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Abstract 

The study of morphological instabilities in thin solids, such as buckling of thin shells and 

wrinkling of thin sheets, is of growing interest to a number of academic disciplines including en-

gineering, physics, biology, and many others. For example, buckling has traditionally been re-

garded as an unfavorable phenomenon in engineering design, but emerging technologies con-

sider such behavior as an opportunity for novel functionality. The formation of wrinkle patterns 

on thin sheets has also emerged rapidly as canonical problems to investigate pattern formation in 

the physics community. The nonlinearities of the post-buckling behaviors encountered in these 

problems make theoretical analysis a challenging endeavor, thus highlighting the important role 

of numerical methods in the study of these problems. Our modeling and simulations of several 

prototypical instability problems – the buckling of spherical cap shells and cylindrical shells, and 

the wrinkling of annular sheets – reveal the complex post-buckling morphologies and energy 

landscapes. Our computational frameworks are promising for a wide range of applications, such 

as designing robust thin shell structures, developing buckling-induced smart devices, and ex-

plaining pattern formation in disordered systems.  
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Chapter 1: Introduction 

1.1 Morphological instabilities of thin solids in nature and engineered struc-

tures  

Confined thin solids (e.g. thin rods, shells, and sheets) are prone to lose stability to relieve the 

compression energy. Stability analysis of thin solids began with Euler's solution of buckling of 

an elastic column [1] and has matured to become not only a fundamental problem in solid me-

chanics [2]. It is also crucially important to ensure the safety of structures against collapses in 

disciplines such as structural engineering, aerospace engineering, and nuclear engineering [3]. A 

detailed overview of this subject can be found in the seminal book by Bazant and Cedolin [4]. 

From this perspective, buckling has traditionally been regarded as an unfavorable phenomenon 

that should be avoided through special design modifications -- an approach that can be referred 

to as Buckliphobia [5]. By contrast, with the increasing use of extremely deformable materials 

and structures [5,6], Buckliphilia [5] is a more recent emerging trend that is changing the above 

paradigm, in which the buckling of thin solids is considered as an opportunity for novel function-

ality that enables a broad range of emerging technologies. Such applications include soft robotics 

actuators [7], mechanical metamaterials [8], morphable 3D microelectronic devices [9], deploya-

ble space structures [10], energy harvesting, or dissipation devices [11,12], and adaptive aerody-

namic drag control [13].  

As the study of pattern formation is gaining increasing prominence in the physics commu-

nity, morphological instabilities in thin solids have also emerged rapidly as canonical problems 

to investigate how geometry can couple with nonlinearities to produce intricate patterns from 

featureless systems. One of the prototypical systems is the formation of wrinkle patterns on thin 
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sheets under a broad range of conditions such as boundary loads [14], incompatible topograph-

ical constraints [15-17], differential swelling [18], expansion on soft substrates [19,20], and 

growth in confined spaces [21,22].  

Morphological instabilities in thin solids also play significant roles in explaining the morpho-

genesis process, one fundamental aspect of developmental biology, in which initially flat sheets 

of cells are transformed into complex three-dimensional structures of mature organs during em-

bryonic development [23]. For example, the cerebral cortex of the mammalian brain forms folds 

because the cortical plate grows more quickly than the tissue beneath it, thereby causing the 

outer surface to buckle [24]; the initially straight intestinal tube forms the looping structure of the 

gut because the gut tube grows in length faster than does the mesentery to which it is attached, 

thereby causing compression in the tube and induce it to buckle [25].   

1.2 Numerical methods for simulating instabilities in thin solids 

The large displacements and rotations often associated with buckling of thin solids can yield 

non-negligible geometric nonlinearities, even if their material properties remain linear elastic, 

especially in the post-buckling regimes for the Buckliphilia approach. These nonlinearities, cou-

pled with complex geometries encountered in various problems, pose challenges in deriving 

closed analytical solutions. This highlights the important role of numerical methods in the study 

of instabilities in thin solids. The simulations in this dissertation will be performed using two 

methods: the finite element method and discrete shell models. Here, we make a brief introduction 

to these two methods.  

The finite element method is usually the preferred numerical methods for modeling complex 

solid mechanics problems, due to its ability to model complex geometries and the maturity of its 
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software development. For instance, commercial finite element packages have been used to ana-

lyze multistable structures [26-28]. However, in problems where there are a large number of sim-

ilar post-buckling equilibrium states, the quasi-static implicit solvers implemented in those pack-

ages exhibit poor convergence, and the results tend to be trapped into one of many metastable 

states (local energy minima) if they are obtained [29] unless the appropriate buckling modes are 

known a priori and used as the imperfections. For most real applications, such an approach is 

cumbersome and requires user intervention, such that it becomes difficult and inefficient to ex-

plore the entire nonlinear space.  

The discrete models based on discrete differential geometry have been widely used in the 

computer graphics community for simulating thin solids ranging from paper to metals [30-33].  

The simplicity and efficiency of these models make them suitable for implementation in open 

source software or integration with existing algorithms, which are recent trends for modeling the 

instabilities of thin solids coupled with other phenomena, such as fluid-structure interactions 

[34], fracture [35], electromagnetic effects and growth. On the other hand, unlike the finite ele-

ment method, these models suffer from problems such as mesh-dependent behaviors [32] and the 

effects of negative Poisson’s ratio [36].  

1.3 Outline of the dissertation 

Chapter 1 provides an overview of various phenomena observed in nature and engineering 

applications related to the instabilities in thin solids. We also briefly discuss the numerical meth-

ods we will use in this thesis for simulating instabilities in thin solids.  

Chapter 2 compares the performance of three widely used discrete shell models for a few 

benchmark problems in thin-film mechanics and use this as guidance to our simulations in the 

following chapters. 
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 Chapter 3 demonstrates how the energy landscapes for shell buckling can be comprehen-

sively surveyed by combing a simple discrete shell model with efficient energy minimization and 

pathfinding algorithms. We then apply our methods to two prototypical examples: spherical cap 

and cylindrical cap buckling.  

Chapter 4 addresses the wrinkling phenomena characterized by a uniform wavelength and 

radially distributed wrinkles separately by a defect-rich buffer zone, by analyzing the wrinkle 

pattern on an annular sheet under tensile loads.  

Chapter 5 includes some concluding remarks and future directions of study.  
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Chapter 2: Discrete Thin Shell Models 

2.1 Introduction 

Many problems in engineering and physics require accurate and efficient simulations of the 

deformation of shells. In these simulations, it is often necessary to represent deformed shells by 

meshes and approximate their strain energy as functions of unknown displacements at nodal 

points. The number of degrees of freedom (DOF) at each node can be 3 (translational only) or 5 

(translational and rotational), depending on the kinematics assumptions. In classical shell theo-

ries [67] one has to distinguish between thick shells (𝑅/𝑡 < 20) and thin shells (𝑅/𝑡 > 20). In 

thick shell theories, transverse shear deformations are taken into account, and both translational 

and rotational DOF’s are required in simulations; whereas in thin shell theories, transverse shear 

deformations are assumed to be negligible, and only translational DOF’s are required.  

Finite element methods based on thick shell theories [37] are most common in engineering 

applications, because in the presence of both translational and rotational DOF only 𝐶0 continuity 

is required between elements which allows the use of very simple shape functions. However, the 

rotational DOF’s often cause convergence difficulties and shear-locking [38,39]. Mixed formula-

tions and special finite element function spaces are required to alleviate these problems, but re-

sulting in more complex models [39-47]. 

On the other hand, simple and efficient discrete thin shell models based on discrete differen-

tial geometry, which involve only translational DOF as unknowns, are often used in computer 

graphics [47]. Unfortunately, some of these models lack the convergence of finite element meth-

ods, leading to mesh-dependent behaviors [47].   
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This chapter reports our implementation of the discrete shell models in molecular dynamics 

code LAMMPS, as well as their performance on several benchmark problems. This chapter is 

organized as follows. Section 2.2 reviews the kinematics description of shells and continuum 

elastic energy formulations based on Koiter’s theory for a thin elastic shell. Section 2.3 derives 

three energy discretization formulations on triangular meshes. Section 2.4 describes the imple-

mentation details of the discrete shell models in molecular dynamics code LAMMPS. Section 

2.5 tests the mesh dependency behaviors and accuracies of the three models after performing a 

series of benchmark tests. Section 2.6 concludes this chapter with some discussions of the re-

sults. 

2.2 Elastic energy of a continuum thin shell 

The elastic energy of a thin elastic shell can be described as a sum of a “membrane” term 

and a “bending” term, which depend, respectively, on the strain and curvature of the mid-plane. 

For a thin shell of thickness 𝑡 made of elastic materials of Young modulus 𝐸, these two energies 

are proportional, respectively, to the stretching modulus (𝑌~𝐸𝑡) and bending modulus (𝐵~𝐸𝑡3). 

Among thin shell theories that that account for both membrane and bending terms, Ciarlet [48] 

advocated Koiter’s nonlinear shell theory [49] as the best model in both the membrane-domi-

nated and bending-dominated regimes in the case of linear elastic deformations. Steigmann [50] 

showed that Koiter's theory is the leading-order energy in the intermediate regime where bending 

and stretching deformation energies are assumed to be of comparable importance.  

Here, I briefly summarize Koiter’s theory for a thin elastic shell, which is based on the fol-

lowing kinematics assumptions [51]: (i) the normal lines to the middle surface in the reference 

configuration are deformed into normal lines to the middle surface in the current configuration 

(the unshearable assumption), (ii) the distances along the normal lines are preserved (the normal 
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inextensibility assumption). These two assumptions imply that the deformation of the middle 

surface completely describes the deformation at any point of the shell. Therefore, in the follow-

ing discussions, we will represent a shell by its middle surface.  

We describe the middle surface of a shell in undeformed and deformed states using paramet-

ric representation:  

 𝐫0 = 𝛟0(𝑢, 𝑣)  (2.1) 

 𝐫 = 𝛟(𝑢, 𝑣) (2.2) 

where (𝑢, 𝑣) ∈ 𝜔 ⊂ ℝ2 are curvilinear coordinates, 𝛟0, 𝛟 ∶ 𝜔 → ℝ3 are regular surfaces, 𝐫0 and 

𝐫 correspond to the material points on the undeformed and deformed middle surfaces. The above 

parametric representation completely describes the kinematics of the shell:  

  𝐫 = 𝛟𝛟0
−1(𝐫0) = 𝐅(𝐫0)  (2.3) 

in which 𝐅 = 𝛟𝛟0
−1 is the deformation function.  
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Figure 2.1 Parametric representation of the middle surface of a shell in undeformed and de-

formed states 

 

The normal vectors of the middle surfaces are given by:  

 
𝐧0 =

𝜕𝑢𝛟0 × 𝜕𝑣𝛟0

‖𝜕𝑢𝛟0 × 𝜕𝑣𝛟0‖
  (2.4) 

 
𝐧 =

𝜕𝑢𝛟 × 𝜕𝑣𝛟

‖𝜕𝑢𝛟 × 𝜕𝑣𝛟‖
  (2.5) 

where 𝜕𝑢(⋅) and 𝜕𝑣(⋅) are partial derivatives with respect to curvilinear coordinates 𝑢 and 𝑣, × is 

the vector cross product. The geometry of the middle surface is completely described by the sec-

ond-order metric (𝐚0, 𝐚) and curvature (𝐛0, 𝐛) tensors, whose components are computed as: 

 𝐚𝟎 = 𝛁𝛟0
T𝛁𝛟0  

𝐚 = 𝛁𝛟T𝛁𝛟    

(2.6) 

(2.7) 

 
𝐛0 = −

1

2
(𝛁𝛟0

T𝛁𝐧 + 𝛁𝐧T𝛁𝛟0) 

𝐛 = −
1

2
(𝛁𝛟𝐓𝛁𝐧 + 𝛁𝐧T𝛁𝛟) 

(2.8) 

(2.9) 

where 𝛁 = (𝜕𝑢, 𝜕𝑣) is the gradient with respect to curvilinear coordinates (𝑢, 𝑣). We use the fol-

lowing measures of deformation for the middle surface [16-18]:   

 
𝛆 =

1

2
(𝐚 − 𝐚0) (2.10) 

 𝛋 = 𝐛 − 𝐛0 (2.11) 

where 𝛆 is the membrane strain tensor and 𝛋 is the bending strain tensor.  

In Koiter’s theory, the elastic energy density 𝑊 is expressed as a sum of membrane energy 

𝑊𝑚 and bending energy 𝑊𝑏 [49,50,55,56]:  
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 𝑊 = 𝑊𝑚 + 𝑊𝑏 (2.12) 

 
𝑊𝑚 =

𝐸𝑡

8(1 − 𝜈2)
[𝜈 tr(𝛆2) + (1 − 𝜈) (tr𝛆)2] (2.13) 

 
𝑊𝑏 =

𝐸𝑡3

24(1 − 𝜈2)
[𝜈 tr(𝛋2) + (1 − 𝜈) (tr𝛋)2] (2.14) 

where 𝐸 is Young’s modulus, 𝜈 is Poisson’s ratio and 𝑡 is shell thickness.  

2.3 Elastic energy of a discrete thin shell 

In the previous section, the membrane and bending strain tensors are both expressed in dif-

ferential forms. In this section, we briefly review their discrete forms on a general triangular 

mesh. A variety of different discretizations of the bending strain tensor have been developed in 

engineering, physics, and computer graphics. Here, we compare three commonly used models: 

hinge model, triangle-averaged model, and quadratic fit model. We then derive the correspond-

ing discrete membrane and bending energy of the three models. In the following, all the upper-

case Roman letters or Greek letters with bar will denote quantities in the undeformed state, and 

all the lower-case Roman letters or Greek letters without bar will denote quantities in the de-

formed state. 

 Figure 2.2 Numbering of vertices (red numbers) and edges (green numbers) in the computation 

of discrete membrane energy 
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2.3.1 Discrete membrane energy  

Consider an arbitrary triangle within a triangular mesh, as shown in Figure 2.2.  Let 𝐗𝑖 be the 

coordinate vector of vertex 𝑖 of the undeformed mesh and 𝐕𝑖𝑗 be the vector defined as 

 𝐕𝑖𝑗 = 𝐗𝑖 − 𝐗𝑗 (2.15) 

The outward unit normal vector of the triangle is  

 
𝐍 =

𝐕21 × 𝐕32

‖𝐕21 × 𝐕32‖
 (2.16) 

Let 𝐓𝑖 be the vector in the plane perpendicular to edge 𝑖 having the same length as edge 𝑖, i.e.  

 𝐓1 = 𝐕32 × 𝐍 (2.17) 

 𝐓2 = 𝐕13 × 𝐍 (2.18) 

 𝐓3 = 𝐕21 × 𝐍 (2.19) 

We use the following approximation for membrane strain on each triangle [57,58]:  

 
𝛆 =

1

16𝐴2
(𝑙𝑖

2 − 𝐿𝑖
2)𝜀𝑖𝑗𝑘

2 𝐓𝑗⨂𝐓𝑘 (2.20) 

where 𝐿𝑖 and 𝑙𝑖 are the undeformed and deformed lengths of edge 𝑖, and 𝐴 is the triangular area. 

In the above equation, the alternating symbol 𝜀𝑖𝑗𝑘 is defined by  

 

𝜀𝑖𝑗𝑘 = {

1 if {𝑖, 𝑗, 𝑘} = {1,2,3}, {2,3,1} or {3,1,2} 

−1 if {𝑖, 𝑗, 𝑘} = {2,1,3}, {1,3,2} or {3,2,1}

0 if an index is repeated
 (2.21) 

and the Einstein summation convention will be employed according to which summation over 

the range 1, 2, 3 is implied for any index that is repeated twice in any term, so that, for instance 

 𝑢𝑖𝑣𝑖 = 𝑢1𝑣1 + 𝑢2𝑣2 + 𝑢3𝑣3 (2.22) 

 𝑆𝑖𝑗𝑢𝑖𝑣𝑗 = 𝑆1𝑗𝑢1𝑣𝑗 + 𝑆2𝑗𝑢2𝑣𝑗 + 𝑆3𝑗𝑢3𝑣𝑗 (2.23) 

 𝑆𝑖𝑗𝑘𝑢𝑖𝑣𝑗𝑤𝑘 = 𝑆1𝑗𝑘𝑢1𝑣𝑗𝑤𝑘 + 𝑆2𝑗𝑘𝑢2𝑣𝑗𝑤𝑘 + 𝑆3𝑗𝑘𝑢3𝑣𝑗𝑤𝑘 (2.24) 
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Using the properties of the alternating symbol 𝜀𝑖𝑗𝑘 and cross product ⨂, some algebraic ma-

nipulations of 𝛆 in equation (2.20) yields 

 
𝛆2 =

1

256𝐴2
𝑠𝑖𝑠𝑝𝜀𝑖𝑗𝑘

2 𝜀𝑝𝑞𝑟
2 (𝐓𝑘 ⋅ 𝐓𝑞)(𝐓𝑗⨂𝐓𝑟) (2.25) 

 
tr(𝛆2) =

1

256𝐴4
𝑠𝑖𝑠𝑝𝜀𝑖𝑗𝑘

2 𝜀𝑝𝑞𝑟
2 (𝐓𝑘 ⋅ 𝐓𝑞)(𝐓𝑗 ⋅ 𝐓𝑟) (2.26) 

 
tr𝛆 =

1

16𝐴2
𝑠𝑖𝜀𝑖𝑗𝑘

2 (𝐓𝑗 ⋅ 𝐓𝑘) (2.27) 

 
(tr𝛆)2 =

1

256𝐴4
𝑠𝑖𝑠𝑝𝜀𝑖𝑗𝑘

2 𝜀𝑝𝑞𝑟
2 (𝐓𝑗 ⋅ 𝐓𝑘)(𝐓𝑞 ⋅ 𝐓𝑟) (2.28) 

where 𝑠𝑖 = 𝑙𝑖
2 − 𝐿𝑖

2. Substituting Equations (2.25-2.28) into Equation (2.13) for 𝑊𝑚 and consid-

ering the relation 𝐸𝑚 = 𝑊𝑚𝐴 gives the following discretized form of membrane energy:  

 
𝐸𝑚 =

𝐴

2
𝑎𝑖𝑝𝑠𝑖𝑠𝑝 (2.29) 

where  

 
𝑎𝑖𝑗 =

𝐸𝑡

128(1 − 𝜈2)𝐴4
𝑎𝑖𝑗

∗   (2.30) 

 𝑎11
∗ = (𝜈 + 1)(𝐓2 ⋅ 𝐓3)2 − (𝜈 − 1)(𝐓2 ⋅ 𝐓2)(𝐓3 ⋅ 𝐓3) (2.31) 

 𝑎22
∗ = (𝜈 + 1)(𝐓1 ⋅ 𝐓3)2 − (𝜈 − 1)(𝐓1 ⋅ 𝐓1)(𝐓3 ⋅ 𝐓3) (2.32) 

 𝑎33
∗ = (𝜈 + 1)(𝐓1 ⋅ 𝐓2)2 − (𝜈 − 1)(𝐓1 ⋅ 𝐓1)(𝐓2 ⋅ 𝐓2) (2.33) 

 𝑎12
∗ = (𝜈 + 1)(𝐓1 ⋅ 𝐓3)(𝐓2 ⋅ 𝐓3) − (𝜈 − 1)(𝐓1 ⋅ 𝐓2)(𝐓2 ⋅ 𝐓3) (2.34) 

 𝑎13
∗ = (𝜈 + 1)(𝐓1 ⋅ 𝐓2)(𝐓2 ⋅ 𝐓3) − (𝜈 − 1)(𝐓1 ⋅ 𝐓3)(𝐓2 ⋅ 𝐓2) (2.35) 

 𝑎23
∗ = (𝜈 + 1)(𝐓1 ⋅ 𝐓2)(𝐓1 ⋅ 𝐓3) − (𝜈 − 1)(𝐓1 ⋅ 𝐓1)(𝐓2 ⋅ 𝐓3) (2.36) 
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In equation (2.29), coefficients 𝑎𝑖𝑝 depends only on the quantities related to the undeformed 

mesh. Hence at each time step, we only evaluate edge length change 𝑠𝑖 = 𝑙𝑖
2 − 𝐿𝑖

2.  

Figure 2.3 Numbering of vertices (red numbers), edges (green numbers), and triangles (blue 

numbers) in the computation of discrete bending energy. (left) Hinge model (right) Triangle-av-

eraged and quadratic fit models 

 

2.3.2 Discrete bending energy  

2.3.2.1 Hinge model 

The first model has been used in cloth (computer graphics) and membrane (physics) simula-

tions [59-61]. It assumes that the bending strain tensor is concentrated at the hinge connecting 

two adjacent triangles (Figure 2.3a). Let 𝐍𝑖 be the outward unit normal vector of triangle 𝑖:  

 
𝐍1 =

𝐕21 × 𝐕32

‖𝐕21 × 𝐕32‖
 (2.37) 

 
𝐍2 =

𝐕42 × 𝐕34

‖𝐕42 × 𝐕34‖
 (2.38) 

and 𝐓 be the vector perpendicular to the central edge:  

 𝐓 = 𝐕32 × 𝐍1 (2.39) 

The hinge angle 𝜃̅ is defined as the angle between two unit normal vectors:  
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 𝜃̅ = acos(𝐍1 ∙ 𝐍1) (2.40) 

The bending strain tensor on the hinge is approximated as  

 
𝛋 =

𝜃 − 𝜃̅

(𝐴1 + 𝐴2)𝐿
𝐓⨂𝐓 (2.41) 

where 𝐴1 and 𝐴2 are triangular areas, and 𝐿 is the length of the hinge edge.  

Applying Equation (2.41) to Equation (2.14) and considering the area each hinge occupies, 

the bending energy of each hinge is computed as  

 
𝐸𝑏 =

6(1 − 𝜈2)𝐿2(𝜃 − 𝜃̅)2

𝐸𝑡3(𝐴1 + 𝐴2)
 (2.42) 

Using the approximation 1 − cos (𝜃 − 𝜃̅) ≈ (𝜃 − 𝜃̅)2/2, Equation (2.42) can be expressed the 

alternative form:  

 𝐸𝑏 = 𝑘[1 − cos (𝜃 − 𝜃̅)] (2.43) 

where 

 
𝑘 =

12(1 − 𝜈2)𝐿2

𝐸𝑡3(𝐴1 + 𝐴2)
 (2.44) 

In Equations (2.43) and (2.44), all quantities except 𝜃 depend only on the quantities of the unde-

formed configuration, hence at every time step we reevaluate only 𝜃. 

2.3.2.2 Triangle-averaged model 

The bending strain tensor in this model is approximated by averaging the contributions of 

three triangular hinges (edges 1-3 in Figure 2.3b). Its expression is [47,57]   

 
𝛋 =

𝜃𝑖 − 𝜃̅𝑖

2𝐴𝐿𝑖
𝐓𝑖⨂𝐓𝑖 (2.45) 

where 𝜃𝑖, 𝜃̅𝑖, 𝐓𝑖, 𝐿𝑖 are defined in the same way as in the hinge model, and 𝐴 is the area of the 

triangle in the center.  

Using the properties of the cross product ⨂, we have 
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𝛋2 =

(𝜃𝑖 − 𝜃̅𝑖)(𝜃𝑗 − 𝜃̅𝑗)

4𝐴2𝐿𝑖𝐿𝑗
(𝐓𝑖 ⋅ 𝐓𝑗)(𝐓𝑖⨂𝐓𝑗) (2.46) 

 
tr(𝛋2) =

(𝜃𝑖 − 𝜃̅𝑖)(𝜃𝑗 − 𝜃̅𝑗)

4𝐴2𝐿𝑖𝐿𝑗
(𝐓𝑖 ⋅ 𝐓𝑗)

2
 (2.47) 

 
tr𝛋 =

𝜃𝑖 − 𝜃̅𝑖

2𝐴𝐿𝑖

(𝐓𝑖 ⋅ 𝐓𝑖) =
(𝜃𝑖 − 𝜃̅𝑖)𝐿𝑖

2𝐴
 (2.48) 

 
(tr𝛋)2 =

[(𝜃𝑖 − 𝜃̅𝑖)𝐿𝑖]2

4𝐴2
 (2.49) 

Substituting Equations (2.46-2.49) into Equation (2.14) for 𝑊𝑏 and considering the relation 𝐸𝑏 =

𝑊𝑏𝐴 gives the following equation for discrete bending energy:  

 
𝐸𝑏 =

1

4
[𝛼 ((𝜃𝑖 − 𝜃̅𝑖)𝐿𝑖)

2
+ 𝛽

(𝜃𝑖 − 𝜃̅𝑖)(𝜃𝑗 − 𝜃̅𝑗)

𝐿𝑖𝐿𝑗
𝑇𝑖𝑗

2] (2.50) 

where 

 
𝛼 =

𝐸𝑡3𝜈

24(1 − 𝜈2)
 (2.51) 

 
𝛽 =

𝐸𝑡3

24(1 + 𝜈)
 (2.52) 

 𝑇𝑖𝑗 = 𝐓𝑖 ⋅ 𝐓𝑗 (2.53) 

2.3.2.3 Quadratic fit model 

This model approximates the bending strain tensor of a given triangle by fitting the coordi-

nates of the six vertices of its three neighboring triangles (shown in Figure 2.3b) with a quadratic 

function [62-64]. We begin by constructing a local orthonormal basis {𝐄𝑢, 𝐄𝑣, 𝐍} on the unde-

formed mesh:  

 
𝐄𝑢 =

𝐕21

‖𝐕21‖
 (2.54) 
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𝐍 =

𝐕21 × 𝐕32

‖𝐕21 × 𝐕32‖
 (2.55) 

 𝐄𝑣 = 𝐍 × 𝐄𝑢 (2.56) 

The local coordinates of the six vertices (U𝑖 , V𝑖 , W𝑖)(𝑖 = 1, … 6) are given by:  

 U𝑖 = 𝐕𝑖1 ⋅ 𝐄𝑢 (2.57) 

 V𝑖 = 𝐕𝑖1 ⋅ 𝐄𝑣 (2.58) 

 W𝑖 = 𝐕𝑖1 ⋅ 𝐍 (2.59) 

where W4 = W5 = W6 = 0 since the triangle in the center is lying on the 𝐄𝑢 − 𝐄𝑣 plane. The co-

ordinates of the six vertices are then fitted to the following quadratic function [62-64]:  

 𝑊𝑖 = 𝐴1 + 𝐴2𝑈𝑖 + 𝐴3𝑉𝑖 + 𝐴4𝑈𝑖
2 + 𝐴5𝑈𝑖𝑉𝑖 + 𝐴6𝑉𝑖

2 (𝑖 = 1,2, … 6) (2.60) 

Solving the above system of linear equations for the unknown coefficients 𝐴𝑖 (𝑖 = 1, … 6) we 

have 

 𝐴1 = 𝐴2 = 𝐴3 = 0 (2.61) 

 𝐴𝑖 = 𝐶𝑖𝑗𝑊𝑗 ≈ 𝐶𝑖𝑗𝐷𝑗𝜃̅𝑗 (𝑖 = 4,5,6; 𝑗 = 1,2,3) (2.62) 

where 𝐶𝑖𝑗 are coefficients depending on (U𝑖 , V𝑖), 𝐷𝑗 are the height of triangle 𝑗, and 𝜃̅𝑗 are the 

hinge angles of edge 𝑖. Similarly, the quadratic function that fits the coordinates of the six verti-

ces on the deformed mesh are: 

 𝑤𝑖 = 𝑎1 + 𝑎2𝑢𝑖 + 𝑎3𝑣𝑖 + 𝑎4𝑢𝑖
2 + 𝑎5𝑢𝑖𝑣𝑖 + 𝑎6𝑣𝑖

2 (𝑖 = 1,2, … 6) (2.63) 

with its coefficients given by  

  𝑎1 = 𝑎2 = 𝑎3 = 0 (2.64) 

 𝑎𝑖 = 𝐶𝑖𝑗𝑤𝑗 ≈ 𝐶𝑖𝑗𝐷𝑗𝜃𝑗 (𝑖 = 4,5,6; 𝑗 = 1,2,3) (2.65) 

 The discrete bending strain tensor can be approximated as:  
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𝛋 = (

𝑤𝑢𝑢 − 𝑊𝑈𝑈 𝑤𝑢𝑣 − 𝑊𝑈𝑉

𝑤𝑢𝑣 − 𝑊𝑈𝑉 𝑤𝑣𝑣 − 𝑊𝑉𝑉
) 

= (
2(𝑎4 − 𝐴4) 𝑎5 − 𝐴5

𝑎5 − 𝐴5 2(𝑎6 − 𝐴6)
) 

(2.66) 

Substituting Equation (2.66) into Equation (2.14) for 𝑊𝑏 and considering the relation 𝐸𝑏 = 𝑊𝑏𝐴 

gives the following equation for discrete bending energy:  

 𝐸𝑏 = 4𝛼𝐴[(𝑎4 − 𝐴4) + (𝑎6 − 𝐴6)]2

+ 𝛽[4(𝑎4 − 𝐴4)2 + 2(𝑎5 − 𝐴5)2 + 4(𝑎6 − 𝐴6)2] 
(2.67) 

where 𝑎4 ~ 𝑎6 are given in Equation (2.65) and 𝛼, 𝛽 are given in Equation (2.51) and (2.52).  

2.4 LAMMPS implementation of the discrete thin shell models 

2.4.1 Overview of LAMMPS 

LAMMPS [67] is an open-source molecular dynamics (MD) code that models the interac-

tions and movements of particles governed by Newton’s second law:  

 𝑚𝑖𝐫̈𝑖 = 𝐟𝑖 (2.68) 

where 𝑚𝑖 is the mass, 𝐫𝑖 is the Cartesian coordinate, and 𝐟𝑖 is the interaction force acting on the 

𝑖th particle. The force is determined by  

 
𝐟𝑖 = −

𝜕𝑈

𝜕𝐫𝑖
 (2.69) 

where 𝑈 is the potential energy. In LAMMPS, a single particle can be an atom or molecule or 

electron, a coarse-grained cluster of atoms, or a mesoscopic or macroscopic clump of material. 

There are several reasons for us to use LAMMPS. First, LAMMPS is robust and efficient 

which has been already validated by numerous benchmarks and publications. Second, LAMMPS 
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is an open-source code with clear documentation, which makes it easy to be modified or ex-

tended with new capabilities, such as user-defined potentials. Third, LAMMPS is designed for 

parallel computers, dramatically reducing the computational cost for large models.  

In the following sections, we will describe the steps that should be followed for the imple-

mentation and usage of discrete shell models in LAMMPS, as illustrated in Figure 2.4. 

Figure 2.4 Flow chart of procedures to implement and use discrete shell models in LAMMPS 

 

2.4.3 Compiling source files 

LAMMPS is open-source and its source files available for download at its official website 

[71]. As LAMMPS is written in object-oriented C++ language, users can add new potentials by 

writing new C++ classes. We added four new classes: 

angle_membrane 
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bond_bending_hinge 

angle_bending_triangle 

angle_bending_quadratic 

 

which compute the elastic energy and corresponding forces (Appendix A) of the discrete shell 

models described in the previous section. These classes are written by modifying the source files 

of the built-in LAMMPS classes angle_harmonic and bond_harmonic. To compile LAMMPS, 

copy the source files of the new classes to the src directory, load the LAMMPS standard package 

molecule 

make yes-molecule 

 

and build a parallel LAMMPS executable lmp_mpi by issuing  

make mpi 

 

in the src directory.  

2.4.4 Mesh generation 

We use finite element software ABAQUS to automatically generate unstructured 3-node ele-

ments (S3) on arbitrary shell surfaces. The ABAQUS input file (.inp), which contains nodal co-

ordinates and element connectivity, will be read by a MATLAB code in the preprocessing step. 

Here is a sample ABAQUS input file:  

... 

*Node 

1, 749.317322, 31.9929314, 0 

2, 749.136047, 35.9891472, 0 

3, 748.933411, 39.9843369, 0 

... 

*Element, type=S3 

1, 6904, 1146, 1145 

2, 7393, 1148, 1147 

3, 10050, 8914, 8977 

... 

 

In the *Node section, the first column contains node ID and the next three columns are x, y, and 

z coordinates of the node. In the *Element section, the first column contains element ID and the 

next three columns contain the IDs of the three element nodes. 
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2.4.5 Preprocessing 

 I developed a MATLAB program for each discrete shell model in the preprocessing step. 

The program takes the name of the ABAQUS input file, Young’s modulus, Poisson’s ratio, and 

shell thickness as input parameters, and generates a LAMMPS data file which contains basic in-

formation about the size of the problem to be run, the initial atomic coordinates, molecular topol-

ogy, and force-field coefficients.  Here is a sample data file for the quadratic fit discrete shell 

model:  

LAMMPS DATA FILE  

 

525 atoms  

832 angles  

 

3 atom types  

832 angle types  

 

-0.2 6.2 xlo xhi  

-0.2 0.4 ylo yhi  

-2.0 2.0 zlo zhi  

 

Masses 

 

1 1  

2 1  

3 1  

 

Angle Coeffs 

 

1 membrane i1 i2 i3 A alpha beta Th1 Th2 Th3 T11 T22 T33 T12 T13 T23 

2 membrane i1 i2 i3 A alpha beta Th1 Th2 Th3 T11 T22 T33 T12 T13 T23 

3 membrane i1 i2 i3 A alpha beta Th1 Th2 Th3 T11 T22 T33 T12 T13 T23 

... 

 

Atoms 

 

1 1 2 0.0577350269189626 0.1 0  

2 2 1 0.0866025403784439 0.15 0  

3 3 2 0.0577350269189626 0.2 0 

... 

 

Angles  

 

1 1 277 278 272  

2 2 62 68 63  

3 3 302 307 308 
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In the Angle Coeffs section, the first column contains angle type No., followed by the name of 

angle style and the coefficients computed by the preprocessing MATLAB code. The meaning of 

each coefficient is listed in Tables 2.1–2.3.  

Table 2.1 Coefficients for angle style membrane 

i1 Global nodal ID of node 1 

i2 Global nodal ID of node 2 

i3 Global nodal ID of node 3 

A Undeformed triangular area 𝐴 

L1 Undeformed edge length of edge 1 𝐿1 

L2 Undeformed edge length of edge 2 𝐿2 

L3 Undeformed edge length of edge 3 𝐿3 

a11 Coefficient 𝑎11 defined in Equation (2.30) 

a22 Coefficient 𝑎22 defined in Equation (2.30) 

a33 Coefficient 𝑎33 defined in Equation (2.30) 

a12 Coefficient 𝑎12 defined in Equation (2.30) 

a13 Coefficient 𝑎13 defined in Equation (2.30) 

a23 Coefficient 𝑎23 defined in Equation (2.30) 

 

Table 2.2 Coefficients for bond style bending/hinge 

k Coefficient 𝑘 in Equation (2.44) 

Th Undeformed hinge angle 𝜃̅ 

 

Table 2.3 Coefficients for angle style bending/triangle/averaged 

i1 Global nodal ID of node 1 

i2 Global nodal ID of node 2 
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i3 Global nodal ID of node 3 

A Undeformed triangular area 𝐴 

alpha Coefficient 𝛼 in Equation (2.51) 

beta Coefficient 𝛽 in Equation (2.52) 

Th1 Undeformed hinge angle 𝜃̅1 

Th2 Undeformed hinge angle 𝜃̅2 

Th3 Undeformed hinge angle 𝜃̅3 

T11 Coefficient 𝑇11 defined in Equation (2.53) 

T22 Coefficient 𝑇22 defined in Equation (2.53) 

T33 Coefficient 𝑇33 defined in Equation (2.53) 

T12 Coefficient 𝑇12 defined in Equation (2.53) 

T13 Coefficient 𝑇13 defined in Equation (2.53) 

T23 Coefficient 𝑇23 defined in Equation (2.53) 

 

 Table 2.4 Coefficients for angle style bending/quadratic/fit 

i1 Global nodal ID of node 1 

i2 Global nodal ID of node 2 

i3 Global nodal ID of node 3 

A Undeformed triangular area 𝐴 

alpha Coefficient 𝛼 in Equation (2.51) 

beta Coefficient 𝛽 in Equation (2.52) 

Th1 Undeformed hinge angle 𝜃̅1 

Th2 Undeformed hinge angle 𝜃̅2 

Th3 Undeformed hinge angle 𝜃̅3 

D1 Undeformed height of triangular 1 𝐷1 

D2 Undeformed height of triangular 2 𝐷2 

D3 Undeformed height of triangular 3 𝐷3 
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C44 Coefficient 𝐶44 defined in Equation (2.62) 

C55 Coefficient 𝐶55 defined in Equation (2.62) 

C66 Coefficient 𝐶66 defined in Equation (2.62) 

C45 Coefficient 𝐶45 defined in Equation (2.62) 

C46 Coefficient 𝐶46 defined in Equation (2.62) 

C56 Coefficient 𝐶56 defined in Equation (2.62) 

 

2.4.6 Running LAMMPS 

LAMMPS executes by reading commands from an input script and data from the data file.  

Here is an example input script for cantilever beam test (Figure 2.8) using the quadratic fit dis-

crete shell model: 

units metal 

dimension 3  

boundary f f f 

newton on 

processors * * 1 

 

atom_style molecular 

angle_style hybrid membrane bending/quadratic/fit 

 

read_data rect-a1000-b100-h5-square.lam 

 

comm_style brick 

atom_modify sort 1000 2.0 

comm_modify mode single cutoff 15 

neigh_modify once yes 

balance 1.1 rcb 

 

group other type 1 

group lb type 2 

group rb type 3 

 

variable nrb equal count(rb) 

variable f equal -1000/${nrb} 

 

fix 1 all nve 

fix 2 all langevin 0 0 0.01 9042970 

fix 3 lb setforce 0 0 0  

fix 4 rb addforce 0 0 ${f} 

 

compute disp rb displace/atom 
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compute zmin rb reduce min c_disp[3] 

compute zmax rb reduce max c_disp[3] 

 

timestep 1e-6 

thermo 10000 

thermo_style custom step temp ke pe etotal fmax fnorm c_zmin c_zmax 

thermo_modify lost ignore flush yes 

thermo_modify format float %20.10g 

 

dump 1 all custom 100000 dump/*.xyz id type x y z 

dump_modify 1 format float %20.10g 

 

run 20000000 

 

2.5 Validation tests  

2.5.1 Mesh dependency tests 

While it is hard to expect the solution of a discrete problem to be entirely independent of the 

choice of mesh, it is reasonable to require that these dependencies vanish for sufficiently fine 

meshes. In this section, we test the mesh dependency of the three discrete thin shell models by 

applying them to several benchmark problems on three types of triangular mesh shown in Figure 

2.5.  

Figure 2.5 Mesh types used in our tests. (a) Equilateral (b) Regular (c) Irregular 

 

In Figures 2.6 and 2.7, we compute the discrete bending energy of an initially flat thin square 

plate under two prescribed out-of-plane deformation modes (see Figures 2.6a and 2.7a for de-

tailed descriptions) with increasingly fine meshes. We can observe from the deformed shapes 

(shown in exaggerated scales in Figures 2.6a and 2.67) that, the first mode has nonzero curvature 
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in the 𝑥 direction and zero curvature in the 𝑦 direction (or zero Gaussian curvature), while the 

second mode has nonzero curvatures in both directions (or nonzero Gaussian curvature). These 

two tests aim to evaluate the discrete shell models’ performance in cases of zero or nonzero 

Gaussian curvatures.  

Figure 2.6 (a) An initially flat thin square plate under a prescribed out-of-plane deformation 

𝑢𝑧 = sin(2𝜋/500𝑥). (b-d) Convergence behaviors of discrete bending energy on a sequence of 

increasingly fine meshes compared to continuous bending energy for different discrete shell 

models and mesh types. 

 

Figures 2.6b-d plot the convergence behaviors of discrete bending energy on a sequence of 

increasingly fine meshes for the first deformation mode. We observe that the hinge and quadratic 
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fit models converge to the continuous energy on all mesh types, and the triangle-averaged model 

is only convergent on equilateral and regular meshes.  

Figures 2.7b-d plot the convergence behaviors for the second deformation mode. We observe 

that the quadratic fit model is the only model that converges to the continuous energy on all 

mesh types. The hinge model is only convergent on equilateral mesh and the triangle-averaged 

model is only convergent on equilateral and regular meshes.  

Figure 2.7 (a) An initially flat thin square plate under a prescribed out-of-plane deformation 

𝑢𝑧 = sin(2𝜋/500𝑥)cos(2𝜋/500𝑦). (b-d) Convergence of discrete bending energy on a se-

quence of increasingly fine meshes compared to continuous bending energy for different discrete 

shell models and mesh types.  
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Cantilever beam tests have been used in shell finite element method to evaluate element sen-

sitivity to various deformation patterns [65,66]. Here we use similar setups in which a rectangu-

lar piece of a thin plate fixed at one end is subjected to a distributed line load or a twisting couple 

at the other end (see Figures 2.8a and 2.9a for detailed descriptions). These two tests aim to eval-

uate the discrete shell models’ performance in the situations of bending and twisting defor-

mations.  

Figure 2.8 (a) A rectangular piece of thin plate fixed at one end is subjected to a distributed line 

load at the other end.  (b-d) Convergence behaviors of end displacement on a sequence of in-

creasingly fine meshes compared to the theoretical solution for different discrete shell models 

and mesh types.  
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Figures 2.8b-d plot the convergence behaviors of end displacement on a sequence of in-

creasingly fine meshes compared to the theoretical solution for cantilever beam bending. We ob-

serve that the quadratic fit model is the only model that converges to the theoretical solution on 

all mesh types. The hinge and triangle averaged models are only convergent on regular and irreg-

ular meshes. Note that the clamped boundary conditions in these discrete shell models need to 

constrain two layers of nodes, which effectively leads to a mesh dependent total length of the 

thin plate. This is the reason why the analytical solution of the plate deflection varies with the el-

ement number.  

Figure 2.9 (a) A rectangular piece of thin plate fixed at one end is subjected to a twisting couple 

at the other end.  (b-d) Convergence behaviors of displacements at A and B on a sequence of in-

creasingly fine meshes compared to the theoretical solution for different discrete shell models 

and mesh types. 
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Figures 2.9b-d plot the convergence behaviors for cantilever beam twisting. We observe that 

the quadratic fit model is the only model that converges to the theoretical solution on all mesh 

types. The triangle-averaged and quadratic fit models converge to the continuous energy on all 

mesh types, while the hinge model fails to converge on all mesh types. 

Numerically simulating deformations in thin elastic sheets is a challenging problem in com-

putational mechanics due to destabilizing compressive stresses that result in wrinkling [56]. De-

termining the structure of wrinkle patterns in these problems is an area of increasing interest in 

the fields of physics and engineering [70]. Here we consider the classical Lamé problem [68]: an 

annular sheet of thickness 𝑡 and radii 𝑟𝑖 < 𝑟𝑜 is subjected to radial tensile loads 𝛾𝑖 and 𝛾𝑜 at its 

inner and outer boundaries (Figure 2.10a). Intuitively, if 𝛾𝑖 is sufficiently larger than 𝛾𝑜, a region 

near the inner boundary is pulled inward, such that the sheet is subjected there to hoop compres-

sion, which is relieved through a wrinkle pattern.  

 Similar to the cantilever beam tests, we implement the three models as user-defined poten-

tials in LAMMPS and add a fictitious damping force to each node. The radial tensile loads are 

added through user-defined potentials rather than forces applied on boundary nodes since the di-

rection of forces depends on the position of the boundary node. After applying random perturba-

tions to all atoms at the beginning of simulations through Langevin thermostat to make sure the 

system is not trapped in the unwrinkled equilibrium state, the discrete system is dynamically re-

laxed until the wrinkle pattern reaches stabilization.  

Figure 2.10b compares stabilized wrinkle patterns for the parameters listed in Figure 2.10a, 

obtained using the three discrete shell models on equilateral and irregular meshes. Several mesh 

sizes have been tested such that refinement of the current mesh size (𝑎 = 1) will not change the 

number of wrinkles. We observe that all models yield mesh-dependent wrinkle patterns: (1) The 
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wrinkle extension length tends to be more uniformly distributed in all directions on equilateral 

mesh than on irregular mesh (2) The numbers of wrinkles are different on two mesh types for the 

triangle-averaged and quadratic fit models. We also notice that all the models predict similar 

wrinkle numbers compared to the theoretical model and the numerical simulations based on the 

classic shell models [56]. This indicates that the discrete shell models are applicable to the Lamé 

problem if the statistical characterization of the wrinkling patterns (e.g., the radial distribution of 

wrinkle numbers) is of the main interest.  
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Figure 2.10 (a) Classical Lamé problem: an annular sheet of thickness 𝑡 and radii 𝑟𝑖 < 𝑟𝑜 is sub-

jected to radial tensile loads 𝛾𝑖 and 𝛾𝑜 at its inner and outer boundaries. (b) Wrinkle patterns 

(marked with the number of wrinkles 𝑚) of the Lamé problem for different discrete shell models 

on equilateral and irregular meshes. 

 

2.5.2 Comparison with finite element method 

Here we test two shell buckling problems and compare the results of the discrete shell model 

with hinge bending energy and finite element simulations performed in ABAQUS. The first 

problem is poking an axially compressed cylindrical (radius 𝑅0 = 28.6 mm, height 𝐿0 = 107 mm, 

thickness 𝑡 = 0.104 mm, Young’s Modulus 𝐸 = 71000 MPa and Poisson’s ratio ν = 0.3) with a 

spherical indenter (radius 𝑟 = 2.35 mm), as illustrated in Figure 2.11A. The cylinder is initially 

compressed to a preset axial strain 𝜖A = 𝜖A
0. When the preset load is reached, the nodes at the top 

and bottom ends of the cylinder are fixed, while the horizontal indenter is advanced towards the 

cylinder at a constant speed, and the indenter force 𝐹p is simultaneously recorded. Shell stability 

is investigated by poking individual cylinders from the side with 𝜖A
0 ranging from 5 × 10−4 to 

10 × 10−4. Depending on 𝜖A
0, simulation reveals a plethora of stereotypical responses, with three 

qualitatively different regimes. For small values of 𝜖A
0, 𝐹p monotonically increases, as shown by 

the 𝜖A
0 = 5 × 10−4 curve in Figure 2.11B. In this regime, the cylinders are stable and do not 

buckle. A second regime emerges at an intermediate range of 𝜖A
0, the shells still do not buckle but 

the 𝐹p curves are more detailed and nonmonotonic, exhibiting a maximum force 𝐹p
max and then a 

local minimum force 𝐹p
min, as shown by the 𝜖A

0 = 8 × 10−4 and 𝜖A
0 = 7 × 10−4  curves in Figure 

2.11B. For larger values of 𝜖A
0, poking eventually leads to buckling. The 𝐹p curve shows a maxi-

mum. However, it will no longer show a minimum; instead, at a critical distance 𝐹p vanishes, and 
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at this point the shells become unstable and buckles, as shown by the 𝜖A
0 = 9 × 10−4 and 𝜖A

0 =

10 × 10−4 curves in Figure 2.11B. The 𝐹p curves obtained by the ABAQUS simulations using 4-

node shell finite elements are also plotted in Figure 2.11B, and they are in great agreement with 

those obtained by the MD simulations. The instabilities during poking captured by our simula-

tions have also been reported in experiments [55]. 

 

Figure 2.11 Simulations of poking a cylindrical shell under axial compression. The cylinder has 

a radius 𝑅0 = 28.6 mm, 𝐿0 = 107 mm, 𝑡 = 0.104 mm, Young’s Modulus 𝐸 = 71000 MPa and 

Poisson’s ratio ν = 0.3. The spherical indenter has a radius 𝑟 = 2.35 mm.  (A) Loading and 

boundary conditions. (B) Poking force vs. displacement curves obtained from FEM and discrete 
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shell model simulations at different axial strains. (C-D) Contour plots of the radial displacement 

fields at the local energy minima of the axial strain = 9 × 10−4 curves (black star in panel B).  

 

The second problem is the bending of a slender cylindrical shell under an axial compressive 

strain slightly above Euler’s buckling load of a beam with the same boundary conditions as the 

first problem. The comparison between our model and the shell finite element method in 

ABAQUS is presented in Figure 2.12. The lateral deflection fields of both models are in good 

agreement, with a difference of less than 1% in maximum values. 

 

Figure 2.12 Beam-bending simulations for a long cylindrical shell under compression. The cyl-

inder has a radius 𝑅0 = 28.6 mm, length 𝐿0 = 858 mm, thickness 𝑡 = 3.575 mm, Young’s Modu-

lus 𝐸 = 71000 MPa and Poisson’s ratio ν = 0.3. (A-B) Contour plots of lateral deflection fields 

obtained from FEM and discrete shell model simulations under an axial strain of 0.024. 
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2.6 Summary 

We implemented the three discrete thin shell models in molecular dynamics code LAMMPS 

as user-defined potentials and tested their mesh dependency behaviors and accuracy on several 

benchmark problems. We show that among the three models, only the quadratic fit model is con-

vergent to the theoretical solution in all tests regardless of mesh types. It is also worth noting that 

all three models are convergent on equilateral mesh in all tests. Our results suggest that for thin 

shell problems in which an equilateral mesh is possible, the hinge model is a preferable choice 

since it is not only convergent but also the easiest to implement and the most computationally ef-

ficient. Otherwise, the quadratic fit model is the only choice to ensure convergence on general 

triangular meshes. Our test results of the Lamé problem show that the wrinkle patterns are mesh-

dependent for all models. This is possibly due to the existence of multiple local energy minima 

(metastable states) in the Lamé problem. In this case, the fully relaxed wrinkle pattern will be 

highly sensitive to different meshes and initial perturbations. Our cylinder poking and beam 

buckling results show that the accuracy of the discrete shell model with hinge bending energy is 

comparable with the shell finite element method.  
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Chapter 3: Energy Landscapes of Shell Buckling 

3.1 Introduction 

Natural and engineered structures ranging from egg shells to spacecraft are built from thin 

shells that offer exceptional rigidity at minimal weight. Accurately predicting and designing the 

buckling loads of those shells is thus an important yet not fully resolved problem of structural en-

gineering.  

The main focus of shell stability analysis in the literature has been attempting to explain the 

tremendous discrepancy between theoretically predicted and experimentally measured buckling 

loads for imperfection-sensitive thin shell structures, two prototypical examples of which are cy-

lindrical shells under axial compression [72] and spherical shells under external pressure [73]. As 

shown in Figure 3.1, which plots the experimental buckling data collected in the 1960s for axi-

ally compressed cylindrical shells, all tested cylinders buckled at loads significantly lower than 

those predicted by theory, and in some cases, buckling occurred at less than 20% of the theoreti-

cal values. 

Early works [72,73] contributing to the understanding of this discrepancy generally focused 

on analyzing the buckling of thin shells with geometric imperfections in the shape of classical 

buckling modes that extend over the entire shell, i.e. sinusoidal axisymmetric imperfections for 

cylindrical and spherical shells. These works revealed that small geometric imperfections in thin 

shell structures can dramatically reduce their buckling loads. With the progress of numerical 

methods and understanding of nonlinear phenomena, the importance of localized dimple imper-

fections has been demonstrated in later works [74,80], as they represent more realistic and unfa-

vorable geometric imperfections. Subsequent theoretical [81-83] and experimental [84] results 
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revealed the extreme imperfection sensitivity of externally pressurized spherical shells: the buck-

ling pressure of imperfect shell plateaus to roughly 20% of that of a perfect shell when the im-

perfection amplitude exceeds about one shell thickness. 

One recent development in shell stability analysis is to quantify the robustness of a loaded 

shell against buckling in the presence of disturbing forces or unexpected loads with the energy 

barrier between its unbuckled and post-buckling states, i.e. the minimum energy required for a 

loaded shell to buckle. A ground-breaking analysis was carried by Horak et al. [75], who numeri-

cally computed the buckling energy barrier for axially compressed cylindrical shells, and used a 

novel mathematical technique to prove that single-dimple buckling is the most energetically fa-

vorable (having the lowest energy barrier). Influenced by this work, Hutchinson and Thompson 

[82] performed a highly accurate post-buckling analysis of spherical shells under external pres-

sure and determined their buckling energy barriers. Their results showed that the buckling mode 

localizes into a dimple immediately after the onset of buckling. It has also been shown that these 

theoretical energy barriers can be measured experimentally by probing a loaded shell [83,85-87].  

For more realistic engineering shell structures, a general computational framework is needed 

to characterize their imperfection sensitivity and robustness against buckling. Here, we demon-

strate how this can be done by comprehensively surveying the energy landscapes for shell buck-

ling. In section 3.2, we briefly describe our numerical methods: a simple discrete shell model 

combined with efficient energy minimization and pathfinding algorithms, as well as their 

LAMMPS and Fortran implementations. In sections 3.3 and 3.4, we apply our methods to two 

prototypical examples: spherical cap and cylindrical cap buckling. Section 3.5 is a summary of 

this chapter. 
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Figure 3.1 Buckling of cylindrical shells under axial compression. Experimental buckling data 

for thin cylindrical shells under axial compression collected in the 1960s and plotted as the aver-

age compressive stress at buckling 𝜎̅exp divided by the classical buckling stress 𝜎c for the perfect 

shell versus the radius to thickness ratio. The NASA knockdown factor used in design codes for 

assigning the buckling load assuming ‘worse case’ imperfections is shown. This figure is from 

Reference [88].  

 

3.2 Numerical methods 

3.2.1 Energy discretization 

Here, the discrete shell model with hinge bending energy discussed in Chapter 2 is used to 

discretize the elastic energy of thin shells. As shown in Figure 2.6, this model is not only the 

most computationally efficient but also convergent (in terms of energy) on equilateral triangular 

mesh with which we discretize the cylindrical shells here. Here we briefly summarize the dis-

crete energy formulation on a triangular mesh.   

The discrete membrane energy on the triangle shown in Figure 3.1 (left) is  
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𝐸𝑚 =

𝐴

2
𝑎𝑖𝑝𝑠𝑖𝑠𝑝 (3.1) 

where 𝑠𝑖 = 𝑙𝑖
2 − 𝐿𝑖

2 are the change in square length of edge 𝑖,  𝑎𝑖𝑝 are coefficients that depend o 

nly on the undeformed mesh and their values are given in Equations (2.30) – (2.36), and 𝐴 is the 

undeformed triangular area.  

The discrete bending energy of on each hinge shown in Figure 3.1 (right) is  

 𝐸𝑏 = 𝑘[1 − cos (𝜃 − 𝜃̅)] (3.2) 

where 𝜃 and 𝜃̅ are deformed and undeformed hinge angles and 𝑘 is a coefficient that depends 

only on the undeformed mesh and its value is given in Equation (2.44).  

The discrete elastic energy of the entire shell is then computed by summing up the discrete 

membrane energy (3.1) on all triangles and the discrete bending energy (3.2) on all hinges.  

 

Figure 3.2 Numbering of vertices, edges, and triangles in the computation of discrete membrane 

(left) and bending (right) energy 

 

3.2.2 Energy minimization algorithms 

Finding mechanically stable equilibrium configurations of discrete systems is one of the 

most common tasks in not only solid mechanics, but also materials science, solid-state physics, 

chemistry, and biology. For a discrete system consisting of 𝑁 vertices and its configuration rep-
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resented by a 3𝑁-dimensional position vector 𝐱 ∈ ℝ3𝑁, this corresponds to finding the local min-

ima of the potential energy function 𝐸(𝐱). To solve this task a variety of well-established mini-

mization methods, like conjugate gradient (CG), Newton Raphson, quasi-Newton, and dynamic 

relaxation (DR) methods are available [91-95]. This section briefly describes two widely used 

variants of the conjugate gradient and quasi-Newton methods, both of which will be used in our 

computational framework.  

3.2.2.1 Polak-Ribière conjugate gradient algorithm 

The conjugate gradient (CG) method was introduced by Fletcher and Reeves in the 1960s 

[99]. It is one of the earliest known techniques for solving large-scale nonlinear optimization 

problems. Over the years, many variants of this original scheme have been proposed. The variant 

considered here is the Polak-Ribière version proposed by Polak [100].  

The CG algorithm is an iterative method and iteration numbers are shown as subscripts. For 

example, the sequence of points 𝐱1, 𝐱2, 𝐱3, … is calculated by the successive iterations and it 

should converge to the point in the space of the variables at which 𝐸(𝐱) is least. Let 𝑘 denote the 

number of the current iteration starting with 𝑘 = 0 and 𝐠𝑘 = 𝛁𝐸(𝐱𝑘) be the energy gradient in 

the 𝑛th iteration. If 𝑘 = 0, let 𝐝𝑘 be the steepest descent direction  

 𝐝𝑘 = −𝐠𝑘 (3.3) 

Otherwise, for 𝑘 ≥ 1, we apply the formula 

 𝐝𝑘 = −𝐠𝑘 + 𝛽𝑘𝐝𝑘−1 (3.4) 

where 𝛽𝑘 has the value 

 𝛽𝑘 = 〈𝐠𝑘, 𝐠𝑘 − 𝐠𝑘−1〉/〈𝐠𝑘−1, 𝐠𝑘−1〉 (3.5) 

with 〈 〉 being the inner product of two vectors. We obtain 𝐱𝑘+1 by searching for the minimum 

value of 𝐸(𝐱) from 𝐱𝑘 along the direction 𝐝𝑘. Thus 𝐱𝑘+1 is the vector  
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 𝐱𝑘+1 = 𝐱𝑘 + 𝜆𝑘𝒅𝑘 (3.6) 

where 𝜆𝑘 is the value of 𝜆 that satisfies the Wolfe conditions: 

 𝐸(𝐱𝑘 + 𝛼𝑘𝐩𝑘) ≤ 𝐸(𝐱𝑘) + 𝑐1𝛼𝑘𝛁𝐸𝑘
𝑇𝐩𝑘 (3.7) 

 𝛁𝐸(𝐱𝑘 + 𝛼𝑘𝐩𝑘)𝑇𝐩𝑘 ≥ 𝑐2𝛁𝐸𝑘
𝑇𝐩𝑘 (3.8) 

This completes the iteration, and another one is begun unless the energy gradient is sufficiently 

small:  

 ‖𝛁𝐸(𝐱𝑘)‖ ≤ 𝜖 (3.9) 

where 𝜖 is a small positive number.  

The complete algorithm is summarized as follows:  

Box 3.1 Polak-Ribière conjugate gradient algorithm 

Input:  

Potential energy function 𝐸(𝐱) 

Initial configuration 𝐱𝟎 ∈ ℝ3𝑁 

Wolfe conditions parameters 0 < 𝑐1 < 𝑐2 ≪ 1 

Convergence tolerance 0 < 𝜖 ≪ 1 

Output:  

Converged configuration 𝐱min 

Steps:  

1. Set 𝑘 = 0 and − 𝐝0 = 𝐠0 = 𝛁𝐸(𝐱0).  

2. Compute 𝜆𝑘 ≥ 0 that satisfies the Wolfe conditions: 

𝐸(𝐱𝑘 + 𝛼𝑘𝐩𝑘) ≤ 𝐸(𝐱𝑘) + 𝑐1𝛼𝑘𝛁𝐸𝑘
𝑇𝐩𝑘 

𝛁𝐸(𝐱𝑘 + 𝛼𝑘𝐩𝑘)𝑇𝐩𝑘 ≥ 𝑐2𝛁𝐸𝑘
𝑇𝐩𝑘 



40 

 

3. Update 𝐱𝑘   

𝐱𝑘+1 = 𝐱𝑘 + 𝜆𝑘𝒅𝑘 

4. If ‖𝛁𝐸(𝐱𝑘)‖ ≤ 𝜖, stop. Else, set 

𝐠𝑘+1 = 𝛁𝐸(𝐱𝑘+1) 

𝛽𝑘 = 〈𝐠𝑘, 𝐠𝑘 − 𝐠𝑘−1〉/〈𝐠𝑘−1, 𝐠𝑘−1〉 

𝐝𝑘+1 = −𝐠𝑘+1 + 𝛽𝑘𝐝𝑘 

𝑘 = 𝑘 + 1 

and go to Step 3.  

 

3.2.2.2 L-BFGS algorithm 

In Quasi-Newton methods, a model of the potential energy function that is good enough to 

produce superlinear convergence is constructed using the Hessian matrix approximated by meas-

uring the changes in gradients. There exist a variety of quasi-Newton algorithms for solving opti-

mization problems. The most popular one is the BFGS algorithm, named for its discoverers 

Broyden [101], Fletcher [102], Goldfarb [103], and Shanno [104]. Also in common use is the L-

BFGS algorithm [105], which is a limited-memory version of BFGS that is particularly suited to 

problems with very large numbers of variables. Before describing the L-BFGS algorithm, I will 

first introduce its parent, the BFGS algorithm.  

The algorithm forms the following quadratic model of the energy function at the current iter-

ate 𝐱𝑘:  

 
𝑚𝑘(𝐩) = 𝐸𝑘 + 𝛁𝐸𝑘

𝑇𝐩 +
1

2
𝐩𝑇𝐁𝑘𝐩 (3.10) 

Here 𝐁𝑘 is the 3𝑁 × 3𝑁 symmetric positive definite matrix that will be revised or updated at 

every iteration. The minimizer 𝐩𝑘 of this convex quadratic model can be written explicitly as 
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 𝐩𝑘 = −𝐇𝑘𝛁𝐸𝑘 (3.11) 

where  𝐇𝑘 = 𝐁𝑘
−1. Using 𝐩𝑘 as the search direction, and the new iterate is 

 𝐱𝑘+1 = 𝐱𝑘 + 𝛼𝑘𝐩𝑘 (3.12) 

where the step length 𝛼𝑘 is chosen to satisfy the sufficient decrease and curvature conditions 

(Wolfe conditions):  

 𝐸(𝐱𝑘 + 𝛼𝑘𝐩𝑘) ≤ 𝐸(𝐱𝑘) + 𝑐1𝛼𝑘𝛁𝐸𝑘
𝑇𝐩𝑘 (3.13) 

 𝛁𝐸(𝐱𝑘 + 𝛼𝑘𝐩𝑘)𝑇𝐩𝑘 ≥ 𝑐2𝛁𝐸𝑘
𝑇𝐩𝑘 (3.14) 

with 0 < 𝑐1 < 𝑐2 < 1.  

Suppose that we have generated a new iterate 𝐱𝑘+1, the new quadratic model has the form 

 
𝑚𝑘+1(𝐩) = 𝐸𝑘+1 + 𝛁𝐸𝑘+1

𝑇 𝐩 +
1

2
𝐩𝑇𝐁𝑘+1𝐩 (3.15) 

Instead of computing 𝐁𝑘+1 afresh at every iteration, we wish to update it to account for the cur-

vature measured during the most recent step. Therefore, we require that the gradient of 𝑚𝑘+1 

match the gradient of the energy function 𝐸 at the iterate 𝐱𝑘:  

 𝛁𝑚𝑘+1(−𝛼𝑘𝐩𝑘) = 𝛁𝐸𝑘+1 − 𝛼𝑘𝐁𝑘+1𝐩𝑘 = 𝛁𝐸𝑘 (3.16) 

Rearranging (3.16) and using 𝐇𝑘+1 = 𝐁𝑘+1
−1  yields 

 𝛼𝑘𝐩𝑘 = 𝐇𝑘+1(𝛁𝐸𝑘+1 − 𝛁𝐸𝑘) (3.17) 

To simplify the notation it is useful to define the vectors 

 𝐬𝑘 = 𝐱𝑘+1 − 𝐱𝑘 = 𝛼𝑘𝐩𝑘 (3.18) 

 𝐲𝑘 = 𝛁𝐸𝑘+1 − 𝛁𝐸𝑘 (3.19) 

So that (3.17) becomes 

 𝐬𝑘 = 𝐇𝑘+1𝐲𝑘 (3.20) 

Equation (3.21) admits an infinite number of solutions of 𝐇𝑘+1, since the degrees of free-

dom in a symmetric positive definite matrix exceed the 𝑛 conditions imposed by Equation (3.21). 
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To determine 𝐇𝑘+1 uniquely, we impose the additional condition that among all symmetric ma-

trices satisfying Equation (3.21), 𝐇𝑘+1 is closest to the current matrix 𝐇𝑘. In other words, we 

solve the problem 

 min
𝐇

‖𝐇 − 𝐇𝑘‖ (3.21) 

subject to  

 𝐇 = 𝐇T (3.22) 

 𝐇𝐲𝑘 = 𝐬𝑘 (3.23) 

The unique solution 𝐇𝑘+1 to (3.24) is given by 

 𝐇𝑘+1 = 𝐕𝑘
𝑇𝐇𝑘𝐕𝑘 + 𝜌𝑘𝐬𝑘𝐬𝑘

𝑇 (3.24) 

where  

 
𝜌𝑘 =

1

𝐲𝑘
𝑇𝐬𝑘

 (3.25) 

 𝐕𝑘 = 𝐈 − 𝜌𝑘𝐲𝑘𝐬𝑘
𝑇 (3.26) 

Equations (3.11) – (3.12) and (3.24) – (3.26) comprise the BFGS algorithm.  

Since the inverse Hessian approximation 𝐇𝑘 will generally be dense, the cost of storing and 

manipulating it is prohibitive when the number of variables is large. To circumvent this problem, 

the following recursive formula is used to compute 𝐇𝑘 in the L-BFGS algorithm:  

 𝐇𝑘 = (𝐕𝑘−1
𝑇 ⋯ 𝐕𝑘−𝑚

𝑇 )𝐇𝑘
0(𝐕𝑘−𝑚 ⋯ 𝐕𝑘−1) 

+𝜌𝑘−𝑚(𝐕𝑘−1
𝑇 ⋯ 𝐕𝑘−𝑚+1

𝑇 )𝐬𝑘−𝑚𝐬𝑘−𝑚
𝑇 (𝐕𝑘−𝑚+1 ⋯ 𝐕𝑘−1) 

+𝜌𝑘−𝑚+1(𝐕𝑘−1
𝑇 ⋯ 𝐕𝑘−𝑚+2

𝑇 )𝐬𝑘−𝑚+1𝐬𝑘−𝑚+1
𝑇 (𝐕𝑘−𝑚+2 ⋯ 𝐕𝑘−1) 

+ ⋯ 

+𝜌𝑘−1𝐬𝑘−1𝐬𝑘−1
𝑇  

(3.27) 
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which is obtained by repeated application of the formula (3.24). From this expression, we can de-

rive a recursive procedure to compute the product 𝐇𝑘𝛁𝐸𝑘 efficiently.  

The L-BFGS algorithm can be stated formally as follows.  

Box 3.2 L-BFGS algorithm 

Input:  

Potential energy function 𝐸(𝐱) 

Initial configuration 𝐱𝟎 ∈ ℝ3𝑁 

Initial Hessian matrix 𝐇0  

Wolfe conditions parameters 0 < 𝑐1 < 𝑐2 ≪ 1 

Convergence tolerance 0 < 𝜖 ≪ 1 

Output:  

Converged configuration 𝐱min 

Steps: 

1. Set 𝑘 = 0.  

2. Compute 𝐩𝑘 

𝐩𝑘 = −𝐇𝑘𝛁𝐸𝑘 

3. Update 𝐱𝑘 

𝐱𝑘+1 = 𝐱𝑘 + 𝛼𝑘𝐩𝑘 

where 𝛼𝑘 satisfies the Wolfe conditions: 

𝐸(𝐱𝑘 + 𝛼𝑘𝐩𝑘) ≤ 𝐸(𝐱𝑘) + 𝑐1𝛼𝑘𝛁𝐸𝑘
𝑇𝐩𝑘 

𝛁𝐸(𝐱𝑘 + 𝛼𝑘𝐩𝑘)𝑇𝐩𝑘 ≥ 𝑐2𝛁𝐸𝑘
𝑇𝐩𝑘 

4. If ‖𝛁𝐸(𝐱𝑘)‖ ≤ 𝜖, stop. Else, go to Step 5.  
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5. Let 𝑚̂ = min {𝑘, 𝑚 − 1}. Update 𝐇𝑘 𝑚̂ + 1 times using the pairs {𝐲𝑗 , 𝐬𝑗}
𝑗=𝑘− 𝑚̂

𝑘
:  

𝐇𝑘 = (𝐕𝑘−1
𝑇 ⋯ 𝐕𝑘−𝑚

𝑇 )𝐇𝑘
0(𝐕𝑘−𝑚 ⋯ 𝐕𝑘−1) 

+𝜌𝑘−𝑚(𝐕𝑘−1
𝑇 ⋯ 𝐕𝑘−𝑚+1

𝑇 )𝐬𝑘−𝑚𝐬𝑘−𝑚
𝑇 (𝐕𝑘−𝑚+1 ⋯ 𝐕𝑘−1) 

+𝜌𝑘−𝑚+1(𝐕𝑘−1
𝑇 ⋯ 𝐕𝑘−𝑚+2

𝑇 )𝐬𝑘−𝑚+1𝐬𝑘−𝑚+1
𝑇 (𝐕𝑘−𝑚+2 ⋯ 𝐕𝑘−1) 

+ ⋯ 

+𝜌𝑘−1𝐬𝑘−1𝐬𝑘−1
𝑇  

where  

𝐬𝑘 = 𝛼𝑘𝐩𝑘 

𝐲𝑘 = 𝛁𝐸𝑘+1 − 𝛁𝐸𝑘 

𝜌𝑘 =
1

𝐲𝑘
𝑇𝐬𝑘

 

𝐕𝑘 = 𝐈 − 𝜌𝑘𝐲𝑘𝐬𝑘
𝑇 

6. Set 𝑘 = 𝑘 + 1 and go to Step 2.  

 

3.2.3 Pathfinding algorithms 

Another important problem in characterizing complex systems is to find the transition path 

between any two stable states. Such path is known as the minimum energy path (MEP), which is 

defined as the path in configuration space along which energy gradient is everywhere parallel to 

the path tangent vector. The MEP allows us to identify the transition state (the energy maxima on 

the MEP) and the energy barrier required to overcome (the energy difference between the transi-

tion state and the stable state) in a transition. An illustrative example of the MEP, stable state, 

and transition state in the energy landscape of a simple system with two degrees of freedom is 
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shown in Figure 3.5D. This section describes two widely used computational methods for find-

ing MEPs, the nudged elastic band (NEB) method [106-108] and the string method [109-111]. 

3.2.3.1 Nudged elastic band method 

Consider again a discrete system consisting of 𝑁 vertices and its state represented by a 3𝑁-

dimensional position vector 𝐱 ∈ ℝ3𝑁. The minimum energy path (MEP) 𝐱(λ) (𝜆init ≤ 𝜆 ≤ 𝜆fin) 

connects the two energy minima (stable states) 𝐱init =  𝐱(𝜆init) and 𝐱fin =  𝐱(𝜆fin), and passes 

through at least one transition state 𝐱trans =  𝐱(𝜆trans) (𝜆initial ≤ 𝜆trans ≤ 𝜆final). Let an elastic 

band be a sequence of 𝑚 + 1 images, {𝐱0, 𝐱1, … , 𝐱𝑚}, where the two ends of the band corre-

sponding to the initial (𝐱0 = 𝐱init) and final (𝐱𝑚 = 𝐱fin) states are fixed and the 𝑚 − 1 interme-

diate images are adjusted by the NEB algorithm. The band is a discrete approximation to the 

MEP 𝐱(λ).  

The NEB method [106-108] starts with an initial band connecting the initial and final states. 

Typically, a linear initial path is enough. The states along the band are then relaxed to the MEP 

through a force projection scheme in which the total force on image 𝐱𝑖 contains two independent 

components, 

 𝐅𝑖 = 𝐅⊥
𝑖 + 𝐅∥

𝑖 (3.28) 

where 𝐅⊥
𝑖  is the component of the force due to the potential perpendicular to the band,  

 𝐅⊥
𝑖 = −𝛁𝐸(𝐱𝑖) + [𝛁𝐸(𝐱𝑖) ⋅ 𝛕̂𝑖]𝛕̂𝑖 (3.29) 

and 𝐅∥
𝑖 is the spring force parallel to the band,  

 𝐅∥
𝑖 = 𝑘(|𝐱𝑖+1 − 𝐱𝑖| − |𝐱𝑖 − 𝐱𝑖−1|)𝛕̂𝑖 (3.30) 

In the above two equations, 𝑘 is the spring constant, and 𝛕̂𝑖 is the unit tangent vector estimated 

by averaging the adjacent line segments on the band:   
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𝛕𝑖 =

𝐱𝑖+1 − 𝐱𝑖

|𝐱𝑖+1 − 𝐱𝑖|
+

𝐱𝑖 − 𝐱𝑖−1

|𝐱𝑖 − 𝐱𝑖−1|
 (3.31) 

 
𝛕̂𝑖 =

𝛕𝑖

|𝛕𝑖|
 (3.32) 

The spring force 𝐅∥
𝑖 thus drives the images equidistant from each other along the path, whereas 

the perpendicular potential force 𝐅⊥
𝑖  drives each image toward an energy minimum in the direc-

tion perpendicular to the path. Minimization algorithms, such as those described in the previous 

section, are then used to move the band toward the MEP according to these forces, as it has been 

shown that a band with zero forces is a discretized approximation to a MEP [106,108].  

While the above force projection scheme gives a discrete representation of the MEP, the 

energy of the transition state needs to be obtained by interpolation and the interpolation can be 

inaccurate. To overcome this problem, the force on the image 𝐱𝑖max with the highest energy is 

replaced by  

 𝐅𝑖max = −𝛁𝐸(𝐱𝑖max) + 2[𝛁𝐸(𝐱𝑖max) ⋅ 𝛕̂𝑖max]𝛕̂𝑖max (3.33) 

This is the full force due to the potential with the component along the elastic band inverted. This 

force moves image 𝐱𝑖max up the potential energy surface along the elastic band and down the po-

tential surface perpendicular to the band. As a result, image 𝐱𝑖max eventually converges to the 

transition state.  

The NEB method is summarized in box 3.3.  

 

 

Box 3.3 Nudged elastic band method 

Input: 
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Potential energy function 𝐸(𝐱) 

Initial and final stable states 𝐱init, 𝐱fin 

Spring constant 𝑘 

Convergence tolerance 𝜖 

Output: 

Fully relaxed elastic band {𝐱0, 𝐱1, … , 𝐱𝑚} 

Steps: 

1. Set 𝑘 = 0. Initialize the elastic band {𝐱0
0, 𝐱0

1, … , 𝐱0
𝑚} by linearly interpolating the ini-

tial and final states.  

𝐱0
𝑖 =

𝑖

𝑚
𝐱fin + (1 −

𝑖

𝑚
) 𝐱init   (𝑖 = 0,1, … 𝑚) 

2. Compute the force 𝐅𝑘
𝑖  acting on image 𝐱𝑘

𝑖  (𝑖 = 0,1, … 𝑚) 

𝐅𝑘
𝑖 = {

0 𝑖 = 0 or 𝑚
−𝛁𝐸(𝐱𝑘

𝑖 ) + 2[𝛁𝐸(𝐱𝑘
𝑖 ) ⋅ 𝛕̂𝑘

𝑖 ]𝛕̂𝑘
𝑖 𝑖 = 𝑖max

−𝛁𝐸(𝐱𝑘
𝑖 ) + [𝛁𝐸(𝐱𝑘

𝑖 ) ⋅ 𝛕̂𝑘
𝑖 ]𝛕̂𝑘

𝑖 + 𝑘(|𝐱𝑘
𝑖+1 − 𝐱𝑘

𝑖 | − |𝐱𝑘
𝑖 − 𝐱𝑘

𝑖−1|)𝛕̂𝑘
𝑖 otherwise

 

where 𝑖max is the subscript of the highest energy image and  

𝛕̂𝑘
𝑖 =

𝛕𝑘
𝑖

|𝛕𝑘
𝑖 |

 

𝛕𝑘
𝑖 =

𝐱𝑘
𝑖+1 − 𝐱𝑘

𝑖

|𝐱𝑘
𝑖+1 − 𝐱𝑘

𝑖 |
+

𝐱𝑘
𝑖 − 𝐱𝑘

𝑖−1

|𝐱𝑘
𝑖 − 𝐱𝑘

𝑖−1|
 

3. Update the elastic band using minimization algorithms (e.g. the algorithms in Box 3.1 

or Box 3.2) 

𝐱𝑘+1
𝑖 = 𝐱𝑘

𝑖 + 𝜆𝑘
𝑖 𝐝𝑘

𝑖  (𝑖 = 1, … 𝑚)  (P-R CG) 

𝐱𝑘+1
𝑖 = 𝐱𝑘

𝑖 + 𝛼𝑘
𝑖 𝐩𝑘

𝑖   (𝑖 = 1, … 𝑚)  (L-BFGS) 
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4. If max
𝑖

‖𝐱𝑘+1
𝑖 − 𝐱𝑘

𝑖 ‖ < 𝜖, stop. Else, set 𝑘 = 𝑘 + 1 and go to step 2.  

 

3.2.3.2 String method 

The string method [109-111] is very similar to the NEB in that the MEP is approximated 

by a chain of images. The same potential force projection in the NEB (Equation 3.29) is used to 

move the images down the potential energy surface perpendicular to the MEP. The one differ-

ence between the string and NEB methods is how the images are kept equally spaced along the 

MEP or by some other specified distribution. In the NEB method, spring forces are introduced 

between images to ensure equal spacing along the elastic band. In the string method, no spring 

forces are used. Instead, a cubic spline is used to interpolate the images and the images are redis-

tributed along the spline (with equal spacing or concentrated at the image with the highest en-

ergy) after every several iterations. After the convergence of the string, the climbing image force 

projection scheme in Equation (3.33) is used to find the transition state precisely. 

Box 3.4 summarizes the algorithms of the string method. Figure 3.3 is an illustrative exam-

ple of the string method for the energy landscape of a two-dimensional system. 

 

Box 3.4 String method 

Input: 

Potential energy function 𝐸(𝐱) 

Initial and final stable states 𝐱init, 𝐱fin 

Convergence tolerance 𝜖1, 𝜖2 

Maximum number of iterations 𝑗max 

Output: 
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Fully relaxed string {𝐱0, 𝐱1, … , 𝐱𝑚} 

Steps: 

1. Set 𝑘 = 0. Initialize the string {𝐱0
0, 𝐱0

1, … , 𝐱0
𝑚} by linearly interpolating the initial and 

final states.  

𝐱0
𝑖 =

𝑖

𝑚
𝐱fin + (1 −

𝑖

𝑚
) 𝐱init   (𝑖 = 0,1, … 𝑚) 

2. Set 𝑗 = 0.  

3. Compute the force 𝐅𝑘
𝑖  acting on image 𝐱𝑘

𝑖  (𝑖 = 0,1, … 𝑚) 

𝐅𝑘
𝑖 = {

0 𝑖 = 0 or 𝑚
−𝛁𝐸(𝐱𝑘

𝑖 ) + [𝛁𝐸(𝐱𝑘
𝑖 ) ⋅ 𝛕̂𝑘

𝑖 ]𝛕̂𝑘
𝑖 otherwise  

where  

𝛕̂𝑘
𝑖 =

𝛕𝑘
𝑖

|𝛕𝑘
𝑖 |

 

𝛕𝑘
𝑖 =

𝐱𝑘
𝑖+1 − 𝐱𝑘

𝑖

|𝐱𝑘
𝑖+1 − 𝐱𝑘

𝑖 |
+

𝐱𝑘
𝑖 − 𝐱𝑘

𝑖−1

|𝐱𝑘
𝑖 − 𝐱𝑘

𝑖−1|
 

4. Update the string using minimization algorithms (e.g. the algorithms in Box 3.1 or 

Box 3.2) 

𝐱𝑘+1
𝑖 = 𝐱𝑘

𝑖 + 𝜆𝑘
𝑖 𝐝𝑘

𝑖  (𝑖 = 1, … 𝑚)  (P-R CG) 

𝐱𝑘+1
𝑖 = 𝐱𝑘

𝑖 + 𝛼𝑘
𝑖 𝐩𝑘

𝑖   (𝑖 = 1, … 𝑚)  (L-BFGS) 

5. If max
𝑖

‖𝐱𝑘+1
𝑖 − 𝐱𝑘

𝑖 ‖ < 𝜖1, go to Step 7. Else, set 𝑘 = 𝑘 + 1, 𝑗 = 𝑗 + 1, and go to step 

6. 

6. If 𝑗 > 𝑗max, redistribute the images using cubic spline interpolation and go to Step 2. 

Else, go to 3.  

7. Compute the force 𝐅𝑘
𝑖max acting on the highest energy image 𝐱𝑘

𝑖max  
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𝐅𝑘
𝑖max = −𝛁𝐸(𝐱𝑘

𝑖max) + 2[𝛁𝐸(𝐱𝑘
𝑖max) ⋅ 𝛕̂𝑘

𝑖max]𝛕̂𝑘
𝑖max 

8. Update the string using minimization algorithms (e.g. the algorithms in Box 3.1 or 

Box 3.2) 

𝐱𝑘+1
𝑖max = 𝐱𝑘

𝑖max + 𝜆𝑘
𝑖max𝐝𝑘

𝑖max    (P-R CG) 

𝐱𝑘+1
𝑖max = 𝐱𝑘

𝑖max + 𝛼𝑘
𝑖max𝐩𝑘

𝑖max  (L-BFGS) 

9. If |𝐸(𝐱𝑘+1
𝑖max)/E(𝐱𝑘

𝑖max) − 1| < 𝜖2, stop. Else, set 𝑘 = 𝑘 + 1 and go to Step 7.   

 

 

Figure 3.3 Illustrative example of the string method for the energy landscape of a two-dimen-

sional system. (A) Step 1: An initial string of images is formed which linearly interpolates the 

coordinates of the two local minima. (B) Step 2: Each image in the string is partially relaxed ac-

cording to the gradient of energy. (C) Step 3: The images are redistributed along the new string 
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so that the image density is concentrated near the highest energy point along the string. (D) Steps 

4 & 5: After the convergence of the iterations, the image with the highest energy is evolved to-

wards the transition state (the red circle). 

 

3.2.4 Implementations in LAMMPS and FORTRAN 

I implemented two versions of the discrete thin shell model, one as a user-defined C++ class 

in LAMMPS and the other as a FORTRAN module. The former version, together with 

LAMMPS’s Polak-Ribière conjugate gradient algorithm and nudged elastic band method, is ap-

plied to the spherical cap buckling problem in section 3.5. The latter version is combined with a 

FORTRAN implementation of the L-BFGS algorithm and string method [112] by Prof. Halim 

Kusumaatmaja’s group at Durham University to survey the energy landscape of cylindrical shell 

buckling in section 3.6.  

The implementation of the discrete thin shell model in LAMMPS is discussed in section 2.4. 

The Polak-Ribière conjugate gradient minimization algorithm is built in the standard LAMMPS 

package, and can be invoked through the following commands in a LAMMPS input script:  

min_style cg 

minimize etol ftol maxiter maxeval 

where etol, ftol, maxiter, maxeval are parameters corresponding to stopping tolerance for energy, 

stopping tolerance for force, maximum iterations of the minimizer, and the maximum number of 

energy/force evaluations. The nudged elastic band method can be invoked through the command 

neb etol ftol N1 N2 Nevery file-style arg keyword 

where etol, ftol, N1, N2, Nevery are parameters corresponding to stopping tolerance for energy, 

stopping tolerance for force, the maximum number of iterations to run initial NEB, the maximum 
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number of iterations to run barrier-climbing NEB, and number of iterations between printing rep-

lica energies and reaction coordinates.  

The FORTRAN implementation of the discrete thin shell model is provided in Appendix B. It 

contains subroutines to compute energy, force vector, and hessian matrix (using hyper-dual num-

ber method).  

3.3 Spherical cap shell buckling  

3.3.1 Model system 

One of the simplest examples of shell buckling with multiple stable states is exhibited by a 

spherical cap shell and can be demonstrated by cutting a section of a tennis ball, shown in Figure 

3.4. If the section is sufficiently deep, it can be turned inside out and will remain in the inverted 

state when the loading is removed.  

The computational model of this problem is illustrated in Figure 3.5. The undeformed shell 

(represented by the dark blue arc) is cut from a sphere of radius 𝑅, Young’s modulus 𝐸, Pois-

son’s ratio 𝜈, and thickness 𝑡. The angle between the apex and the edge of the shell is denoted as 

𝛼, represented by the dark blue arc. Its edge is free to rotate but restricted to move within the 𝑧 =

0 plane (𝑢𝑧 = 0), and its apex is fixed in the x-y direction (𝑢𝑥 = 𝑢𝑦 = 0). For a spherical cap 

with large enough 𝑅/𝑡, when probed with an indenter moving down along the 𝑧 axis, it will snap 

to an inverted stable equilibrium state (represented by the light blue arc), once the indenter dis-

placement reaches a critical value [113].   
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Figure 3.4 The bistability of a spherical cap. Adapted from Reference [113] (a) A section of a 

tennis ball in its natural state (before being inverted). (b) The same section of a tennis ball as in 

(a) but now inverted.  

 

Figure 3.5 Computational model for the bistable buckling of a spherical cap shell. 

 

3.3.2 Dimensionless parameters 

Here we derive the key dimensionless parameters of this problem, by considering various 

energy scales. The bending energy density induced by inversion is  

 𝜖𝑏 ~ 𝐵 (
1

𝑅
)

2

 (3.34) 
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where 𝐵 = 𝐸𝑡3/[12(1 − 𝜈2)] is the bending stiffness of the shell. The strain due to inversion 

estimated by  

 𝜖 ~ 𝛿2/𝑙2 (3.35) 

with  

 𝛿 = 𝑅(1 − cos𝛼) ~ 𝛼2𝑅 (3.36) 

being the vertical deflection and  

 𝑙 ~ √𝛿𝑅 (3.37) 

being the characteristic horizontal length associated with mirror buckling, leading to an estimate 

of the stretching energy density 

 𝜖𝑠 ~ 𝐸ℎ𝜖2 ~ 𝐸ℎ𝛼4 (3.38) 

The relative importance of stretching to bending energy densities is, therefore,  

 
𝜖𝑠

𝜖𝑏
 ~ 

𝐸ℎ𝛼4

𝐵/𝑅2
= 12(1 − 𝜈2)

𝑅2

ℎ2
𝛼4 (3.39) 

The behavior of shells is more conventionally studied in terms of the fourth root of this parame-

ter [114,115], namely,  

 𝜆𝑑 = [12(1 − 𝜈2)]1/4√
𝑅

ℎ
𝛼 (3.40) 

Our goal of this section is to study the behavior of spherical cap shell in terms of two dimension-

less parameters 𝜆𝑑 and 𝛼 using the numerical simulations.  

3.3.3 Simulation setup 

To understand the geometric conditions under which a spherical cap shell is bistable, and the 

buckling transition between its stable equilibrium states, we use the LAMMPS implementation 

of the discrete thin shell model described in section 2.4 to simulate indenting spherical cap shells 
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of different material properties and geometries (with the parameters listed in Table 3.1). The sim-

ulations are carried out in three steps. In the first step, we use a spherical indenter (via the “fix 

indent” command) to apply a prescribed indentation depth twice the initial height of the spherical 

cap. The magnitude of the force exerted by the indenter on each node of the discretized shell is 

 𝐹(𝑟) = −𝐾(𝑟 − 𝑟0)2 (3.41) 

where 𝐾 is the specified force constant, 𝑟 is the distance from the node to the center of the 

indenter, and 𝑟0 is the radius of the indenter. In our simulations, we set 𝐾 = 10000 and 𝑟0 =

0.1𝑅sin𝛼. In the second step, the indenter is removed and the PRCG minimization algorithm 

(via the “minimize” command) is used to find the closest stable equilibrium state of the shell. If 

the shell has an inverted equilibrium state, the NEB method (via the “neb” command) is used to 

find the minimium energy path between the initial and inverted states.  

Table 3.1 Parameters for spherical cap shells of different material properties and geometries 

𝑬 𝝂 𝒕 𝑹 𝜶 𝝀𝒅 

71000 -0.3 1.2475 151 0.2 4 

71000 -0.3 0.9857 151 0.2 4.5 

71000 -0.3 0.7984 151 0.2 5 

71000 -0.3 0.5544 151 0.2 6 

71000 -0.3 3.9504 151 0.6 4 

71000 -0.3 3.1213 151 0.6 4.5 

71000 -0.3 2.5283 151 0.6 5 

71000 -0.3 1.7557 151 0.6 6 
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3.3.4 Results 

Figure 3.6 shows the indenter force-displacement curves for different values of 𝜆𝑑 and 𝛼, as 

predicted from our simulations using a discrete shell model (DSM) in LAMMPS and finite ele-

ment method (FEM) in ABAQUS. Two qualitatively different behaviors can be observed. For 

𝜆𝑑 = 5 and 6, the indenter force initially increases to a maximum, and then decreases to zero, at 

which point the shell becomes unstable and buckles. Removing the indenter at this point and 

minimizing the elastic energy the shell will relax into an inverted state. We refer to this regime 

bistable as the shell has two stable equilibrium states. For 𝜆𝑑 = 4 and 4.5, the curves have simi-

lar shapes, but the indenter force does not decrease to zero. Removing the indenter at any point 

and minimizing the elastic energy the shell will relax into its natural state. We refer to this re-

gime monostable as the shell has only one stable equilibrium state. We also notice from Figure 

3.6 that the maximum indentation force required to buckle the shell increases with 𝜆𝑑. Therefore, 

the parameter 𝜆𝑑 characterizes the softness (or hardness) of the shell.  

 Figure 3.7 summarizes the behaviors of the shells (monostable or bistable) in the (𝛼, 𝜆𝑑) pa-

rameter space. For a given value of 𝛼, bistability will be observed when 𝜆𝑑 is larger than a 

threshold value 𝜆𝑑
𝑐 . The threshold curve 𝜆𝑑

𝑐 (𝛼) that separates the monostable and bistable re-

gimes is approximately constant and independent of 𝛼. From our simulations, 4.5 < 𝜆𝑑
𝑐 < 5, 

consistent with the experimental value 𝜆𝑑
𝑐 ≈ 4.6 [113] (represented by the dashed line).  

Figure 3.8 compares the energy vs. apex position curves obtained by integrating the force-

displacement curve (𝛼 = 0.2 and 𝜆𝑑 = 5) in Figure 3.6 with the minimum energy path (MEP) 

obtained by the string method. We can observe that probing meets the MEP at the transition state 

B but does not access the MEP generally. The (stable equilibrium) natural state, (unstable equi-

librium) transition state, and (stable equilibrium) inverted state are marked with A, B, and C on 
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the curves, and their deformation profiles (with the radial displacement map in the insert) are 

shown in Figure 3.9.  

 

Figure 3.6 The force-displacement relationship for the indentation of a spherical cap shell. The 

solid line represents the discrete shell model (DSM) simulations in LAMMPS, while the dashed 

line represents finite element (FEM) simulations in ABAQUS. Different colors corresponds to 

different values of 𝜆𝑑. (A) 𝛼 = 0.2 (B) 𝛼 = 0.6.  
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Figure 3.7 Monostable or bistable behaviors of spherical cap shells in the (𝛼, 𝜆𝑑) parameter 

space predicted by DSM and FEM simulations.  

Figure 3.8 Comparison of the energy vs. apex position curves obtained by integrating the force-

displacement curve (𝛼 = 0.2 and 𝜆𝑑 = 5) in Figure 3.6 with the minimum energy path (MEP) 

obtained by the string method. 
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Figure 3.9 Deformation profiles and radial displacement maps corresponding to the three states 

(A, B and C) on the curves in Figure 3.8.  

 

3.4 Cylindrical shell buckling 

3.4.1 Model system 

We apply the discrete thin shell model implemented in FORTRAN to the cylindrical buck-

ling problem. Consider a cylindrical shell with radius 𝑅0, length 𝐿0, thickness 𝑡, Young’s modu-

lus 𝐸, and Poisson’s ratio 𝜈, as shown in Figure 10. The cylinder is axially compressed by pre-

scribing the displacements at the top and bottom ends (rigid loading). The shortening ratio is 

defined as 𝜆 = 𝐿/𝐿0, where 𝐿 is the length of the compressed cylinder. Another two important 

dimensionless parameters are aspect ratio 𝐴0 = 𝐿0/(2𝑅0) and relative thickness 𝑅0/𝑡. We fix 

the relative thickness to be 𝑅0/𝑡 = 247 which is similar to the relative thickness of aluminum 
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drink cans (𝑅0/𝑡 ≈ 300). Throughout this work, we report the dimensionless energy 𝐸𝑟 =

6√3(1 − 𝜈2)𝐸/(𝑌𝑡3).  

Figure 3.10 The buckling of an axially compressed cylindrical shell 

 

3.4.2 Stable states 

The morphologies of the stable states for different aspect ratios 𝐴0 and shortening ratios 𝜆 are 

summarized in Figure 3.11. Three characteristic morphologies are observed: unbuckled, singly 

dimpled and multiply dimpled. The multiply-dimpled states are the most common, which include 

highly symmetric Yoshimura-like dimple patterns (Figure 3.11D) [116] and irregular dimple pat-

terns (Figure 3.11E). The phase diagram of global energy minima is shown in Figure 3.11F. At 

large λ, global minima are the unbuckled states; upon decreasing λ, the multiply-dimpled states 

become global minima. We observed that the singly dimpled state (Fig. 3.11) is never a global 

energy minimum, even though it is stable. Single dimple is therefore only metastable. When it is 
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energetically unfavorable to form a dimple, the unbuckled state is lower in energy; when it is en-

ergetically favorable to form a dimple, the energy is always lowered further by subsequent dim-

pling. This metastability region is outlined in blue in the phase diagram.  
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Figure 3.11 Morphologies of the local energy minima for aspect ratios 0.1 < 𝐴0 < 10 and short-

ening ratios 0.997 < 𝜆 < 1. The relative thickness 𝑅0/𝑡 is fixed to be 247. (A–E) Examples of 

the three characteristic morphologies: unbuckled, singly dimpled and multiply dimpled. The 

color represents radial displacement. (F) Phase diagram indicating the morphologies of the 

global energy minima across a range of aspect ratios 𝐴0 and end shortening ratios 𝜆. The global 

minima are either unbuckled (grey region, simulation data shown as black circles) or multiply 

dimpled (red region, simulation data shown as red squares). The region outlined in blue indicates 

metastable singly dimpled states. This figure is adapted from Reference [112]. 

 

3.4.3 Transition paths 

After obtaining the local energy minima, we connect them with minimum energy paths using 

the string method. One example is shown in Figure 3.12 for a cylinder of 𝐴0 = 0.8, 𝜆 = 0.9986. 

We find multiple minimum energy paths connecting the unbuckled state and the 9-dimple global 

energy minimum, and each path is complex, featuring many intervening local minima. The en-

ergy profiles along three of the paths are shown in Figure 3.8B, where the distance 𝑠 along the 

path is defined as  

 

𝑠 = ∑ |𝐚𝑖 − 𝐚𝑖
0|

𝑁nodes

𝑖=1

 (3.4) 

with 𝐚𝑖 and 𝐚𝑖
0 being the position vectors of node 𝑖 in the buckled and unbuckled mesh, respec-

tively. In path A, the cylinder undergoes a series of dimple-growing transitions starting with the 

unbuckled state. In the first seven, each transition adds an additional dimple to the cylinder and 

lowers the energy. The final transition sees two dimples forming simultaneously to complete the 

ring of nine dimples. In paths B and C, however, the cylinder undergoes transitions unrelated to 

dimple growing.  
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Figure 3.12A shows the energy profiles along the three paths for the 0-1 dimple transition, 

compared with the energy profile obtained by simulating the local probe technique as discussed 

in Section 3.3.4. We observe that the local probe technique does meet the minimum energy path 

at the transition state, although it does not coincide with it generally. This comparison shows that 

the local probe technique is capable of measuring the energy barrier between the unbuckled and 

post-buckling states for singly dimpled configurations.   

 

 

Figure 3.12 Minimum energy paths connecting the unbuckled state and the 9-dimple global en-

ergy minimum for a cylinder of 𝐴0 = 0.8, 𝜆 = 0.9986. (A) Energy profiles along the minimum 

energy paths and local probe path for the 0-1 dimple transition. (B) Three example minimum en-

ergy paths connecting the unbuckled and 9-dimple state. The path length 𝑠 is defined in Equation 

(3.4). The number of dimples is labelled at each minimum in path A. (C) Radial displacement 

contour plots for different states. This figure is adapted from Reference [112]. 
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3.4.4 Disconnectivity graphs 

In Figure 3.13, the energy landscapes are illustrated as disconnectivity graphs [117-118] for a 

lightly compressed short cylinder (𝐴0 = 0.8, 𝜆 = 0.9986), a heavily compressed short cylinder 

(𝐴0 = 0.8, 𝜆 = 0.9986), and a lightly compressed long cylinder (𝐴0 = 3.0, 𝜆 = 0.9990). In a 

disconnectivity graph, the network of local energy minima and MEPs is reduced to a spanning 

tree showing only the energy of the minima (the end points of each branch) and the lowest en-

ergy barrier connecting any two minima, read by tracing the path between two branches and 

finding the highest energy point. 

In Figure 3. 13A, the disconnectivity graph is presented for the lightly compressed short cyl-

inder. We observe that the unbuckled, singly dimpled, and multiply-dimpled states coexist. How-

ever, the energy landscape is rather simple: the minima are uniformly distributed across the en-

ergy range. The global minimum (1×9) (highlighted in red) and the second-lowest minimum 

(1×8) exist in a deep well, with the energy barrier to escape the well greater than that to escape 

the branch of the unbuckled state (highlighted in blue) by a factor of 7. Thus, if an unbuckled 

cylinder is subject to perturbations with sufficient energy to overcome the buckling energy bar-

rier, although other stable states exist along the way, the tendency is to quickly become trapped 

in either the global minimum (1×9) or the second-lowest minimum (1×8).  

Figure 3.13B shows the disconnectivity graph for the heavily compressed short cylinder. 

Here, the landscape is markedly different to the that for the less-compressed cylinder: the distri-

bution of minima is less uniform with the majority of minima concentrated at the lower energy 

range. Another difference in this disconnectivity graph is that the global minimum (2×9) (high-
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lighted in red) does not have a large energy barrier compared to other minima. Thus, random per-

turbations made to the unbuckled state may result in the system becoming trapped in the states 

different from the global minimum.  

Figure 3.13C is the disconnectivity graph for the lightly compressed long cylinder, in which 

we have clustered the minima sharing the same number of dimples and having interconversion 

energy barriers less than 10−3, reducing the number of minima shown by a factor of 10. We ob-

serve that this landscape is significantly different from those for the short cylinders: the number 

of minima has increased by a factor of 100 and the distribution of minima is highly non-uniform. 

The minima are concentrated in two energy ranges 10.1 < 𝐸𝑟 <  10.3 and 10.4 < 𝐸𝑟 <  10.5, 

where irregularly arranged dimples are dominant. Thus, the landscape is rough and glassy in 

those ranges. On the other hand, in the vicinity of the global minimum (2×6) (highlighted in red), 

the landscape becomes significantly less glassy. Nonetheless, the overall roughness of the land-

scape coupled with a large number of deep branches means that a perturbed cylinder may buckle 

to a large number of stable states.  

The difference in the roughness of the landscape between short and long cylinders may be 

explained in the following way. For the short cylinder, the fixed ends tightly constrain the dim-

ples to lie within either one or two rows, due to the characteristic dimple size. For the long cylin-

der, the constrain of the fixed ends is diminished, yielding a larger number of possibilities of 

dimple arrangements.  
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Figure 3.13 Disconnectivity graphs showing the minimum energy barrier between any pair of 

local energy minima. The branches corresponding to the unbuckled state and the global mini-

mum are colored in blue and red, respectively. Radial displacement plots of the representative 

minima are also shown. (A) Lightly compressed short cylinder (𝐴0 = 0.8, 𝜆 = 0.9986). (B) 

Heavily compressed short cylinder (𝐴0 = 0.8, 𝜆 = 0.9980). (C) Lightly compressed long cylin-

der (𝐴0 = 3.0, 𝜆 = 0.999). This figure is adapted from Reference [112]. 
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3.4.5 Increasing buckling resistance 

We now demonstrate how the buckling energy landscapes enable us to increase the buckling 

resistance of a shell by 20% with almost no increase in weight. Taking the system with 𝐴0 =

0.8, 𝜆 = 0.9986 as an example, for which the landscape is shown in Fig. 3.13A and the mini-

mum energy paths are shown in Figure 3.12, we observe that the energy of the singly dimpled 

transition state (marked with * in Figure 3.12) determines the energy barrier between its unbuck-

led state and the global energy minimum. Therefore, to increase buckling resistance with mini-

mum weight gain, it is crucial to energetically penalize a shell deforming into its transition state.  

Our method is shown in Figures 3.14B-D. First, we obtain the radial deformation field for the 

original transition state (Figure 3.14B). Second, we compute the change in elastic energy density 

𝐸𝑓 when transforming from the unbuckled to the transition state (Figure 3.14C). Third, we ener-

getically penalize the formation of this transition state by locally modifying shell thickness so 

that thickness is proportional to local energy density change and the total mass increase is 1%. 

Due to the symmetry of the transition state, to suppress dimple formation anywhere around the 

circumference, at each 𝑧 we average the thickness profile over all 𝜃. The final relative thickness 

profile is shown in Fig. 3.14D.  

The transition state after local thickness modification is now forced off-center (Fig. 3.14E). 

The energy profile for this transition is shown as the solid red line in Fig. 3.14A, showing that for 

a 1% increase in mass, a 20% increase in buckling resistance is achieved. This improvement is 

over twice that of a uniformly thickened cylinder, 9%, with the same mass increase, the transi-

tion profile for which is shown as the dotted black line. 
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Figure 3.14 The workflow to increase shell stability and its effect for 𝐴0 = 0.8, 𝜆 = 0.9986. (A) 

Radial displacement field of the original transition state. (B) Change in the energy density of the 

transition state relative to the unbuckled cylinder. (C) Relative thickness profile of the modified 

cylinder. (e) The transition state of the modified cylinder. (a) Energy profiles of the unbuckled to 

single dimple minimum energy paths for the unmodified and modified cylinders. This figure is 

adapted from Reference [112]. 
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3.4.6 Stabilizing post-buckling state 

We now demonstrate how to stabilize a post-buckling state for the system with 𝐴0 = 0.8, 𝜆 =

0.9986. We observe the landscape shown in Figure 3.13A to exhibit a deep global minimum 

(1×9) and the shallower (1×8) state. Here, we show how to make sure the shell buckle into the 

(1×8) state that is highly resistant to lateral perturbation. 

 Figures 3.15A-B show the radial displacement field and the corresponding elastic energy 

density of the (1×8) state. We then energetically encourage the formation of the (1×8) state by 

locally modifying the shell thickness so that thickness is inversely proportional to energy density 

and there is no overall mass change. The thickness biasing amplitude is defined as  

 𝛽 = 𝑡max/𝑡min  − 1 (3.5) 

where 𝑡max and 𝑡min are the maximum and minimum shell thickness, respectively.  

Figure 3.15C shows how the landscape changes at the bottom of the funnel with 𝛽 increasing 

from 0 to 20%. At 𝛽 = 5%, the landscape changes significantly relative to 𝛽 = 0%: the land-

scape is simplified as the biasing destabilizes many local minima, and the barrier out of the  

(1×8) state increase by 207% relative to the 𝛽 = 0% landscape. At 𝛽 = 10%, these effects are 

further magnified. At 20% bias, the stabilization of the (1×8) state and destabilization of the 

(1×9) state continues. This leads to a barrier increase of 302% for the (1×8) state, and a barrier 

decrease of 91% for the (1×9) state. 
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Figure 3.15 (A) radial displacement field and the corresponding elastic energy density of the 

(1×8) state for 𝐴0 = 0.8, 𝜆 = 0.9986. (B) Evolution of the bottom of the landscape as the biasing 

amplitude increases, all energies shown relative to the (1×8) state. This figure is adapted from 

Reference [112]. 
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3.5 Summary 

In this work, a discrete shell model was used to evaluate the elastic energy of thin shells un-

der large geometrically nonlinear deformation. This was combined with efficient energy minimi-

zation and path finding algorithms to fully describe the energy landscapes of shell buckling.  

The discrete shell model was first implemented as a C++ class in LAMMPS. Using 

LAMMPS’s built-in energy minimization and path-finding algorithms, our method was applied 

to the problem of indenting spherical cap shells. Two qualitatively different regimes are ob-

served. The first is the bistable regime in which the shell remains in the inverted state the re-

moval of the indenter. The second is the monostable regime in which the shell returns to the nat-

ural state after the removal of the indenter. We found that whether the shell is in the monostable 

or bistable regime depends on a single parameter 𝜆𝑑.   

I also implemented the discrete shell model in FORTRAN and collaborated with Prof. Halim 

Kusumaatmaja’s group at Durham University to survey the energy landscape of cylindrical shell 

buckling under axial compression. To begin with, we surveyed the local energy minima, observ-

ing unbuckled, singly dimpled, and multiply dimpled states. The string method was used to find 

the minimum energy paths connecting pairs of minima and the transition states between them. 

We then illustrated the buckling energy landscapes as disconnectivity graphs, in which the land-

scapes became complex and glassy when increasing the aspect ratio or featured many deep states 

when increasing the compressive strain. Finally, we demonstrate methods to control energy land-

scapes by first showing how locally modifying shell thickness to energetically penalize the sin-

gly dimpled transition state produces a 20% increase in buckling resistance of the unbuckled cyl-

inder for a 1% increase in mass. We then show how local thickness modification to energetically 
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favor a multiply dimpled post-buckling state simplifies the local landscape, tripling the targeted 

state stability with no mass change.  

Our computational framework to survey the energy landscapes for shell buckling has poten-

tial applications in the design of robust thin shell structures or buckling-induced smart applica-

tions, ranging from energy harvesting devices [119] to morphable 3D structures [120]. 
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Chapter 4: Multiscale Wrinkle Patterns of Annular Sheets 

4.1 Introduction 

Thin sheets often develop wrinkles to suppress compression generated by a broad range of 

conditions such as boundary loads [121], geometric incompatibility [122-124], differential swell-

ing [125], expansion on soft substrates [126,127], and growth in confined spaces [128,129]. A 

simple 1D wrinkle model is a uniaxially compressed sheet lying on a solid or liquid substrate, 

resulting in a wrinkle pattern with uniform wrinkle wavelength λ and direction 𝐧̂ (Figure 4.1). 

The wrinkle wavelength λ can be obtained by minimizing the sum of bending energy of sheet 

and energy associated with substrate deformation [121,130]:  

 𝜆 = 2𝜋(𝐵/𝐾sub)1/4 (4.1) 

where 𝐵 is the bending modulus of sheet and 𝐾sub is the substrate stiffness. However, most ex-

perimental setups for wrinkles differ significantly from such a simplistic 1D model, resulting in 

complex multiscale wrinkle patterns, where either the direction 𝐧̂ or the wavelength λ is nonuni-

form (Figure 4.2).  

Here we consider a special case of radially oriented wrinkles with a local wavelength deter-

mined by Equation (4.1). We study a simple model for radially oriented wrinkles, the Lamé 

setup, consisting of an annular sheet attached to a liquid substrate subjected to radial tensile loads 

on its edges. There are several advantages in studying this setup: its axisymmetric geometry and 

boundary conditions make theoretical analysis [135-137] possible, and its experiments can be  

performed by placing a liquid drop on a circular sheet floating on a liquid bath (Figure 4.2A) 

[138]. 
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 Previous theoretical [136,137] and experimental works [131,135] on the Lamé setup have 

been dedicated to the defect-free regime where annular sheets develop wrinkle patterns with spa-

tially constant wrinkle numbers 𝑚0 and nonconstant wavelength 𝜆(𝑟) = 2𝜋𝑟/𝑚0  (Figure 4.3A). 

Our work addresses a distinct new defect-rich regime where wrinkle patterns exhibit nearly spa-

tially constant wavelength 𝜆 ≈ 𝜆0 and nonconstant wrinkle number 𝑚(𝑟) ≈ 2𝜋𝑟/𝜆0 (Figure 

4.3B). Our theoretical, experimental, and simulation results show that the prominent features of 

this new regime are modulations of the wrinkle amplitude and the proliferation of defect-rich re-

gions where the number of wrinkles varies sharply.   

This chapter is organized as follows. In section 4.2, we review the Lamé setup and define 

three governing dimensionless parameters. In section 4.3, we outline our theoretical approach to 

analyze and predict wrinkle patterns of the Lamé setup. In section 4.4, we provide a detailed de-

scription of the simulations and review the experimental setup, and compare their results with the 

theoretical predictions. In section 4.5, we conclude this chapter with some discussions of our 

work.  

 

Figure 4.1 A simple 1D model for wrinkling: a uniaxially compressed sheet lying on a solid or 

liquid substrate, resulting in a wrinkle pattern by uniform wrinkle wavelength λ and direction 𝐧̂. 
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(A) Side view of a unwrinkled sheet (B) Side view of a wrinkled sheet (C) Top view of a wrin-

kled sheet 

 

 

Figure 4.2 (A) A floating polymer film wrinkles under the capillary force exerted by a drop of 

water placed on its surface. Adapted from Reference [131]. (B) A circular polystyrene (PS) sheet 

placed on the free surface of the water at the top of a tube wrinkles due to geometric incompati-

bility between the sheet and liquid surface. Adapted from Reference [132]. (C) A spherical thin 

shell laid atop a flat body of water wrinkles as a means to overcome the geometric incompatibil-

ity. Adapted from Reference [133]. (D) An ultrathin polymer sheet floating on fluid forms a peri-

odic pattern of parallel wrinkles when subjected to uniaxial compression. The wave number of 

the wrinkle pattern increases sharply near the fluid meniscus. Adapted from Reference [134].  
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Figure 4.3 Wrinkle patterns observed in simulations of the Lamé setup. (A) Defect-free pattern 

exhibits spatially constant wrinkle numbers 𝑚0 and nonconstant wavelength 𝜆(𝑟) = 2𝜋𝑟/𝑚0. 

(B) Defect-rich pattern exhibits nearly spatially constant wavelength 𝜆 ≈ 𝜆0 and nonconstant 

wrinkle number 𝑚(𝑟) ≈ 2𝜋𝑟/𝜆0.  

 

4.2 Model system 

The Lamé setup is shown schematically in Figure 4.4, where an annular sheet of thickness 𝑡 

and radii 𝑅in ≪ 𝑅out is attached to a liquid substrate of stiffness 𝐾 = 𝜌𝑔 (with 𝜌 being the den-

sity of liquid bath), subjected to radial tensile loads 𝛾in and 𝛾out  at the inner and outer edges, and 

hydrostatic pressure 𝑝 = −𝜌𝑔𝜁 (with 𝜁 being the out-of-plane deflection of the sheet) exerted by 

the liquid. The stretching and bending moduli of the sheet are 𝑌 = 𝐸𝑡 and 𝐵 = 𝐸𝑡3/(12(1 −

𝜈2), where 𝐸 and 𝜈 are Young’s modulus and Poisson’s ratio.  

The problem is governed by three dimensionless groups:  
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 𝜏 =
𝛾in

𝛾out
   (4.2) 

 𝜖−1 =
𝛾in𝑅in

2

𝐵
   (4.3) 

 
 

𝐵𝑜
=

𝐾sub𝑅in
2

𝛾in
 (4.4) 

where 𝜏, 𝜖−1 and 𝐵𝑜 characterize the ratio of tensile loads, the relative bendability of sheet, and 

the relative substrate stiffness. Here we study thin, highly bendable sheets (𝜖−1 ≫ 1) with strong 

substrate stiffness (𝐵𝑜 ≫ 1) so that the wrinkle pattern is in the defect-rich regime where wrinkle 

wavelength is uniform [10,15] (Figure 4.3B).  

 

 

Figure 4.4 The Lamé setup: an annular sheet is attached to a liquid substrate subjected to radial 

tensile loads at the inner and outer edges. The liquid substrate exerts hydrostatic pressure on the 

sheet. The magnitude of the pressure is proportional to the out-of-plane deflection of the sheet.  

 

4.3 Theoretical analysis  

In this section, we describe our theoretical approach to the Lamé problem for highly benda-

ble sheets (𝜖−1 ≫ 1) with strong substrate stiffness (𝐵𝑜 ≫ 1). Our analysis is divided into four 

parts. In the first and second part, we briefly review the classical unwrinkled solution and the 
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tension field theory of the Lamé problem. In the third and fourth part, we construct an ansatz 

with constant wrinkle amplitude to recover Equation (4.1) for wrinkle wavelength and an ansatz 

with modulated wrinkle amplitude to derive its oscillatory period. Throughout this section, we 

simplify the expression by assuming 𝑅in ≪ 𝑅out and taking the Poisson’s ratio 𝜈 = 0, recalling 

that the Poisson’s ratio does not affect the wrinkle pattern [137,139].  

4.3.1 Linear elastic solution 

In the classical linear elastic solution to the Lamé problem, the annular sheet is in an unwrin-

kled planar state. The radial and hoop stress components and the radial displacement field are 

given by [140]:  

 
𝜎𝑟𝑟 = 𝛾in [

𝑅in
2

𝑟2
(1 −

1

𝜏
) +

1

𝜏
] (4.5) 

 
𝜎𝜃𝜃 = 𝛾in [

𝑅in
2

𝑟2
(−1 +

1

𝜏
) +

1

𝜏
] (4.6) 

 
𝑢𝑟 =

𝛾in

𝑌
[(−1 +

1

𝜏
)

𝑅in
2

𝑟
+

𝑟

𝜏
] (4.7) 

The total elastic energy (including the strain energy and the work done by the boundary loads) of 

the system is:   

 
𝑈Lamé = −

𝜋𝑅in
2 𝛾in

2

𝑌
(−1 + 2 (

1

𝜏
− 1)

2

+
𝑅out

2

𝑅in
2

1

𝜏2
) (4.8) 

In the above solution, the radial stress is always in tension (𝜎𝜃𝜃 > 0) but the hoop stress be-

comes compressive (𝜎𝜃𝜃 < 0) in the zone 𝑅in < 𝑟 < 𝐿Lamé = √𝜏 − 1𝑅in for 𝜏 > 2. Hence, for 

highly bendable sheets we study here, the unwrinkled state is unstable to the formation of radial 

wrinkles that relieve the compressive stress when 𝜏 is slightly above 2.  



80 

 

4.3.2 Tension field theory 

Tension field theory (TFT) describes the stress and displacement field for highly bendable 

thin sheets (𝜖−1 ≫ 1) in the wrinkled state, at which the sheet cannot support any compressive 

stress, resulting in a purely tensile stress field. For the Lamé problem, the radial and hoop stress 

components and the radial displacement in the wrinkled zone 𝑅in < 𝑟 < 𝐿 = 𝜏𝑅in/2 are given 

by [136,137]:   

 
𝜎𝑟𝑟 =

𝛾in𝑅in

𝑟
 (4.9) 

 𝜎𝜃𝜃 = 0 (4.10) 

 
𝑢𝑟 =

𝛾in

𝑌
[(−1 + log (

𝑟

𝐿
)) 𝑅in +

2

𝜏
𝐿] (4.11) 

The fractional arclength “wasted” by wrinkle undulations in a latitude of radius 𝑟 in the wrinkled 

zone is:  

 
Φ2(𝑟) = −

𝑢𝑟

𝑟
= 2 (

𝛾out

𝑌
) (

𝐿

𝑟
) log (

𝐿

𝑟
) (4.12) 

The total elastic energy (including the membrane strain energy and the work done by the bound-

ary loads, ignoring the bending energy as it is negligible for a highly bendable thin sheet) of the 

system is:  

 
𝑈dom = −

𝜋𝑅in
2 𝛾out

2

𝑌
𝜏2 (−

1

2
+ log

𝜏

2
+

𝑅out
2

𝑅in
2

1

𝜏2
) (4.13) 

The total elastic energy in the tension field theory (Equation (4.13)) is lower than its counterpart 

in the linear elastic solution (Equation (4.8)), therefore justifying the use of tension field theory 

to describe the stress and displacement field in the wrinkled sheet.  
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4.3.3 FvK theory 

The FvK (Föppl–von Kármán) theory describes the large out-of-plane deflections of thin flat 

plates (or sheets) under the kinematic assumptions that (1) the shear deformation is negligible, 

(2) the strain in the sheet is small, and (3) the deflection is characterized by small slopes every-

where.  

The first FvK equation describes the out-of-plane force balance and is given by:  

 (𝐵
1

𝑟4

𝜕4

𝜕𝜃4
− 𝜎𝜃𝜃

1

𝑟2

𝜕2

𝜕𝜃2
− 𝜎𝑟𝑟

𝜕2

𝜕𝑟2
+ 𝐾sub) 𝜁(𝑟, 𝜃) = 0 (4.14) 

where 𝜁(𝑟, 𝜃) is the out-of-plane deflection, and 𝜎𝜃𝜃, 𝜎𝑟𝑟 are the in-plane stress components. The 

total energy consists of in-plane strain energy 𝑈strain, bending energy 𝑈bend, and substrate defor-

mation energy 𝑈subst:  

 𝑈strain = ∫ 𝜖𝑖𝑗𝜎𝑖𝑗  𝑑𝐴 (4.15) 

 𝑈bend ≈ ∫
𝐵

2
tr(𝜅)2 𝑑𝐴 (4.16) 

 𝑈subst = ∫
𝐾

2
𝜁2 𝑑𝐴 (4.17) 

where 𝜅 is the curvature tensor whose components are approximated as:  

 𝜅𝑟𝑟 = 𝜕𝑟𝑟
2 𝜁 (4.18) 

 𝜅𝜃𝜃 =
1

𝑟
𝜕𝑟𝜁 +

1

𝑟2
𝜕𝜃𝜃

2 𝜁 (4.19) 

 𝜅𝑟𝜃 = 2𝜕𝑟𝜃
2 𝜁 (4.20) 

4.3.4 Constant wrinkle amplitude  

We first assume the out-of-plane deflection takes the following form in each narrow annulus 

𝑟 ∈ 𝑟𝑎 ± 𝑙⊥ within the entire annular sheet, where 𝑙⊥ ≪ 𝑟𝑎 and 𝑅𝑖𝑛 < 𝑟𝑎 < 𝐿:  
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 𝜁(𝑟, 𝜃) = Ψ(𝑟)cos(𝑚𝜃) (4.21) 

where 

 𝜎𝜃𝜃(𝑟) = − [𝐵 (
𝑚

𝑟
)

2

+ 𝐾 (
𝑚

𝑟
)

−2

]  (4.22) 

Here the assumed deflection curve features a constant amplitude Ψ(𝑟) with wrinkle number 𝑚 

for any fixed 𝑟, as plotted in Figure 4.5B. The resulting energy of bending and substrate defor-

mation after using Equations (4.16) and (4.17) is 

 𝑈𝑚 ≈ 𝐶̅ +
1

2
𝐵 ∫ 𝑑𝜃 ∫ 𝑑𝑟  Ψ(𝑟)2𝑟−3𝑚2(𝑚 − 𝑚̅(𝑟))

2
 (4.23) 

where  

 

𝑚̅(𝑟) =
2𝜋𝑟

𝜆̅
 ; 

𝜆̅ = 2𝜋 (
𝐵

𝐾𝑠𝑢𝑏
)

1
4

 , 

(4.24) 

(4.25) 

and 𝐶̅ is a constant ∼ √𝐵𝐾𝑠𝑢𝑏. Minimizing 𝑈𝑚 over integers 𝑚 in a sufficiently narrow annulus, 

𝑙⊥ ≪ 𝑟𝑎, yields 

 𝑚 ≈ 𝑚𝑎 = 2𝜋𝑟𝑎/𝜆̅ (4.26) 

 thus recovering Equation (4.1).  

Even though the assumed deflection Equation (4.21) with constant amplitude successfully 

predicts the wrinkle wavelength, it does not indicate how transitions occur between distinct val-

ues of 𝑚𝑎 at adjacent narrow annuli. We will overcome this difficulty in the next section by as-

suming the deflection modulated by an oscillating amplitude.    
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Figure 4.5 (A) Schematic of a defect-rich wrinkle pattern where 𝑙⊥ is the width of the narrow an-

nular zone and 𝑙|| is the width of the defect-free area. Adapted from Reference [143] (B) Sche-

matic of the deflection 𝜁(𝑟, 𝜃) with the constant amplitude Ψ(𝑟) at a given 𝑟. (C) Schematic of 

the deflection 𝜁(𝑟, 𝜃) modulated by the oscillating amplitude Ψ(𝑟, 𝜃) at a given 𝑟. 

 

4.3.5 Modulated wrinkle amplitude  

We generalize the deflection (4.21) to:  

 𝜁(𝑟, 𝜃) = Ψ(𝑟, 𝜃)cos(𝑚𝑎𝜃) (4.27) 

where 𝑚𝑎 = 2𝜋𝑟𝑎/𝜆̅ and 𝜆̅ is given by Equation (4.25). In contrast to the deflection (4.21), 

Equation (4.27) admits azimuthally oscillatory solutions to the wrinkle amplitude, facilitating a 

transition mechanism between distinct integer values of 𝑚𝑎 at adjacent annuli, so that defects 

can nucleate within the amplitude-suppressed zones (Ψ(𝑟, 𝜃𝑎) ≈ 0) at negligible energy cost.  

For the deflection (4.27), the avoidance of resonant effects in a perturbative expansion of Equa-

tion (4.14) implies the equation  

 [𝜎𝑟𝑟

𝜕2

𝜕𝑟2
+ 4|𝜎𝜃𝜃|

1

𝑟2

𝜕2

𝜕𝜃2
] Ψ(𝑟, 𝜃) = 0 (4.28) 
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Within a narrow, defect-free annulus around 𝑟 = 𝑟𝑎, a solution to Equation (4.28) may be ap-

proximated by: 

 Ψ ∝ 𝑒
−2𝜋√

|𝜎𝜃𝜃|
𝜎𝑟𝑟(𝑟𝑎)

(𝑟−𝑟𝑎)
𝒍∥

 

cos (
𝜋𝑟𝑎𝜃

𝑙∥
)  (4.29) 

where 𝑙∥ is the width of the defect-free area (Figure 4.5A).  

Using Equations (4.15)-(4.17) and Equation (4.29), we obtain the energy 𝑈𝑚 (Equation 4.23) 

and two other terms:  

 𝑈Ψ ≈
1

2
∫ 𝑑𝜃 ∫ 𝑟𝑑𝑟 (𝜎𝑟𝑟|𝜕𝑟Ψ|2 + 4|𝜎𝜃𝜃|

1

𝑟2
 |𝜕𝜃Ψ|2) (4.30) 

 𝑈nonlin ≈
𝑌

2
∫ 𝑑𝜃 ∫ 𝑟𝑑𝑟 [

𝑚2|Ψ|2

4𝑟2
− Φ2(𝑟)]

2

+
𝑚2

4𝑟4
 |Ψ|4 (

𝜕argΨ

𝜕𝜃
)

2

  (4.31) 

where Φ, 𝜎𝑟𝑟, 𝜎𝜃𝜃 are given by Equations (4.12), (4.9) and (4.22).  

For a small, defect-free zone of azimuthal and radial extents,  𝑙∥, 𝑙⊥ ≪ 𝑟𝑎, respectively, the 

second term in Equation (4.31) indicates that strain is induced by any deviation of wrinkles from 

the tension-carrying lines (i.e. radials, for which 
𝜕argΨ

𝜕𝜃
= 0), hence the radial orientation of wrin-

kles persists in defect-free zones, locally suppressing the smectic order imparted by uniformly-

spaced wrinkles (for which 
𝜕argΨ

𝜕𝜃
≈ 𝑚̅(𝑟) − 𝑚𝑎). In contrast, the first term in Equation (4.31) 

does not vanish for any azimuthally-oscillating amplitude, but its cost can be made negligible by 

requiring the corresponding integrand and its radial derivative to vanish upon integrating over an 

oscillatory period of Ψ, yielding:  

 𝑙∥ ≈ 4𝜋2𝑙𝐵𝐶
∗

𝑙𝑏𝑒𝑛𝑑
∗

𝜆̅
 ,  (4.32) 

where 
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 𝑙𝑏𝑒𝑛𝑑
∗ = (

1

𝑟𝑎
+ |

Φ′(𝑟𝑎)

Φ(𝑟𝑎)
|)

−1

 (4.33) 

4.4 Simulation 

4.4.1 ABAQUS setup 

We perform finite element simulations in ABAQUS/Explicit using 3-node linear shell ele-

ments (S3R) with geometric nonlinearity turned on. The liquid substrate is modeled as a pressure 

exerted on the sheet whose magnitude is proportional to the out-of-plane deflection of the ele-

ment. The deflection-dependent liquid pressure is implemented through the user-defined subrou-

tine for load distribution. A fine mesh is adopted near the inner edge with gradually increasing 

element sizes towards the outer edge, and large-scale simulations with 1 to 14 million elements 

are required, to capture a large number of wrinkles. After applying a small initial pressure on the 

entire sheet to trigger buckling, we run the simulations dynamically with decreasing pressure and 

fictitious material damping until the wrinkle patterns relax to stable states.  

4.4.2 Model validation tests 

4.4.2.1 Thin film folding tests 

Figure 4.6A is a setup to verify our approach of modeling liquid substrate as a pressure pro-

portional to deflection, where a thin rectangular film on the initially flat liquid surface is con-

fined in one horizontal direction [142]. The thin film responds to confinement first by wrinkling 

and then by folding, resulting from the competition between the bending energy to deform the 

film and the gravitational energy to lift the liquid. We compare the total energy of the system and 

the configurations of the thin film at different confinement levels obtained from our ABAQUS 

simulations with the analytical solutions and the discrete model simulations obtained from Refer-

ence [142] in Figure 4.6B. The good agreement of ABAQUS results with the reference shows 
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that a pressure proportional to displacement can accurately model liquid substrate.  This also 

confirms that the developed simulation model can capture highly nonlinear deformation of the 

floating film systems.  

 

Figure 4.6 (A) A thin film on an initially flat liquid surface responds to uniaxial confinement 

first by wrinkling (top) and then by forming a large fold (bottom). Adapted from Reference 

[142]. (B) Normalized total energy 𝑈 (sum of bending and gravity energies) of the buckled films 

as functions of normalized confinement length Δ, obtained from the analytical solutions and dis-

crete model simulations in Reference [142], along with our ABAQUS results. Inset: Configura-

tions of thin films when Δ/𝑙 = 7.5 and 14 for ABAQUS and discrete model simulations. 

 

4.4.2.2 Scaling laws tests 

Figures 4.7 and 4.8 present our simulation results to test the scaling laws 𝑚 ~ 𝑟𝑖(𝜌𝑔/𝐵)1/4 

[135] in the gravity-dominated regime and 𝑚 ~ 𝜖−1/4 [136] in tension-dominated regime [136] 

for the number of wrinkles in Lamé setup. The parameters of each test are listed in Tables 4.1 

and 4.2. The wrinkle numbers predicted by ABAQUS simulations are in good agreement with 

theoretical predictions, LAMMPS simulations, and eigenvalue analysis.  
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Table 4.1 Lamé setup parameters and simulated wrinkle number for the results in Figure 4.7 

𝑟𝑖 𝑟𝑜 𝐵 𝑆 𝛾𝑖 𝛾𝑜 𝜌𝑔 

Simulated wrinkle number 𝑚 

Eigenvalue  

analysis 

ABAQUS  

simulation 

LAMMPS  

simulation 

50 500 0.4 1000 2.84 1 0.1 41 40 41 

50 500 0.4 1000 2.56 1 0.01 27 27 28 

50 500 0.4 1000 2.5 1 0.001 22 24 24 

50 500 0.4 1000 2.5 1 0.0001 22 23 22 

Figure 4.7 Validation of the finite element model by testing the scaling law 𝑚 ~ 𝜖−1/4 
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𝑟𝑖 𝑟𝑜 𝐵 𝑆 𝛾𝑖 𝛾𝑜 𝜌𝑔 

Simulated wrinkle 

number 𝑚 

(ABAQUS) 

100 600 0.0125 923.761 1 0.25 0 37 

100 600 0.05 923.761 1 0.25 0 29 

50 300 0.05 923.761 1 0.25 0 20 

50 300 0.2 923.761 1 0.25 0 14 

50 300 0.8 923.761 1 0.25 0 11 
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Figure 4.8 Validation of the finite element model by testing the scaling law 𝑚 ~ 𝑟𝑖(𝜌𝑔/𝐵)1/4 

 

4.4.2.3 Initial perturbation sensitivity tests 

Figure 4.9 compares the effect of two different types of initial perturbations – spatially uni-

form and spatially random initial pressures acting on the annular sheets – on the fully relaxed 

wrinkle patterns. We can observe that there is no significant difference in the macroscopic wrin-

kle patterns for the four Lamé setup cases we have tested. 

 

Table 4.3 Lamé setup parameters for the results in Figure 4.9 

ID 𝑟𝑖 𝑟𝑜 𝛾𝑖 𝛾𝑜 𝑡 𝐸 𝜈 𝜌𝑔 𝜖−1 𝜏 𝐵𝑜 

4EHJBD 50 500 4 1 0.0752768 800 0.3 0.08 320000.000 4 0.02 

7ZBKYN 50 500 4 1 0.0948428 800 0.3 0.04 160000.000 4 0.04 

DHPGRO 50 500 4 1 0.1085679 800 0.3 0.02667 106666.667 4 0.06 

IH8VZW 50 500 4 1 0.1194944 800 0.3 0.02 80000.000 4 0.08 
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Figure 4.9 Comparison of the effects of two different types of initial perturbations – spatially 

uniform and spatially random initial pressures – on the fully relaxed wrinkle patterns.  
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4.4.3 Data analysis 

The wrinkle number of each simulation is extracted from the out-of-plane deflection data us-

ing custom MATLAB code. The same routine is used to extract the wrinkle number from experi-

ments after converting wrinkle images to intensity signal data using a custom automated image 

analysis following References [130,132].  

We extract 𝑙|| from the out-of-plane deflection data obtained from the simulations and the in-

tensity signal data obtained from the experiments using FFT (Fast Fourier Transform) algorithm 

provided in MATLAB. Consider the simplest possible amplitude-modulated deflection (or sig-

nal) data curve at a given radius 𝑟 corresponding to Equation (4.28), as illustrated schematically 

in Figure 4.5C:  

 𝜁(𝜃) = cos (
2𝜋𝑟

𝜆
𝜃) cos (

𝜋𝑟

𝑙||
𝜃) (4.34) 

or equivalently 

 𝜁(𝜃) =
1

2
cos [2𝜋 (

𝑟

𝜆
+

𝑟

2𝑙||
) 𝜃] +

1

2
cos [2𝜋 (

𝑟

𝜆
−

𝑟

2𝑙||
) 𝜃] (4.35) 

FFT analysis of this data curve gives a Fourier spectrum with two peaks corresponding to the fre-

quencies  

 𝑘1 =
𝑟

𝜆
−

𝑟

2𝑙||
 (4.36) 

 𝑘2 =
𝑟

𝜆
+

𝑟

2𝑙||
  (4.37) 

Reducing 𝑟 in the Equations (4.36) and (4.37) gives the equation for extracting 𝑙|| from the FFT 

analysis of simulation and experimental data:   

 
𝑙||

𝜆
=

𝑘1 + 𝑘2

2(𝑘2 − 𝑘1)
 (4.38) 
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Figures 4.10B-E show the deflection data curves and their Fourier spectrums obtained from 

two of our simulations. The spectrum in Figure 4.10C has two strong peaks at 𝑘1 = 55 and 𝑘2 =

92. Plugging them into Equation (4.38) yields 𝑙||/𝜆 = 2.0. However, from Figure 4.10E, it is dif-

ficult to distinguish two dominant peaks. In cases such as this, we obtain 𝑙|| from direct inspec-

tion of the out-of-plane displacement maps (or experimental images) by identifying regions of 

strong, nearly-parallel wrinkles, an example of which is shown in Figure 4.10A.  
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Figure 4.10 (A) Wrinkle pattern from simulations, showing strong amplitude modulation. (B)-

(E) Deflection data curves and the corresponding Fourier spectrums from simulations with and 

without two dominant peaks. This figure is adapted from Reference [143]. 

 

4.5 Comparing simulation and experimental results with theory 

4.5.1 Regime diagram 

Simulations are performed for a wide range of values for three dimensionless parameters in 

the Lamé problem: 𝐵𝑜 ∈ (0.07, 333),  𝜏 ∈ (3.0, 8.7) and 𝜖−1 ∈ (5 × 104, 3 × 107). Further-

more, in the large 𝐵𝑜 regime, which is the primary focus of our study, we fix the ratio √𝐵𝑜 ⋅ 𝜖 =

0.01, to make sure the wrinkle pattern is well described by the tension field theory. The simu-

lated annular sheet is made of an elastic material with large Young’s modulus and Poisson’s ratio 

𝜈 = 0.3 to ensure the tension is much smaller than the in-plane stiffness (𝛾𝑖𝑛/𝑌 < 0.01). The 

complete set of parameters is listed in Table 4.4. 

Figure 4.11 shows the wrinkle patterns observed in simulations and experiments for various 

values of 𝐵𝑜 and 𝜏. Two distinctive patterns can be identified: one with a spatially constant wrin-

kle number 𝑚 ≈ 𝑚0 and nonconstant wavelength 𝜆(𝑟) ≈ 2𝜋𝑟/𝑚0 (Figure 4.11 A, E, C, G); the 

other with a spatially constant wavelength 𝜆 ≈ 𝜆0 and nonconstant wrinkle number 𝑚(𝑟) ≈

2𝜋𝑟/𝜆0 (Figure 4.11 B, F, D, H). The former patterns are simpler, free of defects and exhibit al-

most uniform wrinkle amplitude. In contrast, the later ones are more complex, proliferated with 

defects, and exhibit strong modulations of the wrinkle amplitude, such that defect-rich regions 

occur at amplitude-suppressed zones. We collect our observations in a regime diagram (Figure 

4.11I) in which the defect-free and defect-rich regimes are separated by a transitional curve 

𝐵𝑜
𝑐(𝜏) scaling as  
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 𝐵𝑜
𝑐(𝜏) ~ (𝜏 − 2)−3.4±0.3 (4.39) 

Table 4.4 Lamé setup parameters for the results in Figure 4.9 

𝑟𝑖 𝑟𝑜 𝛾𝑖 𝛾𝑜 𝑡 𝐸 𝜈 𝜌𝑔 𝜖−1 𝜏 𝐵𝑜 

50 500 3.1 1 0.0236 500 0.3 0.16533 12813333 3.1 0.0075 

50 500 3.1 1 0.0298 500 0.3 0.08267 6406667 3.1 0.015 

50 500 3.1 1 0.0375 500 0.3 0.04133 3203333 3.1 0.03 

50 500 3.1 1 0.0473 500 0.3 0.02067 1601667 3.1 0.06 

50 500 3.1 1 0.0596 500 0.3 0.01033 800833 3.1 0.12 

50 500 3.1 1 0.0750 500 0.3 0.00517 400417 3.1 0.24 

50 500 3.1 1 0.0946 500 0.3 0.00258 200208 3.1 0.48 

50 500 3.1 1 0.1191 500 0.3 0.00129 100104 3.1 0.96 

50 500 3.3 1 0.0215 500 0.3 0.22000 18150000 3.3 0.006 

50 500 3.3 1 0.0271 500 0.3 0.11000 9075000 3.3 0.012 

50 500 3.3 1 0.0341 500 0.3 0.05500 4537500 3.3 0.024 

50 500 3.3 1 0.0430 500 0.3 0.02750 2268750 3.3 0.048 

50 500 3.6 1 0.0312 500 0.3 0.07200 6480000 3.6 0.02 

50 500 3.6 1 0.0393 500 0.3 0.03600 3240000 3.6 0.04 

50 500 3.6 1 0.0495 500 0.3 0.01800 1620000 3.6 0.08 

50 500 3.6 1 0.0624 500 0.3 0.00900 810000 3.6 0.16 

50 500 3.8 1 0.0306 500 0.3 0.07600 7220000 3.8 0.02 

50 500 3.8 1 0.0386 500 0.3 0.03800 3610000 3.8 0.04 

50 500 3.8 1 0.0486 500 0.3 0.01900 1805000 3.8 0.08 

50 500 3.8 1 0.0613 500 0.3 0.00950 902500 3.8 0.16 

50 500 3.8 1 0.0772 500 0.3 0.00475 451250 3.8 0.32 

50 500 3.8 1 0.0972 500 0.3 0.00238 225625 3.8 0.64 

50 500 4.3 1 0.0354 500 0.3 0.04914 5282857 4.3 0.035 

50 500 4.3 1 0.0446 500 0.3 0.02457 2641429 4.3 0.07 
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50 500 4.3 1 0.0562 500 0.3 0.01229 1320714 4.3 0.14 

50 500 4.3 1 0.0708 500 0.3 0.00614 660357 4.3 0.28 

50 500 4.3 1 0.0893 500 0.3 0.00307 330179 4.3 0.56 

50 500 4.7 1 0.0285 500 0.3 0.09400 11045000 4.7 0.02 

50 500 4.7 1 0.0360 500 0.3 0.04700 5522500 4.7 0.04 

50 500 4.7 1 0.0453 500 0.3 0.02350 2761250 4.7 0.08 

50 500 4.7 1 0.0571 500 0.3 0.01175 1380625 4.7 0.16 

50 500 4.7 1 0.0719 500 0.3 0.00588 690313 4.7 0.32 

50 500 4.7 1 0.0906 500 0.3 0.00294 345156 4.7 0.64 

50 500 4.7 1 0.1141 500 0.3 0.00147 172578 4.7 1.28 

50 500 5.7 1 0.0425 500 0.3 0.02850 4061250 5.7 0.08 

50 500 5.7 1 0.0535 500 0.3 0.01425 2030625 5.7 0.16 

50 500 5.7 1 0.0674 500 0.3 0.00713 1015313 5.7 0.32 

50 500 5.7 1 0.0850 500 0.3 0.00356 507656 5.7 0.64 

50 500 5.7 1 0.1070 500 0.3 0.00178 253828 5.7 1.28 

50 500 5.7 1 0.1349 500 0.3 0.00089 126914 5.7 2.56 

50 500 7.3 1 0.0310 500 0.3 0.07300 13322500 7.3 0.04 

50 500 7.3 1 0.0391 500 0.3 0.03650 6661250 7.3 0.08 

50 500 7.3 1 0.0493 500 0.3 0.01825 3330625 7.3 0.16 

50 500 7.3 1 0.0621 500 0.3 0.00913 1665313 7.3 0.32 

50 500 8.7 1 0.0811 500 0.3 0.00409 890471 8.7 0.85 

50 500 8.7 1 0.1022 500 0.3 0.00205 445235 8.7 1.7 

50 500 8.7 1 0.1287 500 0.3 0.00102 222618 8.7 3.4 

50 500 8.7 1 0.1622 500 0.3 0.00051 111309 8.7 6.8 
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Figure 4.11 Characteristic wrinkle patterns observed in experiments and simulations for various 

values of 𝐵𝑜 and 𝜏. (A-D) Representative wrinkle patterns in the defect-free (left two) and de-

fect-rich (right two) regimes observed in experiments (upper two) and simulations (lower two). 

(E-H) Wrinkle number 𝑚 versus radial coordinate 𝑟 for the images above them. Solid lines: the-

oretical prediction of wrinkle number by Equation (4.26). (I) A regime diagram, spanned by the 

parameters 𝐵𝑜 and 𝜏, is divided into two regimes where wrinkle patterns are proliferated with de-

fects and free of defects. This figure is adapted from Reference [143].  

 

Defect-free 
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4.5.1 Length scale of wrinkle amplitude  

Figures 4.12 A and C show the azimuthal profile of the out-of-plane deflection at a single ra-

dius, extracted from experiments and simulations. Large modulations of wrinkle amplitude are 

clearly present. Figures 4.12 B and D show the measured 𝑙∥/𝜆̅ at several radii compared to the 

theoretical predictions. Figure 4.12E compares the measured and predicted values of 𝑙∥/𝜆̅ for 

several sheets with varied values of 𝐵𝑜 and 𝜏. No fitting parameters are used. The experiments 

exhibit good agreement with the theory, whereas simulation results are systematically lower than 

expected and approach the predicted values only at large 𝐵𝑜 and small 𝜏. We attribute this dis-

crepancy to the numerical difficulty in reaching the most low-lying energy states and the appar-

ent abundance of metastable states where defects are scattered randomly throughout the film, ra-

ther than gathering in a smaller number of defect-rich zones, which tends to increase 𝑙∥ towards 

the predicted value.  
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Figure 4.12 Amplitude modulations and their lateral length scale 𝑙∥ (normalized by the wave-

length 𝜆). (A) Image intensity profile 𝐼(𝜃) at radius 𝑟 = 26 mm from an experiment with 𝐵𝑜 = 

0.25 and 𝜏 = 10. (B) Radial dependence of 𝑙∥/𝜆 measured in the experiment in panel A (circles), 

compared with the theoretical prediction (solid line) by Equation (4.32). (C) Out-of-plane deflec-
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tion profile 𝜁(𝜃) at radius 𝑟/𝑅𝑖𝑛 = 2.4 in a simulation with 𝐵𝑜= 27 and 𝜏 = 6. (D) Radial depend-

ence of 𝑙∥/𝜆 extracted from the simulation in panel C (circles), compared with the theoretical 

prediction (solid line) by Equation (4.32). (E) Main: Measured 𝑙∥/𝜆 versus the predicted value. 

Inset: The measured wrinkle number compared with its theoretical prediction (solid line) by 

Equation (4.26). Data are sampled at the same radii as the main panel. This figure is adapted 

from Reference [143].  

 

4.6 Summary 

In this work, we studied the Lamé setup, an annular sheet attached to a liquid substrate sub-

jected to tensile loads on its edges, as a prototypical model for more general wrinkling phenom-

ena characterized by a uniform wavelength and radial wrinkle directions. Our theoretical, simula-

tion and experimental results show that the wrinkle patterns of the Lamé setup may either consist 

of a fixed number of wrinkles absent of defects, or be characterized by a uniform wavelength 𝜆̅ 

with modulated amplitude (over a length scale 𝑙∥) that enables the proliferation of defect-rich 

zones. The combined effect of defects and amplitude modulations suggests an analogy between 

thin elastic systems and defect-proliferated phases of liquid crystals and superconductors, allow-

ing us to make predictions about the emerging patterns observed in them.  

While our work addresses only wrinkle problems with a uniform wavelength and radial wrin-

kle directions, we anticipate that the theoretical, numerical, and experimental approaches devel-

oped here may provide a unified framework to predict multiscale patterns in a broad class of 

wrinkle problems in thin sheets [124].  
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Chapter 5: Conclusion and Future Works 

5.1 Conclusion 

In summary, we modeled and simulated the wrinkling of annular sheets and the buckling of 

cylindrical shells by using finite element methods and discrete shell models integrated with en-

ergy minimization and pathfinding algorithms. The results of these two prototypical problems 

reveal complex post-buckling morphologies, and our methods provide unified frameworks for 

studying morphological instabilities in thin solids. The results of each chapter are summarized as 

follows.  

In Chapter 2, our tests showed that among the three discrete shell models (hinge model, trian-

gle averaged model, and quadratic fit model), only the quadratic fit model exhibited mesh-inde-

pendent behaviors, although all models are convergent on an equilateral triangular mesh. For an-

nular wrinkling problems (e.g. Lamé problem) in which there exist a large number of neighbor-

ing stable states, dynamic relaxation simulations of the discrete shell model will be highly sensi-

tive to different meshes or initial perturbations.  

In Chapter 3, we integrated a discrete shell model with energy minimization and pathfinding 

algorithms, to survey the stable states and the transition paths between them for the buckling of 

spherical cap and cylindrical shells. For spherical cap buckling, two qualitatively different re-

gimes were observed: a bistable regime in which the shell remains in the inverted state after the 

removal of the indenter and a monostable regime in which the shell returns to the natural state 

after the removal of the indenter. We found that whether the shell is in the monostable or bistable 

regime depends on a single parameter 𝜆𝑑. For cylindrical shell buckling, we found that the global 

energy minima are either unbuckled states or multiply dimpled states and that the transition 
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states are always singly dimpled states. We then illustrated the buckling energy landscapes as 

disconnectivity graphs and showed that the landscapes for long cylinders are complex and 

glassy, featuring a large number of clustering local energy minima. For cylinders under large 

compressive strains, their landscapes feature many low-energy stable states. Finally, we demon-

strated how the buckling energy landscapes enable us to significantly increase the buckling re-

sistance or stabilize a post-buckling state of a cylindrical shell with almost no increase in its 

overall weight.  

In Chapter 4, we addressed the wrinkle phenomena characterized by a uniform wavelength 

and radial wrinkle directions, through analyzing the wrinkle pattern of an annular sheet attached 

to a liquid substrate subjected to tensile loads on its edges, also known as the Lamé setup. Our 

theoretical, simulation and experimental results show that such phenomena may either consist of 

a fixed number of wrinkles with varying wavelengths or a uniform wavelength with a modulated 

amplitude that enables the proliferation of defect-rich zones. 

5.2 Future works 

Here we present our preliminary results and future work for the simulations of 3D reconfigu-

rable structures, which is based on the collaborative work with Prof. Halim Kusumaatmaja’s 

group at Durham University, UK and Prof. Xueju Wang’s group at the University of Connecti-

cut.  

Reconfigurable 3D structures whose geometries can be actively and reversibly altered be-

tween different configurations are important upon external stimuli (e.g. mechanical forces, mag-

netic fields, hydration, and temperature) [144-147] in a wide range of engineering applications, 

including deployable solar panels [148], electromagnetic metamaterials [149,150], phononics 

[151-153], biomedical devices [154,155], emerging soft robotics [156-158], metasurfaces [159-
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161], and many others. Reconfigurability based on the multistability of structures can potentially 

realize shape changes without the requirement of persistent external stimuli [20-23]. Despite in-

tensive studies and great progress, there is still a lack of fundamental understanding of the princi-

ples that control and tailor the multistable states.  

Here we will search for a set of strategies and design concepts to address this issue. Our ap-

proach relies on 3D structures assembled from ferromagnetic composite films which can be re-

motely and rapidly deformed into multiple distinct states under external magnetic forces and 

maintain those deformed shapes even after the magnetic field is removed, as illustrated in Figure 

5.1A. We explore the energy landscapes of the 3D structures using the minimization and path-

finding algorithms and the discrete shell model mentioned in Chapter 3, to systematically iden-

tify their multistable states and the energy-efficient reconfiguration path.  

Figures 5.1B-E present our simulation predictions for two 3D structures reconfigured into 

distinct stable configurations using a portable disk magnet, with the color in the figures denoting 

the displacement along z-direction in the structure. The peak strain values in all stable states re-

main within the elastic range of the ferromagnetic composite, which ensures structural integrity 

and allows repeated reversible deformation processes without damage to the constituent material. 

Our simulations will be compared with experimental results for the same 3D structures for verifi-

cation.  

Our future works include identifying the minimum energy paths between these stable config-

urations and their energy barriers, and maximizing the energy well depth of targeted configura-

tions, and eliminating small and unfavorable local minima in the design of reconfigurable struc-

tures.  
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Figure 5.1 Magnetically reconfigurable 3D structures. (A) Schematic illustration of the assembly 

and reconfiguration of ferromagnetic 3D structures (courtesy of Prof. Xueju Wang). (B) Simula-

tion predictions for multistable states of two 3D structures.  
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Appendix A: Force Calculation of Discrete Thin Shell Mod-

els 

A.1 Membrane force 

Let 𝐅𝑚𝑖 be the membrane force vector acting on vertex 𝑖. Taking gradient of the discrete 

membrane energy in Section 2.3.1 with respect to coordinate vector 𝐱𝑖 of vertex 𝑖 we have 

 
𝐅𝑚1 =

𝜕𝐸𝑚

𝜕𝐱1
= −𝐴

𝜕𝑈𝑚

𝜕𝐱1
= −𝐴 (

𝜕𝑈𝑚

𝜕𝑠2

𝜕𝑠2

𝜕𝐱1
+

𝜕𝑈𝑚

𝜕𝑠3

𝜕𝑠3

𝜕𝐱1
)

= −2𝐴(𝑎2𝑝𝑠𝑝𝐯13 − 𝑎3𝑝𝑠𝑝𝐯21) 

(A.1) 

 
𝐅𝑚2 =

𝜕𝐸𝑚

𝜕𝐱2
= −𝐴

𝜕𝑈𝑚

𝜕𝐱2
= −𝐴 (

𝜕𝑈𝑚

𝜕𝑠1

𝜕𝑠1

𝜕𝐱2
+

𝜕𝑈𝑚

𝜕𝑠3

𝜕𝑠3

𝜕𝐱2
)

= −2𝐴(𝑎1𝑝𝑠𝑝𝐯32 − 𝑎3𝑝𝑠𝑝𝐯21) 

(A.2) 

 
𝐅𝑚3 =

𝜕𝐸𝑚

𝜕𝐱3
= −𝐴

𝜕𝑈𝑚

𝜕𝐱3
= −𝐴 (

𝜕𝑈𝑚

𝜕𝑠1

𝜕𝑠2

𝜕𝐱3
+

𝜕𝑈𝑚

𝜕𝑠2

𝜕𝑠3

𝜕𝐱3
)

= −2𝐴(𝑎1𝑝𝑠𝑝𝐯32 − 𝑎2𝑝𝑠𝑝𝐯13) 

(A.3) 

A.2 Bending force (hinge model) 

The bending force 𝐅𝑏𝑖 acting on vertex 𝑖 corresponding to the discrete bending energy in 

Section 2.3.2 is 

 
𝐅𝑏𝑖 = −

𝜕𝐸𝑏

𝜕𝐱𝑖
= −𝑘[1 + sin (𝜃 − 𝜃̅)]

𝜕𝜃

𝜕𝐱𝑖
 (A.4) 

where 

 𝜕𝜃

𝜕𝐱1
= −‖𝐯32‖

𝐯21 × 𝐯32

‖𝐯21 × 𝐯32‖2
 (A.5) 
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 𝜕𝜃

𝜕𝐱4
= ‖𝐯32‖

𝐯34 × 𝐯23

‖𝐯34 × 𝐯23‖2
 (A.6) 

 𝜕𝜃

𝜕𝐱2
= (

𝐯12 ∙ 𝐯32

‖𝐯32‖2
− 1)

𝜕𝜃

𝜕𝐱1
−

𝐯34 ∙ 𝐯32

‖𝐯32‖2

𝜕𝜃

𝜕𝐱4
 (A.7) 

 𝜕𝜃

𝜕𝐱3
= (

𝐯34 ∙ 𝐯32

‖𝐯32‖2
− 1)

𝜕𝜃

𝜕𝐱4
−

𝐯12 ∙ 𝐯32

‖𝐯32‖2

𝜕𝜃

𝜕𝐱1
 (A.8) 

A.3 Bending force (triangle-averaged model) 

The bending force 𝐅𝑏𝑘 acting on vertex 𝑖 corresponding to the discrete bending energy in 

Section 2.3.3 is 

 
𝐅𝑏𝑘 = −

𝜕𝐸𝑏

𝜕𝐱𝑘
=

1

2𝐴
[𝛼[(𝜃𝑖 − 𝜃̅𝑖)𝐿𝑖] (

𝜕𝜃𝑖

𝜕𝐱𝑘
𝐿𝑖) + 𝛽

𝜕𝜃𝑖

𝜕𝐱𝑘
𝜃𝑗

𝑇𝑖𝑗
2

𝐿𝑖𝐿𝑗
] (A.9) 

where 
𝜕𝜃𝑖

𝜕𝐱𝑘
 are given by Equations (A.5) ~ (A.8).  

A.4 Bending force (quadratic fit model) 

The bending force 𝐅𝑏𝑘 acting on vertex 𝑘 corresponding to the discrete bending energy in 

Section 2.3.4 is 

 
𝐅𝑏𝑘 = −

𝜕𝐸𝑏

𝜕𝐱𝑘
= −

𝜕𝐸𝑏

𝜕𝑎𝑖

𝜕𝑎𝑖

𝜕𝜃𝑗

𝜕𝜃𝑗

𝜕𝐱𝑘
 (A.10) 

where  

 𝜕𝐸𝑏

𝜕𝑎4
= 8𝛼(𝑎4 − 𝐴4 + 𝑎6 − 𝐴6) + 8𝛽(𝑎4 − 𝐴4) (A.11) 

 𝜕𝐸𝑏

𝜕𝑎5
= 4𝛽(𝑎5 − 𝐴5) (A.12) 

 𝜕𝐸𝑏

𝜕𝑎6
= 8𝛼(𝑎4 − 𝐴4 + 𝑎6 − 𝐴6) + 8𝛽(𝑎6 − 𝐴6) (A.13) 
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 𝜕𝑎𝑖

𝜕𝜃𝑗
= 𝐶𝑖𝑗𝐷𝑗 (A.14) 

and 
𝜕𝜃𝑗

𝜕𝐱𝑘
 are given by Equations (A.5) ~ (A.8). 
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Appendix B: Fortran Subroutines for Discrete Thin Shell 

Models 

! ====================================================================================== 
  
   module dsm 
 
 ! Calculate the energy, gradient and hessian of the discrete thin shell model  
 !   
    implicit none  
    double precision, allocatable, private :: bondlist(:,:), ks(:), r0(:), & 
                                              dihedrallist(:,:), kb(:), phi0(:) 
    integer, private :: nbondlist, nbondtype, ndihedrallist, ndihedraltype, ndof     
 
  contains 
     
    ! ----------------------------------------------------------------------------------- 
     
    subroutine init(blist, dlist, S, r0_, B, phi0_, nnode) 
     
    ! Module initialization 
    !  
    ! Input parameters  
    ! blist(i,j)    Bond list 
    !               blist(i,1) First node of the ith bond 
    !               blist(i,2) Second node of the ith bond 
    !               blist(i,3) Bond Type of the ith bond 
    ! dlist(i,j)    Dihedral list  
    !               dlist(i,1) First node of the ith dihedral 
    !               dlist(i,2) Second node of the ith dihedral 
    !               dlist(i,3) Third node of the ith dihedral 
    !               dlist(i,4) Fourth node of the ith dihedral 
    !               dlist(i,5) Dihedral type of the ith dihedral 
    ! S             Model parameter 
    ! r0_             " 
    ! B               " 
    ! phi0_           " 
    ! nnode         Number of nodes 
     
      implicit none  
      double precision, intent(in) :: S(:), r0_(:), B(:), phi0_(:) 
      integer, intent(in) :: blist(:,:), dlist(:,:), nnode 
      nbondlist = size(blist, 1) 
      nbondtype = size(r0_) 
      ndihedrallist = size(dlist, 1) 
      ndihedraltype = size(phi0_) 
      allocate(bondlist(nbondlist,3), ks(nbondtype), r0(nbondtype)) 
      allocate(dihedrallist(ndihedrallist,5), kb(ndihedraltype), phi0(ndihedraltype)) 
      bondlist = blist 
      ks = S * (sqrt(3d0)/4d0) 
      r0 = r0_  
      dihedrallist = dlist 
      kb = B * (2d0/sqrt(3d0)) 
      phi0 = phi0_  
      ndof = 3*nnode 
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    end subroutine init 
     
    ! ----------------------------------------------------------------------------------- 
     
    subroutine compev(x,e,v) 
     
    ! Compute energy and gradient  
    !  
    ! Input parameters 
    ! x(i)      Nodal coordinates 
    !           x(3*i-2) First coordinate of the ith node    
    !           x(3*i-1) Second coordinate of the ith node 
    !           x(3*i) Third coordinate of the ith node    
    ! Ouput parameters 
    ! e         Energy  
    ! v(i)      Gradient de/dxi 
      
      implicit none  
      double precision, intent(in) :: x(ndof)       
      double precision, intent(out) :: e, v(ndof) 
      integer :: n, i1, i2, i3, i4, bondtype, dihedraltype, m, i 
      double precision :: delx, dely, delz, rsq, r, dr, rk, fbond, & 
                          vb1x, vb1y, vb1z, vb2x, vb2y, vb2z, vb2xm, vb2ym, vb2zm, vb3x, & 
                          vb3y, vb3z, ax, ay, az, bx, by, bz, rasq, rbsq, rgsq, rg, & 
                          rginv, ra2inv, rb2inv, rabinv, c, s, p, ddf1, df1, sin_shift, & 
                          cos_shift, fg, hg, fga, hgb, gaa, gbb, dtfx, dtfy, dtfz, dtgx, & 
                          dtgy, dtgz, dthx, dthy, dthz, df, sx2, sy2, sz2, f1x, f1y, f1z, & 
                          f2x, f2y, f2z, f3x, f3y, f3z, f4x, f4y, f4z 
      e = 0d0  
      v = 0d0 
       
      ! Stretching energy and gradient   
      do n = 1,nbondlist 
        i1 = bondlist(n,1) 
        i2 = bondlist(n,2) 
        bondtype = bondlist(n,3) 
        delx = x(3*i1-2) - x(3*i2-2) 
        dely = x(3*i1-1) - x(3*i2-1) 
        delz = x(3*i1) - x(3*i2) 
        rsq = delx*delx + dely*dely + delz*delz 
        r = sqrt(rsq)         
        dr = r - r0(bondtype) 
        rk = ks(bondtype) * dr 
        if (r > 0d0) then 
            fbond = -2d0*rk/r 
        else 
            fbond = 0d0 
        endif  
        e = e + rk*dr 
        v(3*i1-2) = v(3*i1-2) - delx*fbond 
        v(3*i1-1) = v(3*i1-1) - dely*fbond 
        v(3*i1) = v(3*i1) - delz*fbond 
        v(3*i2-2) = v(3*i2-2) + delx*fbond 
        v(3*i2-1) = v(3*i2-1) + dely*fbond 
        v(3*i2) = v(3*i2) + delz*fbond 
      enddo 
       
      ! Bending energy and gradient  
      do n = 1,ndihedrallist 
        i1 = dihedrallist(n,1) 
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        i2 = dihedrallist(n,2) 
        i3 = dihedrallist(n,3) 
        i4 = dihedrallist(n,4) 
        dihedraltype = dihedrallist(n,5) 
        vb1x = x(3*i1-2) - x(3*i2-2) 
        vb1y = x(3*i1-1) - x(3*i2-1) 
        vb1z = x(3*i1) - x(3*i2) 
        vb2x = x(3*i3-2) - x(3*i2-2) 
        vb2y = x(3*i3-1) - x(3*i2-1) 
        vb2z = x(3*i3) - x(3*i2);       
        vb2xm = -vb2x 
        vb2ym = -vb2y 
        vb2zm = -vb2z 
        vb3x = x(3*i4-2) - x(3*i3-2) 
        vb3y = x(3*i4-1) - x(3*i3-1) 
        vb3z = x(3*i4) - x(3*i3) 
        ax = vb1y*vb2zm - vb1z*vb2ym 
        ay = vb1z*vb2xm - vb1x*vb2zm 
        az = vb1x*vb2ym - vb1y*vb2xm 
        bx = vb3y*vb2zm - vb3z*vb2ym 
        by = vb3z*vb2xm - vb3x*vb2zm 
        bz = vb3x*vb2ym - vb3y*vb2xm        
        rasq = ax*ax + ay*ay + az*az 
        rbsq = bx*bx + by*by + bz*bz 
        rgsq = vb2xm*vb2xm + vb2ym*vb2ym + vb2zm*vb2zm        
        rg = sqrt(rgsq)        
        rginv = 0d0 
        ra2inv = 0d0 
        rb2inv = 0d0 
        if (rg > 0d0) then 
            rginv = 1d0/rg 
        endif 
        if (rasq > 0d0) then 
            ra2inv = 1d0/rasq 
        endif 
        if (rbsq > 0d0) then 
            rb2inv = 1d0/rbsq 
        endif         
        rabinv = sqrt(ra2inv*rb2inv)       
        c = (ax*bx + ay*by + az*bz)*rabinv 
        s = rg*rabinv*(ax*vb3x + ay*vb3y + az*vb3z)      
        if (c > 1d0) then 
            c = 1d0 
        endif 
        if (c < -1d0) then 
            c = -1d0 
        endif 
        p = 1d0 
        ddf1 = 0d0 
        df1 = 0d0         
        ddf1 = p*c - df1*s 
        df1 = p*s + df1*c 
        p = ddf1 
        cos_shift = cos(phi0(dihedraltype)) 
        sin_shift = sin(phi0(dihedraltype))  
        p = p*cos_shift + df1*sin_shift 
        df1 = df1*cos_shift - ddf1*sin_shift 
        df1 = -1d0 * df1 
        p = p + 1d0  
        fg = vb1x*vb2xm + vb1y*vb2ym + vb1z*vb2zm 
        hg = vb3x*vb2xm + vb3y*vb2ym + vb3z*vb2zm 
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        fga = fg*ra2inv*rginv 
        hgb = hg*rb2inv*rginv 
        gaa = -ra2inv*rg 
        gbb = rb2inv*rg 
        dtfx = gaa*ax 
        dtfy = gaa*ay 
        dtfz = gaa*az 
        dtgx = fga*ax - hgb*bx 
        dtgy = fga*ay - hgb*by 
        dtgz = fga*az - hgb*bz 
        dthx = gbb*bx 
        dthy = gbb*by 
        dthz = gbb*bz         
        e = e + kb(dihedraltype) * p    
        df = -kb(dihedraltype) * df1 
        sx2 = df*dtgx 
        sy2 = df*dtgy 
        sz2 = df*dtgz        
        f1x = df*dtfx 
        f1y = df*dtfy 
        f1z = df*dtfz 
        f2x = sx2 - f1x 
        f2y = sy2 - f1y 
        f2z = sz2 - f1z 
        f4x = df*dthx 
        f4y = df*dthy 
        f4z = df*dthz 
        f3x = -sx2 - f4x 
        f3y = -sy2 - f4y 
        f3z = -sz2 - f4z    
        v(3*i1-2) = v(3*i1-2) - f1x  
        v(3*i1-1) = v(3*i1-1) - f1y 
        v(3*i1) = v(3*i1) - f1z 
        v(3*i2-2) = v(3*i2-2) - f2x  
        v(3*i2-1) = v(3*i2-1) - f2y 
        v(3*i2) = v(3*i2) - f2z 
        v(3*i3-2) = v(3*i3-2) - f3x  
        v(3*i3-1) = v(3*i3-1) - f3y 
        v(3*i3) = v(3*i3) - f3z 
        v(3*i4-2) = v(3*i4-2) - f4x  
        v(3*i4-1) = v(3*i4-1) - f4y 
        v(3*i4) = v(3*i4) - f4z                                              
      enddo 
       
    end subroutine compev  
     
    ! ----------------------------------------------------------------------------------- 
 
    subroutine comph(x,h) 
     
    ! Compute hessian 
    !  
    ! Input parameters 
    ! x(i)      Nodal coordinates 
    !           x(3*i-2) First coordinate (x) of the ith node    
    !           x(3*i-1) Second coordinate (y) of the ith node 
    !           x(3*i) Third coordinate (z) of the ith node    
    ! Ouput parameters 
    ! h(i,j)    Hessian de2/dxidxj 
      
      use hdn  
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      implicit none  
      double precision, intent(in) :: x(ndof) 
      double precision, intent(out) :: h(ndof,ndof) 
      integer :: n, i1, i2, i3, i4, i, j, bondtype, dihedraltype, idx6(6), idx12(12), k 
      type(hyperdual) :: x6(6), x12(12), x6mod(6), x12mod(12), e, delx, dely, delz, rsq, & 
                        r, r0hdn, dr, kshdn, rk, vb1x, vb1y, vb1z, vb2x, vb2y, vb2z, & 
                        vb2xm, vb2ym, vb2zm, vb3x, vb3y, vb3z, ax, ay, az, bx, by, bz, & 
                        rasq, rbsq, rgsq, rg, rginv, ra2inv, rb2inv, rabinv, c, s, p, & 
                        ddf1, df1, sin_shift, cos_shift, fg, hg, fga, hgb, gaa, gbb, & 
                        dtfx, dtfy, dtfz, dtgx, dtgy, dtgz, dthx, dthy, dthz, kbhdn 
      double precision :: h6(6,6), h12(12,12) 
      type(hyperdual), parameter :: zero=hyperdual(0d0,0d0,0d0,0d0), & 
                                    one=hyperdual(1d0,0d0,0d0,0d0)       
      h = 0d0 
       
      ! Hessian of stretching energy  
      do n = 1,nbondlist 
        i1 = bondlist(n,1) 
        i2 = bondlist(n,2) 
        bondtype = bondlist(n,3) 
        idx6 = [3*i1-2, 3*i1-1, 3*i1, 3*i2-2, 3*i2-1, 3*i2] 
        do i = 1,6 
          x6(i) = hyperdual(x(idx6(i)),0d0,0d0,0d0) 
        enddo  
        do i = 1,6 
          do j = 1,6 
            x6mod = x6  
            x6mod(i) = x6mod(i) + hyperdual(0d0,1d0,0d0,0d0) 
            x6mod(j) = x6mod(j) + hyperdual(0d0,0d0,1d0,0d0) 
            delx = x6mod(1) - x6mod(4) 
            dely = x6mod(2) - x6mod(5) 
            delz = x6mod(3) - x6mod(6) 
            rsq = delx*delx + dely*dely + delz*delz 
            r = rsq**(1d0/2d0) 
            r0hdn = hyperdual(r0(bondtype),0d0,0d0,0d0) 
            dr = r - r0hdn 
            kshdn = hyperdual(ks(bondtype),0d0,0d0,0d0) 
            rk = kshdn * dr  
            e = rk * dr  
            h6(i,j) = dual12(e)  
          enddo 
        enddo 
        h(idx6,idx6) = h(idx6,idx6) + h6 
      enddo  
       
      ! Hessian of bending energy  
      do n = 1,ndihedrallist 
        i1 = dihedrallist(n,1) 
        i2 = dihedrallist(n,2) 
        i3 = dihedrallist(n,3) 
        i4 = dihedrallist(n,4) 
        dihedraltype = dihedrallist(n,5) 
        idx12 = [3*i1-2, 3*i1-1, 3*i1, 3*i2-2, 3*i2-1, 3*i2, 3*i3-2, 3*i3-1, 3*i3, & 
          3*i4-2, 3*i4-1, 3*i4] 
        do i = 1,12 
          x12(i) = hyperdual(x(idx12(i)),0d0,0d0,0d0) 
        enddo  
        do i = 1,12 
          do j = 1,12  
            x12mod = x12  
            x12mod(i) = x12mod(i) + hyperdual(0d0,1d0,0d0,0d0) 
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            x12mod(j) = x12mod(j) + hyperdual(0d0,0d0,1d0,0d0) 
            vb1x = x12mod(1) - x12mod(4) 
            vb1y = x12mod(2) - x12mod(5) 
            vb1z = x12mod(3) - x12mod(6) 
            vb2x = x12mod(7) - x12mod(4) 
            vb2y = x12mod(8) - x12mod(5) 
            vb2z = x12mod(9) - x12mod(6)      
            vb2xm = -vb2x 
            vb2ym = -vb2y 
            vb2zm = -vb2z 
            vb3x = x12mod(10) - x12mod(7) 
            vb3y = x12mod(11) - x12mod(8) 
            vb3z = x12mod(12) - x12mod(9) 
            ax = vb1y*vb2zm - vb1z*vb2ym 
            ay = vb1z*vb2xm - vb1x*vb2zm 
            az = vb1x*vb2ym - vb1y*vb2xm 
            bx = vb3y*vb2zm - vb3z*vb2ym 
            by = vb3z*vb2xm - vb3x*vb2zm 
            bz = vb3x*vb2ym - vb3y*vb2xm        
            rasq = ax*ax + ay*ay + az*az 
            rbsq = bx*bx + by*by + bz*bz 
            rgsq = vb2xm*vb2xm + vb2ym*vb2ym + vb2zm*vb2zm        
            rg = rgsq**(1d0/2d0)        
            rginv = zero 
            ra2inv = zero 
            rb2inv = zero 
            if (real_(rg) > 0d0) then 
                rginv = one/rg 
            endif 
            if (real_(rasq) > 0d0) then 
                ra2inv = one/rasq 
            endif 
            if (real_(rbsq) > 0d0) then 
                rb2inv = one/rbsq 
            endif         
            rabinv = (ra2inv*rb2inv)**(1d0/2d0)     
            c = (ax*bx + ay*by + az*bz)*rabinv 
            s = rg*rabinv*(ax*vb3x + ay*vb3y + az*vb3z)      
            if (real_(c) > 1d0) then 
                c%a = 1d0 
            endif 
            if (real_(c) < -1d0) then 
                c%a = -1d0 
            endif 
            p = one 
            ddf1 = zero 
            df1 = zero         
            ddf1 = p*c - df1*s 
            df1 = p*s + df1*c 
            p = ddf1 
            cos_shift = hyperdual(cos(phi0(dihedraltype)),0d0,0d0,0d0) 
            sin_shift = hyperdual(sin(phi0(dihedraltype)),0d0,0d0,0d0) 
            p = p*cos_shift + df1*sin_shift 
            df1 = df1*cos_shift - ddf1*sin_shift 
            df1 = -df1 
            p = p + one  
            fg = vb1x*vb2xm + vb1y*vb2ym + vb1z*vb2zm 
            hg = vb3x*vb2xm + vb3y*vb2ym + vb3z*vb2zm 
            fga = fg*ra2inv*rginv 
            hgb = hg*rb2inv*rginv 
            gaa = -ra2inv*rg 
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            gbb = rb2inv*rg 
            dtfx = gaa*ax 
            dtfy = gaa*ay 
            dtfz = gaa*az 
            dtgx = fga*ax - hgb*bx 
            dtgy = fga*ay - hgb*by 
            dtgz = fga*az - hgb*bz 
            dthx = gbb*bx 
            dthy = gbb*by 
            dthz = gbb*bz    
            kbhdn = hyperdual(kb(dihedraltype),0d0,0d0,0d0)      
            e = kbhdn*p  
            h12(i,j) = dual12(e)  
          enddo 
        enddo 
        h(idx12,idx12) = h(idx12,idx12) + h12 
      enddo 
       
    end subroutine comph  
     
    ! ----------------------------------------------------------------------------------- 
 
    subroutine comphdiff(x,h) 
      implicit none  
      double precision, intent(in) :: x(ndof) 
      double precision, intent(out) :: h(ndof,ndof) 
      double precision :: v1(ndof), v2(ndof), dx(ndof), etmp 
      double precision, parameter :: eps0=1d-5 
      integer :: i  
      do i = 1,ndof 
        dx = 0d0 
        dx(i) = eps0 
        call compev(x-dx,etmp,v1) 
        call compev(x+dx,etmp,v2)  
        h(:,i) = (v2-v1)/(2d0*eps0)  
      enddo 
    end subroutine comphdiff  
   
  end module dsm 
   
  ! ===================================================================================== 
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