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Abstract 

This dissertation examines disadvantaged students through a unique and novel lens and 

investigates the effects of Universal Free Meals (UFM) – a program available to schools with 

sizable economically disadvantaged populations – on student well-being and district financial 

feasibility. UFM provides free meals to all students, regardless of household income, in an 

attempt to increase participation in school meals and ensure all students have access to nutritious 

meals. The Hunger Free Kids act of 2010 expanded the availability of UFM via the Community 

Eligibility Provision (CEP). CEP allows schools, clusters of schools, or entire districts to adopt 

UFM if 40 percent or more of students are directly certified eligible for free lunch. The rapid 

expansion of UFM across the U.S. over the last decade has led to growing empirical evidence of 

UFM’s positive effect on student outcomes such as participation in school food, attendance, test 

scores, and disciplinary measures. This recent surge in research often characterizes a reduction in 

stigma as the mechanism through which UFM improves student outcomes. However, this 

characterization has yet to be empirically examined. As of 2019, a majority of eligible schools 

across the U.S. have adopted UFM via CEP. The widespread adoption of UFM causes 

policymakers to speculate if UFM has any unintended consequences, including deleterious 

effects on student health and district finances.  

The first essay in this dissertation sheds light on the impact of UFM on student 

perceptions of school climate by exploiting the staggered adoption of UFM in New York City 

middle and high schools. Findings reveal that UFM improves perceptions of bullying, fighting, 

and safety at school. Moreover, students who would have received free meals in the absence of 

UFM begin to participate post UFM exposure. This suggests that UFM influences participation 

and likely perceptions for reasons other than reductions in prices. Another essay examines CEP 



 
 

 
 

adoption in districts across New York State. These findings offer new insights into how districts 

pay for UFM via CEP while investigating the possible deleterious effects of UFM on student 

obesity. While the reimbursement structure of CEP is more generous in comparison to other 

UFM provisions, some fear that CEP exacerbates school food deficits and forces districts to foot 

the bill. Furthermore, UFM critics worry that students may double up on meals, thereby 

increasing total caloric intake and contributing to childhood obesity. However, results indicate 

that UFM improves obesity rates – particularly in older grades and that, on average, federal 

reimbursements cover increases in expenditures due to meal fee revenue losses and the 

additional food expenditures that follow an increase in participation.  

Economic disadvantage (ECD) is only one of many hurdles students encounter. The last 

essay in this dissertation descriptively illustrates student disadvantage by examining the 

prevalence and achievement gaps of the doubly disadvantaged – a group largely ignored in the 

education landscape. In addition to ECD, disadvantage in this context describes students with 

disabilities (SWD) and English language learners (ELL). Results indicate that a nontrivial share 

of students are doubly disadvantaged and that achievement gaps are largest among students that 

are both ECD and SWD. Furthermore, the essay discusses the implications of ignoring these 

students for district funding and federal accountability requirements.  

While two of the three essays evaluate the effects of providing free school meals on 

student well-being and district finances among largely ECD populations, the third essay 

emphasizes the importance of recognizing the complexities of student disadvantage. Together, 

these essays offer insights into the identification of disadvantaged students and the effects of 

policies meant to improve circumstances among disadvantaged populations. This dissertation 



 
 

 
 

fills gap in the literature by providing profound reflection on the populations these programs 

serve, as well as the financial feasibility and effects of such programs on student well-being.  
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Chapter 1: The Effect of Universal Free Meals on Student Perceptions of School Climate: 

Evidence from New York City  

  

  



2 
 

 
 

I. Introduction 

In a 2014 report, the United States Department of Agriculture (USDA) found almost half 

of districts nationwide had some form of “shaming policy,” in which students with unpaid meal 

debts are publicly acknowledged in front of their peers (USDA, 2014).  These actions, in 

addition to the traditional way in which students pay for school meals, may provide opportunities 

for students to bullying one another. As of 2019 at least 5,000 districts across the US provide 

free meals to all students, regardless of household income, under Universal Free Meals (UFM). 

Because it removes both differential pricing and opportunities to shame students, it is likely that 

UFM affects how students perceive their school climate.  

Over 500 schools in New York City (NYC) adopted UFM between 2010 and 2017, while 

numerous others had already implemented the free meal program prior to 2010. Furthermore, 

NYC is highly motivated to understand and evaluate school climate, and therefore has 

administered annual school environment surveys to 6th-12th grade students since 2010. Exploiting 

the variation in timing of adoption of UFM, as well as rich administrative data and student 

responses to surveys, I examine whether the UFM expansion in NYC increased meal 

participation and improved student perceptions of school climate.  

School climate describes the quality and character of school life and includes students’ 

norms, beliefs, relationships, and learning practices, and students’ perceptions of their learning 

environment can heavily influence their social and emotional well-being, as well as academic 

success (Freiberg, 2005; Cohen, McCabe, Michelli, & Pickeral, 2009; Wang et. al., 2014; Davis 

& Warner, 2018; Arseneault, Walsh, Trzesniewski et al., 2006; Juvonen, Wang, & Espinoza, 

2011; Lacoe 2016). Schools often administer school environment surveys to gain insight into 
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how students perceive school climate and include questions pertaining to academic climate, 

student relationships with their peers and teachers, and the institutional environment itself.  

In a positive school climate, students feel socially, emotionally, and physically safe 

(Cohen, McCabe, Michelli, & Pickeral, 2009). A safe environment is necessary for student 

learning, and inter-group and inter-personal relationships are essential for social and emotional 

well-being (Maslow, 1970; Cohen, McCabe, Michelli, & Pickeral, 2009; Wang et. al., 2014). 

However, a negative school climate, in which students feel uncertain about what the day at 

school will hold, can have detrimental effects on student behavior and academic outcomes. 

Students preoccupied with their own safety or bullying may be less willing to go to school and 

less likely to allocate the necessary higher-order thinking skills to the day’s lessons, resulting in 

poor academic outcomes. Prior research finds associations between school climate and academic 

achievement. More specifically, scholars find bullying affects student feelings of safety, which in 

turn affects their academic achievement. (Davis & Warner, 2018; Arseneault, Walsh, 

Trzesniewski et al., 2006; Juvonen, Wang, & Espinoza, 2011; Lacoe 2016). 

School cafeterias are particularly salient in shaping school climate as they offer students a 

daily opportunity to interact with less supervision than what is experienced in a classroom 

setting. In fact, scholars regularly gain insight into intergroup relations between students of 

different socioeconomic statuses, abilities, and races by observing student behavior in cafeterias 

(Carter et. al., 2005; Echols, Solomon, & Graham, 2014). Lunch time for students may be spent a 

number of ways, including sitting with friends or worrying about with whom to sit. It also 

provides students the opportunity to eat school lunch, the price of which depends on each 

student’s family income. Given that students with lower household incomes receive meals at a 

free or reduced price – and that a nontrivial share of schools implement shaming techniques for 
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students with unpaid meal debts – lunch time affords students the opportunity to observe and 

identify each other as “poor.”  

UFM removes the visible signals of socioeconomic status by making all meals free for all 

students. Therefore, one might expect UFM to improve perceptions for those who potentially 

experience feelings of stigma associated with school food. However, it is possible that UFM 

improves perceptions for all students.  For example, advocates claim the implementation of 

school uniform policies negate the everyday distraction of “wearing the right thing,” particularly 

for low-income students, by creating an environment in which students’ familial resources are 

not as easily identifiable through students’ clothing. However, scholars find more far-reaching 

effects: school uniforms improve the school environment (i.e., students felt safer and reported 

less bullying) among all students (Murray, 1997; Brookshire, 2016). Similarly, while some may 

believe UFM is targeted toward providing stigma relief among “poor” students, UFM could 

improve perceptions of school climate for all students, regardless of poverty status or 

participation behavior.   

Over the last decade, an increasing number of schools and districts across the US have 

adopted UFM. Recent research finds UFM increases participation in school meals, raises test 

scores, reduces incidences of bad behavior, and may have positive effects on student weight 

outcomes (Altindag, Baek, Lee, & Merkle, 2018; Gordon & Ruffini, 2018; Schwartz & Rothbart, 

2019). Additionally, advocates cite stigma reduction as one of UFM’s many benefits, but to date, 

scholars have yet to provide empirical evidence of this claim.  

This paper fills the gap in the literature by being the first to examine whether UFM 

influences student perceptions of school climate. I use rich/detailed student-level data on meal 

participation and survey responses for NYC students in grades 6-12 from 2013-2017 to examine 
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whether and to what extent UFM changes student meal participation behavior and perceptions of 

school climate. The survey covers a range of topics, including whether students observe bullying 

and feel safe, and response rates range from 80-90 percent of all 6th-12th grade students each 

year. Survey data is combined with administrative records from the NYC Department of 

Education (NYCDOE), which includes demographics, certification status for free/reduced-price 

meals, and the UFM status of the school each student attends. NYC schools adopt UFM at 

different times across 2013-2017. Therefore, I use a difference-in-differences design and student 

fixed effects to exploit students’ staggered exposure to UFM among those that are ever exposed.  

I find UFM increases lunch participation, specifically for students who have ever had to 

pay for school meals. In addition, UFM improves perceptions of bullying, fighting, and safety for 

all students, regardless of poverty or participation status. Notably, students that participated in 

the prior year or have ever certified eligible report feeling safer in less supervised areas of the 

school, including the cafeteria. An increase in participation is expected when food becomes free 

for students who, in the absence of UFM, would pay. However, I find UFM induces participation 

even among students for whom meals were previously free. This suggests that factors beyond 

price change – perhaps including stigma – influence students’ decision to participate.  

II. Background & Theory 

Background on UFM 

The National School Lunch Program (NSLP) and School Breakfast Program (SBP) are 

federally funded programs that provide subsidized meals to students in over 100,000 public and 

private schools and childcare centers. All students may participate in school food, however, the 

price each student pays is determined by each student’s household income. NSLP and SBP 
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provide free meals to students with household incomes up to 130 percent of the federal poverty 

line, reduced-price meals to students with household incomes up to 185 percent, and full price 

meals for all other students. Students are certified as eligible for free/reduced-price meals in one 

of two ways: 1) returning completed applications indicating the student’s household income or 2) 

through direct certification, in which schools match students to a state-provided database of 

Supplemental Nutrition Assistance Program (SNAP)/Temporary Assistance for Needy Families 

(TANF)/Medicaid participants.  

SBP and NSLP improve the nutrition of participating students, particularly among 

disadvantaged students (Bhattacharya, Currie, & Haider, 2006; Gunderson, Kreider, & Pepper, 

2012; Smith 2017). However, student participation rates are regarded as low, even among free-

lunch certified students. This suggests participation behavior depends on something other than 

price barriers. There are likely several factors beyond price that influence a student’s decision to 

participate in school food, including school food menus, availability of competing foods in the 

cafeteria, general attitudes toward school food, and the potential stigma that comes from 

choosing food associated with “poor kids” (Toosi & Schwartz, 2019; Bhatia, Jones, & Reicker, 

2011). Moreover, these attitudes can influence whether students eligible for free/reduce-priced 

meals turn in applications to be formally certified, and may help explain why, in some contexts, 

over 10 percent of income eligible students are not certified for free/reduce-priced meals 

(Domina et. al., 2017). 

Student participation in school food, whether by certifying eligible for free/reduced-price 

meals or simply eating the meals provided, can signal information about familial resources to a 

student’s peers (Stein, 2008). Students demonstrate their agency by choosing whether to 

participate and make these choices partly based on their perceptions of belonging (Roper & La 
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Niece, 2009). Moreover, student attitudes toward school food, the idea that it is for “poor kids,” 

and the associated treatment of identified students may affect how participating students feel at 

school. Therefore, to avoid the stigma of being associated with free food, students may choose to 

not participate (Bhatia, Jones, & Reicker, 2011; Pogash, 2008).  

Furthermore, students may avoid participating in school food to escape their school’s 

consequences for not being able to pay. Some schools force students with unpaid meal debts to 

throw away their originally provided hot meal and replacing it with a cold sandwich, while 

others require students to “work off their debts” by cleaning the cafeteria (Reynolds, 2019; 

Siegel, 2017). Other schools have even sent letters home threatening parents with child 

protective services for sending their child to school without lunch money (Vera, 2019). While the 

consequences of these policies can be visible to all students, students directly affected by these 

policies are those in the position to accrue school food debts (i.e., reduced- and full-price 

students). Students who are consistently certified for free meals are immune to accruing school 

meal debt and are therefore immune to the shaming associated with these policies. 

Any disincentives to participate among already food-insecure students could have lasting 

effects on participation behavior. These students may miss out on the benefits associated with 

school food and full stomachs (Bhattacharya, Currie, & Haider, 2006; Gunderson, Kreider, & 

Pepper, 2012; Schwartz & Rothbart, 2019). Hunger can make it difficult to concentrate and even 

potentially increase the likelihood students exhibit aggressive behavior. (Jyoti, Frongillo, & 

Jones, 2005; Kleinman, R. E. et al, 1998). In an effort to reduce administrative costs and 

burdens, as well as increase participation in school meals, schools in recent years have adopted 

more inclusive school meal policies and programs, such as Breakfast in the Classroom (BIC) and 
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UFM.1  Schools and school districts can provide UFM for all students, regardless of household 

income, through federal regulations such as Provision 2 and the Community Eligibility Provision 

(CEP), among others.2 These provisions federally reimburse schools or districts depending on 

certified free/reduced-price meal eligibility rates, thereby decreasing the administrative burden of 

keeping up with student debts. In addition to simplifying administrative complexities, advocates 

believe these programs increase participation and decrease the stigma students associate with 

school-meal program participation (Bhatia, Jones, & Reicker, 2011; Pogash, 2008; Stein, 2008).  

Prior research finds UFM increases lunch participation and improves academic and 

weight outcomes, with few consequences for district finances (Kitchen et al., 2017; Leos-Urbel 

et. al., 2013; Schwartz & Rothbart, 2019; Rothbart, Schwartz, & Gutierrez, 2020; Davis & 

Mussadiq, 2018). Moreover, Schwartz and Rothbart (2019) examine potential heterogeneous 

effects of UFM and find UFM increases lunch participation among both full-price and previously 

certified free/reduced-price students.  

In addition to academic and health outcomes, scholars find UFM decreases student 

behavioral incidences. Gordon and Ruffini (2018) find UFM through CEP reduces suspension 

rates among elementary and middle school students, and the West Virginia Department of 

Education school staff reported a decline in behavioral offenses and disciplinary actions post 

 
1 BIC provides students with free breakfast in the classroom, as opposed to the cafeteria, after the school day begins. 
2 Since 1980, schools where at least 80 percent of enrolled children are eligible for free or reduce-priced meals can 

also implement UFM under Provision 1. Since 1995, schools can also offer UFM under Provision 3, which sets 

reimbursement levels based on the average number of meals served by eligibility group in the most recent year in 

which the school tracked individual lunch utilization (rather than the average percentages by eligibility group, the 

method used under Provision 2). Under Provision 3, reimbursements are adjusted for inflation and enrollment, but 

not for changes in the number of meals served (Schwartz & Rothbart, 2019). Under CEP, a school, cluster of 

schools, or district can adopt UFM. A school(s) is eligible for CEP if at least 40 percent of the student body is 

directly certified. There may be a greater incentive to adopt UFM under CEP, as CEP schools and districts are 

reimbursed at the free lunch rate at 1.6 times the ISP rate. This means schools or districts with direct certification 

rates greater than or equal to 62.5 percent are reimbursed at the full, “free” federal rate for all meals served. 
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UFM adoption (Meharie et. at., 2013). Outside of the US, others claim UFM-like programs 

remove the ability for students to identify others as poor and therefore decrease the incidences of 

physical fights by 35 percent (Altindag, Baek, Lee, & Merkle, 2018).  

The literature often characterizes the mechanism through which UFM affects these 

outcomes as a decrease in stigma. Exploring the direct effects of UFM on student perceptions of 

school climate may serve to explain the indirect effects or mechanisms responsible for changes 

in outcomes already examined in prior research. I contribute to this literature by examining the 

effect of UFM on student perceptions of school climate, as well as heterogeneous effects of UFM 

on participation and perceptions by student poverty and participant status. This study uses 

detailed, student level data to estimate the impact of UFM on 6th-12th grade student participation 

behavior and perceptions of school climate. Using the longitudinal nature of the panel to identify 

students’ past participation behavior and poverty status, I am able to explore heterogeneous 

effects for specific students (e.g., those that were eligible for free meals but did not participate in 

the year prior to UFM exposure). This is the first study to my knowledge that estimates the 

effects of UFM on student perceptions of school climate using individual meal participation and 

student responses to school climate surveys. 

 UFM in NYC 

NYC provides a unique environment for studying the effect of UFM on students 

(Schwartz & Rothbart, 2019). It is the largest school district in the country, serving over 1 

million students in 1,500 public schools that are subject to the same rules and regulations. For 

context, breakfast in NYC has been free for all students since 2004, and students eligible for 

reduced-price lunch have received free lunch since 2013. The remaining full-price students are 

responsible for paying $1.75 per school lunch.  
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Since 2010, over 500 NYC schools have adopted UFM for the first time. According to 

the NYCDOE Office of School Food, each school’s adoption of UFM is based on a myriad of 

considerations, including but not limited to political, institutional, and administrative factors. The 

application process can take up to a year, during which a number of items can delay the process, 

including increased staff workloads, staff turnover, budget considerations, changes in student 

composition, etc. Similarly, it is unlikely that students, parents, or staff choose schools based on 

a school’s UFM status. However, it is true that schools that adopt UFM are more likely to serve 

students with similar characteristics. Therefore, the decision to adopt UFM may be endogenous, 

but each schools’ timing of UFM adoption is plausibly exogenous.  

Prior research has investigated the effect of UFM on stigma and school experiences from 

the perspective of school principals. Close to three-fourths of NYC principals that responded to 

surveys agreed that UFM reduced stigma attached to students who qualify for free or reduce-

priced meals, and more than half reported improved dining experiences and social interactions 

among students in the cafeteria (Peralta, 2016). However, scholars have yet to examine the effect 

of UFM from the student perspective. 

UFM takes place in the cafeteria where students can use food to foster connections, show 

their agency, and manage relationships in a less supervised setting (Neely, Walton, & Stephens, 

2014). Figure 1 shows the two theoretical pathways in which UFM may influence student 

perceptions of school climate. As noted above, UFM likely increases student participation by 

making meals free. Based on the law of demand, this price elimination largely affects students 

that, prior to UFM, had to pay for meals. This increase in participation can affect the way 

students interact in the cafeteria (e.g., more students are taking school meals, standing in line 

together, and eating the same food). Moreover, these interactions are likely spill over to 
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interactions outside of the cafeteria, such as the classroom or outside of school. Both of these 

changes in interactions can lead to improved school climate perceptions.  

UFM may also affect student perceptions of school climate in ways other than through 

the price of school food. Prior to UFM, students could identify others with unpaid meal debts as 

those eating a school-provided peanut butter and jelly sandwich instead of the standard hot meal. 

Post UFM, all participating students can receive a standard meal for free, eliminating physical 

signals of poverty. UFM may also alleviate student hunger and, therefore, the subsequent 

aggression among hungry but formerly not participating students. UFM may also change which 

students are present in the cafeteria. Some schools have “off-campus” lunch and allow students 

to leave the school grounds during their lunch break. The availability of free meals may induce 

students that were previously absent from the cafeteria to eat lunch at school, changing the 

student composition of the cafeteria.  

It is difficult to identify and measure each of these factors individually. However, overall 

changes in these factors can contribute to the school connectedness vital for creating favorable 

social environments for all students and influence student interactions in the cafeteria and 

elsewhere (National Research Council, 2002; Rowe & Stewart, 2009).  This “whole school” 

policy that allows students to interact while minimizing visible social barriers may encourage 

positive relationships within a school community (Rowe & Stewart, 2011). In turn, these 

interactions likely influence school climate perceptions.  

III. Data 

This analysis uses a panel of 6th-12th grade NYC students from 2013-2017 from the 

NYCDOE and includes individual, daily meal transaction data. The data contains information on 
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over 100,000 unique students, including sociodemographic characteristics such as gender, 

race/ethnicity, primary language spoken at home, English language learner (ELL) status, 

free/reduce-priced meal eligibility status, and student with disabilities (SWD) status, as well as 

individual student responses to the annual NYC School Environment Survey.  

NYC School Environment Survey 

The NYC School Environment Survey is administered annually to all students in grades 

6-12 and includes approximately 60 questions regarding students’ experiences in their school 

environment. To participate, students must be enrolled in their respective school as of early 

November. Schools administer the survey during the school day and are instructed to give 

students a full class period to ensure high response rates. Once completed, schools send the 

survey responses to the office of NYCDOE. The survey period ends and results are collect by 

March 31 of each year. 

The survey uses a Likert scale format, in which students circle the number that 

corresponds to their answer.3 Figure 2 shows the standard instructions provided at the top of each 

survey and describes the voluntary and confidential nature of the survey, as well as the survey’s 

purpose – emphasizing that it is not a test and there are no wrong answers. Approximately 83 

percent of the 6th-12th grade student population respond to the survey each year. The NYCDOE 

provides an annual report regarding the survey results and publicly provides student response 

rates by school each year. For example, in 2016, 97.8 percent of NYC schools participated, with 

an average student completion rate of 82.3 percent.  

 
3 Due to the diverse nature of NYC students, surveys are available in Bengali, Chinese, English, French, Haitian, 

Creole, Korean, Russian, Spanish, and Urdu. 
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The NYCDOE collaborates with the Research Alliance for NYC Schools, making minor 

revisions to the survey each year. General revisions include elimination of items found to be 

redundant, the addition of items to improve the strength of existing measures, and revision of 

existing items to improve clarity. Prior research has utilized student responses to the NYC 

School Environment Survey, examining bullying by grade, the effect of student reported 

classroom safety on academic achievement, and the impact of school accountability grades on 

student reported school quality (Lacoe, 2016; Schwartz, Stiefel, & Rothbart, 2016; Rockoff & 

Turner, 2010).  

Prior research by Rockoff and Speroni (2008) finds the NYC School Environment Survey 

to be an accurate reflection of student perceptions. They find responses are distinct and capture 

unique perspectives between teachers, students, and parents. Moreover, survey items have high 

internal consistency and strongly correlate with external measures of the learning environment 

(Schwartz, Stiefel, & Wiswall, 2016; Rockoff & Speroni 2008; Charbonneau & Van Ryzin, 

2012; Nathanson, et. al., 2013). For example, Lacoe (2013) assesses the construct validity of the 

bullying measure by comparing it to school-level administrative measures of school violence and 

finds responses are highly correlated with school reports of violence.  

Survey Measures 

The NYC School Environment Survey includes questions about students’ perceptions of 

bullying, fighting, respect, and feelings of safety. Table 1 lists the survey questions I use as 

measures of school climate. I treat each question as an individual outcome and code each as 

indicator variables equal to 1 if the student answered positively (i.e., None of the time/Some of 

the time for Bullying and Fighting, and Agree/Strongly agree for Respect, Safety: Class, Safety: 
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Inside, and Safety: Outside) and 0 otherwise.4 As shown in Table 1, survey questions describe 

peer-reported, general student interactions (i.e., bullying, fighting, respect), as well as self-

reported interactions in which the student is a participant (i.e., safety in class, inside, outside). 

Self-reported measures can provide insight into the perceptions of each specific student, while 

peer-reported measures are likely to paint a realistic picture of actual peer group interactions 

during unsupervised times of the school day (Graham, Bellmore, & Juvonen, 2003; Nakamoto & 

Schwartz, 2010). 

Poverty Measures 

While all students can participate in school food, eligibility for free or reduce-priced 

meals, in the absence of UFM, depends on student household income. I define student poverty by 

his or her certified eligibility for free/reduce-priced meals. Students certify eligible by either 

returning application forms or direct certification.5 The majority of schools in NYC use direct 

certification to determine who is certified eligible for free/reduce-priced meals, however it is 

possible there are students who are not certified via direct certification (i.e., not a participant in 

SNAP/TANF/Medicaid) but are income eligible. These students can separately submit 

free/reduce-priced meal applications to gain access to free/reduce-priced meals. However, the 

incentive to return forms, and therefore ability of researchers to identify students as poor, 

declines when schools adopt UFM where all students receive free meals. Therefore, using the 

free/reduce-priced status of students in UFM years may not be an accurate representation of the 

 
4 Scholars find using binary indicators captures “empirical action” compared to other ways of categorizing such 

variables (Cannon, Jacknowitz, & Painter, 2006; Stiefel, Shiferaw, Schwartz, & Gottfried, 2018; Gibbons & Silva, 

2011), not to mention ease of interpretation. 
5 A method by which schools match students to a state-provided database of SNAP/TANF/Medicaid participants. 
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income eligible population. Instead, I use students’ poverty status via their certified eligibility for 

free/reduced price meals in years in which they were not exposed to UFM from 2010-2017.  

Michelmore and Dynarski (2017) explore academic achievement by the frequency with 

which students are observed certified eligible for free/reduce-priced meals and find “sometimes 

poor” students perform worse than their “never poor” counterparts. However, students observed 

consistently poor perform far worse than both other groups. Because my poverty indicator 

directly relates to school meal participation, UFM may affect inconsistently certified eligible 

students differently than always or never certified students. Therefore, I use students’ certified 

eligibility in nonUFM years to classify students as one of the following time-invariant statuses: 

Always Poor, Sometimes Poor, or Never Poor. Always Poor equals 1 if a student is consistently 

observed as poor (certified eligible) in all nonUFM years and 0 otherwise. Sometimes Poor 

equals 1 if the student is observed as poor in one nonUFM year and non-poor in another 

nonUFM year, and 0 otherwise. Never Poor equals 1 if a student is never observed poor in a 

nonUFM year, and 0 otherwise.  

Participation Measures 

Student breakfast participation (SBP) and lunch participation (SLP) refer to the percent of 

school days a student participated each year (i.e., the total number of breakfasts or lunches a 

student received, divided by the total number of school days in the school year). Daily meal 

transaction data is available for students who attend schools with Point-of-Service (POS) 

tracking systems which record meal transactions with student ID and time stamps. These systems 

require students to either enter their ID number on a keypad or swipe their ID card at the time of 

transaction to track student account information. 
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Figure 3 depicts SLP in 2013. A large share of students participates less than 10 percent 

of the year (~18 days). These are likely instances of students forgetting their brown bag lunch at 

home and substituting with school meals. The share of students participating more than 10 

percent of the time levels off before gradually rising around 50 percent. UFM may affect 

students’ participation and perceptions of school climate differently depending on their past 

participation behavior. For example, UFM may induce students who rarely participated last year 

to participate more often. Moreover, if these students did not participate for reasons other than 

price, UFM may affect their perceptions of school climate. To explore UFM’s effect on student 

participation and perceptions of school climate at the extensive margin, I create the time-varying 

binary indicator, Participant equal to 1 in years in which a student participated in school lunch 

10 percent of the time or more in the prior year. Similarly, Non-Participant is equal to 1 in years 

a student participated in school lunch less than 10 percent of the time.   

Sample Description 

The student-level data provided by the NYCDOE is matched using unique student IDs to 

each student’s specific survey response for each year. Because students that ever attend a UFM 

school are likely different from students that never attend a UFM school, the sample of students 

includes only to 6th-12th grade students that attended a UFM school at least once from 2013-

2017. The analytic sample used in this analysis includes students whose poverty status is 

observed in a nonUFM year from 2010-2017 and who have at least two years of meal 

participation and survey response data. Since students must have participation data to be 

included in the sample, any estimated changes in participation or perceptions cannot be attributed 

to students’ new exposure to POS systems. 



17 
 

 
 

Table 2 presents descriptive statistics of Ever UFM students in 2013. Students in the 

Analytic Sample (Column 2) resemble All Ever UFM students (Column 1). Columns 3-5 display 

the characteristics of students in the Analytic Sample by subgroup: Always Poor, Sometimes 

Poor, and Never Poor. Students characteristics differ across poverty subgroups. For example, 

Always Poor students are more likely to be Hispanic, speak a language other than English at 

home, and be ELL and SWD compared to their Sometimes Poor and Never Poor counterparts. 

Never Poor students, on the other hand, are more likely to be white and less likely to be ELL and 

SWD.  

Always Poor students in sample participate in school meals most often (56 percent of 

lunches and 13 percent of breakfasts), followed closely by Sometimes Poor students. However, 

Never Poor students participate far less in lunch at 37 percent. Never Poor students are most 

likely to positively perceive their school climate. For example, 78 percent of Never Poor students 

report bullying occurs either none or some of the time, compared to 72 percent of Always Poor 

students and 70 percent of Sometimes Poor students. Interestingly, Sometimes Poor students are 

the least likely to positively perceive their school environment, consistently reporting 0.5 to 3.0 

percentage points below Always Poor students. Sometimes Poor students may experience more 

uncertainty than their Always Poor counterparts since they are eligible for free meals in some 

years but not others. Given that baseline perceptions of Sometimes Poor students are lower than 

Always Poor students, it is possible that UFM differentially affects their school climate 

perceptions.  

IV. Empirical Strategy 

Baseline Model 
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I use a difference-in-differences strategy with student fixed effects, comparing student 

perceptions of school climate before and after exposure to UFM from 2013-2017 to estimate the 

effect of UFM on school meal participation and student perceptions of school climate:  

where 𝑌𝑖𝑔𝑠𝑡 is a vector of continuous outcomes regarding meal participation (SBP, SLP) and 

binary outcomes of school climate (Bullying, Fighting, Respect, Safety: Class, Safety: Inside, and 

Safety: Outside) for student i, in grade g, in school s, in year t. 𝑈𝐹𝑀𝑖𝑔𝑠𝑡 takes a value of 1 if 

student i attends a UFM school in year t. 𝑿′𝒊𝒔𝒈𝒕 is a vector of time-varying student characteristics 

including ELL and SWD status. Robust standard errors are clustered at the school level, and 𝛿𝑖, 

µ𝑔, 𝛼𝑠, and 𝛾𝑡 are student, grade, school, and year fixed effects, respectively. Given the large size 

of my panel and therefore, the availability of four different fixed effects, I can compare students 

to themselves over time, as well as within school while controlling for idiosyncrasies across 

grades and time. 𝛽1 reflects the effect of UFM exposure on each outcome.  

Heterogeneous Effects of UFM 

 My poverty indicators are directly related to participation in school food since they are 

based on the price students pay for school meals in the absence of UFM. This, in combination 

with how students’ poverty status might affect how they are perceived at school may lead to 

differential effects of UFM on student participation and perceptions. Therefore, I examine the 

effect of UFM by poverty status by interacting a student’s time-invariant poverty indicator (i.e., 

Always Poor, Sometimes Poor, Never Poor) with their time-varying UFM status. The coefficient 

on each interaction identifies the effect of UFM on meal participation and perceptions for each 

type of student. Because UFM eliminates prices, one might expect participation to increase 

𝑌𝑖𝑔𝑠𝑡 = 𝛽0 +  𝛽1𝑈𝐹𝑀𝑖𝑔𝑠𝑡 + 𝛽2𝑿′𝒊𝒔𝒈𝒕 +  𝛿𝑖 +  µ𝑔 + 𝛼𝑠 +  𝛾𝑡 +  𝜀𝑖𝑔𝑠𝑡                     (1) 
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among those who have previously paid (i.e., Sometimes and Never Poor students). In addition, 

because UFM potentially removes visible signals of poverty for those ever having been in 

poverty (i.e., Always and Sometimes Poor students), one might expect these students’ 

perceptions to improve relative to their Never Poor counterparts. 

Furthermore, if students base participation decisions on price and/or attitudes toward 

school food, it is likely that UFM differentially affects student participation and perceptions by 

participant status. Consequently, I interact each student’s prior year participant status (i.e., 

Participant, Non-Participant) with their time varying UFM status. An increase in participation 

among Non-Participants means UFM induces students to participate, whereas an increase in 

participation among Participants signifies an increase in the intensity with which students 

participate. If students associate some sort of stigma with participation in school food, one might 

expect improvements in perceptions among those that have a history of participating (i.e., 

Participants). 

Prior literature finds increased participation in school lunch post UFM exposure among 

both poor and nonpoor students (Schwartz & Rothbart, 2019). However, whether students 

change participation at the intensive or extensive margin remains unknown. The decision to 

change participation behavior could be a function of several factors, including meal prices and 

attitudes toward school food. By identifying students using both their participation and poverty 

status in the year prior to UFM exposure, I can examine the heterogeneous effects of UFM on 



20 
 

 
 

meal participation and student perceptions. Therefore, I restrict the sample to students for whom 

I observe the year prior to UFM exposure and estimate the following model:  

where PoorParticipant is an indicator equal to 1 if the student was certified eligible for 

free/reduce-priced meals and was a Participant in the prior, nonUFM year. NonPoorParticipant 

equals 1 if the student was not certified eligible and was a Participant. PoorNonParticipant 

equals 1 if the student was certified eligible and was not a Participant, and 

NonPoorNonParticipant equals 1 if the student was not certified eligible and was not a 

Participant.    

 Each indicator is interacted with UFM, the coefficient of which identifies the effect of 

UFM on meal participation and perceptions of school climate for each type of student. For 

example, NonPoorNonParticipants were required to pay for school lunch and did not participate 

prior to UFM. Therefore, if these students increase SLP post UFM, it is likely due to the decrease 

in price. However, PoorNonParticipants would have received free meals in the absence of UFM 

and did not participate. If these students increase SLP under UFM where meals are still free, it 

cannot be attributed to the removal of price barriers. Instead, it is likely due to the other avenue 

in which UFM can affect participation and perceptions, including factors such as the removal of 

welfare signals, effects of hunger, and/or composition of the cafeteria (Figure 1).  

 

\ 

𝑌𝑖𝑔𝑠𝑡 = 𝛽0 +  𝛽1𝑈𝐹𝑀𝑖𝑔𝑠𝑡 ∗ 𝑃𝑜𝑜𝑟𝑃𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡𝑡−1 + 𝛽2𝑈𝐹𝑀𝑖𝑔𝑠𝑡 ∗ 𝑃𝑜𝑜𝑟𝑁𝑜𝑛𝑃𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡𝑡−1 + 

                    𝛽3𝑈𝐹𝑀𝑖𝑔𝑠𝑡 ∗ 𝑁𝑜𝑛𝑃𝑜𝑜𝑟𝑃𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡𝑡−1 +  𝛽4𝑈𝐹𝑀𝑖𝑔𝑠𝑡 ∗ 𝑁𝑜𝑛𝑃𝑜𝑜𝑟𝑁𝑜𝑛𝑃𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡𝑡−1 

+ 𝛽5𝑿′𝒊𝒔𝒈𝒕 +  𝛿𝑖 +  µ𝑔 + 𝛼𝑠 +  𝛾𝑡 +  𝜀𝑖𝑔𝑠𝑡            (2) 
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Testing for Pre-Trends  

 I use an event study design to examine whether there are pre-trends in school climate 

responses prior to UFM exposure. For this analysis, I restrict the sample to students that were 

exposed to UFM for the first time between 2013 and 2017 and include these students’ survey 

responses from previous years (2010-2012). I compare students that were exposed to UFM early 

(e.g., 2013) to those that were exposed later (e.g., 2017) and conduct the analysis using:  

 

where 𝑼𝑭𝑴_𝒀𝒆𝒂𝒓′𝒊𝒈𝒔𝒕is a vector of binary indicators equal to 1 for each year prior to and post 

UFM exposure. A large share of the variation in treatment comes from the citywide rollout of 

UFM to all stand-alone middle schools in 2015. The majority of students first exposed between 

2013 and 2017 are 7th and 8th graders that, within 1 or 2 years, lose UFM when they move from 

their UFM middle school to a nonUFM high school. Therefore, post treatment effects should be 

interpreted as intent-to-treat (ITT) effects and will likely not resemble the average treatment 

effect on the treated (ATT) effects estimated in difference-in-differences models. I find 

pretreatment estimates are statistically indistinguishable from zero (see Figure 4), meaning 

students are not already experiencing improvements in school climate perceptions prior to UFM 

exposure. 

While students lose treatment during this time period, schools that adopt UFM keep it. 

Therefore, I also conduct this analysis at the school level using school fixed effects and compare 

Ever UFM schools that adopt UFM early to those that adopt later. I examine the pretreatment 

outcomes among Ever UFM schools from 2010-2017 and find pretreatment estimates are 

𝑌𝑖𝑔𝑠𝑡 = 𝛽0 +  𝑼𝑭𝑴_𝒀𝒆𝒂𝒓′𝒊𝒈𝒔𝒕𝜷′𝟏 + 𝑿′𝒊𝒔𝒈𝒕𝜷′𝟐 +  𝛿𝑖 +  µ𝑔 + 𝛼𝑠 +  𝛾𝑡 +  𝜀𝑖𝑔𝑠𝑡    (3) 
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statistically indistinguishable from zero (see Figure 5), meaning schools do not appear to adopt 

UFM based on student perceptions of school environment. 

V. Results 

Baseline Results 

Table 3 shows the effects of UFM on student school meal participation and perceptions 

of school climate. On average, there is no evidence that UFM increases SBP, which is 

unsurprising. Because breakfast in NYC has been free since 2004, students do not experience a 

price change in breakfast under UFM. There is also not strong evidence the UFM increases SLP, 

which is somewhat unexpected.  Prior literature finds UFM increases SLP, and while the point 

estimate on SLP is positive, it is not statistically significant. It is likely that students facing 

different price barriers react differently to UFM. Therefore, I further explore heterogeneous 

effects of UFM on SBP and SLP in the next section.  

The effects of UFM on student perceptions of school climate are shown in columns 3-8. 

Overall, UFM improves student perceptions of bullying, fighting, and safety outside of school 

with no effect on perceptions of respect, safety in class, or safety inside. UFM improves 

perceptions of bullying by 2.5 percentage points. While the point estimate may appear small, it is 

important to remember this analysis takes place in NYC and includes over 100,000 students. To 

better grasp the magnitude of these effects, 72.3 percent of students reported positive perceptions 

of bullying in 2013. Therefore, UFM improved perceptions of bullying for 3.5 percent – more 

than 2,500 students.  
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UFM improves perceptions of fighting by 3.3 percentage points and feelings of safety 

outside by 2.3 percentage points.6 It is likely that UFM changes the composition of students in 

the cafeteria. Under UFM, students in schools with off-campus lunch policies may be 

incentivized by free meals to join the cafeteria crowd instead of venturing off campus.7 If UFM 

reduces the number of times students take off-campus lunch, it is possible that students are 

outside less and have fewer opportunities to feel unsafe – leading to an improvement in reported 

safety outside around the school.  

Heterogeneous Effects of UFM 

In aggregate, UFM does not affect school meal participation rates. However, effects 

likely vary by poverty status, as these students face differential price barriers and attitudes 

toward school food. Upon further examination of heterogeneous effects in Table 4, I find UFM 

increases SLP among Sometimes and Never Poor students by 7.3 and 11.8 percentage points, 

respectively. These results are expected given that students who would have paid for school 

meals in the absence of UFM now receive the same meals for free. However, I continue to find 

no effect of UFM on SBP, regardless of student poverty status.  

Students who have ever certified eligible for free or reduce-priced meals (Sometimes or 

Always Poor) are less likely to report baseline positive perceptions of school climate compared 

to their Never Poor counterparts. School food in the absence of UFM provides opportunities to 

identify these students as poor and could therefore likely influence their school climate 

 
6 School meal participation rates in high school are, on average, lower compared to middle school students. 

Appendix Table A10 shows the effects of UFM on participation and student perception of school climate by middle 

and high school grades. UFM increases school lunch participation among high schoolers by 15.0 percentage points. 

The majority of effects on student perceptions (bullying, fighting, and safety outside) happen among middle school 

students, whereas UFM improves high school students’ perception of safety inside. 
7 Specific off-campus policy data available for NYC is unreliable and inconsistent.  
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perceptions. However, UFM removes the price of school food and the associated signals of 

socioeconomic status. Table 4, columns 3-8 show the heterogeneous effects of UFM on 

perceptions by poverty status. UFM shows no effects on perceptions of respect or safety in class, 

consistent with aggregated effects. Interestingly, all students – regardless of poverty status – 

report improvements in perceptions of bullying, fighting, and safety outside. UFM improves 

perceptions of bullying by 2.2-3.2 percentage points, fighting by 3.1-3.9 percentage points, and 

safety outside of school by 2.0-2.8 percentage points. While one might argue that UFM only 

removes the stigma associated with free school food for those that are certified eligible for free 

meals (i.e., Always and Sometimes Poor students), it is the case UFM improves perceptions 

among all students, including Never Poor students. 

One of the “less supervised” areas referred to in Safe: Inside is the cafeteria. This 

question is significant because UFM takes place in the cafeteria. It is possible that, in the absence 

of UFM, students who have ever been eligible for free meals are stigmatized by their peers for 

being associated with free meals. These identifications can lead to potential instances of bullying 

or violence. Always and Sometimes Poor students report improvements in peer-reported 

perceptions of bullying and fighting under UFM. However, Safe: Inside reveals self-reported 

information. As shown in column 7, Always and Sometimes Poor students report feeling safer 

inside the school (including the cafeteria) by 2.2-2.4 percentage points post UFM exposure. It is 

possible that these students not only perceive improvements in bullying and fighting overall, but 

that they themselves were the potential victims of bullying prior to UFM.8 

 
8 Safe: Inside point estimates for Always and Sometimes Poor students are statistically different from Never Poor 

students at the 10 percent level.  
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Table 5 shows the effects of UFM by participant status. UFM increases SLP by 3.2 

percentage points for students on the intensive margin – that is, those that already participated 10 

percent of the time or more in the prior year. Non-Participants, on the other hand, are no more 

likely to participate in school lunch post UFM exposure. Both Participants and Non-Participants 

report improved perceptions of bullying by 3.7-4.7 percentage points, fighting by 5.1-5.6 

percentage points, and safety outside by 3.3-4.2 percentage points. This means that UFM 

improves school climate perceptions for all students, regardless of past participation status, as 

opposed to those that have participated and therefore may be more likely to perceive school 

climate negatively.   

Similar to Sometimes and Always Poor students, Participants may be stigmatized by 

peers as “poor” for merely participating in school food. In addition, the majority of students in 

the sample are Sometimes or Always Poor. Therefore, if students participated, it is likely they 

were, at some point, eligible for free meals. Just as Participants report improvements in peer-

reported measures of bullying and fighting, they report improvements in self-reported safety by 

2.7 percentage points in less supervised areas. This is, again, consistent with the theory that those 

associated with school food may be the victims of the bullying and fighting that occur in the 

absence of UFM.  

Schwartz and Rothbart (2019) find UFM increases participation among both poor and 

nonpoor NYC middle school students. I find increased SLP for all but the poorest 6th-12th grade 

students. The decision to participate in school food depends on several factors, including meal 

price. However, if students who were certified to receive free meals in the prior year increase 

participation rates once exposed to UFM – when meals are still free – there must be a factor 

other than price affecting their decisions to participate. I further explore the effect of UFM on 
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participation and perceptions of school climate by examining students’ participation and poverty 

status in the year prior to UFM exposure. In the prior year, students are either certified to receive 

free meals or they are not. Therefore, they are either Poor or NonPoor. Similarly, students either 

participated or they did not, and are, therefore, either a Participant or a Non-Participant.  

Table 6 shows the impact of UFM by the interaction of student poverty and participation 

status in the prior, nonUFM year. Students that were certified to receive free meals but did not 

participate in the prior year (PoorNonParticipants) increase SBP by 4.8 percentage points and 

SLP by 21.4 percentage points post UFM. Notably, these students did not experience a price 

change between the prior year and exposure to UFM, suggesting that UFM may eliminate some 

non-price related barriers to participation and even induce students to participate at the extensive 

margin.  

NonPoorParticipants and NonPoorNonParticipants, those that faced a price for meals in 

the prior year, increase SLP by 9.8 and 21.9 percentage points, respectively. These students 

experience a price change and increase participation on both the intensive and extensive margins. 

Meanwhile, UFM does not increase SLP on the intensive margin for those that were eligible for 

free meals and already participating – PoorParticipants. Almost all students report 

improvements in perception of bullying by 5.1-7.7 percentage points, fighting by 6.8-9.0 

percentage points, and safety in the classroom by 4.1-4.5 percentage points. I find no effects on 

perceptions of respect and positive, but insignificant, point estimates for safety inside and 

outside.  

In summary, I find UFM increases SLP among students who have ever been required to 

pay for meals in the absence of UFM, as well as students who previously participated in school 

food. UFM improves perceptions of bullying, fighting, and safety outside the school for all 
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students, regardless of poverty or prior participation behavior. Notably, UFM improves self-

reported feelings of safety in less supervised areas among students that may have been marked 

by their peers as “poor” in the absence of UFM. By investigating effects for students in the year 

prior to UFM, I find UFM induced participation in both breakfast and lunch among students 

who, in the previous year were eligible for free meals but did not participate. This finding 

provides evidence that students’ decision to participate consists of factors other than price – such 

as fear of signaling socioeconomic status via associating with free school food.  

Falsification Tests 

To provide empirical evidence of exogeneity in student exposure to UFM, I conduct two 

falsification tests. The first predicts timing of student exposure to UFM using student 

characteristics and student fixed effects, and the second predicts the timing of schools’ UFM 

adoption using school characteristics and school fixed effects. I restrict the sample to students 

(schools) without UFM in year t to predict exposure in year t+1 using:  

where 𝑿′𝒊𝒔𝒈𝒕 is a vector of the previously described outcomes and student (school) 

characteristics. Additional characteristics include indicators for whether the student (school) has 

meal transaction availability and principal turnover. As shown in Table 7, Panels A and B 

student and/or school characteristics do not predict UFM exposure or adoption in the next year. 

Robustness Checks 

UFM may improve student perceptions of school climate differently over time. For 

example, the first year of UFM may improve perceptions among students but dwindle as UFM 

becomes the “new normal.” Alternatively, UFM may, on the whole, boost student perceptions of 

𝑈𝐹𝑀𝑖𝑔𝑠𝑡+1 = 𝛽0 + 𝛽1𝑿′𝒊𝒔𝒈𝒕 +  𝛿𝑖 +  µ𝑔 +  𝛾𝑡 +  𝜀𝑖𝑔𝑠𝑡                     (4) 
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school climate in a consistent and continuous manner. NYC expanded UFM to all free-standing 

middle schools serving grades 6-8 in 2015. Therefore, a large share of students in my sample are 

treated in 2015 in 7th and 8th grade, and then lose UFM once they move to a high school without 

UFM, making it difficult to capture long terms effects of UFM. However, once schools adopt 

UFM, very few remove it. I examine the long-term effects of UFM at the school level to capture 

aggregated student perceptions of the school climate in the first, second, and third-plus years of 

treatment using: 

where Year1 takes a value of 1 in the first year of UFM adoption between 2011 and 2017 and 0 

otherwise.9 Year2 takes a value of 1 in the 2nd year of UFM adoption and 0 otherwise, and 

Year3+ takes a value of 1 in the third year and beyond, and 0 otherwise. 𝑿′𝒈𝒕 is a vector of 

control covariates including the percent SWD, ELL, Black, White, and Asian, and 𝛼𝑠 and 𝛾𝑡 are 

school and year fixed effects. As shown in Table A1, UFM improves student perceptions of 

bullying, fighting, and all types of safety, though effects dissipate over time for bullying. Table 

A2 shows the long-term effects of UFM at the student level. Given that a large share of students 

lose UFM within 1 to 2 years, we find little in terms of long-term effects of UFM at the student 

level.   

A nontrivial number of students retained in high school remain classified as 9th graders, 

and sometimes 10th graders, since students must accumulate credit hours to move on to the next 

grade. This could alter the effects of UFM if the effect for 9th graders are not estimated using the 

 
9 To identify which year is the first year of UFM adoption, I have to observe the UFM status in the prior year. 

Therefore, I use schools that adopt for the first time in 2011.  

𝑌𝑠𝑡 = 𝛽0 +  𝛽1𝑌𝑒𝑎𝑟1𝑠𝑡 +  𝛽2𝑌𝑒𝑎𝑟2𝑠𝑡 +   𝛽3𝑌𝑒𝑎𝑟3𝑠𝑡 +  𝛽4𝑿′𝒈𝒕 + 𝛼𝑠 +  𝛾𝑡 +  𝜀𝑠𝑡                     (5) 
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typical 9th grader definition. Table A3 shows that results are robust to removing these ever-

retained students.  

Additionally, because survey questions are presented in a Likert scale format and are 

coded as binary indicators, results may be sensitive to the way in which answers are coded. I 

recode responses in two ways. First, the binary variable is equal to 1 if the answer resembles 

anything better than the worst possible response. For example, the bullying question (i.e., At this 

school, students harass or bully other students), is given a binary indicator equal to 1 for 

responses “None of the time,” “Some of the time,” and “Most of the time,” and 0 for “All of the 

time.” This identifies changes students make from the worst possible answer to anything better. 

Table A4, Panel A shows results using this alternate definition and though point estimates are 

positive, they are smaller and insignificant compared to baseline results.  

Second, I recode responses using a binary variable equal to 1 if the response is the best 

possible answer and 0 otherwise. For example, the binary indicator for the bullying question is 

equal to 1 for “None of the time,” and 0 for “Some of the time,” Most of the time,” and “All of 

the time.” This identifies changes students make from any “worse” response to the “best” 

response. Table A4 Panel B shows results using this second alternate definition. Point estimates 

are positive in direction, and though the bullying estimate loses statistical significance, safety in 

class and inside gain in size and statistical significance. Overall, results are not sensitive to 

alternate classifications of Likert scale responses.  

Survey designers added “I Don’t Know” as a fifth available response to “Respect” from 

2015 to 2017. These responses are coded as missing in baseline analyses. Table A5 demonstrates 

that students who responded “I Don’t Know” are more likely male, Hispanic, and to speak 

another language at home. As a robustness check, I recode “I Don’t Know” responses to be 
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neutral (0.5 on a scale from 0 – 1) instead of missing and find results do not change significantly, 

though point estimates change from negative to positive (Table A6). 

Lastly, I conduct a Chronbach’s alpha analysis to determine whether these survey 

questions are, overall, representative of school climate, as well as a factor analysis to determine 

whether questions can be differentiated from one another. Table A7 shows that, in aggregate, 

questions have a Chronbach’s alpha of 0.8. This indicates that responses to questions move in the 

same direction and are therefore representative of school climate. Furthermore, a factor analysis 

in Table A8 demonstrates that all safety questions load onto one factor (i.e., Factor 1), whereas 

bullying, fighting, and respect roughly load onto a second factor (i.e., Factor 2) – though respect 

loads at a lower rate. As a robustness check, I create Safety Factor 1 and Peer Factor 2 by 

summing the binary indicators used in the baseline models. Table A9 shows results using these 

two factor indices. UFM improves students’ perceptions of overall safety by 4.9 percentage 

points and students’ perceptions of peer interactions by 5.7 percentage points. These effects on 

Factor 1 and Factor 2 remain present across poverty and participant status, though point 

estimates are not statistically different from each other.  

VI. Conclusion 

Advocates claim UFM increases participation in school food and reduces the stigma 

associated with participation. Indeed, prior research finds not only does UFM increase 

participation, it improves test scores, diminishes instances of bad behavior, and provides 

suggestive evidence of improved weight outcomes for students in participating schools. 

However, previous research has yet to examine specifically which students change participation 

behavior and the associated changes in student perceptions of school climate. 
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 How students perceive their school climate has consequences for their social and 

emotional well-being, as well as their academic success. UFM makes meals free for all students 

and potentially removes visible signals of socioeconomic status. Therefore, UFM has the 

potential to improve interactions between students in the cafeteria and beyond. Moreover, UFM 

could differentially affect student participation and perceptions based on their poverty status 

and/or prior participation behavior.  

This paper investigates whether and for whom UFM induces students to change 

participation behavior, as well as whether and to what extent UFM improves students’ school 

climate perceptions. Using a difference-in-differences framework with student fixed effects, I 

exploit the staggered exposure of UFM among students ever exposed to UFM.  I find UFM 

increases lunch participation among students with a history of paying for school meals 

(Sometimes and Never Poor students). However, students from all poverty and participation 

designations report improvements in bullying, fighting, and safety outside of school. Notably, 

students with a history of interacting with school food (Sometimes and Always Poor students and 

Participants) self-report feeling safer inside the school in less supervised areas, including the 

cafeteria where UFM takes place. A key finding from this study is that students for whom meals 

are always free but do not participate prior to UFM (PoorNonParticipants) increase participation 

in school meals under UFM. These students change participation behavior without being subject 

to price changes, supporting the theory that other factors beyond the price of school food – such 

as stigma – contribute to students’ participation decisions, and that UFM may alleviate these 

concerns for students.  

Though UFM is often directed at improving circumstances for poor or near-poor 

students, it appears that UFM positively affects student perceptions of school climate, regardless 
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of poverty or prior participation. UFM removes the visible indicators of socioeconomic status 

associated with free school food. Furthermore, the price removal aspect of UFM can support a 

more communal and positive atmosphere, as well as cultivate more positive (or at the least fewer 

negative) interactions between students. Similar to positive effects associated with school 

uniform policies, these findings suggest that UFM improves school climate perceptions for all 

students. 

While these results are robust to different specifications, results found here are limited to 

6th-12th grade students – students who have more autonomy in their school meal participation 

behaviors. Furthermore, NYC public school students are more likely to be income eligible for 

free/reduce-priced meals than students in a typical US school district. Moreover, given the cost 

of living of NYC, even “non-poor” public school students are not what one might consider 

“high-income.” 

 These results provide the first empirical evidence that UFM improves students’ 

perceptions of school climate. Prior research that examines the effect of UFM on test scores, 

participation, attendance, and obesity often cites a reduction in hunger and stigma as mechanisms 

through which UFM might affect these other outcomes. Not only are school climate outcomes 

examined here an important contribution to the gap in the literature, they can help explain prior 

findings. School climate influences student social, emotional, and academic wellbeing. 

Therefore, while UFM aims to provide free meals for those that might otherwise go hungry, the 

results in this paper suggest that UFM also improves student perceptions of school climate and, 

in turn, improves student experiences and welfare.  
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Figure 1: Pathways UFM May Influence School Climate Perceptions 
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Figure 2: Introductory Instructions for NYC Student Survey, 2016 
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Figure 3: Distribution of Student Lunch Participation, 2013 
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Figure 4. Pre-trend & Event Study Analysis: Initial Exposure as Intent to Treat (ITT), Student-Level, 2010-2017 

 

Notes: Figures display point estimates and bars indicate 95 percent confidence intervals from pre-trend analysis of Ever UFM students 

first exposed to UFM between 2013-2017 (~85,638 students in ~998 schools). Students exposed to UFM prior to 2013 and students 

that are “always” UFM from 2013 to 2017 are excluded from this analysis. Models control for SWD and ELL status and include 

student, grade, school, and year fixed effects. Robust standard errors clustered by school. Zero (0) is the first year of UFM exposure 

and negative 1 (-1) is the reference year, the year prior to UFM exposure. Data used to estimate “-3+” includes 3 or more years 

pretreatment data, and data used to estimate “3+” includes 3 or more years of post-treatment data.  
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Figure 5. Pre-trend & Event Study Analysis: Initial Adoption as Intent to Treat (ITT), School-Level, 2010-2017 

   

   
 

Notes: Figures display point estimates and bars indicate 95 percent confidence intervals from event study of Ever UFM schools from 

2010-2017 (~2,900 observations of ~400 schools). Always UFM schools (111) are used to estimate post effects. Models control for 

percent SWD, ELL, Poor, Black, White, Hispanic, and Asian and include school and year fixed effects. Robust standard errors 

clustered by school. Zero (0) is the first year of UFM exposure and negative 1 (-1) is the reference year, the year prior to UFM 

exposure. Data used to estimate “-3+” includes 3 or more years pretreatment data, and data used to estimate “3+” includes 3 or more 

years of post-treatment data.  
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Table 1: Measures of Bullying, Fighting, Respect, and Safety 

Category New York City School Survey Question Variable Name =1 If Respond 

Bullying “At this school, students harass or bully other 

students.” 

Bullying 
None or some  

of the time 
Fighting “At this school, students get into physical fights.”  Fighting 

Respect “Most students at this school treat each other with 

respect.” 

Respect 

Agree or 

strongly agree 

Safety “I feel safe in my classes at this school.” Safe: Class 

 “I feel safe in the hallways, bathrooms, locker 

rooms, and cafeteria of this school.” 

Safe: Inside 

 “I feel safe outside around this school.” Safe: Outside 
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Table 2: Characteristics of 6th-12th Grade Ever UFM Students, 2013  

  All Ever UFM  Analytic Sample  Analytic Sample 

      Always Sometimes Never 

Characteristics         

Female  50.2  50.0  50.5 50.0 47.6 

White  11.3  14.4  7.3 17.7 43.5 

Black  24.0  22.8  23.5 26.3 15.8 

Hispanic  47.3  42.2  49.3 32.8 20.3 

Asian  16.5  19.7  19.1 22.1 19.7 

Other Language  50.4  50.4  56.4 44.5 29.5 

ELL  14.1  12.1  15.2 7.5 3.3 

SWD  13.0  12.0  12.6 11.5 9.8 

Mean No. Obs.  3.9  4.0  3.9 4.4 4.0 

Mean Grade  7.1  7.0  7.2 6.6 6.6 

Outcomes         

SBP  12.8  12.2  13.4 10.5 8.6 

SLP  51.8  52.4  56.5 50.0 36.7 

Bullying  73.9  72.3  71.7 70.2 77.7 

Fighting  78.7  77.1  77.3 74.5 79.0 

Respect  74.2  73.2  73.1 71.3 75.5 

Safe: Class  59.6  58.3  58.5 55.0 60.9 

Safe: Inside  84.4  83.8  84.0 81.9 85.2 

Safe: Outside  88.2  87.9  87.4 86.9 91.0 

# Students  83,135  33,553  22,868 5,684 5,001 

Notes: Ever UFM students in 6th to 12th grade with at least two years of data from 2013-2017. 

Analytic sample includes students whose poverty status is observed in a non-UFM year and 

students with meal participation data.  
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Table 3: The Effect of UFM on Meal Participation and Perceptions, 2013-2017 

  (1) (2) (3) (4) (5) (6) (7) (8) 

 SBP SLP Bullying Fighting Respect Safe: Class Safe: Inside Safe: Outside 

UFM -0.003 0.019 0.025** 0.033** -0.002 0.004 0.020 0.023** 

 (0.016) (0.016) (0.011) (0.017) (0.014) (0.010) (0.012) (0.011) 

         

Student Char Y Y Y Y Y Y Y Y 

Student FE Y Y Y Y Y Y Y Y 

Grade FE Y Y Y Y Y Y Y Y 

School FE Y Y Y Y Y Y Y Y 

Year FE Y Y Y Y Y Y Y Y 

         

2013 Means 0.122 0.524 0.723 0.771 0.732 0.583 0.838 0.879 

         

No Students 102,895 102,895 100,109 99,947 95,647 100,847 101,034 100,927 

No Schools 867 867 863 863 861 863 862 864 

Observations 325,334 325,334 310,875 310,507 290,502 315,743 316,418 315,863 

R-squared 0.646 0.739 0.489 0.517 0.525 0.440 0.472 0.483 

Notes: Robust standard errors in parentheses clustered by school (*p < .10; **p<.05; ***p<.01).  Sample includes observations of 

Ever UFM/POS students in 6th to 12th grade with at least two years of data, whose middle or high school poverty status is observed in 

a nonUFM year from 2010-2017. Models in columns 3-8 control for cohort-specific linear time trends. Student characteristics include 

indicators for SWD and ELL. 
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Table 4: The Effect of UFM on Meal Participation and Perceptions by Poverty, 2013-2017 

  (1) (2) (3) (4) (5) (6) (7) (8) 

VARIABLES SBP SLP Bullying Fighting Respect Safe: Class Safe: Inside Safe: Outside 

UFM         

   Always Poor -0.007 -0.027 0.022** 0.031* -0.002 0.006 0.022* 0.020* 

 (0.016) (0.017) (0.011) (0.017) (0.014) (0.010) (0.012) (0.011) 

   Sometimes Poor 0.000 0.073*** 0.032*** 0.033* 0.007 0.003 0.024* 0.028** 

 (0.016) (0.016) (0.012) (0.018) (0.015) (0.011) (0.014) (0.012) 

   Never Poor 0.009 0.118*** 0.030** 0.039** -0.005 -0.003 0.012 0.028** 

 (0.015) (0.014) (0.013) (0.017) (0.015) (0.009) (0.013) (0.013) 

         

Student Char Y Y Y Y Y Y Y Y 

Student FE Y Y Y Y Y Y Y Y 

Grade FE Y Y Y Y Y Y Y Y 

School FE Y Y Y Y Y Y Y Y 

Year FE Y Y Y Y Y Y Y Y 

         

No Students 102,895 102,895 100,109 99,947 95,647 100,847 101,034 100,927 

No Schools 867 867 863 863 861 863 862 864 

Observations 325,334 325,334 310,875 310,507 290,502 315,743 316,418 315,863 

R-squared 0.646 0.744 0.489 0.517 0.525 0.440 0.472 0.483 

Notes: Robust standard errors in parentheses clustered by school (*p < .10; **p<.05; ***p<.01).  Sample includes observations of 

Ever UFM/POS students in 6th to 12th grade with at least two years of data, whose middle or high school poverty status is observed in 

a nonUFM year from 2010-2017. Student characteristics include indicators for SWD and ELL. Models in columns 3-8 control for 

cohort-specific linear time trends. Sample includes ~62,700 (72 percent) Always Poor, ~10,600 (12 percent) Sometimes Poor, and 

~14,000 (16 percent) Never Poor students. All SLP point estimates are statistically different from the other at the 1 percent level. 

Bullying point estimates are not statistically different from each other, with the exception of comparing Always and Sometimes Poor, 

which is statistically different at the 10 percent level. Individual Fighting and Safe: Outside point estimates are not statistically 

different from each other. Safe: Inside point estimates are statistically different from each other at the 10 percent level, with the 

exception of Never and Sometimes Poor estimates. 
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Table 5: The Effect of UFM on Meal Participation and Perceptions by Participant Status, 2013-2017 

  (1) (2) (3) (4) (5) (6) (7) (8) 

VARIABLES SBP SLP Bullying Fighting Respect Safe: Class 

Safe: Inside Safe: 

Outside 

UFM         

   Participant -0.003 0.032* 0.037*** 0.051*** 0.017 0.007 0.027* 0.033** 

 (0.015) (0.018) (0.014) (0.019) (0.018) (0.012) (0.014) (0.013) 

   NonParticipant -0.007 -0.010 0.047*** 0.056*** 0.022 0.005 0.021 0.042*** 

 (0.015) (0.018) (0.016) (0.020) (0.019) (0.013) (0.016) (0.015) 

         

Student Char Y Y Y Y Y Y Y Y 

Student FE Y Y Y Y Y Y Y Y 

Grade FE Y Y Y Y Y Y Y Y 

School FE Y Y Y Y Y Y Y Y 

Year FE Y Y Y Y Y Y Y Y 

         

No Students 73,001 73,001 70,589 70,463 66,122 71,294 71,389 71,289 

No Schools 788 788 783 784 776 785 785 785 

Observations 200,717 200,717 191,952 191,587 176,476 194,730 195,080 194,716 

R-squared 0.692 0.780 0.532 0.558 0.572 0.486 0.517 0.531 

Notes: Robust standard errors in parentheses clustered by school (*p < .10; **p<.05; ***p<.01 Sample includes observations of Ever 

UFM/POS students in 6th to 12th grade with at least two years of data, whose middle or high school poverty status is observed in a 

nonUFM year from 2010-2017. Sample uses last year’s participation status, and therefore loses one year of observations. Models in 

columns 3-8 control for cohort-specific linear time trends. Student characteristics include indicators for SWD and ELL. Sample 

includes ~51,800 (80 percent) Participants and ~13,900 (20 percent) Non-Participants. Participant and NonParticipant point estimates 

for bullying, fighting, and safety outside are not statistically different from each other. 
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Table 6: Heterogeneous Effects of UFM on Meal Participation and Perceptions by Poverty and Participant Status in Prior, 

nonUFM Year, 2013-2017 

  (1) (2) (3) (4) (5) (6) (7) (8) 

VARIABLES SBP SLP Bullying Fighting Respect Safe: Class Safe: Inside Safe: Outside 

UFM         

   PoorParticipant 0.012 0.028 0.051* 0.068** -0.006 0.045** 0.023 -0.003 

 (0.017) (0.022) (0.030) (0.034) (0.038) (0.019) (0.026) (0.028) 

   PoorNonParticipant 0.048*** 0.214*** 0.052 0.076* -0.022 0.044* 0.014 0.006 

 (0.015) (0.019) (0.034) (0.039) (0.038) (0.023) (0.030) (0.030) 

   NonPoorParticipant 0.017 0.098*** 0.064* 0.070** -0.001 0.041* 0.021 0.010 

 (0.015) (0.022) (0.034) (0.035) (0.040) (0.021) (0.030) (0.028) 

   NonPoorNonParticipant 0.048*** 0.219*** 0.077** 0.090** 0.006 0.026 -0.000 0.028 

 (0.015) (0.025) (0.033) (0.036) (0.040) (0.021) (0.028) (0.032) 

         

Student Char Y Y Y Y Y Y Y Y 

Student FE Y Y Y Y Y Y Y Y 

Grade FE Y Y Y Y Y Y Y Y 

School FE Y Y Y Y Y Y Y Y 

Year FE Y Y Y Y Y Y Y Y 

         

No Students 40,529 40,529 37,307 37,455 34,346 38,769 38,858 38,740 

No Schools 588 588 556 555 550 563 561 562 

Observations 81,125 81,125 74,679 74,973 68,743 77,603 77,782 77,546 

R-squared 0.803 0.871 0.642 0.656 0.648 0.603 0.629 0.628 
Notes: Robust standard errors in parentheses clustered by school (*p < .10; **p<.05; ***p<.01 Sample includes observations of Ever UFM/POS 

students in 6th to 12th grade with at least two years of data, whose middle or high school poverty status is observed in a nonUFM year from 2010-

2017. Sample uses last year’s poverty and participation status in the prior, non-UFM year. Models in columns 3-8 control for cohort-specific linear 

time trends. Student characteristics include indicators for SWD and ELL. Sample includes ~26,400 (65 percent) PoorParticipants, ~3,300 (8 

percent) PoorNonParticipants, ~6,100 (15 percent) NonPoorParticipants, and ~4,600 (12 percent) NonPoorNonParticipants. Point estimates by 

participant and poverty are all statistically different from each other at the 1 percent level for both SBP and SLP. Point estimates by participant and 

poverty are not statistically different from each other for bullying, fighting, and safety in the classroom, with the exception of classroom safety for 

PoorParticipants and NonPoorNonParticipants. 
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 Table 7 – Panel A:  Regression Results, New UFM Exposure for Students, 2012-2016 

 

UFM Next 

Year 

Respect -0.006 

 (0.004) 

Bullying -0.001 

 (0.004) 

Safe: Class -0.001 

 (0.004) 

Safe: Inside -0.007* 

 (0.004) 

Safe: Outside -0.001 

 (0.004) 

Fighting -0.002 

 (0.004) 

Clean -0.001 

 (0.003) 

ELL 0.004 

 (0.011) 

Poor 0.009 

 (0.007) 

POS 0.014 

 (0.011) 

Principal Change 0.013 

 (0.010) 

2 Principals 0.003 

 (0.017) 

Principal Change Next 

Year -0.001 

 (0.009) 

  

Student FE Y 

Year FE Y 

Grade FE Y 

School FE Y 

No Students 95,471 

No Schools 729 

Observations 148,748 

R-squared 0.956 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notes: Robust standard errors in parentheses 

clustered by school (*p < .10; **p<.05; 

***p<.01).  Sample includes observations of 

Ever UFM students in 6th to 12th grade with 

at least two years of data who are not 

exposed to UFM in the current year from 

2012-2016 (2017 observations excluded as 

UFM status in t+1 is not observed). 
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Table 7 – Panel B:  Regression Results, New UFM Adoption for Schools, 2010-2016  

 UFM Next Year 

Respect -0.021 

 (0.024) 

Bullying 0.022 

 (0.026) 

Safe: Class 0.001 

 (0.005) 

Safe: Inside -0.013 

 (0.016) 

Safe: Outside -0.001 

 (0.004) 

Fighting -0.019 

 (0.022) 

Clean -0.000 

 (0.004) 

% ELL 0.003 

 (0.005) 

% Poor -0.016 

 (0.019) 

% Black -0.008 

 (0.019) 

% Hispanic 0.011 

 (0.022) 

% White 0.000 

 (0.018) 

% Asian 0.011 

 (0.021) 

POS 0.001 

 (0.002) 

Principal Change 0.004 

 (0.005) 

2 Principals 0.001 

 (0.003) 

Principal Change Next Year 0.001 

 (0.002) 

  

No Schools 260 

Observations 954 

R-squared 0.996 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notes: Robust standard errors in parentheses 

clustered by school (*p < .10; **p<.05; 

***p<.01). Includes school and year fixed 

effects. Sample includes observations of 

Ever UFM schools serving 6th to 12th grade 

students with at least two years of data who 

are not exposed to UFM in the current year 

from 2010-2016 (2017 observations 

excluded as UFM status in t+1 is not 

observed). 
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VII. Appendix A 

Table A1. Differential Effects of UFM Adoption over Time, School Level, 2011-2017 

  (1) (2) (3) (4) (5) (6) 

 Bullying Fighting Respect Safe: Class Safe: Inside Safe: Outside 

UFM       

   Year 1 0.021* 0.053*** -0.010 0.028** 0.030** 0.023* 

 (0.012) (0.016) (0.017) (0.011) (0.012) (0.012) 

   Year 2 0.009 0.038** -0.027 0.031*** 0.044*** 0.043*** 

 (0.012) (0.016) (0.018) (0.012) (0.013) (0.015) 

   Year 3+ 0.001 0.037* -0.040* 0.026 0.035** 0.036* 

 (0.018) (0.021) (0.024) (0.018) (0.017) (0.019) 

       

Student Char Y Y Y Y Y Y 

School FE Y Y Y Y Y Y 

Year FE Y Y Y Y Y Y 

       

No Schools 272 272 272 272 272 272 

Observations 1,899 1,899 1,901 1,901 1,900 1,900 

R-squared 0.659 0.691 0.600 0.450 0.539 0.546 

Notes: Robust standard errors in parentheses clustered by school (*p < .10; **p<.05; 

***p<.01).  Sample includes ever UFM schools from 2010-2017 that adopted UFM for the first 

time between 2011 and 2017, and responses are aggregated from 6th – 12th grade Ever UFM 

students whose poverty status is observed in a nonUFM year.  Student characteristics include 

percent SWD, ELL, Black, Hispanic, White, and Asian. In this sample, 272 schools are used to 

estimate Year1 estimates, 270 schools are used to estimate Year2 effects, and 258 schools are 

used to identify Year 3+ effects.  
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Table A2. Differential Effects of UFM over Time, Student-Level, 2013-2017 

  (1) (2) (3) (4) (5) (6) 

 Bullying Fighting Respect Safe: Class Safe: Inside Safe: Outside 

UFM       

   Year 1 0.012 0.019 0.003 -0.004 0.005 0.019 

 (0.012) (0.018) (0.014) (0.010) (0.013) (0.012) 

   Year 2 -0.000 0.005 -0.001 -0.014 -0.010 0.012 

 (0.015) (0.019) (0.020) (0.011) (0.015) (0.014) 

   Year 3+ 0.004 0.001 0.002 -0.009 -0.012 0.008 

 (0.020) (0.024) (0.022) (0.013) (0.016) (0.016) 

       

Student Char Y Y Y Y Y Y 

Student FE Y Y Y Y Y Y 

Grade FE Y Y Y Y Y Y 

School FE Y Y Y Y Y Y 

Year FE Y Y Y Y Y Y 

       

No Students 64,842 64,799 62,876 65,270 65,365 65,327 

No Schools 848 847 843 849 845 847 

Observations 217,986 217,863 205,259 221,631 222,083 221,725 

R-squared 0.472 0.501 0.503 0.419 0.452 0.458 

Notes: Robust standard errors in parentheses clustered by school (*p < .10; **p<.05; 

***p<.01).  Sample includes Ever UFM/POS students in 6th to 12th grade with at least two years 

of data, whose middle or high school poverty status is observed in a nonUFM year from 2010-

2017. Student characteristics include indicators for SWD and ELL. Models control for cohort-

specific linear time trends. 57,864 students contribute to the Year 1 estimate, 37,335 students 

contribute to Year 2, and 16,494 contribute to the third year and beyond. Over half the sample is 

exposed to UFM in middle schools in 2015, but these students lose UFM once they move to high 

school. Therefore, the number of students contributing to the 3rd year and beyond effects is 

vanishingly small. In addition, 57,000 students are used to estimate Year 1 effects instead of 

62,000 because their first year of exposure is not observed.   
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Table A3: The Effect of UFM on Meal Participation and Student Perceptions, Excluding Ever-Retained Students, 2013-2017 

  (1) (2) (3) (4) (5) (6) (7) (8) 

 SBP SLP Bullying Fighting Respect Safe: Class Safe: Inside Safe: Outside 

UFM -0.001 0.022 0.021* 0.029* 0.005 0.001 0.018 0.025** 

 (0.016) (0.016) (0.011) (0.017) (0.014) (0.010) (0.013) (0.012) 

         

Student Char Y Y Y Y Y Y Y Y 

Student FE Y Y Y Y Y Y Y Y 

Grade FE Y Y Y Y Y Y Y Y 

School FE Y Y Y Y Y Y Y Y 

Year FE Y Y Y Y Y Y Y Y 

         

No Students 96,457 96,457 94,099 93,947 89,909 94,773 94,947 94,857 

No Schools 860 860 858 857 852 857 856 858 

Observations 305,251 305,251 292,411 292,040 273,283 296,908 297,544 297,030 

R-squared 0.646 0.740 0.491 0.519 0.526 0.440 0.473 0.484 

Notes: Robust standard errors in parentheses clustered by school (*p < .10; **p<.05; ***p<.01).  Sample includes observations of 

Ever UFM/POS students in 6th to 12th grade with at least two years of data, whose middle or high school poverty status is observed in 

a nonUFM year from 2010-2017 and who are never retained between 2009 and 2017. Models control for cohort-specific linear time 

trends.  This removes approximately 6 percent of students from the sample. Student characteristics include indicators for SWD and 

ELL.  
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Table A4 – Panel A: The Effect of UFM on Meal Participation and Student Perceptions, 

2013-2017 – Movement from “Worst” to Anything Better 

  (1) (2) (3) (4) (5) (6) 

 Bullying Fighting Respect Safe: Class 

Safe: Inside Safe: 

Outside 

UFM 0.008 0.006 0.002 0.004 0.006 0.008 

 (0.008) (0.011) (0.009) (0.005) (0.008) (0.007) 

       

Student Char Y Y Y Y Y Y 

Student FE Y Y Y Y Y Y 

Grade FE Y Y Y Y Y Y 

School FE Y Y Y Y Y Y 

Year FE Y Y Y Y Y Y 

       

No Students 100,109 99,947 95,647 100,847 101,034 100,927 

No Schools 863 863 861 863 862 864 

Observations 310,875 310,507 290,502 315,743 316,418 315,863 

R-squared 0.489 0.517 0.525 0.440 0.472 0.483 

 

Panel B: Movement from Anything Worse to “Best”  

  (1) (2) (3) (4) (5) (6) 

 Bullying Fighting Respect Safe: Class 

Safe: Inside Safe: 

Outside 

UFM 0.014 0.034** 0.013 0.049*** 0.038*** 0.026* 

 (0.011) (0.015) (0.011) (0.014) (0.013) (0.015) 

       

Student Char Y Y Y Y Y Y 

Student FE Y Y Y Y Y Y 

Grade FE Y Y Y Y Y Y 

School FE Y Y Y Y Y Y 

Year FE Y Y Y Y Y Y 

       

No Students 100,109 99,947 95,647 100,847 101,034 100,927 

No Schools 863 863 861 863 862 864 

Observations 310,875 310,507 290,502 315,743 316,418 315,863 

R-squared 0.489 0.517 0.525 0.440 0.472 0.483 

Notes: Robust standard errors in parentheses clustered by school (*p < .10; **p<.05; 

***p<.01).  Sample includes observations of Ever UFM/POS students in 6th to 12th grade with at 

least two years of data, whose middle or high school poverty status is observed in a nonUFM 

year from 2010-2017. Student characteristics include indicators for SWD and ELL. Models 

control for cohort-specific linear time trends. Responses are binary indicators in which the best 

possible answer equals 1 and 0 otherwise. 
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Table A5. Characteristics of Students Answering vs. “I Don’t Know,” 2015-2017 

 Respect 

 Answered "I Don't Know" 

Female 51.8 48.1 

White 15.0 12.0 

Black 21.7 21.6 

Hispanic 40.8 45.3 

Asian 21.4 20.0 

Other Language 50.9 54.5 

ELL 8.9 11.7 

SWD 11.9 14.2 

Mean No. Obs. 4.1 4.0 

Mean Grade 8.9 8.8 

SBP 9.2 9.4 

SLP 34.7 36.2 

No. Students 209,921 19,819 
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Table A6. The Effects of UFM Coding “I Don’t Know” as Neutral (.5), 2013-2017 

  (1) 

 Respect 

UFM 0.003 

 (0.013) 

  

Student Char Y 

Student FE Y 

Grade FE Y 

School FE Y 

Year FE Y 

  

No Students 101,067 

No Schools 866 

Observations 315,208 

R-squared 0.508 

Notes: Robust standard errors in parentheses clustered by school (*p < .10; **p<.05; 

***p<.01).  Sample includes observations of Ever UFM/POS students in 6th to 12th grade with at 

least two years of data, whose middle or high school poverty status is observed in a nonUFM 

year from 2010-2017. Always UFM (2010-2017) students are excluded from this analysis. 

Models control for cohort-specific linear time trends.  Student characteristics include indicators 

for SWD and ELL.  
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Table A7. Chronbach’s Alpha Analysis, 2010-2017 

Item Observation Sign 

Item-test 

correlation 

Item-rest 

correlation 

Average 

inter item 

covariance Alpha 

Bullying 441,085 + 0.70 0.54 0.31 0.76 

Fighting 441,196 + 0.69 0.53 0.31 0.77 

Respect 445,450 + 0.66 0.44 0.31 0.79 

Safe: Class 446,592 + 0.70 0.57 0.32 0.76 

Safe: Inside 447,197 + 0.77 0.65 0.29 0.74 

Safe: Outside 446,468 + 0.74 0.59 0.30 0.75 

Test Scale     0.31 0.79 
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Table A8. Factor Analysis, 2010-2017 

Factor Variance Difference Proportion Cumulative 

Factor1 2.30 0.47 0.38 0.38 

Factor2 1.83 . 0.31 0.69 

     
Variable Factor1 Factor2 Uniqueness  

Bullying 0.19 0.85 0.24  
Fighting 0.17 0.85 0.24  
Respect 0.35 0.52 0.61  
Safe: Class 0.84 0.14 0.27  
Safe: Inside 0.87 0.21 0.20  
Safe: 

Outside 0.81 0.21 0.30  

     

 Factor1 Factor2    
Factor1 0.79 0.62   
Factor2 -0.62 0.79   
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Table A9. The Effects of UFM on Perceptions Using Indexed Student Perceptions, 2013-

2017  

  (1) (2) (3) (4) (5) (6) 

 

Safety  

Factor 1 

Peer 

Factor 2 

Safety  

Factor 1 

Peer 

Factor 2 

Safety  

Factor 1 

Peer 

Factor 2 

UFM 0.049* 0.057*     

 (0.027) (0.033)     

       

UFM*Always Poor   0.051* 0.052   

   (0.027) (0.034)   

UFM*Sometimes Poor   0.057* 0.067*   

   (0.030) (0.036)   

UFM*Never Poor   0.041 0.063*   

   (0.028) (0.034)   

UFM*Participant     0.068** 0.103** 

     (0.033) (0.043) 

UFM*NonParticipant     0.070** 0.120*** 

     (0.036) (0.046) 

       

Student Char Y Y Y Y Y Y 

Student FE Y Y Y Y Y Y 

Grade FE Y Y Y Y Y Y 

School FE Y Y Y Y Y Y 

Year FE Y Y Y Y Y Y 

       

No Students 100,062 92,806 100,062 92,806 70,490 63,778 

No Schools 861 857 861 857 785 774 

Observations 311,319 277,846 311,319 277,846 191,827 168,751 

R-squared 0.521 0.593 0.521 0.593 0.564 0.634 

Notes: Robust standard errors in parentheses clustered by school (*p < .10; **p<.05; 

***p<.01).  Sample includes observations of Ever UFM/POS students in 6th to 12th grade with at 

least two years of data, whose middle or high school poverty status is observed in a nonUFM 

year from 2010-2017 and who answered all three questions required for each factor. Safety 

Factor 1 is an index of binary safety responses and Peer Factor 2 is an index of binary bullying, 

fighting, and respect responses. Student characteristics include indicators for SWD and ELL. All 

models control for cohort-specific linear time trends. Models in columns 3 and 4: ~62,700 

AlwaysPoor, ~10,600 Sometimes Poor, and ~14,000 NeverPoor. Models in columns 5 and 6 use 

last year’s participation status and therefore loses one year from the sample ~51,800 Participants 

and ~13,900 Non-Participants. 
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Table A10: The Effects of UFM on Meal Participation and Student Perceptions by School Level, 2013-2017 

  (1) (2) (3) (4) (5) (6) (7) (8) 

 SBP SLP Bullying Fighting Respect Safe: Class Safe: Inside Safe: Outside 

UFM         

   Middle -0.003 0.016 0.026** 0.033* -0.002 0.003 0.019 0.023** 

 (0.016) (0.016) (0.011) (0.017) (0.014) (0.010) (0.012) (0.012) 

   High 0.015 0.149*** -0.017 0.050 0.005 0.037 0.038* 0.013 

 (0.018) (0.053) (0.028) (0.061) (0.066) (0.023) (0.021) (0.024) 

         

Student Char Y Y Y Y Y Y Y Y 

Student FE Y Y Y Y Y Y Y Y 

Grade FE Y Y Y Y Y Y Y Y 

School FE Y Y Y Y Y Y Y Y 

Year FE Y Y Y Y Y Y Y Y 

         

No Students 102,895 102,895 100,109 99,947 95,647 100,847 101,034 100,927 

No Schools 867 867 863 863 861 863 862 864 

Observations 325,334 325,334 310,875 310,507 290,502 315,743 316,418 315,863 

R-squared 0.646 0.739 0.489 0.517 0.525 0.440 0.472 0.483 

Notes: Robust standard errors in parentheses clustered by school (*p < .10; **p<.05; ***p<.01).  Sample includes observations of 

Ever UFM/POS students in 6th to 12th grade with at least two years of data, whose middle or high school poverty status is observed in 

a nonUFM year from 2010-2017. Models in columns 3-8 control for cohort-specific linear time trends. Student characteristics include 

indicators for SWD and ELL. Middle refers to students in grades 6-8, and high refers to students in grades 9-12. 
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Chapter 2: Educating the Doubly Disadvantaged 
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I. Introduction 

Disparities in academic performance have persisted in the American public education 

system despite decades of reform. In addition to well-known racial disparities, policymakers and 

researchers pay particular attention to disadvantage-based achievement gaps. In fact, there is an 

abundance of evidence documenting the achievement gaps between disadvantaged students – 

those classified as economically disadvantaged (ECD), students with disabilities (SWD), or 

English language learners (ELL) – and their non-disadvantaged peers. However, public 

education circles frequently treat these disadvantages separately without explicitly investigating 

the intersections of disadvantage (e.g., the student that is both ECD and SWD). There is virtually 

no research examining the characteristics of students at the intersection of these disadvantages – 

the doubly disadvantaged – and their academic performance. 

Overlooking the doubly disadvantaged may have meaningful implications for how we 

understand disadvantage-based achievement gaps. It is possible that some disadvantages, when 

combined with others, may artificially exacerbate general achievement gaps. For example, ECD 

gaps may appear even larger if ECD students are also more likely to be SWD and if those 

students perform worse on average. Moreover, better understanding the heterogeneity within 

these disadvantage-based achievement gaps may aid in the implementation of federally 

mandated state accountability systems, which hold schools accountable for test score disparities 

among the disadvantaged. For instance, if students that are both ECD and SWD perform worse 

on average, schools may be doubly penalized for both ECD and SWD subgroups for the same set 

of students. If this is true, it is possible that by creating more detailed accountability subgroups, 

schools could better support the students most in need of improvement – those that are both ECD 

and SWD.  
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Not accurately understanding the landscape of student disadvantage may have additional 

consequences for how we design policies to support disadvantaged students, including school 

funding. School funding formulas frequently acknowledge that disadvantaged students (i.e., 

those that are ECD, SWD, or ELL) require additional support and, therefore, funding to perform 

at the same level as their non-disadvantaged peers. Many of these formulas provide additional 

funding based on districts’ shares of disadvantaged students. For example, a formula may 

allocate to districts an additional 20 percent of per pupil funding for students that are ECD, 40 

percent for students that are SWD, and 10 percent for students that are ELL. However, whether 

these formulas distribute sufficient funds to effectively support student need depends on a 

multitude of factors, one of which includes whether the effects of disadvantage on academic 

performance are the same across disadvantages. For instance, while a student that is both ECD 

and ELL is accounted for in both the ECD and ELL allotments, it is unclear whether the 

combined monetary aid is sufficient to support the effect of being both ECD and ELL on 

achievement.   

Learning more about the effects of being singly versus doubly disadvantaged can help 

inform whether current formulas provide aid that proportionately reflects need. This analysis has 

four possible outcomes.  First, it is possible that additional disadvantages have no additional 

negative effects on student performance than what is already observed with one disadvantage – 

meaning the effect of being doubly disadvantaged is no larger than the effect of being singly 

disadvantaged. Second, it could be that the effect of being doubly disadvantaged is worse than 

the effect of being singly disadvantaged, but still less than what the sum of the two single 

disadvantages might suggest. Third, it is possible that the effect of being doubly disadvantaged is 

equal to the sum of the effects of the single disadvantages. Fourth, it could be that the effect of 
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being doubly disadvantaged is larger than what the sum of single disadvantage effects might 

suggest.  

If the reality of disadvantage effects is reflected in scenarios one, two, or three, then there 

are likely few if any implications for funding formulas that treat ECD, SWD, and ELL students 

as separate categories. However, we know ECD students begin school performing worse 

academically than their non-ECD peers (Reardon, 2013), and SWD students perform worse as 

they get older (Schulte & Stevens, 2015). Therefore, it is possible that the effects of being both 

ECD and SWD compound to more negatively affect student performance compared to what the 

sum of single disadvantage effects might suggest. If, on the other hand, the effect of being 

doubly disadvantaged is greater than the sum of individual disadvantages, policymakers may 

consider adjusting aid so as to provide the minimum aid to proportionally mirror the reality of 

disadvantage need. 

This paper uses an 8-year panel of North Carolina (NC) 3rd-8th grade students to provide 

the first statistical portrait of doubly disadvantaged students and answers three primary research 

questions. First, how common are the doubly disadvantaged and how do their characteristics 

differ within disadvantage and across race? Second, how do the achievement gaps of the doubly 

disadvantaged compare to the gaps of their singly and non-disadvantaged peers, and does 

overlooking the intersection of disadvantage mask heterogeneity within general disadvantage-

based achievement gaps? These findings could have policy implications for the implementation 

of federally mandated state accountability systems which hold schools accountable for 

disadvantaged based achievement gaps. Lastly, do value-added models, which account for past 

performance, suggest the effects of disadvantage on performance are largest at the intersection of 

disadvantage? Better understanding the differential effects of being singly versus doubly 
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disadvantaged could inform policy discussions surrounding the use of formulas to fund 

disadvantaged student needs and whether doubly disadvantaged students are proportionally 

supported to reflect need.  

I answer these questions by first descriptively examining the demographic and 

disadvantage characteristics of NC students. Utilizing the detailed nature of the student level 

data, I then identify the prevalence of the doubly and triply disadvantaged and describe student 

characteristics and academic achievement across and within these newly identified disadvantage 

groups. Next, I examine the achievement gaps within a regression framework, controlling for 

student characteristics and grade, year, and school fixed effects. I begin with a naïve model, 

using the traditional disadvantage definitions (ECD, SWD, and ELL) and calculate the naïve 

achievement gaps for doubly and triply disadvantaged students using these three estimates.  

I then turn to a second model, where I estimate the specific achievement gaps for single, 

doubly, and triply disadvantaged students by including interactions between each of the 

disadvantages and compare these to the naïve estimates in an effort to unmask any previously 

unknown heterogeneity in gaps. Within the second model, I then compare the estimated 

achievement gaps of each disadvantage group to learn how the doubly disadvantaged perform 

relative to the single disadvantaged. Lastly, in value-added models, I include students’ prior 

academic performance to estimate the suggested effects of each disadvantage rather than 

achievement gaps, allowing me to compare the effects of disadvantages on academic 

performance among the single, doubly, and triply disadvantaged.  

To preview my results, I find 13 percent of students are doubly or triply disadvantaged, 

the majority of whom are both ECD and SWD. Moreover, I find a higher share of black and 

Hispanic students – compared to white and Asian students – are disproportionately likely to be 
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doubly or triply disadvantaged. Thus, if it is the case that students with multiple disadvantages 

perform even worse, then it is disproportionately concentrated among these minorities. In 

baseline regression results, I find that achievement gaps are largest among students who are both 

ECD and SWD, thereby negatively contributing to larger ECD achievement gaps. Value-added 

models, by accounting for baseline academic performance, suggest there are virtually no 

additional deleterious effects of being ECD in the absence of additional disadvantages. However, 

the negative effect of being ECD and SWD on test scores is largest in magnitude, though not 

statistically different from the effect of being SWD with no additional disadvantages. That is, the 

effect of being ECD and SWD is similar to the effect of being SWD with no additional 

disadvantages. Initially, it appears the effect of being both ECD and ELL is larger and more 

positive than the effect of being ELL with no additional disadvantages, however, point estimates 

are not statistically different from each other.  

Baseline regression results suggest that school officials and policymakers should consider 

explicitly accounting for the doubly disadvantaged to provide more accurate representations of 

disadvantage-based achievement gaps. Moreover, larger achievement gaps among the doubly 

disadvantaged could have implications for federally mandated state accountability systems. 

Recognizing the prevalence of doubly disadvantaged students that are SWD in addition to ECD 

or ELL may have considerable consequences for schools trying to meet subgroup accountability 

standards.  For example, by including ECD and SWD students in the ECD subgroup, these 

schools are more likely to fail to meet subgroup accountability standards for both ECD and SWD 

subgroups.  

However, value-added results largely suggest the effects of having multiple 

disadvantages are no worse than the effects of having only one disadvantage – particularly the 
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effects of being SWD or ELL. While this analysis does not speak to the adequacy of monetary 

support, these findings imply the needs of the doubly disadvantaged may not be particularly 

different from what single disadvantages suggest, and the additional aid currently provided via 

funding formulas based on general disadvantage categories may proportionally reflect need. 

These results indicate few, if any, consequences for funding formulas that already provide 

additional funding for disadvantage categories ECD, SWD, and ELL.   

I begin by providing background information on the three disadvantages (i.e., ECD, 

SWD, and ELL) in Section II, followed by a review of the existing literature concerning 

disadvantage-based achievement gaps in Section III. Section IV describes my analytical 

framework, and Section V details the data and general descriptive statistics. I describe academic 

performance results using baseline regression and value-added models in Section VI. I further 

probe results in Section VII by using broader definitions of disadvantage before concluding and 

discussing policy implications in Sections VIII and IX. 

II. Defining Disadvantage 

While the definition of “disadvantage” is debated within the education literature, in this 

paper, disadvantage refers to hindrances that arise from social or economic status that prevent 

students from gaining the proper educational benefits from school. While there are a number of 

hindrances that may impede students’ ability to succeed, this paper examines three widely 

identified disadvantages: ECD, SWD, and ELL. Public education uses ECD certifications (i.e., 

whether students are certified eligible to receive free or reduced-price meals) to identify students 

from low-income households. Students with household incomes at or below 130 percent of the 

federal poverty line are eligible for free school meals, whereas students with household incomes 

at or below 185 percent of the federal poverty line are eligible for reduced-price meals. In the 
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US, the share of ECD students has been on the rise, climbing almost 15 percentage points in the 

last two decades, from 38 percent in 2000 to 52 percent in 2018 (USDA-NCES, 2018). 

The Individuals with Disabilities Education Act (IDEA) of 1990 defines SWD as a child 

“with mental retardation, hearing impairments (including deafness), speech or language 

impairments, visual impairments (including blindness), serious emotional disturbance, 

orthopedic impairments, autism, traumatic brain injury, other health impairments, or specific 

learning disabilities; and who, by reason thereof, needs special education and related services.” If 

a student is suspected of having a disability, he or she is evaluated by a teacher and specialist and 

provided with the appropriate daily or testing accommodations. The share SWD students has 

remained at roughly 13.2 percent of the US student population for the last 20 years (USDA-

NCES, 2018). 

ELL students come from environments in which a language other than English has had a 

significant impact on the students’ level of English language proficiency (ESSA, 2016). Students 

take a state-approved English language proficiency assessment to classify and monitor English 

proficiency progress. Once reaching proficiency, students are no longer considered ELL, and 

ELL designations are removed. The percentage of ELL students in the US has been slowly but 

steadily rising, reaching 9.6 percent of students in 2018 – up from 8.1 percent in 2000 (USDA-

NCES, 2018). 

III. Prior Literature 

Despite additional resources available to disadvantaged students, scholars find general 

disadvantage-based achievement gaps persist. These disparities in academic performance have 

widespread consequences and contribute to pervasive gaps in educational attainment which, in 
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turn, lead to more limited employment and economic mobility (Chetty et. al., 2018; Rothstein & 

Wozney, 2013; Reardon & Galindo, 2009). These life-long consequences may be exacerbated 

among doubly disadvantaged students if they perform even worse than what is suggested by 

general disadvantage-based achievement gaps. These consequences, therefore, warrant further 

examination of those at the intersection of disadvantage. 

ECD Students 

Low-income students arrive at school in early childhood performing almost 1 standard 

deviation below their higher-income peers, often due to a lack of early childhood educational 

resources, and scholars find this gap to remain more or less constant throughout low-income 

children’s academic careers (Hanushek, Machin, & Woessmann, 2016; Reardon, 2013). 

However, over the past three decades, the performance disparity of ECD students at the 

beginning of their academic careers has grown by 40 percent (Rampey, Dion, & Donahue, 2009), 

possibly due to a rise in income inequality, leading to an increase in the share of students 

identified as low-income and an overall decline in social upward mobility (Reardon, 2013).  

Moreover, the ECD test score gap likely contributes to disparities in college completion 

rates between low- and high-income students. College completion rates for low-income students 

have remained stagnant while the rates for high-income students have grown sharply in recent 

decades (Bailey & Dynarski, 2011). Furthermore, high income students make up larger shares of 

enrollment at high quality colleges and universities over time, even when compared to low 

income students with similar test scores, further contributing to long term economic disparities 

(Reardon, Baker, & Klasik, 2012; Bailey & Dynarski, 2011; Belley & Lochner, 2007; Karen, 

2002).  
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SWD Students 

Historically, SWD students have been excluded from standardized test taking (Koretz & 

Hamilton, 2006). However, in recent decades, states have incorporated SWD students into large-

scale testing programs through accommodations such as extended time, testing in a separate 

room, and marking answers in the testing booklet instead of an answer sheet. Schwartz, Hopkins, 

and Stiefel (2019) find academic outcomes improve for SWD students with learning disabilities 

following classification into special education. However, SWD students begin their academic 

careers with lower test scores than the general population and therefore, even with 

accommodations, have difficulty reaching grade-level proficiency standards in the specified time 

frame (Eckes & Swando, 2009). For many schools in the past, meeting the SWD adequate yearly 

progress necessary for accountability purposes is the most challenging goal and often leads 

schools to fail their progress expectations (Schulte & Stevens, 2015). 

SWD students consistently underperform on standardized assessments and improve at 

slower rates relative to their general education peers (Schulte & Stevens, 2015). Over time, 

scholars find the achievement gap between SWD and non-SWD students either remains stable or 

even grows larger over time, with no evidence of the gap narrowing (Judge & Watson, 2011; 

Wei et al., 2013). Schulte and Stevens (2015) use cross-sectional data to find substantial SWD-

gaps across grades, from 0.7 standard deviations among 3rd graders to 1.0 standard deviation 

among 7th graders. These findings indicate that not only do SWD students have difficulty 

reaching grade-level proficiency, it becomes more difficult for these students as they age.  

Prior research also finds female students are less likely to be identified as SWD. 

However, rather than male students being over identified as SWD, scholars find female students 

who would benefit from the services that come with SWD status are underrepresented. Scholars 
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attribute this to teacher referral processes which are based on behavioral differences between 

male and female students (Arms, Bickett, & Graff, 2008). Wehmeyer and Shwartz (2001) find 

that SWD students are often identified not by their learning needs but by their behaviors. Female 

students are less likely to be disruptive, and therefore, less likely to be identified as SWD. For 

example, females with autism spectrum disorder tend to stay in close proximity to peers, 

masking their social challenges, whereas males tend to play alone, alerting teachers to instances 

of social isolation (Dean, Harwood, & Kasari, 2017). 

ELL Students 

A recent rise in the Hispanic population in the US has contributed to an increasing 

number of students are being classified as ELL (Hemphill & Vanneman, 2011). ELL students 

consistently underperform compared to their non-ELL peers, especially on reading assessments 

(Fry, 2008). An examination of the 2013 National Assessment of Educational Progress (NAEP) 

scores shows the achievement gap between ELLs and their English-speaking counterparts has 

remained stagnant for the past 10 years, demonstrating proficiency levels between 23 to 30 

percentage points below their English-speaking peers (NCES, 2014a). While ELL students 

underperform on both reading and math assessments, they, as expected, perform worse on 

reading. According to the 2014 NAEP, 41 percent of ELL 4th graders scored below basic 

proficiency in math compared to 69 percent that performed below basic in reading (NCES, 

2014b).  

Given the nature of the ELL classification, it can be difficult to ascertain academic 

progress over long periods of time. Once a student has become “proficient,” she exits the ELL 

program and is accounted for in the general education population. Therefore, we may not expect 

to see large academic improvements for ELL students over time as research frequently identifies 
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achievement gaps using students that are contemporaneously ELL and excludes students that 

have reached proficiency and have therefore exited the program.  

Doubly Disadvantaged 

There is relatively little literature concerning students with overlapping disadvantages. A 

small but emerging literature examines the lack of ELL students with SWD designations. ELL 

students are less likely to be identified as learning disabled or as having speech/language 

impairments, likely because the more visible disadvantage is the lack of English proficiency 

(Morgan et. al., 2015). However, research finds students that are classified as both SWD and 

ELL are overrepresented in secondary grade levels and attribute this phenomenon to the fact that  

students that are both SWD and ELL are much less likely to reach English proficiency and exit 

the ELL program compared to their non-SWD/ELL counterparts (Umansky, Thompson, & Diaz, 

2017).   

There is a plethora of research examining disadvantage-based achievement gaps. 

However, this research largely overlooks those at the intersection of disadvantage – both their 

characteristics and their academic performance. This paper aims to fill the gap in the literature by 

being the first to thoroughly investigate the prevalence of the doubly disadvantaged, their 

characteristics and academic achievement, and whether the intersections of these disadvantages 

reveal heterogeneity in achievement that studies of general achievement gaps have overlooked. 

IV. Analytical Strategies 

I utilize several empirical strategies to explore the characteristics and academic 

performance of doubly disadvantaged students. I first descriptively discuss the prevalence of 

disadvantaged students in NC and investigate the incidence and characteristics of students at the 
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intersection of disadvantage, including the gender, racial/ethnic, and academic disparities that 

exist within specific disadvantage groups. I then employ the following regression framework to 

more closely examine achievement gaps: 

Baseline Regression Models 

 

 where 𝑌𝑖𝑔𝑠𝑡 is a vector of test score outcomes for student i in grade g, school s, in year t, 

including test scores on standardized assessments normalized by grade, subject, and year (zMath 

and zRead). ECD, SWD, and ELL are indicator variables equal to 1 if student i has that 

disadvantage in year t. 𝐶ℎ𝑎𝑟𝑖𝑡is a vector of binary student characteristics including gender 

(Female) and race/ethnicity (Black, Hispanic, Asian/Other).  𝜆, 𝛿, and 𝛾, are grade, school, and 

year fixed effects, and standard errors are clustered at the school level. Coefficients on each 

disadvantage (i.e., 𝛽1, 𝛽2, 𝛽3) capture the regression-adjusted mean, within-school differences in 

performance between students with each disadvantage and other students. For example, 𝛽1 

captures the regression-adjusted mean, within-school disparity in performance between ECD 

students and others, and 𝛽1 + 𝛽2 reflects the suggested or naïve achievement gap for students 

that are both ECD and SWD.  

 However, not specifically including indicators for doubly or triply disadvantaged students 

may mask heterogeneity within disadvantage-based achievement gaps. Therefore, to parse 

disadvantage-specific achievement gaps, I estimate a similar model (Equation 2) that includes 

interactions for each disadvantage. 𝛽1 captures the regression-adjusted mean, within-school 

achievement gap between ECD students with no additional disadvantages and others, and the 

𝑌𝑖𝑔𝑠𝑡 =  𝛽0 + 𝛽1𝐸𝐶𝐷𝑖𝑡 + 𝛽2𝑆𝑊𝐷𝑖𝑡 + 𝛽3𝐸𝐿𝐿𝑖𝑡 + 𝛽4𝐶ℎ𝑎𝑟𝑖𝑡 + 𝜆𝑔 +  𝛿𝑠 + 𝛾𝑡 + 𝑒𝑖𝑔𝑠𝑡  (1) 
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sum of 𝛽1, 𝛽2, and  𝛽4 reflects the achievement gap between students that are both ECD and 

SWD and others.  

I begin by estimating the two models above using parsimonious specifications which only 

control for grade and year fixed effects. I then add student characteristics to examine how 

sensitive disparities are to the inclusion of student gender and race before I estimate my preferred 

models which include school fixed effects. Then, in an exercise to gain further insight into the 

heterogeneity within each achievement gap, I incrementally add disadvantage interactions to 

better understand the contribution of each doubly and triply disadvantaged group to original 

disadvantage-based achievement gap estimates.  

Value-Added Models 

 To shed light on potential causal effects of disadvantage – as opposed to observed, 

within-school achievement gaps – I next estimate value-added models in which I control for 

students’ prior academic achievement by including lagged test scores. This method enables me to 

remove baseline performance and examine the effects of each single, double, and triple 

disadvantage over time. The coefficients in these models provide unbiased estimates of causal 

effects if students’ likelihood of being identified as disadvantaged does not differ within school 

and there are no heterogeneous effects depending on student characteristics. 

I begin by estimating the naïve model shown in Equation 3, which resembles Equation 1 

but with the addition of students’ lagged test scores. In this model, 𝛽1 captures the regression-

adjusted, within-school mean effect of ECD on performance, and 𝛽1 + 𝛽2 reflects the suggested 

or naïve effect on performance of being ECD and SWD. I then compare these naïve effects to the 

𝑌𝑖𝑔𝑠𝑡 =  𝛽0 + 𝛽1𝐸𝐶𝐷𝑖𝑡 + 𝛽2𝑆𝑊𝐷𝑖𝑡 + 𝛽3𝐸𝐿𝐿𝑖𝑡 + 𝛽4𝐸𝐶𝐷𝑖𝑡 ∗ 𝑆𝑊𝐷𝑖𝑡 + 𝛽5𝐸𝐶𝐷𝑖𝑡 ∗ 𝐸𝐿𝐿𝑖𝑡 + 

 𝛽6𝑆𝑊𝐷𝑖𝑡 ∗ 𝐸𝐿𝐿𝑖𝑡 + 𝛽7𝐸𝐶𝐷𝑖𝑡 ∗ 𝑆𝑊𝐷𝑖𝑡 ∗ 𝐸𝐿𝐿𝑖𝑡 + 𝛽8𝐶ℎ𝑎𝑟𝑖𝑡 +  𝜆𝑔 +  𝛿𝑠 + 𝛾𝑡 + 𝑒𝑖𝑔𝑠𝑡 (2) 
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effects estimated in the interacted model shown in Equation 4. Here, 𝛽1 captures the regression-

adjusted, within-school mean effect on performance of being ECD with no additional 

disadvantages, and the sum of 𝛽1, 𝛽2, and  𝛽4 reflects the regression-adjusted, within-school 

mean effect of being ECD and SWD.  

V. Data, Sample, & Descriptives 

This study uses a student-level panel from the North Carolina Education Research Data 

Center (NCERDC) that includes 3rd-12th grade NC public education students from 2009 to 2016. 

It provides longitudinal data on over 2 million students in 2,500 schools and 115 districts. NC 

school districts cover a variety of contexts. The districts range in size, serving between 500 and 

160,000 students, with three-fourths of the districts residing in rural counties. The data include 

unique student identifiers, socioeconomic characteristics such as race/ethnicity, gender, ECD, 

SWD, and ELL status, and scale scores of math and reading standardized assessments for 3rd-8th 

grade students. I use two samples for my analyses. For the descriptive characteristics analysis, I 

use all 3rd-8th grade students with non-missing sociodemographic information. For the academic 

performance analysis, my sample includes all 3rd-8th grade students with non-missing test score 

information.10 

Sociodemographic Characteristics 

 
10 While ELL students are often exempt from taking the reading test in first year, they have test scores in later years of the panel, 

and approximately 98 percent of SWD students take NC standardized assessments.    

𝑌𝑖𝑔𝑠𝑡 =  𝛽0 + 𝛽1𝐸𝐶𝐷𝑖𝑡 + 𝛽2𝑆𝑊𝐷𝑖𝑡 + 𝛽3𝐸𝐿𝐿𝑖𝑡 + 𝛽4𝐶ℎ𝑎𝑟𝑖𝑡 + 𝛽5𝑌𝑖𝑔𝑠𝑡−1 +  𝜆𝑔 +  𝛿𝑠 + 𝛾𝑡 + 𝑒𝑖𝑔𝑠𝑡        (3) 

𝑌𝑖𝑔𝑠𝑡 =  𝛽0 + 𝛽1𝐸𝐶𝐷𝑖𝑡 + 𝛽2𝑆𝑊𝐷𝑖𝑡 + 𝛽3𝐸𝐿𝐿𝑖𝑡 + 𝛽4𝐸𝐶𝐷𝑖𝑡 ∗ 𝑆𝑊𝐷𝑖𝑡 + 𝛽5𝐸𝐶𝐷𝑖𝑡 ∗ 𝐸𝐿𝐿𝑖𝑡 +  

𝛽6𝑆𝑊𝐷𝑖𝑡 ∗ 𝐸𝐿𝐿𝑖𝑡 + 𝛽7𝐸𝐶𝐷𝑖𝑡 ∗ 𝑆𝑊𝐷𝑖𝑡 ∗ 𝐸𝐿𝐿𝑖𝑡 + 𝛽8𝐶ℎ𝑎𝑟𝑖𝑡 +  𝛽9𝑌𝑖𝑔𝑠𝑡−1 +  𝜆𝑔 +  𝛿𝑠 + 𝛾𝑡 + 𝑒𝑖𝑔𝑠𝑡     (4) 
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As shown in Table 8, over half of NC’s 658,000 students in 2016 are ECD, 13.5 percent 

are SWD, and 6.2 percent are ELL.11 If each of these students had no additional disadvantages, 

we would expect the percent of disadvantaged students to equal the sum of the disadvantage 

percentages, or 70.9 percent. However, as shown in Column 4, 57.1 percent of students have at 

least one disadvantage, demonstrating the existence of students with multiple disadvantages. Of 

these students with any disadvantage, the majority are ECD (89.6 percent), one in four are SWD, 

and one in ten are ELL. The cross tabulations shown in Columns 1 through 3 begin to reveal the 

doubly (or triply) disadvantaged nature of NC students. Almost one fourth of ECD students are 

additionally disadvantaged (17.3 percent SWD; 6.2 percent ELL). More than half of SWD 

students are also ECD (65.4 percent), and 97 percent of ELL students are also either ECD or 

SWD.  

Table 9 provides a more detailed view of student disadvantage. Few students are triply 

disadvantaged (7,308 students or 1.1 percent), while almost 12 percent are doubly disadvantaged. 

Among the doubly disadvantaged, ECD&SWD students make up the largest group with over 

50,000 students at 7.7 percent. Very few students, however, are SWD&ELL (0.2 percent). This 

is consistent with work by Morgan et. al. (2015), which finds ELL students are much less likely 

to be identified has having a learning disability and therefore less likely to be identified as SWD. 

Roughly 45 percent of students have only one of the three disadvantages, the largest group being 

students that are ECD at 38.8 percent.  

While Table 9 provides novel information about student disadvantage using mutually 

exclusive disadvantage groups, it is possible to gain even more information by examining the 

prevalence of additional disadvantage within each general disadvantage. Table 10 Panel A shows 

 
11 Characteristics in 2016 are not substantively different from characteristics in 2009-2015. 
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a statistical portrait of disadvantage among ECD students. Most ECD students are not 

additionally disadvantaged (75.7 percent), while one in five is doubly disadvantaged (15.1 

percent +SWD; 7.0 percent +ELL). Panels B and C show the majority of SWD students and ELL 

students are not only additionally disadvantaged, they are also most likely to be ECD (57.2 

percent of SWDs; 57.7 percent of ELLs). Nearly one in five ELL students is likely to be triply 

disadvantaged, a much higher probability compared to ECDs and SWDs. 

Table 11 depicts gender and racial characteristics of all students. Almost half of students 

are white, 25 percent are black, 18 percent are Hispanic, and fewer than 10 percent are 

Asian/Other. However, the distribution of these characteristics across disadvantage do not reflect 

the general population. Table 12 displays cross tabulation information of student disadvantage 

and demographic characteristics where the first number in each cell refers to the number of 

students, the second number refers to the row percentage, and the third number refers to the 

column percentage. As shown in Column 2, only 34.3 percent of SWDs are female. ECD 

students come from all race/ethnicities, however, black and Hispanic students are 

disproportionately likely to be ECD compared to their white and Asian/other counterparts (71.6 

percent and 73.7 percent, respectively). and though almost half of SWD students are white (46.0 

percent), black students are the most likely to be SWD at 16.7 percent. Additionally, one-third 

(29.3 percent) of all Hispanic students are ELL. Additional detailed descriptive statistics within 

disadvantage group are available in Table B1 in the Appendix. 

Table 13 describes the demographic characteristics of students with one, two, and three 

disadvantages. Column 1 includes students that are disadvantaged but have no additional 

disadvantages, and Columns 2 and 3 include students that are doubly and triply disadvantaged, 

respectively. Doubly and triply disadvantaged students are less likely to be female (38.5 percent 



77 
 

 

and 35.3 percent, respectively). Black and Hispanic students are disproportionately likely to be 

doubly disadvantaged (13.7 percent and 22.5 percent, respectively), similar to the summary 

statistics presented in Table 12. Finally, one in every 20 Hispanic students is likely to be triply 

disadvantaged, the highest among all racial/ethnic groups.  

To give a brief summary of the novel descriptive information gained in this section about 

student disadvantage and the associated demographic characteristics, 57 percent of all students 

are disadvantaged, a nontrivial 13 percent are doubly or triply disadvantaged, and there is 

significant variation by race. Most doubly disadvantaged students are ECD and SWD, and there 

is very little overlap between SWD and ELL, likely due to the decreased likelihood that ELL 

students are identified as SWD. While 75 percent of ECD students have no additional 

disadvantages, the majority of SWDs and ELLs are also ECD. Concerning demographic trends 

across disadvantages, I find black and Hispanic students are more likely to be additionally 

disadvantaged, largely because both are disproportionately more likely to be ECD, black students 

are more likely to be SWD, and Hispanic students are more likely to be ELL. This evidence 

suggests that if the interaction of disadvantage has compounding negative consequences, it 

occurs disproportionately among black and Hispanic students. 

VI. Academic Performance Results 

Descriptive Statistics 

Table 14 shows the average academic performance of students by general disadvantage. 

Students without any disadvantages perform better by 0.2 standard deviations (SD). Overall, 

disadvantaged students underperform, on average. SWD students perform the lowest on both 
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reading and math at 0.8-0.9 SD below average, and ELL students, unsurprisingly, perform worse 

on reading assessments compared to math.  

However, it is possible that overlooking the intersection of disadvantage masks the 

heterogeneity within disparities. By comparing academic performance of the doubly and triply 

disadvantaged, I can begin to parse the naive achievement gaps by each disadvantage group. 

Table 15 Panel A shows the general ECD achievement gap to be 0.1 SD below average. 

However, ECD students with no additional disadvantages (No Add Disad) actually perform 

above average, while students that are both ECD and SWD perform practically on par with the 

triply disadvantaged. As shown in Panel B, SWD students perform similarly, regardless of 

additional disadvantage. However, students that are both SWD and ELL have the lowest 

performance of all disadvantage intersections, including the triply disadvantaged, with 

performance on reading and math 0.9-1.0 SD below average. While ELL students perform worse 

on reading assessments across all intersections of disadvantage, ELL students with no additional 

disadvantages perform relatively the best (Panel C).  

 In summary, both ECD and ELL students with no additional disadvantages perform 

better than what is suggested by the general ECD and ELL achievement gaps. However, all 

SWD students, regardless of additional disadvantages, underperform similarly at approximately 

0.8-0.9 SD below average. Doubly disadvantaged students that are both SWD and ELL perform 

worst among all groups but are closely followed by those that are both ECD and SWD. 

Interestingly, both of these doubly disadvantaged groups perform marginally better than students 

that are triply disadvantaged.  

Baseline Regression Achievement Gap Results 
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 Table 16 displays the baseline regression results for zMath beginning with the 

parsimonious models (Columns 1 and 4) and incrementally adding student characteristics 

(Columns 2 and 5) and school fixed effects in my preferred model (Columns 3 and 6). 

Disparities in performance are surprisingly insensitive to the inclusion of student characteristics 

and school fixed effects. Controlling for student characteristics explains 0.04-0.05 SD of the 

ECD achievement gaps but widens the ELL gap by almost the same. Changes in point estimates 

between Columns 2 and 3 (5 and 6) reflect that achievement gaps in Column 2 (5) are partially 

driven by differences across schools. The differences between coefficients on ECD, SWD, and 

ELL between models in Columns 3 and 6 demonstrate that estimates in models that do not 

specifically account for the doubly and triply disadvantaged mask the heterogeneity and nuance 

within each general disadvantage disparity. I find similar results for zRead, with the exception of 

ELL students performing mildly worse, as expected (see Appendix Table B2).  

For ease of coefficient interpretation, Table 17 provides both the naïve performance 

disparities as a result of excluding the disadvantage interactions (Table 16, Columns 1-3), as well 

as the disparities estimated in preferred models that include such interactions for both zMath 

(Table 16, Columns 4-6) and zRead. Overall, I find accounting for the doubly and triply 

disadvantaged suggests meaningful heterogeneity within general disadvantage achievement gaps. 

Most disadvantage groups perform the same or better than what naïve estimates would suggest 

on both math and reading assessments, with the exception of ELL students with no additional 

disadvantages and students that are both ECD and SWD. For example, the naive zMath estimates 

suggest students that are both ECD and SWD perform 1.38 SD (1.31 SD for zRead) below 

average. However, preferred estimates show that students that are both ECD and SWD perform 

marginally worse: 1.45 SD (1.35 SD for zRead) below average. Similarly, preferred estimates 
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demonstrate ELL students without additional disadvantages actually perform 0.07-0.08 SD 

worse than naïve estimates would suggest. 

To shed light on the direction and general contribution of each doubly and triply 

disadvantaged group to general disadvantage-based achievement gaps, I incrementally add 

disadvantage interactions to the baseline regression model.12 As shown in Table 18 Column 1, 

the general math achievement gaps appear to be -0.08 SD for ECD and -1.30 SD for SWD. 

However, Column 2 demonstrates that it is the poor performance of those that are both ECD and 

SWD that cause the general gaps to appear larger. By specifically accounting for the 

performance of students that are both ECD and SWD in Column 2, general achievement gaps 

shrink by 0.02 SD for ECD and 0.14 SD for SWD. Conversely, students that are both ECD and 

ELL cause general ELL math disparities to appear 0.07 SD (zRead: 0.06) smaller, and students 

that are both SWD and ELL cause both SWD and ELL general disparities to appear 0.01 SD 

smaller. The triply disadvantaged cause general SWD disparities and ELL disparities to appear 

only marginally worse for math with no difference among reading.  

To summarize, performance disparities are largely unaffected by student demographic 

characteristics, and explicitly accounting for the doubly and triply disadvantaged unmasks 

heterogeneity previously unobserved within general disadvantage disparities. Naïve estimates 

suggest most disadvantage groups perform worse than preferred estimates indicate, with the 

exception of ELL students with no additional disadvantages and students that are both ECD and 

SWD, who perform 0.04-0.08 worse than suggested. By incrementally adding disadvantage 

interactions, I find students that are both ECD and SWD negatively contribute to general ECD 

disparities, causing general ECD disparities to appear larger. Of note, students that are both ECD 

 
12 The order in which interactions are added does not substantively change the trends in contribution and direction. 
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and ELL positively contribute to general ELL achievement gaps and cause general ELL 

disparities to appear smaller. 

Value-Added Model Results  

 Value-added results are shown in Table 19, and coefficient interpretations are available in 

Table 20.13  As shown in Table 20, naïve estimates of the effects of disadvantage (Columns 1 

and 3) are similar to estimates in models that include disadvantage interactions (Columns 2 and 

4) for almost half of disadvantaged groups. Estimates between the two models are the same for 

students that are ECD with no additional disadvantages, students that are SWD with no 

additional disadvantages, and students that are both ECD and ELL.14 However, naïve estimates 

underestimate the effects of disadvantage being ELL with no additional disadvantages, both 

ECD and SWD, and triply disadvantaged. Interestingly, students that are both SWD and ELL 

perform better on math than naïve estimates would suggest, and slightly worse on reading.  

 In summary, though estimates between the two models are similar for some groups, 

models that account for the doubly and triply disadvantaged provide more accurate 

representations of the effects of student disadvantage. Comparing effects within Columns 2 and 4 

in Table 20, I find accounting for prior academic performance suggests that there are virtually no 

additional deleterious effects of being ECD beyond baseline performance. However, being ECD 

and SWD has the largest negative effect on performance (zMath: -0.14; zRead: -0.08) – even 

larger than the effect of being triply disadvantaged, though it is not statistically different from the 

effect of being SWD with no additional disadvantages. Interestingly, there is a positive effect of 

 
13 Sample size is slightly smaller in value-added models. Baseline regression results using this sample are robust (see Appendix 

Table A3). 
14 The naïve ECD&ELL math estimate is the sum of ECD: -0.01 and ELL: 0.04. 
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being ELL with no additional disadvantages (zMath: 0.01; zRead: 0.04), as well being both ECD 

and ELL (zMath: 0.03; zRead: 0.05), thought point estimates are not statistically different from 

each other. These results are consistent with the notion that ELL students are improving English 

proficiency over time as part of the ELL program.  

VII. Dynamic Effects of Disadvantage  

Thus far, this paper has analyzed the effects of cotemporaneous disadvantage. However, 

identification of disadvantage is not necessarily static. For example, once ELL students 

demonstrate English proficiency, they are no longer identified as ELL. Similarly, some SWD 

students exit “SWD-status” during their educational careers. Moreover, students may turn in a 

free or reduced-price lunch application in one year and not the next.  

In my sample between 2009 and 2016, 54 percent of students ever identified as ELL and 

21 percent ever identified as SWD exit their respective programs.15 Furthermore, 21 percent of 

students ever identified as ECD are not identified as ECD at some point later in their academic 

career. While student household incomes may well rise above the free/reduced price lunch 

thresholds during this timeframe, the rising frequency with which schools across NC adopt 

Universal Free Meals (UFM) via the Community Eligibility Provision (CEP) may help explain 

this loss of ECD status. CEP requires schools to transition to using direct certification to identify 

student poverty status instead of the traditional free/reduced-price meal forms.16 However, there 

are many students who are income eligible for reduced price meals but are not enrolled in the 

direct certification means-tested programs and, therefore, are not identified as ECD. Prior to 

 
15 The majority of these students that exit SWD status previously had a speech-language impairment (47 percent), a specific 

learning disability (32 percent), or some other health impairment (11 percent), with the remaining 10 percent of students having 

some other exceptionality. 
16 Direct certification matches students from school rosters to statewide enrollments in SNAP/TANF/Medicaid. Students that 

match across these rosters are identified as ECD. 
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CEP’s use of direct certification, these students would be incentivized to turn in meal forms. Yet 

once a school adopts UFM where all students receive meals for free regardless of household 

income, incentives to return forms all but disappear. 

 Roughly 10 percent of ever ECD students lose ECD status each year from 2009-2016. 

However, 27 percent of students lose status in 2015 – the year schools in NC became eligible to 

adopt UFM via CEP. Because CEP requires schools to use direct certification, it is likely that 

students previously identified as eligible for reduce-price meals were not enrolled in 

SNAP/TANF/Medicaid and therefore were no longer identified as ECD.17  

It is possible that, by not accounting for a student’s exit from their ELL and/or SWD 

classification (i.e., those that have improved to the point of exiting), my prior analyses may 

overstate ELL and SWD performance disparities. Similarly, by identifying ECD students using a 

contemporaneous measure of poverty, my previous analyses may overestimate ECD 

achievement gaps, as it is measuring the “poorest of the poor.” I answer this question by 

redefining student disadvantage as “ever” being identified as having each disadvantage and 

examine the baseline regression achievement gaps, as well as value-added effects of 

disadvantage.  

Using contemporaneous measures of disadvantage does not include students who have 

exited their disadvantage programs, nor does it catch the broader, more consistent definition of 

ECD. I find identifying gaps between students that have ever had these particular disadvantages 

 
17 There are serious implications of counting the poorest students as economically disadvantaged, while the less poor are 

accounted for in the general education population. First, there are fewer ECD students accounted for, meaning less funding for 

schools with students that would be identified as ECD had the school used lunch forms instead of direct certification. Second, 

schools are required to report test scores separately for the ECD subgroups. Students from low socioeconomic backgrounds are 

more likely to perform worse on standardized testing compared to their more advantaged, but still ECD peers. Moving students 

that would have qualified for reduced price meals from the ECD category to the general education category will make it appear 

as though both the ECD students and the general population students are doing worse. 
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reveals contemporaneous measures of disadvantage cause achievement gaps to appear larger for 

most disadvantage groups (results available in Table B4 in the Appendix). Moreover, value-

added models using broader definitions of disadvantage reveal the effects of each disadvantage 

are, overall, smaller in magnitude than effects in models using contemporaneous measures of 

disadvantage would suggest.  

VIII. Conclusion  

Prior literature largely focuses on the disparities in academic performance between ECD, 

SWD, and ELL students and their non-disadvantaged counterparts. However, there is little 

information concerning the characteristics and academic achievement of students at the 

intersection of these disadvantages. More accurately understanding the doubly disadvantaged 

may help explain nuances within general disadvantage-based achievement gaps. Furthermore, 

detailed information about these students may have policy implications for subgroup 

accountability systems and student support via additional funding. 

This paper uses 8 years of student-level, NC data to explore a number of research 

questions. First, how common are the doubly disadvantaged and how do their characteristics 

differ within disadvantage and across race? Second, how do the doubly disadvantaged perform, 

and does overlooking the intersection of disadvantage mask nuance and heterogeneity within 

general disadvantage-based achievement gaps? Lastly, do value-added models suggest the 

effects of disadvantage on performance are largest at the intersection of disadvantage?  

I find over half of NC students are disadvantaged – 13 percent of whom are doubly or 

triply disadvantaged. Among students with multiple disadvantages, students are most likely to be 

both ECD and SWD and least likely to be both SWD and ELL. Moreover, the majority of SWDs 
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and ELLs are doubly or triply disadvantaged. Black and Hispanic students are disproportionately 

doubly disadvantaged, meaning that if having multiple disadvantages has compounding negative 

effects, it affects minority students most. 

Descriptively, ECDs and ELLs with no additional disadvantages perform better than what 

is suggested by general ECD and ELL achievement gaps, whereas SWDs, regardless of 

additional disadvantages, consistently perform almost 1 SD below average. Moreover, students 

that are both SWD and ELL appear to perform worst of all – even worse than the triply 

disadvantaged. However, once controlling for student characteristics and school fixed effects, I 

find explicitly accounting for students at the intersection of disadvantage reveals heterogeneity 

generally masked within general disadvantage disparities. Students that are ECD and SWD 

demonstrate the largest achievement gap among all disadvantage groups and are responsible for 

the larger achievement disparities found among ECD students, whereas students that are ECD 

and ELL cause the general ELL gap to appear smaller. 

I find that by accounting for prior academic performance, I can shed light on the effects 

of having each (or multiple) disadvantage(s) on student performance. Value-added models that 

account for the doubly and triply disadvantaged provide more accurate representations of the 

effects of disadvantage on student performance. I find virtually no additional deleterious effects 

of being ECD with no additional disadvantages. However, the disadvantage group with the 

largest, most detrimental effect on test scores is among students that are both ECD and SWD, 

though this effect is not statistically different from the effect of being SWD with no additional 

disadvantages. This means that if most SWD students are also ECD, then the ECD gap may 

mostly reflect differences in performance between SWD and non-SWD students.  Furthermore, I 
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find positive effects among ELL students – both those with no additional disadvantages and 

those that are ECD and ELL – however effects are not statistically different from each other. 

The coefficients produced by the value-added models are causal estimates of 

disadvantage if the within-school procedures for identifying disadvantage do not vary across 

students and there are no heterogeneous effects by student characteristics. However, within-

school processes for identifying disadvantage may not be consistent across all students. For 

example, school processes may over (or under) identify SWD among Black and Hispanic 

students, under identify SWD among ELL students, and under identify females as SWD (Elder, 

Figlio, Imberman, & Persico, 2019; Morgan et. al., 2015; Arms, Bickett, & Graff, 2008). Elder et 

al, 2019 find that Black and Hispanic students are over-identified in schools with relatively small 

shares of minorities and substantially under-identified in schools with large minority shares, 

though opposite patterns occur among white students. Future work could address under and over 

identification concerns by including school-level measures of student race, such as share of 

minority students. 

Furthermore, there may be differential effects of disadvantage by student race/ethnicity 

and gender. For example, achievement gaps and effects of disadvantage may be exacerbated 

among minority students compared to their white counterparts. Future research includes 

examining differential achievement gaps and effects of disadvantage by race/ethnicity and 

gender and investigating the potential implications of such findings for subgroup accountability 

standards and state funding formulas. 

Lastly, I replace my contemporaneous measures of student disadvantage with more 

inclusive, “ever” definitions to catch a broader picture of student disadvantage – students that 

have exited SWD or ELL programs or have lost ECD status potentially due to changes in school 



87 
 

 

lunch form requirements. I find using broader definitions of disadvantage reveals smaller 

achievement gaps for most disadvantage groups, and value-added models reveal the effects of 

each (or multiple) disadvantage(s) are, in general, smaller in magnitude that what 

contemporaneous definitions would suggest.  

This paper uncovers evidence of the doubly disadvantaged that has previously been 

overlooked. And while these findings are the first to provide an in-depth dive into the 

characteristics and achievement gaps of the doubly disadvantaged, more research regarding those 

at the intersection of disadvantage is needed. This analysis provides a statistical portrait of 

students at the intersection of disadvantage in NC; however, it is limited in generalizability by 

the state-specific rules and regulations surrounding NC student disadvantage.  

IX. Discussion & Policy Implications 

This new information concerning the doubly disadvantaged can benefit policymakers and 

school officials alike. Better grasping the details of disadvantage-based achievement gaps can 

have implications for how districts (and states) support their disadvantaged populations. More 

specifically, the achievement gap findings in this paper can help improve federally mandated 

state accountability systems which require reports by subgroup – particularly since the 

achievement gaps of doubly disadvantaged students (i.e., students that are both ECD and SWD) 

are worse than what general achievement disparities would suggest.  

Under the Every Student Succeeds Act (ESSA), state local education agencies are 

required to create and implement accountability systems and interventions (if necessary), and 

provide with the necessary funding, in an attempt to achieve equity for all students. Within this 

system, schools are required to report academic achievement by subgroups, including students 
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that are ECD, SWD, ELL and from major racial and ethnic groups (USDOE, 2017). The analysis 

performed in this paper demonstrates that general ECD and ELL achievement gaps depend 

largely on the prevalence of doubly disadvantaged SWD students. Schools often face difficulty 

meeting SWD accountability benchmarks given how far behind these students are at the 

beginning of their academic career, in addition to the fact that SWD students generally perform 

worse as they age. Recognizing the prevalence of doubly disadvantaged students that are SWD 

in addition to ECD or ELL may have serious implications for schools trying to meet subgroup 

accountability standards across general ECD, SWD, and ELL subgroups. For example, schools 

with large shares of ECD and SWD students are more likely to struggle more to meet ECD 

subgroup accountability benchmarks in addition to SWD benchmarks each year compared to 

schools with large shares of ECD students with no additional disadvantages.  

In addition, the effects of disadvantage estimated in value-added models can help inform 

conversations that revolve around supporting disadvantaged students through additional funding. 

State and local county contributions largely fund local school districts. States often use 

foundation aid formulas and pupil weights to determine the amount of extra aid school districts 

receive based on each district’s share of disadvantaged students. The formula determines the 

amount of additional funding per disadvantaged student schools receive by multiplying each 

disadvantage-specific pupil weight by the share of students in each disadvantage category in the 

school district. While findings from this paper suggest that achievement gaps are larger among 

students that are both ECD and SWD, I find the effect of being ECD and SWD is not statistically 

different from the effect of being SWD with no additional disadvantages. These findings suggest 

the needs of the doubly disadvantaged may not be particularly different from those of the single 
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disadvantaged, suggesting few, if any, consequences for formulas that provide additional 

monetary support based on general disadvantages. 
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Table 8: Student Disadvantage, Grades 3-8, 2016  
 

ECD SWD ELL Any Disad 
 

(1) (2) (3) (4) 

% of All Students 51.2 13.5 6.2 57.1 

ECD 100.0 65.4 75.6 89.6 

SWD 17.3 100.0 21.6 23.7 

ELL 6.2 9.9 100.0 10.8 

# Students 336,894 89,034 40,777 376,149 

Notes: Sample includes all 658,161 3-8 grade students in 2016. Any Disad refers to students with 

any of the three disadvantages. 
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Table 9: Mutually Exclusive Student Disadvantage, Grades 3-8, 2016 

Notes: Sample includes all 658,161 3-8 grade students in 2016. No Disad refers to students 

without any disadvantages. No Add Disad stands for no additional disadvantages.  

 

  

 

  No Add Disad  Doubly  Triply  

No Disad  ECD SWD ELL  

ECD 

&SWD 

ECD 

&ELL 

 SWD 

&ELL   

ECD& 

SWD&ELL  
(1)  (2) (3) (4)  (5) (6) (7)  (8) 

# Students 

% of All  

282,098 

42.9  

255,158 

38.8 

29,313 

4.5 

8,430 

1.3 
 50,901 

7.7 

23,527 

3.6 

1,512 

0.2 
 7,308 

1.1 
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Table 10: Parsing Student Disadvantage, Grades 3-8, 2016 

Panel A: ECD Students  

  Doubly  Triply   
No Add Disad  +SWD +ELL  +SWD&ELL Total 

 (1)  (2) (3)  (4) (5) 

ECD 255,158  50,901 23,527  7,308 336,894 
 75.7  15.1 7.0  2.2 100.0 

Panel B: SWD Students  

  Doubly  Triply   
No Add Disad  +ECD +ELL  +ECD&ELL Total 

 (1)  (2) (3)  (4) (5) 

SWD 29,313  50,901 1,512  7,308 89,034 
 32.9  57.2 1.7  8.2 100.0 

Panel C: ELL Students  

  Doubly  Triply   
No Add Disad  +ECD +SWD  +ECD&SWD Total 

 (1)  (2) (3)  (4) (5) 

ELL 8,430  23,527 1,512  7,308 40,777 
 20.7  57.7 3.7  17.9 100.0 

Notes: Sample includes all 658,161 3-8 grade students in 2016. No Add Disad stands for no 

additional disadvantages.  
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Table 11: Student Demographic Characteristics, Grades 3-8, 2016 

Notes: Sample includes all 658,161 3-8 grade students in 2016.  

 

  

 
Female White Black Hispanic Asian/Other All Students 

 (1) (2) (3) (4) (5) (6) 

# Students 

% of All 

319,567 

48.5 

321,616 

48.9 

165,830 

25.2 

114,918 

17.5  

55,883 

8.5 

658,247 

100.0 
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Table 12: Student Demographic Characteristics by Disadvantage, Grades 3-8, 2016 
 

ECD SWD ELL 
 (1) (2) (3) 

Female 

 163,189 

51.1 

48.4 

30,567 

9.6 

34.3 

17,908 

5.6 

43.9 

White 

106,917 

33.2 

31.7 

40,914 

12.7 

46.0 

1,719 

0.5 

4.2 

Black 

118,750 

71.6 

35.3 

27,749 

16.7 

31.2 

1,193 

0.7 

2.9 

Hispanic 

 84,632 

73.7 

25.1 

14,123 

12.3 

15.9 

33,690 

29.3 

82.6 

Asian/Other 

26,595 

27.6 

7.9 

6,248 

11.2 

7.0 

4,175 

7.47 

10.2 

# Students 

% of All 

336,894 

51.2 

89,034 

13.5 

40,777 

6.2 

Notes: The first number in each cell describes the number of students, the second refers to the 

row percentage, and the third refers to the column percentage. Sample includes all 658,161 3-8 

grade students in 2016.  
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Table 13: Student Demographic Characteristics by Additional Disadvantages, Grades 3-8, 

2016 
 

No Add Disad Doubly Triply 
 (1) (2) (3) 

Female 

145,399 

45.5 

49.6 

29,264 

9.2 

38.5 

2,579 

0.8 

35.3 

White 

105,804 

32.9 

36.1 

21,627 

6.7 

28.5 

164 

0.1 

2.2 

Black 

102,126 

61.6 

34.9 

22,636 

13.7 

29.8 

 98 

0.1 

1.3 

Hispanic 

60,733 

52.9 

20.7 

25,821 

22.5 

34.0 

6,690 

5.8 

91.5 

Asian/Other 

24,238 

43.4 

8.3 

5,856 

10.5 

7.7 

356 

0.6 

4.9 

# Students 

% of All 

292,901 

44.5 

75,940 

11.5 

7,308 

1.1 

Notes: The first number in each cell describes the number of students, the second refers to the 

row percentage, and the third refers to the column percentage. Sample includes all 658,161 3-8 

grade students in 2016. No Add Disad stands for no additional disadvantages.  
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Table 14: Academic Performance by Disadvantage, Grades 3-8, 2016 

 
All Students No Disad Any Disad ECD SWD ELL 

 (1) (2) (3) (4) (5) (6) 

zMath 0.00 0.21 -0.16 -0.10 -0.84 -0.20 

zRead 0.00 0.22 -0.16 -0.10 -0.88 -0.28 

# Math Students 652,537 281,460 371,077  333,747 88,017 37,472 

# Read Students 652,482  281,434 371,048 333,767  88,052 37,389 

Notes: Sample includes all 3-8 grade students with test scores in 2016. No Disad refers to 

students without any disadvantages, and Any Disad refers to students with any of the three 

disadvantages. zMath and zRead for ELL students are statistically different from each other.  
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Table 15: Parsing Academic Performance by Disadvantage, Grades 3-8, 2016 

Panel A: ECD Students 

   Doubly Triply 
 

ECD  No Add Disad + SWD + ELL + SWD & ELL 

 (1) (2) (3) (4) (5) 

zMath -0.10 0.06 -0.84  -0.03 -0.80 

zRead -0.10 0.07 -0.89 -0.10 -0.89 

# Math Students  333,747 254,293  50,338 21,889 7,227 

# Read Students  333,767  254,316 50,358  21,861 7,232 

Panel B: SWD Students 

   Doubly Triply 
 

SWD No Add Disad + ECD + ELL + ECD & ELL 

 (1) (2) (3) (4) (5) 

zMath -0.84 -0.84 -0.84 -0.87 -0.80 

zRead -0.88 -0.86 -0.89 -0.96 -0.89 

# Math Students 88,017 28,974 50,338 1,478 7,227 

# Read Students  88,052 28,985 50,358  1,477 7,232 

Panel C: ELL Students 

   Doubly Triply 
 

ELL No Add Disad +ECD + SWD + ECD & SWD 

 (1) (2) (3) (4) (5) 

zMath -0.20   0.02 -0.03 -0.87 -0.80 

zRead -0.28  -0.06 -0.10 -0.96 -0.89 

# Math Students 37,472 6,878 21,889 1,478 7,227 

# Read Students  37,389 6,819 21,861  1,477 7,232 

Notes: Sample includes all 3-8 grade students with test scores in 2016. No Add Disad refers to 

students without any additional disadvantages.  
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Table 16: zMath Baseline Regression Results, Grades 3-8, 2009-2016 

 (1) (2) (3) (4) (5) (6) 

ECD -0.16 -0.11 -0.08 -0.13 -0.09 -0.06 

 (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

SWD -1.36 -1.35 -1.30 -1.22 -1.22 -1.16 

  (0.00) (0.00) (0.01) (0.02) (0.02) (0.02) 

ELL -0.08 -0.12 -0.12 -0.20 -0.21 -0.19 

  (0.00) (0.00) (0.00) (0.01) (0.01) (0.01) 

ECD*SWD - - - -0.22 -0.22 -0.23 

     (0.02) (0.02) (0.01) 

ECD*ELL - - - 0.11 0.08 0.07 

     (0.01) (0.01) (0.01) 

SWD*ELL - - - 0.07 0.07 0.05 

     (0.04) (0.04) (0.04) 

ECD*SWD*ELL - - - 0.08 0.07 0.07 

 

  

 (0.04) (0.04) (0.04) 

Student Char. N Y Y N Y Y 

School FE N N Y N N Y 

Grade FE Y Y Y Y Y Y 

Year FE Y Y Y Y Y Y 

              

No. Schools 2,073 2,073 2,073 2,073 2,073 2,073 

No. Districts 115 115 115 115 115 115 

Notes: Data includes student-level observations for grades 3-8 for years 2009-2016. Student 

characteristic estimates not shown include race and gender and omitted categories are white and 

male. Columns 1 and 4 are uncontrolled models with grade and year fixed effects, columns 2 and 

5 include student characteristics and year and grade fixed effects, and columns 3 and 6 are fully 

controlled and include school fixed effects, with robust standard errors clustered at the school 

level. Bold coefficients are statistically significant at p<.01. Models for zMath include 5,259,012 

student observations. 
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Table 17: Achievement Gap Coefficient Interpretations of Baseline Regression Model  

 zMath zRead 
 

Naïve  Preferred  Naïve Preferred 

 (1) (2) (3) (4) 

ECD -0.08 -0.06 -0.09 -0.08 

SWD -1.30 -1.16 -1.22 -1.15 

ELL -0.12 -0.19 -0.19 -0.27 

ECD&SWD -1.38 -1.45 -1.31 -1.35 

ECD&ELL -0.20 -0.18 -0.28 -0.28 

SWD&ELL -1.42 -1.31 -1.41 -1.31 

ECD,SWD,&ELL -1.50 -1.45 -1.50 -1.41 

Notes: All point estimates in columns 2 and 4 are statistically significant at p<.01. Point 

estimates in column 2 for ELL and ECD&ELL, as well as ECD&SWD and ECD,SWD,&ELL 

are not statistically different from each other, and point estimates in column 4 for ECD&SWD 

and SWD&ELL are not statistically different from each other 
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Table 18: Parsing Achievement Gaps by the Doubly and Triply Disadvantaged, Grades 3-8, 2009-2016 

 zMath zRead 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

ECD -0.08 -0.06 -0.06 -0.06 -0.06 -0.09 -0.08 -0.08 -0.08 -0.08 

 (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

SWD -1.30 -1.16 -1.16 -1.17 -1.16 -1.22 -1.15 -1.15 -1.15 -1.15 

  (0.01) (0.02) (0.02) (0.02) (0.02) (0.01) (0.02) (0.02) (0.02) (0.02) 

ELL -0.12 -0.12 -0.19 -0.20 -0.19 -0.19 -0.19 -0.25 -0.27 -0.27 

  (0.00) (0.00) (0.01) (0.01) (0.01) (0.00) (0.00) (0.01) (0.01) (0.01) 

ECD*SWD - -0.21 -0.21 -0.22 -0.23 - -0.11 -0.11 -0.12 -0.12 

   (0.01) (0.01) (0.01) (0.01)  (0.01) (0.01) (0.01) (0.01) 

ECD*ELL - - 0.08 0.08 0.07 - - 0.07 0.07 0.07 

    (0.01) (0.01) (0.01)   (0.01) (0.01) (0.01) 

SWD*ELL - - - 0.11 0.05 - - - 0.13 0.11 

     (0.02) (0.04)    (0.02) (0.04) 

ECD*SWD*ELL - - - - 0.07 - - - - 0.03 

     (0.04)     (0.04) 

Student Char. Y Y Y Y Y Y Y Y Y Y 

School FE Y Y Y Y Y Y Y Y Y Y 

Grade FE Y Y Y Y Y Y Y Y Y Y 

Year FE Y Y Y Y Y Y Y Y Y Y 

                      

No. Schools 2,073 2,073 2,073 2,073 2,073 2,073 2,073 2,073 2,073 2,073 

No. Districts 115 115 115 115 115 115 115 115 115 115 

Notes: Data includes student-level observations for grades 3-8 for years 2009-2016. Bold coefficients signal statistical significance at 

p<.01. Student characteristic estimates not shown include race and gender and omitted categories are white and male. Columns 1 and 

4 are uncontrolled models with grade and year fixed effects, columns 2 and 5 include student characteristics and year and grade fixed 

effects, and columns 3 and 6 are fully controlled and include school fixed effects, with robust standard errors clustered at the school 

level. Models for zMath include are 5,259,012 student observations, and models for zRead include 5,258,599 student observations.
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Table 19: Value-Added Results, Grades 3-8, 2009-2016 

 zMath zRead 

 (1) (2) (3) (4) 

ECD -0.01 -0.01 -0.00 -0.00 

  (0.00) (0.00) (0.00) (0.00) 

SWD -0.12 -0.12 -0.07 -0.07 

  (0.00) (0.00) (0.00) (0.00) 

ELL 0.04 0.01 0.05 0.04 

  (0.00) (0.01) (0.00) (0.01) 

ECD*SWD - -0.01 - -0.01 

    (0.00)   (0.00) 

ECD*ELL - 0.02 - 0.01 

    (0.01)   (0.01) 

SWD*ELL - 0.06 - -0.00 

    (0.02)   (0.02) 

ECD*SWD*ELL - -0.06 - -0.03 

 

 
(0.02) 

 
(0.02) 

Lagged Test Score 0.86 0.86 0.90 0.90 

 (0.00) (0.00) (0.00) (0.00) 

          

Student Char. Y Y Y Y 

Grade FE Y Y Y Y 

Year FE Y Y Y Y 

School FE Y Y Y Y 

No. Schools 2,034 2,034 2,034 2,034 

No. Districts 115 115 115 115 

Notes: Data includes student-level observations for grades 3-8 for years 2009-2016. All point 

estimates are significant at the p<.01. White, non-disadvantaged students are the omitted group. 

Student characteristics include race and gender. Robust standard errors clustered at the school 

level. Models for zMath include 3,577,879 student observations, and models for zRead include 

3,578,051 student observations. 
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Table 20: Effects of Disadvantage Coefficient Interpretations of Value-Added Models 

 zMath zRead 
 

Naïve  Preferred Naïve  Preferred 

 (1) (2) (3) (4) 

ECD -0.01 -0.01 -0.00 -0.00 

SWD -0.12 -0.12 -0.07 -0.07 

ELL 0.04 0.01 0.05 0.04 

ECD&SWD -0.13 -0.14 -0.07 -0.08 

ECD&ELL 0.03 0.03 0.05 0.05 

SWD&ELL -0.08 -0.05 -0.02 -0.03 

ECD,SWD,&ELL -0.09 -0.10 -0.02 -0.05 

Notes: All point estimates in columns 2 and 4 are statistically significant at p<.01. Point 

estimates in columns 2 and 4 for SWD with no additional disadvantages and ECD&SWD, as 

well as ELL with no additional disadvantages and ECD&ELL are not statistically different from 

each other.   
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X. Appendix B 

Table B1: Parsing Student Demographic Characteristics by Disadvantage, Grades 3-8, 

2016 

Panel A: ECD Students  

  Doubly Triply  
ECD No Add Disad +SWD +ELL +SWD&ELL 

 (1) (2) (3) (4) (5) 

Female 

 163,189 

51.1 

48.4 

131,835 

41.3 

51.7 

 17,807 

5.6 

35.0 

10,968 

3.4 

46.6 

2,579 

0.8 

35.3 

White 

106,917 

33.2 

31.7 

 85,220 

26.5 

33.4 

20,738 

6.5 

40.7 

795 

0.3 

3.4 

164 

0.1 

2.2 

Black 

118,750 

71.6 

35.3 

96,047 

57.9 

37.6 

21,844 

13.2 

42.9 

761 

0.5 

3.2 

 98 

0.1 

1.3 

Hispanic 

 84,632 

73.7 

25.1 

 53,301 

46.4 

20.9 

4,623 

4.0 

9.1 

20,018 

17.4 

85.1 

6,690 

5.8 

91.5 

Asian/Other 

26,595 

27.6 

7.9 

20,590 

36.8 

8.1 

3,696 

6.6 

7.3 

1,953 

3.5 

8.3 

356 

0.6 

4.9 

# Students 

% of All 

336,894 

51.2 

 255,158 

38.8 

50,901 

7.7 

23,527 

3.6 

7,308 

1.1 

Notes: Sample includes all 658,161 3-8 grade students in 2016. No Add Disad stands for no 

additional disadvantages. The numbers in each cell refer to the number of students, the row 

percentage, and the column percentage. 
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Panel B: SWD Students  

  Doubly Triply  
SWD No Add Disad +ECD  +ELL  +ECD&ELL 

 (1) (2) (3) (4) (5) 

Female 

30,567 

9.6 

34.3 

9,692 

3.0 

33.1 

 17,375 

5.6 

35.0 

489 

0.2 

32.3 

2,579 

0.8 

35.3 

White 

40,914 

12.7 

46.0 

19,918 

6.2 

68.0 

20,738 

6.5 

40.7 

94 

0.0 

6.2 

164 

0.1 

2.2 

Black 

27,749 

16.7 

31.2 

5,776 

3.5 

19.7 

21,844 

13.2 

42.9 

31 

0.0 

2.1 

 98 

0.1 

1.3 

Hispanic 

14,123 

12.3 

15.9 

1,630 

1.4 

5.6 

4,623 

4.0 

9.1 

1,180 

1.0 

78.0 

6,690 

5.8 

91.5 

Asian/Other 

6,248 

11.2 

7.0 

1,989 

3.6 

6.8 

3,696 

6.6 

7.3 

207 

0.4 

13.7 

356 

0.6 

4.9 

All Students 

89,034 

13.5 

29,313 

4.5 

50,901 

7.7 

1,512 

0.2 

7,308 

1.1 

Panel C: ELL Students 
 

  Doubly Triply 

  ELL No Add Disad +ECD  +SWD +ECD&SWD 
 (1) (2) (3) (4) (5) 

Female 

17,908 

5.6 

43.9 

3,872 

1.2 

45.9 

10,968 

3.4 

46.6 

489 

0.2 

32.3 

2,579 

0.8 

35.3 

White 

1,719 

0.5 

4.2 

666 

0.2 

7.9 

795 

0.3 

3.4 

94 

0.0 

6.2 

164 

0.1 

2.2 

Black 

1,193 

0.7 

2.9 

303 

0.2 

3.6 

761 

0.5 

3.2 

31 

0.0 

2.1 

 98 

0.1 

1.3 

Hispanic 

33,690 

29.3 

82.6 

5.802  

5.1 

68.8 

20,018 

17.4 

85.1 

1,180 

1.0 

78.0 

6,690 

5.8 

91.5 

Asian/Other 

4,175 

7.47 

10.2 

1,659 

3.0 

19.7 

1,953 

3.5 

8.3 

207 

0.4 

13.7 

356 

0.6 

4.9 

All Students 

40,777 

6.2 

8,430 

1.3 

23,527 

3.6 

1,512 

0.2 

7,308 

1.1 
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Table B2: zRead Baseline Regression Results, Grades 3-8, 2016 

 (1) (2) (3) (4) (5) (6) 

ECD -0.16 -0.12 -0.09 -0.15 -0.11 -0.08 

 (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

SWD -1.28 -1.28 -1.22 -1.22 -1.21 -1.15 

  (0.02) (0.02) (0.01) (0.03) (0.03) (0.02) 

ELL -0.18 -0.20 -0.19 -0.30 -0.29 -0.27 

  (0.00) (0.00) (0.00) (0.01) (0.01) (0.01) 

ECD*SWD - - - -0.11 -0.11 -0.12 

     (0.02) (0.02) (0.01) 

ECD*ELL - - - 0.11 0.07 0.07 

     (0.01) (0.01) (0.01) 

SWD*ELL - - - 0.14 0.14 0.11 

     (0.04) (0.04) (0.04) 

ECD*SWD*ELL - - - 0.03 0.03 0.03 

 

  

 (0.04) (0.04) (0.04) 

Student Char. N Y Y N Y Y 

School FE N N Y N N Y 

Grade FE Y Y Y Y Y Y 

Year FE Y Y Y Y Y Y 

              

No. Schools 2,073 2,073 2,073 2,073 2,073 2,073 

No. Districts 115 115 115 115 115 115 

Notes: Data includes student-level observations for grades 3-8 for years 2009-2016. Student 

characteristic estimates not shown include race and gender and omitted categories are white and 

male. Columns 1 and 4 are uncontrolled models with grade and year fixed effects, columns 2 and 

5 include student characteristics and year and grade fixed effects, and columns 3 and 6 are fully 

controlled and include school fixed effects, with robust standard errors clustered at the school 

level. Bold coefficients are statistically significant at p<.01. Models for zRead include 5,258,599 

student observations. 
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Table B3: Baseline Regression Results, Value-Added Sample, Grades 3-8, 2016 

 zMath zRead 

 (1) (2) 

ECD -0.06 -0.08 

 (0.00) (0.00) 

SWD -1.18 -1.17 

  (0.02) (0.02) 

ELL -0.18 -0.25 

  (0.00) (0.00) 

ECD*SWD -0.19 -0.09 

  (0.02) (0.02) 

ECD*ELL 0.06 0.06 

  (0.00) (0.00) 

SWD*ELL 0.02 0.07 

  (0.05) (0.05) 

ECD*SWD*ELL 0.08 0.03 

 (0.05) (0.05) 

Student Char. Y Y 

School FE Y Y 

Grade FE Y Y 

Year FE Y Y 

      

No. Schools 2,073 2,073 

No. Districts 115 115 

Notes: Data includes student-level observations used in value-added models for grades 3-8 for 

years 2009-2016. All point estimates are significant at the p<.01. Student characteristic estimates 

not shown include race and gender and omitted categories are white and male. Robust standard 

errors clustered at the school level.  
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Table B4: Baseline Regression Results, Ever Disadvantaged, Grades 3-8, 2009-2016 

 Baseline Value-Added 

 zMath zRead zMath zRead 

 (1) (2) (3) (4) (5) (6) (7) (8) 

Ever         

   ECD -0.06 -0.06 -0.07 -0.07 -0.01 -0.01 -0.01 -0.01 

  (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

   SWD -0.73 -0.73 -0.73 -0.73 -0.07 -0.07 -0.04 -0.04 

  (0.01) (0.01) (0.01) (0.01) (0.00) (0.00) (0.00) (0.00) 

   ELL -0.05 -0.05 -0.10 -0.10 0.01 0.01 0.02 0.02 

  (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

   ECD*SWD -0.30 -1.09 -0.22 -1.03 -0.01 -0.10 -0.01 -0.05 

  (0.01) (0.01) (0.01) (0.01) (0.00) (0.00) (0.00) (0.00) 

   ECD*ELL -0.01 -0.12 -0.02 -0.19 0.01 0.00 0.01 0.02 

  (0.00) (0.00) (0.01) (0.00) (0.00) (0.00) (0.00) (0.00) 

   SWD*ELL -0.06 -0.83 -0.03 -0.86 -0.00 -0.06 -0.00 -0.03 

  (0.04) (0.04) (0.04) (0.04) (0.01) (0.01) (0.01) (0.01) 

   ECD*SWD*ELL 0.16 -1.04 0.12 -1.06 0.02 -0.06 0.01 -0.02 

 (0.04) (0.02) (0.04) (0.01) (0.02) (0.01) (0.01) (0.00) 

               

Student Char. Y  Y  Y  Y  

Grade FE Y  Y  Y  Y  

Year FE Y  Y  Y  Y  

School FE Y  Y  Y  Y  

No. Schools 2,034  2,034  2,034  2,034  

No. Districts 115  115  115  115  

Notes: Data includes student-level observations for grades 3-8 for years 2009-2016. Student 

characteristic estimates not shown include race and gender and omitted categories are white and 

male. Odd Columns show regression results from preferred models described in earlier sections: 

controlling for student characteristics, grade, year, and school fixed effects with robust errors 

clustered at the school level. Even Columns interpret the coefficients estimated in each prior odd 

column.  
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Chapter 3: Paying for Free Lunch: The Impact of CEP Universal Free Meals on Revenues, 

Spending, and Student Health 

  



112 
 

 
 

I. Introduction 

The vast majority of US schools – approximately 95 percent – serve subsidized meals to 

over 30 million students on an average day (FRAC, 2019).  Under the National School Lunch 

program (NSLP) and School Breakfast Program (SBP), meals are free for eligible low-income 

students, with higher prices charged to families with higher incomes. Adopted in 2010, the 

Community Eligibility Provision (CEP) of the Healthy, Hunger-Free Kids Act (HHFKA) allows 

schools or districts to adopt Universal Free Meals (UFM), a program that provides free meals to 

all students, regardless of household income, if at least 40 percent of students are “directly 

certified” for free meals.1 Advocates claim UFM reduces stigma, food insecurity, hunger, and 

administrative burden while improving student nutrition and readiness to learn. Recent research 

finds UFM increases participation in school food, reduces suspension rates, and improves 

academic achievement and perceptions of school climate (Schwartz & Rothbart, 2020; Gordon & 

Ruffini, 2019; Ruffini, forthcoming; Kho, 2018-working paper; Gutierrez, 2020-working paper).  

Critics, on the other hand, worry UFM may have unintended consequences such as 

increased financial burdens for school districts – even while it may reduce the parental burden of 

providing meals. While CEP’s reimbursement structure appears more generous than other UFM 

provisions, federal reimbursements may not fully cover CEP-induced gaps in school district 

budgets due to loss of local food revenues (i.e., lunch and breakfast fees) and/or changes in price 

or costs of production for school meals, among others. Furthermore, if CEP induces school food 

 
1 Students are directly certified eligible if they participate in specific means-tested programs, including Supplemental 

Nutrition Assistance Program (SNAP), Temporary Assistance for Needy Families (TANF), or Medicaid. Students are 

also eligible if they are in foster care or Head Start, are homeless, are migrant, or participate in the Food Distribution 

Program on Indian Reservations benefits (FRAC, 2017). 
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programs to run deficits, do districts reallocate instructional expenditures to make up the 

difference?  

Critics also worry that UFM may exacerbate student obesity. UFM’s effect on student 

health can depend on a number of factors, including the nutritional value of school food, 

availability of alternatives, student responses to price changes, changes in participation, and 

whether students increase total caloric consumption by doubling up on meals. There is, 

unfortunately, little empirical evidence of the effect of UFM on student health. Schwartz & 

Rothbart (2020) investigate school-level UFM programs in New York City (NYC) offered under 

an alternative provision, Provision 2. They find UFM increases participation in school lunch and 

improves test scores, with suggestive but statistically insignificant evidence of beneficial effects 

on weight. And, Davis and Musaddiq (2019) find that UFM implemented in Georgia under CEP 

increases the share of students in the healthy BMI weight range.  

To be sure, UFM may deliver other unintended consequences or, more broadly, social 

welfare costs (or benefits). For example, students might benefit from homemade lunches, say, by 

strengthening family bonds or encouraging self-sufficiency – benefits which might be foregone 

under UFM.  Or, UFM might decrease sales at neighborhood eateries. We leave those questions 

for a future study, focusing here on whether – and how much – CEP affects school district 

finances and student weight outcomes.  

This paper uses data on New York State (NYS) districts and schools to estimate the 

effects of CEP on student weight outcomes, explore the potential mechanisms through which 

CEP may affect obesity (including meal participation and attendance), and estimate novel effects 

of CEP on district revenues and expenditures. We use data on 698 school districts for 2010-2017 
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including demographics, enrollment, school food revenues and expenditures, and new data on 

school meal participation and obesity rates for primary and secondary grade students.  

We explore heterogeneity along three dimensions: (1) grades served (primary vs. 

secondary), (2) urbanicity (metro, town, and rural communities), and (3) differential 

implementation (selective vs. districtwide) for the following reasons. First, since younger 

students are more likely than older students to participate in school meals, districts may 

selectively implement CEP in primary schools first. At the same time, older students may be 

more responsive than younger students to prices and consume less healthy alternatives to school 

food. Therefore, increasing participation among older students may have larger effects on weight 

outcomes.  

Second, urban districts may differ from rural districts in a variety of ways.  Urban 

districts are likely to face higher costs (especially wages) while rural locations offer fewer 

convenient alternatives to school meals. Rural districts have higher school meal participation 

rates, higher shares of students paying full price for school meals, and lower shares who are free 

lunch eligible. Thus, rural school districts may see larger losses in revenues from fees and lower 

reimbursements than urban districts. Moreover, since rural districts are typically smaller, they are 

more likely to implement CEP districtwide rather than selectively in a subset of schools, 

suggesting larger estimated district-level effects.  

We use a difference-in-differences approach with district fixed effects and compare early 

to late CEP-adopting districts, exploiting the staggered adoption of CEP to estimate the impact 

on revenues, spending, and weight outcomes. While districts that adopt CEP may be 

systematically different from those that do not, the precise timing of adoption is plausibly 

exogenous among those that adopt CEP at some point in our study period – the “Ever CEP” 
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districts.  District fixed effects and time-varying control variables further adjust for time 

invariant differences between districts and time varying differences between and within districts 

over time. We then use non-parametric event study models to test the parallel trends assumption 

and explore the evolution of the effects in the years following the adoption of UFM under CEP.   

To preview the results, we find CEP does, indeed, increase school meal participation in 

lunch by as much as 8.5 percentage points and breakfast by 11.5 percentage points, with effects 

varying by urbanicity and grade span.  There is, however, no meaningful effect on attendance, 

suggesting any effects on district or student outcomes are not driven by changes in attendance. 

CEP also improves weight outcomes for secondary school students who are, perhaps, more 

sensitive to prices and more likely to eat unhealthy substitutes for school meals; effects on 

elementary school students are not significant. We find local food revenues decline (perhaps 

mechanically due to the elimination of meals fees), while federal food revenues and total food 

expenditures grow. Overall, federal revenues more than compensate for changes in school food 

revenues and expenditures, with no effect on instructional expenditures. CEP, as a result, helps 

close the school food services gap, on average. 

As expected, the effects differ across settings.  The impacts of CEP are larger in rural 

districts – specifically, the increase in breakfast participation and decrease in obesity among 

secondary school students are larger. Unlike metro and town districts, reductions in school meal 

fees and increases in food expenditures in rural districts are not fully offset by federal subsidies. 

We find expenditures increase with expanded CEP implementation. Moreover, we find the 

declines in the percentage overweight and obese students are larger in districts with wider CEP 

implementation and occur in both primary and secondary grades. There is little evidence that 
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expansion of CEP leads to the unintended consequence of increased weight; in fact, quite the 

opposite appears to be true.  

In summary, we derive credibly causal estimates of CEP’s effect on student weight and 

district financial outcomes, informing the debate on whether – and how much – the benefits of 

UFM are coupled with unintended negative consequences for school district finances and/or 

student weight outcomes. We see little evidence of deleterious effects on the prevalence of 

obesity or overweight students, or on instructional expenditures. We see large increases in 

federal reimbursements that, in most districts, trump the size of increased food expenditures. 

Thus, the “price” of UFM seems to be largely paid by the federal government, with a notable 

exception for rural districts.  

II. Background 

The NSLP and SBP provide free and low-cost meals to tens of millions of children in 

over 100,000 schools and childcare institutions each year – making the NSLP the second largest 

food and nutrition assistance program in the US (behind the Supplemental Nutrition Assistance 

Program (SNAP)). These school meal programs cost the Federal government $18.2 billion 

annually and provide subsidized meals to students based on household income (USDA, 2019). 

Specifically, students in households earning incomes less than 185 percent of the federal poverty 

line pay a reduced price, while students with household incomes less than 130 percent receive 

school meals for free. Students not certified as eligible for free or reduced-price meals – which 

includes both students with family incomes above the threshold and those who have not obtained 

the requisite certification – pay the “full” price.  
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The Community Eligibility Provision (CEP) of the Healthy, Hunger-Free Kids Act 

(HHFKA) of 2010 allows certain schools and districts to provide free meals to all students. 

Under CEP, a school, cluster of schools within the same district, or entire district can adopt UFM 

if at least 40 percent of students are free-lunch eligible. Participating schools or districts use 

“direct certification” to determine the percent of free-lunch eligible students, also known as the 

Identified Student Percentage (ISP). Direct certification matches students to administrative 

records indicating student household participation in SNAP, Temporary Assistance for Needy 

Families (TANF), or Medicaid, among others.2 Though introduced in 2010, CEP was piloted in 

eleven states from 2012-2014 and became available nation-wide in 2015. CEP expanded quickly, 

reaching over 14,000 schools in 2,200 districts in 2015 to 28,400 schools in 4,600 districts in 

2019. As of 2019, almost 65 percent of eligible schools across the nation had implemented UFM 

via CEP (FRAC, 2019).  

Schools or districts may be more likely to adopt UFM under CEP than under other UFM 

provisions due to CEP’s relatively generous reimbursement structure.3 Under CEP, schools’ and 

districts’ reimbursements are the product of four terms: (1) the federal subsidy for free-lunch, (2) 

the number of meals served, (3) the ISP, and (4) a multiplier of 1.6. Mechanically, this means 

schools or districts with ISPs greater than or equal to 62.5 percent are reimbursed at the federal 

free-lunch rate for all meals served (because 62.5 percent x 1.6 = 100 percent).  Under Provision 

2, for example, schools would be reimbursed at the federal free-lunch rate only for the share of 

 
2 Medicaid was added to the NY list of programs certifiable through direct certification in academic year 2014. 
3 Since 1980, schools in which at least 80 percent of enrolled children are eligible for free or reduced-price meals can 

also implement UFM under Provision 1. Since 1995, schools can also offer UFM under Provision 3, which sets 

reimbursement levels based on the average number of meals served by eligibility group in the most recent year in 

which the school tracked individual lunch utilization – rather than the average percentages by eligibility group, the 

method used under Provision 2. Under Provision 3, reimbursements are adjusted for inflation and enrollment, but not 

for changes in the number of meals served (Schwartz & Rothbart, 2020). 
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meals served to otherwise “free-eligible” students as of some base year – a much less generous 

reimbursement if free lunch eligibility rates are high. 

III. Prior Literature 

School meal participation rates are lower than one might expect, especially among 

certified income eligible students for whom meals are free (Gleason, 1995). A number of factors 

may affect students’ likelihood of participating in the school meals programs. For example, 

higher school food prices and income are correlated with low participation rates (Akin et al., 

1983; Gleason, 1995; Maurer, 1984). Moreover, participation varies by race – with black 

students participating at higher rates than white students (Akin et al., 1983; Dunifon & 

Kowaleski‐Jones, 2003; Mirtcheva & Powell, 2009). Other factors that influence participation 

decisions include the quality and variety of school meals and the stigma associated with school 

food (Glantz, Berg, Porcari, Sackoff, & Pazer, 1994; Mirtcheva & Powell, 2009; Poppendieck, 

2010). Mirtcheva and Powell (2009) find poor students’ participation rates are lower in schools 

with fewer poor students, and older students are less likely to participate compared to younger 

students. These considerations may explain why, in some districts, over 10 percent of income 

eligible students are not certified for free or reduce-priced meals (Domina et. al., 2018). 

However, recent research finds that expanding the availability of free meals, through programs 

such as UFM, increases participation (Leos-Urbel, Schwartz, Weinstein, & Corcoran, 2013; 

Schwartz & Rothbart, 2020; Ruffini, forthcoming). 

According to the USDA, participation in school food – and the HHFKA (2010), in 

particular – “improves nutrition and focuses on reducing childhood obesity” (The White House 

Task Force on Childhood Obesity, 2010). Empirical evidence on the nutrition of school food 
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programs is largely positive: the nutritional quality of school meals is usually higher than 

alternatives (Caruso & Cullen, 2015; Cohen et al., 2014; Farris et al., 2015; Smith 2017) and 

expanding availability of school meals improves child nutrition (Bhattacharya, Currie, & Haider, 

2006; Gundersen, Kreider, & Pepper, 2012). However, evidence on child obesity, a central 

public health concern, is mixed. Some find that participation in NSLP increases primary school 

student obesity (Millimet, Husain, & Tchernis, 2010; Schanzenbach, 2009). Those that have 

examined the impacts of expansions in the availability of free school meals, however, mostly 

find null effects (Corcoran, Elbel, & Schwartz, 2016; Kitchen et al., 2013; Schwartz & Rothbart, 

2020). One potential explanation for the mixed evidence is that some students experience 

nutritional improvements, while others may double up on meals, increasing total caloric intake 

and exacerbating childhood obesity.  Another explanation is that context matters, particularly as 

it relates to the availability and nutritional quality of alternatives to school food. 

There is growing evidence on the relationship between schools, environment, and student 

weight outcomes. As an example, existing research finds school food programs have null if not 

beneficial impacts on student obesity (Corcoran, Elbel, & Schwartz, 2016; Kitchen et al., 2013; 

Schwartz & Rothbart, 2020; Davis & Mussadiq, 2019). As for CEP in particular, Davis and 

Musaddiq (2019) find CEP adoption in Georgia schools increases the share of students in the 

“healthy” BMI range.  Using NYS Student Weight Status Category Reporting System 

(SWSCRS) – data which we also use – Dwicaksono, et al. (2018) explore the environmental and 

policy correlates of district-level obesity rates, finding suggestive evidence that the obesity of 

secondary school students is more sensitive than primary school students. The authors offer 

descriptive evidence that rural districts have higher primary school obesity rates than 

metropolitan districts and that obesity is more strongly correlated with fast-food restaurant 
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density among secondary students than primary students (perhaps due to differences in food 

consumption patterns). 

Recent research documents positive effects of CEP on a range of student academic and 

disciplinary outcomes (Ruffini, forthcoming, Gordon & Ruffini, 2019; Kho, 2018-working 

paper; Comperatore & Fuller, 2018). Kho (2018) utilizes CEP adoption in South Carolina to find 

a 0.03-0.04 standard deviation improvement in elementary student math scores. Ruffini 

(forthcoming) utilizes the cross-state variation in the timing of CEP eligibility and finds math 

performance increases by 0.02 standard deviations in districts with the largest shares of students 

with CEP. Gordon and Ruffini (2019) similarly investigates the effects of CEP but on suspension 

rates from the Civil Rights Data Collection and finds modest reductions in elementary and 

middle but not high school suspensions. Overall, research finds null or modest decreases in 

student absences post CEP adoption (Comperatore & Fuller, 2018; Kho, 2018). 

The growing research on academic outcomes has not, however, been matched by 

evidence on what school districts pay for UFM, much less CEP.  One notable exception is Leos-

Urbel et al. (2013) which estimates the user fee revenue lost from providing roughly 3.5 million 

free breakfasts at approximately $300,000 in 2004. They did not, however, examine any costs or 

savings due to changes in administrative costs associated with the collection and processing of 

breakfast fees, the economies of scale, or changes in costs of providing a larger number of meals.  

A technical report from the NYC Independent Budget Office (IBO) sheds some light on 

the monetary implications of adopting CEP. The IBO examined the NYC school lunch 

program’s current costs, as well as the cost of expanding UFM under Provision 2 and CEP from 

stand-alone middle schools to all elementary schools in NYC (NYCIBO, 2017). Using the 

citywide ISP rate, the IBO finds expanding CEP to elementary schools at the given participation 
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rates and prices would cost NYC $5.2 million – an amount greater than the cost of traditional 

NSLP but less than other provisions, such as Provision 2.  

IV. Conceptual Issues and Hypotheses  

Eliminating school lunch fees through CEP is likely to affect student weight and district 

finances through two key mechanisms. First, eliminating school food fees may spur participation 

in both breakfast and lunch, as families choose school food over alternatives that they would 

have to pay for. Second, the promise of consistent and free meals may increase attendance as 

students attend school to participate in lunch and/or breakfast. That said, high baseline 

attendance rates leave little room for improvement, and it may not be possible to identify a 

meaningful effect. 

If school meals are more nutritious than the average alternative, as indicated by previous 

research (Caruso & Cullen, 2015; Cohen et al., 2014; Farris et al., 2015), then an increase in 

participation in school food induced by CEP should reduce the incidence of obesity (or 

overweight), with the magnitude of the effect varying with the change in participation and the 

characteristics of the foregone alternative food. This suggests effects will vary with the 

district/school context and characteristics of the students.  Thus, effects are likely to vary by age: 

older students are likely to be more sensitive to price changes and the stigma associated with free 

school food and more likely to rely on unhealthy alternatives (like fast food) in the absence of 

school food. Therefore, effects are likely to be larger in districts implementing CEP in schools 

serving older grades. Notice that student weight outcomes will also depend upon the change in 

participation rates in both breakfast and lunch.  
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As for finances, the direct effect of eliminating school meal fees will be a reduction in 

local school food revenues (i.e., meal fees previously collected from paying students) and 

increases in federal school food revenues (i.e., reimbursements). Further, if participation 

increases, as expected, food expenditures should increase – both overall and per pupil. That said, 

there may be reductions in food expenditures per meal, consistent with economies of scale. 

Finally, increases in breakfast and lunch participation will increase federal subsidy revenues per 

pupil (due to increased meals served).  

The impact of CEP on revenues and expenditures, therefore, will depend upon the share 

of students eligible for free lunch (ISP); the user fees (prices) paid for breakfast and lunch by 

reduced price and “full price” students; the change in participation/utilization for each of these 

groups in breakfast and lunch; the federal reimbursement rates (which vary by meal type); and 

changes to the costs of inputs used (ex. less expensive ingredients or lower prices). For example, 

as noted previously, changes in total food revenues per pupil will depend on federal 

reimbursements per meal, which under CEP is a direct function of the reimbursement price (one 

for lunch and another for breakfast) and the ISP rate (multiplied by a factor of 1.6).4 

Mathematically, districts with ISPs greater than 62.5 percent get reimbursed at the full federal 

rate for each breakfast and lunch served. Districts with ISPs below that ISP rate, however, are 

essentially only reimbursed for a fraction of each meal. The size of the revenue gap to be filled 

will also depend, in part, on lost user fees previously charged to students paying “full” and 

reduced prices for breakfast and lunch, the federal reimbursement rate for free and reduced 

meals, and the participation rate in breakfast and lunch. In fact, even districts with ISPs above 

 
4 Algebraically, under the CEP, federal food revenue per pupil, R, is: R = (FRS X ISP X 1.6) X M, where FRS is the 

Free Rate Subsidy, ISP is the identified student percentage, and M is the meal participation rate. Since FRS and M 

differ for breakfast and lunch, we estimate separate effects on participation rates for breakfast and lunch. 
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62.5 might lose net revenues, because they might have previously set the full price lunch (or 

breakfast) above the federal subsidy for free meals (which was $3.40 per lunch in 2019). If, for 

any of the above reasons, lost user fee revenues are greater than additional revenues from federal 

reimbursements, some worry districts will fill these gaps by reallocating funds previously used 

for classroom instruction.  

There could, however, be unintended consequences of CEP’s reimbursements. First, 

school districts may respond to the more generous increases in federal reimbursement revenues 

by reducing local or state support (as Gordon (2004) found that increases in federal Title I 

funding crowded out state and local revenues). Second, the switch to direct certification required 

under CEP may undercount the share of economically disadvantaged students in the district since 

direct certification identifies only those eligible for free lunch while missing those that would 

have been eligible for reduced-price meals. Further, direct certification’s reliance on SNAP and 

TANF data may undercut a district’s ability to count economically disadvantaged undocumented 

immigrants.  

Districts receive Title I revenues based on Census poverty data; therefore, we have little 

reason to believe school adoption of CEP and the ensuing changes to counting economically 

disadvantaged students would affect the total Title I funds districts receive. However, Title I 

funding is distributed to schools based on school reports of students in poverty. If, post-CEP, 

CEP schools use direct certification instead of traditional meal forms to count the share of 

students who are economically disadvantaged, these schools may undercount their share of 

economically disadvantaged students. Moreover, if the manner in which economically 

disadvantaged students are accounted for is inconsistent between CEP and nonCEP schools 

within a district, some worry that CEP schools will not receive the appropriate Title I funds from 
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the district. Unfortunately, school-level Title I funding data is unavailable. However, we have no 

reason to believe CEP would affect Title I funds received at the district-level and test this 

hypothesis by estimating the impact of CEP on district-level Title I revenues. 

Urbanicity is likely to influence the impact of CEP on fiscal and weight outcomes. Rural 

districts have higher overall participation rates, fewer certified poor students, higher participation 

rates among full-price students, and fewer alternatives to school food. Therefore, rural districts 

may experience greater reductions in local school food revenue, as well as greater reductions in 

student obesity. Moreover, food preparation costs likely vary with labor costs, which are 

typically higher in urban areas. Thus, food expenditures are likely to be greater in urban area 

districts. Weight outcomes will, again, vary based on the nutritional quality of alternatives to 

school meals, which may very well vary between urban settings (where students have ready 

access to commercial vendors like restaurants) and rural settings (where these options may be far 

away). 

Lastly, effect sizes likely depend on the extent to which CEP is implemented across 

schools within a district. While some districts implement district wide, affecting all students, 

others selectively implement CEP in only some of their schools. We expect larger effects in 

districts that implement CEP districtwide, compared to those that selectively implement CEP. 

V. New York State and CEP 

As shown in Figure 6, CEP became available in NYS in 2013 and expanded rapidly 

across the state. By 2018, 97 of the 698 districts in NYS had at least one CEP school (Figure 7), 

and as of 2019, over 90 percent of eligible NYS schools offered UFM under CEP (FRAC, 2019). 

Not only did CEP expand across the state, Figure 8 demonstrates how implementation spreads 
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within NYS districts. NYS districts implement CEP in one of three ways. Some districts 

implement CEP districtwide, in which all schools in the district adopt CEP in the same year. 

Other districts selectively implement CEP in some but not all schools within the district. These 

districts often target schools serving primary grades where school food participation rates are 

already relatively high compared to secondary grades. Still, other districts begin with selective 

implementation and gradually adopt CEP districtwide over time.  

NYS districts from all urbanicities – metro, town, and rural – adopt CEP. Rural districts 

serve fewer students and therefore have fewer schools. Consequently, rural districts are more 

likely to implement CEP districtwide. It is likely that districts in which more students are 

exposed to CEP experience larger impacts, whereas districts that selectively implement CEP will 

display attenuated effects. For example, we anticipate smaller district-level effects in districts 

that opt for selective implementation (e.g., 50 percent of its students) compared to districts with 

districtwide implementation (100 percent of its students).  

VI. Data, Measures, and Samples 

Data 

We use longitudinal, district- and school-level data from the NYS Education Department 

(NYSED) spanning 2010-2018. These data include enrollment by grade, attendance rates, 

student characteristics such as percent of students with disabilities (SWD), English language 

learners (ELL), free lunch certified eligible (FL), and students by race/ethnicity (black, white, 

Hispanic, or Asian/Other).5 We link this panel to new school meal data provided by the 

 
5 Students with disabilities data are unavailable at the school level. 
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NYSED’s Child Nutrition Knowledge Center, including year of each district’s (school’s) CEP 

adoption and the number of breakfasts and lunches served by school and year. 6  

We match these data to new, biannual, district-level measures of student obesity 

surveillance data from the NYS Department of Health (NYSDOH) Student Weight Status 

Category Reporting System (SWSCRS). Maintained by NYSDOH’s Center for Community 

Health, Division of Chronic Disease Prevention, SWSCRS was created to support state and local 

efforts to monitor long-term trends in childhood obesity in NYS school districts, excluding NYC 

(Dwicaksono et al, 2018). These weight outcome measures follow the Centers for Disease 

Control’s guidelines and track the proportion of students who are overweight (BMI exceeding 

85th percentile for the same age and sex nationally) and obese (BMI exceeding 95th percentile 

nationally). SWSCRS reports the proportions of overweight and obese students, aggregated by 

school district, based on schools’ reports on student counts in each weight status category by 

grade group and sex (Dwicaksono et al, 2018). Since 2010, districts report biannual BMI 

measures based on mandatory student health forms for selected grades (i.e., “primary:” Pre- 

Kindergarten, Kindergarten, 2nd, and 4th, and “secondary:” 7th and 10th).7  

Finally, we link this to district financial data from the Common Core of Data Financial 

(F33) surveys. The F33 surveys include local, state, and federal school food revenues, personnel 

and total school food expenditures, instructional expenditures, Title I revenues, and NCES 

 
6 The NYSED’s Child Nutrition Knowledge Center data includes public schools, nonpublic schools, schools that 

opened/closed, and childcare centers. We use CEP schools that match SRC school data, including 2,890 NYS public 

schools in 97 public school districts.  
7 Students’ health forms are completed by a physician and then submitted to the school. In the absence of submitted 

health forms, the school nurse completes it. The school nurse then tallies counts of students overweight and obese by 

grade (i.e. primary and secondary grades) and sends the information to the district office. The district office, using a 

tally system, counts the share of students who are obese and/or overweight.  
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urbanicity classifications. These classifications use Census definitions to divide districts into four 

categories: city, suburban, town, and rural.8  

Measures 

 Our binary treatment indicator, CEP, takes a value of one if any school within the district 

offers UFM through CEP. In our analyses that use school level data, CEP equals one if the 

school offers UFM through CEP.   A continuous measure of treatment, PCT_CEP, is the 

percentage of students in the district enrolled in a school offering UFM through CEP. This 

variable captures the degree of CEP implementation – from selective to districtwide – within a 

district.   We define Districtwide which takes a value of 1 if the district has CEP in every school 

(100 percent implementation) and 0 if the implementation is selective, that is, PCT_CEP is less 

than 100. 

District characteristics include the percentage of students who are SWD, ELL, FL, black, 

Hispanic, and Asian/other.9 We create three indicator variables capturing district urbanicity as 

Metro (cities and suburban districts), Town, or Rural based upon NCES district locale 

designations. We combine cities and towns due to similarities between the two in our sample.10 

 
8 “Urbanized area,” have populations of 50,000 or more, and “urbanized clusters,” have populations between 5,000 

and 50,000. City school districts are located inside both an urbanized area and a principal city. Suburb school districts 

are located inside an urbanized area, but outside of a principal city. Town school districts are located inside urban 

clusters, and Rural school districts are located outside of urban clusters. 
9 We use the share of students certified for free meals and not the share of students certified for reduced-price meals. 

Upon CEP adoption, all students receive free meals, eliminating the incentive for reduced-price students to turn in 

lunch forms. Indeed, when we estimate the effect of CEP adoption on the percent of free lunch students and reduced-

price lunch students separately, we find no effect on the percent of free lunch students and a negative and statistically 

significant effect on the share of reduced-price lunch students – making the share of reduced-price students 

endogenous to CEP adoption. 
10 The poor suburbs near a city are often quite similar to the city itself and CEP eligible districts have high 

concentrations of poor children by design. These districts are observationally similar. 
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School breakfast (lunch) participation, Bfast (Lunch), is measured as the total number of 

breakfasts (lunches) served divided by enrollment and the 183 school days in the year.11 This 

captures the average share of days a student participates in school breakfast (lunch).  Attd Rate is 

the district or school attendance rate.  

We have two weight outcomes - the percentage of students that are overweight 

(%Overwgt) and the percentage that are obese (%Obese) – measured at both the district level and 

separately for primary and secondary grades. There are two measurement challenges to using the 

NYSDOH SWSCRS weight outcome data. First, the measures are collected in September of 

each year, so that the outcomes are more akin to end of year measures for the prior academic 

year than for the ensuing school year. Thus, we link the treatment status for t-1 to the weight 

outcomes measured in year t.12 Second, obesity and overweight rates are measured biannually – 

half of districts each year – rather than annually; further, we do not know the district-specific 

reporting year. We proceed by assigning weight outcomes to the first year of each two-year cycle 

and explore the sensitivity of our results to alternative assumptions described below.13  

Our fiscal outcomes include those related to revenues from school food services 

(LocalRev, StateRev, FederalRev, and TotalFoodRev), expenditures on school food services 

(TotalFoodExp and PersonnelExp), and instructional expenditures (InstSalaries, InstBenefits, 

and InstTotal). We calculate district revenues and expenditures per pupil (or per meals served), 

 
11 Enrollment includes total pre-kindergarten, K-12, and ungraded enrollment for each district or school. 
12 Student characteristics in year t reflect the characteristics of students in the academic year in which weight measures 

were taken, as opposed to t-1, which reflects the characteristics of the student population at the time of treatment.  
13 We assign student weight measures to the second of each two-year cycle as a robustness check and, as expected, 

find no effects. Results available upon request. 
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dividing total revenues earned or expenditures incurred by total district enrollment (or total 

meals served).14  

District Panel 

   Our analyses rely upon two data sets: (1) a district panel, which is our primary analytic 

sample to assess impacts of CEP on district fiscal and student weight outcomes, and (2) a school 

panel, which we use to explore the mechanisms, namely school meals participation and 

attendance. Our district panel includes data on school district characteristics, finances, and 

school food utilization and policy (CEP adoption). 

We restrict our district panel to 93 “Ever CEP” independent districts that adopt CEP in at 

least one school between 2013 and 2018.  This excludes dependent school districts, NYC and the 

“Big 4” city districts (Buffalo, Rochester, Syracuse and Yonkers), because they operate quite 

differently than other districts and because they are disproportionately poor, non-white, and 

large.15 The resulting analytic sample has 740 observations over 8 years.16 As shown in Table 21, 

students in Never CEP districts are less likely to be FL, white, overweight, or obese than students 

in our analytic sample. Moreover, Never CEP districts earn less in school food revenues and 

accrue fewer expenditures per pupil than districts in our analytic sample. 

Prior to the implementation of CEP, overweight and obesity are common in our sample 

districts: roughly two in five students were overweight and one in five obese.  An average of 

 
14 All dollar amounts are adjusted for inflation using CPI-Urban to 2017 dollars.  
15 The vast majority of NYS school districts are independent special-purpose governments, whereas dependent school 

districts are controlled by state and local governments and are fiscally dependent, meaning they are not independent 

property tax levying units. The average “Big 4” district is larger (by an order of magnitude), disproportionately poor, 

non-white, and receives less local and more federal school food revenue than districts in our analytic sample. 
16 The analytic sample excludes charter schools, NYS Boards of Cooperative Educational Services (BOCES), four 

districts that consolidated in 2014, and one special education district as they do not reflect the typical, NYS district.  
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roughly two thirds participate in school lunch and one quarter in school breakfast.  Attendance is 

high with an average attendance rate of 94 percent. As for finances, these districts spend an 

average of $467 per pupil for school food but only earn $405 per pupil in total school food 

revenues – resulting an almost $60 per pupil deficit in the absence of CEP. 

Among districts in our analytic sample, metro districts are larger (5,424 students), poorer 

(53.4 percent FL), and less white (47.5 percent) compared to town (2,163, 46.8 percent, and 74.8 

percent, respectively) and rural (1,005, 42.6 percent, and 93.1percent, respectively) districts. 

Rural districts have fewer free lunch certified students, but higher participation (28.6 percent in 

breakfast; 66.8 percent in lunch) and attendance (94.8 percent) rates than metro (23.8 percent, 

60.0 percent, and 92.8 percent, respectively) and town (24.2 percent, 61.9 percent, and 93.8 

percent, respectively) districts. Rural districts also earn the most local food revenue ($155.83 per 

pupil) and spend the most on food services ($510.85 per pupil) compared to metro ($85.27 and 

$420.50, respectively) and town ($116.53 and $457.11, respectively) districts.17 Furthermore, the 

average school food deficit (total food revenues per pupil minus expenditures per pupil) in metro 

districts is about half of that in town and rural districts ($35.31 versus $69.20 or $73.26). 

School Panel 

We use panel data on school characteristics, attendance, and school food utilization and 

policy (CEP adoption) to probe the underlying mechanisms: meal participation and attendance 

rates.18 Our school sample includes schools that adopt CEP between 2013 and 2018 and includes 

 
17 Mechanically, this could mean they charge and spend more on a per meal basis, or that a higher share of students 

partakes in the school meals programs or a combination of the two.  
18 Student weight data is unavailable at the school level. Meals served data is available at the school level and is 

aggregated to the district level for district analysis. There are 27 schools in 10 districts in our Ever CEP school sample 

that report meals served under two different meals programs (CEP and traditional meals programs), which could occur 

for a number of reasons, including instances in which CEP is offered to some grades and not others, when the program 

is added mid-year, or other processing or administrative reasons. We remove these schools from our analysis.  
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321 continuously open schools in 87 districts.19 We assign each school to one of the following 

mutually exclusive grade levels (1) primary (enrolls 10 or more students in either 2nd or 4th 

grade) or (2) secondary (enrolls 10 or more students in 7th or 10th grade).20 Since many districts 

have more than one CEP school, the school panel has a larger number of observations than the 

district panel, potentially increasing power.  Further, school level data allow us to more precisely 

identify the schools (and students) who receive the CEP treatment – potentially improving the 

precision of our estimates. 

VII. Empirical Strategy 

We exploit the staggered adoption of CEP over time to estimate the effect of CEP on 

student weight outcomes, consequences for district revenues and expenditures related to school 

food programs, and the underlying mechanisms such as meal participation and attendance. We 

use a district fixed effects, difference-in-differences specification linking outcomes to CEP status 

and a set of time-varying district characteristics.  

Mechanisms 

Before turning to estimating impacts on obesity and revenues, we examine the effect of 

CEP on participation. Notice there may differences in the participation response for breakfast and 

lunch, and there are differences in the reimbursement rates for those meals. Thus, we examine 

 
19 We also exclude schools in four districts that consolidated in 2014 and schools in the special education district. We 

exclude 26 Ever CEP schools that are not continuously open and 34 schools in 24 districts with implausibly high meal 

participation rates (see footnote 18). Furthermore, we exclude schools in three districts whose meals served data is 

only available at the district level. Of the “missing” six districts in the school panel (87 versus 93): four districts have 

only one CEP school and that school in each district has unreliable participation rates, three districts’ meal 

participation data is only available at the district level, and one of these three districts has only one CEP school, which 

is not continuously open. We find consistent results when we restrict the district analysis to districts that are observed 

in the school-level panel. 
20 Four “Elementary-Middle” schools and eight “K-12” schools are not included in these analyses.  
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breakfast and lunch participation separately. In a different vein, both weight outcomes and 

spending patterns may depend upon student attendance, which we also examine before turning to 

impact estimates. We begin by estimating the effect of CEP on breakfast and lunch participation 

and attendance using the district panel as: 

where 𝑌𝑑𝑡 is a vector of outcomes including Bfast, Lunch, and Attd Rate for district d, in year t. 

X’dt is a vector of district characteristics, including SWD, ELL, FL, black, Hispanic, or 

Asian/Other. 𝛾𝑡 and µ𝑑 are year and district fixed effects. 𝛽1 reflects the effect of CEP on meal 

participation and attendance. All models are weighted by enrollment and we use robust standard 

errors clustered by district. We estimate the same model using school-level data and school 

(rather than district) fixed effects. 

We then re-estimate the models using an event study specification, substituting a set of 

indicator variables capturing the number of years prior to (or following) the adoption of CEP in 

the district for CEP. That is, we use CEP YEAR, a vector of variables that capture the time 

between the current academic year (t) and the first year a district (or school) offers CEP.  

These models will shed light on any pre-trends in attendance or participation in school food prior 

to the adoption of CEP and/or the evolution of both following adoption. 

Obesity Impacts 

Our weight outcomes models are similar to our baseline models. We estimate the 

following model:  

𝑌𝑑𝑡 = 𝛽0 + 𝑪𝑬𝑷 𝒀𝒆𝒂𝒓′𝒅𝒕𝛽1 + 𝐗’𝐝𝐭β2 + 𝛾𝑡 + µ𝑑 + 𝜀𝑑𝑡                              (2) 

𝑌𝑑𝑡 = 𝛽0 + 𝛽1𝐶𝐸𝑃𝑑𝑡 + 𝐗’𝐝𝐭β2 + 𝛾𝑡 + µ𝑑 + 𝜀𝑑𝑡                                    (1) 

𝑌𝑑𝑡 = 𝛽0 + 𝛽1𝐶𝐸𝑃𝑑𝑡−1 + 𝐗’𝐝𝐭β2 + 𝛾𝑡 + µ𝑑 + 𝜀𝑑𝑡                                    (3) 
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where 𝑌𝑑𝑡 is a vector of variables reflecting weight outcomes for district d, in year t, including 

%Overwgt and %Obese across all grades in a district, as well as by primary and secondary 

grades, separately. 𝐶𝐸𝑃𝑑𝑡−1 takes a value of 1 if district d has CEP in year t-1. For the reasons 

discussed in the data section, our data set includes observations for academic years 2011, 2013, 

2015, and 2017 only for these models (that is, the odd years only). We cluster standard errors by 

district and use analytic weights for the number of students enrolled in measured grades in the 

district.21 Our coefficient of interest, 𝛽1, reflects the impact of CEP on weight outcomes.  

Fiscal Impacts 

We then estimate the effect of CEP on local, state, federal, and total school food revenues, 

personnel and total school food expenditures, and instructional expenditures (salaries, benefits, 

and total) per pupil, as well as per meal served at the district level, using:  

where 𝑌𝑑𝑡 reflects the vector of fiscal outcomes, and 𝛽1 equals the effect of CEP on each fiscal 

outcome. Again, we also estimate an event-study specification, similar to Equation 2. 

Exploring Heterogeneity in Context 

 To explore potential heterogeneity in effects by urbanicity, we introduce interactions 

between 𝐶𝐸𝑃𝑑𝑡 and our urbanicity indicators (Metro, Town, and Rural). Finally, we explore how 

effects vary with the extent of implementation by replacing 𝐶𝐸𝑃𝑑𝑡 with 𝑃𝐶𝑇_𝐶𝐸𝑃𝑑𝑡, the 

percentage of students in the district attending a CEP school, and 𝐷𝑖𝑠𝑡𝑟𝑖𝑐𝑡𝑤𝑖𝑑𝑒𝑑𝑡, an indicator 

for districtwide implementation, capturing potential ceiling effects: 

 
21 That is, enrollments in Pre-K, K, 2nd, and 4th grade for primary and 7th and 10th grade for secondary. 

𝑌𝑑𝑡 = 𝛽0 + 𝛽1𝐶𝐸𝑃𝑑𝑡 + 𝐗’𝐝𝐭β2 + 𝛾𝑡 + µ𝑑 + 𝜀𝑑𝑡                                    (4) 

𝑌𝑑𝑡 = 𝛽0 +  𝛽1𝑃𝐶𝑇_𝐶𝐸𝑃𝑑𝑡 + 𝛽2𝐷𝑖𝑠𝑡𝑟𝑖𝑐𝑡𝑤𝑖𝑑𝑒𝑑𝑡 +  𝐗’𝐝𝐭β3 + 𝛾𝑡 + µ𝑑 + 𝜀𝑑𝑡              (5) 
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Here, β1 provides estimates of the effect of changes in the extent of CEP implementation within 

a district on outcomes. 

VIII. Results 

Mechanisms 

 As shown in Table 22, we find CEP increases average district participation in breakfast 

and lunch by 7.72 and 6.58 percentage points, respectively.  Breakfast effects are larger for 

primary schools, increasing breakfast in primary schools by 11.49 percentage points, more than 

double that of secondary schools – 4.66 percentage points. However, CEP increases Lunch in 

both primary and secondary schools by approximately 8.50 percentage points. In terms of 

changes over base participation rates, CEP increases Bfast and Lunch in primary schools by 33 

and 12 percent, respectively, and 31 and 15 percent in secondary schools, respectively. We find 

no effects of CEP on attendance rates nor do we find differential effects by school level.  

Turning to the event study results shown in Figure 9, we find no evidence of pretrends – 

that is, there are no statistically significant effects in years prior to CEP adoption – for any 

outcomes. District results in Panel A show that the effects of CEP on Bfast and Lunch increase 

over time. However, Panels B and C, estimated with the school-level panel, show relatively 

constant participation effects in the years post CEP adoption. This seemingly contradictory result 

would be consistent with within-district expansions of implementation from selective towards 

districtwide. As it turns out, two-thirds of districts begin with selective implementation and 

expand – some eventually to districtwide CEP. Moreover, Figure 8 shows the share of students 

exposed to CEP grows in the years following initial district implementation, expanding from 

about 70 percent of students in the year of CEP adoption to 90 percent of students two years 
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later. While at first glance increases in participation in post-CEP years (Panel A) suggests 

students might become more comfortable with school meals over time, our other results suggest 

that the growing impacts on participation can be fully explained by the expansion of CEP to 

more schools and students within CEP districts.  

Obesity Impacts 

As shown in Table 23, we find CEP decreases the percentage of obese students in 

secondary grades by 1.83 percentage points.  The effect is substantively meaningful: 23.5 percent 

of secondary students were obese in 2012, translating to a 7.8 percent decrease in the prevalence 

of obesity.22 None of the other results are statistically significant. That is, we find no statistically 

significant effects for students in primary grades. Our results are consistent with the hypothesis 

that greater responsiveness to price changes and reliance on less healthy alternatives to school 

food among secondary school students will yield larger effects.   

Fiscal Impacts 

Of note, Ever CEP districts run deficits in their school food programs prior to CEP (in 

2012), with mean deficits of $60 per pupil. (See Table 21; $404.85 and $466.90 of total food 

service revenues and expenditures, respectively.) As shown in Table 24 Panel A, CEP decreases 

local food revenues by an average of $23.90 per pupil (column 1), which would exacerbate 

deficits on its own. However, this loss in revenues is more than offset by the $72.96 per pupil 

increase in federal food revenues (column 3). Furthermore, we find no effect on state school food 

 
22 The structure of the health outcomes data allows for only four-year observations, preventing us from executing an 

event study design similar to what we later perform for meal participation and attendance rates. 
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revenues – suggesting that federal reimbursements for CEP do not crowd out state funding for 

school food.  

While the above results show CEP increases total food revenues on average (by $51.76 as 

shown in column 4 of Table 24 Panel A), it is still possible that deficits are exacerbated by 

increased expenditures resulting from higher participation rates. However, total food 

expenditures increase by only $38.23 per pupil (column 6), which is less than the increase in 

total school food revenues per pupil. In fact, it appears that CEP closes the $60 per pupil school 

food deficit that existed in 2012 by approximately $14 per pupil, with no consequences for 

instructional expenditures (columns 7-9).  

We then explore consequences on a per meal basis in Panel B of Table 24. CEP decreases 

total revenue per meal by 18 cents per meal (column 4) but decreases expenditures per meal even 

faster – by 25 cents per meal (column 6). Thus, our estimates suggest that increasing meals 

served helps close the food services fiscal deficit by about 7 cents per meal on average (at least 

in this range of increased participation). Decreases in local food revenues (20 cents per meal) 

drive the decrease in revenues per meals. Food expenditures on personnel (12 cents per meal) 

and non-personnel (25-12 cents per meal) both contribute to the decrease in expenditures per 

meals. These food expenditure decreases are consistent with increasing returns to scale – in 

which districts can provide more meals at a lower cost per meal – but might also reflect 

reductions in the quality of inputs (i.e., cheaper ingredients). 

Turning to the event studies, we find no evidence of pre-trends prior to CEP adoption for 

financial outcomes; no point estimate is distinguishable from zero (Figure 10). Local food 

revenues are pretty stable in the years following CEP adoption, while other fiscal outcomes grow 
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over time. Again, this could reflect expansions of implementation within CEP districts, with 

fiscal consequences growing with the share of students exposed to CEP over time (see Figure 8).  

Exploring Heterogeneity in Context 

Table 25 shows the effects by district urbanicity. We find metro and town districts 

respond similarly to CEP but impacts in rural districts are generally larger. Rural district students 

increase Bfast by almost twice as much as students in metro and town districts (column 1 of 

Table 25) but respond similarly for Lunch. As shown in columns 6 and 7, rural districts 

experience the largest decreases in prevalence of overweight and obesity in secondary grades 

(obesity effects in column 7 are insignificant). Once again, the effects on weight outcomes for 

primary school students are insignificant in all settings.  

Table 26 shows the effect of CEP on district financial outcomes by urbanicity. We see the 

largest decline in local school food revenue in rural districts – where a greater share of students 

pays for school meals prior to CEP. At the same time, CEP increases personnel expenditures per 

pupil in rural districts, unlike metro and town districts, likely driven by increases in participation. 

In the absence of CEP, metro districts run school food deficits of about $35 per pupil, while town 

and rural districts run deficits around $70 per pupil (Table 21). While increases in expenditures 

are more than offset by revenue increases in metro and town districts, rural districts’ school food 

deficit grows by roughly $30 per pupil (column 3 minus column 5). Again, we find no effects of 

CEP on instructional spending by urbanicity.  

As shown in Table 27, we turn next to exploring the heterogeneity of the results across 

districts with different percentages of students exposed to CEP. We find a 10-percentage point 

increase in CEP implementation decreases the percent of overweight and obese students in 
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secondary grades by 2.1 and 1.5 percentage points, respectively. While insignificant, point 

estimates for overweight secondary students in districts with districtwide implementation are 

larger and more negative. Effects in primary grades are again smaller and insignificant. 

While our event study results provide no evidence of problematic pre-trends that would 

undermine a causal interpretation of our results, we investigate empirically the extent to which 

observables predict the timing of CEP adoption, which might undermine our confidence in the 

causal interpretation. Specifically, we explore whether the timing of CEP adoption is plausibly 

exogenous by examining whether a school or district’s observable characteristics in year t predict 

CEP adoption in t+1. We restrict the sample to districts (schools) that do not have CEP in year t, 

using the following model: 

 

where  𝐗’𝐝𝐭 describes the previously defined district (school) characteristics and β1 reflects 

whether district (school) characteristics predict CEP adoption in the following year. Significant 

coefficients would suggest timing of CEP adoption is nonrandom. Table 28 shows district and 

school level results in Columns 1 and 2, respectively. We find no evidence that district (school) 

characteristics predict timing of CEP adoption, bolstering confidence that the causal 

interpretation is warranted. 

 We also investigate the robustness of our findings in two sets of analyses to buttress the 

evidence for a causal interpretation.  First, we re-estimate the effects with a sample that includes 

the “Big 4” city districts, which were excluded in our preferred specifications. The results, 

shown in Tables C1 through C3 of the appendix are either consistent or stronger than those from 

the preferred sample. Table C1 shows meal participation and attendance rate results are robust, 

𝐶𝐸𝑃𝑑𝑡+1 = 𝛽0 + 𝐗’𝐝𝐭β1 + 𝛾𝑡 + µ𝑑 + 𝜀𝑑𝑡                                         (6) 
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Table C2 shows slightly larger effects for overweight and obesity, and Table C3 panels A and B 

show, if anything, slightly larger effects revenues and expenditures.  

Second, we re-estimate the models with different analytic weights, using unweighted 

models instead of those weighted by students.23 The results, shown in Tables C4 through C6 of 

the appendix are consistent, with some effects even larger than those from the preferred sample. 

Table C4 shows meal participation and attendance rate results are robust, Table C5 shows 

slightly larger effects for overweight and obesity (though the effects on obesity are no longer 

significant), and Table C6 panels A and B show statistically indistinguishable or even slightly 

larger effects on revenues and expenditures, especially per meal.24  

Other Outcomes 

We explore three ancillary outcomes, Title I funding, proficiency rates in statewide 

English language arts (ELA) exams, and proficiency rates in statewide math exams.25 The Title I 

results address any potential concerns of education administrators CEP will affect the amount of 

Title I revenues received by districts. The test results are intended to contribute to the growing 

knowledge on the effects of UFM on student academic performance (previously explored in 

Ruffini, forthcoming and Schwartz & Rothbart, 2020).  

Title I funding is provided to schools with high shares of economically disadvantaged 

students. Some worry that an unintended consequence of switching to CEP (and increasing 

reliance on direct certification of ISP students) might be reductions in Title I funding for CEP 

 
23 As noted above, our main analyses use analytic weights for the number of students related to the outcome (e.g., 

models estimating impacts on lunch participation rates are weighted by total enrollment). 
24 We also examine the robustness to restricting the district panel to the 87 districts used in the school-level analyses. 

Results, available from the authors, are substantially unchanged. 
25 For ELA and math exams, we explore effects by grade for grades 3 through 8, so we actually estimate the effects 

on twelve testing outcomes. 
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schools measuring economically disadvantage using direct certification. We note, however, that 

districts must use the same method of counting the share of economically disadvantaged students 

for all schools in the district, including both CEP and non-CEP schools.26 We test whether CEP 

adoption affects district Title I revenues and find it does not. (Results available upon request).  

 We briefly examine CEP’s effect on district-level ELA and Math proficiency rates to 

contribute to the growing literature of its effects on academic outcomes. Using proficiency rates 

obtained from the NYSED Student Report Card data, we find CEP increases proficiency rates on 

the ELA exam by approximately 4 percentage points for 6th, 7th, and 8th graders (Results 

available upon request). We also find a 5-percentage point increase in Math proficiency rates 

among 8th grade students, but a 3-percentage point decrease among 3rd grade math students. The 

remaining point estimates in other grades are small and statistically indistinguishable from zero. 

That is, consistent with previous research, we find some evidence CEP improves academic 

achievement in middle school statewide; we find no evidence of these improvements in 

elementary schools.27  

IX. Conclusion 

School food advocates claim that expanding NSLP and SBP will lead to improved 

cognitive function and, ultimately, test scores for participating students. Their claims are 

bolstered by the recent evidence that Universal Free Meals (UFM) programs have, indeed, 

improved student academic and behavior outcomes. That said, critics worry that expanding such 

 
26 Districts that include both CEP and non-CEP schools can choose to use 1) direct certification times the 1.6 multiplier 

for CEP schools and free and reduced-price lunch forms for non-CEP schools, 2) direct certification numbers times 

the 1.6 multiplier for both CEP and non-CEP schools, or 3) direct certification numbers for both CEP and non-CEP 

schools without the 1.6 multiplier (CRS, 2016). 
27 This period saw a large increase in students opting out of the standardized testing regime as well as changes in NYS 

standards for both the ELA and Math exams. If these changes affect early (or late) adopting districts more than late 

(or early) adopters, then the estimates for effects on achievement would have to be interpreted with caution. 



141 
 

 
 

programs will exacerbate weight problems among school children (i.e., obesity and overweight) 

and place additional financial burdens on school districts. There is, however, little evidence on 

these unintended and potentially negative effects of the large – and growing – expansion of UFM 

under the Community Eligibility Provision (CEP). The rapid expansion of CEP to a majority of 

eligible U.S. schools as of 2019, makes empirical evidence on these effects critical to 

policymakers as they consider how to best manage this program going forward. This paper aims 

to provide credibly causal estimates of the effect of CEP on student weight outcomes and district 

fiscal consequences, as well as the key drivers of such effects, including school meal 

participation and attendance, by exploiting the staggered adoption of CEP throughout NYS 

districts and schools. 

We find CEP increases student participation in school breakfast and lunch with no effect 

on attendance rates. Students in primary grades increase participation in breakfast at almost twice 

the rate of students in secondary grades, however all students increase participation in school 

lunch by approximately 8.5 percentage points. These increases in participation begin post CEP 

implementation and grow as districts gradually move from selective to districtwide 

implementation.  

We find no evidence of deleterious effects of CEP on student weight. We find no effects 

on weight outcomes for primary students, despite large increases in school meals participation in 

those grades. Moreover, we find CEP reduces obesity in secondary grades with largely negative, 

albeit statistically insignificant, point estimates on other weight outcomes. The differences in 

effects by grade level may reflect biological differences between older and younger children or 

that the food eaten by secondary school students in the absence of CEP is less healthy than that 

among primary school students. Previous research also suggests that the obesity of secondary 
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school students is more sensitive to the food environment than primary school students, perhaps 

due to differences in food consumption patterns (for example, Dwicaksono, et al. 2018 find this 

pattern in New York State school districts).  

We further find that CEP reduces local food revenues (i.e., loss of meal fees) while 

increasing federal food revenues (i.e., reimbursements) and total food expenditures per pupil. By 

offering free meals to all students, CEP districts lose local school food revenue previously 

collected from students paying for full or reduced prices for meals. However, these costs are 

offset by the federal government, which pays districts for the number of meals equal to 1.6 times 

the district’s ISP. CEP reduces both revenues and expenditures per meal – consistent with 

producing more meals for less. Some worry that districts struggling to cover gaps in revenues 

and expenditures may dip into instructional expenditures. We find no evidence of CEP reducing 

funds meant for the classroom.  

There is widespread concern over performance and financial viability of rural districts. 

We find effects of CEP vary depending on district urbanicity, perhaps due to differences in the 

types of students served, baseline participation rates, availability of alternatives, and/or cost of 

living. Rural districts appear to be more responsive to CEP and experience larger impacts for 

almost all significant outcomes. This is likely because rural districts are more prone to 

implement CEP districtwide, have higher baseline participation rates, and have fewer alternatives 

to school food. Rural districts also experience larger increases in school food expenditures 

compared to town and metro districts, particularly among personnel expenditures. This could 

occur for a host of reasons, including higher food costs in rural areas, less federal 

reimbursements, or differences in cafeteria capacity across districts in different urbanicities. 

However, non-personnel costs per meal in 2012, prior to CEP, are smallest for rural districts 
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($1.45) and largest for town districts ($1.62). Therefore, increases in expenditures are likely not 

due to differential food costs. Moreover, it is possible that metro and town districts have slack 

capacity in their cafeterias, whereas rural districts do not, explaining why rural districts 

experience increases in personnel expenditures. Therefore, the total increases in school food 

expenditures are driven by expansions in cafeteria capacity, less federal reimbursements, or a 

combination of both.  

Likely for these same reasons listed above, however, CEP increases the size of school 

food program deficits in rural districts by $30 per pupil. Conversely, CEP helps close school 

food program deficits in metropolitan and town districts. This may lead to increased concerns 

over the fiscal condition of rural districts, who must find a way to cover these gaps. States may 

want to consider providing financial assistance to CEP-adopting rural districts to help them 

address the increased financial burden. Finally, we examine heterogeneous effects of CEP by 

implementation patterns and find wider implementation leads to more substantial effects. 

This paper provides evidence that will likely assuage critics’ worries, demonstrating that 

not only does UFM via CEP have no deleterious effects on student weight, it actually improves 

weight outcomes for students in secondary grades while increasing participation rates, and, on 

average, covering potential CEP-induced gaps in school food revenues and expenditures. These 

effects vary by level of implementation and urbanicity – something for those making the 

decisions to adopt such policies to consider given their particular context. 
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Figure 6: CEP Expands Rapidly Across New York State 

 

 

 

 

 

 

 

 

Note: Includes all 97 Ever CEP districts as well as NYC districts. 
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Figure 7: Number of Districts with at Least 1 CEP School  

 

Notes: Includes all 97 Ever CEP districts but excludes NYC districts.  
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Figure 8: Percent of Students Exposed to CEP by CEP Adoption Year, 2010-2017 

 

Notes: Figure displays point estimates and 95 percent confidence intervals derived from an event 

study of Ever CEP districts from 2010 to 2017. Sample excludes NYC, “Big 4” districts 

(Buffalo, Rochester, Syracuse, and Yonkers), four districts that consolidated in 2014, and one 

district with incomplete data. Model controls for percent black, Hispanic, Asian/other, English 

language learners, students with disabilities, and free lunch students, district fixed effects, and 

year fixed effects. Zero (0) indicates the first year of CEP adoption. Negative 1 (-1) is the 

omitted reference category. Models use districts with 4 or more years of pre-adoption data to 

identify “-4+” and 3 or more years of post-adoption data to identify “3+.”  
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Figure 9: Event Study Depicting Estimated Impacts of CEP on Meal Participation, 2010-2017 

Panel A – District:     Bfast  Lunch 

      
Panel B-Primary Schools:    Bfast     Lunch      

       
Panel C-Secondary Schools:  Bfast      Lunch 

        
Notes: Figures display point estimates and 95 percent confidence intervals derived from an event study of 

Ever CEP districts (Panel A) and schools (Panel B and C) from 2010 to 2017 for meal participation 

outcomes and 2010 to 2016 for attendance outcome. Samples exclude NYC, “Big 4” districts (Buffalo, 

Rochester, Syracuse, & Yonkers) and four districts that consolidated in 2014. The school panel includes 

198 primary and 93 secondary continuously open schools that adopt CEP between 2013 and 2018, 

excluding 34 schools in 24 districts with implausibly high meal participation rates, 4 Elementary-Middle 

schools and 8 K-12 schools. All models control for percent black, Hispanic, Asian/other, English 

language learners, students with disabilities (unavailable in school-level models), and free lunch students, 

district (school) fixed effects, and year fixed effects. Estimates weighted by enrollment. Zero (0) indicates 

the first year of CEP adoption. Negative 1 (-1) is the reference year. Models use districts with 4 or more 

years of pre-adoption data to identify “-4+” and 3 or more years of post-adoption data to identify “3+.”   
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Figure 10: Event Study Depicting Estimated Impacts of CEP on Revenues and Expenditures per 

Pupil, 2010-2017  

     LocalRev             FederalRev 

   

TotalFoodRev            TotalFoodExp 

  

InstTotal 

 

Notes: Sample period covers 2010-2017 and includes Ever CEP districts. Sample excludes NYC, “Big 4” districts 

(Buffalo, Rochester, Syracuse, & Yonkers), four districts that consolidated in 2014, and one district with incomplete 

data. All models control for percent black, Hispanic, Asian/other, English language learners, students with 

disabilities, and free lunch students, district fixed effects, and year fixed effects. Estimates weighted by enrollment. 

Revenue and expenditures data are in 2017 dollars per pupil. Districts missing data in select years: 1 local food 

revenue, 6 federal food revenue, and 4 personnel food expenditures. Estimates weighted by enrollment. Zero (0) 

indicates the first year of CEP adoption. Negative 1 (-1) is the omitted reference category. Models use districts with 

4 or more years of pre-adoption data to identify “-4+” and 3 or more years of post-adoption data to identify “3+.” “-

4+” estimates suppressed.   
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Table 21: Descriptive Statistics by CEP Status, 2012 

  Ever CEP 

 Never CEP Big 4 

Analytic 

Sample Metro Town Rural 

District Characteristics       

Demographics (%)       

   FL 23.6 74.0 47.2 53.4 46.8 42.6 

   White 84.2 19.0 72.0 47.5 74.8 93.1 

   Black 4.0 46.8 12.5 27.9 8.2 2.1 

   Hispanic 7.1 26.8 11.3 18.9 11.5 2.2 

   Asian/Other 4.6 7.5 4.0 5.5 5.3 2.6 

   ELL 1.8 11.8 3.6 7.2 2.6 0.2 

   SWD 12.1 16.2 13.8 13.8 13.2 14.3 

Public School Enrollment 2,209 26,295 2,769 5,424 2,163 1,005 

Mean Number Schools 3.9 47.5 5.2 9.0 4.6 2.7 

Pre-Treatment Outcomes       

Weight Outcomes (%)       

   Overweight 33.6 37.1 38.7 39.6 37.7 38.6 

   Obese 17.7 20.6 21.4 22.8 20.0 21.1 

Mechanisms (%)       

   Breakfast Participation 14.5 37.2 25.8 23.8 24.2 28.6 

   Lunch Participation 47.9 57.7 63.2 60.0 61.9 66.8 

   Attendance Rate 95.3 89.75 93.9 92.8 93.8 94.8 

Revenue per pupil from food (2017$)      

   Local  179.74 40.81 122.62 85.27 116.53 155.83 

   State  19.19 16.20 25.41 29.01 15.16 24.36 

   Federal  150.61 403.41 268.36 282.76 267.36 264.55 

   Total  328.57 460.42 404.85 385.19 387.91 437.59 

Expenditures per pupil on food (2017$)      

   Personnel  200.35 251.18 231.70 196.88 211.66 269.56 

   Total  378.47 500.19 466.90 420.50 457.11 510.85 

Number Districts 573 4 93 32 24 37 

Notes: Analytic Sample includes 93 districts that adopt CEP in at least one school between 2013-

2018, and excludes NYC, “Big 4” districts (Buffalo, Rochester, Syracuse, Yonkers), four 

districts that consolidated in 2014, and one district with incomplete data.  Revenue and 

expenditures data are in 2017 dollars.  
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Table 22: Estimated Impacts of CEP on Meal Participation and Attendance, 2010-2017 

 District Primary Schools Secondary Schools 

 Bfast Lunch Attd Rate Bfast Lunch Attd Rate Bfast Lunch Attd Rate 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) 

CEP 7.715*** 6.584*** -0.348 11.49*** 8.511*** -0.424 4.655** 8.409*** -1.779 

 (2.282) (0.911) (0.237) (3.145) (0.977) (0.877) (1.760) (1.520) (1.433) 

          

2012 Means 25.8 63.2 93.9 34.7 70.8 93.9 14.9 57.4 92.8 

          

District Char. Y Y Y Y Y Y Y Y Y 

School FE N N N Y Y Y Y Y Y 

District FE Y Y Y N N N N N N 

Year FE Y Y Y Y Y Y Y Y Y 

          

Observations 744 744 651 1,584 1,584 1,386 744 744 651 

No Schools - - - 198 198 198 93 93 93 

No Districts 93 93 93 75 75 75 50 50 50 

R-squared 0.753 0.897 0.734 0.731 0.868 0.180 0.610 0.910 0.349 

Notes: Robust standard errors in parentheses clustered by district (*p<.10; **p<.05; ***p<.01). 

Sample period covers 2010 to 2017 for meal participation outcomes and 2010 to 2016 for 

attendance outcome and includes Ever CEP districts (Columns 1-3) and schools (Columns 4-9). 

Both samples exclude NYC, “Big 4” districts (Buffalo, Rochester, Syracuse, & Yonkers) and 

four districts that consolidated in 2014. School panel sample includes 198 primary and 93 

secondary continuously open schools that ever adopt CEP from 2013-2018 and excludes 34 

schools in 24 districts with implausibly high meal participation rates, 4 Elementary-Middle 

schools and 8 K-12 schools. All models control for percent black, Hispanic, Asian/other, English 

language learners, students with disabilities (unavailable in school-level models), and free lunch 

students, district (school) fixed effects, and year fixed effects. Estimates weighted by enrollment.  
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Table 23: Estimated Impacts of CEP on Student Weight Outcomes, 2010-2017 

Notes: Robust standard errors in parentheses clustered by district (*p<.10; **p<.05; ***p<.01). 

Sample period covers 2010-2017 and includes Ever CEP districts. Sample excludes NYC, “Big 

4” districts (Buffalo, Rochester, Syracuse, & Yonkers), four districts that consolidated in 2014, 

and one district with incomplete data. Primary refers to grades K, 2, and 4, and Secondary refers 

to grades 7 and 10. Weight outcome data assigned to the beginning of the two-year reporting 

cycle using last year’s treatment status. Estimates weighted by student enrollment in measured 

grades (K, 2, 4, 7, 10). All models control for a vector of district characteristics including percent 

black, Hispanic, Asian/other, English language learners, students with disabilities, and free lunch 

students, district fixed effects, and year fixed effects. Data is unavailable for districts with fewer 

than 5 students in a category. Therefore, the number of observations is inconsistent across 

outcomes.  

  

 All Grades Primary Grades Secondary Grades 

 % Overwgt % Obese % Overwgt % Obese % Overwgt % Obese 

  (1) (2) (3) (4) (5) (6) 

CEP 0.030 -0.561 0.605 -0.047 -1.689 -1.831* 

 (0.893) (0.786) (1.013) (0.912) (1.170) (1.045) 

       

2012 Means  38.7 21.4 37.7 20.7 40.9 23.5 

       

District Char. Y Y Y Y Y Y 

District FE Y Y Y Y Y Y 

Year FE Y Y Y Y Y Y 

       

Observations 368 365 364 361 361 358 

No. Districts 93 93 93 93 93 93 

R-squared 0.729 0.723 0.741 0.726 0.597 0.573 
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Table 24: Estimated Impacts of CEP on Fiscal Outcomes, 2010-2017 

Panel A: Per Pupil 

 Food Revenue Food Expenditures Instructional Expenditures 

 Local State Federal Total Personnel Total Salaries Benefits Total 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) 

CEP -23.90*** -2.11 72.96*** 51.76*** 7.46 38.23*** -104.95 -63.62 -44.13 

 (3.75) (4.62) (12.25) (12.19) (5.91) (9.19) (81.61) (54.60) (145.10) 

          

2012 Means 122.62 25.41 268.36 404.85 466.9 231.7 7,186.50 3,596.41 11,726.78 

          

District Char. Y Y Y Y Y Y Y Y Y 

District FE Y Y Y Y Y Y Y Y Y 

Year FE Y Y Y Y Y Y Y Y Y 

          

Observations 743 744 733 744 727 744 744 744 744 

No Districts 93 93 93 93 93 93 93 93 93 

R-squared 0.93 0.67 0.87 0.82 0.95 0.90 0.96 0.95 0.96 

 

Panel B: Per Meal  

 Food Revenue Food Expenditures 

 Local  State  Federal  Total  Personnel   Total  

  (1) (2) (3) (4) (5) (6) 

CEP -0.20*** -0.04 0.03 -0.18*** -0.12** -0.25*** 

 (0.03) (0.03) (0.05) (0.06) (0.05) (0.06) 

       

2012 Means 0.79 0.16 1.70 2.58 1.47 2.97 

       

District Char. Y Y Y Y Y Y 

District FE Y Y Y Y Y Y 

Year FE Y Y Y Y Y Y 

       

Observations 743 744 733 744 727 744 

No Districts 93 93 93 93 93 93 

R-squared 0.94 0.68 0.81 0.67 0.91 0.75 

Notes: Sample period covers 2010-2017 and includes Ever CEP districts. Sample excludes NYC, 

“Big 4” districts (Buffalo, Rochester, Syracuse, & Yonkers), four districts that consolidated in 

2014, and one district with incomplete data. All models control for percent black, Hispanic, 

Asian/other, English language learners, students with disabilities, and free lunch students, district 

fixed effects, and year fixed effects. Estimates weighted by enrollment. Revenue and 

expenditures data are in 2017 dollars. Panel A outcomes are revenues and expenditures per pupil, 

and Panel B outcomes are revenues and expenditures per meal served. Districts missing data in 

select years: 1 local food revenue, 6 federal food revenue, and 4 personnel food expenditures.  
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Table 25: Estimated Impacts of CEP on Mechanisms and Weight Outcomes by Urbanicity, 2010-

2017 

Notes: Sample period covers 2010-2017 and includes Ever CEP districts. Sample excludes NYC, 

“Big 4” districts (Buffalo, Rochester, Syracuse, & Yonkers), four districts that consolidated in 

2014, and one district with incomplete data. All models control for a vector of district 

characteristics including percent black, Hispanic, Asian/other, English language learners, 

students with disabilities, and free lunch students, district fixed effects, and year fixed effects.  

Primary refers to grades K, 2, and 4, and Secondary refers to grades 7 and 10. Weight outcome 

data assigned to the beginning of the two-year reporting cycle using last year’s treatment status. 

Models in Columns 1-3 weighted by enrollment. Models in Columns 4-7 weighted by student 

enrollment in measured grades (K, 2, 4, 7, 10). 

  All Grades Primary Grades Secondary Grades 

 Bfast Lunch Attd Rate % Overwgt % Obese % Overwgt % Obese 

 (1) (2) (3) (4) (5) (6) (7) 

 CEP        

   Metro 7.731*** 6.406*** -0.335 0.018 -0.519 -0.986 -1.929 

 (2.817) (1.138) (0.281) (1.098) (0.985) (1.736) (1.483) 

   Town 6.049** 6.813*** -0.611 2.162 1.661 -2.733 -0.356 

 (2.579) (1.271) (0.442) (2.214) (1.807) (2.664) (1.547) 

   Rural 11.51*** 7.347*** 0.399 0.942 -0.830 -4.054* -4.256 

 (3.160) (1.484) (0.404) (1.778) (1.367) (2.400) (2.636) 

        

District Char. Y Y Y Y Y Y Y 

District FE Y Y Y Y Y Y Y 

Year FE Y Y Y Y Y Y Y 

        

Observations 744 744 651 364 361 361 358 

No. Districts 93 93 93 93 93 93 93 

R-squared 0.758 0.904 0.736 0.743 0.732 0.602 0.582 
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Table 26: Estimated Impacts of CEP on Fiscal Outcomes by Urbanicity, 2010-2017 

Notes: Sample period covers 2010-2017 and includes Ever CEP districts. Sample excludes NYC, 

“Big 4” districts (Buffalo, Rochester, Syracuse, & Yonkers), four districts that consolidated in 

2014, and one district with incomplete data. All models control for a vector of district 

characteristics including percent black, Hispanic, Asian/other, English language learners, 

students with disabilities, and free lunch students, district fixed effects, and year fixed effects. 

All models weighted by enrollment. 

   Revenue  Expenditures Instructional Expenditures 

 Local Federal Total Personnel Total Salaries Benefits Total 

 (1) (2) (3) (4) (5) (6) (7) (8) 

 CEP         

   Metro -14.01*** 72.37*** 56.39*** 5.22 39.96*** -163.96 -81.02 -66.00 

 (3.86) (15.02) (13.99) (7.26) (11.36) (104.03) (76.15) (188.79) 

   Town -39.38*** 71.77*** 52.83** 5.48 30.33** 25.88 -7.71 38.87 

 (5.64) (18.82) (22.76) (7.69) (12.86) (107.88) (81.88) (204.31) 

   Rural -57.91*** 79.83*** 15.49 26.86** 44.12* 17.53 -68.13 -79.78 

 (9.02) (25.29) (19.31) (13.41) (22.41) (159.39) (59.86) (256.55) 

         

District Char. Y Y Y Y Y Y Y Y 

District FE Y Y Y Y Y Y Y Y 

Year FE Y Y Y Y Y Y Y Y 

         

Observations 743 733 744 727 744 744 744 744 

No. Districts 93 93 93 93 93 93 93 93 

R-squared 0.94 0.87 0.82 0.95 0.90 0.96 0.95 0.96 
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Table 27: Estimated Impacts of CEP on Weight Outcomes by Extent of Implementation, 2010-

2017 

 

 

 

 

 

 

 

 

 

 

Notes: Robust standard errors in parentheses clustered by district (*p<.10; **p<.05; ***p<.01). 

Sample period covers 2010-2017 and includes Ever CEP districts. Sample excludes NYC, “Big 

4” districts (Buffalo, Rochester, Syracuse, & Yonkers), four districts that consolidated in 2014, 

and one district with incomplete data. Primary refers to grades K, 2, and 4, and Secondary refers 

to grades 7 and 10. Weight outcome data assigned to the beginning of the two-year reporting 

cycle using last year’s treatment status. Estimates weighted by student enrollment in measured 

grades (K, 2, 4, 7, 10). All models control for a vector of district characteristics including percent 

black, Hispanic, Asian/other, English language learners, students with disabilities, and free lunch 

students, PCT CEP2, district fixed effects, and year fixed effects. Data is unavailable for districts 

with fewer than 5 students in a category. Therefore, the number of observations is inconsistent 

across outcomes. 

  

 Primary Grades Secondary Grades 

 % Overwgt % Obese % Overwgt % Obese 

  (1) (2) (3) (4) 

PCT CEP -0.073 -0.056 -0.206** -0.152* 

 (0.0817) (0.0761) (0.0905) (0.0882) 

Districtwide -0.922 0.189 -5.524 -1.662 

 (2.661) (2.519) (3.608) (4.071) 

     

District Char. Y Y Y Y 

District FE Y Y Y Y 

Year FE Y Y Y Y 

     

Observations 364 361 361 358 

No. Districts 93 93 93 93 

R-squared 0.745 0.730 0.609 0.579 
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Table 28: Predicting CEP Adoption Among Ever CEP Districts & Schools, 2012-2017 

 District School 

 CEP t+1 CEP t+1 

  (1) (2) 

% Black -0.02 -0.01 

 (0.03) (0.02) 

% Hispanic 0.04 0.00 

 (0.03) (0.02) 

% Asian/Other 0.05 0.02 

 (0.03) (0.02) 

% LEP -0.08 -0.01 

 (0.06) (0.01) 

% SWD -0.00 _______ 

 (0.04)  

% Free Lunch -0.00 0.00 

 (0.00) (0.00) 

   

School FE N Y 

District FE Y N 

Year FE Y Y 

   

Observations 404 1,154 

No. Schools - 321 

No. Districts 93 87 

R-squared 0.62 0.47 

 

Notes: Robust standard errors in parentheses clustered by district (*p<.10; **p<.05; ***p<.01). 

Sample periods cover 2012 to 2017. Column 1 includes Ever CEP districts, and Column 2 

includes Ever CEP schools. All models control for percent black, Hispanic, Asian/other, English 

language learners, students with disabilities, and free lunch students, district fixed effects, and 

year fixed effects. Estimates weighted by enrollment. 
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Appendix C 

Table C1: Estimated Impacts of CEP on Meal Participation and Attendance, Including Big 4, 

2010-2017 

 District 

 Bfast Lunch Attd Rate 

  (1) (2) (3) 

CEP 8.650*** 7.183*** -0.0151 

 (1.826) (0.773) (0.273) 

    

District Char. Y Y Y 

District FE Y Y Y 

Year FE Y Y Y 

    

Observations 776 776 679 

No Districts 97 97 97 

R-squared 0.867 0.911 0.864 

Notes: Robust standard errors in parentheses clustered by district (*p<.10; **p<.05; ***p<.01). 

Sample period covers 2010 to 2017 for meal participation outcomes and 2010 to 2016 for 

attendance outcome and includes Ever CEP districts. Sample excludes NYC and four districts 

that consolidated in 2014. All models control for percent black, Hispanic, Asian/other, English 

language learners, students with disabilities, and free lunch students, district fixed effects, and 

year fixed effects. Estimates weighted by enrollment.  
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Table C2: Estimated Impacts of CEP on Student Weight Outcomes, Including Big 4, 2010-2017 

Notes: Robust standard errors in parentheses clustered by district (*p<.10; **p<.05; ***p<.01). 

Sample period covers 2010-2017 and includes Ever CEP districts. Sample excludes NYC, four 

districts that consolidated in 2014, and one district with incomplete data. Primary refers to grades 

K, 2, and 4, and Secondary refers to grades 7 and 10. Weight outcome data assigned to the 

beginning of the two-year reporting cycle using last year’s treatment status. Estimates weighted 

by student enrollment in measured grades (K, 2, 4, 7, 10). All models control for a vector of 

district characteristics including percent black, Hispanic, Asian/other, English language learners, 

students with disabilities, and free lunch students, district fixed effects, and year fixed effects. 

Data is unavailable for districts with fewer than 5 students in a category. Therefore, the number 

of observations is inconsistent across outcomes.  

  

 All Grades Primary Grades Secondary Grades 

 % Overwgt % Obese % Overwgt % Obese % Overwgt % Obese 

  (1) (2) (3) (4) (5) (6) 

CEP -0.648 -0.159 0.222 0.387 -3.494*** -2.393** 

 (1.014) (1.051) (1.056) (1.261) (1.318) (1.139) 

       

District Char. Y Y Y Y Y Y 

District FE Y Y Y Y Y Y 

Year FE Y Y Y Y Y Y 

       

Observations 384 381 380 377 377 374 

No. Districts 97 97 97 97 97 97 

R-squared 0.750 0.707 0.760 0.712 0.623 0.589 
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Table C3: Estimated Impacts of CEP on Fiscal Outcomes, Including Big 4, 2010-2017 

Panel A: Per Pupil 

 Food Revenue Food Expenditures Instructional Expenditures 

 Local State Federal Total Personnel Total Salaries Benefits Total 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) 

CEP -21.89*** 3.34 93.12*** 77.60*** 10.00 50.98*** -55.99 -57.86 49.26 

 (3.60) (2.90) (12.47) (13.49) (7.80) (11.07) (98.19) (47.23) (185.67) 

          

District Char. Y Y Y Y Y Y Y Y Y 

District FE Y Y Y Y Y Y Y Y Y 

Year FE Y Y Y Y Y Y Y Y Y 

          

Observations 775 776 765 776 759 776 776 776 776 

No Districts 97 97 97 97 97 97 97 97 97 

R-squared 0.95 0.66 0.93 0.90 0.93 0.92 0.95 0.94 0.95 

 

Panel B: Per Meal  

 Food Revenue Food Expenditures 

 Local  State  Federal  Total  Personnel   Total  

  (1) (2) (3) (4) (5) (6) 

CEP -0.18*** -0.01 0.05 -0.12* -0.17*** -0.25*** 

 (0.03) (0.02) (0.04) (0.06) (0.06) (0.05) 

       

District Char. Y Y Y Y Y Y 

District FE Y Y Y Y Y Y 

Year FE Y Y Y Y Y Y 

       

Observations 775 776 765 776 759 776 

No Districts 97 97 97 97 97 97 

R-squared 0.95 0.67 0.86 0.72 0.90 0.75 

Notes: Sample period covers 2010-2017 and includes Ever CEP districts. Sample excludes NYC, 

four districts that consolidated in 2014, and one district with incomplete data. All models control 

for percent black, Hispanic, Asian/other, English language learners, students with disabilities, 

and free lunch students, district fixed effects, and year fixed effects. Estimates weighted by 

enrollment. Revenue and expenditures data are in 2017 dollars. Panel A outcomes are revenues 

and expenditures per pupil, and Panel B outcomes are revenues and expenditures per meal 

served. Districts missing data in select years: 1 local food revenue, 6 federal food revenue, and 4 

personnel food expenditures.  
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Table C4: Estimated Impacts of CEP on Meal Participation and Attendance, Unweighted, 2010-

2017 

 District 

 Bfast Lunch Attd Rate 

  (1) (2) (3) 

CEP 9.101*** 7.866*** -0.348 

 (1.502) (0.711) (0.237) 

    

District Char. Y Y Y 

District FE Y Y Y 

Year FE Y Y Y 

    

Observations 744 744 651 

No Districts 93 93 93 

R-squared 0.791 0.876 0.734 

Notes: Robust standard errors in parentheses clustered by district (*p<.10; **p<.05; ***p<.01). 

Sample period covers 2010 to 2017 for meal participation outcomes and 2010 to 2016 for 

attendance outcome and includes Ever CEP districts (Columns 1-3) and schools (Columns 4-9). 

Both samples exclude NYC, “Big 4” districts, and four districts that consolidated in 2014. 

School panel sample includes 198 primary and 93 secondary continuously open schools that ever 

adopt CEP from 2013-2018 and excludes 34 schools in 24 districts with implausibly high meal 

participation rates, 4 Elementary-Middle schools and 8 K-12 schools. All models control for 

percent black, Hispanic, Asian/other, English language learners, students with disabilities 

(unavailable in school-level models), and free lunch students, district (school) fixed effects, and 

year fixed effects.  
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Table C5: Estimated Impacts of CEP on Student Weight Outcomes, Unweighted, 2010-2017 

Notes: Robust standard errors in parentheses clustered by district (*p<.10; **p<.05; ***p<.01). 

Sample period covers 2010-2017 and includes Ever CEP districts. Sample excludes NYC, “Big 

4” districts, four districts that consolidated in 2014, and one district with incomplete data. 

Primary refers to grades K, 2, and 4, and Secondary refers to grades 7 and 10. Weight outcome 

data assigned to the beginning of the two-year reporting cycle using last year’s treatment status. 

All models control for a vector of district characteristics including percent black, Hispanic, 

Asian/other, English language learners, students with disabilities, and free lunch students, district 

fixed effects, and year fixed effects. Data is unavailable for districts with fewer than 5 students in 

a category. Therefore, the number of observations is inconsistent across outcomes.  

  

 All Grades Primary Grades Secondary Grades 

 % Overwgt % Obese % Overwgt % Obese % Overwgt % Obese 

  (1) (2) (3) (4) (5) (6) 

CEP -0.215 -1.031 0.295 -0.740 -2.899* -2.096 

 (0.978) (0.836) (1.171) (1.080) (1.541) (1.304) 

       

District Char. Y Y Y Y Y Y 

District FE Y Y Y Y Y Y 

Year FE Y Y Y Y Y Y 

       

Observations 368 365 364 361 362 358 

No. Districts 93 93 93 93 93 93 

R-squared 0.578 0.595 0.576 0.593 0.393 0.523 
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Table C6: Estimated Impacts of CEP on Fiscal Outcomes, Unweighted, 2010-2017 

Panel A: Per Pupil 

 Food Revenue Food Expenditures Instructional Expenditures 

 Local State Federal Total Personnel Total Salaries Benefits Total 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) 

CEP -39.49*** 0.08 77.05*** 42.40*** 10.36 39.63*** -44.65 -73.13 -40.96 

 (4.49) (3.64) (9.17) (9.34) (6.42) (8.26) (68.09) (44.31) (117.10) 

          

District Char. Y Y Y Y Y Y Y Y Y 

District FE Y Y Y Y Y Y Y Y Y 

Year FE Y Y Y Y Y Y Y Y Y 

          

Observations 743 744 733 744 727 744 744 744 744 

No Districts 93 93 93 93 93 93 93 93 93 

R-squared 0.91 0.78 0.87 0.84 0.92 0.89 0.94 0.94 0.94 

 

Panel B: Per Meal  

 Food Revenue Food Expenditures 

 Local  State  Federal  Total  Personnel   Total  

  (1) (2) (3) (4) (5) (6) 

CEP -0.31*** -0.03 0.01 -0.31*** -0.18*** -0.33*** 

 (0.03) (0.02) (0.04) (0.06) (0.05) (0.06) 

       

District Char. Y Y Y Y Y Y 

District FE Y Y Y Y Y Y 

Year FE Y Y Y Y Y Y 

       

Observations 743 744 733 744 727 744 

No Districts 93 93 93 93 93 93 

R-squared 0.90 0.78 0.82 0.69 0.88 0.78 

Notes: Sample period covers 2010-2017 and includes Ever CEP districts. Sample excludes NYC, 

“Big 4” districts, four districts that consolidated in 2014, and one district with incomplete data. 

All models control for percent black, Hispanic, Asian/other, English language learners, students 

with disabilities, and free lunch students, district fixed effects, and year fixed effects. Revenue 

and expenditures data are in 2017 dollars. Panel A outcomes are revenues and expenditures per 

pupil, and Panel B outcomes are revenues and expenditures per meal served. Districts missing 

data in select years: 1 local food revenue, 6 federal food revenue, and 4 personnel food 

expenditures.  
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