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ABSTRACT

Biometrics eliminate the need for a person to remember and reproduce complex secre-

tive information or carry additional hardware in order to authenticate oneself. Behavioral

biometrics is a branch of biometrics that focuses on using a person’s behavior or way of

doing a task as means of authentication. These tasks can be any common, day to day

tasks like walking, sleeping, talking, typing and so on. As interactions with computers

and other smart-devices like phones and tablets have become an essential part of modern

life, a person’s style of interaction with them can be used as a powerful means of behav-

ioral biometrics.

In this dissertation, we present insights from the analysis of our proposed set of context-

sensitive or word-specific keystroke features on desktop, tablet and phone. We show

that the conventional features are not highly discriminatory on desktops and are only

marginally better on hand-held devices for user identification. By using information of the

context, our proposed word-specific features offer superior discrimination among users

on all devices. Classifiers, built using our proposed features, perform user identification

with high accuracies in range of 90% to 97%, average precision and recall values of 0.914

and 0.901 respectively. Analysis of the word-based impact factors reveal that four or five

character words, words with about 50% vowels, and those that are ranked higher on the

frequency lists might give better results for the extraction and use of the proposed features

for user identification.

We also examine a large umbrella of behavioral biometric data such as; keystroke laten-

cies, gait and swipe data on desktop, phone and tablet for the assumption of an underly-

ing normal distribution, which is common in many research works. Using suitable non-

parametric normality tests (Lilliefors test and Shapiro-Wilk test) we show that a majority

of the features from all activities and all devices, do not follow a normal distribution. In



most cases less than 25% of the samples that were tested had p values > 0.05. We discuss

alternate solutions to address the non-normality in behavioral biometric data.

Openly available datasets did not provide the wide range of modalities and activities re-

quired for our research. Therefore, we have collected and shared an open access, large

benchmark dataset for behavioral biometrics on IEEEDataport. We describe the collec-

tion and analysis of our Syracuse University and Assured Information Security - Behav-

ioral Biometrics Multi-device and multi -Activity data from Same users (SU-AIS BB-MAS)

Dataset. Which is an open access dataset on IEEEdataport, with data from 117 subjects

for typing (both fixed and free text), gait (walking, upstairs and downstairs) and touch on

Desktop, Tablet and Phone. The dataset consists a total of about: 3.5 million keystroke

events; 57.1 million data-points for accelerometer and gyroscope each; 1.7 million data-

points for swipes and is listed as one of the most popular datasets on the portal (through

IEEE emails to all members on 05/13/2020 and 07/21/2020).

We also show that keystroke dynamics (KD) on a desktop can be used to classify the type

of activity, either benign or adversarial, that a text sample originates from. We show the

inefficiencies of popular temporal features for this task. With our proposed set of 14 fea-

tures we achieve high accuracies (93% to 97%) and low Type 1 and Type 2 errors (3% to

8%) in classifying text samples of different sizes. We also present exploratory research

in (a) authenticating users through musical notes generated by mapping their keystroke

latencies to music and (b) authenticating users through the relationship between their

keystroke latencies on multiple devices.
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1. INTRODUCTION

The rise in the popularity of biometrics stems from its inherent property that eliminates

the need for a person to remember and reproduce complex secretive information or carry

additional hardware to authenticate oneself. Possession of such secretive information or

hardware is not only risking their theft but also risking forgetting them (Personal Identifi-

cation Number (PIN), password), either case leads to unnecessary complications regard-

ing an individual’s identity. Biometrics focuses on authenticating a person based on ”who

they are” rather than ”what they know”, which is a prime reason for its growth in popular-

ity and research (eg. see [53] and [32]).

Behavioral biometrics is a branch of biometrics that focuses on using a person’s behavior

or way of doing a task as means of authentication. These tasks can be any common, day

to day tasks like walking, sleeping, talking, typing and so on. As interactions with com-

puters and other smart-devices like phones and tablets have become an essential part of

modern life, a person’s style of interaction with them can be used as a powerful means

of behavioral biometrics. However, there is a lack of large datasets with multiple activ-

ities, such as typing, gait and swipe performed by the same person. Furthermore, large

datasets with multiple activities performed on multiple devices by the same person are

non-existent. The difficulties of procuring devices, participants, designing protocol, se-

cure storage and on-field hindrances may have contributed to this scarcity. The availabil-

ity of such a dataset is crucial to forward the research in behavioral biometrics as usage
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of multiple devices by a person is common nowadays. We present our SU-AIS BB-MAS

dataset, with a total of about: 3.5 million keystroke events; 57.1 million data-points for

accelerometer and gyroscope each; 1.7 million data-points for swipes; and enables future

research to explore previously unexplored directions in inter-device and inter-modality

biometrics. A common assumption in behavioral biometrics, is that feature values follow

a normal distribution. This assumption impacts key facets of research such as decisions

of sampling techniques and authentication models and performance and results from the

resulting systems. We question the assumption of normality in the features extracted from

the data.

Typing is a common form of interaction, where a person provides input for these devices

either on keyboards or touch screens, thus making research in Keystroke Dynamics (KD)

popular. Research in KD has grown far and wide, Umphress and Williams [180], in their

work, demonstrated that keystroke behavior on keyboards/typewriters was indeed a dis-

tinguishable trait among users while more recent research has shown that KD can also

be used on other devices that involve typing, such as phones and tablets [47], [126]. A

considerable amount of research has also explored the effects of the type of text used for

KD, that is fixed text vs free text [4]. The problem of authenticating users by their typing

behavior has also been addressed from multiple perspectives as far as the underlying al-

gorithms are concerned. Although research in KD has been advancing rapidly, there have

been very few attempts to understand the impact of context on the features that are used

for KD.

A user can accomplish various tasks through keystroke inputs. Intuitively some activi-

ties are benign in nature while others are malicious. Common day-to-day activities like
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writing emails, documents or browsing the internet can possess a lesser threat to the sys-

tem from the user, whereas activities involving terminal commands may possess greater

threats. System intrusion detection has been explored by many researchers [31, 150] who

have proposed solutions at various levels of system interaction, ranging from system calls

to data mining techniques [3, 189]. We explore the possibility of using typing behavior to

detect malicious activity.

1.1 Overview of dissertation

The dissertation is presented as follows. Chapter 1 introduces the thesis and provides an

overview of the material presented within the dissertation. Chapter 2 describes the SU-

AIS BB-MAS dataset that we collected and analysed. It also provides insights on collect-

ing and sharing large behavioral biometric datasets. Chapter 3 presents the details of the

context specific keystroke features that we designed and evaluated for user authentication.

Chapter 4 presents analysis of underlying distribution of data from all modalities in our

dataset and the experiments to examine the assumption of normality. Chapter 5 describes

our experiments to differentiate benign typing activity from adversarial typing activity

using a new keystroke feature set that we proposed. Chapter 6 presents two exploratory

research directions that we explored using our SU-AIS BB-MAS dataset, (a) authentica-

tion of users through music notes generated by mapping their keystroke latencies to music

and (b) authenticating users through the relationship between their keystroke latencies on

multiple devices. The related work for chapters 2 - 6 is presented as separate sections in
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each corresponding chapter. Chapter 7 summarizes the dissertation. Finally, Appendix A

provides additional information of our data collection efforts.

1.2 Key contributions of dissertation

The key contributions of our work, detailed in this dissertation are listed below:

• Develop context specific keystroke features: a) We show the shortcomings of

conventional keystroke features for user identification. b) We propose and evaluate

a set of keystroke features that take advantage of the context from which the laten-

cies are extracted. Our evaluations show high accuracies of user identification using

proposed features on desktop, tablet, and phone. c) We draw insights and discuss

impact factors that affect performance of user identification while using our pro-

posed features.

• Question the assumption of normality in behavioral biometrics data: a) We

question the common assumption in behavioral biometrics research that the data

follows an underlying normal distribution. Experiments on our SU-AIS BB-MAS

dataset show that the features extracted from gait, keystroke and swipes data do not

follow a Gaussian distribution for all devices in our dataset. b) We discuss various

approaches to handle non-normality in behavioral biometric data.

• Share benchmark behavioral biometrics dataset: We present details of our SU-

AIS BB-MAS dataset, which is shared on IEEEDataport with open-access per-

missions. This dataset provides a unique advantage of having data from multiple



5

modalities (typing, gait, swiping) on multiple devices (desktop, tablet, phone) per-

formed by the same person.

• Detect threat level in typing activity through keystroke features: a) We propose

and evaluate keystroke features that have a mix of content and temporal informa-

tion. b) Using proposed features we achieve high accuracies for classification of

text samples into benign and adversarial categories.

• Develop a method to map keystroke signature to musical signature: We present

a method to map keystroke features to derive the musical equivalent of a keystroke

signature and is also extendable to other behavioral biometrics.

• Explore multi-device typing behavior relationship: We propose a set of features

that relate the typing behavior of a person in multi-device environments. Our pro-

posed features achieve high accuracies for user validation in all three scenarios of

user’s typing behavior relationships, a) desktop-phone; b) desktop-tablet; and c)

tablet-phone.

1.3 Published material in the dissertation

The material presented within Chapter 3 was published as a peer-reviewed journal paper

in the ACM Transactions on privacy and Security[24]. The material presented in Chap-

ters 5 and 6 were published in peer-reviewed conference papers in the Proceedings of

IEEE International conference on Artificial Intelligence and Signal Processing (AISP20)

[23, 27, 28]. The material presented in Chapter 2 is currently under review as a peer-
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reviewed journal paper for IEEE Transactions on Biometrics, Behavior, and Identity Sci-

ence. The material presented in Chapter 4 is under submission as a peer-reviewed journal

paper for IEEE Transactions on Information Forensics and Security.

The material published in AISP20 conference [23, 27, 28] will be extended to be pub-

lished in peer-reviewed journals.

The dataset described in Chapter 2, is published on IEEEDataport [83]. It is listed as

one of the most popular datasets on the portal (through IEEE emails to all members on

05/13/2020 and 07/21/2020) and has about 6000 views at the time of writing this disserta-

tion.
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2. COLLECTING AND SHARING A LARGE BEHAVIORAL

BIOMETRIC DATASET: INSIGHTS FROM BB-MAS

Behavioral biometrics are key components in continuous and active user authentication.

Rigorous experimentation on large datasets is needed to develop state-of-the-art algo-

rithms and draw meaningful insights. However, there is a lack of large datasets with mul-

tiple activities, such as typing, gait and swipe performed by the same person. Further-

more, large datasets with multiple activities performed on multiple devices by the same

person are non-existent. The difficulties of procuring devices, participants, designing pro-

tocol, secure storage and on-field hindrances may have contributed to this scarcity. The

availability of such a dataset is crucial to forward the research in behavioral biometrics as

usage of multiple devices by a person is common nowadays.

Researchers have explored various modalities such as keystrokes ([20, 121, 158]), gait

([64, 65, 183]), swipes on touch screen ([59, 116, 157]) to name a few. With growing

number of devices used by a person, research in continuous authentication or behav-

ior analysis will have span across devices and activities to stay relevant. However, the

scarcity of benchmark datasets for such scenarios are a hindrance. Several attempts have

been made to provide benchmark datasets for a single activity like keystrokes ([12, 21,

58, 87, 88, 106, 173]), gait ([42, 63, 127, 193]) or swipe ([59, 62, 98, 157]) on a single

device family like desktop or phone. Few attempts were also made to share benchmark

datasets with multiple activities using single device ([11, 114]). However, no large bench-
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mark dataset exists for multi-activity in multi-device scenario, where the same activities

were performed by the same users on multiple devices. We attempt to fill this gap and

provide a benchmark dataset with BB-MAS (Behavioral Biometrics Multi-device and

multi-Activity data from Same users) dataset where the same participants have provided

typing, gait and swiping data on desktop, phone and tablet.

A total of 117 participants voluntarily provided 3.5 million keystroke events; 57.1 mil-

lion data-points for accelerometer and gyroscope each; 1.7 million data-points for swipes.

Each participant performed typing (including transcription and free text), gait (including

walking on a flat corridor, upstairs and downstairs) and swiping using desktop, phone, and

tablet. The data collection spanned about 3 months and various anonymized demograph-

ics information is provided for each participant. The unique ID allocated to the participant

is used on all devices and activities.

Key contributions follow.

2.1 Key contributions of the chapter

• Provide this dataset as a benchmark resource to the community to compare per-

formance for same user performing multiple activities over multiple devices for

multiple modalities, such as typing, swiping, and gait. As of writing of this paper,

this publicly available dataset has been accessed 5815 times (see http://dx.doi.org/

10.21227/rpaz-0h66).

• To the best of our knowledge, a dataset with the typing, gait and touch data from

the same users on desktop, tablet and phone is not available publicly at the time of
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this writing. With data from 117 participants our dataset stands out as unique and

rich for exploration in various directions. Each participant’s session ranged between

2 to 2.5 hours, resulting in a total of about: 3.5 million keystroke events; 57.1 mil-

lion data-points for accelerometer and gyroscope each; 1.7 million data-points for

swipes.

• Describe, extract and share features that are commonly described in literature, for

data from all activities alongside the raw data, thus providing a ready-made re-

source for researchers to compare their algorithms.

• Compare our dataset with other related datasets for keystroke, gait and swipe and

highlight their novelty, differences, and advantages. Other datasets are limited in

the variety of participants. We provide data for individuals from various age groups,

gender, height, language and daily usage of desktop, phone, and tablet, and typing

style.

• Provide insights on the distribution of keystroke feature values across desktop,

tablet, and phone for the same user. We find the keyhold times are smaller in mag-

nitude and inter-key latencies are larger in magnitude on hand-held devices when

compared to desktop. We posit that, difference in number of fingers being in con-

tact with the typing surface (fewer on hand-held device) may lead to such patterns.

• Discuss possible research directions using the BB-MAS dataset and share lessons

learnt from this elaborate data-collection effort to help future researchers on similar

endeavors.
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Data collection was carried out between April and June of 2017, after the IRB approval

from our university. All participants signed consent forms and have willingly participated

in this data collection. All data has been anonymized and any personal identifiers in the

data are removed. All subjects, their data and demographic information can only be refer-

enced through the unique participant ID provided to them.

Although, we have posted the complete dataset on IEEE Dataport [83], this paper presents

unique insights that are not available in the instructional ReadMe document.

In addition, the detailed description of data is interspersed with explanations of collection

procedure, analysis and discussions of extracted features and data-snippets.

2.2 Details of the data collection

The dataset was designed to capture the behavior of the same users performing various

day-to-day activities, such as typing, gait and swipes on three commonly used devices

such as, desktop, tablet, and phone. Activities were deliberately designed to mimic real-

life scenarios, for instance, the typing activity consists of both fixed and free text data,

the gait activity consists of walking on flat corridors, walking downstairs and upstairs and

touch and swipe data consists of activities such as reading and scrolling. The raw data and

the features extracted are shared publicly and can be accessed online at http://dx.doi.org/

10.21227/rpaz-0h66 [83] .
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2.2.1 Devices used in data collection

Three most commonly used device types in current times were selected for our data col-

lection. A desktop, tablet, and phone would cover most of our modern-day interactions

with devices. The details of the devices used in our data collection are as below:

• Desktops: Two identical desktop stations were setup. Each desktop station con-

sisted of a standard QWERTY keyboard (Dell kb212-b), an optical mouse (Dell

ms111-p) and a Dell 21-inch monitor. The keystrokes, mouse movements and clicks

were logged.

• Tablets: HTC-Nexus-9 tablets were used for the tablet section of the data collec-

tion. These tablets had a screen size of 8.9 inches, screen resolution of 1536 x 2048

pixels, device dimensions of 9 x 6 x 0.3 inches (Length X Width X Height) and

weighed about 435 grams. Keystrokes, accelerometer, gyroscope, and touch were

logged.

• Phones: Two different models of phones, Samsung-S6 and HTC-One phones were

used in the data collection. The Samsung Galaxy S6 had a screen size of 5.1 inches

and screen resolution of 1440 x 2560 pixels with body dimensions of 143.4 x 70.5

x 6.8 mm and weighing 138 grams, whereas the HTC-One had a screen size of 5.0

inches and screen resolution of 1080 x 1920 pixels with body dimensions of 146.4

x 70.6 x 9.4 mm and weighing 160 grams. Keystrokes, accelerometer, gyroscope,

and touch were logged. The raw data files from different models are identified by

the suffix in the file names explained in detail in Section 2.2.3.
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As the default android keyboard does not allow logging of keystrokes, we created and

used an android qwerty keyboard on screen which was similar to the default android qw-

erty keyboard. The phones and tablets were locked in portrait orientation and users were

allowed to type on them with any comfortable posture that they preferred. The details

of the data collected from these devices and their formats is described in Section 2.2.3.

Figure 2.1 shows a screenshot of the application with the keyboard for phone. The appli-

cation on tablet had the same layout but was scaled to match the default keyboard of an

android tablet.

Fig. 2.1.: A screenshot from our phone application keyboard which matches the default android
keyboard.
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Fig. 2.2.: The data collection procedure. Tasks a to m were performed by participants in sequence,
the corresponding activities and data collected are described in Table 2.1

2.2.2 How was the data collected?

Emails were sent out to all students, faculty, and staff to procure the participant popula-

tion. Each participant had to spend two hours on average to perform the set of sequential

tasks as illustrated in Fig. 2.2.

Upon arrival at the data collection location, each participant answered a set of questions

that pertained to his/her demographics and technology usage. The participant was then

assigned a unique ID and four devices: a desktop, a tablet and two phones (See Table 2.1).

The participant then performed the tasks a to m in sequence. a) The participant was asked

to sit at the desktop and type two sections of text (fixed-text), ten times each. Each piece

of text consisted of two sentences and had an average of 112 characters. The participant

was then given a shopping list consisting of six items. They had to use a popular web-

browser (Mozilla Firefox) to browse for the best prices for the six items on the list while

making notes (on any familiar text editor) about prices, opinions, and thoughts. The par-

ticipant was then given a list of 12 questions of varying cognitive loads (see Appendix

A.1 - A.3) and asked to type their answers in any order he/she preferred for roughly about



14

fifteen minutes. For the entire duration of task a, keystroke and mouse loggers were de-

ployed on the desktop to log all the actions that the participant performed during this task.

b) After the completion of task a, the participant was handed a tablet which was running

an application where he/she was asked to type the two pieces of static text again followed

by a series of ten questions with varying cognitive loads to be answered with a minimum

of 50 characters. The questions were placed in a manner that required the participant to

swipe vertically and horizontally between questions. For the entire duration of task b,

keystroke, touch, accelerometer, and gyroscope loggers were deployed on the tablet to log

all typing, swiping, touch, and movement events. After the completion of task b, the par-

ticipant was asked to place a phone (Phone1) in his/her pants pocket and made to walk in

a predefined path while holding the tablet in hand. The path consisted of three doorways

and a stairwell, as shown in Figure 2.2. The tablet displayed buttons to be pressed by the

participant before and after passing through a doorway and also before and after taking

the staircase. The tasks c, e, and g required the participant to walk, and tasks d and f re-

quired the participant to climb downstairs and upstairs respectively. Throughout the tasks

c to g, the tablet and the phone (Phone1) logged the accelerometer and gyroscope values.

The tablet also logged the pressing of the buttons (doorway and staircase) by the partici-

pant.

Upon completion of task g, the tablet was taken from the participant and another phone

(Phone2) was handed to them. For task h, Phone2 ran the same application as the tablet

in task b, where the participant had to type the two pieces of static text followed by a

series of ten questions (not repeated from task b) with varying cognitive loads to be an-

swered with a minimum of 50 characters, requiring the user to swipe between questions.
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Phone2 logged all keystroke, touch, accelerometer and gyroscope values for typing, swip-

ing, touch, and movement events. Tasks i to m are similar to tasks c to g, differing only

in that the participant held Phone2 (instead of the tablet) and Phone1 remained in pocket

while performing tasks i to m. Phone1 and Phone2 logged all accelerometer and gyro-

scope values. Phone2 also logged the pressing of buttons (doorway and staircase) by the

participant. As the data collection involved logging of timestamps on multiple devices we

made sure that clocks on all devices involved were synchronized to within a few millisec-

onds of each other by conducting several test runs to ensure synchronization.

2.2.3 What is the format of the data?

The raw data from all sensors was originally written to sql databases for speed and ac-

curacy. However, for the convenience of researchers, the raw data and the features ex-

tracted from them are organized in simple flat file structure in comma separated format

(csv) shared at http://dx.doi.org/10.21227/rpaz-0h66 [83]. This section elaborates the or-

ganization and format of both raw data files and feature extracted files. Fig. 2.3 gives an

overview of the entire dataset. It is important that the dataset is clearly understood by its

researchers for successful research. Therefore, we explain our dataset in great detail in

this section.

Description of the raw data

The raw data from each sensor for each user is stored in folder labelled with the user’s

ID. As shown in Fig. 2.3, folders ”1” to ”117” contain the raw data files for each user, the
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Fig. 2.3.: Organisation of the files in our dataset.

prefix <ID> is used to denote the user’s ID. The details and format of the raw data files

are as follows:

• Keystroke Data: The temporal data of every key press and release performed by the

subject during tasks a, b and h (Table 2.1) were logged. These files are named;

- <ID> Desktop Keyboard.csv

- <ID> HandTablet Keyboard.csv

- <ID> HandPhone Keyboard.csv

accordingly. These files consist four columns, ”EID”: event ID (Integer); ”key”: the

key triggering the key-event (String); ”direction”: the type of key-event (Integer, 0 for

press and 1 for release); and ”time”: the timestamp of the key-event (String in date-
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Table 2.2: Example for keystroke files from user 1.
EID key direction time
0 t 0 2017-04-14 18:09:41.538
1 t 1 2017-04-14 18:09:41.679
2 i 0 2017-04-14 18:09:41.819
.. .. .. ..

time format with millisecond resolution). Table 2.2 provides an example of keystroke

files with a snippet from user 1 in our dataset.

• Mouse Data: In addition to keystrokes, data from mouse usage was also collected dur-

ing task a (Table 2.1). Please note that there were sampling issues with the mouse data

resulting in smaller files, they are included, nonetheless. Mouse events such as, move-

ment, button and wheel were logged into files named;

- <ID> Mouse Move.csv

- <ID> Mouse Button.csv

- <ID> Mouse Wheel.csv

respectively. The Mouse Move file has six columns, ”EID”: event ID (Integer); ”rX”

and ”rY”: the x and y coordinates relative to the active window (Integer); ”pX” and

”pY”: the x and y coordinate on screen (Integer); and ”time”: the timestamp of the

mouse-event (String in date-time format with millisecond resolution). The Mouse Button

file has eight columns, six of them are the same as described for Mouse Move, ”LR”:

mouse button (Integer, 0 for left or 1 for right) and ”state”: type of button event (Inte-

ger, 0 for press and 1 for release) are the additional columns. The Mouse Wheel file

has seven columns, six of them are the same as described for Mouse Move in addition
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to, ”delta”: direction of scroll (Integer, Negative for scroll-down and positive for scroll-

up). Tables 2.3, 2.4 and 2.5 provide an example mouse movement, button and wheel

data respectively, from user 1.

Table 2.3: Example for mouse movement data from user 1.
EID rX rY pX pY time
0 4 -8 1004 577 2017-04-14 18:09:29.948
1 8 -14 1919 0 2017-04-14 18:09:30.228
2 -2 -26 1916 0 2017-04-14 18:21:13.712
.. .. .. .. .. ..

Table 2.4: Example for mouse button data from user 1.
EID rX rY pX pY LR state time
0 6 -4 1285 242 0 0 2017-04-14 18:21:17.783
1 -1 3 811 265 0 1 2017-04-14 18:21:21.761
2 0 0 811 265 0 0 2017-04-14 18:21:22.120
.. .. .. .. .. .. .. ..

Table 2.5: Example for mouse wheel data from user 1.
EID rX rY pX pY delta time
0 0 0 1594 708 120 2017-04-14 18:23:10.936
1 0 0 1545 708 120 2017-04-14 18:23:12.000
2 0 0 1618 708 120 2017-04-14 18:23:12.575
.. .. .. .. .. .. ..

• Accelerometer and Gyroscope Data: For tasks from b through m (Table 2.1), the val-

ues from accelerometer and gyroscope sensors were logged on suitable devices, such

as tablet: for tasks c - g; phone in pocket: for tasks c - g and i - m; and phone in hand:

for tasks i - g. The sampling rate for these sensors was about 100Hz. The files with ac-

celerometer and gyroscope from the tablet are named;

- <ID> HandTablet Accelerometer.csv

- <ID> HandTablet Gyroscope.csv
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those from the phone in the pocket are named;

- <ID> PocketPhone Accelerometer.csv

- <ID> PocketPhone Gyroscope.csv

and from the phone in hand are named;

- <ID> HandPhone Accelerometer.csv

- <ID> HandPhone Gyroscope.csv

respectively. The accelerometer files have five columns, ”EID”: event ID (Integer);

”Xvalue”, ”Yvalue”, ”Zvalue”: the acceleration force in m/s2 on x, y and z axes re-

spectively, excluding the force of gravity (Float); and ”time”: the timestamp of the data

point (String in date-time format with millisecond resolution). The gyroscope data have

the same five columns, but ”Xvalue”, ”Yvalue” and ”Zvalue” is the rate of rotation in

rad/s around x, y and z axis respectively (Float). Tables 2.6 and 2.7 show an example

for accelerometer and gyroscope data respectively, from user 1.

Table 2.6: Example for accelerometer data from user 1.
EID Xvalue Yvalue Zvalue time
0 1.043 3.245 9.087 2017-04-14 18:56:40.215
1 0.995 3.303 8.936 2017-04-14 18:56:40.216
2 0.988 3.355 8.880 2017-04-14 18:56:40.234
.. .. .. .. ..

Table 2.7: Example for gyroscope data from user 1.
EID Xvalue Yvalue Zvalue time
0 -0.045 0.036 -0.013 2017-04-14 18:56:40.440
1 -0.027 0.027 -0.017 2017-04-14 18:56:40.449
2 -0.013 0.022 -0.017 2017-04-14 18:56:40.461
.. .. .. .. ..
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• Swipe Data: For tasks b and h, data from swipes were recorded on the tablet and phone

in hand respectively. These were logged into files named;

- <ID> HandTablet TouchEvent.csv

- <ID> HandPhone TouchEvent.csv

respectively. The touch data files have ten columns, ”EID”: event ID (Integer); ”Xvalue”

and ”Yvalue”: the x and y coordinates on screen (Float), ”pressure”: the approximate

pressure applied to the surface by a finger (Float, normalized to a range from 0 (no

pressure at all) to 1 (normal pressure)), ”touchMajor” and ”touchMinor”: the length

of the major and minor axis, respectively, of an ellipse that represents the touch area

(Float, display pixels), ”pointerID”: index of the pointer/touch used in case of multi-

ple touch points (Integer), ”fingerOrientation”: the orientation of the finger in radians

relative to the vertical plane of the device (Float, 0 radians indicates that the major axis

oriented upwards, is perfectly circular or is of unknown orientation), ”actionType”: in-

dicates the type of event (Integer, 0: finger down/swipe begin, 1: finger up/swipe end

and 2:finger move/swipe); and ”time”: the timestamp of the data point (String in date-

time format with millisecond resolution).

• Checkpoints Data: For the tasks c - g and i - m, we require checkpoints to separate

the data into walking, upstairs and downstairs. The participants were asked to click on

buttons on tablet (c - g) or phone in hand (i - m) to mark the opening and closing of

doors and start and end of stairs. These checkpoints can be used to separate the data

from all other sensors into different activities. Please note that a proctor followed the

users during these tasks (making sure not to influence the activity) and noted down
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(a) Scenario 1 : GNB classifier. (b) Scenario 1 : RF classifier.

(c) Scenario 2 : GNB classifier. (d) Scenario 2 : RF classifier.

(e) Scenario 3 : GNB classifier. (f) Scenario 3 : RF classifier.

Fig. 6.8.: Performance of the two classifiers for all three scenarios, Desktop-Phone (6.8a and
6.8b); Desktop-Tablet (6.8c and 6.8d); and Tablet-Phone (6.8e and 6.8f) relationship.

• Scenario 1; Desktop-Phone relationship: We extract the relationship − features

between FDui,sj and FPun,sm where i and n range from 1 to 70 (user number) and

j and m range from 1 to 40 (sample number).

• Scenario 2; Desktop-Tablet relationship: Similar to scenario 1, but, with FDui,sj

and FTup,sq.

• Scenario 3; Tablet-Phone relationship: Similar to scenario 1, but, with FTup,sq and

FPun,sm.

Figure 6.7, illustrates the relationship − features extracted between two random users

from our dataset with the help of scatter plots for scenario 1. In this illustration we can
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see different clusters of feature values. The different clusters signify if the same user was

using both the devices in the given scenario, or if different users were using the devices.

Experiments and classifiers

We perform verification experiments for the three scenarios using their corresponding

datasets. We assign a class label to each instance in the dataset depending on the user

number being verified. If the genuine user for a verification round is user G then, only

the instances that have both user1 and user2 as G are assigned the class label of ”1” (gen-

uine); the rest are assigned ”0”. This implies that the relationships coming from the same

user G, typing on both devices is considered a genuine instance for that round. The fields

user1 and user2 are dropped and only the relationship − features are used to train

and test the classifiers. We use two classifiers to perform verification from the scikit-learn

library using python for programming. The first classifier, is a Gaussian Naive Bayes

(GNB) classifier and Random Forest (RF) classifier. We use 10 trees in the RF with the

Gini impurity for the split criterion. We also limit the maximum depth of the trees to be

five. For both the classifiers we balance the genuine and impostor classes to have approx-

imately equal instances and use a 70% of the data for training and the remaining 30% of

the data for testing. To analyze the scalability of the approach, for all three scenarios, we

start with the data from only 10 users, gradually incrementing the size in 10s until we fi-

nally include the data from all 70 users. The results of our experiments are discussed in

the following section.
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6.2.6 Results and discussion

We use Accuracy and Precision as the key metrics to measure the performance of both the

classifiers. The mean performance values for verification in Scenario 1: Desktop-Phone

relationship, are presented in Figures 6.8a and 6.8b. Both the classifiers perform con-

sistently well. Even as the number of users in the system is increased gradually from 10

through 70, we observe that all the mean values for the metrics remain stable. Accuracies

on both the classifiers are very high with above 99% accuracy throughout. Precision of

the RF classifier is better than the precision of the GNB classifier within a range of 1%,

but are still satisfactorily high on both classifiers nonetheless.The plots reaffirm our obser-

vation that all the performance metrics stay stable even with the increase in the number of

users for both the GNB classifier (6.8a) and the RF classifier (6.8b). Figures 6.8c and 6.8d

summarizes the results verification in Scenario 2: Desktop-Tablet relationship, both the

classifiers perform similar to Scenario 1. With high Accuracy and Precision rates for all

sizes of the user population that were considered. Even at the maximum user population

of 70, we see that the average accuracy and precision values are 99.23% and 98.64% for

the GNB classifier and 99.33% and 99.38% for the RF classifier respectively. The sum-

marized results for Scenario 3: Tablet-Phone relationship, is shown in Figures 6.8e and

6.8f, similar to the previous two scenarios discussed, the values for Accuracy and Preci-

sion are very high for all sizes of user population in our experiments. For the final user

population of 70, both the classifiers perform satisfactorily. We also observe that in case

of the GNB classifier, the average accuracy and precision values are marginally smaller

than the values for the RF classifier within a range of 1.0%.
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6.2.7 Conclusion and future work

We conclude that the relationship between the typing behavior of users on different de-

vices is fairly unique to an individual. We find from our study on 70 users and 3 devices

(desktop, phone and tablet), that the relationship between the typing behaviors preform

outstandingly for verification. Previous research in KD based authentication has focused

exclusively on single device environments. Our results show that, KD based authentica-

tion from relationships between the typing behavior of users on multiple devices can be

considered in a multi-devices environment. Some of the applications of this work could

be authentication of users in online courses or exams and employee authentication in an

office environment, or as a second layer of authentication.

We speculate that a user’s typing behavior on individual devices may be easier to mimic

and breach when compared to breaching the relationship of the typing behavior on two

devices. This approach can be likened to a two-factor authentication approach, where the

user has to type on two different devices and the relationship between these typing sam-

ples is tested.

This study leads to many other intriguing questions, such as: are there other relationships

between the typing behaviors on different devices which may improve the results of au-

thentication? What other activities on multiple devices, other than typing, can be used to

form a multi-device authentication system? Can text samples with smaller character limit

yield similar results? These are areas we plan to explore in future research.
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7. SUMMARY

We share and provide the details of our large behavioral biometrics dataset for typing,

gait and swiping activities of the same user on desktop, tablet and phone. The availability

of the data on different devices for the same person makes our dataset unique; and with

data from 117 participants, also one of the largest. With this dataset researchers can try to

explore questions that were not possible with previously available datasets such as; ”Does

the typing of an individual on desktop reveal their typing on a tablet or phone? and vice

versa” ; ”Can a person’s demographics like age, height, etc., be predicted from the data

of typing, gait or swiping activity on any of the devices?”; to name a few.

Our experiments show that, in the case of keystrokes, gait and swipes using desktop,

tablet and phone, it would be wrong to assume an underlying normal distribution. Low

values of p from our non-parametric normality tests across activities and devices show

that researchers in behavioral biometrics must not assume the data to be from a Gaussian

distribution to get better and more accurate insights. However, upstairs and downstairs

activity data, showing higher percentages of samples where an underlying normal distri-

bution cannot be discarded is intriguing and further research is needed to establish why

this occurs. Knowing that the data does not follow normal distribution leaves the dis-

cussion incomplete, which can only be completed by learning alternate ways to handle

a non-normal dataset. Our results question the common assumption that the data in be-

havioral biometrics follows a normal distribution. We have discussed the implications and
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alternate approaches for such a scenario. We hope that, insights from our work help fu-

ture researchers to make the right choices in terms of data models, transformations and

classifiers to achieve better results and make correct interpretations.

The proposed word-specific features perform much better at user identification on all de-

vices. Conventional features, especially KeyHold does not provide user separation to a

desired level. We considered the subset of proposed features that offered higher discrim-

inability, like WordHold, AvgFlight1, AvgFlight2, AvgFlight3, AvgFlight4, evaluated

them with classifiers and drew comparisons with conventional features (Section 3.9).

These classifiers show competitive accuracies on all devices. Mathematical insights for

this improvement in performance are drawn (Section 3.10.1). We also note that these fea-

tures in general perform much better on hand-held devices. We speculate that user’s style

of holding devices and patterns such as, short bursts of typing followed by pauses be-

tween words might be some of the reasons (Section 3.10.2). Analysis of the word-based

impact factors reveal that four or five character words, words with about 50% vowels, and

those that are ranked higher on the frequency lists might give better results for the extrac-

tion and use of the proposed features (Section 3.10.3) for user identification.

We raised an intriguing question: ”Can the typing behavior of a user reveal if the typ-

ing activity is malicious or benign?”. We conclude that the typing behavior of a user can

reveal if the typing activity being done is benign or malicious. Although, the keystroke

features that have been popularly used for user identification or verification are not suit-

able for this task. We proposed a different set of features using which the origin of a text

sample (whether malicious or benign) could be determined with high levels of accuracies.

We observe that behavior of keystroke timings and frequencies of certain keys like Space,
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Enter and Punctuation keys can be used to reveal the nature of typing activity. Using

our proposed features we could achieve accuracies as high as 97% and Type 1 and Type

2 error rates of less than 3%.We show that keystroke analysis can be used to determine

the nature of typing activity, thereby assessing the threat levels of a system. However, we

understand that keystroke analysis would have to be used in conjunction with other tech-

nologies to obtain a more robust and secure system.
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A. ADDITIONAL DETAILS OF DATA COLLECTION
A.1 Cognitive Loads[35]

Task Level Required activity
Remember 1 Retrieve knowledge from long-term memory to explain
Understand 2 Explain, summarize or interpret
Apply 3 Apply, execute or implement
Analyze 4 Organize or break material into constituent parts
Evaluate 5 Critique or make judgments based on criteria
Create 6 Generate, plan or put elements together

A.2 Examples of Free text questions on desktop

• List some of the things that you like about Syracuse University.

• Which internet browser do you typically use (e.g, Google Chrome, Internet Explorer, Mozilla Fire-
fox, etc.)?

• What improvements would you like to see in that browser?

• If you were to draw a picture of Syracuse University, what objects would you include in it?

• What is your favorite vacation spot? Why do you like to visit there?

• Give step-by-step driving directions to your favorite restaurant in the Syracuse Area, starting from
your dorm room/ home.

• Discuss step-by-step instructions for making your favorite type of sandwich. Write them so that the
person who has never done this before can follow your instructions.

A.3 Examples of Free text questions on tablet

• What is your ideal job after graduation? Why?

• Why did you decide to attend Syracuse University?

• Re-read Question #2 (from the Multiple Choice Questions section) and the responses. Which re-
sponse do you feel is least applicable to you and why?

• Review Question #6 (from the Multiple-Choice Questions section) and the answer that you chose.
Why did you select your answer?

• If Question #6 (from the Multiple-Choice Questions section) was changed to read ”If some mangoes
are golden in color and no golden-colored things are cheap”, which answer would be correct and
why?
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A.4 Examples of Free text Questions on phone

• Of the courses you’ve taken in college, which was your favorite and why?

• Think about a class that you did not enjoy. What improvements would you like to see to make the
course better?

• Re-read Question #2 (from the Multiple Choice Questions section) and the responses. Which re-
sponse do you feel is least applicable to you and why?

• Do you intend to pursue an advanced degree (e.g., Master’s or Ph.D. )? Why or why not?

• Review Question #7 (from the Multiple-Choice Questions section) and the answer that you chose.
Why was the rule you found/why did you select your answer?

A.5 Transcription Sentences

• ”this is a test to see if the words that i type are unique to me. there are two sen-
tences in this data sample.”1

• ”second session will have different set of lines. carefully selected not to overlap
with the first collection phase.” 1

1The transcription sentences were selected based on two criteria: (1) inclusion of many frequently used
words in the Oxford English Corpus, and (2) encouraging typing activity on both hands (on both sides on
the keyboard). Transcription sentences were typed in lower case.
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