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Abstract: The paper "Coxeter Functors and Gabriel’s Theorem" written by I.N. Bernstein, I.M.
Gel’fand, and V.A. Ponomarev explores the concept of reflection functors. A thorough proof of
several results used by Bernstein et al in their paper is presented. The focus is on the category
of representations and reflection functors, both negative and positive. The quadratic form is the
bridge between the results on quivers and the techniques of Lie algebras. The Dynkin diagrams
mentioned in Gabriel’s Theorem are discussed.



Executive Summary:

The purpose of this paper is to thoroughly prove some of the important results that are used in
the paper "Coxeter Functors and Gabriel’s Theorem" by Bernstein et al [1]. The focus is mostly
on the category of representations and the reflection functors to better understand how they can be
used to prove Gabriel’s Theorem. Gabriel’s Theorem was initially not proved through Lie algebra
or representation theory but it gave results about the Dynkin Diagrams which were previously only
related to those two fields. Bernstein et al wrote another proof of Gabriel’s Theorem using tools
from representation theory, namely the reflection functors. This offers a relation between these
fields of mathematics.

Consider a graph which is a set of a finite number of vertices and edges, namely I'. Then we
place an orientation on it which makes the edges arrows so that they have an orientation, namely
A. The category .Z(I", A) has objects and morphisms. Objects are collections of vector spaces and
linear mappings which go between the vector spaces. Morphisms are a logical way to compare
objects.

We showed that .Z(T", A) satisfies the following conditions and therefore is a category:

1. The composition of morphisms is a morphism and the composition is associative

2. For all morphisms ¢ : (U, f) — (V, g), Lv,go = dlwg = ¢

Reflection functors change representations. For example look at an orientation A where there
is a vertex 3 such that all of the arrows that are connected to  are going into the vertex (referred
to as a sink), then F;* (referred to as a positive reflection functor) changes (I, A) to Z(I, o3A)
where oA looks exactly like A except that instead of all of the arrows going into 3 all of the arrows
are coming out of [ (referred to as a source). The vertices are vector spaces and the arrows are
linear mappings, therefore since the vertices don’t change between A and ogA, but the arrows do
then the vector spaces don’t change and the linear mappings do. Therefore we must check that how
we defined the reflection functors, both positive and negative for a sink and a source respectively,
work properly.

We show that Fj” : Z(I',A) — Z(I', 05\) satisfies the following conditions and therefore is
a functor:

L Fi(Lwp) = Lxan
2. Fy(vo) = (F5 () (F5 (¢))

Similarly we can show that F is a functor.

After proving that Fg and £ are both functors, we can now use Theorem 1, and Lemma 1.
We use statements and mappings that we used earlier to prove the Theorem 1 and Lemma 1. From
the Theorem and Lemma we can immediatly prove Corollary 1. These proofs give us more insight
in how the functors can be used, and what properites that they have in a more abstract way.

We discuss the quadratic form in order to bridge the relationship between the results on quivers
and the techniques of Lie algebras. This brings us closer to our goal of abstractly showing how
these different fields of mathematics are related.

Now to show the main idea of this paper we will show how the reflection functors Fg and I
were used to prove part 2 of the famous Gabriel’s Theorem. This is not the first way that Gabriel’s
Theorem was proven, therefore the two fields of mathematics which the two different proofs came
from are connected in this way.
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1 INTRODUCTION

1 Introduction

This project is about representations of quivers which is an area of mathematics that uses methods
of linear algebra, combinatorics and category theory.
Recall some necessary definitions from linear algebra.

Let V and W be vector spaces over a fixed field K. A function : V' — W is a linear mapping
if (u+v) = Y(u) + 1 (v) and Y(cu) = c(u) forall u,v € Vandc € K. If ¢ : U — V is
another linear mapping, then the composition ¢ o ¢ : U — W is defined by [1) o ¢|(u) = ¥ (p(u)).
Sometimes we write ¢ instead of 1 o¢. The following two definitions are from the text Homology
by Saunders Mac Lane. The kernel of a morphism / : V' — W, Ker %), consists of all v € V' such
that ¢)(v) = 0. The following is a universal property: for each ¢ : U — V satisfying )¢ = 0, there
exists a unique & : U — Ker ¢ with ¢ = k&, k the inclusion map.

Kery v oW

e /

U
The cokernel of a morphism h:V — W, Coker 7L, is equal to the quotient module W/ /Im h. The
following is a universal property: for each ¢ : W — U satisfying ¢ = 0, there exists a unique & :

Cokery — U with ¢ = &m, 7 the natural projection map.
VoW —Z Coker

N
U
The identity mapping 1, : U — U is given by 1y (u) = u for all u € U. We use the fact that the

composition of linear mappings is associative, i.e. if ¢ and v are as above and £ : W — Y is a
linear mapping, then (£ o ¥) o ¢ = o (¢ o ¢). We also use the fact that 1y, 0 ¢ = ¢po 1y = ¢ for
all ¢ as above. Recall that the vector space V' is finite dimensional if it has a finite spanning set.

A linear map ¢y : V' — W is an isomporhpism if there exists a linear map ¢ : W — V
satisfying 1) o ( = 1y and ¢ o ¢ = 1y. Itis a standard fact that a linear map is an isomorphism if
and only if it is both injective and surjective. Vector spaces V' and W are isomorphic if there exists
an isomporphism V' — W.

If V and W are vector spaces, the direct sum V' @& W is the set of all pairs (v, w) such that
v € V and w € W with component-wise addition and scalar multiplication. If p : V. — V'
and v : W — W' are linear maps, then the direct sum p v : VoW — V' @ W' is defined
by (1 @ v)(v,w) = (v(v),ww)). ¢ : V' — V' ¢ : W — W” are linear maps, then
(0@ V) (n®v) = ¢u @ Y. A categorical definition of a direct sum is that a vector space X

is isomorphic to V' @& W if and only if there exist four linear maps V' =X S W satisfying
Yy ™W
vy = ly, mwiw = lw, and tymy + cwmw = lx. In the special case when X =V @ W as

above then the maps are defined as follows: ¢ty : V. — X, 1y : W — X, my : X — V, and
mw : X — W such that t(v) = (v,0), t(w) = (0,w), Ty (v,w) = v, and Ty (v, w) = w where
veV,weW,and (v,w) € X.

We present the following facts from the "Coxeter Functors and Gabriel’s Theorem" paper writ-
ten by I.N. Bernstein, .M. Gel’fand, and V.A. Ponomarev.

Define I' as a finite connected graph with the set of vertices Iy and the set of edges I';. Fix an
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orientation A of the graph I" which assigns to each edge ¢ € I'; a starting point «(¢) € I'y and an
end-point 3(¢) € I'y. We obtain a directed (oriented) graph which we call a quiver and denote by
(T, A).

With the reference to a general definition of a category in Homology by Saunders Mac Lane
we define a category .Z (I, A) as follows. A category consists of objects and morphisms which
may sometimes be composed. An object of .Z(I", A) is any collection (V, f) of finite dimensional
vector spaces V,, (a € I'y) and linear mappings f,(¢ € I'1). There is a particular representation
where all the vector spaces are zero and all the maps are the zero maps, called 0. A morphism
¢ (V. f) — (W, g) is a collection of linear mappings ¢,, : V, — W, (a € T'y) such that for each
edge ¢ € I'; the following diagram

f
Vo —— Vi

\L@a(f) i‘/’/ﬂ‘(l)

Wa) —5= Wa

ge
is commutative, that is, ¢z fe = geda(r)- The objects of Z(I', A) are called representations of the
quiver (I', A) and the category .Z (I, A) is called the category of representations of (I', A).
We define the law of composition for morphisms as follows. Let ¢ : (U, f) — (V,g) and
¥ (V,g) — (W, h) be morphisms where ¢ = (¢q)acr, and ¥ = (¥4 )aer,- Then oo : (U, f) —
(W, h) is given by (¢ © ¢)o = the © G0

Define the identity morphism 1y ) for an object (V, f) by 1(v,5) = (1v,)acr,- We prove that
Z (T, A) is a category in the next section.
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2 The Category of Representations

We show that (T, A) satisfies the following conditions and therefore is a category:
1. The composition of morphisms is a morphism and the composition is associative
2. For all morphisms ¢ : (U, f) = (V,9), lvgn¢ = odlwg = ¢
For any objects (U, f), (V,g), and (W, h) in Z(I',A),let ¢ : (U, f) — (V, g) and

¥ (V,g) — (W, h) be morphisms. Then we have a commutative diagram,
[
Uay —— Us(e)

%(z)l i%w)

Vay —— Vo)

Ya(e) l i%(@
h

L

Way —= W
that is
80y fo = Geba(e) (1)

and wg(g)gg = hgwa(g). Then

Vs s fe = V) (D0 fr) = Va0 (9edae) =
(Va0)90) Pa(e) = (heta(e)) Pare) = Petba(e)Pa(e)

which shows that ¢ o ¢ : (U, f) — (W, h) is a morphism, that is the diagram
S
Uaey —— Us(e)
[Yodla(r) \L i [Yodl e

h
Wag) — W

commutes.
We have shown that the composition of morphisms is well-defined.

Suppose that ¢ and ¢ are as above, and ¢ : (W, h) — (Y, ) is a morphism in .Z(I", A) where
¢ = (&), « €T’ Then, using the associativity of composition of linear mappings we get

[(§ot)odla=({0¥)a0da=(a0Va)0Pa=CE0 (Va0 da) =Eao0 (Vo d)a=I[ 0 (Vo))a.

Therefore, ({ 0 1)) 0o ¢ = £ o (¢ 0 ¢). We have shown the composition of morphisms is associative.
Thus Z (T, A) satisfies the first property.

For a morphism ¢ : (U, f) — (V, g) as above, we have

Lvg) ©dla = (Lvg))a © ba = ¢ and [po L pla = da o (Lw,f)a = Pa-
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Therefore 1y, 0 ¢ = ¢ o Ly, 5) = ¢. We have shown that Z(I', A) satisfies the second property.
We have shown that all of the axioms of a category defined in Homology by Saunders Mac Lane
meaning that we have shown Z(I", A) is a category.

A morphism ¢ : (V,g) — (W, h) is an isomorphism if there exists a morphism ¢ : (W, h) —
(V, g) satisfying 1) o ¢ = 1w,y and € o ¥ = 1(v,,). Representations of quivers (V, g) and (W, h) of
the quiver (I, A) are isomorphic if there exists an isomorhpism (V, g) — (W, h). If (V, g), (W, h)
are representations then the set of morphisms (V, g) — (W, h) is a finite dimensional vector space
over the field K.

¢ = (Pa)aery » ¥ = (Ya)aery
(¢+¢)a = Qo t Va

(C¢)a = Cha-

Referencing Equation (1) we have ¢g) fr = gePa(r) and Vg fr = getbar). Adding the left
hand sides and right hand sides gives us (¢ + Vs(0)) fr = Ge(Pa(e) + VYa(ey) Which shows ¢ +
is a morphism.

The verification that c¢ is a morphism is similar.

In view of our definition of the sums of the morphisms, and the scalar multiplication, the above
verification also shows that Hom ¢ ) ((U, f), (V,g)) C « E@Fo Homg (U,, V,,) is a subspace.

We define ¢ + ¢ by

and, for c € K we define c¢ by

Therefore since we know that v € I'y Homg (U,, V,,) is finite dimensional, then
@

Hom ¢ ) ((U, f), (V, g)) is finite dimensional.

A verification similar to above shows that ¢(¢ + &) = ¢ + @€ and (¢ + £)Y = oy + &Y
is true for Z(I', A), therefore we know that .Z(I', A) is a preadditive. It is easy to verify that
c(p) = (co)p = ¢(cp) so Z(T', A) is a k-category.

If (U, f) and (V, g) are representations of (I', A) the direct sum of (U, f) @ (V, g) is the rep-
resentation (X, s) where X, = U, ® V,,, a € 'y and s, : Xagy — Xp is the linear map
se = fr®ge: Uaey ® Vo) — Upey ® V, where £ € T'y. Since the direct sums exist Z(I', A) is an
additive k-category. An object is indecomposable if it is not isomorphic to the direct sum of two
nonzero representations.
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3 Reflection Functors

We present the following facts from the "Coxeter Functors and Gabriel’s Theorem" paper written
by Bernstein, Gel ’fand, and Ponomarev.

For each vertex a € [y we denote by I'“ the set of edges containing «. If A is some orientation
of the graph I', we denote by o, A the orientation obtained from A by changing the directions of
all edges ¢ € I'*.

We say that a vertex « is a source of (I', A) if 5(¢) # « for all ¢ € T'; (this means that all the
edges containing « start there and that there are no loops in I' with vertex at ). Similarly we say
that a vertex [ is a sink of (I, A) if «(¢) # 3, forall £ € T'y.

To study indecomposable objects in the category .Z(I', A) we consider refection functors
Fy 22T, A)—»Z(L,03A) and F; - Z(T,\)=.Z(T,0,M). These functors send an indecom-
posible representation to either an indecomposible representation or to zero. We construct such a
functor for each vertex a at which all the edges have the same direction.

We will prove that FE is a functor in section 3.1, and that F is a functor in section 3.2.

3.1 A Positive Reflection Functor

Suppose that the vertex (3 of the graph I is a sink with respect to the orientation A. From an object
(U, f) in Z(T', A) we construct a new object Fi; (U, f) = (X, r) in £ (T, ogA).
Namely, we put X, = U, for v # . To construct Xz we consider all the edges ¢, (s, ..., lj

k

that end at 3 (that is, all edges of I'?). We denote by X 3 the subspace in the direct sum A@an(&)

consisting of the vectors u = (uy, ..., ug) (here u; € Uy,)) for which fy, (u1) + ...+ fo, (uz) = 0.
k

In other words, if we denote by hy the mapping hy : ©® Uyy,) — Ug defined by the formula
i=1

hU(ul,UQ, R ,uk) = fgl (Ul) + ...+ fgk(uk), then Xﬁ = Ker h.

We now define the mappings r,,. For ¢; ¢ I'? we put re;, = fo,. Wl =15 € I'%, then Te; 18
defined as the composition of the natural embedding xy : Xg — ©Uqy ;) of Xg in ©Uy(y,) and the
projection 7y o(¢;) : ©Un(e;) — Uae;) Of the sum ©U, (g, onto the term Uyr;) = Xa(e,)- In other
words, 7y, = Tya,)ku - We note that on all edges ¢; € '/ the orientation has been changed,
that is, the resulting object (X, 7) belongs to .Z(I', ogA). Let ¢ = (¢o) : (U, f) — (V,g) be a
morphism in Z(T', A), let (X, r) = F7 (U, f) and (Y, s) = F; (V, g). We construct Fij (¢) = & =
(€a)aer, @ (X,1) = (Y, s). If a« # B, then X, = U,, Y, = V,, and we set £, = ¢, : U, — V.
To construct {5 : Xg — Y3, we consider the following diagram of vector spaces and linear maps

K h
Xg—= B Uy —> U 2)

§,Bl l@i’a(zi) l%
K h
Vg —= & Vaw) — V5

where X = Ker hyy, Y3 = Ker by, and k¢ and sy are the inclusion maps. It is easy to verify that
the right square of the diagram commutes.

pghy = hy (B 0a))
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k
Since hy (& qﬁa(&.))mf = ¢phyky = ¢0 = 0, the universal property of the kernel (see Introduc-
i=1

k
tion) says that there exists a unique k-linear map £z : Xz — Y} satisfying ky{g = ('EBl(ﬁa(gi))/iU.

This finishes the construction of £ = F; (¢). We now verify that it is a morphism in .Z (I, o5 A).
For eachedge { = {; :  — a(y;) in I'# (in the orientation og/\), we have

Ea(t)TUa(ty) (UL, - - Uk) = Ea(e;) (1) = Page;) () and
M agey) [BPaer) ](U1, i, uk) Mooy (Paten) (Un), -+ s o) (Uk)) = dae)(u;). Hence
fa YTUa(l;) = TV,a(¢ [GB(ba(g | and we have

Sat))Te; = Eaey) 7TU,a(eJ)fiU = TV,a(t;) [@%(m]HU = Tv,a(e;)kvEs = Se;Ep-

For each edge ¢ € I'; not incident to /3, we have «(¢) # 3, B({) # 3, so
Uniey = Uste

%(Z)l i%(e)

Vay ==V

a(f) B0

is a commutative diagram because ¢ : (U, f) — (V, g) is a morphism. Hence the above construc-
tion yields the commutative diagram

Xot) —= Xa)

%(z)l lf,@(l)
s

Yo — Yo
as required.
We show that i : Z(T',A) — Z(I', 05\) satisfies the following conditions and therefore is
a functor:

L Fy(lw.p) = Lixn
2. Ff(¥o) = (Fi () (F5 ()

As previously defined, 1w,z : (U, f) — (U, f), and Fi (1w,p)) = £ = (§a)acr, : (X,7) =
(X,r). To show: &, = 1x_, a € I,.

If o # 3, then &, = ¢, but ¢, = 1y, = 1x,, since a # [.

To show {s = 1x,, we specialize the diagram (2) to the case where ¢ = 1y s : (U, f) —
(U, f). We obtain the following commutative diagram

X —"% @Us(r) "= Up

§ﬁJ/ @an(zi)i 1U5J/
hy

X5 —%

5 OVaw) —=Up

It is clear that replacing §z with 1y, preserves the commutativity of the left square of the diagram:
kulx, = (®lu,,,)kv = (lev,, )kv = ku. By the uniqueness of {3 we must have {5 = 1y,.
Hence F,B (1( U,f )) = 1( X,r)-

10
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Now we check if Fjj (Vo) = (F5 (1)) (F5 ().
For any objects (U, f), (V,g),and (W, h) in Z (I, A), let ¢ : (U, f) — (V,g) and
¥ (V,g) — (W, h) be morphisms.

Set
F+(¢) = £ = (5&)(1@1“0
Fg(¥) = ¢ = (Ca)aery
Fg (¢¢) = 0 = (0a)aer,

We want to show that 0, = (&, a € ['g.
a) For a # f3

Oo = [Fg (¥8)la = (V0)a = Yada = [F (¥)]alF5 (#)]a = Cada

b) For a = 3 we set Xg = Ker hy, Y = Ker hy, and Zg = Ker hy

K h
Xg—= & Uyey) —Us

fﬁl @?—1¢Q(Zi)l lﬁi’ﬁ

K h
Yy —= & Vo) ——Vj

Cﬁl EB?—ldja(Zi)i lwﬁ

Zy —"E @ Wagy ™ Wy
By (2) the above diagram commutes so

k k k k
[B()awnlhiv = (D Ya)Paw))br = (& Yawn)) (D Paw))bv = (& Yaw))kvEs = rw(sés
By (2), the diagram below commutes.

-
Xg—"% & Ua(tyy ~—Us

=1

05 iél(qu)a(ei)l ()5
K k h
Zsg—= & Wae) —— W

We have

[®(w¢>a(4i)]HU = Hweg

So both (3¢5 and 03 make the left square of the above diagram commute. By the uniqueness
of 03, we must have 5 = (3&s. Therefore 5 () = (F7 (¥))(F5 (¢)) and F5 (1w,p) = 1ix,m)-
Thus F}; is a functor.

It is easy to see that Fij (¢ + 1)) = Fjj (@) + F5 () and F§ (c¢) = cFj (¢). Therefore Fj is
a k-linear functor.

11
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3.2 A Negative Reflection Functor

Suppose that the vertex « of the graph I' is a source with respect to the orientation A. From an
object (U, f) in Z (I, A) we construct a new object F_ (U, f) = (X,r) in Z(I', 0, A).

Namely, we put X, = U,, for v # a.

Next we consider all the edges /1, (s, . . ., {; that start at « (that is, all edges of I'*). We denote

- - k -
by hy the mapping hy : U, — o Ug y defined by the formula Ay (u) = (fe, (w), ..., fo,(u)), and

set X, =Coker hU = 69 Uﬁ ¢)/Im hU Denote by 7y : ©Upg(y,) — X, the canonical map.
We now define the mapplngs re. For ¢ ¢ T we put rp = f,. If € = (; € I'*, then ry, is

defined as the composition of the natural embedding xy e, : Up(r,) — ‘@1[] 3(¢;) and the canonical

map 7y : DUse,) — Xo. In other words, 74, = Tyky,ge,). We note that on all edges £ € I'* the
orientation has been changed, that is, the resulting object (X, r) belongs to .Z(I", o,A). Let ¢ =
(pg) : (U, f) = (V,g) be amorphism in Z(I', A), let (X,r) = F, (U, f) and (Y, s) = F, (V, g).
We construct F, (¢) = & = (£3)ger, : (X,7) = (Y, s). If 5 # «, then X = Ug, Y3 = Vj, and
we set g = ¢p : Ug — V. To construct &, : X, — Y,, we consider the following diagram of
vector spaces and linear maps

U — @k Uiy ™ X 3)

%i J/@%(zi) Lﬁa

h s

where X, = Coker fE], Y., = Coker la/, and 7 and 7y are the canonical maps. It is easy to verify
that the left square of the diagram commutes.

hyv o = (B 10500 b

Since Wv(@gb/g(gi))?b[j = ﬂvﬁvgba = (0, the universal property of the cokernel (see Introduction)
says that there exists a unique k- linear map &, : X, — Y, satisfying 7y (Ddg(,)) = {amy. This
finishes the construction of £ = F, (¢). We now verify that it is a morphism in .,2” (T',04A\). For
eachedge { = (; : By;) — ain FO‘ (in the orientation o,/\), we claim that

[Dbsenkuse,) = Kvse)Spy)

Indeed
[@¢5(5i)]HU,5(5i)(uj> = [@¢5(fi)]<0’ ceey Ugy e 70) = (07 R ¢5(5j)<uj)> cee aO)
and
Kv,56,)8p06) (U5) = v g, (D) (1)) = (0, .o, Dy (1), - .-, 0).
Therefore

§are; = TV [DPae))Ku ;) = TvRvee)Eae;) = Se,E8(¢)-

12
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For each edge ¢ € I'; not incident to «, we have 3(¢) # a, a(l) # «, so

f
Uaty = Upy)

¢a(e)l itﬁa(@

Vay ==V

a(f) B(O)

is a commutative diagram because ¢ : (U, f) — (V, g) is a morphism. Hence the above construc-
tion yield the commutative diagram

Xaw) — Xg(0)

%(z)l lfﬁ(l)

Yo —= Y
as required.
We show that F, : Z(I';A) — Z (', 0,A\) satisfies the following conditions and therefore is
a functor:

L F,(Lwp) =L
2. Fy (o) = (Fy () (Fy(9)

As previously defined, 1z : (U, f) = (U, f), and F; (L) = & = (£8)ger, : (X,7) —
(X, 7). Toshow: {5 = 1x,, B € I's.

If B # a, then {5 = ¢, but ¢g = 1y, = 1x, since 8 # a.

To show &, = 1x,, we specialize the diagram (3) to the case where ¢ = 1y s : (U, f) —
(U, f). We obtain the following commutative diagram

h T
Uy —% ®Us,) — Xa

1UQJ/ GﬂUﬁ(@-)l éal

hy U

Uy —=®Us,) — X,
It is clear that replacing &, with 1x_ preserves the commutativity of the right square of the diagram:
v =1lx, 7y = WU(l@Uwi)) = WU(@lUB(éi)). By the uniqueness of &, we must have &, = 1x_.
Hence, Fa_(l(U,f)> = 1(X,r)-

Now we check if £, (1/6) = (F, (1))(F; (6)).

For any objects (U, f), (V,g), and (W, h) in Z(I',A),let ¢ : (U, f) — (V, g) and
¥ (V,g) — (W, h) be morphisms.

Set
Fy () = &= (§s)ser,
Fo (¥) = ¢ = (C)ger,
Fy (¥¢) =0 = (03)ser,

We want to show that 03 = (33, 8 € I'y.

a) For 0 # «

13



3.3 Properties of Reflection Functors 3 REFLECTION FUNCTORS

O = [Fy (¥8)]s = (¥d)s = Ypds = [Fy (V)]glFy (0)]s = (s€s
b) For § = a we set X, = Coker EU, Y, = Coker EV, and Z, = Coker EW
Uo—% .E_kBlUﬁ(m X
k
ba 9 980y 3
%

h k
V, ﬂ> ‘@IVB(&.) —Y,

k
wa _6_911/15(2” Ca

- _
Wo —Y © Wpe) = Za
By (3) the above diagram commutes so
k k k k
Tw [ B()sen] = mw (D sy Psen) = Tw (D V) (D dsen) = Camtv (D Ppe) = Caav
By (3), the diagram below commutes.
EU k g
Ua — @ Usey) — Xa

(¥o)a ,éﬁal(wwwi)l 0o

hw W

k
Wo —= & Ws) = Za
We have

Tw D (VD) (e, = Oamu

So both (&, and 6, make the left square of the above diagram commute. By the uniqueness
of 6., we must have 0, = (,&,. Therefore F; (v¢) = (F, (¥))(F, (¢)) and F, (1w,5)) = L(x.)-
Thus £ is a functor.

It is easy to see that F_ (¢ + o) = F, (¢) + F, (¢) and F, (cp) = cF, (¢). Therefore F is
a k-linear functor.

3.3 Properties of Reflection Functors

Let (I', A) be a quiver. For each v € I'y we denote by L., a simple representation defined by the
condition (L,); = 0 for 6 # v, (L), = K, fy=0forall ¢ € I';.

Theorem 1 1) Let (I', A) be a quiver and let 5 € Ty be a sink. Let V € £ (', A) be an indecom-
posable representation. Then two cases are possible:

a)V = Lg and FfV = 0.
b) F5 (V) is an indecomposable representation, Fjy Fi (V') =V, and the dimensions of the spaces
F g (V')., can be calculated by the formula

14



3.3 Properties of Reflection Functors 3 REFLECTION FUNCTORS

. dim Fij (V) :‘diva for~y 7é B,
dim Fj (V)3 = —dim Vj + EEEW dim Vy(p).

2) If the vertex « is a source, and if V € £ (T, A) is an indecomposable representation, then
two cases are possible:

a)V ~ Ly and F (V) = 0.
b) F; (V) is an indecomposable representation, F F;, (V) =V, and

dim F (V), = dim V, for v # «,
dim Fa_ (V)a =—dimV, + EEEF“ dim Vﬂ(g).

Proof. If the vertex [ is a sink with respect to A, then it is a source with respect to oz, and
so the functor Fjy F: Z(T',A) — Z(T', A) is defined. For each representation (V, g) € Z(I', A)
we set (Y, s) = Fg(V, g) and (Z,t) = F5 (Y,s) sothat Zg = (F5(Y))s = (Fﬁ’(Fg(V)))g =
(Fz F§)(V)s. We construct a morphism i FyFf(V,g) = (V,g). If v # B, then Fy F5 (V) =
V,, and we put (16)7 — Id, the identity mapping. For the definition of (i} 3, we consider the

following diagram of K -vector spaces.

FEY =KV k Ty

Ys D Va(e) Zgs “4)
= |
h
4 L @)s
A
Vi

Here the notation is the same as that of formulas (2) and (3). In particular, Y3 =Ker hy and
~ k
Zz =Coker hy = IGBIVQ(&.) /Kerhy. By the First Isomorphism Theorem, there exists a unique

linear map (i) 5 satisfying hy = (%) 3my. Now we check that i}, is a morphism. Let ¢ € T'j, we
want to show that the diagram

t
Zaey — Zs)

(ié)a(e)l l(ié)ﬂ(l)
Vato == Vi)
commutes. If ¢ ¢ '8, the verification is trivial, and we leave it to the reader. Let now ¢ = l; e s,
Then «(f;) # 3 so that Z,,) = Vi, and (z’@)a@j) = Id. Since V() = Ya(,) for all i, the
formulas preceding diagram (3) say that ¢;, = Ty Ky,q(¢,). Then

(i) ste, = () 67y Eva(,) = hvEva(,)

The latter equality holds, for if v € Vi), then hyky o) (v) = hy(0,...,v,...,0) = g, (0) +
oo+ g,(v) + ... 4 g4,(0) = go,(v). Here we used the formulas preceding the diagram (2).

Therefore the diagram below commutes.
TY KV, (£)

Vo —= 23

Idl i(if/)ﬁ

V) ——= Vs

15



3.3 Properties of Reflection Functors 3 REFLECTION FUNCTORS

Similarly, for each source vertex o we construct a morphism pf: V' — Fj F) g“ (V). Now we
state the basic properties of the functors £, Fg and the morphisms pf;, 26

Lemmal 1)FE(V, @ Vy) = FE(V)) @ FE(Ws).

2)p$; is an epimorphism and iy, is a monomorphism.

3) If 7/‘8/ is an isomorphism, then the dimensions of the spaces F’ g (V')., can be calculated from
(1.1.1). If p$ is an isomorphism, then the dimensions of the spaces F, (V). can be calculated
from (1.1.2).

4) The object Ker pS$; is concentrated at o (that is, (Ker p)., = 0 for v # «). The representation
V/Imi}, is concentrated at .

5) If the representation V' has the form F, 5 W (F P respectively), then 26 (p$y) is an isomorphism.
6) The representation V' is isomorphic to the direct sum of the representations F) 5 F 5“ (V) and

V/Im iy (similarly, V ~ FF (V)®Ker po).

Say how define direct sum in category, then use fact about categories then use that they are
additive functors to prove 1.

For 2 we have that for it to be an whatever all of it’s parts also have to be an whatever.

Proof. 1) We recall the direct sum construction for quiver representations. If V; = (V4, ¢1), Vo =
(Va, g2), we define V; @ Vo = (V4 @ Vi, h) as follows. Forall v € Ty, (Vi & Va), = (V1) @ (V2)4,
and forall / € T'q, ¢ : a(ﬁ) — ﬁ(f), hy = (gl)g D (gg)g : (‘/I)a(ﬁ) D (Vg)a(g) — (Vi)ﬂ(g) D (Vg)g(g).
The maps ¢; : (V1,91) — (V1 @ Vo, h) and m; = (V1 @ Vo, h) — (V4, ¢g1) are defined as follows.
For each v € T, (i1)y : (V1); = (Vi @ Va), = (V1)y ® (V2), is given by (i1),(a) = (a,0),
and (m1), : (V1)y @ (V2), — (V1) is given by (71),(a,b) = a. Then we define linear maps i :
(Va,92) = (V1,91)® (Va, go) and 7 = (V, g1) ®(Va, go) — (Va, g2) analogously. We leave it to the
reader to verify that ¢, 7, j = 1,2, are morphisms in Z(T', A), and that 7;¢; = 1(v, ), = 1,2,
as well as LT + LoTy = ]-(V169V2,h)‘

Since we know that Z(T", A) and .Z(T", 0, A) are additive categories and that ] and F, are
additive functors then the statement is a consequence of the following general result.

Proposition 1 Let # and € be preadditive categories, and F' : 8 — € an additive functor. If

L1 L2 Fuy Fio
A 2 A S Ay is adirect sum diagram in B, then FA, = FA S F A, is a direct sum diagram
T i) Fm Fmo

iné.
Proof: By assumption, 7;.; = 14, for j = 1,2, and ¢17; + tome = 14. Applying F', we get

FT('jFij = F(T&'jij) = F(lA]) = 1FA~

J

F’ilFﬂl + FigF?TQ = F(?:l’ﬂ'l) + F(i27r2) = F(ilﬂl + iQﬂ'g) = F(lA) = 1FA

2) To show that 26 is a monomorphism we need to check that all of its components are
monomorphisms. Since (26)7 = Id for v # (3, clearly the identity is a monomorphism. The First
Isomorphism Theorem says that the map (i}) in diagram (4) is a monomorphism. Therefore 7,
is @ monomorphism.

Similarly it is easy to verify that p{; is an epimorphism.

16



3.3 Properties of Reflection Functors 3 REFLECTION FUNCTORS

3) The first of the two formulas in Theorem 1 part 1b) is obvious. Since 16 is an isomorphism by

assumption, then (45) 5 is an isomrophism of vector spaces. We know from diagram (4) that hy =
(26) 3Ty, where my and (26) 3 are both epimorphisms, so hy is a composition of epimorphisms
making it an epimorhpism. Therefore we obtain an exact sequence of vector spaces.

0—FF (V)g—= B Vaey) —= Vs —=0

k k
Then dim & V) = > dim V) = dim F, ﬁ+ (V) + dim V. The Theorem 1 part 1b) equations
i=1 =1

follow.
Likewise, if p$; is an isomorphism then the equations from Theorem 1 part 2b) holds.

4) When y # a then (p¢), = Id, therefore (Ker p$;), = 0. For each 7 # 3 we have (iy,), =
Id: V., — V,, therefore (Im35.), = V so that (V/Im3.), = V. /V,, = 0.

5) When v # [ then (z‘ﬁ/)7 = Id which is an isomorphism. Since Vj is obtained by a negative
reflection functor, the map hy in diagram (4) is an epimorphism. Since hy = 7y (if) then (i5) 5
must be a epimorphism. Since we know (zf/) 5 1s @ monomorphism then 26 1s an isomorphism.

Similarly, the statement regarding pf> holds.

6) We have to show that V ~ FF (V) & V, where V = V/Imi},. The natural projection
b Vg — V3 has a section ¢3: Vi — Vj (¢305 = 1d). If we put ¢, = 0 for v # 3, we obtain a

morphism ¢ : V — V. Itis clear that the morphisms ¢ : V — Vandi @V Fy Fy 5 (V) — Vgivea
decomposition of V' into a direct sum. We can prove similarly that V =~ FF (V)® Kerp{. We
now prove Theorem 1. Let V' be an indecomposable representation of the category .2 (I", A), and
{3 a sink vertex with respect to A. Since V' ~ Fy Fg (V)® V/Im z'@ and V is indecomposable, V'
coincides with one of the terms.
Case I). V =V/Im z‘ﬁ, Then V., = 0 for v # [ and, because V' is indecomposable, V ~ Lg.
Case I1). V = Fy Fj(V), that is, i is an isomorphism. Then (Theorem 1 part 1) is satisfied
by Lemma 1. We show that the representation W = F) g (V) is indecomposable. For suppose
that W = W, © Wy. Then V. = F (W)) @ Fj; (W2) and so one of the terms (for example,
Fy(Ws))is 0. By (5) of Lemma 1 the morphism oW = F3 Fz (W) is an isomorphism, but
P(Wy) C F 3 Fz (W) = 0, that is, W5 = 0. So we have shown that the representation F; (V') is
indecomposable. We can similarly prove (2) of Theorem 1.

We say that a sequence of vertices a, . ..,y is a sink with respect to A if ay is a sink with
respect to A, a is a sink with respect to o,,, A, a3 is a sink with respect to 0,,,0,, A, and so on. We
define a source sequence similarly.

Corollary 1 Let (I', A) be an oriented graph and oy, s, ..., ar a sink sequence. 1) For any
i(1 <i<k),Fg -...-F; (L) is either 0 or an mdecomposable representation in L (I", \)
(here Lo, € Z(T,04, ,...00,\)).
2) Let V € Z (I, A) be an indecomposable representation, and
Ef - FL(V)=0
Then for some 1
VaF, ... - F, (La)

Qi—1
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4 THE QUADRATIC FORM

4 The Quadratic Form

Let I" be a graph without loops. The following definitions are from Bernstein’s paper. We denote
by &t the vector space over Q consisting of sets = (x,,) of rational numbers z,(a € ['y). We
call a vector = = (z,,) positive (written x > 0) if x # 0 and =, > 0 for all a € T'y,.

We denote by B the quadratic form on the space &1 defined by the formula B(z) = 3 22 —

a€el’y

> Ty (0)To(0), Where © = (z,), and 71 (¢) and ~»(¢) are the ends of the edge . We denote by
LeTy
<, > the corresponding symmetric bilinear form.

For each € I'y we denote by o4 the linear transformation in &t defined by the formula
(0px)y =z for v # B, (05x)s = —25 + Ypers ({), where y(¢) is the end-point of the edge ¢
other than /3.

We denote by W the semigroup of transformations of &t generated by the o3 (8 € I'g). W is
related to the Weyl group and o is often called the reflection.

For each 3 € Ty we denote by 3 the vector in &t such that (3),, = 0 for a # 3 and (3)5 = 1.

Lemma2 1) [fa,3 € Ty, # 3, then < @,a >= 1 and 2 < @, 3 > is the negative of the number
of edges joining o and 3. 2) Let 3 € Ty. Then og(x) = x — 2 < 3,x > (8,04 = 1. In particular,
W is a group. 3) The group W preserves the integral lattice in & and preserves the quadratic
form B. 4) If the form B is positive definite (that is, B(z) > 0 for x # 0), then the group W is
finite.

We will skip the proof and move onto more definitions.

Definition 1 A vector x € &t is called a root if for some 5 € I'o, w € W we have x = wp. The
vectors B(B € T'y) are called simple roots. A root x is called positive if © > 0.

18
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S5 Applications of Reflection Functors

Let (I, A) be a finite connected quiver. For each object V € Z(I", A) we regard the set of dimen-
sions dim V/, as a vector in & and denote it by dim V. We need the following unoriented graphs
to state the main result of the paper, they are known as Dynkin diagrams.

A, o o o -0 . o (nvertices,n > 1)
.
/
D, o o o -0 . o (n vertices,n > 4)
N\
FEs ° ° ° ° °
.
Er ° ° ° ° ° °
.
Ex o— o . e e o

Theorem 2 (Gabriel [2]). 1) If in £ (', A) there are only finitely many non-isomorphic indecom-
posable objects, then I coincides with one of the graphs A,,, D,,, Es, F7, Es.

2) Let I be a graph of one of the types A, D,,, Eg, E7, Es, and A some orientation of it. Then
in Z(T',\) there are only finitely many non-isomorphic indecomposable objects. In addition,
the mapping V. +— dim V' sets up a one-to-one correspondence between classes of isomorphic
indecomposable objects and positive roots in &r.

We show how reflection functors F’ gr and F were used to prove part 2 the following theorem.
The following result shows that under the assumptions the quadratic form B is positive definite.

Proposition 2 The form B is positive definite for the graphs A,,, D,,, Es, E7, Es and only for them.

Theorem 1 says that if 3 is a sink and V' is an indecomposable representation of (I", A), not
isomorphic to Lg, then dim Fgr V = 0p(dim V). Part 2 of Lemma 1 says that o is an invertible

19



5 APPLICATIONS OF REFLECTION FUNCTORS

linear transformation. Since B is positive definite then o is an orthogonal reflection about a cer-
tain hyperplane in &r. Due to this fact, Fgr got its name as a reflection functor. Repeated use of
Corollary 1 implies that there is a bijection between nonisomorphic indecomposable representa-
tions of (I', A) and the positive roots, given by V' +— dim V. By part 4 of Lemma 1, the group W
is finite. Hence, the set of roots is finite and so is the set of positive roots. Therefore the set of
nonisomorphic indecomposable representations is finite.

20
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