveA4wC1nZJ3+M9Tglo1MkWu53IBvYEEfhiPI5j+zyO7xasXJ2iOI+rC6JcInQfvuhkc2bBnAmvGisxOZSo0slO7K5PQ5d5QAVRqmWZAbQjIoFTwcYZO1QsIHRI+qylrUdcptrR7MIxPtOki3u+1M8DPKO/JyLiKjVyHd3pEhio5doU/ldrhdArtiPuBSEwj84X9UKBwcfTuHCXS0ZBjLQhVHL9V0wHRBIKOtSMDsFaPnnV1C8Lllmw7q9ypZskjjQ6Qacojyx0jUroFlVQDVH0jF7RO/owXow349OYzFtTRjJzjP7I+P4BxjOlrw==</latexit>

dtol & LCR (Rsmall)
<latexit sha1_base64="zr6WuMEzX80OavDTKiSW+S2EE/g=">AAACIXicbZDLTgIxFIY7eEO8oS7dNBINbsiMMZElkY0LF0jkkjCEdEqBhs4l7RkjmTCP4sZXceNCY9gZX8YCQ6LgnzT5851zcnp+JxBcgWl+Gam19Y3NrfR2Zmd3b/8ge3hUV34oKatRX/iy6RDFBPdYDTgI1gwkI64jWMMZlqf1xiOTivveA4wC1nZJ3+M9Tglo1MkWu53IBvYEEfhiPI5j+zyO7xasXJ2iOI+rC6JcInQfvuhkc2bBnAmvGisxOZSo0slO7K5PQ5d5QAVRqmWZAbQjIoFTwcYZO1QsIHRI+qylrUdcptrR7MIxPtOki3u+1M8DPKO/JyLiKjVyHd3pEhio5doU/ldrhdArtiPuBSEwj84X9UKBwcfTuHCXS0ZBjLQhVHL9V0wHRBIKOtSMDsFaPnnV1C8Lllmw7q9ypZskjjQ6Qacojyx0jUroFlVQDVH0jF7RO/owXow349OYzFtTRjJzjP7I+P4BxjOlrw==</latexit><latexit sha1_base64="zr6WuMEzX80OavDTKiSW+S2EE/g=">AAACIXicbZDLTgIxFIY7eEO8oS7dNBINbsiMMZElkY0LF0jkkjCEdEqBhs4l7RkjmTCP4sZXceNCY9gZX8YCQ6LgnzT5851zcnp+JxBcgWl+Gam19Y3NrfR2Zmd3b/8ge3hUV34oKatRX/iy6RDFBPdYDTgI1gwkI64jWMMZlqf1xiOTivveA4wC1nZJ3+M9Tglo1MkWu53IBvYEEfhiPI5j+zyO7xasXJ2iOI+rC6JcInQfvuhkc2bBnAmvGisxOZSo0slO7K5PQ5d5QAVRqmWZAbQjIoFTwcYZO1QsIHRI+qylrUdcptrR7MIxPtOki3u+1M8DPKO/JyLiKjVyHd3pEhio5doU/ldrhdArtiPuBSEwj84X9UKBwcfTuHCXS0ZBjLQhVHL9V0wHRBIKOtSMDsFaPnnV1C8Lllmw7q9ypZskjjQ6Qacojyx0jUroFlVQDVH0jF7RO/owXow349OYzFtTRjJzjP7I+P4BxjOlrw==</latexit><latexit sha1_base64="zr6WuMEzX80OavDTKiSW+S2EE/g=">AAACIXicbZDLTgIxFIY7eEO8oS7dNBINbsiMMZElkY0LF0jkkjCEdEqBhs4l7RkjmTCP4sZXceNCY9gZX8YCQ6LgnzT5851zcnp+JxBcgWl+Gam19Y3NrfR2Zmd3b/8ge3hUV34oKatRX/iy6RDFBPdYDTgI1gwkI64jWMMZlqf1xiOTivveA4wC1nZJ3+M9Tglo1MkWu53IBvYEEfhiPI5j+zyO7xasXJ2iOI+rC6JcInQfvuhkc2bBnAmvGisxOZSo0slO7K5PQ5d5QAVRqmWZAbQjIoFTwcYZO1QsIHRI+qylrUdcptrR7MIxPtOki3u+1M8DPKO/JyLiKjVyHd3pEhio5doU/ldrhdArtiPuBSEwj84X9UKBwcfTuHCXS0ZBjLQhVHL9V0wHRBIKOtSMDsFaPnnV1C8Lllmw7q9ypZskjjQ6Qacojyx0jUroFlVQDVH0jF7RO/owXow349OYzFtTRjJzjP7I+P4BxjOlrw==</latexit><latexit sha1_base64="zr6WuMEzX80OavDTKiSW+S2EE/g=">AAACIXicbZDLTgIxFIY7eEO8oS7dNBINbsiMMZElkY0LF0jkkjCEdEqBhs4l7RkjmTCP4sZXceNCY9gZX8YCQ6LgnzT5851zcnp+JxBcgWl+Gam19Y3NrfR2Zmd3b/8ge3hUV34oKatRX/iy6RDFBPdYDTgI1gwkI64jWMMZlqf1xiOTivveA4wC1nZJ3+M9Tglo1MkWu53IBvYEEfhiPI5j+zyO7xasXJ2iOI+rC6JcInQfvuhkc2bBnAmvGisxOZSo0slO7K5PQ5d5QAVRqmWZAbQjIoFTwcYZO1QsIHRI+qylrUdcptrR7MIxPtOki3u+1M8DPKO/JyLiKjVyHd3pEhio5doU/ldrhdArtiPuBSEwj84X9UKBwcfTuHCXS0ZBjLQhVHL9V0wHRBIKOtSMDsFaPnnV1C8Lllmw7q9ypZskjjQ6Qacojyx0jUroFlVQDVH0jF7RO/owXow349OYzFtTRjJzjP7I+P4BxjOlrw==</latexit>

dtol & LCR (Rsmall)
<latexit sha1_base64="zr6WuMEzX80OavDTKiSW+S2EE/g=">AAACIXicbZDLTgIxFIY7eEO8oS7dNBINbsiMMZElkY0LF0jkkjCEdEqBhs4l7RkjmTCP4sZXceNCY9gZX8YCQ6LgnzT5851zcnp+JxBcgWl+Gam19Y3NrfR2Zmd3b/8ge3hUV34oKatRX/iy6RDFBPdYDTgI1gwkI64jWMMZlqf1xiOTivveA4wC1nZJ3+M9Tglo1MkWu53IBvYEEfhiPI5j+zyO7xasXJ2iOI+rC6JcInQfvuhkc2bBnAmvGisxOZSo0slO7K5PQ5d5QAVRqmWZAbQjIoFTwcYZO1QsIHRI+qylrUdcptrR7MIxPtOki3u+1M8DPKO/JyLiKjVyHd3pEhio5doU/ldrhdArtiPuBSEwj84X9UKBwcfTuHCXS0ZBjLQhVHL9V0wHRBIKOtSMDsFaPnnV1C8Lllmw7q9ypZskjjQ6Qacojyx0jUroFlVQDVH0jF7RO/owXow349OYzFtTRjJzjP7I+P4BxjOlrw==</latexit><latexit sha1_base64="zr6WuMEzX80OavDTKiSW+S2EE/g=">AAACIXicbZDLTgIxFIY7eEO8oS7dNBINbsiMMZElkY0LF0jkkjCEdEqBhs4l7RkjmTCP4sZXceNCY9gZX8YCQ6LgnzT5851zcnp+JxBcgWl+Gam19Y3NrfR2Zmd3b/8ge3hUV34oKatRX/iy6RDFBPdYDTgI1gwkI64jWMMZlqf1xiOTivveA4wC1nZJ3+M9Tglo1MkWu53IBvYEEfhiPI5j+zyO7xasXJ2iOI+rC6JcInQfvuhkc2bBnAmvGisxOZSo0slO7K5PQ5d5QAVRqmWZAbQjIoFTwcYZO1QsIHRI+qylrUdcptrR7MIxPtOki3u+1M8DPKO/JyLiKjVyHd3pEhio5doU/ldrhdArtiPuBSEwj84X9UKBwcfTuHCXS0ZBjLQhVHL9V0wHRBIKOtSMDsFaPnnV1C8Lllmw7q9ypZskjjQ6Qacojyx0jUroFlVQDVH0jF7RO/owXow349OYzFtTRjJzjP7I+P4BxjOlrw==</latexit><latexit sha1_base64="zr6WuMEzX80OavDTKiSW+S2EE/g=">AAACIXicbZDLTgIxFIY7eEO8oS7dNBINbsiMMZElkY0LF0jkkjCEdEqBhs4l7RkjmTCP4sZXceNCY9gZX8YCQ6LgnzT5851zcnp+JxBcgWl+Gam19Y3NrfR2Zmd3b/8ge3hUV34oKatRX/iy6RDFBPdYDTgI1gwkI64jWMMZlqf1xiOTivveA4wC1nZJ3+M9Tglo1MkWu53IBvYEEfhiPI5j+zyO7xasXJ2iOI+rC6JcInQfvuhkc2bBnAmvGisxOZSo0slO7K5PQ5d5QAVRqmWZAbQjIoFTwcYZO1QsIHRI+qylrUdcptrR7MIxPtOki3u+1M8DPKO/JyLiKjVyHd3pEhio5doU/ldrhdArtiPuBSEwj84X9UKBwcfTuHCXS0ZBjLQhVHL9V0wHRBIKOtSMDsFaPnnV1C8Lllmw7q9ypZskjjQ6Qacojyx0jUroFlVQDVH0jF7RO/owXow349OYzFtTRjJzjP7I+P4BxjOlrw==</latexit><latexit sha1_base64="zr6WuMEzX80OavDTKiSW+S2EE/g=">AAACIXicbZDLTgIxFIY7eEO8oS7dNBINbsiMMZElkY0LF0jkkjCEdEqBhs4l7RkjmTCP4sZXceNCY9gZX8YCQ6LgnzT5851zcnp+JxBcgWl+Gam19Y3NrfR2Zmd3b/8ge3hUV34oKatRX/iy6RDFBPdYDTgI1gwkI64jWMMZlqf1xiOTivveA4wC1nZJ3+M9Tglo1MkWu53IBvYEEfhiPI5j+zyO7xasXJ2iOI+rC6JcInQfvuhkc2bBnAmvGisxOZSo0slO7K5PQ5d5QAVRqmWZAbQjIoFTwcYZO1QsIHRI+qylrUdcptrR7MIxPtOki3u+1M8DPKO/JyLiKjVyHd3pEhio5doU/ldrhdArtiPuBSEwj84X9UKBwcfTuHCXS0ZBjLQhVHL9V0wHRBIKOtSMDsFaPnnV1C8Lllmw7q9ypZskjjQ6Qacojyx0jUroFlVQDVH0jF7RO/owXow349OYzFtTRjJzjP7I+P4BxjOlrw==</latexit>

dtol & LCR (Rsmall)
<latexit sha1_base64="zr6WuMEzX80OavDTKiSW+S2EE/g=">AAACIXicbZDLTgIxFIY7eEO8oS7dNBINbsiMMZElkY0LF0jkkjCEdEqBhs4l7RkjmTCP4sZXceNCY9gZX8YCQ6LgnzT5851zcnp+JxBcgWl+Gam19Y3NrfR2Zmd3b/8ge3hUV34oKatRX/iy6RDFBPdYDTgI1gwkI64jWMMZlqf1xiOTivveA4wC1nZJ3+M9Tglo1MkWu53IBvYEEfhiPI5j+zyO7xasXJ2iOI+rC6JcInQfvuhkc2bBnAmvGisxOZSo0slO7K5PQ5d5QAVRqmWZAbQjIoFTwcYZO1QsIHRI+qylrUdcptrR7MIxPtOki3u+1M8DPKO/JyLiKjVyHd3pEhio5doU/ldrhdArtiPuBSEwj84X9UKBwcfTuHCXS0ZBjLQhVHL9V0wHRBIKOtSMDsFaPnnV1C8Lllmw7q9ypZskjjQ6Qacojyx0jUroFlVQDVH0jF7RO/owXow349OYzFtTRjJzjP7I+P4BxjOlrw==</latexit><latexit sha1_base64="zr6WuMEzX80OavDTKiSW+S2EE/g=">AAACIXicbZDLTgIxFIY7eEO8oS7dNBINbsiMMZElkY0LF0jkkjCEdEqBhs4l7RkjmTCP4sZXceNCY9gZX8YCQ6LgnzT5851zcnp+JxBcgWl+Gam19Y3NrfR2Zmd3b/8ge3hUV34oKatRX/iy6RDFBPdYDTgI1gwkI64jWMMZlqf1xiOTivveA4wC1nZJ3+M9Tglo1MkWu53IBvYEEfhiPI5j+zyO7xasXJ2iOI+rC6JcInQfvuhkc2bBnAmvGisxOZSo0slO7K5PQ5d5QAVRqmWZAbQjIoFTwcYZO1QsIHRI+qylrUdcptrR7MIxPtOki3u+1M8DPKO/JyLiKjVyHd3pEhio5doU/ldrhdArtiPuBSEwj84X9UKBwcfTuHCXS0ZBjLQhVHL9V0wHRBIKOtSMDsFaPnnV1C8Lllmw7q9ypZskjjQ6Qacojyx0jUroFlVQDVH0jF7RO/owXow349OYzFtTRjJzjP7I+P4BxjOlrw==</latexit><latexit sha1_base64="zr6WuMEzX80OavDTKiSW+S2EE/g=">AAACIXicbZDLTgIxFIY7eEO8oS7dNBINbsiMMZElkY0LF0jkkjCEdEqBhs4l7RkjmTCP4sZXceNCY9gZX8YCQ6LgnzT5851zcnp+JxBcgWl+Gam19Y3NrfR2Zmd3b/8ge3hUV34oKatRX/iy6RDFBPdYDTgI1gwkI64jWMMZlqf1xiOTivveA4wC1nZJ3+M9Tglo1MkWu53IBvYEEfhiPI5j+zyO7xasXJ2iOI+rC6JcInQfvuhkc2bBnAmvGisxOZSo0slO7K5PQ5d5QAVRqmWZAbQjIoFTwcYZO1QsIHRI+qylrUdcptrR7MIxPtOki3u+1M8DPKO/JyLiKjVyHd3pEhio5doU/ldrhdArtiPuBSEwj84X9UKBwcfTuHCXS0ZBjLQhVHL9V0wHRBIKOtSMDsFaPnnV1C8Lllmw7q9ypZskjjQ6Qacojyx0jUroFlVQDVH0jF7RO/owXow349OYzFtTRjJzjP7I+P4BxjOlrw==</latexit><latexit sha1_base64="zr6WuMEzX80OavDTKiSW+S2EE/g=">AAACIXicbZDLTgIxFIY7eEO8oS7dNBINbsiMMZElkY0LF0jkkjCEdEqBhs4l7RkjmTCP4sZXceNCY9gZX8YCQ6LgnzT5851zcnp+JxBcgWl+Gam19Y3NrfR2Zmd3b/8ge3hUV34oKatRX/iy6RDFBPdYDTgI1gwkI64jWMMZlqf1xiOTivveA4wC1nZJ3+M9Tglo1MkWu53IBvYEEfhiPI5j+zyO7xasXJ2iOI+rC6JcInQfvuhkc2bBnAmvGisxOZSo0slO7K5PQ5d5QAVRqmWZAbQjIoFTwcYZO1QsIHRI+qylrUdcptrR7MIxPtOki3u+1M8DPKO/JyLiKjVyHd3pEhio5doU/ldrhdArtiPuBSEwj84X9UKBwcfTuHCXS0ZBjLQhVHL9V0wHRBIKOtSMDsFaPnnV1C8Lllmw7q9ypZskjjQ6Qacojyx0jUroFlVQDVH0jF7RO/owXow349OYzFtTRjJzjP7I+P4BxjOlrw==</latexit>

G2
th (A.U.)

<latexit sha1_base64="AfixemVZkpiT7I5yfbJK5GAfc9Q=">AAACCHicbVC7TgJBFL2LL8QXamnhRjTBZrNLoyVqopaYCJgAktlhgAmzj8zcNZLN0tn4KzYWGmNn/AQ7Oz/F4VEoepKbnDnn3sy9xw0FV2jbn0ZqZnZufiG9mFlaXlldy65vVFQQScrKNBCBvHKJYoL7rIwcBbsKJSOeK1jV7Z0M/eoNk4oH/iX2Q9bwSMfnbU4JaqmZ3T67LjTjOrJbjLGbJIPBID9+HVllK9lvZnO2ZY9g/iXOhOSKu2+nXwBQamY/6q2ARh7zkQqiVM2xQ2zERCKngiWZeqRYSGiPdFhNU594TDXi0SGJuaeVltkOpC4fzZH6cyImnlJ9z9WdHsGumvaG4n9eLcL2YSPmfhgh8+n4o3YkTAzMYSpmi0tGUfQ1IVRyvatJu0QSijq7jA7BmT75L6kULMe2nAsnVzyGMdKwBTuQBwcOoAjnUIIyULiDB3iCZ+PeeDRejNdxa8qYzGzCLxjv3/ZLnCE=</latexit><latexit sha1_base64="M772wNuitheNWFEmvxgEYwUQSi8=">AAACCHicbVC7TgJBFJ31ifhatbRwI5pgs9ml0RI0UUtMXCABJLPDABNmH5m5aySbpbPxH/wCGwuNsTN+gp1/YO0XODwKBU9ykzPn3Ju597ghZxIs61ObmZ2bX1hMLaWXV1bX1vWNzZIMIkGoQwIeiIqLJeXMpw4w4LQSCoo9l9Oy2z0Z+OVrKiQL/EvohbTu4bbPWoxgUFJD3zm7yjXiGtAbiKGTJP1+Pzt6FUzHTA4aesYyrSGMaWKPSSa/93b69X1fKDb0j1ozIJFHfSAcS1m1rRDqMRbACKdJuhZJGmLSxW1aVdTHHpX1eHhIYuwrpWm0AqHKB2Oo/p6IsSdlz3NVp4ehIye9gfifV42gdVSPmR9GQH0y+qgVcQMCY5CK0WSCEuA9RTARTO1qkA4WmIDKLq1CsCdPnialnGlbpn1hZ/LHaIQU2ka7KItsdIjy6BwVkYMIukUP6Ak9a3fao/aivY5aZ7TxzBb6A+39B23Jnfk=</latexit><latexit sha1_base64="M772wNuitheNWFEmvxgEYwUQSi8=">AAACCHicbVC7TgJBFJ31ifhatbRwI5pgs9ml0RI0UUtMXCABJLPDABNmH5m5aySbpbPxH/wCGwuNsTN+gp1/YO0XODwKBU9ykzPn3Ju597ghZxIs61ObmZ2bX1hMLaWXV1bX1vWNzZIMIkGoQwIeiIqLJeXMpw4w4LQSCoo9l9Oy2z0Z+OVrKiQL/EvohbTu4bbPWoxgUFJD3zm7yjXiGtAbiKGTJP1+Pzt6FUzHTA4aesYyrSGMaWKPSSa/93b69X1fKDb0j1ozIJFHfSAcS1m1rRDqMRbACKdJuhZJGmLSxW1aVdTHHpX1eHhIYuwrpWm0AqHKB2Oo/p6IsSdlz3NVp4ehIye9gfifV42gdVSPmR9GQH0y+qgVcQMCY5CK0WSCEuA9RTARTO1qkA4WmIDKLq1CsCdPnialnGlbpn1hZ/LHaIQU2ka7KItsdIjy6BwVkYMIukUP6Ak9a3fao/aivY5aZ7TxzBb6A+39B23Jnfk=</latexit><latexit sha1_base64="y2nkNUOjkFq3L8qsN/RTcNBZpe8=">AAACCHicbVC7TsNAEDyHVwgvAyUFFhFSaCw7DZQBCiiDhJNIibHOl3NyyvmhuzUispyOhl+hoQAhWj6Bjr/h8iggYaSV5mZ2dbvjJ5xJsKxvrbC0vLK6VlwvbWxube/ou3sNGaeCUIfEPBYtH0vKWUQdYMBpKxEUhz6nTX9wOfab91RIFke3MEyoG+JexAJGMCjJ0w+v7qpe1gH6ABn083w0GlWmr3PTMfMTTy9bpjWBsUjsGSmjGeqe/tXpxiQNaQSEYynbtpWAm2EBjHCalzqppAkmA9yjbUUjHFLpZpNDcuNYKV0jiIWqCIyJ+nsiw6GUw9BXnSGGvpz3xuJ/XjuF4MzNWJSkQCMy/ShIuQGxMU7F6DJBCfChIpgIpnY1SB8LTEBlV1Ih2PMnL5JG1bQt076xy7WLWRxFdICOUAXZ6BTV0DWqIwcR9Iie0St60560F+1d+5i2FrTZzD76A+3zB998mdc=</latexit>

G2
th (A.U.)

<latexit sha1_base64="AfixemVZkpiT7I5yfbJK5GAfc9Q=">AAACCHicbVC7TgJBFL2LL8QXamnhRjTBZrNLoyVqopaYCJgAktlhgAmzj8zcNZLN0tn4KzYWGmNn/AQ7Oz/F4VEoepKbnDnn3sy9xw0FV2jbn0ZqZnZufiG9mFlaXlldy65vVFQQScrKNBCBvHKJYoL7rIwcBbsKJSOeK1jV7Z0M/eoNk4oH/iX2Q9bwSMfnbU4JaqmZ3T67LjTjOrJbjLGbJIPBID9+HVllK9lvZnO2ZY9g/iXOhOSKu2+nXwBQamY/6q2ARh7zkQqiVM2xQ2zERCKngiWZeqRYSGiPdFhNU594TDXi0SGJuaeVltkOpC4fzZH6cyImnlJ9z9WdHsGumvaG4n9eLcL2YSPmfhgh8+n4o3YkTAzMYSpmi0tGUfQ1IVRyvatJu0QSijq7jA7BmT75L6kULMe2nAsnVzyGMdKwBTuQBwcOoAjnUIIyULiDB3iCZ+PeeDRejNdxa8qYzGzCLxjv3/ZLnCE=</latexit><latexit sha1_base64="M772wNuitheNWFEmvxgEYwUQSi8=">AAACCHicbVC7TgJBFJ31ifhatbRwI5pgs9ml0RI0UUtMXCABJLPDABNmH5m5aySbpbPxH/wCGwuNsTN+gp1/YO0XODwKBU9ykzPn3Ju597ghZxIs61ObmZ2bX1hMLaWXV1bX1vWNzZIMIkGoQwIeiIqLJeXMpw4w4LQSCoo9l9Oy2z0Z+OVrKiQL/EvohbTu4bbPWoxgUFJD3zm7yjXiGtAbiKGTJP1+Pzt6FUzHTA4aesYyrSGMaWKPSSa/93b69X1fKDb0j1ozIJFHfSAcS1m1rRDqMRbACKdJuhZJGmLSxW1aVdTHHpX1eHhIYuwrpWm0AqHKB2Oo/p6IsSdlz3NVp4ehIye9gfifV42gdVSPmR9GQH0y+qgVcQMCY5CK0WSCEuA9RTARTO1qkA4WmIDKLq1CsCdPnialnGlbpn1hZ/LHaIQU2ka7KItsdIjy6BwVkYMIukUP6Ak9a3fao/aivY5aZ7TxzBb6A+39B23Jnfk=</latexit><latexit sha1_base64="M772wNuitheNWFEmvxgEYwUQSi8=">AAACCHicbVC7TgJBFJ31ifhatbRwI5pgs9ml0RI0UUtMXCABJLPDABNmH5m5aySbpbPxH/wCGwuNsTN+gp1/YO0XODwKBU9ykzPn3Ju597ghZxIs61ObmZ2bX1hMLaWXV1bX1vWNzZIMIkGoQwIeiIqLJeXMpw4w4LQSCoo9l9Oy2z0Z+OVrKiQL/EvohbTu4bbPWoxgUFJD3zm7yjXiGtAbiKGTJP1+Pzt6FUzHTA4aesYyrSGMaWKPSSa/93b69X1fKDb0j1ozIJFHfSAcS1m1rRDqMRbACKdJuhZJGmLSxW1aVdTHHpX1eHhIYuwrpWm0AqHKB2Oo/p6IsSdlz3NVp4ehIye9gfifV42gdVSPmR9GQH0y+qgVcQMCY5CK0WSCEuA9RTARTO1qkA4WmIDKLq1CsCdPnialnGlbpn1hZ/LHaIQU2ka7KItsdIjy6BwVkYMIukUP6Ak9a3fao/aivY5aZ7TxzBb6A+39B23Jnfk=</latexit><latexit sha1_base64="y2nkNUOjkFq3L8qsN/RTcNBZpe8=">AAACCHicbVC7TsNAEDyHVwgvAyUFFhFSaCw7DZQBCiiDhJNIibHOl3NyyvmhuzUispyOhl+hoQAhWj6Bjr/h8iggYaSV5mZ2dbvjJ5xJsKxvrbC0vLK6VlwvbWxube/ou3sNGaeCUIfEPBYtH0vKWUQdYMBpKxEUhz6nTX9wOfab91RIFke3MEyoG+JexAJGMCjJ0w+v7qpe1gH6ABn083w0GlWmr3PTMfMTTy9bpjWBsUjsGSmjGeqe/tXpxiQNaQSEYynbtpWAm2EBjHCalzqppAkmA9yjbUUjHFLpZpNDcuNYKV0jiIWqCIyJ+nsiw6GUw9BXnSGGvpz3xuJ/XjuF4MzNWJSkQCMy/ShIuQGxMU7F6DJBCfChIpgIpnY1SB8LTEBlV1Ih2PMnL5JG1bQt076xy7WLWRxFdICOUAXZ6BTV0DWqIwcR9Iie0St60560F+1d+5i2FrTZzD76A+3zB998mdc=</latexit>

G2
th (A.U.)

<latexit sha1_base64="AfixemVZkpiT7I5yfbJK5GAfc9Q=">AAACCHicbVC7TgJBFL2LL8QXamnhRjTBZrNLoyVqopaYCJgAktlhgAmzj8zcNZLN0tn4KzYWGmNn/AQ7Oz/F4VEoepKbnDnn3sy9xw0FV2jbn0ZqZnZufiG9mFlaXlldy65vVFQQScrKNBCBvHKJYoL7rIwcBbsKJSOeK1jV7Z0M/eoNk4oH/iX2Q9bwSMfnbU4JaqmZ3T67LjTjOrJbjLGbJIPBID9+HVllK9lvZnO2ZY9g/iXOhOSKu2+nXwBQamY/6q2ARh7zkQqiVM2xQ2zERCKngiWZeqRYSGiPdFhNU594TDXi0SGJuaeVltkOpC4fzZH6cyImnlJ9z9WdHsGumvaG4n9eLcL2YSPmfhgh8+n4o3YkTAzMYSpmi0tGUfQ1IVRyvatJu0QSijq7jA7BmT75L6kULMe2nAsnVzyGMdKwBTuQBwcOoAjnUIIyULiDB3iCZ+PeeDRejNdxa8qYzGzCLxjv3/ZLnCE=</latexit><latexit sha1_base64="M772wNuitheNWFEmvxgEYwUQSi8=">AAACCHicbVC7TgJBFJ31ifhatbRwI5pgs9ml0RI0UUtMXCABJLPDABNmH5m5aySbpbPxH/wCGwuNsTN+gp1/YO0XODwKBU9ykzPn3Ju597ghZxIs61ObmZ2bX1hMLaWXV1bX1vWNzZIMIkGoQwIeiIqLJeXMpw4w4LQSCoo9l9Oy2z0Z+OVrKiQL/EvohbTu4bbPWoxgUFJD3zm7yjXiGtAbiKGTJP1+Pzt6FUzHTA4aesYyrSGMaWKPSSa/93b69X1fKDb0j1ozIJFHfSAcS1m1rRDqMRbACKdJuhZJGmLSxW1aVdTHHpX1eHhIYuwrpWm0AqHKB2Oo/p6IsSdlz3NVp4ehIye9gfifV42gdVSPmR9GQH0y+qgVcQMCY5CK0WSCEuA9RTARTO1qkA4WmIDKLq1CsCdPnialnGlbpn1hZ/LHaIQU2ka7KItsdIjy6BwVkYMIukUP6Ak9a3fao/aivY5aZ7TxzBb6A+39B23Jnfk=</latexit><latexit sha1_base64="M772wNuitheNWFEmvxgEYwUQSi8=">AAACCHicbVC7TgJBFJ31ifhatbRwI5pgs9ml0RI0UUtMXCABJLPDABNmH5m5aySbpbPxH/wCGwuNsTN+gp1/YO0XODwKBU9ykzPn3Ju597ghZxIs61ObmZ2bX1hMLaWXV1bX1vWNzZIMIkGoQwIeiIqLJeXMpw4w4LQSCoo9l9Oy2z0Z+OVrKiQL/EvohbTu4bbPWoxgUFJD3zm7yjXiGtAbiKGTJP1+Pzt6FUzHTA4aesYyrSGMaWKPSSa/93b69X1fKDb0j1ozIJFHfSAcS1m1rRDqMRbACKdJuhZJGmLSxW1aVdTHHpX1eHhIYuwrpWm0AqHKB2Oo/p6IsSdlz3NVp4ehIye9gfifV42gdVSPmR9GQH0y+qgVcQMCY5CK0WSCEuA9RTARTO1qkA4WmIDKLq1CsCdPnialnGlbpn1hZ/LHaIQU2ka7KItsdIjy6BwVkYMIukUP6Ak9a3fao/aivY5aZ7TxzBb6A+39B23Jnfk=</latexit><latexit sha1_base64="y2nkNUOjkFq3L8qsN/RTcNBZpe8=">AAACCHicbVC7TsNAEDyHVwgvAyUFFhFSaCw7DZQBCiiDhJNIibHOl3NyyvmhuzUispyOhl+hoQAhWj6Bjr/h8iggYaSV5mZ2dbvjJ5xJsKxvrbC0vLK6VlwvbWxube/ou3sNGaeCUIfEPBYtH0vKWUQdYMBpKxEUhz6nTX9wOfab91RIFke3MEyoG+JexAJGMCjJ0w+v7qpe1gH6ABn083w0GlWmr3PTMfMTTy9bpjWBsUjsGSmjGeqe/tXpxiQNaQSEYynbtpWAm2EBjHCalzqppAkmA9yjbUUjHFLpZpNDcuNYKV0jiIWqCIyJ+nsiw6GUw9BXnSGGvpz3xuJ/XjuF4MzNWJSkQCMy/ShIuQGxMU7F6DJBCfChIpgIpnY1SB8LTEBlV1Ih2PMnL5JG1bQt076xy7WLWRxFdICOUAXZ6BTV0DWqIwcR9Iie0St60560F+1d+5i2FrTZzD76A+3zB998mdc=</latexit>

G2
th (A.U.)

<latexit sha1_base64="AfixemVZkpiT7I5yfbJK5GAfc9Q=">AAACCHicbVC7TgJBFL2LL8QXamnhRjTBZrNLoyVqopaYCJgAktlhgAmzj8zcNZLN0tn4KzYWGmNn/AQ7Oz/F4VEoepKbnDnn3sy9xw0FV2jbn0ZqZnZufiG9mFlaXlldy65vVFQQScrKNBCBvHKJYoL7rIwcBbsKJSOeK1jV7Z0M/eoNk4oH/iX2Q9bwSMfnbU4JaqmZ3T67LjTjOrJbjLGbJIPBID9+HVllK9lvZnO2ZY9g/iXOhOSKu2+nXwBQamY/6q2ARh7zkQqiVM2xQ2zERCKngiWZeqRYSGiPdFhNU594TDXi0SGJuaeVltkOpC4fzZH6cyImnlJ9z9WdHsGumvaG4n9eLcL2YSPmfhgh8+n4o3YkTAzMYSpmi0tGUfQ1IVRyvatJu0QSijq7jA7BmT75L6kULMe2nAsnVzyGMdKwBTuQBwcOoAjnUIIyULiDB3iCZ+PeeDRejNdxa8qYzGzCLxjv3/ZLnCE=</latexit><latexit sha1_base64="M772wNuitheNWFEmvxgEYwUQSi8=">AAACCHicbVC7TgJBFJ31ifhatbRwI5pgs9ml0RI0UUtMXCABJLPDABNmH5m5aySbpbPxH/wCGwuNsTN+gp1/YO0XODwKBU9ykzPn3Ju597ghZxIs61ObmZ2bX1hMLaWXV1bX1vWNzZIMIkGoQwIeiIqLJeXMpw4w4LQSCoo9l9Oy2z0Z+OVrKiQL/EvohbTu4bbPWoxgUFJD3zm7yjXiGtAbiKGTJP1+Pzt6FUzHTA4aesYyrSGMaWKPSSa/93b69X1fKDb0j1ozIJFHfSAcS1m1rRDqMRbACKdJuhZJGmLSxW1aVdTHHpX1eHhIYuwrpWm0AqHKB2Oo/p6IsSdlz3NVp4ehIye9gfifV42gdVSPmR9GQH0y+qgVcQMCY5CK0WSCEuA9RTARTO1qkA4WmIDKLq1CsCdPnialnGlbpn1hZ/LHaIQU2ka7KItsdIjy6BwVkYMIukUP6Ak9a3fao/aivY5aZ7TxzBb6A+39B23Jnfk=</latexit><latexit sha1_base64="M772wNuitheNWFEmvxgEYwUQSi8=">AAACCHicbVC7TgJBFJ31ifhatbRwI5pgs9ml0RI0UUtMXCABJLPDABNmH5m5aySbpbPxH/wCGwuNsTN+gp1/YO0XODwKBU9ykzPn3Ju597ghZxIs61ObmZ2bX1hMLaWXV1bX1vWNzZIMIkGoQwIeiIqLJeXMpw4w4LQSCoo9l9Oy2z0Z+OVrKiQL/EvohbTu4bbPWoxgUFJD3zm7yjXiGtAbiKGTJP1+Pzt6FUzHTA4aesYyrSGMaWKPSSa/93b69X1fKDb0j1ozIJFHfSAcS1m1rRDqMRbACKdJuhZJGmLSxW1aVdTHHpX1eHhIYuwrpWm0AqHKB2Oo/p6IsSdlz3NVp4ehIye9gfifV42gdVSPmR9GQH0y+qgVcQMCY5CK0WSCEuA9RTARTO1qkA4WmIDKLq1CsCdPnialnGlbpn1hZ/LHaIQU2ka7KItsdIjy6BwVkYMIukUP6Ak9a3fao/aivY5aZ7TxzBb6A+39B23Jnfk=</latexit><latexit sha1_base64="y2nkNUOjkFq3L8qsN/RTcNBZpe8=">AAACCHicbVC7TsNAEDyHVwgvAyUFFhFSaCw7DZQBCiiDhJNIibHOl3NyyvmhuzUispyOhl+hoQAhWj6Bjr/h8iggYaSV5mZ2dbvjJ5xJsKxvrbC0vLK6VlwvbWxube/ou3sNGaeCUIfEPBYtH0vKWUQdYMBpKxEUhz6nTX9wOfab91RIFke3MEyoG+JexAJGMCjJ0w+v7qpe1gH6ABn083w0GlWmr3PTMfMTTy9bpjWBsUjsGSmjGeqe/tXpxiQNaQSEYynbtpWAm2EBjHCalzqppAkmA9yjbUUjHFLpZpNDcuNYKV0jiIWqCIyJ+nsiw6GUw9BXnSGGvpz3xuJ/XjuF4MzNWJSkQCMy/ShIuQGxMU7F6DJBCfChIpgIpnY1SB8LTEBlV1Ih2PMnL5JG1bQt076xy7WLWRxFdICOUAXZ6BTV0DWqIwcR9Iie0St60560F+1d+5i2FrTZzD76A+3zB998mdc=</latexit>

G2
th (A.U.)

<latexit sha1_base64="AfixemVZkpiT7I5yfbJK5GAfc9Q=">AAACCHicbVC7TgJBFL2LL8QXamnhRjTBZrNLoyVqopaYCJgAktlhgAmzj8zcNZLN0tn4KzYWGmNn/AQ7Oz/F4VEoepKbnDnn3sy9xw0FV2jbn0ZqZnZufiG9mFlaXlldy65vVFQQScrKNBCBvHKJYoL7rIwcBbsKJSOeK1jV7Z0M/eoNk4oH/iX2Q9bwSMfnbU4JaqmZ3T67LjTjOrJbjLGbJIPBID9+HVllK9lvZnO2ZY9g/iXOhOSKu2+nXwBQamY/6q2ARh7zkQqiVM2xQ2zERCKngiWZeqRYSGiPdFhNU594TDXi0SGJuaeVltkOpC4fzZH6cyImnlJ9z9WdHsGumvaG4n9eLcL2YSPmfhgh8+n4o3YkTAzMYSpmi0tGUfQ1IVRyvatJu0QSijq7jA7BmT75L6kULMe2nAsnVzyGMdKwBTuQBwcOoAjnUIIyULiDB3iCZ+PeeDRejNdxa8qYzGzCLxjv3/ZLnCE=</latexit><latexit sha1_base64="M772wNuitheNWFEmvxgEYwUQSi8=">AAACCHicbVC7TgJBFJ31ifhatbRwI5pgs9ml0RI0UUtMXCABJLPDABNmH5m5aySbpbPxH/wCGwuNsTN+gp1/YO0XODwKBU9ykzPn3Ju597ghZxIs61ObmZ2bX1hMLaWXV1bX1vWNzZIMIkGoQwIeiIqLJeXMpw4w4LQSCoo9l9Oy2z0Z+OVrKiQL/EvohbTu4bbPWoxgUFJD3zm7yjXiGtAbiKGTJP1+Pzt6FUzHTA4aesYyrSGMaWKPSSa/93b69X1fKDb0j1ozIJFHfSAcS1m1rRDqMRbACKdJuhZJGmLSxW1aVdTHHpX1eHhIYuwrpWm0AqHKB2Oo/p6IsSdlz3NVp4ehIye9gfifV42gdVSPmR9GQH0y+qgVcQMCY5CK0WSCEuA9RTARTO1qkA4WmIDKLq1CsCdPnialnGlbpn1hZ/LHaIQU2ka7KItsdIjy6BwVkYMIukUP6Ak9a3fao/aivY5aZ7TxzBb6A+39B23Jnfk=</latexit><latexit sha1_base64="M772wNuitheNWFEmvxgEYwUQSi8=">AAACCHicbVC7TgJBFJ31ifhatbRwI5pgs9ml0RI0UUtMXCABJLPDABNmH5m5aySbpbPxH/wCGwuNsTN+gp1/YO0XODwKBU9ykzPn3Ju597ghZxIs61ObmZ2bX1hMLaWXV1bX1vWNzZIMIkGoQwIeiIqLJeXMpw4w4LQSCoo9l9Oy2z0Z+OVrKiQL/EvohbTu4bbPWoxgUFJD3zm7yjXiGtAbiKGTJP1+Pzt6FUzHTA4aesYyrSGMaWKPSSa/93b69X1fKDb0j1ozIJFHfSAcS1m1rRDqMRbACKdJuhZJGmLSxW1aVdTHHpX1eHhIYuwrpWm0AqHKB2Oo/p6IsSdlz3NVp4ehIye9gfifV42gdVSPmR9GQH0y+qgVcQMCY5CK0WSCEuA9RTARTO1qkA4WmIDKLq1CsCdPnialnGlbpn1hZ/LHaIQU2ka7KItsdIjy6BwVkYMIukUP6Ak9a3fao/aivY5aZ7TxzBb6A+39B23Jnfk=</latexit><latexit sha1_base64="y2nkNUOjkFq3L8qsN/RTcNBZpe8=">AAACCHicbVC7TsNAEDyHVwgvAyUFFhFSaCw7DZQBCiiDhJNIibHOl3NyyvmhuzUispyOhl+hoQAhWj6Bjr/h8iggYaSV5mZ2dbvjJ5xJsKxvrbC0vLK6VlwvbWxube/ou3sNGaeCUIfEPBYtH0vKWUQdYMBpKxEUhz6nTX9wOfab91RIFke3MEyoG+JexAJGMCjJ0w+v7qpe1gH6ABn083w0GlWmr3PTMfMTTy9bpjWBsUjsGSmjGeqe/tXpxiQNaQSEYynbtpWAm2EBjHCalzqppAkmA9yjbUUjHFLpZpNDcuNYKV0jiIWqCIyJ+nsiw6GUw9BXnSGGvpz3xuJ/XjuF4MzNWJSkQCMy/ShIuQGxMU7F6DJBCfChIpgIpnY1SB8LTEBlV1Ih2PMnL5JG1bQt076xy7WLWRxFdICOUAXZ6BTV0DWqIwcR9Iie0St60560F+1d+5i2FrTZzD76A+3zB998mdc=</latexit>

dtol
<latexit sha1_base64="0E5ZpQCOC3C3SG4xTo5XyeUCRkI=">AAAB9XicbVC5TsNAEB1zhnAFkGhoVkRIVJFNA2UEDWUikUNKTFiv18kq60O7YyCy/B80FCBEy7/Q0fAtbI4CEp400tN7M5qZ5yVSaLTtL2tpeWV1bb2wUdzc2t7ZLe3tN3WcKsYbLJaxantUcyki3kCBkrcTxWnoSd7yhldjv3XPlRZxdIOjhLsh7UciEIyikW79XtZF/ogZxjLPe6WyXbEnIIvEmZFy9bD+fQcAtV7ps+vHLA15hExSrTuOnaCbUYWCSZ4Xu6nmCWVD2ucdQyMacu1mk6tzcmIUnwSxMhUhmai/JzIaaj0KPdMZUhzoeW8s/ud1Ugwu3ExESYo8YtNFQSoJxmQcAfGF4gzlyBDKlDC3EjagijI0QRVNCM78y4ukeVZx7IpTd8rVS5iiAEdwDKfgwDlU4Rpq0AAGCp7gBV6tB+vZerPep61L1mzmAP7A+vgBEm+VCw==</latexit><latexit sha1_base64="j68IJZY/eL7xwj+Jv+iJyoLEuM0=">AAAB9XicbVC7SgNBFJ2NrxhfUcHGZjAIVmHXRssQG8sEzAOSNczOziZDZmeWmbtqWPIfNhaK2Ik/4RfY2fgtTh6FRg9cOJxzL/feEySCG3DdTye3tLyyupZfL2xsbm3vFHf3mkalmrIGVULpdkAME1yyBnAQrJ1oRuJAsFYwvJj4rRumDVfyCkYJ82PSlzzilICVrsNe1gV2BxkoMR73iiW37E6B/xJvTkqVg/oXf62+13rFj26oaBozCVQQYzqem4CfEQ2cCjYudFPDEkKHpM86lkoSM+Nn06vH+NgqIY6UtiUBT9WfExmJjRnFge2MCQzMojcR//M6KUTnfsZlkgKTdLYoSgUGhScR4JBrRkGMLCFUc3srpgOiCQUbVMGG4C2+/Jc0T8ueW/bqXqlSRTPk0SE6QifIQ2eogi5RDTUQRRrdo0f05Nw6D86z8zJrzTnzmX30C87bN2Owlsc=</latexit><latexit sha1_base64="j68IJZY/eL7xwj+Jv+iJyoLEuM0=">AAAB9XicbVC7SgNBFJ2NrxhfUcHGZjAIVmHXRssQG8sEzAOSNczOziZDZmeWmbtqWPIfNhaK2Ik/4RfY2fgtTh6FRg9cOJxzL/feEySCG3DdTye3tLyyupZfL2xsbm3vFHf3mkalmrIGVULpdkAME1yyBnAQrJ1oRuJAsFYwvJj4rRumDVfyCkYJ82PSlzzilICVrsNe1gV2BxkoMR73iiW37E6B/xJvTkqVg/oXf62+13rFj26oaBozCVQQYzqem4CfEQ2cCjYudFPDEkKHpM86lkoSM+Nn06vH+NgqIY6UtiUBT9WfExmJjRnFge2MCQzMojcR//M6KUTnfsZlkgKTdLYoSgUGhScR4JBrRkGMLCFUc3srpgOiCQUbVMGG4C2+/Jc0T8ueW/bqXqlSRTPk0SE6QifIQ2eogi5RDTUQRRrdo0f05Nw6D86z8zJrzTnzmX30C87bN2Owlsc=</latexit><latexit sha1_base64="zvGQDfRrjS7BSS8wIShSMAsMkWk=">AAAB9XicbVC7TsNAEFzzDOEVoKSxiJCoIpsGyggayiCRh5SE6Hw+J6ec76y7NRBZ/g8aChCi5V/o+BsuiQtIGGml0cyudneCRHCDnvftrKyurW9slrbK2zu7e/uVg8OWUammrEmVULoTEMMEl6yJHAXrJJqROBCsHYyvp377gWnDlbzDScL6MRlKHnFK0Er34SDrIXvCDJXI80Gl6tW8Gdxl4hekCgUag8pXL1Q0jZlEKogxXd9LsJ8RjZwKlpd7qWEJoWMyZF1LJYmZ6Wezq3P31CqhGyltS6I7U39PZCQ2ZhIHtjMmODKL3lT8z+umGF32My6TFJmk80VRKlxU7jQCN+SaURQTSwjV3N7q0hHRhKINqmxD8BdfXiat85rv1fxbv1q/KuIowTGcwBn4cAF1uIEGNIGChmd4hTfn0Xlx3p2PeeuKU8wcwR84nz+DyJMm</latexit>

LCR
<latexit sha1_base64="NEzGBQaeGvxW9oW3LdsZcCmzV8o=">AAAB9HicbVC7SgNBFL0bXzG+ooKNzWAQrMKujZbBNBYWiZgHJEucnUySIbMPZ+4Gw7LfYWOhiK0fY2fjtzh5FJp44MLhnHu59x4vkkKjbX9ZmZXVtfWN7GZua3tndy+/f1DXYawYr7FQhqrpUc2lCHgNBUrejBSnvid5wxuWJ35jxJUWYXCH44i7Pu0HoicYRSO5N52kjfwRk/JtmnbyBbtoT0GWiTMnhdJR9fseACqd/Ge7G7LY5wEySbVuOXaEbkIVCiZ5mmvHmkeUDWmftwwNqM+1m0yPTsmpUbqkFypTAZKp+nsiob7WY98znT7FgV70JuJ/XivG3qWbiCCKkQdstqgXS4IhmSRAukJxhnJsCGVKmFsJG1BFGZqcciYEZ/HlZVI/Lzp20ak6hdIVzJCFYziBM3DgAkpwDRWoAYMHeIIXeLVG1rP1Zr3PWjPWfOYQ/sD6+AGni5Qv</latexit><latexit sha1_base64="x3ZheBkZFRKGT1yQ+ApaTK/Xts0=">AAAB9HicbVC7SgNBFJ2NrxhfUcHGZjAIVmHXRsuQNBYWiZgHJEuYncwmQ2Zn15m7wbDsd9hYKGKpX+EX2Nn4LU4ehSYeuHA4517uvceLBNdg219WZmV1bX0ju5nb2t7Z3cvvHzR0GCvK6jQUoWp5RDPBJasDB8FakWIk8ARresPKxG+OmNI8lLcwjpgbkL7kPqcEjORed5MOsHtIKjdp2s0X7KI9BV4mzpwUSke1b/5W/qh285+dXkjjgEmggmjdduwI3IQo4FSwNNeJNYsIHZI+axsqScC0m0yPTvGpUXrYD5UpCXiq/p5ISKD1OPBMZ0BgoBe9ifif147Bv3QTLqMYmKSzRX4sMIR4kgDuccUoiLEhhCpubsV0QBShYHLKmRCcxZeXSeO86NhFp+YUSmU0QxYdoxN0hhx0gUroClVRHVF0hx7QE3q2Rtaj9WK9zloz1nzmEP2B9f4D+MyV6w==</latexit><latexit sha1_base64="x3ZheBkZFRKGT1yQ+ApaTK/Xts0=">AAAB9HicbVC7SgNBFJ2NrxhfUcHGZjAIVmHXRsuQNBYWiZgHJEuYncwmQ2Zn15m7wbDsd9hYKGKpX+EX2Nn4LU4ehSYeuHA4517uvceLBNdg219WZmV1bX0ju5nb2t7Z3cvvHzR0GCvK6jQUoWp5RDPBJasDB8FakWIk8ARresPKxG+OmNI8lLcwjpgbkL7kPqcEjORed5MOsHtIKjdp2s0X7KI9BV4mzpwUSke1b/5W/qh285+dXkjjgEmggmjdduwI3IQo4FSwNNeJNYsIHZI+axsqScC0m0yPTvGpUXrYD5UpCXiq/p5ISKD1OPBMZ0BgoBe9ifif147Bv3QTLqMYmKSzRX4sMIR4kgDuccUoiLEhhCpubsV0QBShYHLKmRCcxZeXSeO86NhFp+YUSmU0QxYdoxN0hhx0gUroClVRHVF0hx7QE3q2Rtaj9WK9zloz1nzmEP2B9f4D+MyV6w==</latexit><latexit sha1_base64="KIpsFeOPzpBsgrbJd/pUm7al5+c=">AAAB9HicbVC7TsNAEDyHVwivACWNRYREFdk0UEakoaAIiDykxIrOl3Vyyvls7tYRkeXvoKEAIVo+ho6/4ZK4gISRVhrN7Gp3x48F1+g431ZhbX1jc6u4XdrZ3ds/KB8etXSUKAZNFolIdXyqQXAJTeQooBMroKEvoO2P6zO/PQGleSQfcBqDF9Kh5AFnFI3k3fbTHsITpvX7LOuXK07VmcNeJW5OKiRHo1/+6g0iloQgkQmqddd1YvRSqpAzAVmpl2iIKRvTIXQNlTQE7aXzozP7zCgDO4iUKYn2XP09kdJQ62nom86Q4kgvezPxP6+bYHDlpVzGCYJki0VBImyM7FkC9oArYCimhlCmuLnVZiOqKEOTU8mE4C6/vEpaF1XXqbp3bqV2ncdRJCfklJwTl1ySGrkhDdIkjDySZ/JK3qyJ9WK9Wx+L1oKVzxyTP7A+fwAY85JK</latexit>

G2
th<latexit sha1_base64="A/XtQkRt99y99PwB604IMKLKm6U=">AAAB+HicbVC5TsNAEB2HK4QjBkoai4BEFdlpoIxAAsogkUNKgrXerJNV1od2x4hg+UtoKECIli/gG+jo+BQ2RwEJTxrp6b0ZzczzYsEV2vaXkVtaXlldy68XNja3tovmzm5DRYmkrE4jEcmWRxQTPGR15ChYK5aMBJ5gTW94Pvabd0wqHoU3OIpZNyD9kPucEtSSaxYvbytu2kF2jykOssw1S3bZnsBaJM6MlKqHHxffAFBzzc9OL6JJwEKkgijVduwYuymRyKlgWaGTKBYTOiR91tY0JAFT3XRyeGYdaaVn+ZHUFaI1UX9PpCRQahR4ujMgOFDz3lj8z2sn6J92Ux7GCbKQThf5ibAwssYpWD0uGUUx0oRQyfWtFh0QSSjqrAo6BGf+5UXSqJQdu+xcO6XqGUyRh304gGNw4ASqcAU1qAOFBB7hGV6MB+PJeDXepq05YzazB39gvP8AOAaVqw==</latexit><latexit sha1_base64="TgC4c2g622fadJPD6eGTDjKq5JU=">AAAB+HicbVDJSgNBEO1xjXHJqEcvjVHwFGZy0WNUUI8RzALJOPR0epImPQvdNWIc5ktE8KCIV7/Ab/DmH3j2C+wsB018UPB4r4qqel4suALL+jTm5hcWl5ZzK/nVtfWNgrm5VVdRIimr0UhEsukRxQQPWQ04CNaMJSOBJ1jD658O/cYNk4pH4RUMYuYEpBtyn1MCWnLNwvl12U3bwG4hhV6WuWbRKlkj4FliT0ixsvd+9vX9cFx1zY92J6JJwEKggijVsq0YnJRI4FSwLN9OFIsJ7ZMua2kakoApJx0dnuF9rXSwH0ldIeCR+nsiJYFSg8DTnQGBnpr2huJ/XisB/8hJeRgnwEI6XuQnAkOEhyngDpeMghhoQqjk+lZMe0QSCjqrvA7Bnn55ltTLJdsq2Zd2sXKCxsihHbSLDpCNDlEFXaAqqiGKEnSPntCzcWc8Gi/G67h1zpjMbKM/MN5+AK91l4M=</latexit><latexit sha1_base64="TgC4c2g622fadJPD6eGTDjKq5JU=">AAAB+HicbVDJSgNBEO1xjXHJqEcvjVHwFGZy0WNUUI8RzALJOPR0epImPQvdNWIc5ktE8KCIV7/Ab/DmH3j2C+wsB018UPB4r4qqel4suALL+jTm5hcWl5ZzK/nVtfWNgrm5VVdRIimr0UhEsukRxQQPWQ04CNaMJSOBJ1jD658O/cYNk4pH4RUMYuYEpBtyn1MCWnLNwvl12U3bwG4hhV6WuWbRKlkj4FliT0ixsvd+9vX9cFx1zY92J6JJwEKggijVsq0YnJRI4FSwLN9OFIsJ7ZMua2kakoApJx0dnuF9rXSwH0ldIeCR+nsiJYFSg8DTnQGBnpr2huJ/XisB/8hJeRgnwEI6XuQnAkOEhyngDpeMghhoQqjk+lZMe0QSCjqrvA7Bnn55ltTLJdsq2Zd2sXKCxsihHbSLDpCNDlEFXaAqqiGKEnSPntCzcWc8Gi/G67h1zpjMbKM/MN5+AK91l4M=</latexit><latexit sha1_base64="OLY6mtbxx4F/DGN5+he4UKbBUZM=">AAAB+HicbVC7TsNAEDyHVwiPGChpTkRIVJGdBsoICiiDRB5SYqzz5Zyccj5bd2tEsPwlNBQgRMun0PE3XBIXkDDSSqOZXe3uBIngGhzn2yqtrW9sbpW3Kzu7e/tV++Cwo+NUUdamsYhVLyCaCS5ZGzgI1ksUI1EgWDeYXM387gNTmsfyDqYJ8yIykjzklICRfLt6fd/wswGwR8hgnOe+XXPqzhx4lbgFqaECLd/+GgxjmkZMAhVE677rJOBlRAGnguWVQapZQuiEjFjfUEkipr1sfniOT40yxGGsTEnAc/X3REYiradRYDojAmO97M3E/7x+CuGFl3GZpMAkXSwKU4EhxrMU8JArRkFMDSFUcXMrpmOiCAWTVcWE4C6/vEo6jbrr1N1bt9a8LOIoo2N0gs6Qi85RE92gFmojilL0jF7Rm/VkvVjv1seitWQVM0foD6zPHyE3k2E=</latexit>

dtol
<latexit sha1_base64="0E5ZpQCOC3C3SG4xTo5XyeUCRkI=">AAAB9XicbVC5TsNAEB1zhnAFkGhoVkRIVJFNA2UEDWUikUNKTFiv18kq60O7YyCy/B80FCBEy7/Q0fAtbI4CEp400tN7M5qZ5yVSaLTtL2tpeWV1bb2wUdzc2t7ZLe3tN3WcKsYbLJaxantUcyki3kCBkrcTxWnoSd7yhldjv3XPlRZxdIOjhLsh7UciEIyikW79XtZF/ogZxjLPe6WyXbEnIIvEmZFy9bD+fQcAtV7ps+vHLA15hExSrTuOnaCbUYWCSZ4Xu6nmCWVD2ucdQyMacu1mk6tzcmIUnwSxMhUhmai/JzIaaj0KPdMZUhzoeW8s/ud1Ugwu3ExESYo8YtNFQSoJxmQcAfGF4gzlyBDKlDC3EjagijI0QRVNCM78y4ukeVZx7IpTd8rVS5iiAEdwDKfgwDlU4Rpq0AAGCp7gBV6tB+vZerPep61L1mzmAP7A+vgBEm+VCw==</latexit><latexit sha1_base64="j68IJZY/eL7xwj+Jv+iJyoLEuM0=">AAAB9XicbVC7SgNBFJ2NrxhfUcHGZjAIVmHXRssQG8sEzAOSNczOziZDZmeWmbtqWPIfNhaK2Ik/4RfY2fgtTh6FRg9cOJxzL/feEySCG3DdTye3tLyyupZfL2xsbm3vFHf3mkalmrIGVULpdkAME1yyBnAQrJ1oRuJAsFYwvJj4rRumDVfyCkYJ82PSlzzilICVrsNe1gV2BxkoMR73iiW37E6B/xJvTkqVg/oXf62+13rFj26oaBozCVQQYzqem4CfEQ2cCjYudFPDEkKHpM86lkoSM+Nn06vH+NgqIY6UtiUBT9WfExmJjRnFge2MCQzMojcR//M6KUTnfsZlkgKTdLYoSgUGhScR4JBrRkGMLCFUc3srpgOiCQUbVMGG4C2+/Jc0T8ueW/bqXqlSRTPk0SE6QifIQ2eogi5RDTUQRRrdo0f05Nw6D86z8zJrzTnzmX30C87bN2Owlsc=</latexit><latexit sha1_base64="j68IJZY/eL7xwj+Jv+iJyoLEuM0=">AAAB9XicbVC7SgNBFJ2NrxhfUcHGZjAIVmHXRssQG8sEzAOSNczOziZDZmeWmbtqWPIfNhaK2Ik/4RfY2fgtTh6FRg9cOJxzL/feEySCG3DdTye3tLyyupZfL2xsbm3vFHf3mkalmrIGVULpdkAME1yyBnAQrJ1oRuJAsFYwvJj4rRumDVfyCkYJ82PSlzzilICVrsNe1gV2BxkoMR73iiW37E6B/xJvTkqVg/oXf62+13rFj26oaBozCVQQYzqem4CfEQ2cCjYudFPDEkKHpM86lkoSM+Nn06vH+NgqIY6UtiUBT9WfExmJjRnFge2MCQzMojcR//M6KUTnfsZlkgKTdLYoSgUGhScR4JBrRkGMLCFUc3srpgOiCQUbVMGG4C2+/Jc0T8ueW/bqXqlSRTPk0SE6QifIQ2eogi5RDTUQRRrdo0f05Nw6D86z8zJrzTnzmX30C87bN2Owlsc=</latexit><latexit sha1_base64="zvGQDfRrjS7BSS8wIShSMAsMkWk=">AAAB9XicbVC7TsNAEFzzDOEVoKSxiJCoIpsGyggayiCRh5SE6Hw+J6ec76y7NRBZ/g8aChCi5V/o+BsuiQtIGGml0cyudneCRHCDnvftrKyurW9slrbK2zu7e/uVg8OWUammrEmVULoTEMMEl6yJHAXrJJqROBCsHYyvp377gWnDlbzDScL6MRlKHnFK0Er34SDrIXvCDJXI80Gl6tW8Gdxl4hekCgUag8pXL1Q0jZlEKogxXd9LsJ8RjZwKlpd7qWEJoWMyZF1LJYmZ6Wezq3P31CqhGyltS6I7U39PZCQ2ZhIHtjMmODKL3lT8z+umGF32My6TFJmk80VRKlxU7jQCN+SaURQTSwjV3N7q0hHRhKINqmxD8BdfXiat85rv1fxbv1q/KuIowTGcwBn4cAF1uIEGNIGChmd4hTfn0Xlx3p2PeeuKU8wcwR84nz+DyJMm</latexit>

LCR
<latexit sha1_base64="NEzGBQaeGvxW9oW3LdsZcCmzV8o=">AAAB9HicbVC7SgNBFL0bXzG+ooKNzWAQrMKujZbBNBYWiZgHJEucnUySIbMPZ+4Gw7LfYWOhiK0fY2fjtzh5FJp44MLhnHu59x4vkkKjbX9ZmZXVtfWN7GZua3tndy+/f1DXYawYr7FQhqrpUc2lCHgNBUrejBSnvid5wxuWJ35jxJUWYXCH44i7Pu0HoicYRSO5N52kjfwRk/JtmnbyBbtoT0GWiTMnhdJR9fseACqd/Ge7G7LY5wEySbVuOXaEbkIVCiZ5mmvHmkeUDWmftwwNqM+1m0yPTsmpUbqkFypTAZKp+nsiob7WY98znT7FgV70JuJ/XivG3qWbiCCKkQdstqgXS4IhmSRAukJxhnJsCGVKmFsJG1BFGZqcciYEZ/HlZVI/Lzp20ak6hdIVzJCFYziBM3DgAkpwDRWoAYMHeIIXeLVG1rP1Zr3PWjPWfOYQ/sD6+AGni5Qv</latexit><latexit sha1_base64="x3ZheBkZFRKGT1yQ+ApaTK/Xts0=">AAAB9HicbVC7SgNBFJ2NrxhfUcHGZjAIVmHXRsuQNBYWiZgHJEuYncwmQ2Zn15m7wbDsd9hYKGKpX+EX2Nn4LU4ehSYeuHA4517uvceLBNdg219WZmV1bX0ju5nb2t7Z3cvvHzR0GCvK6jQUoWp5RDPBJasDB8FakWIk8ARresPKxG+OmNI8lLcwjpgbkL7kPqcEjORed5MOsHtIKjdp2s0X7KI9BV4mzpwUSke1b/5W/qh285+dXkjjgEmggmjdduwI3IQo4FSwNNeJNYsIHZI+axsqScC0m0yPTvGpUXrYD5UpCXiq/p5ISKD1OPBMZ0BgoBe9ifif147Bv3QTLqMYmKSzRX4sMIR4kgDuccUoiLEhhCpubsV0QBShYHLKmRCcxZeXSeO86NhFp+YUSmU0QxYdoxN0hhx0gUroClVRHVF0hx7QE3q2Rtaj9WK9zloz1nzmEP2B9f4D+MyV6w==</latexit><latexit sha1_base64="x3ZheBkZFRKGT1yQ+ApaTK/Xts0=">AAAB9HicbVC7SgNBFJ2NrxhfUcHGZjAIVmHXRsuQNBYWiZgHJEuYncwmQ2Zn15m7wbDsd9hYKGKpX+EX2Nn4LU4ehSYeuHA4517uvceLBNdg219WZmV1bX0ju5nb2t7Z3cvvHzR0GCvK6jQUoWp5RDPBJasDB8FakWIk8ARresPKxG+OmNI8lLcwjpgbkL7kPqcEjORed5MOsHtIKjdp2s0X7KI9BV4mzpwUSke1b/5W/qh285+dXkjjgEmggmjdduwI3IQo4FSwNNeJNYsIHZI+axsqScC0m0yPTvGpUXrYD5UpCXiq/p5ISKD1OPBMZ0BgoBe9ifif147Bv3QTLqMYmKSzRX4sMIR4kgDuccUoiLEhhCpubsV0QBShYHLKmRCcxZeXSeO86NhFp+YUSmU0QxYdoxN0hhx0gUroClVRHVF0hx7QE3q2Rtaj9WK9zloz1nzmEP2B9f4D+MyV6w==</latexit><latexit sha1_base64="KIpsFeOPzpBsgrbJd/pUm7al5+c=">AAAB9HicbVC7TsNAEDyHVwivACWNRYREFdk0UEakoaAIiDykxIrOl3Vyyvls7tYRkeXvoKEAIVo+ho6/4ZK4gISRVhrN7Gp3x48F1+g431ZhbX1jc6u4XdrZ3ds/KB8etXSUKAZNFolIdXyqQXAJTeQooBMroKEvoO2P6zO/PQGleSQfcBqDF9Kh5AFnFI3k3fbTHsITpvX7LOuXK07VmcNeJW5OKiRHo1/+6g0iloQgkQmqddd1YvRSqpAzAVmpl2iIKRvTIXQNlTQE7aXzozP7zCgDO4iUKYn2XP09kdJQ62nom86Q4kgvezPxP6+bYHDlpVzGCYJki0VBImyM7FkC9oArYCimhlCmuLnVZiOqKEOTU8mE4C6/vEpaF1XXqbp3bqV2ncdRJCfklJwTl1ySGrkhDdIkjDySZ/JK3qyJ9WK9Wx+L1oKVzxyTP7A+fwAY85JK</latexit>

G2
th<latexit sha1_base64="A/XtQkRt99y99PwB604IMKLKm6U=">AAAB+HicbVC5TsNAEB2HK4QjBkoai4BEFdlpoIxAAsogkUNKgrXerJNV1od2x4hg+UtoKECIli/gG+jo+BQ2RwEJTxrp6b0ZzczzYsEV2vaXkVtaXlldy68XNja3tovmzm5DRYmkrE4jEcmWRxQTPGR15ChYK5aMBJ5gTW94Pvabd0wqHoU3OIpZNyD9kPucEtSSaxYvbytu2kF2jykOssw1S3bZnsBaJM6MlKqHHxffAFBzzc9OL6JJwEKkgijVduwYuymRyKlgWaGTKBYTOiR91tY0JAFT3XRyeGYdaaVn+ZHUFaI1UX9PpCRQahR4ujMgOFDz3lj8z2sn6J92Ux7GCbKQThf5ibAwssYpWD0uGUUx0oRQyfWtFh0QSSjqrAo6BGf+5UXSqJQdu+xcO6XqGUyRh304gGNw4ASqcAU1qAOFBB7hGV6MB+PJeDXepq05YzazB39gvP8AOAaVqw==</latexit><latexit sha1_base64="TgC4c2g622fadJPD6eGTDjKq5JU=">AAAB+HicbVDJSgNBEO1xjXHJqEcvjVHwFGZy0WNUUI8RzALJOPR0epImPQvdNWIc5ktE8KCIV7/Ab/DmH3j2C+wsB018UPB4r4qqel4suALL+jTm5hcWl5ZzK/nVtfWNgrm5VVdRIimr0UhEsukRxQQPWQ04CNaMJSOBJ1jD658O/cYNk4pH4RUMYuYEpBtyn1MCWnLNwvl12U3bwG4hhV6WuWbRKlkj4FliT0ixsvd+9vX9cFx1zY92J6JJwEKggijVsq0YnJRI4FSwLN9OFIsJ7ZMua2kakoApJx0dnuF9rXSwH0ldIeCR+nsiJYFSg8DTnQGBnpr2huJ/XisB/8hJeRgnwEI6XuQnAkOEhyngDpeMghhoQqjk+lZMe0QSCjqrvA7Bnn55ltTLJdsq2Zd2sXKCxsihHbSLDpCNDlEFXaAqqiGKEnSPntCzcWc8Gi/G67h1zpjMbKM/MN5+AK91l4M=</latexit><latexit sha1_base64="TgC4c2g622fadJPD6eGTDjKq5JU=">AAAB+HicbVDJSgNBEO1xjXHJqEcvjVHwFGZy0WNUUI8RzALJOPR0epImPQvdNWIc5ktE8KCIV7/Ab/DmH3j2C+wsB018UPB4r4qqel4suALL+jTm5hcWl5ZzK/nVtfWNgrm5VVdRIimr0UhEsukRxQQPWQ04CNaMJSOBJ1jD658O/cYNk4pH4RUMYuYEpBtyn1MCWnLNwvl12U3bwG4hhV6WuWbRKlkj4FliT0ixsvd+9vX9cFx1zY92J6JJwEKggijVsq0YnJRI4FSwLN9OFIsJ7ZMua2kakoApJx0dnuF9rXSwH0ldIeCR+nsiJYFSg8DTnQGBnpr2huJ/XisB/8hJeRgnwEI6XuQnAkOEhyngDpeMghhoQqjk+lZMe0QSCjqrvA7Bnn55ltTLJdsq2Zd2sXKCxsihHbSLDpCNDlEFXaAqqiGKEnSPntCzcWc8Gi/G67h1zpjMbKM/MN5+AK91l4M=</latexit><latexit sha1_base64="OLY6mtbxx4F/DGN5+he4UKbBUZM=">AAAB+HicbVC7TsNAEDyHVwiPGChpTkRIVJGdBsoICiiDRB5SYqzz5Zyccj5bd2tEsPwlNBQgRMun0PE3XBIXkDDSSqOZXe3uBIngGhzn2yqtrW9sbpW3Kzu7e/tV++Cwo+NUUdamsYhVLyCaCS5ZGzgI1ksUI1EgWDeYXM387gNTmsfyDqYJ8yIykjzklICRfLt6fd/wswGwR8hgnOe+XXPqzhx4lbgFqaECLd/+GgxjmkZMAhVE677rJOBlRAGnguWVQapZQuiEjFjfUEkipr1sfniOT40yxGGsTEnAc/X3REYiradRYDojAmO97M3E/7x+CuGFl3GZpMAkXSwKU4EhxrMU8JArRkFMDSFUcXMrpmOiCAWTVcWE4C6/vEo6jbrr1N1bt9a8LOIoo2N0gs6Qi85RE92gFmojilL0jF7Rm/VkvVjv1seitWQVM0foD6zPHyE3k2E=</latexit>

dtol
<latexit sha1_base64="0E5ZpQCOC3C3SG4xTo5XyeUCRkI=">AAAB9XicbVC5TsNAEB1zhnAFkGhoVkRIVJFNA2UEDWUikUNKTFiv18kq60O7YyCy/B80FCBEy7/Q0fAtbI4CEp400tN7M5qZ5yVSaLTtL2tpeWV1bb2wUdzc2t7ZLe3tN3WcKsYbLJaxantUcyki3kCBkrcTxWnoSd7yhldjv3XPlRZxdIOjhLsh7UciEIyikW79XtZF/ogZxjLPe6WyXbEnIIvEmZFy9bD+fQcAtV7ps+vHLA15hExSrTuOnaCbUYWCSZ4Xu6nmCWVD2ucdQyMacu1mk6tzcmIUnwSxMhUhmai/JzIaaj0KPdMZUhzoeW8s/ud1Ugwu3ExESYo8YtNFQSoJxmQcAfGF4gzlyBDKlDC3EjagijI0QRVNCM78y4ukeVZx7IpTd8rVS5iiAEdwDKfgwDlU4Rpq0AAGCp7gBV6tB+vZerPep61L1mzmAP7A+vgBEm+VCw==</latexit><latexit sha1_base64="j68IJZY/eL7xwj+Jv+iJyoLEuM0=">AAAB9XicbVC7SgNBFJ2NrxhfUcHGZjAIVmHXRssQG8sEzAOSNczOziZDZmeWmbtqWPIfNhaK2Ik/4RfY2fgtTh6FRg9cOJxzL/feEySCG3DdTye3tLyyupZfL2xsbm3vFHf3mkalmrIGVULpdkAME1yyBnAQrJ1oRuJAsFYwvJj4rRumDVfyCkYJ82PSlzzilICVrsNe1gV2BxkoMR73iiW37E6B/xJvTkqVg/oXf62+13rFj26oaBozCVQQYzqem4CfEQ2cCjYudFPDEkKHpM86lkoSM+Nn06vH+NgqIY6UtiUBT9WfExmJjRnFge2MCQzMojcR//M6KUTnfsZlkgKTdLYoSgUGhScR4JBrRkGMLCFUc3srpgOiCQUbVMGG4C2+/Jc0T8ueW/bqXqlSRTPk0SE6QifIQ2eogi5RDTUQRRrdo0f05Nw6D86z8zJrzTnzmX30C87bN2Owlsc=</latexit><latexit sha1_base64="j68IJZY/eL7xwj+Jv+iJyoLEuM0=">AAAB9XicbVC7SgNBFJ2NrxhfUcHGZjAIVmHXRssQG8sEzAOSNczOziZDZmeWmbtqWPIfNhaK2Ik/4RfY2fgtTh6FRg9cOJxzL/feEySCG3DdTye3tLyyupZfL2xsbm3vFHf3mkalmrIGVULpdkAME1yyBnAQrJ1oRuJAsFYwvJj4rRumDVfyCkYJ82PSlzzilICVrsNe1gV2BxkoMR73iiW37E6B/xJvTkqVg/oXf62+13rFj26oaBozCVQQYzqem4CfEQ2cCjYudFPDEkKHpM86lkoSM+Nn06vH+NgqIY6UtiUBT9WfExmJjRnFge2MCQzMojcR//M6KUTnfsZlkgKTdLYoSgUGhScR4JBrRkGMLCFUc3srpgOiCQUbVMGG4C2+/Jc0T8ueW/bqXqlSRTPk0SE6QifIQ2eogi5RDTUQRRrdo0f05Nw6D86z8zJrzTnzmX30C87bN2Owlsc=</latexit><latexit sha1_base64="zvGQDfRrjS7BSS8wIShSMAsMkWk=">AAAB9XicbVC7TsNAEFzzDOEVoKSxiJCoIpsGyggayiCRh5SE6Hw+J6ec76y7NRBZ/g8aChCi5V/o+BsuiQtIGGml0cyudneCRHCDnvftrKyurW9slrbK2zu7e/uVg8OWUammrEmVULoTEMMEl6yJHAXrJJqROBCsHYyvp377gWnDlbzDScL6MRlKHnFK0Er34SDrIXvCDJXI80Gl6tW8Gdxl4hekCgUag8pXL1Q0jZlEKogxXd9LsJ8RjZwKlpd7qWEJoWMyZF1LJYmZ6Wezq3P31CqhGyltS6I7U39PZCQ2ZhIHtjMmODKL3lT8z+umGF32My6TFJmk80VRKlxU7jQCN+SaURQTSwjV3N7q0hHRhKINqmxD8BdfXiat85rv1fxbv1q/KuIowTGcwBn4cAF1uIEGNIGChmd4hTfn0Xlx3p2PeeuKU8wcwR84nz+DyJMm</latexit>

LCR
<latexit sha1_base64="NEzGBQaeGvxW9oW3LdsZcCmzV8o=">AAAB9HicbVC7SgNBFL0bXzG+ooKNzWAQrMKujZbBNBYWiZgHJEucnUySIbMPZ+4Gw7LfYWOhiK0fY2fjtzh5FJp44MLhnHu59x4vkkKjbX9ZmZXVtfWN7GZua3tndy+/f1DXYawYr7FQhqrpUc2lCHgNBUrejBSnvid5wxuWJ35jxJUWYXCH44i7Pu0HoicYRSO5N52kjfwRk/JtmnbyBbtoT0GWiTMnhdJR9fseACqd/Ge7G7LY5wEySbVuOXaEbkIVCiZ5mmvHmkeUDWmftwwNqM+1m0yPTsmpUbqkFypTAZKp+nsiob7WY98znT7FgV70JuJ/XivG3qWbiCCKkQdstqgXS4IhmSRAukJxhnJsCGVKmFsJG1BFGZqcciYEZ/HlZVI/Lzp20ak6hdIVzJCFYziBM3DgAkpwDRWoAYMHeIIXeLVG1rP1Zr3PWjPWfOYQ/sD6+AGni5Qv</latexit><latexit sha1_base64="x3ZheBkZFRKGT1yQ+ApaTK/Xts0=">AAAB9HicbVC7SgNBFJ2NrxhfUcHGZjAIVmHXRsuQNBYWiZgHJEuYncwmQ2Zn15m7wbDsd9hYKGKpX+EX2Nn4LU4ehSYeuHA4517uvceLBNdg219WZmV1bX0ju5nb2t7Z3cvvHzR0GCvK6jQUoWp5RDPBJasDB8FakWIk8ARresPKxG+OmNI8lLcwjpgbkL7kPqcEjORed5MOsHtIKjdp2s0X7KI9BV4mzpwUSke1b/5W/qh285+dXkjjgEmggmjdduwI3IQo4FSwNNeJNYsIHZI+axsqScC0m0yPTvGpUXrYD5UpCXiq/p5ISKD1OPBMZ0BgoBe9ifif147Bv3QTLqMYmKSzRX4sMIR4kgDuccUoiLEhhCpubsV0QBShYHLKmRCcxZeXSeO86NhFp+YUSmU0QxYdoxN0hhx0gUroClVRHVF0hx7QE3q2Rtaj9WK9zloz1nzmEP2B9f4D+MyV6w==</latexit><latexit sha1_base64="x3ZheBkZFRKGT1yQ+ApaTK/Xts0=">AAAB9HicbVC7SgNBFJ2NrxhfUcHGZjAIVmHXRsuQNBYWiZgHJEuYncwmQ2Zn15m7wbDsd9hYKGKpX+EX2Nn4LU4ehSYeuHA4517uvceLBNdg219WZmV1bX0ju5nb2t7Z3cvvHzR0GCvK6jQUoWp5RDPBJasDB8FakWIk8ARresPKxG+OmNI8lLcwjpgbkL7kPqcEjORed5MOsHtIKjdp2s0X7KI9BV4mzpwUSke1b/5W/qh285+dXkjjgEmggmjdduwI3IQo4FSwNNeJNYsIHZI+axsqScC0m0yPTvGpUXrYD5UpCXiq/p5ISKD1OPBMZ0BgoBe9ifif147Bv3QTLqMYmKSzRX4sMIR4kgDuccUoiLEhhCpubsV0QBShYHLKmRCcxZeXSeO86NhFp+YUSmU0QxYdoxN0hhx0gUroClVRHVF0hx7QE3q2Rtaj9WK9zloz1nzmEP2B9f4D+MyV6w==</latexit><latexit sha1_base64="KIpsFeOPzpBsgrbJd/pUm7al5+c=">AAAB9HicbVC7TsNAEDyHVwivACWNRYREFdk0UEakoaAIiDykxIrOl3Vyyvls7tYRkeXvoKEAIVo+ho6/4ZK4gISRVhrN7Gp3x48F1+g431ZhbX1jc6u4XdrZ3ds/KB8etXSUKAZNFolIdXyqQXAJTeQooBMroKEvoO2P6zO/PQGleSQfcBqDF9Kh5AFnFI3k3fbTHsITpvX7LOuXK07VmcNeJW5OKiRHo1/+6g0iloQgkQmqddd1YvRSqpAzAVmpl2iIKRvTIXQNlTQE7aXzozP7zCgDO4iUKYn2XP09kdJQ62nom86Q4kgvezPxP6+bYHDlpVzGCYJki0VBImyM7FkC9oArYCimhlCmuLnVZiOqKEOTU8mE4C6/vEpaF1XXqbp3bqV2ncdRJCfklJwTl1ySGrkhDdIkjDySZ/JK3qyJ9WK9Wx+L1oKVzxyTP7A+fwAY85JK</latexit>

G2
th<latexit sha1_base64="A/XtQkRt99y99PwB604IMKLKm6U=">AAAB+HicbVC5TsNAEB2HK4QjBkoai4BEFdlpoIxAAsogkUNKgrXerJNV1od2x4hg+UtoKECIli/gG+jo+BQ2RwEJTxrp6b0ZzczzYsEV2vaXkVtaXlldy68XNja3tovmzm5DRYmkrE4jEcmWRxQTPGR15ChYK5aMBJ5gTW94Pvabd0wqHoU3OIpZNyD9kPucEtSSaxYvbytu2kF2jykOssw1S3bZnsBaJM6MlKqHHxffAFBzzc9OL6JJwEKkgijVduwYuymRyKlgWaGTKBYTOiR91tY0JAFT3XRyeGYdaaVn+ZHUFaI1UX9PpCRQahR4ujMgOFDz3lj8z2sn6J92Ux7GCbKQThf5ibAwssYpWD0uGUUx0oRQyfWtFh0QSSjqrAo6BGf+5UXSqJQdu+xcO6XqGUyRh304gGNw4ASqcAU1qAOFBB7hGV6MB+PJeDXepq05YzazB39gvP8AOAaVqw==</latexit><latexit sha1_base64="TgC4c2g622fadJPD6eGTDjKq5JU=">AAAB+HicbVDJSgNBEO1xjXHJqEcvjVHwFGZy0WNUUI8RzALJOPR0epImPQvdNWIc5ktE8KCIV7/Ab/DmH3j2C+wsB018UPB4r4qqel4suALL+jTm5hcWl5ZzK/nVtfWNgrm5VVdRIimr0UhEsukRxQQPWQ04CNaMJSOBJ1jD658O/cYNk4pH4RUMYuYEpBtyn1MCWnLNwvl12U3bwG4hhV6WuWbRKlkj4FliT0ixsvd+9vX9cFx1zY92J6JJwEKggijVsq0YnJRI4FSwLN9OFIsJ7ZMua2kakoApJx0dnuF9rXSwH0ldIeCR+nsiJYFSg8DTnQGBnpr2huJ/XisB/8hJeRgnwEI6XuQnAkOEhyngDpeMghhoQqjk+lZMe0QSCjqrvA7Bnn55ltTLJdsq2Zd2sXKCxsihHbSLDpCNDlEFXaAqqiGKEnSPntCzcWc8Gi/G67h1zpjMbKM/MN5+AK91l4M=</latexit><latexit sha1_base64="TgC4c2g622fadJPD6eGTDjKq5JU=">AAAB+HicbVDJSgNBEO1xjXHJqEcvjVHwFGZy0WNUUI8RzALJOPR0epImPQvdNWIc5ktE8KCIV7/Ab/DmH3j2C+wsB018UPB4r4qqel4suALL+jTm5hcWl5ZzK/nVtfWNgrm5VVdRIimr0UhEsukRxQQPWQ04CNaMJSOBJ1jD658O/cYNk4pH4RUMYuYEpBtyn1MCWnLNwvl12U3bwG4hhV6WuWbRKlkj4FliT0ixsvd+9vX9cFx1zY92J6JJwEKggijVsq0YnJRI4FSwLN9OFIsJ7ZMua2kakoApJx0dnuF9rXSwH0ldIeCR+nsiJYFSg8DTnQGBnpr2huJ/XisB/8hJeRgnwEI6XuQnAkOEhyngDpeMghhoQqjk+lZMe0QSCjqrvA7Bnn55ltTLJdsq2Zd2sXKCxsihHbSLDpCNDlEFXaAqqiGKEnSPntCzcWc8Gi/G67h1zpjMbKM/MN5+AK91l4M=</latexit><latexit sha1_base64="OLY6mtbxx4F/DGN5+he4UKbBUZM=">AAAB+HicbVC7TsNAEDyHVwiPGChpTkRIVJGdBsoICiiDRB5SYqzz5Zyccj5bd2tEsPwlNBQgRMun0PE3XBIXkDDSSqOZXe3uBIngGhzn2yqtrW9sbpW3Kzu7e/tV++Cwo+NUUdamsYhVLyCaCS5ZGzgI1ksUI1EgWDeYXM387gNTmsfyDqYJ8yIykjzklICRfLt6fd/wswGwR8hgnOe+XXPqzhx4lbgFqaECLd/+GgxjmkZMAhVE677rJOBlRAGnguWVQapZQuiEjFjfUEkipr1sfniOT40yxGGsTEnAc/X3REYiradRYDojAmO97M3E/7x+CuGFl3GZpMAkXSwKU4EhxrMU8JArRkFMDSFUcXMrpmOiCAWTVcWE4C6/vEo6jbrr1N1bt9a8LOIoo2N0gs6Qi85RE92gFmojilL0jF7Rm/VkvVjv1seitWQVM0foD6zPHyE3k2E=</latexit>

dtol
<latexit sha1_base64="0E5ZpQCOC3C3SG4xTo5XyeUCRkI=">AAAB9XicbVC5TsNAEB1zhnAFkGhoVkRIVJFNA2UEDWUikUNKTFiv18kq60O7YyCy/B80FCBEy7/Q0fAtbI4CEp400tN7M5qZ5yVSaLTtL2tpeWV1bb2wUdzc2t7ZLe3tN3WcKsYbLJaxantUcyki3kCBkrcTxWnoSd7yhldjv3XPlRZxdIOjhLsh7UciEIyikW79XtZF/ogZxjLPe6WyXbEnIIvEmZFy9bD+fQcAtV7ps+vHLA15hExSrTuOnaCbUYWCSZ4Xu6nmCWVD2ucdQyMacu1mk6tzcmIUnwSxMhUhmai/JzIaaj0KPdMZUhzoeW8s/ud1Ugwu3ExESYo8YtNFQSoJxmQcAfGF4gzlyBDKlDC3EjagijI0QRVNCM78y4ukeVZx7IpTd8rVS5iiAEdwDKfgwDlU4Rpq0AAGCp7gBV6tB+vZerPep61L1mzmAP7A+vgBEm+VCw==</latexit><latexit sha1_base64="j68IJZY/eL7xwj+Jv+iJyoLEuM0=">AAAB9XicbVC7SgNBFJ2NrxhfUcHGZjAIVmHXRssQG8sEzAOSNczOziZDZmeWmbtqWPIfNhaK2Ik/4RfY2fgtTh6FRg9cOJxzL/feEySCG3DdTye3tLyyupZfL2xsbm3vFHf3mkalmrIGVULpdkAME1yyBnAQrJ1oRuJAsFYwvJj4rRumDVfyCkYJ82PSlzzilICVrsNe1gV2BxkoMR73iiW37E6B/xJvTkqVg/oXf62+13rFj26oaBozCVQQYzqem4CfEQ2cCjYudFPDEkKHpM86lkoSM+Nn06vH+NgqIY6UtiUBT9WfExmJjRnFge2MCQzMojcR//M6KUTnfsZlkgKTdLYoSgUGhScR4JBrRkGMLCFUc3srpgOiCQUbVMGG4C2+/Jc0T8ueW/bqXqlSRTPk0SE6QifIQ2eogi5RDTUQRRrdo0f05Nw6D86z8zJrzTnzmX30C87bN2Owlsc=</latexit><latexit sha1_base64="j68IJZY/eL7xwj+Jv+iJyoLEuM0=">AAAB9XicbVC7SgNBFJ2NrxhfUcHGZjAIVmHXRssQG8sEzAOSNczOziZDZmeWmbtqWPIfNhaK2Ik/4RfY2fgtTh6FRg9cOJxzL/feEySCG3DdTye3tLyyupZfL2xsbm3vFHf3mkalmrIGVULpdkAME1yyBnAQrJ1oRuJAsFYwvJj4rRumDVfyCkYJ82PSlzzilICVrsNe1gV2BxkoMR73iiW37E6B/xJvTkqVg/oXf62+13rFj26oaBozCVQQYzqem4CfEQ2cCjYudFPDEkKHpM86lkoSM+Nn06vH+NgqIY6UtiUBT9WfExmJjRnFge2MCQzMojcR//M6KUTnfsZlkgKTdLYoSgUGhScR4JBrRkGMLCFUc3srpgOiCQUbVMGG4C2+/Jc0T8ueW/bqXqlSRTPk0SE6QifIQ2eogi5RDTUQRRrdo0f05Nw6D86z8zJrzTnzmX30C87bN2Owlsc=</latexit><latexit sha1_base64="zvGQDfRrjS7BSS8wIShSMAsMkWk=">AAAB9XicbVC7TsNAEFzzDOEVoKSxiJCoIpsGyggayiCRh5SE6Hw+J6ec76y7NRBZ/g8aChCi5V/o+BsuiQtIGGml0cyudneCRHCDnvftrKyurW9slrbK2zu7e/uVg8OWUammrEmVULoTEMMEl6yJHAXrJJqROBCsHYyvp377gWnDlbzDScL6MRlKHnFK0Er34SDrIXvCDJXI80Gl6tW8Gdxl4hekCgUag8pXL1Q0jZlEKogxXd9LsJ8RjZwKlpd7qWEJoWMyZF1LJYmZ6Wezq3P31CqhGyltS6I7U39PZCQ2ZhIHtjMmODKL3lT8z+umGF32My6TFJmk80VRKlxU7jQCN+SaURQTSwjV3N7q0hHRhKINqmxD8BdfXiat85rv1fxbv1q/KuIowTGcwBn4cAF1uIEGNIGChmd4hTfn0Xlx3p2PeeuKU8wcwR84nz+DyJMm</latexit>

LCR
<latexit sha1_base64="NEzGBQaeGvxW9oW3LdsZcCmzV8o=">AAAB9HicbVC7SgNBFL0bXzG+ooKNzWAQrMKujZbBNBYWiZgHJEucnUySIbMPZ+4Gw7LfYWOhiK0fY2fjtzh5FJp44MLhnHu59x4vkkKjbX9ZmZXVtfWN7GZua3tndy+/f1DXYawYr7FQhqrpUc2lCHgNBUrejBSnvid5wxuWJ35jxJUWYXCH44i7Pu0HoicYRSO5N52kjfwRk/JtmnbyBbtoT0GWiTMnhdJR9fseACqd/Ge7G7LY5wEySbVuOXaEbkIVCiZ5mmvHmkeUDWmftwwNqM+1m0yPTsmpUbqkFypTAZKp+nsiob7WY98znT7FgV70JuJ/XivG3qWbiCCKkQdstqgXS4IhmSRAukJxhnJsCGVKmFsJG1BFGZqcciYEZ/HlZVI/Lzp20ak6hdIVzJCFYziBM3DgAkpwDRWoAYMHeIIXeLVG1rP1Zr3PWjPWfOYQ/sD6+AGni5Qv</latexit><latexit sha1_base64="x3ZheBkZFRKGT1yQ+ApaTK/Xts0=">AAAB9HicbVC7SgNBFJ2NrxhfUcHGZjAIVmHXRsuQNBYWiZgHJEuYncwmQ2Zn15m7wbDsd9hYKGKpX+EX2Nn4LU4ehSYeuHA4517uvceLBNdg219WZmV1bX0ju5nb2t7Z3cvvHzR0GCvK6jQUoWp5RDPBJasDB8FakWIk8ARresPKxG+OmNI8lLcwjpgbkL7kPqcEjORed5MOsHtIKjdp2s0X7KI9BV4mzpwUSke1b/5W/qh285+dXkjjgEmggmjdduwI3IQo4FSwNNeJNYsIHZI+axsqScC0m0yPTvGpUXrYD5UpCXiq/p5ISKD1OPBMZ0BgoBe9ifif147Bv3QTLqMYmKSzRX4sMIR4kgDuccUoiLEhhCpubsV0QBShYHLKmRCcxZeXSeO86NhFp+YUSmU0QxYdoxN0hhx0gUroClVRHVF0hx7QE3q2Rtaj9WK9zloz1nzmEP2B9f4D+MyV6w==</latexit><latexit sha1_base64="x3ZheBkZFRKGT1yQ+ApaTK/Xts0=">AAAB9HicbVC7SgNBFJ2NrxhfUcHGZjAIVmHXRsuQNBYWiZgHJEuYncwmQ2Zn15m7wbDsd9hYKGKpX+EX2Nn4LU4ehSYeuHA4517uvceLBNdg219WZmV1bX0ju5nb2t7Z3cvvHzR0GCvK6jQUoWp5RDPBJasDB8FakWIk8ARresPKxG+OmNI8lLcwjpgbkL7kPqcEjORed5MOsHtIKjdp2s0X7KI9BV4mzpwUSke1b/5W/qh285+dXkjjgEmggmjdduwI3IQo4FSwNNeJNYsIHZI+axsqScC0m0yPTvGpUXrYD5UpCXiq/p5ISKD1OPBMZ0BgoBe9ifif147Bv3QTLqMYmKSzRX4sMIR4kgDuccUoiLEhhCpubsV0QBShYHLKmRCcxZeXSeO86NhFp+YUSmU0QxYdoxN0hhx0gUroClVRHVF0hx7QE3q2Rtaj9WK9zloz1nzmEP2B9f4D+MyV6w==</latexit><latexit sha1_base64="KIpsFeOPzpBsgrbJd/pUm7al5+c=">AAAB9HicbVC7TsNAEDyHVwivACWNRYREFdk0UEakoaAIiDykxIrOl3Vyyvls7tYRkeXvoKEAIVo+ho6/4ZK4gISRVhrN7Gp3x48F1+g431ZhbX1jc6u4XdrZ3ds/KB8etXSUKAZNFolIdXyqQXAJTeQooBMroKEvoO2P6zO/PQGleSQfcBqDF9Kh5AFnFI3k3fbTHsITpvX7LOuXK07VmcNeJW5OKiRHo1/+6g0iloQgkQmqddd1YvRSqpAzAVmpl2iIKRvTIXQNlTQE7aXzozP7zCgDO4iUKYn2XP09kdJQ62nom86Q4kgvezPxP6+bYHDlpVzGCYJki0VBImyM7FkC9oArYCimhlCmuLnVZiOqKEOTU8mE4C6/vEpaF1XXqbp3bqV2ncdRJCfklJwTl1ySGrkhDdIkjDySZ/JK3qyJ9WK9Wx+L1oKVzxyTP7A+fwAY85JK</latexit>

G2
th<latexit sha1_base64="A/XtQkRt99y99PwB604IMKLKm6U=">AAAB+HicbVC5TsNAEB2HK4QjBkoai4BEFdlpoIxAAsogkUNKgrXerJNV1od2x4hg+UtoKECIli/gG+jo+BQ2RwEJTxrp6b0ZzczzYsEV2vaXkVtaXlldy68XNja3tovmzm5DRYmkrE4jEcmWRxQTPGR15ChYK5aMBJ5gTW94Pvabd0wqHoU3OIpZNyD9kPucEtSSaxYvbytu2kF2jykOssw1S3bZnsBaJM6MlKqHHxffAFBzzc9OL6JJwEKkgijVduwYuymRyKlgWaGTKBYTOiR91tY0JAFT3XRyeGYdaaVn+ZHUFaI1UX9PpCRQahR4ujMgOFDz3lj8z2sn6J92Ux7GCbKQThf5ibAwssYpWD0uGUUx0oRQyfWtFh0QSSjqrAo6BGf+5UXSqJQdu+xcO6XqGUyRh304gGNw4ASqcAU1qAOFBB7hGV6MB+PJeDXepq05YzazB39gvP8AOAaVqw==</latexit><latexit sha1_base64="TgC4c2g622fadJPD6eGTDjKq5JU=">AAAB+HicbVDJSgNBEO1xjXHJqEcvjVHwFGZy0WNUUI8RzALJOPR0epImPQvdNWIc5ktE8KCIV7/Ab/DmH3j2C+wsB018UPB4r4qqel4suALL+jTm5hcWl5ZzK/nVtfWNgrm5VVdRIimr0UhEsukRxQQPWQ04CNaMJSOBJ1jD658O/cYNk4pH4RUMYuYEpBtyn1MCWnLNwvl12U3bwG4hhV6WuWbRKlkj4FliT0ixsvd+9vX9cFx1zY92J6JJwEKggijVsq0YnJRI4FSwLN9OFIsJ7ZMua2kakoApJx0dnuF9rXSwH0ldIeCR+nsiJYFSg8DTnQGBnpr2huJ/XisB/8hJeRgnwEI6XuQnAkOEhyngDpeMghhoQqjk+lZMe0QSCjqrvA7Bnn55ltTLJdsq2Zd2sXKCxsihHbSLDpCNDlEFXaAqqiGKEnSPntCzcWc8Gi/G67h1zpjMbKM/MN5+AK91l4M=</latexit><latexit sha1_base64="TgC4c2g622fadJPD6eGTDjKq5JU=">AAAB+HicbVDJSgNBEO1xjXHJqEcvjVHwFGZy0WNUUI8RzALJOPR0epImPQvdNWIc5ktE8KCIV7/Ab/DmH3j2C+wsB018UPB4r4qqel4suALL+jTm5hcWl5ZzK/nVtfWNgrm5VVdRIimr0UhEsukRxQQPWQ04CNaMJSOBJ1jD658O/cYNk4pH4RUMYuYEpBtyn1MCWnLNwvl12U3bwG4hhV6WuWbRKlkj4FliT0ixsvd+9vX9cFx1zY92J6JJwEKggijVsq0YnJRI4FSwLN9OFIsJ7ZMua2kakoApJx0dnuF9rXSwH0ldIeCR+nsiJYFSg8DTnQGBnpr2huJ/XisB/8hJeRgnwEI6XuQnAkOEhyngDpeMghhoQqjk+lZMe0QSCjqrvA7Bnn55ltTLJdsq2Zd2sXKCxsihHbSLDpCNDlEFXaAqqiGKEnSPntCzcWc8Gi/G67h1zpjMbKM/MN5+AK91l4M=</latexit><latexit sha1_base64="OLY6mtbxx4F/DGN5+he4UKbBUZM=">AAAB+HicbVC7TsNAEDyHVwiPGChpTkRIVJGdBsoICiiDRB5SYqzz5Zyccj5bd2tEsPwlNBQgRMun0PE3XBIXkDDSSqOZXe3uBIngGhzn2yqtrW9sbpW3Kzu7e/tV++Cwo+NUUdamsYhVLyCaCS5ZGzgI1ksUI1EgWDeYXM387gNTmsfyDqYJ8yIykjzklICRfLt6fd/wswGwR8hgnOe+XXPqzhx4lbgFqaECLd/+GgxjmkZMAhVE677rJOBlRAGnguWVQapZQuiEjFjfUEkipr1sfniOT40yxGGsTEnAc/X3REYiradRYDojAmO97M3E/7x+CuGFl3GZpMAkXSwKU4EhxrMU8JArRkFMDSFUcXMrpmOiCAWTVcWE4C6/vEo6jbrr1N1bt9a8LOIoo2N0gs6Qi85RE92gFmojilL0jF7Rm/VkvVjv1seitWQVM0foD6zPHyE3k2E=</latexit>

dtol
<latexit sha1_base64="0E5ZpQCOC3C3SG4xTo5XyeUCRkI=">AAAB9XicbVC5TsNAEB1zhnAFkGhoVkRIVJFNA2UEDWUikUNKTFiv18kq60O7YyCy/B80FCBEy7/Q0fAtbI4CEp400tN7M5qZ5yVSaLTtL2tpeWV1bb2wUdzc2t7ZLe3tN3WcKsYbLJaxantUcyki3kCBkrcTxWnoSd7yhldjv3XPlRZxdIOjhLsh7UciEIyikW79XtZF/ogZxjLPe6WyXbEnIIvEmZFy9bD+fQcAtV7ps+vHLA15hExSrTuOnaCbUYWCSZ4Xu6nmCWVD2ucdQyMacu1mk6tzcmIUnwSxMhUhmai/JzIaaj0KPdMZUhzoeW8s/ud1Ugwu3ExESYo8YtNFQSoJxmQcAfGF4gzlyBDKlDC3EjagijI0QRVNCM78y4ukeVZx7IpTd8rVS5iiAEdwDKfgwDlU4Rpq0AAGCp7gBV6tB+vZerPep61L1mzmAP7A+vgBEm+VCw==</latexit><latexit sha1_base64="j68IJZY/eL7xwj+Jv+iJyoLEuM0=">AAAB9XicbVC7SgNBFJ2NrxhfUcHGZjAIVmHXRssQG8sEzAOSNczOziZDZmeWmbtqWPIfNhaK2Ik/4RfY2fgtTh6FRg9cOJxzL/feEySCG3DdTye3tLyyupZfL2xsbm3vFHf3mkalmrIGVULpdkAME1yyBnAQrJ1oRuJAsFYwvJj4rRumDVfyCkYJ82PSlzzilICVrsNe1gV2BxkoMR73iiW37E6B/xJvTkqVg/oXf62+13rFj26oaBozCVQQYzqem4CfEQ2cCjYudFPDEkKHpM86lkoSM+Nn06vH+NgqIY6UtiUBT9WfExmJjRnFge2MCQzMojcR//M6KUTnfsZlkgKTdLYoSgUGhScR4JBrRkGMLCFUc3srpgOiCQUbVMGG4C2+/Jc0T8ueW/bqXqlSRTPk0SE6QifIQ2eogi5RDTUQRRrdo0f05Nw6D86z8zJrzTnzmX30C87bN2Owlsc=</latexit><latexit sha1_base64="j68IJZY/eL7xwj+Jv+iJyoLEuM0=">AAAB9XicbVC7SgNBFJ2NrxhfUcHGZjAIVmHXRssQG8sEzAOSNczOziZDZmeWmbtqWPIfNhaK2Ik/4RfY2fgtTh6FRg9cOJxzL/feEySCG3DdTye3tLyyupZfL2xsbm3vFHf3mkalmrIGVULpdkAME1yyBnAQrJ1oRuJAsFYwvJj4rRumDVfyCkYJ82PSlzzilICVrsNe1gV2BxkoMR73iiW37E6B/xJvTkqVg/oXf62+13rFj26oaBozCVQQYzqem4CfEQ2cCjYudFPDEkKHpM86lkoSM+Nn06vH+NgqIY6UtiUBT9WfExmJjRnFge2MCQzMojcR//M6KUTnfsZlkgKTdLYoSgUGhScR4JBrRkGMLCFUc3srpgOiCQUbVMGG4C2+/Jc0T8ueW/bqXqlSRTPk0SE6QifIQ2eogi5RDTUQRRrdo0f05Nw6D86z8zJrzTnzmX30C87bN2Owlsc=</latexit><latexit sha1_base64="zvGQDfRrjS7BSS8wIShSMAsMkWk=">AAAB9XicbVC7TsNAEFzzDOEVoKSxiJCoIpsGyggayiCRh5SE6Hw+J6ec76y7NRBZ/g8aChCi5V/o+BsuiQtIGGml0cyudneCRHCDnvftrKyurW9slrbK2zu7e/uVg8OWUammrEmVULoTEMMEl6yJHAXrJJqROBCsHYyvp377gWnDlbzDScL6MRlKHnFK0Er34SDrIXvCDJXI80Gl6tW8Gdxl4hekCgUag8pXL1Q0jZlEKogxXd9LsJ8RjZwKlpd7qWEJoWMyZF1LJYmZ6Wezq3P31CqhGyltS6I7U39PZCQ2ZhIHtjMmODKL3lT8z+umGF32My6TFJmk80VRKlxU7jQCN+SaURQTSwjV3N7q0hHRhKINqmxD8BdfXiat85rv1fxbv1q/KuIowTGcwBn4cAF1uIEGNIGChmd4hTfn0Xlx3p2PeeuKU8wcwR84nz+DyJMm</latexit>

LCR
<latexit sha1_base64="NEzGBQaeGvxW9oW3LdsZcCmzV8o=">AAAB9HicbVC7SgNBFL0bXzG+ooKNzWAQrMKujZbBNBYWiZgHJEucnUySIbMPZ+4Gw7LfYWOhiK0fY2fjtzh5FJp44MLhnHu59x4vkkKjbX9ZmZXVtfWN7GZua3tndy+/f1DXYawYr7FQhqrpUc2lCHgNBUrejBSnvid5wxuWJ35jxJUWYXCH44i7Pu0HoicYRSO5N52kjfwRk/JtmnbyBbtoT0GWiTMnhdJR9fseACqd/Ge7G7LY5wEySbVuOXaEbkIVCiZ5mmvHmkeUDWmftwwNqM+1m0yPTsmpUbqkFypTAZKp+nsiob7WY98znT7FgV70JuJ/XivG3qWbiCCKkQdstqgXS4IhmSRAukJxhnJsCGVKmFsJG1BFGZqcciYEZ/HlZVI/Lzp20ak6hdIVzJCFYziBM3DgAkpwDRWoAYMHeIIXeLVG1rP1Zr3PWjPWfOYQ/sD6+AGni5Qv</latexit><latexit sha1_base64="x3ZheBkZFRKGT1yQ+ApaTK/Xts0=">AAAB9HicbVC7SgNBFJ2NrxhfUcHGZjAIVmHXRsuQNBYWiZgHJEuYncwmQ2Zn15m7wbDsd9hYKGKpX+EX2Nn4LU4ehSYeuHA4517uvceLBNdg219WZmV1bX0ju5nb2t7Z3cvvHzR0GCvK6jQUoWp5RDPBJasDB8FakWIk8ARresPKxG+OmNI8lLcwjpgbkL7kPqcEjORed5MOsHtIKjdp2s0X7KI9BV4mzpwUSke1b/5W/qh285+dXkjjgEmggmjdduwI3IQo4FSwNNeJNYsIHZI+axsqScC0m0yPTvGpUXrYD5UpCXiq/p5ISKD1OPBMZ0BgoBe9ifif147Bv3QTLqMYmKSzRX4sMIR4kgDuccUoiLEhhCpubsV0QBShYHLKmRCcxZeXSeO86NhFp+YUSmU0QxYdoxN0hhx0gUroClVRHVF0hx7QE3q2Rtaj9WK9zloz1nzmEP2B9f4D+MyV6w==</latexit><latexit sha1_base64="x3ZheBkZFRKGT1yQ+ApaTK/Xts0=">AAAB9HicbVC7SgNBFJ2NrxhfUcHGZjAIVmHXRsuQNBYWiZgHJEuYncwmQ2Zn15m7wbDsd9hYKGKpX+EX2Nn4LU4ehSYeuHA4517uvceLBNdg219WZmV1bX0ju5nb2t7Z3cvvHzR0GCvK6jQUoWp5RDPBJasDB8FakWIk8ARresPKxG+OmNI8lLcwjpgbkL7kPqcEjORed5MOsHtIKjdp2s0X7KI9BV4mzpwUSke1b/5W/qh285+dXkjjgEmggmjdduwI3IQo4FSwNNeJNYsIHZI+axsqScC0m0yPTvGpUXrYD5UpCXiq/p5ISKD1OPBMZ0BgoBe9ifif147Bv3QTLqMYmKSzRX4sMIR4kgDuccUoiLEhhCpubsV0QBShYHLKmRCcxZeXSeO86NhFp+YUSmU0QxYdoxN0hhx0gUroClVRHVF0hx7QE3q2Rtaj9WK9zloz1nzmEP2B9f4D+MyV6w==</latexit><latexit sha1_base64="KIpsFeOPzpBsgrbJd/pUm7al5+c=">AAAB9HicbVC7TsNAEDyHVwivACWNRYREFdk0UEakoaAIiDykxIrOl3Vyyvls7tYRkeXvoKEAIVo+ho6/4ZK4gISRVhrN7Gp3x48F1+g431ZhbX1jc6u4XdrZ3ds/KB8etXSUKAZNFolIdXyqQXAJTeQooBMroKEvoO2P6zO/PQGleSQfcBqDF9Kh5AFnFI3k3fbTHsITpvX7LOuXK07VmcNeJW5OKiRHo1/+6g0iloQgkQmqddd1YvRSqpAzAVmpl2iIKRvTIXQNlTQE7aXzozP7zCgDO4iUKYn2XP09kdJQ62nom86Q4kgvezPxP6+bYHDlpVzGCYJki0VBImyM7FkC9oArYCimhlCmuLnVZiOqKEOTU8mE4C6/vEpaF1XXqbp3bqV2ncdRJCfklJwTl1ySGrkhDdIkjDySZ/JK3qyJ9WK9Wx+L1oKVzxyTP7A+fwAY85JK</latexit>

G2
th<latexit sha1_base64="A/XtQkRt99y99PwB604IMKLKm6U=">AAAB+HicbVC5TsNAEB2HK4QjBkoai4BEFdlpoIxAAsogkUNKgrXerJNV1od2x4hg+UtoKECIli/gG+jo+BQ2RwEJTxrp6b0ZzczzYsEV2vaXkVtaXlldy68XNja3tovmzm5DRYmkrE4jEcmWRxQTPGR15ChYK5aMBJ5gTW94Pvabd0wqHoU3OIpZNyD9kPucEtSSaxYvbytu2kF2jykOssw1S3bZnsBaJM6MlKqHHxffAFBzzc9OL6JJwEKkgijVduwYuymRyKlgWaGTKBYTOiR91tY0JAFT3XRyeGYdaaVn+ZHUFaI1UX9PpCRQahR4ujMgOFDz3lj8z2sn6J92Ux7GCbKQThf5ibAwssYpWD0uGUUx0oRQyfWtFh0QSSjqrAo6BGf+5UXSqJQdu+xcO6XqGUyRh304gGNw4ASqcAU1qAOFBB7hGV6MB+PJeDXepq05YzazB39gvP8AOAaVqw==</latexit><latexit sha1_base64="TgC4c2g622fadJPD6eGTDjKq5JU=">AAAB+HicbVDJSgNBEO1xjXHJqEcvjVHwFGZy0WNUUI8RzALJOPR0epImPQvdNWIc5ktE8KCIV7/Ab/DmH3j2C+wsB018UPB4r4qqel4suALL+jTm5hcWl5ZzK/nVtfWNgrm5VVdRIimr0UhEsukRxQQPWQ04CNaMJSOBJ1jD658O/cYNk4pH4RUMYuYEpBtyn1MCWnLNwvl12U3bwG4hhV6WuWbRKlkj4FliT0ixsvd+9vX9cFx1zY92J6JJwEKggijVsq0YnJRI4FSwLN9OFIsJ7ZMua2kakoApJx0dnuF9rXSwH0ldIeCR+nsiJYFSg8DTnQGBnpr2huJ/XisB/8hJeRgnwEI6XuQnAkOEhyngDpeMghhoQqjk+lZMe0QSCjqrvA7Bnn55ltTLJdsq2Zd2sXKCxsihHbSLDpCNDlEFXaAqqiGKEnSPntCzcWc8Gi/G67h1zpjMbKM/MN5+AK91l4M=</latexit><latexit sha1_base64="TgC4c2g622fadJPD6eGTDjKq5JU=">AAAB+HicbVDJSgNBEO1xjXHJqEcvjVHwFGZy0WNUUI8RzALJOPR0epImPQvdNWIc5ktE8KCIV7/Ab/DmH3j2C+wsB018UPB4r4qqel4suALL+jTm5hcWl5ZzK/nVtfWNgrm5VVdRIimr0UhEsukRxQQPWQ04CNaMJSOBJ1jD658O/cYNk4pH4RUMYuYEpBtyn1MCWnLNwvl12U3bwG4hhV6WuWbRKlkj4FliT0ixsvd+9vX9cFx1zY92J6JJwEKggijVsq0YnJRI4FSwLN9OFIsJ7ZMua2kakoApJx0dnuF9rXSwH0ldIeCR+nsiJYFSg8DTnQGBnpr2huJ/XisB/8hJeRgnwEI6XuQnAkOEhyngDpeMghhoQqjk+lZMe0QSCjqrvA7Bnn55ltTLJdsq2Zd2sXKCxsihHbSLDpCNDlEFXaAqqiGKEnSPntCzcWc8Gi/G67h1zpjMbKM/MN5+AK91l4M=</latexit><latexit sha1_base64="OLY6mtbxx4F/DGN5+he4UKbBUZM=">AAAB+HicbVC7TsNAEDyHVwiPGChpTkRIVJGdBsoICiiDRB5SYqzz5Zyccj5bd2tEsPwlNBQgRMun0PE3XBIXkDDSSqOZXe3uBIngGhzn2yqtrW9sbpW3Kzu7e/tV++Cwo+NUUdamsYhVLyCaCS5ZGzgI1ksUI1EgWDeYXM387gNTmsfyDqYJ8yIykjzklICRfLt6fd/wswGwR8hgnOe+XXPqzhx4lbgFqaECLd/+GgxjmkZMAhVE677rJOBlRAGnguWVQapZQuiEjFjfUEkipr1sfniOT40yxGGsTEnAc/X3REYiradRYDojAmO97M3E/7x+CuGFl3GZpMAkXSwKU4EhxrMU8JArRkFMDSFUcXMrpmOiCAWTVcWE4C6/vEo6jbrr1N1bt9a8LOIoo2N0gs6Qi85RE92gFmojilL0jF7Rm/VkvVjv1seitWQVM0foD6zPHyE3k2E=</latexit>

dtol
<latexit sha1_base64="0E5ZpQCOC3C3SG4xTo5XyeUCRkI=">AAAB9XicbVC5TsNAEB1zhnAFkGhoVkRIVJFNA2UEDWUikUNKTFiv18kq60O7YyCy/B80FCBEy7/Q0fAtbI4CEp400tN7M5qZ5yVSaLTtL2tpeWV1bb2wUdzc2t7ZLe3tN3WcKsYbLJaxantUcyki3kCBkrcTxWnoSd7yhldjv3XPlRZxdIOjhLsh7UciEIyikW79XtZF/ogZxjLPe6WyXbEnIIvEmZFy9bD+fQcAtV7ps+vHLA15hExSrTuOnaCbUYWCSZ4Xu6nmCWVD2ucdQyMacu1mk6tzcmIUnwSxMhUhmai/JzIaaj0KPdMZUhzoeW8s/ud1Ugwu3ExESYo8YtNFQSoJxmQcAfGF4gzlyBDKlDC3EjagijI0QRVNCM78y4ukeVZx7IpTd8rVS5iiAEdwDKfgwDlU4Rpq0AAGCp7gBV6tB+vZerPep61L1mzmAP7A+vgBEm+VCw==</latexit><latexit sha1_base64="j68IJZY/eL7xwj+Jv+iJyoLEuM0=">AAAB9XicbVC7SgNBFJ2NrxhfUcHGZjAIVmHXRssQG8sEzAOSNczOziZDZmeWmbtqWPIfNhaK2Ik/4RfY2fgtTh6FRg9cOJxzL/feEySCG3DdTye3tLyyupZfL2xsbm3vFHf3mkalmrIGVULpdkAME1yyBnAQrJ1oRuJAsFYwvJj4rRumDVfyCkYJ82PSlzzilICVrsNe1gV2BxkoMR73iiW37E6B/xJvTkqVg/oXf62+13rFj26oaBozCVQQYzqem4CfEQ2cCjYudFPDEkKHpM86lkoSM+Nn06vH+NgqIY6UtiUBT9WfExmJjRnFge2MCQzMojcR//M6KUTnfsZlkgKTdLYoSgUGhScR4JBrRkGMLCFUc3srpgOiCQUbVMGG4C2+/Jc0T8ueW/bqXqlSRTPk0SE6QifIQ2eogi5RDTUQRRrdo0f05Nw6D86z8zJrzTnzmX30C87bN2Owlsc=</latexit><latexit sha1_base64="j68IJZY/eL7xwj+Jv+iJyoLEuM0=">AAAB9XicbVC7SgNBFJ2NrxhfUcHGZjAIVmHXRssQG8sEzAOSNczOziZDZmeWmbtqWPIfNhaK2Ik/4RfY2fgtTh6FRg9cOJxzL/feEySCG3DdTye3tLyyupZfL2xsbm3vFHf3mkalmrIGVULpdkAME1yyBnAQrJ1oRuJAsFYwvJj4rRumDVfyCkYJ82PSlzzilICVrsNe1gV2BxkoMR73iiW37E6B/xJvTkqVg/oXf62+13rFj26oaBozCVQQYzqem4CfEQ2cCjYudFPDEkKHpM86lkoSM+Nn06vH+NgqIY6UtiUBT9WfExmJjRnFge2MCQzMojcR//M6KUTnfsZlkgKTdLYoSgUGhScR4JBrRkGMLCFUc3srpgOiCQUbVMGG4C2+/Jc0T8ueW/bqXqlSRTPk0SE6QifIQ2eogi5RDTUQRRrdo0f05Nw6D86z8zJrzTnzmX30C87bN2Owlsc=</latexit><latexit sha1_base64="zvGQDfRrjS7BSS8wIShSMAsMkWk=">AAAB9XicbVC7TsNAEFzzDOEVoKSxiJCoIpsGyggayiCRh5SE6Hw+J6ec76y7NRBZ/g8aChCi5V/o+BsuiQtIGGml0cyudneCRHCDnvftrKyurW9slrbK2zu7e/uVg8OWUammrEmVULoTEMMEl6yJHAXrJJqROBCsHYyvp377gWnDlbzDScL6MRlKHnFK0Er34SDrIXvCDJXI80Gl6tW8Gdxl4hekCgUag8pXL1Q0jZlEKogxXd9LsJ8RjZwKlpd7qWEJoWMyZF1LJYmZ6Wezq3P31CqhGyltS6I7U39PZCQ2ZhIHtjMmODKL3lT8z+umGF32My6TFJmk80VRKlxU7jQCN+SaURQTSwjV3N7q0hHRhKINqmxD8BdfXiat85rv1fxbv1q/KuIowTGcwBn4cAF1uIEGNIGChmd4hTfn0Xlx3p2PeeuKU8wcwR84nz+DyJMm</latexit>

LCR
<latexit sha1_base64="NEzGBQaeGvxW9oW3LdsZcCmzV8o=">AAAB9HicbVC7SgNBFL0bXzG+ooKNzWAQrMKujZbBNBYWiZgHJEucnUySIbMPZ+4Gw7LfYWOhiK0fY2fjtzh5FJp44MLhnHu59x4vkkKjbX9ZmZXVtfWN7GZua3tndy+/f1DXYawYr7FQhqrpUc2lCHgNBUrejBSnvid5wxuWJ35jxJUWYXCH44i7Pu0HoicYRSO5N52kjfwRk/JtmnbyBbtoT0GWiTMnhdJR9fseACqd/Ge7G7LY5wEySbVuOXaEbkIVCiZ5mmvHmkeUDWmftwwNqM+1m0yPTsmpUbqkFypTAZKp+nsiob7WY98znT7FgV70JuJ/XivG3qWbiCCKkQdstqgXS4IhmSRAukJxhnJsCGVKmFsJG1BFGZqcciYEZ/HlZVI/Lzp20ak6hdIVzJCFYziBM3DgAkpwDRWoAYMHeIIXeLVG1rP1Zr3PWjPWfOYQ/sD6+AGni5Qv</latexit><latexit sha1_base64="x3ZheBkZFRKGT1yQ+ApaTK/Xts0=">AAAB9HicbVC7SgNBFJ2NrxhfUcHGZjAIVmHXRsuQNBYWiZgHJEuYncwmQ2Zn15m7wbDsd9hYKGKpX+EX2Nn4LU4ehSYeuHA4517uvceLBNdg219WZmV1bX0ju5nb2t7Z3cvvHzR0GCvK6jQUoWp5RDPBJasDB8FakWIk8ARresPKxG+OmNI8lLcwjpgbkL7kPqcEjORed5MOsHtIKjdp2s0X7KI9BV4mzpwUSke1b/5W/qh285+dXkjjgEmggmjdduwI3IQo4FSwNNeJNYsIHZI+axsqScC0m0yPTvGpUXrYD5UpCXiq/p5ISKD1OPBMZ0BgoBe9ifif147Bv3QTLqMYmKSzRX4sMIR4kgDuccUoiLEhhCpubsV0QBShYHLKmRCcxZeXSeO86NhFp+YUSmU0QxYdoxN0hhx0gUroClVRHVF0hx7QE3q2Rtaj9WK9zloz1nzmEP2B9f4D+MyV6w==</latexit><latexit sha1_base64="x3ZheBkZFRKGT1yQ+ApaTK/Xts0=">AAAB9HicbVC7SgNBFJ2NrxhfUcHGZjAIVmHXRsuQNBYWiZgHJEuYncwmQ2Zn15m7wbDsd9hYKGKpX+EX2Nn4LU4ehSYeuHA4517uvceLBNdg219WZmV1bX0ju5nb2t7Z3cvvHzR0GCvK6jQUoWp5RDPBJasDB8FakWIk8ARresPKxG+OmNI8lLcwjpgbkL7kPqcEjORed5MOsHtIKjdp2s0X7KI9BV4mzpwUSke1b/5W/qh285+dXkjjgEmggmjdduwI3IQo4FSwNNeJNYsIHZI+axsqScC0m0yPTvGpUXrYD5UpCXiq/p5ISKD1OPBMZ0BgoBe9ifif147Bv3QTLqMYmKSzRX4sMIR4kgDuccUoiLEhhCpubsV0QBShYHLKmRCcxZeXSeO86NhFp+YUSmU0QxYdoxN0hhx0gUroClVRHVF0hx7QE3q2Rtaj9WK9zloz1nzmEP2B9f4D+MyV6w==</latexit><latexit sha1_base64="KIpsFeOPzpBsgrbJd/pUm7al5+c=">AAAB9HicbVC7TsNAEDyHVwivACWNRYREFdk0UEakoaAIiDykxIrOl3Vyyvls7tYRkeXvoKEAIVo+ho6/4ZK4gISRVhrN7Gp3x48F1+g431ZhbX1jc6u4XdrZ3ds/KB8etXSUKAZNFolIdXyqQXAJTeQooBMroKEvoO2P6zO/PQGleSQfcBqDF9Kh5AFnFI3k3fbTHsITpvX7LOuXK07VmcNeJW5OKiRHo1/+6g0iloQgkQmqddd1YvRSqpAzAVmpl2iIKRvTIXQNlTQE7aXzozP7zCgDO4iUKYn2XP09kdJQ62nom86Q4kgvezPxP6+bYHDlpVzGCYJki0VBImyM7FkC9oArYCimhlCmuLnVZiOqKEOTU8mE4C6/vEpaF1XXqbp3bqV2ncdRJCfklJwTl1ySGrkhDdIkjDySZ/JK3qyJ9WK9Wx+L1oKVzxyTP7A+fwAY85JK</latexit>

G2
th<latexit sha1_base64="A/XtQkRt99y99PwB604IMKLKm6U=">AAAB+HicbVC5TsNAEB2HK4QjBkoai4BEFdlpoIxAAsogkUNKgrXerJNV1od2x4hg+UtoKECIli/gG+jo+BQ2RwEJTxrp6b0ZzczzYsEV2vaXkVtaXlldy68XNja3tovmzm5DRYmkrE4jEcmWRxQTPGR15ChYK5aMBJ5gTW94Pvabd0wqHoU3OIpZNyD9kPucEtSSaxYvbytu2kF2jykOssw1S3bZnsBaJM6MlKqHHxffAFBzzc9OL6JJwEKkgijVduwYuymRyKlgWaGTKBYTOiR91tY0JAFT3XRyeGYdaaVn+ZHUFaI1UX9PpCRQahR4ujMgOFDz3lj8z2sn6J92Ux7GCbKQThf5ibAwssYpWD0uGUUx0oRQyfWtFh0QSSjqrAo6BGf+5UXSqJQdu+xcO6XqGUyRh304gGNw4ASqcAU1qAOFBB7hGV6MB+PJeDXepq05YzazB39gvP8AOAaVqw==</latexit><latexit sha1_base64="TgC4c2g622fadJPD6eGTDjKq5JU=">AAAB+HicbVDJSgNBEO1xjXHJqEcvjVHwFGZy0WNUUI8RzALJOPR0epImPQvdNWIc5ktE8KCIV7/Ab/DmH3j2C+wsB018UPB4r4qqel4suALL+jTm5hcWl5ZzK/nVtfWNgrm5VVdRIimr0UhEsukRxQQPWQ04CNaMJSOBJ1jD658O/cYNk4pH4RUMYuYEpBtyn1MCWnLNwvl12U3bwG4hhV6WuWbRKlkj4FliT0ixsvd+9vX9cFx1zY92J6JJwEKggijVsq0YnJRI4FSwLN9OFIsJ7ZMua2kakoApJx0dnuF9rXSwH0ldIeCR+nsiJYFSg8DTnQGBnpr2huJ/XisB/8hJeRgnwEI6XuQnAkOEhyngDpeMghhoQqjk+lZMe0QSCjqrvA7Bnn55ltTLJdsq2Zd2sXKCxsihHbSLDpCNDlEFXaAqqiGKEnSPntCzcWc8Gi/G67h1zpjMbKM/MN5+AK91l4M=</latexit><latexit sha1_base64="TgC4c2g622fadJPD6eGTDjKq5JU=">AAAB+HicbVDJSgNBEO1xjXHJqEcvjVHwFGZy0WNUUI8RzALJOPR0epImPQvdNWIc5ktE8KCIV7/Ab/DmH3j2C+wsB018UPB4r4qqel4suALL+jTm5hcWl5ZzK/nVtfWNgrm5VVdRIimr0UhEsukRxQQPWQ04CNaMJSOBJ1jD658O/cYNk4pH4RUMYuYEpBtyn1MCWnLNwvl12U3bwG4hhV6WuWbRKlkj4FliT0ixsvd+9vX9cFx1zY92J6JJwEKggijVsq0YnJRI4FSwLN9OFIsJ7ZMua2kakoApJx0dnuF9rXSwH0ldIeCR+nsiJYFSg8DTnQGBnpr2huJ/XisB/8hJeRgnwEI6XuQnAkOEhyngDpeMghhoQqjk+lZMe0QSCjqrvA7Bnn55ltTLJdsq2Zd2sXKCxsihHbSLDpCNDlEFXaAqqiGKEnSPntCzcWc8Gi/G67h1zpjMbKM/MN5+AK91l4M=</latexit><latexit sha1_base64="OLY6mtbxx4F/DGN5+he4UKbBUZM=">AAAB+HicbVC7TsNAEDyHVwiPGChpTkRIVJGdBsoICiiDRB5SYqzz5Zyccj5bd2tEsPwlNBQgRMun0PE3XBIXkDDSSqOZXe3uBIngGhzn2yqtrW9sbpW3Kzu7e/tV++Cwo+NUUdamsYhVLyCaCS5ZGzgI1ksUI1EgWDeYXM387gNTmsfyDqYJ8yIykjzklICRfLt6fd/wswGwR8hgnOe+XXPqzhx4lbgFqaECLd/+GgxjmkZMAhVE677rJOBlRAGnguWVQapZQuiEjFjfUEkipr1sfniOT40yxGGsTEnAc/X3REYiradRYDojAmO97M3E/7x+CuGFl3GZpMAkXSwKU4EhxrMU8JArRkFMDSFUcXMrpmOiCAWTVcWE4C6/vEo6jbrr1N1bt9a8LOIoo2N0gs6Qi85RE92gFmojilL0jF7Rm/VkvVjv1seitWQVM0foD6zPHyE3k2E=</latexit>
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FIGURE 3.8: Preprocessing robustness test: The horizontal axis corresponds
to varying 0.1R1 ≤ dtol ≤ 1.0R1, 0 ≤ G2

th ≤ 0.2 and 0.1R1 ≤ LCR ≤
1.0R1, where R1 is the size of the small particles in the image, each varied
independently (other parameters held at their default value). The dashed

line is the result when all parameters are set at their default value.
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We observe a strong dependence of the preprocessor-identified contacts on the user

defined thresholds. For dtol and G2
th, there is a clear asymptotic value, while for LCR

there are images for which no sensible measurement is obtained for LCR > 0.5 R1 as

the search area now strongly overlaps with other possible contact areas in the same

particle. The solution is to allow for false-positives (larger value of LCR), which will be

removed at later steps.

At the start of a new photoelastic experiment, suitable ranges of values were found

by running the preprocessor several times, adjusting each of the thresholds until the

preprocessor-detected contact network visually matches the contact network seen in

the photoelastic images. We found that LCR is the most difficult threshold to set cor-

rectly, and was done by comparing the detection result to the photoelastic image,

as in Fig. 3.5. From these analyses, we select the values dtol = 0.5R1, G2
th = 0.15, and

LCR = 0.25R1.

Post processing: Using the possible contact lists generated during the preprocessor

tests, we ran the photoelastic solver [93, 96], and performed the post processing steps

by varying one of the three parameters (Fmin, Fmax and emax) at a time, while fixing the

other ones to their default value, and measured the resulting average contact number

z.

As shown in Fig. 3.9, we observe that the mean contact number z does not change

significantly with the choice of threshold, except for unrealistically low values of emax, Fmax).

The aim in selecting Fmin is to exclude contacts that the solver set to a zero value. As

can be seen in Figs. 3.9 (a) and (d) there is little change to z for F < 10−2 N so we set

Fmin = 10−3 N as our default value.

We observe that z decreases from 2.5 to 3.0 after preprocessing to 1.5 to 2.5 after post

processing, depending on which of the 6 images is considered. The threshold rules,
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a) b) c)

d) e) f)

Rsmall
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emax (A.U.)
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FIGURE 3.9: Post processing robustness test: The horizontal axis corre-
sponds to varying 10−3 N ≤ Fmin ≤ 1.0 N, 10−2 N ≤ Fmax ≤ 2.0 N and
0 ≤ emax ≤ 2000, each varied independently (other parameters held at
their default value). The different coloured lines correspond to different

loads on the system.
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FIGURE 3.10: Solver robustness test: Measured z as a function of the choice
of dtol for the preprocessor; all other parameters are the default values.
We estimate the uncertainty in z from the slope of z(dtol). The different

coloured lines correspond to different loads on the system.

given above, required that only a reduction in the number of contacts is possible. From

these analyses, we set the values Fmin = 10−3 N, Fmax = 2 N, emax = 2000.

Solver: To determine the uncertainties in z, we examined the variability as a function

of the entire data pipeline, including the solver, for variable values of dtol. This tests

the robustness of the process to the inclusion of false positives in the original contact

list.

As shown in Fig. 3.10, for all 6 images there is only a slow dependence of z as a

function of dtol once a value of dtol < 0.25R1 is surpassed. Above that value, there is

a systematic error in z which is equally present in all datasets: the presence of false

positives.

This result is consistent with visual observations, demonstrated by the two exam-

ples in Fig. 3.5. In comparing the full set, we observed an optimum at dtol ∼ 0.5R1. For

dtol < 0.25R1, the preprocessor missed obvious contacts (which cannot be recovered),

and for dtol > 0.75R1 it selected physically impossible contacts (some of which, but

not all, were later trimmed by the postprocessor). Thus, it is better to err on the side

of the largest dtol that works for all datasets (see Fig. 3.8), and this is consistent with a

choice of dtol = 0.5R1 . Our estimate of the uncertainty z is, therefore, half the change



93

across a reasonable set of choices for dtol, averaged over all 6 example images, which

leads to an uncertainty in z of ±0.1.
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Appendix 3.B Rigid clusters: the pebble game

3.B.1 Pebble game algorithm

A rigid cluster is defined as the set of connected rigid bonds in a network that are mu-

tually rigid with respect to each other. A rigid cluster with no redundant bonds is a

minimally rigid cluster. Generically, a connected cluster (or network) with N vertices

is minimally rigid in two dimensions if and only if it has 2N − 3 bonds and no sub-

cluster of n vertices has more than 2n− 3 bonds, which is Laman’s theorem [11]. This

theorem is applicable to two-dimensional systems with central force constraints, such

as bar-joint networks or frictionless packings described in terms of the contact net-

work, with 2N denoting the number of degrees of freedom and 3 denoting the number

of trivial, global zero modes, i.e. two translations and one rotation. The straightfor-

ward three-dimensional central-force extension of Laman’s theorem does not rigor-

ously hold [111]. However, mathematicians have been able to characterize the generic

rigidity of rigid bodies connected by bars, i.e. body-bar rigidity, in arbitrary dimen-

sions via a tight (k, k) network containing N vertices and M bonds such that every

subset of N′ ≤ N vertices connects with at most kN′ − l bonds and M = kN − l [112].

The (k,l) pebble game [45, 113] provides a combinatorial algorithm for determining

which bonds in a network are rigid, from which the rigid clusters can then be deter-

mined. The integer k represents the number of degrees of freedom for each particle,

and the positive integer l represents the number of global degrees of freedom for the

system. The original (2, 3) pebble game by Jacobs and Hendrickson is applicable to

frictionless packings [45] which have two translational degrees of freedom per parti-

cle, while the extension to general (k, l) was developed by Lee and Streinu [113] and is

the one relevant to frictional packings [26]. We provide here a brief description of the

algorithm:
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Initially, k pebbles are “placed” on each vertex of the network (Fig. 3.11a). These

vertices represent the constraint network defined by the contacts between the particles.

To conduct the pebble game, there is an additional directed network constructed from

the constraint network upon which the pebbles are moved around (Fig. 3.11b-e). As

pebbles are moved around, two rules must be obeyed:

Rule 1 No more than k pebbles can be present on any vertex.

Rule 2 A directed bond is accepted into the directed network when at least a total of

l + 1 pebbles are present at the two vertices defining the bond.

As each bond of the (undirected) constraint network is considered in turn, testing

to see whether its associated bond is accepted into the directed network, the valid

moves along are:

Move A A pebble found via a depth-first search starting a vertex x may be moved

along the path with the arrows of the directed path reversed until reaching vertex

x.

Move B If there is a directed bond is accepted into the directed network via Rule 2,

then the found pebble is removed from the directed network.

The pebble game is played until all bonds in the constraint network have been

considered. If, for example, there are more than l pebbles that have not been removed

from the directed network, then the constraint network is floppy.

This algorithm ensures that the bonds accepted into the directed network map to

independent constraints in the constraint network, so if there are l pebbles left over

and bonds that have not been accepted into the directed network, then these corre-

spond to redundant bonds. Note that such bonds are not necessarily unique since
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d e f

FIGURE 3.11: Implementation of the pebble game for a subset of a pack-
ing (a)-(e) and the corresponding rigid cluster (f).

they may change depending on the order in which the constraint network bonds are

considered.

Now let us complete the application of the (k, l) pebble game to frictional pack-

ings. In such systems, the translational and rotational degrees of freedom must both

be considered. For a 2D frictional granular system, we play a k = 3 pebble game,

named for the two translational plus one rotational degree of freedom for each parti-

cle. The system itself has l = 3 global degrees of freedom (two translational plus one

rotational).

In order to assign bonds for the correct number of independent constraints in the



97

constraint network, it is necessary to ascertain whether each contact is below, or at, the

Coulomb criterion. For frictional contacts (contacts below the Coulomb threshold), the

normal and tangential components are independent and a double bond is assigned to

the constraint network. For sliding contacts, the tangential and normal forces are no

longer independent, and a single bond is assigned to the constraint network.

Once the constraint network is constructed, we then play the (3, 3) pebble game

for that constraint network. This has been done for both frictional packings [26, 8] and

rigid-beam [112] networks, with the double-bond structure having different meanings

between the two cases. This is illustrated in Fig. 3.11. Note that there are specific gear-

ing motions (even cycles) that are not correctly captured by the frictional (3, 3) pebble

game [75]. As free gearing motions are only possible for systems without 3-cycles

(particles in a triangle), they are vanishingly rare in disordered granular packings. We

have therefore argued previously that near the frictional jamming transition, the al-

gorithm is reasonably proficient [8]. This paper, in which we observe a very strong

correlation with the rigid regions gives quantitative evidence of its suitability.

To account for boundaries in the experimental system, each of the 4 walls is treated

as a boundary particle which has a bond with some of its neighboring particles. Since

the boundary is not photoelastic, we determine which particles are in contact with it by

examining all particles located less than 1.2R1 from the boundary. For each candidate

particle, we accept it as a particle in contact with a boundary particle if the vector sum

of its forces is non-zero, within a tolerance. We include an additional normal force

between the candidate particle and the boundary particle so that the vector sum of

the candidate particle is zero and then determine whether the contact is included as a

single or double bond using the Coulomb criterion.

Once the constraint network is formed, we perform the (3, 3) pebble game on that

set of bonds. Fig. 3.11 shows pictorially how the pebble game is implemented on a
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subset of an experimental packing with µ = 0.3.

The pebble game for frictional packings is implemented in the Pebbles class of the

rigid analysis python library [114].

3.B.2 Floppy hole analysis

To analyse the structure of the rigid cluster, we identify floppy holes containing rattler

particles and floppy bonds in their interior. For example, the central hole in the rigid

cluster of Fig. 3.12 contains 22 particles, of which 9 are outright rattlers (marked blue),

while the other ones are connected to each other and to the rigid cluster by floppy

bonds (marked grey). To automatically identify such holes, we need to identify the

faces of the planar graph associated to the rigid cluster (in blue in Fig. 3.12a): the

floppy holes simply correspond to the faces with a sufficiently large area to contain

particles in their interior.

We construct a half-edge data structure by starting from a given bond and an ori-

entation from particle i to particle j, and then moving counterclockwise by selecting the

next bond from the bonds emanating from j that makes the largest angle with ij within

the interval (−π, π). Repeating this procedure moves counterclockwise around a face

and will eventually close the loop by selecting ij as the next bond. Repeating this al-

gorithm for all bonds and orientations that are not part of a face already allows us to

identify the individual faces of the graph. When determining the faces, the effectively

extended boundary particles are moved outward from the packing to avoid singular

behaviour of the algorithm caused by intersecting contacts (i.e. a non-planar graph).

To identify the faces that correspond to floppy holes, we first compute the mean

area per particle by dividing area of the system by the total number of particles, or

A0 =
Lx Ly

N , where Lx and Ly are the lateral dimensions of the region. This will be

the fundamental hole area unit. Then we compute hole area A for all faces using the
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formula for a non-intersecting planar polygon. Empirically, a hole with size A/A0

smaller than 2 is not big enough to contain at least one particle in it, and we define

floppy holes to be faces with A/A0 ≥ 2. The faces identified as floppy holes for the

sample in Fig. 3.12a are shown in color in Fig. 3.12b, including the central hole in a

muddy color.

When compiling the hole statistics as shown in Fig. [fig:holes]b, we normalise nh

such that the integral under each curve is equal to the mean number of holes per

sample. We also compute the shape of the floppy holes using the dimensionless shape

parameter p0 = P/
√

A, where P is the floppy hole perimeter and A is its area. In

Fig. [fig:holes]b, we also plot floppy holes per sample as a function of shape parameter

for different z.

FIGURE 3.12: Rigid cluster plot and corresponding colored floppy hole
decomposition of one sample with z = 2.58. The irregularly shaped
floppy regions outside of the rigid cluster are topologically not holes

within the rigid cluster and do not form part of the analysis.
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Appendix 3.C Rigid regions: the dynamical matrix

3.C.1 Frictional equations of motion

We invoke the well-established Cundall-Strack model [115] as a reasonable model for

the equations of motion for our frictional experimental system. This is the same model

that was used to establish the frictional pebble game [26]. The equations of motion for

individual particles are

mi r̈i = Fi + ∑
j n. i

Fij

Ii θ̈i = Ti +
1
2 ∑

j n. i
rij × Fij,

where mi is the mass of particle i and Ii is its moment of inertia, and the sums are over

particles in direct contact. Here the first equation is for the forces, and the second is for

the torques; we have made the approximation that force moments apply at the middle

of the lever arm connecting particles.

The pair forces can be decomposed into three contributions:

1. The elastic central forces due to deformation of the cylindrical particles, Fel
ij =

−Kn(Ri + Rj − |rij|)n̂ij, where Kn is the (vertically integrated) Young’s modulus

of the particles. Note that such a harmonic force is appropriate for cylinders with

a continuous contact line as in the experiment, while Hertzian forces are appro-

priate for a contact point.

2. The frictional forces between particles, which in a tangential frictional loading

scenario can be written in a differential form dFµ
ij = Ktdt, where dt is the tangen-

tial displacement (see below).
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3. The viscous dissipative forces, which we assume are dominated by dissipation

within the elastic material, and we estimate Fv
ij = −ζ(vi − vj) for particles in

contact, and 0 otherwise.

Finally, there are also some single-particle dissipative forces due to interaction with

the air flow around the particles, which we roughly estimate as Fv
i = −ζairvi and

Ti = −ζairRi θ̇i.

3.C.2 Effective potential for friction

In the limit of quasistatic deformations, the dissipative velocity-dependent terms will

vanish, and the elastic and frictional forces will dominate. We therefore consider only

the latter in our dynamical matrix approach. In the limit of small displacements (and

only in this limit), we can recast the frictional forces as an effective potential. Consider

the local geometry of a frictional contact shown in Figure 3.13.

FIGURE 3.13: Local geometry around a frictional contact.

• Particle i at position ri is joined to particle j at position rj through the contact

rij = rj − ri.

• The normalised contact vector is the contact normal n̂ = rij/|rij|.
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• The tangential unit vector at the contact is t̂ = (ny,−nx)

• The total force at the contact from j on i is f = − fnn̂ + ft t̂, where we have chosen

fn > 0, i.e. directed towards i.

Translations are parameterized by δr = δrj− δri, while rotations are initially parametrized

by the two angular displacements δθi and δθj. However, inspecting Fig. 3.13 reveals

that the amount of tangential sliding at the contact is determined by both rotations and

translations, which can be written as

δt = δr · t̂− (Riδθi + Rjδθj). (3.3)

To better understand this expression, here are two illustrative examples. First consider

two equal-sized particles in a gearing motion. In this case, δθi = −δθj and δt = 0.

Second, consider now a purely tangential translation of particle j while i remains fixed,

for which the tangential sliding is δt = |δrj|. In this second case, there must be a

compensating gearing motion of the second particle, so that we again have δt = 0 if

Rjδθj = |δrj|.
We can now carefully consider the effect of a frictional force. In Figure 3.14, we

schematically show the evolution of a representative frictional contact. At time 0,

the contact is made by particles i and j coming sufficiently close. For simplicity, we

will assume that fn, the magnitude of the normal force, is approximately constant at

short times; a reasonable assumption for a dense, slowly sheared packing. Upon con-

tact, in phase 1 (tangential force loading), the increment in frictional force is given by

δ ft = Ktδdt, where δdt is the the infinitesimal amount of frictional tangential loading.

We can also directly write ft = Ktdt, during this phase tangential motion is reversible.
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In phase 2, the contact hits the Coulomb criterion | ft| = µ fn, and then continues slid-

ing, where for simplicity, we have assumed that the static and dynamic friction coeffi-

cients are the same. During phase 2, the tangential sliding coordinate dt continues to

increase. In phase 3, the contact motion reverses, so that we again have δ ft = Ktδdt,

and the frictional force falls below the Coulomb threshold. If the frictional force hits

ft = −µ fn, we enter phase 4 where the contact slides in the opposite direction and dt

continues to decrease.

1

1

2

2 3

3

4

4

time

dt

dt

FIGURE 3.14: Schematic evolution of a frictional contact. Top: Magnitude
of the frictional force as a function of tangential sliding coordinate. Bot-
tom: Magnitude of the frictional force and amount of tangential sliding

as a function of time.

We can write an effective potential in linear response for phases 1 and 3, if we ne-

glect the likelihood of transitioning between phases during an infinitesimal displace-

ment. The only complicated situation that potentially arises regularly is when a sliding

contact reverses direction, i.e. during the transition from phase 2 to phase 3. As tested
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in our simulations of [26], for slowly sheared systems where the motion is primarily

in a single direction, this occurs extremely rarely. This will, however, generate a ma-

jor source of hysteresis when the shear is reversed. In our experiments, we do not

take data at that instant of reversal, but only after the shear step has already occurred,

putting us into phase 3 or 4.

During phase 1, we can write an effective potential

V f
eff =

1
2

Ktdt2. (3.4)

We can see this by taking the explicit gradient of the potential in the local n̂, t̂ coor-

dinate system, with coordinates δn = δr · n̂ and δt = δr · t̂. Note that dt is a scalar

quantity, so despite n̂ and t̂ being a moving frame, the covariant derivative is the same

as the ordinary derivative. Therefore, the effective potential remains valid for finite

displacements and we have

Ft = −∇riV
f

eff = −Ktdt∇ri dt

= −Ktdt
[

∂dt
∂δn

n̂ +
∂dt
∂δt

t̂
]
= −Ktdtt̂.

During phase 3, the same potential applies with a shift, V f
eff =

1
2 Kt(dt− dtr)2, where

dtr is the tangential displacement at the moment of the transition between phases 2 and

3. During phases 2 and 4, the tangential force is a constant, and the effective potential

is simply V f
eff = ±µ fndt.
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3.C.3 The dynamical matrix with friction

The dynamical matrix provides the equations of motion for a particle within its local

potential, as has traditionally been done for analyzing the vibrational modes of crys-

tals [116]. In the context of jammed systems [58, 117], rigid regions are constructed

by locating all bonds for which the relative motion of the two connected particles

falls below a threshold value, and is thereby treated as zero: that contact is said to

be rigid. Even though frictional particles are governed by nonconservative forces, we

can nonetheless calculate an effective dynamical matrix using our effective potential.

Following the method that was only outlined in Refs. [62, 84], we begin by expanding

the equations of motion for each particle i about its equilibrium position to obtain

δr̈i
αβ = −Dij

αβδrj
β + dissipation(δṙ) + O(δr2), (3.5)

Dij
α,β =

1√mi,αmj,β

∂2Vij

∂ri,α∂rj,β
.

Here Dij
α,β is the dynamical matrix of the system, and the indices (i, j) label all disks,

while (α, β) labels the two spatial x, y components and the angular component δθ,

and m denotes the particle mass or the moment of inertia depending on the type of

component.

Using this framework of relative motions, we can then write the linearized inter-

particle potential around the contact as

Vij =
1
2

[
Kn(δr · n̂)2 − fn

|rij|
(
δr · t̂

)2
+ δV f

eff

]
, (3.6)

where the last term is the effective frictional potential rewritten for an infinitesimal

displacement, V f
eff = Ktδt2 for phase 1 and 3, i.e. a loading contact (stick), and V f

eff =

±µ fnδt for a sliding contact. The first term is simply the spring potential responsible
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for the elastic normal forces. The second (negative) term might seem counterintuitive:

it comes from the existing normal force at the contact fn, the so-called pre-stress term.

A detailed derivation of the first two terms can be found in [101].

Fully written out in coordinates, the linearised equations of motion in the qua-

sistatic regime (in the absence of damping) are

mi ¨δri = −∑
j

[
∂2Vij

∂ri∂rj
· δrj +

∂2Vij

∂ri∂(Rjθj)
δ(Rjθj)

]
,

Ii

R2
i
Ri ¨δθi =−∑

j

[
∂2Vij

∂(Riθi)∂rj
· δrj+

∂2Vij

∂(Riθi)∂(Rjθj)
δ(Rjθj)

]
.

In the second equation we have used the particle radius Ri to give all coordinates the

same dimensions of length. Since the moment of inertia for a cylinder about its central

axis is 1
2 miR2

i , the prefactor in the second equation is just mi/2.

Based on these equations, we construct the dynamical matrix from its 3× 3 i, j sub-

elements between particles i, j where we are now using the notation ri,α = (xi, yi, Riθi),

and similarly mi,α = (mi, mi, mi/2). In simulations [62, 26], we previously set mi = 1

for the spatial equations of motion, and even Ii/R2
i = 1, which corresponds to making

the approximation that the particles are all roughly the same size, and are hollow

cylinders. For this derivation, we will continue to carry the mass and inertia prefactors

in order to arrive at a general result that can be used with experimental data.

We can now derive the 3× 3 sub-element of the dynamical matrix. Since we have

used a local coordinate system to define the local potential, we choose (without loss of

generality) x̂ = n̂ij and ŷ = t̂ij, so that we can write δr = (δxj − δxi, δyj − δyi). Later,

we will have to rotate this back into a global frame of reference for the full matrix. In
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this local set of coordinates, the effective potential is

Vij =
1
2

[
Kn(δxj − δxi)

2 − fn

r0

(
δyj − δyi

)2
+ δV f

eff

]
,

δV f
eff = Kt((δyj − δyi)− (Riδθi + Rjδθj))

2 frictional,

δV f
eff = ±µ fn((δyj − δyi)− (Riδθi + Rjδθj)) sliding.

As we can readily see, all second derivatives of δV f
eff for sliding contacts are 0, so that

sliding contacts do not contribute to the dynamical matrix. Practically, for sliding contacts,

we set Kt = 0 in the equations below. Then off-diagonal elements of the dynamical

matrix are given by

D̂ij =
1√mimj


−Kn 0 0

0 −Kt +
fn
r0

Kt/
√

2

0 −Kt/
√

2 Kt/2

 . (3.7)

The contact ij also contributes to the ii element of the dynamical matrix, as moving

particle i itself will also affect its force state. We have a contribution of (note sign

changes):

D̂ii
from j =

1
mi


Kn 0 0

0 Kt − fn
r0

Kt/
√

2

0 Kt/
√

2 Kt/2

 . (3.8)

We then perform rotation of these matrices into a general, global coordinate system,

using the angle of the contact normal with the x-axis: n̂ij = (nx, ny) = (cos φ, sin φ)

and t̂ij = (ny,−nx) = (sin φ,− cos φ).

Since the experimental data is in a form where each contact is single-counted only,

this means we also need to use the information above to construct the ji contact, and
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add to the jj diagonal element. The derivation for these is identical, except for swap-

ping the j and i labels, so in their local coordinates the results of Eq. 3.8 and Eq. 3.7 are

identical.

However, more subtly, n̂ji = −n̂ij and t̂ji = −t̂ij, while the axis of rotation in our

coordinate system (z) is not affected. Since the nn, nt, tn and tt terms have two unit

vector components, the signs cancel and nothing changes. For the αα term, nothing

changes. However, for the off-diagonal components nα, αn, tα and αt, the sign will

change. Then if we use the n̂ij and t̂ij as a basis for the flipped contacts as well, we

have the following contributions:

D̂ij =
1√mimj


−Kn 0 0

0 −Kt +
fn
r0
−Kt/

√
2

0 Kt/
√

2 Kt/2

 (3.9)

The contact ji also contributes to the self-element jj of the dynamical matrix and we

have a contribution

D̂jj
from i =

1
mj


Kn 0 0

0 Kt − fn
r0
−Kt/

√
2

0 −Kt/
√

2 Kt/2

 (3.10)

The dynamical matrix for frictional packings is implemented in the Hessian class of

the rigid analysis python library [114].

3.C.4 Mapping out rigid regions

Now that we have constructed the dynamical matrix, we can compute all its eigen-

values and eigenvectors accordingly. In Fig. 3.15, we show distributions of computed

eigenvalues for four samples with a range of z. From each plot we observe two peaks
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FIGURE 3.15: Distribution of eigenvalues for four different samples with
average coordination number shown in figures.
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at approximately 10−8 and 107 and a wide gap between them. We, therefore, treat

eigenvalues below 10−1 as zeros with their corresponding eigenvectors representing

zero modes labeled as (ri,k, θi,k) where i labels different particles and k labels differ-

ent zero modes. From all Nzero zero modes we compute the relative translational and

rotational displacements between particles i, j using

δr2
i,j,trans =

1
Nzero

∑
k

[
((rj,k−ri,k)·n̂)2 + ((rj,k−ri,k)· t̂)2

]
(3.11)

δθ2
ij,rot =

1
Nzero

∑
k

(
θi,k + θj,k

)2 . (3.12)

In Fig. 3.16, we plot distributions of δr2
i,j,trans and δθ2

ij,rot respectively for all con-

tacts and observe two peaks in relative translational displacements. Based on this,

we select an appropriate rigidity threshold τ such that any relative motion below that

value is treated as zero. These are considered rigid and form the rigid regions shown

in Fig. 3.17. The sensitivity of our results to this threshold choice is discussed in an

upcoming section.
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FIGURE 3.16: A semi-log plot of the distribution of all relative transla-
tional displacements (red) and rotational displacements (blue) between
all pairs of particles for all samples, as a function of displacement magni-
tude, increasing exponentially from left to right. From left to right,the six
orange lines label six rigidity thresholds, 3× 10−7, 2.5× 10−6, 5× 10−6,
1 × 10−5, 2 × 10−5, 4 × 10−5. Contacts on the right side are treated as
floppy and contacts on the left side are rigid. The solid line is the thresh-

old used in main text.
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c d

FIGURE 3.17: Representative identification of rigid regions for the same
four samples in Fig. 3.15, using the dynamical matrix and rigidity thresh-
old set to 2× 10−5. Purple contacts are in rigid regions under both trans-

lational and rotational considerations; grey contacts are floppy.
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Appendix 3.D Determination of parameters

3.D.1 Particle parameters

To compute particle masses, we note that the Vishay particles are disk-shaped and

have a density of ρ = 1.06 g/cm3. For particle radii corresponding to R1 = 5.5 mm

and R2 = 7.6 mm, and for a thickness h = 3.1 mm, the particle masses are then

m1 = 3.12× 10−4kg, and m2 = 5.96× 10−4kg. The raw data from images are measured

in pixels, with radii R1 = 20 and R2 = 29 pixels, and we can therefore deduce a global

conversion factor of c = 2.7× 10−4 m/pixels.

To estimate the stiffness coefficients, we read off the dynamical matrix equations

that their units are acceleration per length, i.e. [Kn] = [M][T−2]. Using Hertzian con-

tact theory [118], for two cylinders with parallel axes, the force is given approxima-

tively by F = π
4 E∗hd, where d is the indentation depth (overlap), and E∗ is the scaled

Young’s modulus,
1

E∗
=

1− ν2
1

E1
+

1− ν2
2

E2
, (3.13)

where Ei and νi are Young’s moduli and the Poisson ratios of the two materials, re-

spectively. If we assume that ν1 = ν2 = 0.5 (i.e., an incompressible material), and

set E1 = E2 = E, we find E∗ = 2
3 E. Finally, we obtain Kn = π

6 Eh. For an or-

der of magnitude estimate, the Young’s modulus of Vishay is E ≈ 4 MPa, and since

[E] = [M][T−2][L−1], our units are correct. For interactions between two particles,

the stiffness coefficient of the harmonic elastic interaction related to normal forces is

therefore Kn = 6490 kg · s−2. For simplicity, we will assume that we have a Cundall-

Strack-like relation for tangential motion, so that Kt = Kn.

The boundary of the system is significantly larger and heavier than a single par-

ticle, so that both the mass mb and the moment of inertia Ib are much larger. Us-

ing a rough order of magnitude estimate of boundary size and shape, we arrive at
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mb ≈ 102(m1 + m2)/2 and Ib ≈ 104(I1 + I2)/2. Therefore, the terms in the dynam-

ical matrix corresponding to the particle-boundary and boundary-boundary interac-

tions will be very small, and the corresponding displacements in the normal modes

are also tiny. Compared to a system without boundaries, this softly enforces the con-

straint of an immovable boundary. For contacts between particles p and a wall w

made of dissimilar materials with Young’s moduli Ep and Eb and Poisson ratios νp

and νw, the effect modulus that enters the stiffness coefficient or a particle-wall contact

is 1
E∗pw

=
1−ν2

p
Ep

+ 1−ν2
w

Ew
. For wall stiffness Ew lying between Ep and infinity, we obtain

E∗pw = 1.0E∗pp − 2.0E∗pp, in practice the wall is significantly stiffer than the particles. In

the dynamical matrix, we use the same Kn and Kt for particle-boundary contacts as for

particle-particle contacts.

In both methods, the pebble game and the dynamical matrix, identifying whether

a contact is sliding is essential and we therefore need an estimate for the friction co-

efficient µ. In Fig. 3.18 we plot the probability distribution of the ratio of tangential

forces to the corresponding normal forces, or mobilisation. While we do not see an ac-

cumulation of probability near the Coulomb threshold as in some simulated packings

[82], this figure suggests that the friction coefficient is approximately µ = 0.3 since the

probability drops below 10−2 around a ratio of 0.3. With these parameters, on average

5.2% of all contacts are sliding contacts. Below, we test how our numerical methods

are affected by the choice of friction coefficient.

3.D.2 Pressure calculation

The pressure on a given particle i due to its contact forces with particles j is derived

from the virial part of the Irving-Kirkwood stress tensor [119],

œ̂i =
1
Ai

∑
j

rij ⊗ Fij, (3.14)
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FIGURE 3.18: Semi-log plot of the probability distribution of ft/ fn from
all packings. Inset: same, on a linear axis scale.

where Ai is the area (in two dimensions) of the plane associated to particle i in a tes-

sellation so that ∑i Ai = A, the total system size. This is to ensure that the stress is an

intensive quantity. With f n
ij denoting the normal force between particle i and j, the lo-

cal pressure on particle i, i.e. the trace of the stress tensor, is then given pi =
1
Ai

∑j f n
ij rij,

where Ai is the area possessed by particle i after Voronoi tessellation. When consid-

ering every particle i in rigid cluster and its neighbor j, we then obtain the pressure

within the rigid cluster as pin =
∑i ∑j f n

ij rij

∑i Ai
. Note that a particle is in the rigid cluster if

any one bond connected to it is identified as a rigid bond. Similarly, we can compute

the pressure outside the rigid cluster.
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3.D.3 Sensitivity to parameter choice: µ, τ

Since the decomposition of rigid clusters and the construction of dynamical matrix

depend on the choice of both the friction coefficient µ and the rigidity threshold τ (for

the dynamical matrix only), we need to test to what extent our results depend on those

parameters. Here, we put our choice of µ = 0.3 and τ = 2 × 10−5 (corresponding

to Fig.2a-c in the main paper) into context. We vary τ from 3 × 10−7 to 4 × 10−5,

corresponding to the cutoffs in the displacement magnitude indicated in Fig. 3.16. We

also test the dependence on the friction coefficient by performing the analysis with

µ = 0.2 instead of µ = 0.3.

In Fig. 3.19, we plot the same analysis as that presented in Fig.2a-c in the main text

for each set of parameters. At the extreme end, for τ = 3× 10−7 i.e. a threshold to the

left of both peaks in Fig. 3.16, we see that the fraction of rigid region decreases sub-

stantially due to the rigidity threshold being too small and the correlation between two

methods at higher z disappears. However, above this threshold in τ, we observe that

the correlation between the rigid clusters and the rigid regions is robust to changes in

τ parameter space corresponding to the “valley” in relative translational displacement

distribution shown in Fig. 3.16.

For the lower friction coefficient µ = 0.2, both the rigid region fraction and rigid

cluster fraction are decreased compared to µ = 0.3, which can be explained by the fact

that the Coulomb threshold is lower, leading to more fully mobilized sliding contacts

and so more motion is allowed in both methods. The correlations between both mea-

sures remains robust however, as can be seen in the graph of the Adjusted Rand Index

(see §3.E).
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FIGURE 3.19: Robustness of the rigid cluster decomposition and rigid re-
gion analysis to changes in displacement threshold τ and friction coeffi-
cient µ. For each set of thresholds, we compute the equivalent of Fig.2a-c
in the main text, i.e. the rigid fraction as a function of z, and the correla-
tions between rigid regions (here shown as insets) and rigid clusters using
the adjusted Rand index. Outlined in red: effect of changing the displace-
ment threshold from τ = 3× 10−7 to τ = 4× 10−5. Outlined in green:
effect of changing the friction coefficient from µ = 0.3 to µ = 0.2. The
values shown in Fig.2a-c of the main text are at the intersection of the red

and green sets.
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Appendix 3.E Adjusted rand index (ARI)

The Rand index [97] is a commonly-used statistical measure to quantify the degree

of similarity between two different data clusterings. For a given set of n elements

E = {e1, e2, e3, ..., en}, two clustering methods obtain two partitions of E, call them

X = {x1, x2, ..., xr} and Y = {y1, y2, ..., ys}. Every element in X and Y is a subset of E.

For each pair of elements in E, there are four cases:

1. in same subset of X and in the same subset of Y

2. in same subset of X but in different subsets of Y

3. in different subsets of X but in the same subset of Y

4. in different subsets in X and in different subsets of Y

The cases a, b, c, d together count the total number of pairs of elements, n(n−1)
2 . The

Rand index is then defined as the fraction

RI =
a + d

a + b + c + d
. (3.15)

By definition, RI is a number between 0 and 1, where 0 signifies maximum anti-

correlation and 1 signifies maximum correlation. For random clustering, RI = 0.5.

Since the Rand Index is computed by counting permutations, once the number of

clusters or the size distribution of those clusters vary drastically, for example in low z

cases and high z cases in our project, RI cannot capture the correlation between two

clustering methods effectively. We therefore use the Adjusted Rand Index (ARI) [98]

to remove such effects, in which the cases (a,b,c,d) are tabulated the same way but the
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number of possible combinations are taken into account:

ARI =
(n

2)(a + d)− (a + b)(a + c)− (d + b)(d + c)
(n

2)(
n
2)− (a + b)(a + c)− (d + b)(d + c)

(3.16)

Unlike the RI, the ARI takes values from −1 to 1, with 0 corresponding to random

clustering.

In Fig. 3.19 we also plot ARI for each set of parameters discussed in the last section

in §3.D. Except for the extreme end of τ = 3 × 10−7, these ARI plots show robust

correlation between the two rigid analysis methods.
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Chapter 4

A minimal model for correlated

chromatin dynamics

This chapter is based on work primarily presented in the manuscript “Dynamic nuclear struc-

ture emerges from chromatin crosslinks and motors” co-authored by Alison E. Patteson, Ed-

ward J. Banigan and J. M. Schwarz. Manuscript is available on arxiv. J. M. Schwarz, Edward

J. Banigan and I constructed the model. I wrote code and performed all numerical analysis. Al-

ison E. Patteson provided experimental data and suggestions from experimental perspective. J.

M. Schwarz and I wrote the manuscript and all our co-authors provided valuable suggestions

and edits to improve the presentation and the content of it.

4.1 Correlated chromatin motion

The cell nucleus houses the genome, or the material containing instructions for build-

ing the proteins that a cell needs to function. This material is ∼ 1 meter of DNA

with proteins, forming chromatin, and it is packaged across multiple spatial scales

to fit inside a ∼ 10 µm nucleus [120]. Chromatin is highly dynamic; for instance,

correlated motion of micron-scale genomic regions over timescales of tens of seconds

has been observed in mammalian cell nuclei [121, 122, 123, 124, 125]. This correlated
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motion diminishes both in the absence of ATP and by inhibition of the transcription

motor RNA polymerase II, suggesting that motor activity plays a key role [121, 122].

These dynamics occur within the confinement of the cell nucleus, which is enclosed

by a double membrane and 10-30-nm thick filamentous layer of lamin intermediate

filaments, the lamina [126, 127, 128]. Chromatin and the lamina interact through var-

ious proteins [129, 130, 131] and form structures such as lamina-associated domains

(LADs) [132, 133]. Given the complex spatiotemporal properties of a cell nucleus, how

do correlated chromatin dynamics emerge and what is their interplay with nuclear

shape?

Numerical studies suggest several explanations for correlated chromatin motions.

A confined Rouse chain with long-range hydrodynamic interactions that is driven by

extensile dipolar motors can exhibit correlated motion over long length and timescales [123].

Correlations arise due to the emergence of local nematic ordering of within the con-

fined globule. However, such local nematic ordering has yet to be observed. In the

absence of activity, a confined heteropolymer may exhibit correlated motion, with

anomalous diffusion of small loci [134, 135]. However, in marked contrast with ex-

perimental results [121, 122], introducing activity in such a model does not alter the

correlation length at short timescales and decreases it at longer timescales.

Since there are linkages between chromatin and the lamina, chromatin dynamics

may influence the shape of the nuclear lamina. Experiments have begun to investigate

this notion by measuring nuclear shape fluctuations [136]. Depletion of ATP, the fuel

for many molecular motors, diminishes the magnitude of the shape fluctuations, as

does the inhibition of RNA polymerase II transcription activity by α-amanitin [136].

Other studies have found that depleting linkages between chromatin and the nuclear

lamina, or membrane, results in more deformable nuclei [137, 138], enhanced curva-

ture fluctuations [139], and/or abnormal nuclear shapes [140]. Interestingly, depletion
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FIGURE 4.1: Left: Two-dimensional schematic of the model. Center:
Schematic of the two types of motors. Right: Simulation snapshot.

of lamin A in several human cell lines leads to increased diffusion of chromatin, sug-

gesting that chromatin dynamics is also affected by linkages to the lamina [141]. To-

gether, these experiments demonstrate the critical role of chromatin and its interplay

with the nuclear lamina in determining nuclear structure.

To understand these results mechanistically, we construct a chromatin-lamina sys-

tem with the chromatin modeled as an active Rouse chain and the lamina as an elastic,

polymeric shell with linkages between the chain and the shell. Unlike previous chain

and shell models [142, 143, 139], our model has motor activity. We implement the

simplest type of motor, namely extensile and contractile monopoles, representative

of the scalar events addressed in an earlier two-fluid model of chromatin [144]. We

also include chromatin crosslinks, which may be a consequence of motors forming

droplets [145] and/or complexes [146], as well as chromatin binding by proteins, such

as heterochromatin protein I (HP1) [147]. Recent rheological measurements of the nu-

cleus support the notion of chromatin crosslinks [142, 143], as does indirect evidence

from chromosome conformation capture (Hi-C) [148]. In addition, we explore how

the nuclear shape and chromatin dynamics mutually affect each other by comparing

results for an elastic, polymeric shell with those of a stiff, undeformable one.
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4.2 Model

Interphase chromatin is modeled as a Rouse chain consisting of 5000 monomers with

radius rc connected by Hookean springs with spring constant K. We include ex-

cluded volume interactions with a repulsive, soft-core potential between any two

monomers, ij, and a distance between their centers denoted as |~rij|, as given by Uex =

1
2 Kex(|~rij| − σij)

2 for |~rij| < σij, where σij = rci + rcj , and zero otherwise. We include

NC crosslinks between chromatin monomers by introducing a spring between differ-

ent parts of the chain with the same spring constant as along the chain. In addition

to (passive) thermal fluctuations, we also allow for explicit motor activity along the

chain. In simulations with motors, we assign some number, Nm, of chain monomers to

be active. An active monomer has motor strength M and exerts force Fa on monomers

within a fixed range. Such a force may be attractive or “contractile,” drawing in chain

monomers, or alternatively, repulsive or “extensile,” pushing them away (Fig. 4.1).

Since motors in vivo are dynamic, turning off after some characteristic time, we in-

clude a turnover timescale for the motor monomers τm, after which a motor moves to

another position on the chromatin.

The lamina is modeled as a layer of 5000 identical monomers connected by springs

with the same radii and spring constants as the chain monomers and an average co-

ordination number z ≈ 4.5, as supported by previous modeling [142, 143, 139] and

imaging experiments [126, 127, 128]. Shell monomers also have a repulsive soft core.

We model the chromatin-lamina linkages as NL permanent springs with stiffness K

between shell monomers and chain monomers (Fig. 4.1).

The system evolves via Brownian dynamics, obeying the overdamped equation of

motion: ξ ṙi = (Fbr + Fsp + Fex + Fa), where Fbr denotes the (Brownian) thermal force,

Fsp denotes the harmonic forces due to chain springs, chromatin crosslink springs, and

chromatin-lamina linkage springs, and Fex denotes the force due to excluded volume.
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(a) (b) (c) (d)

(e) (f) (g) (h)

FIGURE 4.2: (a) The spatial autocorrelation function Cr(∆r, ∆τ) for pas-
sive and extensile cases at different time lags, ∆τ, for the hard shell, while
(b) shows the contractile and passive case. (c) Two-dimensional vector
fields for ∆τ = 5 (left), 50 (right) for the passive case (top) and the con-
tractile case (bottom). (d) The correlation length as a function of NL and
NC for the two time lags in (c). (e∼h): The bottom row shows the same as
the top row, but with a soft shell. See SM for representative fits to obtain

the correlation length.

We use Euler updating, a time step of dτ = 10−4, and a total simulation time of τ =

500. For the passive system, Fa = 0. In addition to the deformable shell, we also

simulate a hard shell by freezing out the motion of the shell monomers. To assess

the structural properties in steady state, we measure both the radial globule, Rg, of

the chain and the self-contact probability. After these measures do not appreciably

change with time, we consider the system to be in steady state. See SM for these

measurements, simulation parameters, and other simulation details.

4.3 Results

We first look for correlated chromatin motion in both hard shell and deformable shell

systems. We do so by quantifying the correlations between the displacement fields at
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two different points in time. Specifically, we compute the normalized spatial autocor-

relation function defined as Cr(∆r, ∆τ) = 1
N(∆r) ∑N(∆r)

<di(r,∆ø)·dj(r+∆r,∆ø)>
<d2(r,∆ø)> , where ∆τ

is the time window, ∆r is the distance between the centers of the two chain monomers

at the beginning of the time window, N(∆r) is the number of ij pairs of monomers

within distance ∆r of each other at the beginning of the time window, and di is the

displacement of the ith chain monomer during the time window, defined with respect

to the origin of the system. Two chain monomers moving in the same direction are

positively correlated, while monomers moving in opposite directions are negatively

correlated.

Fig. 4.2 shows Cr(∆r, ∆τ) for passive and active samples in both hard shell (Figs. 4.2

(a) and (b)) and soft shell cases for NC = 2500, NL = 50, and M = 5 (Figs. 4.2 (e)

and (f)). Both the passive and active samples exhibit short-range correlated motion

when the time window is small, i.e., ∆τ < 5. However, for longer time windows,

both the extensile and contractile active samples exhibit more long-range correlated

motion than the passive case. These correlations are visible in quasi-2d spatial maps of

instantaneous chromatin velocities, which show large regions of coordinated motion

in the active, soft shell case (Figs. 4.2 (c) and (g)).

To extract a correlation length to study the correlations as a function of both NC and

NL, we use a Whittel-Marten (WM) model fitting function Cr(r) = 21−ν

Γ(ν)

(
r

rcl

)ν
Kν

(
r

rcl

)
for each time window (Fig. 4.2 (f)) [122]. The parameter ν is approximately 0.2 for

all cases studied. For the hard shell, the correlation length decreases with number of

linkages (Fig. 4.2 (d)). This trend is opposite in deformable shell case with activity and

long time lags (Fig. 4.2 (h)). For the hard shell, linkages effectively break up the chain

into uncorrelated regions. For the soft shell, the shell deforms in response to active

fluctuations in the chain. For both types of shells, the correlation length increases with

the number of crosslinks (Figs. 4.2 (d) and (h)), with a more significant increase in the
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soft shell active case. It is also interesting to note that the lengthscale for the contractile

case is typically larger than that of the extensile case, at least for smaller numbers of

linkages.

Given the differences in correlation lengths between the hard and soft shell sys-

tems, we looked for net motion of the system in the soft shell case. Net motion has

been observed in active particle systems confined by a deformable shell [149]. Simi-

larly, we observe the active chain system moving faster than diffusively (see SM). In

the shell’s center-of-mass frame, the correlation length is decreased, but still larger

than in the hard shell simulations (see SM). Interestingly, experiments demonstrating

large-scale correlated motion measure chromatin motion with an Eulerian specifica-

tion (e.g., by particle image velocimetry) and do not subtract off the global center of

mass [121, 122, 125]. However, one experiment noted that they observed drift of the

nucleus on a frame-to-frame basis, but considered it negligible over the relevant time

scales [122]. Additionally, global rotations, which we have not considered, could yield

large-scale correlations.

We also study the mean-squared displacement of the chromatin chain to deter-

mine if the experimental feature of anomalous diffusion is present. Figs. 4.3 (a) and

(c) show the mean-squared displacement of the chain with NL = 50 and NC = 2500

as measured with reference to the center-of-mass of the shell for both the hard shell

and soft shell cases, respectively. For the hard shell, the passive chain initially moves

subdiffusively with an exponent of α ≈ 0.5, which is consistent with an uncrosslinked

Rouse chain with excluded volume interactions [150]. However, the passive system

crosses over to potentially glassy behavior after a few tens of simulation time units.

We present NC = 0 case in the inset to Fig. 4.3 (a) for comparison to demonstrate

that crosslinks are potentially driving a gel-sol transition as observed in prior experi-

ments [151]. The active hard shell samples exhibit larger displacements than passive



127

(a) (b)

(c) (d)

FIGURE 4.3: (a) MSD for the hard shell case with NC = 2500 and NL = 50.
For the inset, NC = 0. (b) Density fluctuations for the same parameters as

in (a). Figures (c) and (d) show the soft shell equivalent to (a) and (b).

samples, with α ∼ 0.6 initially before crossing over to a smaller exponent at longer

times.

Additionally, the contractile system exhibits larger displacements than the extensile

system. We found that a broader spectrum of steady-state density fluctuations for the

contractile system drive this behavior (Fig. 4.3 (b)). This generates regions of lower

density into which the chain can move, leading to increased motility. The active cases

exhibit anomalous density fluctuations, with the variance in the density falling off
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FIGURE 4.4: Power spectrum of the shape fluctuations with NL = 50 and
NC = 2500 for the passive and both active cases. Different motor strengths
are shown. The insets shows experimental data from mouse embryonic

fibroblasts with an image of a nucleus with lamin A/C stained.

more slowly than inverse length cubed (in 3D). Finally, the MSD in the hard shell case

is suppressed by more boundary bindings or crosslinks. For the soft shell case, we

observe similar trends as the hard shell, except that the soft shell does not inhibit the

potential gel-sol transition.

Next, we examine nuclear shape. In Figure 4.4, we plot the power spectrum of the

shape fluctuations of the shell for a central cross-section as a function of wavenumber q

for different motor strengths. We observe that the shape fluctuation spectrum is broad
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until saturating due to the discretization of the system. The decrease in the shape fluc-

tuations is less significant for both the passive and extensile systems than for the con-

tractile system with an approximate q−2 scaling, characteristic of membrane tension,

for the former versus an approximate q−3 scaling for the latter. This difference could be

due to the more anomalous density fluctuations in the contractile case, demonstrating

that chromatin spatiotemporal dynamics directly impacts nuclear shape. We do not

observe a q−4 contribution due to emergent bending, which was suggested by previ-

ous experiments [136] and simulations [142]. However, additional experiments mea-

suring nuclear shape fluctuations of mouse embryonic fibroblasts (MEFs) also do not

show a bending contribution (inset to Fig. 4.4 and see SM for materials and methods).

Additionally, the amplitude of the shape fluctuations increases with motor strength,

NC, and NL (see SM).

4.4 Discussion

We have studied a composite chromatin-lamina system in the presence of activity,

crosslinking, and number of linkages between chromatin and the lamina. Our model

captures the correlated chromatin motion on the scale of the nucleus in the presence

of both activity and crosslinks (Fig. 4.2). The deformability of the shell also plays a

role. We find that global translations of the composite soft shell system contribute to

the correlations. We observe anomalous diffusion for the chromatin (Figs. 4.3 (a) and

(c)), as has been observed experimentally [141], with a crossover to a smaller anoma-

lous exponent driven by the crosslinking [151]. Interestingly, the contractile system

exhibits a larger MSD than the extensile one, which is potentially related to the more

anomalous density fluctuations in the contractile case (Figs. 4.3 (b) and (d)). Finally,

nuclear shape fluctuations depend on motor strength and on amounts of crosslinking
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and chromatin-lamina linkages (Fig. 4.4). Notably, the contractile case exhibits more

dramatic changes in the shape fluctuations as a function of wavenumber as compared

to the extensile case.

Our short-ranged, overdamped model contrasts with an earlier confined, active

Rouse chain interacting with a solvent via long-range hydrodynamics [123]. While

both models generate correlated chromatin dynamics, with the earlier model, such

correlations are generated only with extensile motors that drive local nematic ordering

of the chromatin chain [123]. Moreover, our correlation lengths are significantly larger

than those obtained in a confined active, heteropolymer simulation [134]. Activity

in this earlier model is modeled as extra-strong thermal noise such that the correla-

tion length decreases at longer time windows as compared to the passive case. This

decrease contrasts with our results (Figs. 4.2 (d) and (h)) and experiments [122]. In

addition, our model takes into account deformability of the shell and the chromatin-

lamina linkages. Future experiments could potentially distinguish these mechanisms

by looking for prominent features of our model, such as a dependence on chromatin

bridging proteins and linkages to the lamina and effects of whole-nucleus motions.

Our modeling motivates further spatiotemporal studies of nuclear shape. Partic-

ularly interesting would be in vivo studies with vimentin-null cells, which have min-

imal mechanical coupling between the cytoskeleton and the nucleus. Vimentin is a

cytoskeletal intermediate filament that forms a protective cage on the outside of the

nucleus and helps regulate the nucleus-cytoplasm coupling and, thus, affects nuclear

shape [152]. The amplitudes of the nuclear shape fluctuations in vimentin-null cells

may increase due to a softer perinuclear shell or may decrease due to fewer linkages

between the nucleus and the mechanically active cytoskeleton.

There are intriguing parallels between cell shape [153, 154, 155] and nuclear shape
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with cell shape being driven by an underlying cytoskeletal network—an active, fila-

mentous system driven by polymerization/depolymerization, crosslinking, and mo-

tors, both individually and in clusters, that can remodel, bundle and even crosslink

filaments. Given the emerging picture of chromatin motors acting collectively [145,

146], just as myosin motors do [156], the parallels are strengthened. Moreover, the

more anomalous density fluctuations for the contractile motors as compared to the ex-

tensile motors could potentially be relevant in random actin-myosin systems typically

exhibiting contractile behavior, even though either is allowed by a statistical symme-

try [157]. On the other hand, distinct physical mechanisms may govern nuclear shape

since the chromatin fiber is generally softer than cytoskeletal filaments and the lamina

is stiffer than the cell membrane.

We now have a minimal chromatin-lamina model that can be augmented with ad-

ditional factors, such as different types of motors—dipolar, quadrupolar, and even

chiral, such as torque dipoles. Chiral motors may readily condense chromatin just as

twirling a fork “condenses” spaghetti. Finally, it is now established that nuclear actin

exists in the cell nucleus, yet its form is under investigation [158]. We propose that

short, but stiff, actin filaments acting as stir bars can potentially increase the correla-

tion length of micron-scale chromatin dynamics. Including such factors will help us

further quantify nuclear dynamics to determine, for example, mechanisms for extreme

nuclear shape deformations, such as nuclear blebs [159], and ultimately how nuclear

spatiotemporal structure affects nuclear function.
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Appendix 4.A Model

4.A.1 Algorithm

We use a Rouse chain with soft-core repulsion between each monomer capturing ex-

cluded volume effects to represent the chromatin. Since the chromatin is contained

within the lamina, modeled as a polymeric shell, we present the protocol to obtain

the initial configuration for the composite system. As shown in Fig. 4.5(left), we first

implement a three-dimensional self-avoiding random walk in an FCC lattice for 5000

steps to generate the chain. We then surround the chain in a large polymeric, but hard,

shell. To create the shell, we generate a Fibonacci sphere with 5000 nodes and identify

5000 identical monomers with these nodes. The springs between the shell monomers

form a mesh and each shell monomer is connected to 4.5 other shell monomers on

average. These monomers have same physical properties as the chain monomers in

terms of size and spring strength.

We then shrink the shell (Fig. 4.5(center)) by moving the shell monomers inwards

by the same amount. During the shrinking process, chain monomers interact with the

shell monomers via the soft-core repulsion and, therefore, also move inwards. In ad-

dition, every chain monomer experiences thermal fluctuations and is constrained by

elastic forces and soft-core repulsion forces. Once the shell radius reaches its destina-

tion radius after some time, we then thermalize the positions of the shell monomers

and adjust rest length of springs respectively to make the mesh less lattice-like. We,

thus, arrive at the initial configuration of the system Fig. 4.5(right). We obtain 100

such initialized samples to obtain an ensemble average for each measurement. The

destination radius Rs is 10. We set the monomer radius to be rc = 0.43089 so that the

packing fraction φ is approximately 0.4 in the hard shell limit comparable to electron

microscopy tomography experiments [160], simulations of chromatin confined within
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the nucleus [161], and theoretical estimates [162], while φ is smaller in soft-shell cases

due to expansion as the shell monomers undergo thermal fluctuations.

FIGURE 4.5: Left: The chain is initially generated via a self-avoiding ran-
dom walk on an FCC lattice. Center: The chain is then enclosed in a

Fibonacci sphere. Right: Composite system at time τ = 0.

4.A.2 Parameters

In our simulations, we use the set of parameters shown in Table 1.
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Diffusion constant D 1

Thermal energy kBT 1

Simulation timestep dτ 10−4

Number of chain monomers N 5000

Radii of chain monomers rc 0.43089

Number of shell monomers Ns 5000

Radii of shell monomers rs 0.43089

Radius of hard shell Rs 10

Packing fraction φ 0.400

Spring constant K 140

Soft-core repulsion strength Kex 140

Number of motors Nm 400

Motor strength M 5/25

Turnover time for motors τm 0.05

Number of crosslinks NC 0/100/500/1000/2000/2500

Number of linkages NL 0/50/200/400/600

Damping ξ 1

We now address how the simulation parameters map to biological values. One

simulation length unit corresponds to 1 µm, one simulation time unit corresponds to

0.5 seconds, and one simulation energy scale corresponds to approximately 10−21 J =

kBT, T = 300 K. With this mapping, the spring constant corresponds to approximately

1.4× 10−4 nN
µm with a Young’s modulus for the chain of 0.28 Pa.
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FIGURE 4.6: Radius of gyration of the chain (solid lines) and average ra-
dius of the shell(dashed lines) as function of simulation time for NC =
2500 and NL = 50 (middle figure). For contrast, Rg for NL = 0, 600 and

Nc = 0, 2500 are also plotted. Only the soft shell case are shown.

Appendix 4.B Simulation results

4.B.1 Globule radius

For a polymer, the radius of gyration is defined as Rg = ∑(ri − rcm)2/N, where N =

5000 is total chain monomer number. In the hard shell case, we fix the radius of the

shell to Rs = 10. In the soft-shell case, the shell expands due to the thermal fluctuations

and due to the activity of the chain inside. Fig 4.6 shows the radius of gyration of

the chain (solid lines) and the average radius of shell (dashed lines) in the soft shell

case as function of time. After a short-time initial expansion, both the chain’s and

the shell’s respective radii reach a plateau by 100 τ for most parameters, indicating

that the system is reaching steady state. Only for the zero crosslinks with contractile

activity, does the radius of gyration continue to increase slightly over the duration of

the simulation of 500 τ.

4.B.2 Self-contact probability

Since the globule radius is an averaged quantity, we also look for steady state sig-

natures in the self-contact probability, which yields information about the chromatin

spatial structure. More specifically, Hi-C allows one to quantify the local chromatin
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interaction domains at the megabase scale [163]. Such domains are stable across dif-

ferent eukaryotic cell types and species [164]. To quantify such interactions in the

simulations, one determines the number of monomers in the vicinity of the ith chain

monomer. In other words, one creates an adjacency matrix. This adjacency matrix is

shown Fig. 4.7 for two examples. To compute the self-contact probability, one sets a

threshold distance that a pair of monomers within that range is considered to be in

contact. Then the fraction of contacted pairs for each polymeric distance 1, 2, 3, 4, ... is

calculated. This fraction as a function of polymeric distance is called the self-contact

probability. See Fig. 4.8 for the self-contact probability for NL = NC = 0 at the be-

ginning and at the end of the simulation for the soft shell case. While there is some

change between the two, in Fig. 4.9, we show the self-contact probability for different

times τ to demonstrate that after τ = 50, the probability does not change with time,

implying a steady state.
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FIGURE 4.7: Contact map for a contractile system with no linkages or
cross links at the beginning and at the end of the simulation, i.e. τ = 0

andτ = 500.
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FIGURE 4.8: Final Self-contact probability at a stable state for hard shell
case(left) and soft shell case(right), corresponding to right figure in previ-

ous Fig. 4.7.

4.B.3 MSD

To quantify the dynamics of the chain, we compute its mean-squared displacement

(MSD) measured with respect to the center of mass of the shell. Fig. 4.10 plots the

MSD of the chain during the duration of the simulation. At short time scales, the

chain undergoes sub-diffusive motion and the MSD follows an exponent around α ≈
0.6 for NC = 2500 and NL = 50. At longer time scales, the MSD crosses over to a

smaller exponent. The value of the exponent depends on NC and NL. In all cases, the

active systems diffuse faster than the passive system, and contractile motors enhance

diffusion more than extensile motors. The insets in Fig. 4.10 show the MSD for the

center of mass of the chromatin chain for the soft shell. For the crosslinked, active

chain, this MSD is slightly faster than diffusive.

4.B.4 Density fluctuations

The density fluctuations are computed in the following way:
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FIGURE 4.9: Self-contact probability at τ = 0, 1, 2, 10, 20, 50 τ (left) and for
τ = 50 and τ = 300 (right) for soft shell passive and contractile systems

with NC = 2500 and NL = 50.

• Select a spherical region in the system with radius rd and count the number of

monomers in that region.

• Randomly select spherical regions at other places with the same radius and count

the monomers included.

• Compute the variance of counted monomer amount σ2 for this radius rd.

• Vary rd and repeat the above three steps and obtain the variance for each rd.

We plot σ2 as a function of rd. Typically, for a group of randomly distributed

monomers in three dimensions, the density fluctuations scale as σ2 ∼ r−3
d . From

Fig. S7 we see that the overall density fluctuations are broader in the active cases,

as compared to the passive cases. Contractile motors induce more anomalous density

fluctuations, particularly in the soft shell case.
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FIGURE 4.10: MSD as a function of time for NC = 2500, NL = 50, and
M = 5 (middle column) and for four extreme cases (0 or 600 linkages, 0
or 2500 crosslinks) in the hard shell (top row) and the soft shell (bottom

row). Insets are MSD plots of the center of mass of the chain.

4.B.5 Correlation function and correlation length

To evaluate the spatial and temporal correlation motion along the chain, we compute

the spatial autocorrelation function. Suppose ~d(~r, ∆τ) is the displacement of monomer

at~r over time, ~d(~r + ∆r, ∆τ) is the displacement of another monomer, which is located

a distance ∆r away and over the same time window. We then use the function below

to compute the correlation function:

C(∆r, ∆τ) =
〈~d(~r, ∆τ)· ~d(~r + ∆r, ∆τ)〉

〈~d2(~r, ∆τ)〉
.

.

From Ref. [122] we assume the correlation function follows Cr(r) = 21−ν

Γ(ν)

(
r

rcl

)ν
Kν

(
r

rcl

)
,

where rcl is the extracted correlation length, Kν is the Bessel of the second type of or-

der ν, and ν is a smoothness parameter. Larger ν denotes that the underlying spatial

process is smooth, not rough, in space. In Fig. 4.12 we show the correlated function

computed from numerical simulations (dots) and the fitted correlation function from

the above formula (lines) for different parameters. Lines from light to dark represent
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FIGURE 4.11: Density fluctuations for default sample(middle column)
and four extreme samples(0 or 600 linkages, 0 or 2500 cross links) in hard-

shell(top) and soft-shell(bottom) cases.

time windows from short to long (1 τ, 2 τ, 5 τ, 10 τ, 20 τ, 50 τ, 100 τ, 200 τ ). We see

that the numerical results with shorter time windows fit the formula better.

In Fig. 4.13, we plot the correlation length a function of linkage number NL and

crosslink number NC over the short time window 5 τ and the long time window 50 τ.

We observe that active motors clearly enhance the correlation length. It is also clear

that presence of crosslinks also enhance correlation length. The correlation length is

larger for the soft shell case. In the soft shell case, without subtracting the diffusion of

the center of mass, the correlation length for the long time window spans almost the

radius of the system. We note that the correlation length is reduced if we subtract the

center of mass shell motion, however, it still remains larger than the hard shell case. A

quasi-two-dimensional correlation length is computed from a slab-like region and is

also shown for potential comparison to experimental results since, in the experiments,

the correlated length is extracted using this method. There is not much difference

between the three-dimensional correlation length and the two-dimensional correlation

length with the center of mass of the shell subtracted. We also show the corrrelation

length as a function of shell stiffness (with the COM of shell subtracted) to demonstrate
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the direct effect of shell stiffness on the correlated chromatin motion (see Fig. 4.14).

4.B.6 Shape fluctuations

To evaluate shape fluctuations of the shell, we compute it in two ways. First, in order to

compare with experimental measurements, we select a random slab through the center

and project the coordinates of the shell monomers in the slab to the plane where slab

lies. Then, we compute the fast-Fourier-transform (FFT) for spatial deviations of these

monomers from the average radius with the deviations with hq denoting the Fourier

transform of the deviation with respect to wavenumber q. In Fig. 4.15, the power

spectrum of the shape fluctuations for the passive and extensile cases follow a decay

exponent of −2, as expected for a stretchable shell [165]. The spectrum of the shape

fluctuations increases monotonically with the number of crosslinks. The specturm

varies more dramatically with contractile motors as compared to extensile motors.

Moreover, the shape fluctuation spectrum also eventually saturates as a function of

chromatin-lamina linkage number. In 4.16 we compute the spectrum of the shape

fluctuations as characterized by the spherical harmonic functions (the Ylms with l as

the dimensionless spherical wavenumber). We obtain similar trends as in Fig. 4.15.

Finally, in Fig. 4.17, we plot the spectrum for different motor strengths and different

shell stiffnesses.

Appendix 4.C Experiments

To measure nuclear shape fluctuations in live cells, the wild-type mouse embryonic

fibroblasts (mEFs) were kindly provided by J. Eriksson, Abo Akademi University,
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Turku, Finland. Cells were cultured in DMEM with 25 mM Hepes and sodium pyru-

vate supplemented with 10% FBS, 1% penicillin/streptomycin, and nonessential amino

acids. The cell cultures were maintained at 37 degrees C and 5% CO2.

Cell nuclei were fluorescently labeled by transient transfection with pEGFP-C1-

NLS, 48 h before imaging. Cell nuclei were imaged at 2-min increments for 2 h by

using wide-field fluorescence with a 40× objective. To quantify the structural features

of nuclei, we traced the contour, r(θ), of the NLS-GFP labeled nuclei at each time point.

The shape of the nucleus was identified using a custom-written Python script, and its

contour was interpolated from 0 to 2π by 150 points. Next, the shape fluctuations

were calculated as h(θ) = r(θ)− r0, where r0 is the average radius for each cell at each

time point. The wave number-dependent Fourier modes of the fluctuations, hq, were

obtained as Fourier transformation coefficients, as described in Ref [152].

The shape fluctuations were quantified for each cell by computing the Fourier

mode magnitude square h2(q) and averaging over each time point. The average shape

fluctuations as shown in Fig. 4 in the main text was taken as the average over 15 cells

per condition from two independent experiments.
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FIGURE 4.12: Correlation functions for NC = 2500 and NL = 50 (middle
column) and four extreme cases (left column: 0 linkages and 0 crosslinks;
second from left column: 0 linkages and 2500 crosslinks; second from
right column: 600 linkages and 0 crosslinks; right column: 600 linkages
and 2500 crosslinks). Top two rows: The three-dimensional correlation
function for the hard shell; Middle two rows: The three-dimensional cor-
relation functions for the soft shell; Bottom two rows: Two-dimensional
correlation functions for the soft shell. Color varies from light to dark
as time lag equals 1 τ, 2 τ, 5 τ, 10 τ, 20 τ, 50 τ, 100 τ, 200, τ, respectively.
Symbols denote the numerical results, while the dashed line represent the
fitted correlation functios. Greyscale: passive. Bluescale: active with ex-

tensile motors. Redscale: active with contractile motors.
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FIGURE 4.13: Plot of correlation length as function of linkage number
NL (top row) or crosslink number NC (bottom row) for time windows 5 τ
(light) and 50 τ (dark). From left to right columns: The three-dimensional
correlation length for the hard shell; the three-dimensional correlation
length for the soft shell; three-dimensional correlation length for the
soft shell with the COM motion subtracted; two-dimensional correlation

length for the soft shell with the COM motion subtracted.
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FIGURE 4.14: Plot of the correlation length as a function of shell stiffness
for time windows ∆τ = 5, 50. Here NC = 2500, NL = 50, and M = 5.
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FIGURE 4.15: Shape fluctuation of a random slab at the end of simulation
as a function of number of boundary linkages(top) or cross links(bottom).
Left: Extensile motor case. Middle: Contractile motor case. Right: Passive

case
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FIGURE 4.16: Power spectrum of the shape fluctuations in spherical har-
monics, where l is the dimensionless spherical wavenumber for different
chromatin-lamina linkages (top row) or crosslinks (bottom row). Left col-
umn: Extensile motor case. Middle column: Contractile motor case. Right

column: Passive case.
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Chapter 5

Discussion

So far, we have presented some history and some new insights into the rigidity/jamming

transition in frictional packings and into the mechanims driving correlated chromatin

dynamics and its affect on nuclear shape fluctuations. There are many next steps.

Specifically, following my work, further research can be conducted in directions dis-

cussed briefly below:

While the relationship between rigidity percolation and the jamming transition is

close, given the similar, static mechanical properties, there are also differences. For

example, the springs in rigidity percolation are permanent, while in granular pack-

ings, there are rearrangements. Understanding the interplay between instantaneous

topological properties and dynamical properties over some time scale is challenging

but necessary if we are to make headway into predicting granular properties. One can

implement rearrangements in networks and ask how the rigidity changes with time in

a controlled way.

The feature that the pebble game algorithm requires only information about the

topological constraints makes it a useful tool. So far, in two-dimensional central-force

rigidity percolation problems, the (2,3) pebble game is a hundred percent success.

With our frictional (3,3) pebble game, the algorithm is not rigorous, but reasonable

near the transition. Variations of the frictional (3,3) pebble game can be implemented
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to make it more rigorous in two dimensions. It would be awesome to extend the

frictional (3,3) pebble game to three dimensions. For the (3,6) pebble in three dimen-

sions, there are known counterexamples hindering the rigor of the algorithm (rooted

in Laman’s theorem extended to three dimensions).

In chapter 4, our numerical results show that with chromatin crosslinks, the mean-

squared displacement of the chromatin cross overs to a very small anomalous diffu-

sion exponent over some time scale. It may be that the system is becoming glassy.

It would be interesting to investigate that how such a glassy state responds to differ-

ent types of external perturbations. Given the low packing fraction, there is plenty of

space for the polymer to reconfigure if we shear it, compress it, or put spiral motors to

stir it. Watching the near glassy state break would be an interesting avenue of research.

The nuclear envelope contains and protects genetic material. It also interacts with

cytoskeleton from the “outside” to affect nuclear shape fluctuations and even form

nuclear blebs. Thus, we must to understand more dynamical features of nuclear en-

velope in terms of nuclear bleb formation. In our chromatin model, we incorporated

boundary linkages between the deformable shell and chromatin, to focus on the inter-

play between the nuclear envelope and the “stuff” inside the cell nucleus. It would be

important to extend this model to contain external perturbations. These perturbations

could come from localized poking or pulling by cytoskeletal fibers on the outside.

There is also the possibility that the environment exerts a large-scale pressure on nu-

cleus. Taking these additional factors into account, we can then ask how the nuclear

envelope will deform under competition between the inside and the outside to arrive

at a more complete understanding of nuclear structure.

Finally, I have presented this thesis in two acts. Could one not consider bridging

the gap between these two acts? Indeed, there has been study of the jamming of gran-

ular chains [166]. Of course, it seems that a jammed/rigid cell nucleus would be a



150

dead cell nucleus and so perhaps we could arrive at quantitative understanding of

what sets the size of a cell nucleus and its chromatin packing fraction by invoking the

principle of preventing chromatin from jamming!
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