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Abstract

This dissertation studies nonparametric identification and estimation of stochastic frontier

models. It is composed of three chapters. The first chapter investigates the identification and

estimation of a cross sectional stochastic frontier model with Laplacian errors and unknown

variance, which is built on a nonparametric density deconvolution strategy. Chapter two

studies a zero-inefficiency stochastic frontier model utilizing a penalized sieve estimator,

which allows flexible function forms and arbitrary distributions of inefficiency. The third

chapter explores identification and estimation of a nonparametric panel stochastic frontier

model based on Kotlarski’s Lemma and moments derived from conditional characteristic

functions.
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Chapter 1

Density Deconvolution with Laplace Errors and

Unknown Variance

Jun Cai1, William C. Horrace2, Christopher F. Parmeter3

1.1 Introduction

Deconvolution uses kernel techniques to estimate the density (the target density) of a random

variable (u) in the presence of an independent and additive noise term (v). Most deconvolu-

tion estimators are for a random cross-section of observations from a noisy random variable

(i.e., ε = u + v), where the noise distribution (fv) is known. If we know fv and (hence) its

characteristic function, then under regularity conditions we can calculate the empirical char-

acteristic function of ε and use the Fourier inversion formula to consistently point estimate

fu. Fan (1991) shows that convergence rates for kernel deconvolution estimators depend

on the smoothness of the noise distribution, where smoothness is characterized by the tail

behavior of the associated characteristic function. Specifically, if v is from the super-smooth

family (e.g., normal or Cauchy), the fastest convergence rate is logarithmic in the sample

1Department of Economics, Syracuse University, jcai106@syr.edu.
2Department of Economics, Syracuse University, whorrace@syr.edu.
3Department of Economics, University of Miami, cparmeter@bus.miami.edu.
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size (n), and if noise is from the ordinary-smooth family (e.g. Laplace or gamma), the fastest

rate is polynomial in n.4

However, in applications (like the stochastic frontier model) it may be more practical

to assume that the noise distribution is known up to its variance. Hence, Meister (2006)

develops a semi-uniformly consistent estimator of the target density and a “truncation”

device estimator for the unknown noise variance, when the noise density is super-smooth

(e.g., normal) and the target density is ordinary-smooth (e.g., gamma), which bounds the

decay of the tails of its characteristic function.5 Horrace and Parmeter (2011) adapt the

estimator of Meister (2006) to the stochastic frontier model (Aigner et al., 1977), where the

noisy random variable (ε) is appended to a linear regression model, v is normally distributed,

and u is ordinary-smooth and non-negative.6 That is, for a linear production function with

normally distributed (super-smooth) noise (v), we may estimate the density of technical

inefficiency (u), if it belongs to the ordinary-smooth family (e.g., exponential or gamma).

Unfortunately, the convergence results of Fan (1991) still apply: both the Meister (2006) and

Horrace and Parmeter (2011) estimators converge at logarithmic rates. Therefore, it natural

to consider a version of Horrace and Parmeter (2011) where noise is Laplace (ordinary-

smooth), so as to achieve polynomial convergence rates for estimators of the density of

technical inefficiency. This is the goal of this paper.

Laplace noise is not unprecedented in the literature. Horrace and Parmeter (2018) develop

a parametric stochastic frontier model with Laplace noise which possess useful features for

ranking and selecting efficient firms.7 Meister (2004) shows that in a deconvolution problem

if the noise distribution is misspecified, it is always better to assume Laplace noise rather

4 We give a precise definition of smoothness in the sequel. Deconvolution applications for v normal
(super-smooth) abound. See Stefanski and Carroll, 1990; Neumann, 1997; Johannes, 2009; Wang and Ye,
2012.

5 Others are Butucea and Matias (2004) and Butucea, Matias, and Pouet (2008). The Meister (2006)
estimator is uniformly consistent relative to the target distributional family but individually relative the
noise distributional family. That is, consistency of the estimator does not hold uniformly over all noise
distributions.

6Horowitz and Markatou (1996) consider deconvolution in the linear regression model for panel data.
7Horrace and Parmeter do maximum likelihood estimation of the stochastic frontier model, not decon-

volution.
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than normal, because normal noise produces infinite risk while Laplace noise produces finite

risk. A similar result arises in the simulations of Horrace and Parmeter (2018) who find that

the mean squared error (MSE) of the parametric stochastic frontier model is smaller with

Laplace noise than with normal noise under misspecification. Errors-in-variable models have

recently considered Laplace errors. See Carroll et al. (2006), Koul and Song (2014), Song et

al. (2016), Cao (2016) and references therein. Finally, maximum likelihood estimation with

Laplace errors produces the least absolute deviations (LAD) estimator, and applications of

this method are plentiful in statistics, finance, engineering, and other applied sciences (see

Dodge, 1987, 1992, 1997 and Dodge and Falconer, 2002).

Our aim here is to provide a complete account of Laplace kernel deconvolution and to

develop a regression-based deconvolution estimator that does not require the variance of the

Laplace distribution to be known. We modify the “variance truncation device” of Meister

(2006) to bound of the variance of the noise (v) with the variance of the noisy random

variable (ε). Target density estimation is drastically improved (in terms of convergence) with

Laplace noise and is robust to misspecification of the noise distribution (per Meister, 2004).

Moreover, we offer practical guidance and an adaptive procedure for selecting the smoothness

parameters which are key to implementation of the proposed techniques (and which will be

discussed later). This adaptive procedure is new in the literature and offers sound footing

for practical use of these methods. Lastly, we apply the Laplace deconvolution estimator

to two restricted versions of the model: a stochastic (cost) frontier model (SFM), where

u is restricted non-positive, and a pure deconvolution problem, where the linear regression

parameters are restricted to equal zero.

The paper is organized as follows. In Section 1.2 we discuss the basic issues surrounding

deconvolution in the regression model and introduce the modified variance truncation device

under Laplace errors (noise). Section 1.3 derives large sample properties of the estimator

under certain regularity conditions. Two extensions are considered in Section 1.4. Section

1.5 contains a variety of Monte Carlo results demonstrating the finite sample performance of

3



the proposed estimator as well as issues pertaining to robustness of the choice of the Laplace

noise. In Section 1.6 we provide two practical applications to illustrate the utility of the

proposed methodology. Conclusions are in Section 1.7.

1.2 The Laplace Convolution Problem

Consider the error component model (ECM) in the cross sectional setting:

yj = x′jβ + uj + vj = x′jβ + εj, j = 1, . . . , n. (1.1)

Here j indexes individuals or firms, β is a parameter vector of dimension q to be estimated

and exogenous covariates x ∈ Rq. The ε is a composed error term, u is the target error

component, and v is statistical noise. Depending on assumptions on u, the model in (1)

can be a cross sectional stochastic frontier model (e.g., u ∼ Exp(σ2
u)), a linear regression

with measurement error (e.g., yj = x∗jβ + vj, where x∗j = xj + ej, uj = β ∗ ej), or a pure

measurement error model (e.g., β = 0). A large statistical literature investigates the β = 0

model with known or partially-known error distribution of v (see Meister, 2009).8 In this

setting, deconvolution is complicated by the fact that only cross sectional data are available.

Following the literature (i.e., Fan, 1991; Meister, 2006; Horrace and Parmeter, 2011), we

make the following assumptions on the random components of the model and the covariates

when present.

Assumption 1. The xj, vj and uj are pairwise independent for all j = 1, . . . , n.

Let the probability densities of the error components be fv(z), fu(z) and fε(z) with

corresponding characteristic functions hv(τ), hu(τ) and hε(τ). Based on the independence

8Neumann (1997), Johannes (2009), and Wang and Ye (2012) study deconvolution with fully unknown
error distribution but require either an additional sample of the error or repeated observations, yjt.
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between vj and uj in Assumption 1,

hε(τ) = hv(τ)hu(τ). (1.2)

We restrict v to the family of Laplace densities with the following assumption.

Assumption 2. The distribution of v is a member of the Laplace family with zero mean and

unknown variance, i.e. L = {Laplace(0, b) : b2 > 0}.

Hence, the density of v is known up to its variance (2b2), and the characteristic function of

v is hv(τ) = (1 + b2τ 2)−1, so that,

hu(τ) =
hε(τ)

hv(τ)
= (1 + b2τ 2)hε(τ). (1.3)

We restrict u to be ordinary-smooth (Fan, 1991) with the following assumption.

Assumption 3. Assume u is ordinary-smooth. Namely, u belongs to the family Fu =
{
hu :

C1|τ |−δ ≤ |hu(τ)| ≤ C2|τ |−δ, for |τ | ≥ T > 0
}

where 0 < C1 < C2 and δ > 1, δ 6= 2.

Assumption 3 dictates tail behavior of the characteristic function of u (smoothness of the

density of u), and positive constants C1, C2 and δ are smoothness parameters. The lower

bound, C1, and upper bound, C2, ensure the rate of decay of the tails of the characteristic

function does not approach zero too rapidly or too slowly and are needed for identification.

Constants C1 and C2 become irrelevant when T gets large. Practically speaking, we only

use the lower bound to define our variance truncation device, so only C1 is relevant to our

estimator. We assume C1 and δ to be known for now but will relax this in the sequel.9

Constant δ is the smoothness order, ensuring polynomial tail behavior of the characteristic

function, and includes a wide array of nonparametric and analytical families (Horrace and

Parmeter, 2011). Common families and their polynomial smoothness orders are tabulated in

Table 3.1. For example, the Symmetric Uniform family of distributions has polynomial order

9Knowing C1 and δ does not imply knowing V (u) nor does it uniquely determine the analytic family.
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δ = 1, and the Laplace family has δ = 2. We restrict δ 6= 2 so that the target density cannot

be Laplace, allowing our estimator to appropriately assign the target and noise distributions.

That is, if u and v are both Laplace, we cannot determine which distribution is the target

and which is the noise.10 In the parlance of frontier estimation, when δ = 2 we cannot

distinguish the signal from the noise. Letting δ = 2 does not preclude deconvolution per

se. For example, the deconvolution convolution estimator of Dattner et al. (2011) relies

on very general classes of distributions for the target and noise densities that includes the

Laplace-Laplace convolution as a special case, and consistent target density estimation is

achieved as long as the error variance is known. The restriction in Assumption 3 that δ > 1

does not preclude a nonparamteric family of densities in Table 3.1 that is arbitrarily close

a family with δ = 1 like the Uniform or the Exponential (i.e, a Gamma with k = 1 in the

Table), which have both been employed in Stochastic Frontier Analysis.

Note that Meister (2006) assumes different distributional families for u and v (i.e.,

ordinary-smooth and super-smooth, respectively) and that simplifies derivation of the con-

vex upper bound of the criterion function in that paper. The intuition is that as n goes

to infinity the tail of hv (normal noise) decays faster than that of hu. Turning to Table

3.1, we see that the normal distribution has polynomial order δ → ∞, so the intuition is

justified.11 In the current paper similar intuition applies, but the key here is that the tails

of characteristic function of u and v decay at different rates with the noise characteristic

function decaying at a rate fixed at δ = 2 by design.

Under Assumptions 2 and 3, the Fourier inversion formula returns the density of u,

fu(z) =
1

2π

∫
e−iτz(1 + b2τ 2)hε(τ)dτ, (1.4)

where i =
√
−1. If noise v ∼ G = {N(0, σ2) : σ2 > 0 unknown}, Meister (2006) shows

10We are grateful to an anonymous reviewer who alerted us to this identification issue. It should be noted
that the restriction eliminates a broad class of ordinary-smooth distributions, not just the Laplace.

11Indeed neither the Normal nor Cauchy families of distribution are ordinary-smooth; they are super-
smooth. See Fan (1991).
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that there is no uniformly consistent estimator of fu(z). His deconvolution estimator of

fu(z) is semi-uniformly consistent in the sense that for a given density in G whose variance

is bounded, a deconvolution estimator is uniformly consistent but not uniformly consistent

over all densities within G. This is the price one pays for not knowing the variance. Here

we focus on the Laplace noise case with unknown variance. As we shall demonstrate, with

Laplace noise one still pays a price for not knowing the variance, but the cost is not as high

as in the case with normally distributed noise.

Since hε is unknown, we may rely on the empirical characteristic function to recover the

density of u based on equation (1.4),

ĥε(τ) =

∣∣∣∣ 1n
n∑
j=1

eiτεj
∣∣∣∣. (1.5)

As mentioned previously, εj is unobserved when β 6= 0. Therefore, we must estimate it by

consistently estimating the unknown parameter β first. That is, for a consistent estimator

βn, define ε̂j = yj − x′jβn. Again, we take advantage of the empirical characteristic function

of the residuals, which is defined as

ĥε̂(τ) =

∣∣∣∣ 1n
n∑
j=1

eiτ ε̂j
∣∣∣∣. (1.6)

Replacing hε with ĥε or ĥε̂ in equation (4) does not ensure that the integration exists, so

we convolve the integrand with a smoothing kernel (Stefanski and Carroll, 1990). Define

a random variable z with the usual Parzen (1962) kernel density K(z) and corresponding

(invertible) characteristic function hK(τ). Finite support of the characteristic function hK(τ)

is required to ensure the integrand exists and the resulting estimate is a valid density function.

Using K(z) = (πz)−1sin(z), (hK(τ) = 1{|τ | ≤ 1}), our estimator of the density of u is,

f̂u(z) =
1

2π

∫ wn

−wn
e−iτz(1 + b̂2

nτ
2)

∣∣∣∣ 1n
n∑
j=1

eiτ ε̂j
∣∣∣∣dτ, (1.7)
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where the limits of the integration are a function of an increasing sequence of positive con-

stants wn, which represent the degree of smoothing. In the sequel, {wn}n∈N, {kn}n∈N and

{b2
n}n∈N denote sequences of positive numbers which will be determined later. kn is an in-

termediate sequence that will be useful for the case where C1 and δ are unknown. When C1

and δ are known, set wn = kn.12

Due to the upper and lower bound conditions on the target density function in As-

sumption 3, we are propose an estimator of unknown error variance parameter, b2, that is

(semi-uniformly) consistent. Therefore, setting b̃2
n = k−2

n

(
C1k

−δ
n

ĥε̂(kn)
− 1
)

with constants δ > 1

and C1 > 0, we propose an explicit truncation device for the unknown variance parameter:

b̂2
n =


0 if b̃2

n < 0

b̃2
n if b̃2

n ∈ [0, b2
n]

b2
n if b̃2

n > b2
n,

(1.8)

where the variance parameter bound is b2
n = 1

2
V (ε̂), half the variance of the estimated sum

of the error components. The intuition is that we choose an increasing sequence to cover

the unknown variance parameter, b̃2
n, but bound it by half the total variance.13 This is a

modified version of the variance truncation device of Meister (2006).

What distinguishes our truncation device from that in Meister (2006) is that the variance

of the estimated compound error is incorporated as a natural upper bound of the unknown

variance of random noise v. Compared to the variance truncation device of Meister (2006),

ours is more informative and converges faster, while still covering the unknown error variance

associated with Laplace errors. Meister (2006) uses the bound b2
n = 1

4
ln lnn for deconvo-

lution with normal errors, and his bound arises directly from the characteristic function of

the normal distribution and implicitly requires a very large sample size n. The modified

truncation device, b̂2
n, is an important contribution of this paper which can also be applied

12In Section 1.4, we propose setting wn = kn/ ln kn in the case C1 and δ are not fully known.
13Recall that for a Laplace distribution as defined in Assumption 2, the variance is V (v) = 2b2. Moreover,

V (v) < V (ε) under Assumption 1. Hence, a natural upper bound for b2 is one-half the variance.
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in the setting of Meister (2006). Its attractiveness and usefulness will be demonstrated in the

simulation section. We now discuss semi-uniform consistency of the Laplace deconvolution

estimator in equation 7 within current setting.

1.3 Asymptotic Theory

To demonstrate that the unknown variance deconvolution estimator retains its asymptotic

properties when the composed error is estimated, we introduce two additional conditions

that will be useful in the Lemmas and Theorem to follow.

Assumption 4. The distribution of x has bounded support.

Assumption 5. The estimator βn converges at a rate of square root n. That is,
√
n(βn−β) =

Op(1) as n→∞ .

Assumption 4 follows Horowitz and Markatou (1996) while Assumption 5 guarantees that

the difference between the composed errors and estimated errors is asymptotically negligible.

In the pure deconvolution problem, β = 0, Assumption 5 is trivially satisfied. Moreover, the

conditional mean function x′jβ may suffer from misspecification but can be estimated with a

nonparametric na convergence rate and a = 2
4+q

. We will discuss this case in the extensions

in Section 1.4.

To establish semi-uniform consistency of f̂u, we introduce the following lemmas.

Lemma 1. For Assumptions 1, and 3-5 and Ln = {Laplace(0, b) : b2 ∈ (0, b2
n]}, the mean

integrated squared error (MISE) of (1.7) is

sup
g∈Ln

sup
f∈Fu

Ef,g||f̂u − fu||2L2
≤ B + V + E,

where B ≤ const1 × w1−2δ
n ,

V ≤ const2 × n−1wn(1 + b2
nw

2
n)2 + const3 × n−1w3

n(1 + b2
nw

2
n)2 ,
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E ≤ const4 × supg∈Ln supf∈Fu

(
wn
∫ 1

−1
|hu(swn)|2

(
dn
b2

)2
ds+ wn

∫ 1

−1
|hu(wns)|2 b

4
n

b4
× Pf,g(|b̂2

n −

b2| > dn)ds
)

, with dn := 1
wn

; f and g are the probability density function in distribution

family Fu and Ln, respectively, and constj are positive constants for j = 1, 2, 3, 4.

The proof is in the appendix. Notice the distinction between Ln above and L in As-

sumption 2. The former is the family of Laplace distributions with an upper bound on the

variance and is a subset of the latter.14 Following Horrace and Parmeter (2011), the B term

is a bias component which is bounded by the ordinary-smoothness of fu under Assumption

3. The V terms are variance components. The E term is a hybrid bias-variance component

in which the first integral behaves like squared bias and the second integral looks like a vari-

ance. This entire bound exhibits the usual bias-variance trade-off in nonparametric density

estimation. Note that the second addend of V arises from the regression function, which

does not appear in the pure deconvolution setting of Meister (2006).

Establishing the convergence rate of E is not straight-forward. We need the following

Lemma to assist in determining it.

Lemma 2. Let dn, f and g be the same as in Lemma 1. Then supg∈Ln supf∈Fu Pf,g
(
|b̂2
n−b2| >

dn
)
≤ const× n−1k2δ

n (1 + b2
nk

2
n)(1 + k2

n).

The proof is in the appendix. Compared to deconvolution with normal noise as in Horrace

and Parmeter (2011), estimation of ε matters here. That is, the conditional mean function

in Horrace and Parmeter (2011) is linear, so their estimated error converges at a rate n1/2,

which is much faster than the logarithmic rate of their target density estimator. Therefore,

estimation of the error can effectively be ignored. Here, both βn and f̂u converge at poly-

nomial rates, so there is an additional effect on the convergence rate of the estimator of the

target density.15 Given that we replace ε with a consistent estimator, we have an additional

14In Meister (2006), the bounding of the normal variance is what leads to semi-uniformly consistency (as
opposed to uniform consistency). Here, for Laplace errors, we still impose this “strong” condition for ease
of proof. However, it may not be a necessary condition.

15The compound effect of estimating the regression function will slow the target density rate compared
to pure (non-regression) deconvolution, but the final rate is not a simple algebraic sum of the rates.
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term k2
n in Lemma 2, as well as the characteristic function of the Laplace distribution, em-

bodied in the term (1+b2
nk

2
n). The second addend of E in Lemma 1, together with the upper

bound of B and the first term in E, ensures convexity of the entire bound with respect to

the bandwidth parameter kn. Therefore, the optimal bandwidth wn, which is a function of

kn, and the entire convergence rate of the density estimator can be determined.

Notice that neither of the proofs of the above two lemmas leverage anything on the as-

sumption that the smoothness parameters of the target density are known (or not). However,

for joint minimization of the upper bounds of MISE of Lemma 1, this assumption plays a

role. That is, if the smoothness parameters are fully known (i.e., C1 and δ) tight bounds can

be achieved by setting wn = kn; otherwise, the best general upper bound can be reached by

setting wn = kn/ ln kn. The latter case is considered in the next section. First, we introduce

the following theorem when C1 and δ are known.

Theorem 1. Assume δ and C1 are known. Under Assumption 1, 3-5, set {b2
n}n∈N = 1

2
V (ε̂)

and wn = kn with {kn}n∈N = {( n
b2n

)
1

6+2δ }n∈N, if 1 < δ ≤ 1.5 or {kn}n∈N = {( n
b8n

)
1

3+4δ }n∈N, if

δ > 1.5. For any g ∈ Ln, the proposed deconvolution kernel density estimator in equation

(1.7) is bounded from above as follows:

sup
fu∈Fu

Ef,g||f̂u − fu||2L2
≤ n−

2δ−1
6+2δ if 1 ≤ δ ≤ 1.5,

and

sup
fu∈Fu

Ef,g||f̂u − fu||2L2
≤ n−

2δ−1
3+4δ if δ > 1.5

where δ is defined in Assumption 3.

The proof is in the appendix. The proposed density estimator is semi-uniformly consis-

tent. That is, f̂u is uniformly consistent over a given class of Laplace distributions Ln. The

optimal convergence rate for an ordinary-smooth target density is achieved in a minimax

sense. It is similar to the conclusions in Fan (1991), even though in this exercise the variance

of the error distribution is unknown and the composed error needs to be estimated. The
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polynomial convergence rate plays a role in the following sense. After imposing the modified

variance truncation device, which is the proposed best choice one can use for unknown vari-

ance, and after deriving the optimal sequences for convergence (i.e., the order of the positive

sequence {kn}n∈N), we still achieve a polynomial convergence rate which is consistent with

the lower bound derived by Fan (1991).

At first glance the Theorem 1 is similar to Theorem 2 in Meister (2006), but there

are three major differences: (i) the upper bound of the noise v is not a known constant

but a consistently estimated (at
√
n rate) quantity (i.e., 1

4
ln lnn versus 1

2
V (ε̂)); (ii) the

chosen sequences are functions of the target density smoothness order, δ, which is due to

the characteristic function of the Laplace noise, leading to different convergence rates (or

effective sample size) as shown in Table 3.2; and (iii) we consider estimation in the regression

setting, which is more general than the pure deconvolution setting (β = 0), and yields

different convergence rates with Laplace noise. In Horrace and Parmeter (2011) this last

difference was easily handled, given the slow convergence of the density estimator due to

the assumption of super-smooth noise. It is more nuanced in the context of Laplace noise,

given the polynomial rate of convergence. This has important implications if one were to

estimate the unknown conditional mean using nonparametric methods. We discuss this and

other extensions of the Laplace deconvolution estimator in the next section.

1.4 Some Useful Extensions

We discuss two useful extensions to the Laplace deconvolution estimator which are likely to

arise in applications: (i) C1 and δ are unknown in Assumption 3 and (ii) deploying nonpara-

metric regression to estimate the unknown conditional mean needed to subsequently recover

ε̂. It is rare in applications that researchers have information on the target density. This

leads to uncertainty in C1 and δ, two parameters which are important in the implementation

of our estimator.16 Also, if we wish to follow the work of Fan, Li and Weersink (1996) and

16... and the estimator of Meister (2006) as well.
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estimate the unknown regression function nonparametrically, then we must think carefully

about the relative polynomial convergence rates of the deconvolution estimator and the non-

parametric regression estimator. This is not a consideration with normal noise due to the

logarithmic convergence rates it produces.

1.4.1 Selection of Unknown C1 and δ

In the usual case that δ and C1 are unknown and, therefore, might be misspecified,17 we

could apply the following selection rule due to Meister (2006):

Selection rule 1. If C1 and δ are unknown, we specify one set of {C1, δ} and choose

wn = kn/ ln kn.

An alternative rule may be based on our procedure when δ and C1 are known. First, we

specify one set of parameters {C1, δ} to pin down the variance truncation device defined in

Section 1.2, and then by Lemmas 1 and 2 we determine the optimal choice for the sequence

{kn}n∈N. The trade-off is a slower convergence rate of the estimated target density compared

with that in the fully-known case due to lack of information about the target density. This

implicitly requires a larger n to achieve a reliable estimate of the target density. This can

be seen from following theorem.

Theorem 2. Assume δ and C1 are unknown. Under Assumption 1, 3, 4, and 5 set {b2
n}n∈N =

1
2
V (ε̂) and wn = kn/ ln kn with {kn}n∈N = {( n

b2n
)

1
6+2δ }n∈N, if 1 < δ ≤ 1.5, or {kn}n∈N =

{( n
b8n

)
1

3+4δ }n∈N, if δ > 1.5. For any g ∈ Ln, the proposed deconvolution kernel density estima-

tor in equation (1.7) is bounded from above as following:

sup
fu∈Fu

Ef,g||f̂u − fu||2L2
≤ (n/ lnn)−

2δ−1
6+2δ if 1 < δ ≤ 1.5

17Actually, if one wants to assume the random noise is super-smooth with similarity index s, the smooth-
ness parameter δ of target density can be estimated as well as the s by an adaptive procedure proposed by
Butucea, Matias and Pouet (2008).
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and

sup
fu∈Fu

Ef,g||f̂u − fu||2L2
≤ (n/ lnn)−

2δ−1
3+4δ if δ > 1.5

where δ is defined by Assumption 3.

The proof is similar to that of Theorem 1 in the appendix and is contained therein. The

only difference between the bounds in Theorem 1 and in Theorem 2 is that the bounds

are negative exponents of n in the former and of n/ lnn in the latter, and this is the price

one pays for not knowing the smoothness parameters of the target density. Based on the

Theorem 2 and Table 3.1, we propose a rule-of-thumb adaptive procedure as follows:

Step 1: Set initial estimates for C1 and δ. A useful rule-of-thumb is C1 is commonly between

0 and 1; δ is between 1 and 10.

Step 2: Treating this C1 and δ as “known,” select kn = wn and apply the proposed deconvolu-

tion techniques to construct the estimated target density, f̂known(u), say.

Step 3: Now, with the same C1 and δ assume they are unknown and select wn = kn/ ln kn.

Again, apply the proposed deconvolution estimator to construct the estimated target

density as f̂unknown(u), say.

Step 4: Compare the vector of values f̂known(u) and f̂unknown(u) over a discretized support with

a Euclidean distance measure (e.g., ∆ = ||f̂known(u) − f̂unknown(u)||2). Iterate Steps 1

to 3 until ∆ is smaller than a pre-specified threshold, say 0.0001.

One caveat with this iterative approach is that ∆ may be quite large initially. The

essential point is that more information about the underlying distribution is revealed after

several trials with combinations of the smoothness parameters. This is similar in spirit to

the adaptive procedure proposed by Butucea, Matias and Pouet (2008), but their targets

are a “self-similarity index” and a smoothness parameter with super-smooth errors, and not

a density.
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1.4.2 Nonparametric Estimation of the Conditional Mean

If one is unsure of the linear specification of the conditional mean, equation (1.1) can be

generalized to the nonparametric case as follows:

yj = g(xj) + uj + vj j = 1, 2, . . . , n (1.9)

where g(.) is unknown and x ∈ Rq. Under certain regularity conditions,18 a straightforward

nonparametric kernel estimator for the unknown function g(x) is:

ĝ(x) =

∑n
j=1 YjK(

Xj−x
h

)∑n
j=1 K(

Xj−x
h

)

where K(·) is the standard Gaussian kernel with bandwidth h. Note that since the con-

vergence rate of the nonparametric estimator is a polynomial function of the number of

covariates, this may impact application of the Laplace deconvolution estimator.

By Theorem 2.6 (with Condition 2.1) of Li and Racine (2007), the convergence rate of

the estimated function is:

sup
x∈S
|ĝ(x)− g(x)| = O

(
(lnn)0.5

(nh1 · · ·hq)0.5
+

q∑
s=1

h2
s

)
a.s.

Assuming each bandwidth (hs) has the same order of magnitude, the optimal choice of

hs that minimizes MSE[ĝ(x)] is hs ∼ n−
1

4+q , and the resulting MSE is therefore of order

O(n−
4

4+q ). Consequently, the estimated error, ε̂, is na consistent where a = 2
4+q

. That is,

na(ε̂− ε) = Op(1) as n→∞.

Similarly, we can establish the convergence rate as follows:

Theorem 3. Under Assumptions 3-5, and Condition 2.1 in Li and Racine (2007) consider

equation (1.7) and take {b2
n}n∈N = 1

2
V (ε̂) and wn = kn with {kn}n∈N = {( n

b2n
)

2a
6+2δ }n∈N, if

1 < δ ≤ 1.5, and {kn}n∈N = {( n
b8n

)
2a

3+4δ }n∈N, if δ > 1.5. For any g ∈ Ln, the proposed

18Details see Condition 2.1 in Li and Racine (2007).
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deconvolution kernel density estimator in equation (1.7) is bounded from above as follows:

sup
fu∈Fu

Ef,g||f̂u − fu||2L2
≤ n−

2a(2δ−1)
6+2δ if 1 < δ ≤ 1.5

and

sup
fu∈Fu

Ef,g||f̂u − fu||2L2
≤ n−

2a(2δ−1)
3+4δ if δ > 1.5

where a = 2
4+q

and δ is defined by Assumption 3.

The proof is very similar to the proof of Theorem 1 in the appendix, and a sketch of the

proof is contained therein.

1.5 Monte Carlo Simulations

We present a Monte Carlo study of the finite sample properties of the Laplace deconvolution

estimator. For ease of comparison, we follow the sample design from Meister (2006) and

Horrace and Parmeter (2011) except that we consider performance of the Laplace deconvo-

lution with both Laplace errors (correctly specified) and normal errors (misspecified). We

focus on sample sizes of n = 500, 1,000, and 3,000 with the linear model:

yj = 4 + 3xj + vj + uj, j = 1, . . . , n. (1.10)

The xjs are generated from a standard normal distribution. Random noise vj is generated

from either a standard Laplace (correctly specified) or normal (misspecified) distribution for

a range of values of the variance to produce several signal-to-noise settings. The ujs are

generated from the twice convolved, zero-mean Laplace density for which the probability

density function is L̃(x) = 1
4
e−|x|(|x| + 1).19 We fix the variance of u to 2. In this setting it

is known that C1 = 1/4, δ = 4 and T = 1.20

19This follows from the setting in Meister (2006).
20We are not concerned with C2, since it has no bearing on any calculations for the estimator.
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Following Theorem 1, we choose b2
n = 1

2
V (ε̂) where ε̂ is the residual from the first-step

ordinary least squares (OLS) estimation, and kn = n
1

4δ+3 (b2
n)

−4
4δ+3 = n

1
19 (b2

n)−
4
19 , correspond-

ingly as δ = 4 > 1.5. To explore the impact of the relative ratio of the component variances,

we consider different scenarios of the signal-to-noise ratio which is defined as the ratio of

V (u) and V (v): γ := σ2
u/σ

2
v ∈ {1/2, 1, 2}. We also apply our Laplace deconvolution esti-

mator in the misspecified case where the errors are normally distributed. We compare the

performance of our estimator under misspecification to the normal deconvolution estimator

of Meister (2006) which is correctly specified. Even in this case, our estimator performs fairly

well. We also explore the finite sample performance of our proposed rule-of-thumb adaptive

procedure when the smoothness parameters of the target density are unknown.

The performance of our estimator is assessed through the root mean integrated square

error (RMISE):

RMISE(f̂u) =

√√√√ 1

R

R∑
l=1

1

M

M∑
i=1

(f̂l(ui)− f(ui))2 (1.11)

where R is the number of replications and M = 256 is the number of evaluation points over

u ∈ (−5, 5), which is fixed across the R replications.

1.5.1 Laplace Deconvolution with Laplace Errors

First, we consider the case that the random noise vj is correctly specified (i.e., vj is drawn

from a Laplace distribution with variance 1). Figures 1-3 show the results for a single

random draw (R = 1) across various sample sizes {500, 1,000, 3,000} and compare the

proposed estimator (CHP ) to the true unknown density (True). The graphical fit of the

proposed estimator is quite good with only 500 observations (Figure 1). Most of the bias

comes from estimation around the mode.21 As the sample size increases, the RMISE of the

proposed estimator (CHP ) decreases from 0.0148 (Figure 1) to 0.0142 (Figure 2) and to

0.0125 (Figure 3).

21Estimation of a density around the mode is difficult due to the derivative at the mode being zero
(Henderson and Parmeter, 2015).
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Figures 4-6 show the results for a single draw (R = 1) and fixed sample size n =1,000 but

varying the signal-to-noise ratio σ2
u/σ

2
v=2/1, 2/2, 2/4. The proposed estimator (CHP ) works

very well when σ2
u/σ

2
v=2/1 with 1,000 observations. As the signal-to-noise ratio decreases,

the RIMSE of proposed estimator (CHP ) increases from 0.0136 (Figure 4) to 0.0142 (Figure

5) and to 0.0180 (Figure 6). Even for the noisiest case (Figure 6) with σ2
u/σ

2
v = 2/4, the fit

is very good except in an interval around the mode.

Table 3.3 contains detailed results from R = 500 simulations with varying sample sizes

{500, 1,000, 3,000} and signal-to-noise ratios {1/2, 1, 2}. For each signal-to-noise setting

(each column), the RMISE decreases monotonically as the sample size increases from 500

to 3,000 (down the rows), demonstrating the consistency of the proposed estimator (CHP ).

Unexpectedly, the RMISE is not increasing as the signal-to-noise ratio increases across the

columns. This is an atypical finding that is due to the variance truncation device: when

the variance of the random noise is relatively small, the estimated variance b̂2
n is more likely

to be closer to zero which dilutes the ability of the deconvolution estimator to recover the

target density. Alternatively, when the variance of the random noise is relatively large,

the estimated variance is no longer near zero, but the performance of the deconvolution

estimator deteriorates as there is little information in the target density taken from the

compound errors. This is a limitation of the variance truncation device.

1.5.2 Laplace Deconvolution with Misspecified Errors

To understand the impact of misspecification of the error distribution, we consider the per-

formance of the proposed estimator when the true error is distributed normal. We compare

the performance of our proposed estimator (CHP ) with that of Meister (2006).

As a first pass on the empirical performance, Figures 7-9 show the results for the case

with fixed σ2
u/σ

2
v = 2/2 for a single draw (R = 1) across various sample sizes. The proposed

estimator (CHP ) shows decent performance even with sample size of n = 500 (Figure 7).

The figure contains plots of the proposed estimator (CHP ), the estimator of Meister (2006)
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(Meister06), and the true normal density (True). As the sample size increases, the RMISE

of the proposed estimator (CHP ) changes from 0.0151 (Figure 7) to 0.0156 (Figure 8) to

0.0137 (Figure 9). Our estimator (CHP ) performs as well as Meister’s when the sample

size is large (n = 3, 000). An intuitive explanation is that the proposed estimator converges

faster than Meister’s estimator (even under misspecification).

Figures 10-12 show the results for R = 1 and fixed sample size n = 1, 000 across the

various signal-to-noise ratios. The proposed estimator (CHP ) performs quite well in the

least noisy case even though the error distribution is misspecified. As the signal-to-noise

ratio decreases, the RIMSE of the proposed estimator increases from 0.0155 (Figure 10) to

0.0156 (Figure 11) and to 0.0191 (Figure 12) whereas the RMISE of Meister’s estimator

increases from 0.0120 (Figure 10) to 0.0172 (Figure 11) to 0.0260 (Figure 12). When the

signal-to-noise ratio decreases from 1 to 0.5 (Figures 11 and 12, respectively) the misspecified

estimator even outperforms Meister’s estimator.

Table 3.4 presents the results of R = 500 replications across various sample sizes and

signal-to-noise ratios under misspecification. Though misspecified, the RMISE of the pro-

posed estimator decreases monotonically as the sample size increases (down each column)

for each signal-to-noise ratio setting, and it is comparable to that of Meister’s correctly spec-

ified estimator. In the most noisy setting, σ2
u/σ

2
v = 2/4, the proposed estimator outperforms

Meister’s estimator across all sample sizes. This may be due to the faster convergence rate

of the proposed estimator coupled with the fact that the characteristic functions of the nor-

mal and the Laplace are quite similar.22 Fixing the sample size (within each row), both

RMISEs increase when the signal-to-noise ratio decreases as the information that can be

recovered is reduced. Overall, the proposed estimator is robust to misspecification of the

error distribution and its convergence rate is faster than that of Meister’s estimator.

22Actually the characteristic function of the Laplace distribution is the second order Taylor expansion of
that of a normal random variable with same variance (Hesse, 1999).
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1.5.3 Deconvolution With Unknown Smoothness Parameters

To verify the feasibility and performance of the proposed rule-of-thumb adaptive procedure

for unknown smoothness parameters of section 4.1, a set of simulations are performed. We

employ the same simulation design. Specifically, the true target density is still a twice-

convolved Laplace with true smoothness parameters of C1 = 1/4 and δ = 4. We search on a

two-dimension grid of C1 ∈ {0.1, 0.25, 0.40, 0.55, 0.70, 0.85} and δ ∈ {2, 4, 6, 8} to minimize

the Euclidean distance of the two estimated densities: the estimated density assuming the

chosen C1 and δ are known and the estimated density assuming these parameters are un-

known. We restrict the range of u to be (−5, 5) and evaluate over 128 evenly spaced points

within this range.

Figure 13 shows the estimated densities (labeled CHP for the estimate with known

smoothness parameters and CHPUN for the estimate with unknown parameter) and the

true density (labeled True) for one simulation (R = 1) with sample size n = 1, 000 and

signal-to-noise ratio equal to 1. The chosen smoothness parameters are: C1 = 0.1 and δ = 2.

Even though the chosen smoothness parameters are misspecified (not exactly equal to the

their true values C1 = 1/4 and δ = 4), the overall fit of the density with estimated parameters

is quite good (CHPUN) and appears to be better than the fit assuming the true values of

the parameters, particularly around the mode.23

A more comprehensive analysis is conducted in Figures 14-16. Figure 14 shows the

Euclidean distance of the estimated densities: ∆ = ||f̂known − f̂unknown||2, as a function of

the smoothness parameters for a single draw (R = 1). Figures 15 and 16 show the Euclidean

distance between the true density and the estimated density taking the chosen C1 and δ

as known, ||f̂known − ftrue||2, and unknown, ||f̂unknown − ftrue||2, respectively. A straight

comparison of the three figures indicates that the convergence pattern is almost identical

23The reader is reminded that the fit of the estimated densities, whether with or without known smooth-
ness parameters, is a function of the Euclidean distance evaluated over the 128 points in their support.
Therefore, the relative fit of the densities with known and unknown parameters will vary over this support.
That is, we should not expect the density with known parameters to always have better fit than the estimated
density with unknown parameters. This is reflected in Figure 13
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which means that minimizing the Euclidean distance of the estimated densities (Figure 14)

is almost equivalent to minimizing the Euclidean distance of the estimated density and the

true underlying density (Figures 15 and 16). Obviously, the Euclidean distance is smaller

for values around the true smoothness parameters (C1 = 1/4 and δ = 4) in this context.

Though it is a useful tool, two caveats are worth mentioning. First, our Laplace de-

convolution estimator assumes that the error distribution is Laplace. If this assumption is

violated, the adaptive procedure may not perform as well as we see here. Second, the Eu-

clidean distance between the true density and the estimated density achieves small values in

a range of smooth parameters rather than at one specific point in Figure 14. It indicates that

the proposed rule-of-thumb adaptive procedure is informative for providing a small range of

the smoothness parameters rather than one optimal point.

To calculate the RMISE when the smoothness parameters are unknown, we replicate the

above simulations for R = 100 with various sample sizes and signal-to-noise ratios.24 The

results are presented in Table 2.5.25 Similar to Table 3.3, the convergence pattern still holds

when the sample size increases with fixed signal-to-noise ratios. That is, reading down the

columns, RMISE is decreasing in the sample size. As we read across RMISE columns within

a row, the RMISE is decreasing slightly and then increasing. We also report the chosen

smoothness parameters, δ and C1, based on minimizing the Euclidean distance in Table 2.5.

They vary slightly around 2 and 0.1, respectively. They are not always accurate (compared

to the true values) but still render reasonably good estimates of the target density.

1.6 Application

IIn this section two applications demonstrate the utility of the proposed method. We consider

the parametric Laplace stochastic frontier model (Horrace and Parmeter, 2018), a regression-

based application of the method, and a second application where the outcome of interest,

24We reduce the replication size from 500 to save computation time.
25We report the RMISE of f̂known here.
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daily saturated fat intake, is contaminated with measurement error (which we assume to be

Laplace) and β = 0 in equation (1.1). In the first application we assume the smoothness

parameters are known; in the second we use our adaptive rule-of-thumb to select them.

1.6.1 Stochastic Frontier Analysis

A typical parametric stochastic frontier model is equation (1), but restricting u < 0 (for a

production frontier) or u > 0 (for a cost frontier). Given distributional assumptions on in-

efficiency, u (e.g., exponential or half-normal) and noise, v (e.g., normal or Laplace), β may

be consistently estimated and used to calculate the conditional distribution of firm-level

inefficiency, which is typically characterized by the empirical distribution of u conditional

on ε (e.g., Jondrow et al. 1982). Much of the existing literature assumes normality of v

(i.e., super-smooth v) and then applies maximum likelihood estimation (MLE). Relaxing

parametric assumptions on the inefficiency distribution in these models is important, as ar-

ticulated by Kneip, Simar, and Van Keilegom (2015, p.380) who note that “. . . there does

usually not exist any information justifying particular distributional assumptions on (ineffi-

ciency).” Additionally, Tsionas (2017, p.1169) suggests that a model constructed to provide

microfoundations for the presence of inefficiency “. . . does not make a prediction about the

distribution.” These statements underlie the importance of seeking alternative estimation

approaches to recover important features of the stochastic frontier model; those approaches

which eschew restrictive parametric assumptions are likely to curry favor among practitioners

and regulators alike.

There is also no reason to favor normally distributed errors in the stochastic frontier model

(Horrace and Parmeter, 2018). As such we apply our Laplace deconvolution estimator to

estimate the distribution of inefficiency from a cost frontier for US banks. The data come

from Feng and Serletis (2009) and are obtained from the Reports of Income and Condition

(Call Reports).26

26The data are publicly available on the Journal of Applied Econometrics data archive website
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The data are a sample of US banks covering the period from 1998 to 2005 (inclusive).

After deleting banks with negative or zero input prices, we are left with a balanced panel

of 6,010 banks observed annually over the 8-year period. A more detailed description of

the data may be found in Feng and Serletis (2009). For our purposes we ignore the panel

structure of the data and choose the most recent year data, 2005, for our example. The

goal of this exercise is to estimate the marginal distribution of u and compare it with the

typical half-normal distribution which informs practical choice of parametric assumption on

u, which , in turn, informs estimation of E(u|ε).27

The data contain information on three output quantities and three input prices. The

three outputs are consumer loans, Y1; non-consumer loans, Y2, which consists of industrial

and commercial loans and real estate loans; and securities, Y3, including all non-loan financial

and physical assets minus the sum of consumer loans, non-consumer loans, securities and

equity. All outputs are deflated by the Consumer Price Index (CPI) to the base year of 1988.

The three input prices are: the wage rate for the labor, P1; the interest rate for borrowed

funds, P2 and the prices of physical capital, P3. The total cost, C, is the sum of three

corresponding input costs: total salaries and benefits, expenses on premises and equipment,

and total interest expenses. Our specification of output and input prices is the same as (or

very similar to) what is typical in the literature (see, for example, Feng and Serletis, 2009;

Kumbhakar and Tsionas, 2005.) The cost frontier model is

cj = α + x′jβ + uj + vj j = 1, . . . , n, (1.12)

where cj = lnCj; xj = lnXj with Xj including the three output quantities and three input

prices: Y1, Y2, Y3, P1, P2, P3; and uj > 0 is firm-specific inefficiency.

We estimate the distribution of cost inefficiency in three ways. First, we estimate a

fully parametric model, assuming v is distributed N(0, σ2
v) and u is distributed |N(0, σ2

u)|.

http://qed.econ.queensu.ca/jae/2009-v24.1/feng-serletis/.
27Once f̂u is obtained, one can estimate the efficiency score using numerical integration on a grid of ε̂.

To avoid an overloading of present paper, we stick to the estimation of marginal density of u.

23



Our maximum likelihood estimates of the distributional parameters are σ̂u = 1.294 and

σ̂v = 0.989, implying E(u) = σ̂u
√

2/π = 1.033. Then, our estimate of the density of

u is |N(0, 1.2942)|, which is shown as the dotted line (SFA) in Figure 18. Second, we

estimate equation (3.8) by OLS. Figure 3.1 shows a histogram of the OLS residuals, ε̂j.

The asymmetry of the distribution (skew equals 1.550) suggests non-zero cost inefficiency.28

Selecting δ = 3 and C1 = 1 and using Theorem 1, the deconvolution estimator yields an

estimate of σ2
v equal to 0.0403.29 A plot of the density estimate, f̂u(u), is shown as the

dashed line (CHP ) in Figure 3.2. Third, using the procedure of Hall and Simar (2002)

with a bandwidth of 0.3052, we detect a jump discontinuity point in f̂u(u) at u = −0.355

which implies an estimate of Ê(u) = 0.355. Then using the boundary kernel proposed by

Zhang and Karunamuni (2000), with an estimated error variance of 0.0403 (as before), the

boundary bias corrected density estimate is shown as the solid line (CHP E(u) bc) in Figure

3.2.30

Figure 3.2 shows all three density estimators for US bank inefficiency in 2005. Notice

that even without a boundary correction, the deconvolution estimator (CHP) has a thinner

right tail than the estimated half normal density (SFA). With boundary correction in place,

the deconvolution estimator (CHP E(u) bc) implies that US banks in 2005 have a much

smaller average inefficiency than parametric SFA would have predicted. This corresponds to

the fact that in 1998 there are 10,139 banks in the US and this number declined to 8,390 in

2005 due to industry consolidation (Feng and Serletis, 2009).

Finally, there are at least two reasons to employ the proposed estimator: 1) the proposed

method provides a robustness check for the distributional assumptions made in a parametric

stochastic frontier model and 2) the skewness of the OLS residuals is greater than one,

which invalidates the choice of the half-normal assumption for the distribution of u (which

28It is interesting to note that with a skew of 1.55, this provides evidence against use of the half-normal
distribution.

29For the Laplace distribution, δ = 2; for convolved Laplace, δ = 4. The choice δ = 3 is between Laplace
and convolved Laplace.

30For Laplace deconvolution, we can apply directly Example 1 in Zhang and Karunamuni (2000).

24



has maximal skewness of 1 by definition).

1.6.2 Daily Saturated Fat Intake With Measurement Errors

The data come from Wave III (1988-1994) of the National Health and Nutrition Examination

Survey, abbreviated NHANES III. Our interest is the survey response to daily saturated fat

intake of 3,551 women between the ages of 25 and 50. This data set is ideally suited to

our Laplace deconvolution estimator as it is well established that saturated fat consumption

is recorded with measurement errors. In fact, previous analysis of the NHANES Wave I

(1971-75) and Wave II (1976-1980) data suggest that more than 50% of the variability in the

observed data may be due to measurement errors. See Stefanski and Carroll (1990), Carroll,

Ruppert and Stefanski (2006) and Delaigle and Gijbels (2004).

The data were originally recorded to explore the relationship between breast cancer and

dietary fat intake, see Jones et al. (1987). Stefanski and Carroll (1990) were the first to

consider nonparametric deconvolution techniques to estimate the underlying true density of

saturated fat intake, using NHANES I. Subsequently, Carroll, Ruppert and Stefanski (2006),

Delaigle and Gijbels (2004) and others applied deconvolution estimators to NHANES II. In

each of these applications a normal error distribution was assumed. To the best of our

knowledge we are the first to apply deconvolution techniques to NHANES III (and certainly

the first to apply Laplace deconvolution to any of these data). Here, saturated fat (fat) is

measured in milligrams per day, and we apply the same data transformation as Delaigle and

Gijbels (2004): log(fat+ 5).

To these data we implement a) the proposed estimator with Laplace errors (CHP ), b) the

estimator with normal errors due to Meister (2006) (Meister), and c) an error free estimator

(ErrorFree), based on pure kernel density estimation of the observed data assuming there

is no measurement error.31

First, we apply the proposed rule-of-thumb adaptive procedure to get a preliminary

31We use the package “ksdensity” in Matlab for the ErrorFree case.
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estimate of the smoothness parameters since they are unknown. Specifically, we search

for the minimum of the Euclidean distance between the density estimator with unknown

smoothness parameters and density estimator with known smoothness parameter, ∆, over a

grid of δ ∈ {1.25, 1.5, 1.75, 2, 2.25, 2.5, 2.75, 3} and C1 ∈ {0.1, 0.25, 0.40, 0.55, 0.70, 0.85, 1}.32

Figure 19 shows the surface of the Euclidean distance as a function of the smoothness

parameters over the grid. The ∆ increases as C1 rises from 0 to 1 except when δ is around

2. It seems that δ = 1.5 and δ = 3 yield the minimum distance. It turns out that when

δ = 3, the estimated density decreases very quickly and goes below zero and becomes volatile

when log(fat + 5) < 2 or log(fat + 5) > 4.5. Therefore, we consider the δ = 1.5 case to be

optimal. Specifically, we choose C1 = 1 and δ = 1.5 as our baseline model. We then consider

alternative specifications of the smoothness parameters as a robustness check.

Figure 1.17 presents the final results of the analysis. The estimated error variance is 0.065

based on the CHP estimator and 0.525 based on theMeister estimator in the baseline model.

The Meister error variance estimate is exceedingly large compared to the variance of the

observed (convoluted) data, 0.236.33 The CHP error variance estimate is more reasonable

in the sense of being less than the total observed variance, and its corresponding signal-to-

noise ratio is 0.275. This is consistent with the finding in the existing literature that about

30-50% of the variability of observed data is due to measurement error. The tail behaviors

in Figure 1.17 shows that the Meister estimator assigns more variance to the error variance

than expected and it decreases to zero very quickly. The CHP estimator extracts the target

density information based on the smoothness assumptions, which gives a reasonable variance

estimate and tends to have longer tails.34

The CHP density estimator based on the NHANES III data is quite similar to that of

Delaigle and Gijbels (2004), despite the fact that they used the NHANES II data, assumed

32We also tried larger range of δ and narrow down to this specific range by searching the minimum of ∆.
33It seems to violate the independence assumption between the target variable and the measurement

error.
34Under Assumption 1, i.e., u and v are independent, the variance of Y should be the sum of the variances

of u and v. Empirically, this may not be the case for real data.
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the error to be normal, along with differing identification assumptions. They experiment with

different “known” values of the signal-to-noise ratio, while we have to select the smoothness

parameters. The minor difference is that our estimated tails are slightly thicker than theirs,

however the means of the estimated densities are nearly identical.

As a robustness check, different combinations for the values of δ and C1 are considered

for the CHP estimator: C1 = 1 and δ = 1.5; C1 = 1 and δ = 2; C1 = 0.6 and δ = 1.5;

C1 = 0.6 and δ = 2 in Figure 1.18. The baseline (C1 = 1, δ = 1.5) is in the upper-left

panel of the figure. As we move to different panels in the figures we change the values

of the smoothness parameters, so the CHP estimator is changing across panels, while the

ErrorFree estimator is fixed. For C1 = 0.6, δ = 1.5 (lower-left panel), the estimated error

variance of CHP is 0.019 which is less than the baseline model, and it has less fat tails.

For C1 = 1, δ = 2 (upper-right panel), the estimated error variance of CHP is 0 which

makes it nearly coincide with the ErrorFree case.35 This means that it is more difficult

for information on the measurement error to be be disentangled under these smoothness

assumptions. We can also vary C1 to recover certain information concerning the noise or the

error term. For instance, C1 = 0.6, δ = 2 (lower-right panel), the estimated error variance

of CHP is still 0 which renders an identical deconvolution density estimate. It seems that

the variability of δ dominates that of C1. This is intuitive as τ → ∞, the effect of C1 is

ignorable in Assumption 3.

1.7 Conclusion

This paper proposes a semiparametric estimator for a cross-sectional error component model.

Instead of focusing on the estimation of the model parameters with the typical assumption

of normality, we are interested in the density of the target error component. To estimate

the target density without fully known random noise, we modify the variance truncation

35One point worth mentioning is that these minimax deconvolution techniques can produce error variance
estimates equal to zero as we vary the choice of C1 and δ. Recall that b̂2n is bound between 0 and 0.5V (ε̂).
When it happens, the deconvolution estimators will be very similar to the ErrorFree estimator.
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device proposed by Meister (2006) and extend the methodology to the framework of an error

component model with a Laplace error term with unknown variance.

The density deconvolution estimator with Laplace error has at least two attractive charac-

teristics for applied researchers: 1) it possesses a faster convergence rate than that of normal

distributed errors (i.e., O(nc) versus O((lnn)c)) and 2) it is robust to misspecification of the

true underlying error distribution. A third (potential) feature that practitioners may find

appealing is the Laplace errors generate different insights than normal errors: for example,

the LAD estimator rather than OLS, the Laplace stochastic frontier model (Horrace and

Parmeter, 2018) and the L-SIMEX estimator (Koul and Song, 2014).

For future research, it may be useful to extend the model to panel data and use it to

estimate both the interest component’s and noise’s distributions nonparametrically. For

example, with a nonparametric production or cost function this would imply a fully non-

parametric stochastic frontier model. Jirak, Meister and Reiss (2014) studied the adaptive

function estimation in nonparametric regression with one-sided errors. Another interesting

strand in this area is to investigate the distribution of the unobserved heterogeneity with

proposed deconvolution techniques. Recently, Evdokimov (2010) takes an initial step to

explore that in a panel data model and Ju, Gan and Li (2019) applies it with a real data set.

28



Table 1.1: Effective Sample Size Compared with OLS

Sample Size n

Method Convergence Rate 100 1000 3000 5000 10000

Parametric (OLS) n−1/2 100 1000 3000 5000 10000
Laplace Deconv. n−2/9(δ = 3/2) 8 22 35 44 60

n−1/3(δ = 3) 22 100 208 292 464
n−7/19(δ = 4) 30 162 365 531 886

Normal Deconv. ln(lnn)
lnn

(δ = 3/2) 9 13 15 16 17

( ln(lnn)
lnn

)2(δ = 3, 4) 83 163 219 250 296

Notes : Assume δ is known for both deconvolution cases. For a n−α convergence
rate, the effect sample size is calculated by n2α. Similarly, for a (ln(lnn)/ lnn)2

convergence rate, it could be calculated as (lnn/ ln(lnn))2∗2.

Table 1.2: Smoothing Parameters of Some Popular Continuous Distributions

Smoothness Parameters

Name Parameter Density Chara. Function C1 C2 δ T

Symm. Uniform a > 0 1
2a1[−a,a](x) sin(at)

at 0+ 1 1

Laplace b > 0 1
2be
− |x|

b
1

1+b2t2
1
b2

1
b2

2 1

Uniform a, b(b > a) 1
2(b−a)1[a,b](x) eitb−eita

it(b−a)
| cos(b)−cos(a)|

b−a
2
b−a 1

χ2
k k > 0 1

2k/2Γ(k/2)
xk/2−1e−

x
2

1
(1−2it)k/2

1
(2k/2)+

1 k/2 1

Gamma k > 0, θ > 0 1
Γ(k)θk

xk−1e−
x
θ

1
(1−iθt)k

1
(θk)+

1(θ > 1) k 1
θ

Twice-convolved Laplace b > 0 1
4be
− |x|

b (|x|+ b) 1
(1+b2t2)2

1
4 1 4 1

b2

Cauchy µ = 0, θ > 0 θ
π(θ2+x2)

e−θ|t| NA NA ∞

Normal µ = 0, σ2 > 0 1√
2π
e−

x2

2 e−
1
2
σ2t2 NA NA ∞

Notes: The ordinary-smoothness parameter are defined by the Fan(1991): C1|τ |−δ ≤ |hx(τ)| ≤ C2|τ |−δ for |τ | ≥ T > 0 where 0 < C1 < C2,

δ > 1 and hx(τ) is the characteristic function of the corresponding distribution. Γ(s) =
∫∞
0
ts−1e−tdt. The last two rows are from

the super-smooth family.
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Table 1.3: RMISE for Laplacian Noise Deconvolution

n σ2
u/σ

2
v = 2/1 σ2

u/σ
2
v = 2/2 σ2

u/σ
2
v = 2/4

500 0.0162 0.0155 0.0204
1000 0.0150 0.0143 0.0197
3000 0.0138 0.0126 0.0190

Notes: Replication 500 times.
σ2
u

σ2
v

stands for the signal-to-noise ratio

Table 1.4: RMISE under Misspecification: Normal Noise Deconvolution

n
σ2
u/σ

2
v = 2/1 σ2

u/σ
2
v = 2/2 σ2

u/σ
2
v = 2/4

CHP Meister06 CHP Meister06 CHP Meister06

500 0.0155 0.0128 0.0186 0.0170 0.0242 0.0340
1000 0.0143 0.0116 0.0168 0.0156 0.0234 0.0337
3000 0.0129 0.0108 0.0152 0.0146 0.0230 0.0330

Notes: Replication 500 times.
σ2
u

σ2
v

stands for the signal-to-noise ratio.

Table 1.5: Simulation by Rule-of-Thumb Adaptive Procedure with Laplace Noise

N
σ2
u/σ

2
v = 2/1 σ2

u/σ
2
v = 2/2 σ2

u/σ
2
v = 2/4

RMISE Ave. δ Ave. C1 RMISE Ave. δ Ave. C1 RMISE Ave. δ Ave. C1

500 0.0139 2.02 0.10 0.0133 2.02 0.10 0.0244 2.04 0.10
1000 0.0125 2.00 0.10 0.0112 2.00 0.10 0.0231 2.08 0.10
3000 0.0110 2.00 0.10 0.0094 2.00 0.10 0.0221 2.00 0.10

Notes: Replication 100 times.
σ2
u

σ2
v

stands for the signal-to-noise ratio.
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Figure 1.1: Laplace Deconvolution (CHP): n = 500, σ2
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Figure 1.2: Laplace Deconvolution (CHP): n = 1000, σ2
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Figure 1.3: Laplace Deconvolution (CHP): n = 3000, σ2
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Figure 1.4: Laplace Deconvolution (CHP): n = 1000, σ2
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Figure 1.5: Laplace Deconvolution (CHP): n = 1000, σ2
u/σ
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Figure 1.6: Laplace Deconvolution (CHP): n = 1000, σ2
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Figure 1.7: Misspecified Laplace (CHP) Deconvolution: n = 500, σ2
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Figure 1.8: Misspecified Laplace (CHP) Deconvolution: n = 1000, σ2
u/σ
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Figure 1.9: Misspecified Laplace (CHP) Deconvolution: n = 3000, σ2
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Figure 1.10: Misspecified Laplace (CHP) Deconvolution: n = 1000, σ2
u/σ
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Figure 1.11: Misspecified Laplace (CHP) Deconvolution: n = 1000, σ2
u/σ
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Figure 1.12: Misspecified Laplace (CHP) Deconvolution: n = 1000, σ2
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Figure 1.17: Histogram of the Residuals
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Appendices

1.A General Appendix

Definition: ε is ordinary-smooth of order δ (Fan 1991): characteristic function φε(t) satisfies

d0|t|−δ ≤ |φε(t)| ≤ d1|t|−δ as t → ∞.This is literally the same with the Assumption 3, just

replacing φε(t) with hε(τ).

A generalized result of Parseval’s identity (or the Plancherel theorem) asserts that the

integral of the square of the Fourier transform of a function is equal to the integral of the

square of the function itself.

In one-dimension, for f ∈ L2(R),

∫ ∞
−∞
|f̂(z)|2dz =

∫ ∞
−∞
|f(τ)|2dτ

where f̂(z) = 1
2π

∫∞
−∞ e

−iτzf(τ)dτ is the Fourier transform of the function f(τ). Specifically,

we have ∫ ∞
−∞
| 1

2π

∫ ∞
−∞

e−iτzf(τ)dτ |2dz =

∫ ∞
−∞
|f(τ)|2dτ (?).

1.B Proof of Lemma 1

There is a N so that wn > T holds for all n ≥ N . Hence the upper and lower bound of

the Fourier Transform can be used. Similar to Lemma 1 in Meister(2006), using Parseval’s
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identity and Fubini’s theorem, we have:

sup
g∈Ln

sup
f∈Fu

Ef,g||f̂u−fu||2L2
= sup

g∈Ln
sup
f∈Fu

Ef,g||
1

2π

∫ wn

−wn
e−iτz(1+b̂2

nτ
2)ĥε̂dτ−

1

2π

∫
e−iτzhu(τ)dτ ||2

= sup
g∈Ln

sup
f∈Fu

Ef,g
∣∣| 1

2π

∫ wn

−wn
e−iτz(1+b̂2

nτ
2)ĥε̂dτ−

1

2π

∫ wn

−wn
e−iτzhu(τ)dτ− 1

2π

∫
|τ |>wn

e−iτzhu(τ)dτ
∣∣|2

= sup
g∈Ln

sup
f∈Fu

Ef,g

∫ (∣∣ 1

2π

∫ wn

−wn
e−iτz

(
(1+ b̂2

nτ
2)ĥε̂−hu(τ)

)
dτ
∣∣2 +

∣∣ 1

2π

∫
|τ |>wn

e−iτzhu(τ)dτ
∣∣2)dz

= sup
g∈Ln

sup
f∈Fu

Ef,g

∫ ∣∣ 1

2π

∫ wn

−wn
e−iτz

(
ĥε̂(1+b̂2

nτ
2)−hu(τ)

)
dτ
∣∣2dz+Ef,g

∫ ∣∣ 1

2π

∫
|τ |>wn

e−iτzhu(τ)dτ
∣∣2dz

By Fubini’s Theorem, we could switch the order of integrals. That is

= sup
g∈Ln

sup
f∈Fu

Ef,g

∫ wn

−wn

∣∣ 1

2π

∫
e−iτz

(
ĥε̂(1+b̂2

nτ
2)−hu(τ)

)
dτ
∣∣2dz+Ef,g

∫
|τ |>wn

∣∣ ∫ 1

2π
e−iτzhu(τ)dτ

∣∣2dz
By Parseval’s identity (let f(τ) = ĥε̂(1 + b̂2

nτ
2)− hu(τ) or hu(τ) in equation (?)), we have

Parseval
= sup

g∈Ln
sup
f∈Fu

( ∫ wn

−wn
Ef,g|ĥε̂(1 + b̂2

nτ
2)− hu(τ)|2dτ +

∫
|τ |>wn

|hu(τ)|2dτ
)

The expectation of the second integral over distribution family g, f is the integral itself as

hu(τ) is the characteristic function of the true distribution of u. Using |A−B|2 ≤ 2A2 +2B2

and
∫
|τ |>wn

∣∣hu(τ)
∣∣2dτ = 2

∫∞
wn

∣∣hu(τ)
∣∣2dτ , we have following inequality

≤ sup
g∈Ln

sup
f∈Fu

2

∫ ∞
wn

|hu(τ)|2dτ + sup
g∈Ln

sup
f∈Fu

2

∫ wn

−wn
Ef,g|(1 + b̂2

nτ
2)(ĥε̂(τ)− hε(τ))|2dτ+

sup
g∈Ln

sup
f∈Fu

2

∫ wn

−wn
Ef,g|hε(τ)/

1

(1 + b̂2
nτ

2)
− hu(τ)|2dτ

The first term, which we call B, represents the bias which does not depend on the fact

that the convoluted errors are estimated and can be bounded as in Lemma 1 of Meister

(2006). The second term can be split into two pieces, V1 and V2, where V1 is similar to

V in Lemma 1 of Meister (2006) while V2 is an additional component of the variance due
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to estimating the composed errors. Our third term, which we call E, can be found almost

as that in Lemma 1 of Meister (2006) but the form of the bound is more complicated due

to the fact that the empirical characteristic function used to construct the variance of the

Laplace noise is constructed with ε̂ instead of ε. The nonparametric regression in the first

step impacts the convergence rate through the estimation of ε̂.

The following proof is similar to Meister (2006) and Horrace and Parmeter (2011) except

now we deal with Laplace noise and a nonparametric first-step regression estimator rather

than just normal noise for the linear (stochastic frontier) model. There are three steps to

the proof.

(1) B ≤ const×w1−2δ
n by Assumption(3) C1|τ |−δ ≤ |hu(τ)| ≤ C2|τ |−δ where 0 < C1 < C2

and δ > 1.

(2) By assumption 5,

ĥε̂(τ) =
∣∣ 1
n

n∑
j=1

eiτ ε̂j
∣∣ =

∣∣ 1
n

n∑
j=1

eiτεj(1 +Op(τn
−a))

∣∣ = (1 +Op(τn
−a))ĥε(τ)

where a = 2
4+q

for the nonparametric first-step regression and a = 0.5 for parametric first-

step regression, e.g, translog in the stochastic frontier model. We focus on the parametric

setting hereafter for the main formulas and lay out the details of the differences when first-

step nonparametric regression is implemented.36 So

ĥε̂(τ) = | 1
n

n∑
j=1

eiτ ε̂j | = | 1
n

n∑
j=1

eiτεj(1 +Op(τn
−1/2))| = (1 +Op(τn

−1/2))ĥε(τ)

LetA(ĥε) =
∫ wn
−wn Ef,g|ĥε(τ)−hε(τ)|2dτ =

∫ wn
−wn Ef,g|

1
n

∑n
j=1 e

iτεj−E(eiτε)|2dτ = Op(n
−1wn),

36Basically, there is 2a instead of 1 in the power of n.
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sup
g∈Ln

sup
f∈Fu

2

∫ wn

−wn
Ef,g(1+b̂2

nτ
2)2|ĥε̂(τ)−hε(τ)|2dτ ≤ 4(1+b̂2

nw
2
n)2 sup

g∈Ln
sup
f∈Fu

∫ wn

−wn
[Ef,g|ĥε̂(τ)−ĥε(τ)|2+

Ef,g|ĥε(τ)− hε(τ)|2]dτ

= 4(1 + b̂2
nw

2
n)2 sup

g∈Ln
sup
f∈Fu

∫ wn

−wn
Ef,g|ĥε̂(τ)− ĥε(τ)|2dτ + 4(1 + b̂2

nw
2
n)2A(ĥε)

≤ 4(1 + b2
nw

2
n)2 sup

g∈Ln
sup
f∈Fu

∫ wn

−wn
τ 2Ef,g(n

−1

n∑
j=1

|ε̂j − εj|)2dτ + 4(1 + b2
nw

2
n)2A(ĥε) = V1 + V2

where V1 ≤ const× (n−1w3
n)(1 + b2

nw
2
n)2 and V2 ≤ const× (n−1wn)(1 + b2

nw
2
n)2 .

(3) Similar to Lemma 1 in Meister (2006), for the last term we can derive:

E = sup
g∈Ln

sup
f∈Fu

2

∫ wn

−wn
Ef,g|

hu(τ)(1 + b̂2
nτ

2)

1 + b2τ 2
− hu(τ)|2dτ

τ=swn= sup
g∈Ln

sup
f∈Fu

2

∫ 1

−1

Ef,g|
s2w2

n(b̂2
n − b2)

1 + b2s2w2
n

|2|hu(swn)|2wnds,

where

Ef,g|
s2w2

n(b̂2
n − b2)

1 + b2s2w2
n

|2 = Ef,g|
s2w2

n(b̂2
n − b2)

1 + b2s2w2
n

|2χ(|b̂2
n − b2| ≤ dn) + Ef,g|

s2w2
n(b̂2

n − b2)

1 + b2s2w2
n

|2χ(|b̂2
n − b2| > dn)

≤ | s2w2
ndn

1 + s2w2
nb

2
|2 + | s2w2

nb
2
n

1 + b2w2
ns

2
|2Pr(|b̂2

n − b2| > dn)

≤ (
s2w2

ndn
s2w2

nb
2

)2 + (
s2w2

nb
2
n

s2b2w2
n

)2Pr(|b̂2
n − b2| > dn)

≤ (
dn
b2

)2 + (
b2
n

b2
)2Pr(|b̂2

n − b2| > dn)

= const× w−2
n + const× (b2

n)2Pr(|b̂2
n − b2| > dn)
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Where the last inequality for the first term comes from the fact that dn = O(w−1
n ).

1.C Proof of Lemma 2

Let dn and f, g be the same as in Lemma 1, the term supg∈Ln supf∈Fu Pf,g(|b̂2
n − b2| > dn) is

bounded by two addends. We derive an upper bound for each of them. First,

sup
g∈Ln

sup
f∈Fu

Pf,g(b̂
2
n − b2 > dn) = sup

g∈Ln
sup
f∈Fu

Pf,g(k
−2
n (

C1k
−δ
n

ĥε̂(kn)
− 1) > dn + b2)

= sup
g∈Ln

sup
f∈Fu

Pf,g((
C1k

−δ
n

ĥε̂(kn)
− 1) > dnk

2
n + b2k2

n)

= Pf,g(|ĥε̂(kn)| < C1k
−δ
n

1 + dnk2
n + b2k2

n

)

≤ sup
g∈Ln

sup
f∈Fu

Pf,g(|ĥε̂(kn)| < αn
C1k

−δ
n

1 + b2k2
n

)

= sup
g∈Ln

sup
f∈Fu

Pf,g(ĥε̂(kn) < αn|hε(kn)|)

where αn = 1+b2k2n
1+dnk2n+b2k2n

, hence, αn → 0 as dn = w−1
n = O(k−1

n ), dnk
2
n = O(kn) for known δ

and C1 case and dn = w−1
n = O(lnkn/kn), dnk

2
n = O(ln(kn)kn) for other cases.37

There exists a constant c ∈ (0, 1) that guarantees that the above formula is bounded above

by supg∈Ln supf∈Fu Pf,g(ĥε̂(kn) < αn|hε(kn)|) ≤ supg∈Ln supf∈Fu Pf,g(ĥε̂(kn) < c|hε(kn)|)

which by Chebyshev’s inequality yields

≤(1− c)−2 sup
g∈Ln

sup
f∈Fu
|hε(kn)|−2Eε|ĥε̂(kn)− hε(kn)|2

≤2(1− c)−2 sup
g∈Ln

sup
f∈Fu
|hε(kn)|−2[Eε|ĥε̂(kn)− ĥε(kn)|2 + Eε|ĥε(kn)− hε(kn)|2]

≤2(1− c)−2 sup
g∈Ln

sup
f∈Fu
|hε(kn)|−2[Op(knn

−1)Eε|
1

n

∑
j

exp(iknεj)|2 + Eε|
1

n

∑
j

exp(iknεj)− hε(kn)|2]

=const× (E1 + E2),

37This is discussed in Section 1.4.

44



where the first term is bounded by |hε(kn)|−2 ≤ k2δ+2
n (1 + b2

nk
2
n) as that for V1; E1 ≤

const× k2δ+2
n (1 + b2

nk
2
n)n−1 and E2 ≤ const× k2δ

n (1 + b2
nk

2
n)n−1 are similar to that in Lemma

2 of Meister (2006).

The second addend can be bounded in a similar way:

sup
g∈Ln

sup
f∈Fu

Pf,g(b̂
2
n − b2 < −dn) = sup

g∈Ln
sup
f∈Fu

Pf,g(k
−2
n (

C1k
−δ
n

ĥε̂(kn)
− 1) < b2 − dn)

≤ sup
g∈Ln

sup
f∈Fu

Pf,g(ĥε̂(kn) > γn|hε(kn)|)

where γn = 1+b2k2n
1+b2k2n−dnk2n

, hence, γn → 1+ as dn = w−1
n = O(k−1

n ), dnk
2
n = O(kn) for known δ

and C1 case and dn = w−1
n = O(lnkn/kn), dnk

2
n = O(ln(kn)kn) for other cases.

Again there exists a constant C ∈ (0, 1) that guarantees the above formula is bounded

above by supg∈Ln supf∈Fu Pf,g(ĥε̂(kn) > γn|hε(kn)|) ≤ supg∈Ln supf∈Fu Pf,g(ĥε̂(kn) > C|hε(kn)|)

which by Chebyshev’s inequality yields

≤(C − 1)−2 sup
g∈Ln

sup
f∈Fu
|hε(kn)|−2Eε|ĥε̂(kn)− hε(kn)|2

≤2(C − 1)−2 sup
g∈Ln

sup
f∈Fu
|hε(kn)|−2[Eε|ĥε̂(kn)− ĥε(kn)|2 + Eε|ĥε(kn)− hε(kn)|2],

which leads to the same upper bound as derived for the first addend.

1.D Proof of Theorem 1

Combining the results from Lemma 1 and 2, we obtain the upper bound of MISE of the

density f̂u as

max(B, V,E) = max

[
const1 × w1−2δ

n , const2 × n−1wn(1 + b2w2
n)2 + const3 × n−1(1 + b2

nw
2
n)2w3

n,

const4 × w1−2δ
n w−2

n + const5 × k2δ
n b

4
n(1 + b2

nk
2
n)(1 + k2

n)n−1

]
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Under Assumption 3, if C1 and δ are known, then wn = kn, b2
n = 0.5V (ε̂ ), and collecting

the leading maximum terms leads to

max(B, V,E) = max

[
const1 × w1−2δ

n , const2 ×
b4w5

n

n
+ const3 ×

b4
nw

7
n

n
,

const4 × w−1−2δ
n + const5 ×

w2δ+4
n b6

n

n

]

Observe that w−1−2δ
n < w1−2δ

n and w7
n > w5

n. Comparing the order of const3 × b4nw
7
n

n
and

const5 × w2δ+4
n b6n
n

leads to the cutoff value δ = 3/2. Note that wn → ∞ as n → ∞, and

w−an + wbn
n
≥ 2

√
wb−an

n
with equality holding when wn = n

1
a+b , minimizing the above piecewise

maximum leads to following two cases

(i) If 1 < δ ≤ 1.5, kn = n
1

2δ+6 (b2
n)

−1
2δ+6 . Consequently, a n−

(2δ−1)
2δ+6 (b2

n)
(2δ−1)
2δ+6 → D1n

− (2δ−1)
2δ+6

convergence rate is determined by the equality of the first term and the second addend of

the second term where D1 = V (ε)
(2δ−1)
2δ+6 .

(ii) If δ > 1.5, kn = n
1

4δ+3 (b2
n)

−4
4δ+3 . Consequently, a n−

2δ−1
4δ+3 (b2

n)
(2δ−1)
4δ+3 → D2n

− 2δ−1
4δ+3 conver-

gence rate is determined by the equality of the first term and the second addend of the third

term where D2 = V (ε)
(2δ−1)
4δ+3 . We exclude the case with δ = 2 (Laplace-Laplace convolution)

here as b̂2
n < b2

n = 0.5V (ε̂) converges to min{V (u), V (v)} which cannot distinguish the target

from the noise38.

1.E Proof of Theorem 2

For the case where C1 and δ are unknown, similar argument applies, kn stays the same with

guess C1 and δ since wn = kn/ ln kn = O(kn) and the convergence rates are n−
(2δ−1)
2δ+6 (lnn)

(2δ−1)
2δ+6

if 1 < δ ≤ 1.5 and n−
2δ−1
4δ+3 (lnn)

2δ−1
4δ+3 if δ > 1.5.39

38This is a rare case related to identification given that δ = 2 is negligible in the range of δ > 1 but it
does not impact the estimation

39See the rule-of-thumb adaptive procedure in section 4.1.
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1.F Proof of Theorem 3

When nonparametric kernel estimation is implemented for the first-step regression, we can

easily derive similar Lemmas (as those for the parametric case) as follows:

Lemma 1′. For Assumptions 3-5, Condition 2.1 in Li and Racine (2007) and Ln = {Laplace(0, b) :

b2 ∈ (0, b2
n]}, the MISE of (1.7) is

sup
g∈Ln

sup
f∈Fu

Ef,g||f̂u − fu||2L2
≤ B + V + E,

where B ≤ const1 × w1−2δ
n ,

V ≤ const2 × n−2awn(1 + b2
nw

2
n)2 + const3 × n−2aw3

n(1 + b2
nw

2
n)2 ,

E ≤ const4 × supg∈Ln supf∈Fu

(
wn
∫ 1

−1
|hu(swn)|2

(
dn
b2

)2
ds+ wn

∫ 1

−1
|hu(wns)|2 b

4
n

b4
× Pf,g(|b̂2

n −

b2| > dn)ds
)

, with dn := 1
wn

; f and g are the probability density function in distribution

family Fu and Ln respectively. constj are positive constants for j = 1, 2, 3, 4.

Lemma 2′. Let dn and f, g be the same as in Lemma 3, then supg∈Ln supf∈Fu Pf,g(|b̂2
n−b2| >

dn) ≤ const× k2δ
n (1 + b2

nk
2
n)(1 + k2

n)n−2a.

Then by a parallel argument, combining the results from Lemma 1 and 2, we can obtain

the upper bound of MISE of the density f̂u as

max(B, V,E) = max

[
const1 × w1−2δ

n , const2 × n−2awn(1 + b2w2
n)2 + const3 × n−2a(1 + b2

nw
2
n)2w3

n,

const4 × w1−2δ
n w−2

n + const5 × k2δ
n b

4
n(1 + b2

nk
2
n)(1 + k2

n)n−2a

]

Under Assumption 3, if C1 and δ are known, then wn = kn, b2
n = 0.5V (ε̂ ), and minimizing

the above maximum leads to

(i) If 1 < δ ≤ 1.5, kn = n
2a

2δ+6 × (b2
n)

−1
2δ+6 . Consequently, an n−

2a(2δ−1)
2δ+6 × (b2

n)
2a(2δ−1)

2δ+6 →

D1 × n−
2a(2δ−1)

2δ+6 convergence rate is determined by the equality of the first term and the first

addend of the third term where D1 = V (ε)
2a(2δ−1)

2δ+6 .
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(ii) If δ > 1.5, kn = n
2a

4δ+3 × (b2
n)

−4
4δ+3 . Consequently, an n−

2a(2δ−1)
4δ+3 × (b2

n)
2a(2δ−1)

4δ+3 → D2 ×

n−
2a(2δ−1)

4δ+3 convergence rate is determined by the equality of the first term and the second

addend of the third term where D2 = V (ε)
2a(2δ−1)

4δ+3 . We exclude the case with δ = 2 (Laplace-

Laplace convolution) here as similar reasoning in the proof of Theorem 1 applies.
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Chapter 2

Penalized Sieve Density Estimation with An application to

Zero-Inefficiency Stochastic Frontiers

Jun Cai1, William C. Horrace2, Christopher F. Parmeter3

2.1 Introduction

The notion of the frontier arises naturally in economics in the context of productivity analysis

usually through the estimation of a production frontier, though this idea extends quite

generally to cost, revenue, profit and distance frontiers. The econometric tools that have been

developed for the estimation of, and inference for, the frontier have been applied across many

different economic milieus, including energy, healthcare, transportation, schools, banks, and

public service (see Kumbhakar, et al. 2017 for examples). Within the arena of frontier

estimation, stochastic frontier analysis (SFA) is one of the most important tools wielded

by researchers to both recover the frontier and to assess firm level inefficiency. One of the

strongest appeals of SFA is the allowance, or recognition of, stochastic shocks that lead to

deviations from the frontier.

1Department of Economics, Syracuse University, jcai106@syr.edu. Special thanks to Hugo Jales, Yulong
Wang, and participants at 29th Annual Meeting of the Midwest Econometrics Group (MEG 2019).

2Department of Economics, Syracuse University, whorrace@syr.edu.
3Department of Economics, University of Miami, cparmeter@bus.miami.edu.
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More explicitly, the stochastic frontier model assumes that output Yi is produced from

an underlying technology τ(·) through inputs Wi, contaminated with firm level inefficiency

Ui and random shocks (or random noise) Vi:

Yi = τ(Wi) · exp(−Ui) exp(Vi), (2.1)

where Ui > 0. It is commonly assumed that V ∼ N(0, σ2
v) with σ2

v unknown. In most

applications of SFA, a fully parametric model is assumed. For instance, in the pioneering

work of Aigner et al. (1977) and Meeusen and van den Broek (1977), τ(Wi) is a parametric

Cobb-Douglas production frontier, with inefficiency Ui assumed to be either half normally

or exponentially distributed, respectively. Based on the conditional independence of Ui and

Vi, the model in (3.1) can be estimated using standard maximum likelihood techniques or

corrected least squares methods. See Greene (2008) and more recently Kumbhakar et al.

(2017) for surveys.

However, the model as constituted in (3.1) cannot readily accommodate the presence of

a mass of fully-efficient firms, as it presumes U follows a one-sided continuous distribution

and probability of the event Ui = 0 is zero. Specifying a model with a mass of efficient

firms makes sense in highly competitive or well established industries where firms may have

an incentive to move toward the frontier. In these instances ignoring a mass at zero in the

distribution of Ui would yield biased estimates for both mean inefficiency and firm specific

inefficiency scores. Kumbhakar, Parmeter and Tsionas (2013) were the first to tackle this

problem proposing a zero-inefficiency stochastic frontier (ZISF) model, which specifically

assigns a nontrivial probability p to the event Ui = 0 and which is estimated by maximum

likelihood. More recently, Rho and Schmidt (2015) discussed extreme cases (all firms are

efficient and all firms are inefficient) in the ZISF model and related tests. Tran and Tsionas

(2016) extended the ZISF model by allowing for the point mass probability of fully-efficient

firms to depend on a set of covariates via an unknown, smooth function. However, all of
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the previous work in this area has remained tethered to parametric assumptions on both the

frontier and the shape of the inefficiency distribution. The purpose of this paper is to relax

many of the parametric assumptions used in the extant literature but still provide consistent

estimators of both the frontier and the distribution of inefficiency.

When there is no mass of efficient firms, there are several semiparametric or nonparamet-

ric options for practitioners. Fan, Li and Weersink (1996), Hall and Simar (2002), Kumb-

hakar et al. (2007), Martins-Filho and Yao (2015) and Simar, Van Keilegom and Zelenyuk

(2017) relax parametric assumptions on the structure of τ(Wi). Horrace and Parmeter

(2011), Parmeter, Wang and Kumbhakar (2017) and Cai, Horrace and Parmeter (2019) re-

lax the distributional assumption on inefficiency. See Parmeter and Zelenyuk (2019) for a

thorough review of the state of the art. More recently, Kneip, Simar and Van Keilegom

(2015) (KSVK, hereafter) consider an estimator for the stochastic frontier with unknown

structure on the frontier τ(W ) and unspecified distribution of inefficiency Ui but with a

normally distributed error V . Florens, Simar and Van Keilegom (2019) generalize KSVK

by only requiring a symmetric error. The price of this generality is that they can no longer

nonparametrically identify the distribution of Ui. None of the previous semiparametric and

nonparametric stochastic frontier literature considers a ZISF specification.

This paper goes one step further in the sense that we investigate a ZISF model with

an unknown structure on the frontier τ(Wi) and an unspecified distribution of inefficiency

Ui. Different from previous nonparametric methods, we identify the frontier τ based on the

mode of the mixed density of τ − U and the latter can be estimated through a penalized

minimum distance sieve method under a unimodality assumption of U . A discretized version

of the mixed density of the inefficiency U is also identified, which was previously unavailable

in the literature.4 We propose a two-step procedure to estimate the frontier τ and the mixed

distribution of inefficiency U . Similar to KSVK, this technique can be readily generalized

to define the estimator for the stochastic frontier model in Equation (3.1) based on a local

4Much effort has been made in the SFA literature to relax or generalize the distributional assumption
on inefficiency.
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constant or local linear approximation.

Our approach, penalized minimum distance estimation based on characteristic functions,

follows in spirit the approach of Lee et al. (2013) and Lee et al. (2015),5 while our large

sample theory is predicated on existing results in Chen and Pouzo (2012, 2015) for penalized

sieve minimum distance (PSMD) estimators. Lee et al. (2015) proposed a penalized least

squares sieve (hereafter, LS sieve) approach to estimate a mixture distribution with boundary

effects, which they find has some advantage over the penalized maximum likelihood sieve (ML

sieve) estimation advocated by Lee et al. (2013). Lee et al. (2015) considered estimation of

both the probability mass and the continuous density for the class of mixture distributions

with finite but unknown point mass locations contaminated with known random noise. We

extend their penalized LS sieve method to the case with known point mass location (i.e.,

U = 0, zero point mass) and random noise with unknown variance σ2
v . Moreover, we derive

the large sample properties of the proposed penalized LS sieve estimator and propose a

quasi-likelihood ratio (QLR) test on the zero inefficiency hypothesis.

The remainder of the paper is organized as follows. Section 2 describes the models we

study along with our identification strategy and estimation procedures. Section 3 presents

the asymptotic properties of the proposed estimators and inference on the estimated zero

inefficiency probability with a QLR statistic. The selection of tuning parameters is discussed

in Section 4. Section 5 presents numerical illustrations with various designs to demonstrate

the performance of the method. We implement the proposed procedures to estimate a zero-

inefficiency cost frontier for a cross section of US banks in Section 6. Section 7 concludes

the paper and lays out directions for future research. All statistical proofs and details on

the core computational algorithms can be found in the Appendix.

5More recently, Madrid-Padilla, Polson, Scott (2018) also consider a class of estimators for deconvolution
in mixture models based on a simple two-step “bin-and-smooth” procedure applied to histogram counts.
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2.2 Model

Consider a simplified production frontier model in Equation (3.1), which we rewrite as fol-

lows:

logY = log(τ)−
LS−Sieve︷ ︸︸ ︷
U︸ ︷︷ ︸

KSVK

+V (2.2)

where τ is the production frontier, U > 0 denotes production inefficiency and V ∼ N(0, σ2
v)

is measurement error or statistical noise. For the cost frontier model, one just needs to

replace −U with +U where U > 0 represents cost inefficiency.

In KSVK, they treat log(τ)−U as a single object and denote it as logX. In this setting

the model in Equation (3.2) can be written as a traditional deconvolution problem

logY = logX + V

where Y is observed and V ∼ N(0, σ2
v). The X = τ · exp(U) is a latent unobserved true

signal having a density f on the support [0, τ ], with f(τ) > 0 for some unknown boundary

point τ . The target is to consistently estimate τ and the unknown variance of the noise σ2
v .

In the proposed LS sieve method, we view the model in (3.2) as

logY = α− U + V (2.3)

where Y is observed, α = log(τ) is the intercept, U stands for production inefficiency which

follows an unknown truncated distribution and V ∼ N(0, σ2
v) as before.6 This is a deconvo-

lution problem with unknown intercept and unknown noise variance.

6We treat τ as a constant at the moment. This will be relaxed in section 2.2.
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2.2.1 Constant Frontier

When τ is constant, Equation (3.1) becomes a constant frontier model. We discuss both

KSVK’s method and the proposed LS sieve method here to highlight the differences.

KSVK’s method

In KSVK, Equation (3.1) is rewritten as Y = X · Z where Z = exp(V ) is log-normally

distributed. Let φ(z) denote the standard normal density and recall that the density ρσv of a

log-normal random variable with parameters µ = 0 and σ2
v > 0 is given by ρσ(z) = 1

zσv
φ( logz

σv
)

for z > 0. Then for all y > 0 the density of y is represented as follows:

g(y) =

∫ τ

0

f(x)
1

x
ρσv
(y
x

)
dx =

∫ 1

0

h(t)
1

tτ
ρσv
( y
tτ

)
dt =

1

σvy

∫ 1

0

h(t)φ
( 1

σv
log

y

tτ

)
dt (2.4)

where h(t) = τf(tτ) (0 ≤ t ≤ 1) is a density function.

Discretize the density h as follows

hγ(t) = γ1I(t = 0) +
M∑
k=1

γkI(qk−1 < t ≤ gk)

for 0 ≤ t ≤ 1, where qk = k/M(k = 0, 1, . . . ,M) and γk > 0,
∑M

k=1 γk = M . Then they have

gτ,σv ,hγ (y) =
1

σvy

∫ 1

0

h(t)φ
( 1

σv
log

y

tτ

)
dt =

1

σvy

M∑
k=1

γk

∫ qk

qk−1

φ
( 1

σv
log

y

tτ

)
dt.

KSVK then estimate the unknown frontier τ , unknown variance σv and the nuisance

density hγ by maximizing the following penalized likelihood:

(τ̂ , σ̂v, ĥγ) = arg max
τ>0,σv>0,hγ

{
n−1

n∑
i=1

log
(
gτ,σv ,hγ (Yi)

)
− λnpen(gτ,σv ,hγ ,)

}
,
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where λn ≥ 0 is a tuning (penalty) parameter, and

pen(gτ,σv ,hγ ) = max3≤j≤M |γj − 2γj−1 + γj−2|.

The Proposed LS Sieve Method

We propose a least squares sieve method (LS sieve) to estimate the mixture distribution of

inefficiency f(u), and the production frontier τ with unknown noise variance. The mixture

distribution of inefficiency means allows a point mass at u = 0 which admits the existence of

a nontrivial amount of fully efficient firms and a continuous distribution on u. The proposed

method is similar to the least squares sieve estimation proposed in Lee at al. (2015) except

that we consider the case with unknown noise variance and unknown intercept.

Case 1: α = 0. Considering the most basic setting, α = 0, namely, the frontier τ = 1,

then Equation (3.2) collapses to a mixture distribution deconvolution problem as follows

logY = −U + V

where Y is observed, U comes from a mixture distribution with discrete atoms at u = 0

and a continuous distribution for the remaining support, and random noise (or measurement

error) V ∼ N(0, σ2
v) with unknown variance.

Let δa be the Dirac delta function at a. The point mass (if exists) located at u = 0 can

be represented as δ0. Then the generalized density of U has the following form

fU(u) = π1δ0(u) + π2fc(u), (2.5)

where π1 and π2 are nonnegative weights with π1 +π2 = 1, and fc is an arbitrary probability

density function of a continuous nonnegative random variable.

Theorem ID 1. There exists a unique π1 ∈ (0, 1) (as well as π2), a unique σv > 0 and a

unique sequence {γk}M(n)
k=1 which determines a unique density fc(u) (which can be uniquely
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discretized as Equation (3.12) in the sequel), such that the model in Equations (3.3) and

(3.11) holds true with α = 0, i.e., such that the model is identified.

The proof is straightforward and it follows from Theorem 2.1 in Schwarz and Van Bel-

legem (2010), in which they prove the identifiability of any pair (σv, fU) (where fU is the

probability distribution of U) belonging to

(0,∞)× {P ∈ P|∃A ∈ B(R) : |A| > 0 and P (A) = 0},

where B(R) is the set of Borel sets in R, P is the set of all probability distributions on R,

and |A| is the Lebesgue measure of A. For the P distributions that have density like what

we consider here, the only requirement for identification is that the density has to vanish on

a set of positive Lebesgue measures.7 The theorem result follows here by choosing A equal

to the complement in R of the interval [0,∞), and by noting that the true mixed density of

U in the proposed model is completely characterized by the true values of {γk}M(n)
k=1 , π1 and

σv.

This basic model is similar to the setting in Lee at al. (2015) except now we consider

a case with known point mass location (i.e., U = 0, zero point mass) and random noise

with unknown variance σ2
v . We outline a similar “bin-and-smooth” procedure as follows. To

estimate the unknown parameters, the first step is to discretize the continuous part of U ,

which is denoted by Uc. We approximate Uc by a discrete random variable Ũc taking values

on an equally spaced grid, with grid spacing h. The discrete random variable Ũc takes on

values uj: uj+1 − uj = h, j = 1, . . . ,M(n), which covers the support of fc. M(n) is the

number of bins and it is a function of sample size n. In practice, we choose Ũc satisfying

Ũc = uj if and only if Ũc ∈ [uj − 0.5h, uj + 0.5h]

7Most of the typical truncated distributions belong to this category. For details, please refer to Schwarz
and Van Bellegem (2010).
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The parameter h is similar to the bin width in a histogram and the bandwidth in the kernel

density estimator. Let θ = (θ1, . . . , θr)
T be the probability distribution of Ũc, i.e.

θj = P (Ũc = uj) for each j = 1, . . . ,M(n)

where θj ≥ 0 and
∑M(n)

j=1 θj = 1. Then each θj represents the probability that Ũc = uj, which

is an approximation of the probability that Uc lies in the interval [uj − 0.5h, uj + 0.5h].

Replacing Uc by Ũc, the distribution of U is purely discrete and the generalized density

fU in equation (3.11) can be written as

f̃U(u|π, θ) = π1δ0(u) + π2

M(n)∑
j=1

θjδuj(u). (2.6)

Based on this approximation, the problem turns into the estimation of π, θ as well as the

unknown noise variance σ2
v (which plays a role in the empirical characteristic function as we

will see in the sequel).

A natural idea is to minimize the distance between the empirical characteristic function

and the approximated characteristic function as Schwarz and Van Bellegem (2010) did.8 Re-

call the fact that convergence of characteristic functions implies convergence of corresponding

distributions (Theorem 6.3.3 in Chung, 2001) and the empirical characteristic function con-

verges to the true counterpart as the sample size goes to infinity. We expect the distance

between the empirical characteristic function and the characteristic function corresponding

to Equation (3.11) might be small if the parameters are close to the truth. Based on that,

8Schwarz and Van Bellegem (2010) applied a minimum distance method based on characteristic functions
to estimate the distribution of a latent variable in the context of normal contamination errors with unknown
variance.
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we can estimate π, θ and σv by minimizing

(π̂, θ̂, σ̂v) = arg min
π∈Π,θ∈Θ,σ∈Σ

Schf (π, θ, σv)

= arg min
π∈Π,θ∈Θ,σ∈Σ

∫
|ϕ̂n(t)− ϕ̃Y (t|π, θ, σv)|2w(t)dt

(2.7)

where Π = {(π1, π2) : π1 ≥ 0, π2 ≥ 0, π1 + π2 = 1}, Θ = {(θ1, . . . , θM) : θj ≥ 0, j =

1, . . . ,M(n),
∑M(n)

j=1 θj = 1}, Σ = {σv : 0 < σ2
v ≤ V ar(logY )}.9 ϕ̂n(t) = 1

n

∑n
k=1 exp(it ·

logYk) is the empirical characteristic function of logY following equation (3.2) and

ϕ̃Y (t|π, θ, σv) = π1e
it·0ϕV (t) + π2

M(n)∑
j=1

θje
itujϕV (t) (2.8)

where ϕV (t) := E(eitV ) =
∫
eitvfv(v)dv, fv(v) = 1√

2πσv
exp( v2

2σ2
v
) as V ∼ N(0, σ2

v). Actually,

ϕV (t) = exp(−0.5σ2
vt

2). This is where the unknown noise variance σv plays a role in the

minimization problem.

Note that Schf is a quadratic function of both π, θ and σ2
v and all of these parameters

are defined on compact subsets of Euclidean space. Hence there exists a unique minimizer of

Equation (2.7). One unfortunate problem is that we cannot obtain closed form solutions due

to the presence of the constraints on the parameters. Due to this an iterative EM algorithm

is proposed to solve this constrained minimization problem, the details of which appear in

Appendix A.

Here we propose a LS sieve method based on characteristic functions (LS-ChF) to es-

timate π, θ and σv. An alternative approach which could be similarly employed is a LS

sieve method based on cumulative probability functions (LS-CDF). The idea is to minimize

the distance between the empirical cumulative probability function and the approximated

cumulative probability function. We omit further discussion of this alternative estimation

approach.

9The upper bound of the unknown noise variance comes from the independence assumption between U
and V .
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Case 2: α 6= 0. When α 6= 0, which is the typical case in stochastic frontier analysis,

equation (3.2) becomes a mixture distribution deconvolution problem with both unknown

variance and unknown intercept:

logY = α− U + V.

This is a very difficult problem. To identify this model, an additional assumption is needed:

Assumption. (Unimodality) U is unimodal and its mode is zero.

This unimodality assumption is weak and it admits most typical distributions in stochas-

tic frontier analysis, such as half-normal and exponential. Hall and Simar (2002) introduced

the same unimodality assumption in a similar setting to identify the boundary of a latent

variable. For a mixture distribution with point masses at zero, which is the case of interest

here, this assumption is even weaker as it allows the non-zero truncated distribution for the

continuous part Uc with a large point mass probability π1. With π1 > max(fc), the intercept

is still identified as the mode stays at zero by definition.10

Theorem ID 2. There exists a unique π1 ∈ (0, 1) (as well as π2), a unique σv > 0 and

a unique sequence {γk}M(n)
k=1 which determines a unique density fc(u) which is discretized in

equation (3.12) and satisfies unimodality assumption, such that the model (3.3) and (3.11)

hold true with α = const, i.e., such that the model is identified.

The proof is straightforward based on the results of Theorem ID 1 and the unimodality

assumption. Under the unimodality assumption, we can identify the constant intercept α in

the following sense:

mode(α− U) = α−mode(U) = α ≈ uj∗ , where j∗ = index(max{θj})
10If the true intercept is zero, we can identify the mixture distribution parameters with non-zero truncated

distributed inefficiency. This comes back to the previous case with τ = 0.
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where the second equality holds due to the unimodality assumption, and specifically zero

modality of U . j∗ is the index of the maximum evaluated θ. After obtaining the intercept

α, we can shift log Y and transform it as Ỹ = logY − α̂ = −U + V , which collapses to the

α = 0 case and is identified in Theorem ID 1.

Hence, a two-step procedure is proposed to estimate the mixture distribution with both

unknown noise variance and intercept:

1. Estimate the mode of U + α using the procedures in case 1 as we can always rewrite

the model as

logY = α− U︸ ︷︷ ︸+V = U ′ + V

where U ′ = α+U and mode(U ′)=α. Once we obtain the estimator for θ: θ̂1, the mode

can be obtained by searching the maximum index of θ̂1 and locating the corresponding

uj, i.e., α̂ = uj∗ where j∗ = index(maxj θ̂1j).

2. After obtaining the estimator for the intercept α̂, we can plug it back into Equation

(3.3) and transform the model to

Ỹ = U + V

where Ỹ = logY −α̂. Then the model reduces to Case 1 with α = 0. We can implement

the procedure in the zero intercept case to estimate the following unknown parameters:

π, θ and σv.

It is well documented in both the statistics and econometrics literature that the inverse

problem of estimating the distribution of a latent variable U from an observed sample of Ỹ ,

a contaminated measurement of U , is ill-posed (Tikhonov, 1963; Fan, 1991; Chen and Reiss,

2011, etc). Therefore a penalty function is added to smooth the estimated density f̂c:

(π̂, θ̂, σ̂v) = arg min
π∈Π,θ∈Θ,σ∈Σ

Schf (π, θ, σv) + λnP (θ) (2.9)
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where P (θ) is the roughness penalty. It can be an arbitrary nonnegative function which has a

smaller value when θ is smoother. Following Lee et al. (2015), we choose the sum of squared

first order differences, i.e. P (θ) =
∑M(n)

j=2 (θj − θj−1)2 as the penalty function. The λn > 0

is the penalty parameter which is crucial in practice. We suggest selecting λn based on root

mean squared error (RMSE) of the corresponding estimators with a bootstrap procedure the

details of which are provided in Section 3.4.

Based on estimated π̂, θ̂, σ̂v, we could construct the corresponding density estimator as

follows

f̃U(u|π̂, θ̂) = π̂1δ0(u) + π̂2

M(n)∑
j=1

θ̂jδuj(u). (2.10)

This estimator can be improved by linear interpolation

f̃U(u|π̂, θ̂) = π̂1δ0(u) + π̂2

M(n)∑
j=1

θ̂j f̂c(u|θ̂),

where

f̂c(u|θ̂) =


θ̂j−1

h
+

θ̂j−θ̂j−1

h(uj−uj−1)
(u− uj−1) if u ∈ [uj − 0.5h, uj + 0.5h], j = 2, . . . ,M(n)

0 otherwise

2.2.2 Heteroskedastic Frontiers

Heteroskedastic frontiers allow for the presence of covariates in the frontier, namely, τ =

τ(W ) where W ∈ Rd are the covariates. Redefine U ≥ 0 to allow zero inefficiency. Then

Equation (3.1) becomes

Y = τ(W ) · exp(−U) exp(V ) (2.11)

where τ(W ) is a heteroskedastic frontier incorporating covariates, U ≥ 0 denotes inefficiency,

and V ∼ N(0, σ2
v) is measurement error or statistical noise as before. For instance, consid-

ering a production stochastic frontier model where W denotes inputs, τ(W ) is the frontier

and τ(W ) · exp(−U) is the “true” output. This is the more typical case for the practitioner
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except that we now allow the presence of some fully efficient firms.

Taking logarithms on Equation (2.11), we have

logY = α(W )− U + V (2.12)

where α(W ) = log(τ(W )) is the logarithmic transformation of the heteroskedastic frontier.

The problem now turns into estimating the intercept α(w0), the mixture distribution of U

and the noise variance σ2
v conditional on W = w0.

Suppose the following conditions hold: (i) {Wi, Yi}ni=1 are i.i.d observations; (ii) the

conditional distribution of V given W = w0 is N(0, σ2
v(w0)) with a true variance σ2

v(w0)

(possibly) depending on w0; (iii) U and V are conditionally independent given W = w0 and

U is nonpositive for production frontier model and nonnegative for cost frontier model; (vi)

U is conditionally unimodal and its mode is zero.

Under above conditions, estimation of model (2.12) is a straightforward generalization

of the estimation of the baseline model in equation (3.3) with α 6= 0. Since given W = w0,

α = log(τ(w)) is a constant and model (2.12) can be view as a constant frontier model in

the neighborhood of W = w0. This is in the same spirit of local boundary estimation as in

Hall and Simar (2002) and KSVK (2015).

By condition (ii), E(V |W = w) = 0. Assume that E(U |W = w) is a constant in a

small neighborhood of the evaluation point w0 and τ(·) is sufficiently smooth and can be

well represented by a Taylor expansion, i.e., log(τ(w)) ≈ log(τ(w0)) + βT (w0)(w − w0) with

β(w0) = ∂
∂w

(log τ)(w)|w=w0 . For a small b > 0, we then obtain

log Yi ≈ c(w0) + βT (w0)(Wi − w0)− U0
i + Vi, if ||W − w0|| ≤ b

where c(w0) = log τ(w0)−E(U |W = w0) and U0
i = Ui−E(U |W = w0). The term −U0

i +Vi is

the compound error term with zero mean and hence c(w0) and β(w0) can be estimated with

ordinary least square. The β(w0) contains the local variation of α(w) (i.e., log τ(w)), which
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can be used to calculate a suitable correction of the mixture distribution of the inefficiency. In

order to apply the estimation strategy in the baseline model, we can transform the dependent

variable log Yi as follows:

log Ỹi : = log Yi − βT (w0)(Wi − w0)

≈ c(w0)− U0
i + Vi

= log(τ(w0))− Ui + Vi

= α(w0)− Ui + Vi

(2.13)

where α(w0) := log(τ(w0)); or alternatively, we can apply following transformation

log Ỹi : = log Yi − c(w0)− βT (w0)(Wi − w0)

≈ −U0
i + Vi

= E(U |W = w0)− Ui + Vi

= α(w0)− Ui + Vi

(2.14)

where α(w0) := E(U |W = w0). Then apply the estimation procedure in equation (3.3) with

α 6= 0. Naturally, we can obtain the estimator of α, π and θ, consequently the continuous

density fc, conditional on W = w0.

Based on the estimation strategy, we develop following estimation procedure for the

heteroskedastic frontier model:

1. Fix a bandwidth b > 0 and estimate c(w0) and β(w0) by minimizing the following local

least squares problem

∑
||Wi−w0||≤b

(log Yi − c− βT (Wi − w0))2

Denote the estimates as ĉ(w0) and β̂(w0).
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2. Transform Yi by either log Ỹ1i := log Yi−βT (w0)(Wi−w0) or log Ỹ2i := log Yi− c(w0)−

βT (w0)(Wi − w0).

3. Following the two-step procedure in the constant frontier estimation with α 6= 0 to

estimate α(w0), π(w0) and θ(w0), consequently the continuous density fc(u|w0).

4. For the first transformation of Yi, α̂(w0) = log τ̂(w0), we can get the conditional

expected inefficiency level Ê(U |W = w0) = α̂(w0) − ĉ(w0); for the second trans-

formation of Yi, α̂(w0) = Ê(U |W = w0), we can get the heteroskedastic frontier

log τ̂(w0) = ĉ(wo) + α̂(w0).

Unlike KSVK where the boundary log τ(w) is identified without point mass in the dis-

tributions of U , we now estimate the heterogeneous intercept α(w) through the unimodality

property of α−U . Similar to KSVK, our method can also identify the conditional expected

inefficiency level E(U |W = w0) with the proposed procedures. Moreover, our estimation pro-

cedure recovers the entire mixture distribution of inefficiency at a neighborhood around w0,

especially the probability of zero-inefficiency among the firms which are of primary interest

for policy makers or regulators. The (conditional) unimodality of U yields the identification

of the (heterogeneous) intercepts which lays the foundation for the point mass probability

estimation as well as the continuous distribution of the heteroskedastic inefficiency at each

of these neighborhoods.

2.3 Asymptotic Properties

In this section, we investigate the asymptotic properties of the proposed estimators and

inference on zero inefficiency probability with a QLR statistic based on the results derived

in Chen and Pouzo (2012, 2015).11 We deal with the unknown noise variance extension first,

11Schwarz and Van Bellegem (2010) and Lee et al. (2015) also provided consistency of similar minimum
distance estimation routines.
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namely, the α = 0 case, then generalize the theorems to the unknown noise variance with

nonzero intercepts (i.e., α 6= 0).

The proposed penalized LS sieve estimator can be regarded as a special case of the

general PSMD estimator studied by Chen (2007) and Chen and Pouzo (2012, 2015). Define

ρ(Y, h) = |φn(ti) − φY (ti|π, θ)|, then E(ρ(Y, h)|t) = 0 as φn(t) = φY (t|π, θ), ∀ t. Define

m(·, h) = E(ρ(Y, h)|t = ·). We can rewrite the objective function in equation (3.15) with a

special weight function w(t) = 1(M1 ≤ t ≤M2) (M1 = min(log Yi), M2 = max(log Yi)) as

Q̂n(h) =
1

M1 −M2

M2∑
ti=M1

(m̂(ti, h)T m̂(ti, h)) + λnP̂n(h) (2.15)

where m̂(ti, h) = E(ρ̂(Y, h)|ti) = |φ̂n(ti)− φ̃Y (ti|π, θ)|, and

Hn = {h ∈ H : h(t) = [π1 + π2

k(n)∑
j=1

θj(i sin(txj) + cos(txj))]φv(t, σv)}

where k(n) → ∞ slowly as n → ∞. Specifically, k(n)/n → 0 as n → ∞. P (·) is a penalty

function and λn is the tuning or penalty parameter. Essentially the proposed method is

a PSMD approach using a slowly growing infinite-dimensional linear (Fourier series) sieve

studied in Chen and Pouzo (2012). As π, σv and the infinite-dimension θ which determines

the continuous part of the inefficiency U are all parameters of interest in our context, the

proposed model is semi-nonparametric based on the definition proposed by Chen (2007).

In order to demonstrate consistency, we need to verify the following assumptions in Chen

and Pouzo (2012) (CP(2012), hereafter) first.

Notation: Denote Lp(Ω, dµ) as the space of measurable functions with ||f ||Lp(Ω,dµ) ≡

{
∫

Ω
|f(t)|pdµ(t)}1/p < ∞, where Ω is the support of a sigma-finite positive measure dµ

(sometimes Lp(dµ) and ||f ||Lp(dµ) are used for simplicity). For any positive sequences {an}∞n=1

and {bn}∞n=1, an � bn means that there exists two constants 0 < c1 ≤ c2 < ∞ such that

c1an ≤ bn ≤ c2an; an = Op(bn) means that limc→∞ lim supn Pr(an/bn > c) = 0 and an =
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op(bn) means that for all ε > 0, limn→∞ Pr(an/bn > ε) = 0. For any vector-valued A, we let

AT denote the transpose and ||A||W ≡
√
ATWA for its weight norm, although sometimes we

also use |A| = ||A||I ≡=
√
ATA without too much confusion. We use Hn ≡ Hk(n) to denote

the sieve spaces.

Suppose V ∼ N(0, σ2
v) with unknown variance and we observe {Y }ni=1 (or {log Y }ni=1)

which is a contaminated version of the “true” signal that follows a mixture distribution of

a point mass at zero and a truncated unknown distribution (for the constant frontier case).

The unknown distribution of Y satisfies E(ρ(Y, h)|t) = 0 for any t, where ρ : Y×H → Rdρ is

a measurable mapping known up to a vector of unknown functions, h0 ∈ H ≡ H1× . . .×Hq,

a separable Banach space with norm ||h||s ≡
∑q

l=1 ||hl||s,l.

Assumption 1. Identification, Sieves: (i) W(t) is a positive definite matrix for all t; (ii)

E(ρ(Y, h0)|t) = 0 and ||h0 − h||s = 0 for any h ∈ (H, || · ||s) with E(ρ(Y, h0)|t) = 0;

(iii) {Hk : k ≥ 1} is a sequence of nonempty closed subsets satisfying Hk ⊆ Hk+1 ⊆

H, and there is Πnh0 ∈ Hk(n) such that ||Πnh0 − h0||s(≡
√
E[(Πnh0 − h0)2]) = o(1); (iv)

E[||m(t,Πnh0)||2W ](≡ E[m(t,Πnh0)Tm(t,Πnh0)]) = o(1).

Assumption 2. Penalty: one of the following holds: (a) λn = 0, (b) λn > 0, λn = o(1),

suph∈Hk(n) |P̂n(h) − P (h)| = Op(1), and |P (Πnh0) − P (h0)| = O(1) with P : H → [0,∞),

P (h0) < ∞, or (c) λn > 0, λn = o(1), suph∈Hk(n) |P̂n(h) − P (h)| = op(1), and |P (Πnh0) −

P (h0)| = o(1) with P : H → [0,∞), P (h0) <∞.

Assumption 3. Sample Criterion: (i) 1
n

∑n
i=1 ||m̂(ti,Πnh0)||2

Ŵ
≤ c0×E[||m̂(ti,Πnh0)||2W ] +

Op(η0,n) for some η0,n = o(1) and a finite constant c0 > 0; (ii) 1
n

∑M2

ti=M1
||m̂(ti, h0)||2

Ŵ
≥

c × E[||m̂(ti, h0)||2W ] − Op(δ̄
2
m,n) uniformly over HM0

k(n) for some δ̄2
m,n = o(1) and a finite

constant c > 0.

Assumption 1 (i) and (ii) are trivially satisfied since W (t) = 1(M1 ≤ t ≤ M2) and

E(ρ(Y, h)|t) = 0 as φn(t) = φY (t|π, θ), ∀ t. Assumption 1 (ii) is for global identification.

Assumption 1 (iii) defines the sieves. Under Assumption 1 (ii) and (iii), Assumption 1 (iv)
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is satisfied if E[||m̂(ti, h)||2W ] is continuous at h0 under || · ||s. And this is the case here since

E[||m̂(ti, h)||2W ] ≡ E[m(t, h)Tm(t, h)] where m(t, h) = E(ρ(Y, h)|t) = E(|φn(t)− φY (t|π, θ)|)

which are continuous in h0.

For Assumption 2, (a) means no penalty; (b) and (c) are trivially satisfied whenHk(n) = H

and P̂n = P . Assumption 2 (c) is a stronger version of Assumption 2 (b). Under Assumption

1 (iii) and P (h0) < ∞, a sufficient condition for |P (Πnh0) − P (h0)| = o(1) is that P (·) is

continuous at h0. As we choose the penalty function P (·) as
∑

(θj − θj+1)2, the above

conditions are trivially satisfied.

Assumption 3 is satisfied as m̂(Y, h) can be written as a series least squares (series LS)

estimator:

m̂(t, h) = pk(n)(t)T · (P TP )−
∑

pk(n)(ti)ρ(Yi, h) (∗)

where pk(n)(X) = (p1(X), . . . , pk(n)(X))T , P = (pk(n)(X1), . . . , pk(n)(Xn))T , (P TP )− is the

Moore-Penrose generalized inverse and {pj(·)}∞j=1 is a sequence of (generalized) Fourier series

from Hn. The k(n) is the number of approximating terms as before in the definition of h.

The Lemma C.2 in Appendix C in Chen and Pouzo (2012) shows that the series LS estimator

defined in (*) satisfies Assumption 3. For the series LS estimator m̂(t, h) defined above, we

can choose δ2
m,n = η0,n = const× k(n)

n
= o(1).

This leads to our first theorem on consistency:

Theorem 1. Let ĥn be the PSMD estimator with λn ≥ 0 and ηn = O(η0,n), and suppose

Assumption 1, 2 and 3 hold. If max{η0,n, E[||m(t,Πnh0)||2W ], δ̄2
m,n, λn} = o(g(k(n), ε)) for all

ε > 0 where g(k(n), ε) ≡ inf
h∈HM0

k(n)
:||h−h0||s≥ε

E[||m(t, h)||2W ], then

||ĥ0 − h0||s = op(1) and P (ĥn) = Op(1) if λn > 0.

The proof is straightforward following Theorem 3.1 in CP (2012) requiring verification of

the conditions required there for the present context. Full details are provided in Appendix

B.
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Next, we proceed to propose a unified theorem which demonstrates the convergence rate

of the proposed estimator and incorporates KSVK’s estimator as a special case. Given the

consistency result above, we now restrict our attention to a shrinking || · ||s neighborhood

around h0 to derive the convergence rate. Following CP (2012), define

Hos ≡ {h ∈ H : ||h− h0||s ≤ ε, ||h||s ≤M1, λnP (h) ≤ λnM0}

Hosn ≡ Hos ∩Hn

for some positive finite constants M1 and M0, a sufficiently small positive ε such that Pr(ĥn /∈

Hos) < ε. We can treat Hos as the new parameter space and Hosn as the new sieve space.

Assume thatHos is an infinite-dimensional subset of a real-valued separable Hilbert space

H with an inner product < ·, · >s and the inner product induced norm || · ||s. Let {qj}∞j=1

be a Riesz basis associated with the Hilbert space (H, || · ||s); that is , any h ∈ H can be

expressed as h =
∑

j < h, qj >s qj, and there are two finite constants c1, c2 > 0 such that

c1||h||2s ≤
∑

j | < h, qj >s |2 ≤ c2||h||s for all h ∈ H.

Assumption 4. Sieve Approximation Error: ||h0 −
∑k(n)

j=1 < h, qj >s qj||s = O(vk(n)
−κ) for

a finite κ > 0 and a positive sequence {vj}∞j=1 that strictly increase to ∞ as j →∞.

Assumption 5. Sieve Link Condition: There are finite constants c, c > 0 and a continuous

increasing function ϕ : R+ → R+ such that (i) ||h||2 ≥ c
∑∞

j=1 ϕ(j−2)| < h, qj >s |2 for all

h ∈ Hosn and (ii) ||Πnh0 − h0||2 ≤ c
∑∞

j=1 ϕ(j−2)× | < Πnh0 − h0, qj >s |2.

Fourier series bases satisfy Assumption 4 with vk(n) = k(n)1/d where d is the dimension

of target parameter U here. So d = 1 and vk(n) = k(n). Assumption 5 (i) relates the

weak pseudometric ||h|| to the strong norm in a shrinking sieve neighborhood Hosn of h0.

Assumption 5 (ii) is the so called “stability condition” in CP (2012) with vk(n) = k(n) here.

It is required to hold only in terms of the sieve approximation error Πnh0 − h0.

Under the above assumptions, we can apply corollary 5.1 in CP (2012) to establish

convergence of the smoothing parameter in present context:
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Lemma 3. Let ĥn be the PSMD estimator with λn ≥ 0 and λn = o(1). Let Assumptions 1-5

hold and max{δm,n, λn} = δ2
m,n = const× k(n)

n
= o(1). Then

||ĥn − h0||s = Op

(
k(n)−κ +

√
k(n)

n× ϕ(k(n)−2)

)
.

Thus, ||ĥn−h0||s = Op(n
−κ/2(κ+ς)+1) if ϕ(τ) = τ ς for some ς ≥ 0 and k(n) � n1/2(κ+ς)+1,

and ||ĥn − h0||s = Op([lnn]−κ/ς) if ϕ(τ) = exp(−τ−ς/2) for some ς > 0 and k(n) = c[lnn]1/ς

for some c ∈ (0, 1).

Proof of Lemma 3 is a direct application of Corollary 5.1 in CP (2012) with Fourier series

LS estimation and d = 1. Basically we choose k(n) to balance the sieve approximation error

rate ({vk(n)}−κ) and the model complexity (
√

k(n)
n×ϕ(k(n)−2)

). Different convergence rates are

derived based on the degree of ill-posedness which is represented by ϕ(·). Note that this

also lays a foundation for considering different distributions of the random shocks V rather

than normal concerning that the characteristic functions of V (e.g., φv(t, σv)) determines the

function form of ϕ(·). For instance, Cauchy distribution with location parameter µ = 0 or,

more generally, for stable distributions with fixed exponent α ∈ (0, 2], skewness parameter

β = 0, and location µ = 0 are admitted here.

Consider the Hellinger distance H2(f1, f2) = 1
2

∫
(
√
f1(u)−

√
f2(u))2du for any arbitrary

density functions of u: f1(u) and f2(u). Then we have following theorem:

Theorem 2. Let ϕ̃Y (t|π, θ, σv) be the PSMD estimator defined in equation (2.8) which equals

to ĥn with k(n) = M(n) where M(n) as the number of bins, λn ≥ 0 and λn = o(1), ϕ0(t)

is the true characteristic function of Yi, i = 1, . . . , n. Let Assumptions 1-5 and Unimodality

hold and max{δm,n, λn} = δ2
m,n = const× M(n)

n
= o(1). Then

||ϕ̃(t)− ϕ(t)||s = Op

(
n−1/2 +M(n)−κ +

√
M(n)

n× ϕ(M(n)−2)

)
= Op([lnn]−κ/ς)

where ϕ(τ) = exp(−τ−ς/2) for some ς > 0 and M(n) = c[lnn]1/ς for some c ∈ (0, 1).
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Consequently,

H2(f̃U , fU) = Op

(
max([lnn]−1/ς , [lnn]−κ/ς)

)
||α̂− α|| = Op

(
max([lnn]−1/ς , [lnn]−κ/ς)

)
,

where f̃U is defined in equation (3.16) and α 6= 0 is defined in equation (3.3).

The proof is based on Lemma 3 and details are in Appendix 2.C. We derive ln(n) con-

vergence rate due to the severe ill-posedness caused by the normally distributed random

shock V . In practice, one needs to choose the number of bins which is also the number of

evaluation points for the continuous density fc(u). A rule of thumb is to try ς =1, 2, 3, 4 to

choose M(n) with normally distributed random errors. We discuss this in detail in Section

4.

Though proved in a different manner, Theorem 5 incorporates Theorem 3.2 in KSVK

as a special case: ϕ(τ) = exp(−τ−ς/2) with κ = ς = 2. Essentially, the sieve they used is

φ( 1
σ

log y
tα

) (when they discretized the target density) which is exactly ς = 2 for ϕ(k(n)−2) =

exp(−k(n)ς) here (recall φ(y) = O(exp{−0.5y2})). Therefore, a direct application yields

||ϕ̃(t) − ϕ(t)||s = ||ĥn − h0||s = Op([lnn]−1). They derived a slightly different convergence

rate for the unknown frontier and variance due to choosing a special order of the tuning

parameter in the penalty function.12

Next we propose a sieve quasi-likelihood ratio (QLR) test on the zero inefficiency hy-

pothesis which is very useful and informative in the ZISF model.

Theorem 3. Let m̂ be the series LS estimator in (*) for E(ρ̂(Y, h)|ti) = 0 a.s. any ti. Let

Assumption 1-5 hold and define φ(h) =
∫
m̂(ti, h)′m̂(ti, h)dti, then

√
n
φ(ĥn)− φ(h0)

||v∗n||sd
→ N (0, 1),

where ||v∗n||sd = 2
∫
m̂(ti, h0)pk(n)(ti)dtiD

−
n ΦnD

−
n 2
∫
m̂(ti, h0)pk(n)(ti)dti,

12This difference also leads to a slightly different choice of order of k(n) which is M in KSVK.
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D−n = E
(
E[pk(n)(Y )|ti]E[pk(n)(Y )|ti]′

)
, Φn = E

(
E[pk(n)(Y )|ti]ρ2(ti, h0)E[pk(n)(Y )|ti]′

)
and

ρ(ti, h0) = |φn(ti)− φY (ti|π, θ)|.

The proof of Theorem 6 directly follows from Theorem 4.1 (or Remark 6.1) in Chen and

Pouzo (2015). Since φ(h) =
∫
m̂(ti, h)′m̂(ti, h)dti is a regular quadratic functional of h which

satisfies the regularity conditions and note that dφ(h)
dh

[pk(n)(.)] = 2
∫
m̂(ti, h)pk(n)(ti)dti, direct

adoption of Theorem 4.1 in Chen and Pouzo (2015) yields the conclusion in Theorem 3.

Details are in Appendix 2.D.

Remark 3. 1. Theorem 6 shows the asymptotic normality of a plug-in PSMD estimator

of a quadratic functional regardless of whether the latter is root-n estimable or not. The

close form expression of ||v∗n||2sd immediately leads to simple consistent plug-in sieve variance

estimator as follows:

||v̂∗n||n,sd =
2

M2 −M1

M2∑
ti=M1

m̂(ti, h0)pk(n)(ti)D̂
−
n Φ̂nD̂

−
n

2

M2 −M1

M2∑
ti=M1

m̂(ti, h0)pk(n)(ti)

where D̂n = 1
M2−M1

∑M2

ti=M1
( 1
N

∑N
i=1 p

k(n)(yi, tj))
2,

Φ̂n =
1

M2 −M1

M2∑
ti=M1

( 1

N

N∑
i=1

pk(n)(yi, tj)ρ̂
2(ti, h)

1

N

N∑
i=1

pk(n)(yi, tj)
)

and ρ̂(ti, h) = |φ̂n(ti) − φ̃Y (ti|π, θ, σv)|. This simple sieve variance estimator is consistent

according to Chen and Pouzo (2015).

Remark 3. 2. Theorem 6 is essential to test the zero inefficiency hypothesis using a quasi-

likelihood ratio (QLR) test which is subsequently derived based on the objective function

Q̂n(ĥ). For example, we could estimate a restricted zero-inefficiency stochastic frontier

model and an unrestricted model as proposed in Section 3.2 which yield the estimates θ̂r,

σ̂rv and π̂, θ̂, σ̂v respectively. Then the corresponding ĥ0(t) = [1 ∗
∑rn

j=1 θ̂
r
j(isin(tYj) +

cos(tYj))]φz(t, σ̂rv) and ĥ1(t) = [π̂1 + (1 − π̂1) ∗
∑rn

j=1 θ̂j(isin(tYj) + cos(tYj))]φz(t, σ̂v) and
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Q̂n(ĥk) = 1
M1−M2

∑M2

ti=M1
m̂(ti, ĥk)

′m̂(ti, ĥk), k = 0, 1. Hence we could test the following

hypothesis:

H0 : π1 = 0, H1 : π1 > 0

with a QLR statistic test as

n(Q̂n(ĥ0)− Q̂n(ĥ1))

||v̂∗n||2n,sd
→d 0.5 ∗ χ2

1 + 0.5 ∗ χ2
0.

The sieve variance estimator can be obtained as illustrated in Remark 3.1. The denominator

||v̂∗n||2n,sd is to normalize the test statistic as the weight applied here w(t) = 1(M1 ≤ t ≤M2)

is not the optimal weight. Due to that fact that null hypothesis lies on the boundary of the

parameter space (0 ≤ π1 ≤ 1), the asymptotic distribution of the QLR statistic is a 50 : 50

mixture of a χ2
0 distribution and a χ2

1 distribution rather than the typical χ2
1 distribution

(Andrews, 2001). A straightforward bootstrap test statistics is feasible based on this argument.

We implement the above test with a bootstrap procedure when dealing with a US bank data

in the application.

2.4 Tuning Parameter Selection

2.4.1 Selection of the Number of Bins M(n)

Based on Theorem 2 in Section 3.3, there is a trade-off between the number of discretized

points M(n) and the order of ||ĥn− h0||s, while they jointly determine the convergence rate

of f̂U . Lee et al.(2013) proposes using Akaike Information Criterion (AIC, Akaike, 1974) to

choose the number of bins M(n) which is computationally intensive. Alternatively here we

propose M(n) = max(3, O(ln(n))).

KSVK applied a similar rule of thumb on M(n) but with a polynomial order. A useful

criterion is to choose the coefficient before ln(n) as c ∗ ln(n) = n0.2. The intuition here is

that the number of bins M(n) here plays a role similar to (the inverse of) the bandwidth
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in kernel estimation and the optimal bandwidth for a univariate kernel estimation is h∗ =

O(n−0.2). The max operator here is to avoid over-small number of bins in small sample

sizes. Our simulation results show that a small number of sieve terms can deliver adequate

approximations across different distribution designs.

2.4.2 Selection of the Penalty Parameter λn

To derive the asymptotics in Section 3.3, the only requirement on the penalty parameter is

λn = o(1). In practice, the penalty parameter λn plays the role of a smoothing parameter in

the proposed penalized sieve estimation and it is crucial for the estimated density parameters

{θj}. Here we propose a bootstrap procedure following KSVK and Florens et al. (2019) to

choose λn:

1. For a given sample n, draw bootstrap random samples of size n, (Y ∗,m1 , . . . , Y ∗,mn ) for

m = 1, . . . , B, by sampling with replacement from the n values Yj in the original sample.

For the heteroskedastic frontier estimation, at each value of w, draw bootstrap random

samples of size nb, (Y ∗,m1 , . . . , Y ∗,mnb
) for m = 1, . . . , B, by sampling with replacement

from the nb values Yj in the original sample such that ||Wj − w|| ≤ b.

2. For a given λn, compute the original estimators π̂1, θ̂λ(w) and its bootstrap analogue

θ̂∗λ(w), for m = 1, . . . , B. For the first step estimation in Case 2 and heteroskedastic

frontier estimation, α̂ is computed instead.

3. Select the optimal λn over a grid of points (e.g., log λn = −1.5,−1,−0.5, 0., 0.5, 1, 1.5)

using the sum of two Root Mean Squared Error (RMSE): RMSE(π̂1)+RMSE (θ̂).13

For the first step estimation in Case 2 and heteroskedastic frontier estimation, we can

use RMSE(α̂).

Some other methods like the simulation-based approach by Lee et al. (2013) is also

applicable here. One point worth mentioning is that the optimal choice of penalty parameter

13Here, RMSE(θ̂):=
√∑M(n)

j=1 MSE(θ̂j).
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λn largely depends on the target of each step. We may have different penalty parameters

for the first step LS sieve estimation and the second step LS sieve estimation in the two-step

procedures.

2.5 Simulation

In this section, we provide three simulation studies to investigate the finite sample properties

of the proposed estimators which correspond to Case 1 (mixture distribution), Case 2 (mix-

ture distribution with an intercept) and the heteroskedastic frontier (mixture distribution

with heteroskedastic frontiers) illustrated in Section 2. The last case is motivated by the

econometric literature on stochastic frontier models, especially the ZISF models as described

in the introduction.

For the data generating process, we consider a simple model

logY = α + U + V (2.16)

with three cases: α = 0, α = constant and α = α(W ) where W is an exogenous covariate.

The inefficiency term U , which follows a mixture distribution, is generated as follows:

U ∼

 0 with probability π1

Uc with probability π2

where 0 ≤ π1 ≤ 1, π1 +π2 = 1 and Uc is a positive continuous random variable which follows

a one-sided distribution. If π1 = 0, Equation (2.16) reduces to a typical stochastic frontier

model with a continuously distributed inefficiency U ; if π1 = 1, it reduces to a traditional

ordinary least square (OLS) model. In the following simulations, we consider two cases with

π1 = 0.4 and π1 = 0.7 respectively.

To satisfy the unimodality assumption mentioned in Case 2 and heteroskedastic frontier
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Case in Section 2, we consider exponentially or half normally distributed inefficiency Uc as in

the typical stochastic frontier model (Aigner et al.,1977; Meeusen and van den Broek ,1977)

and the newly proposed ZISF model (Kumbhakar et al., 2013; Rho and Schmidt, 2015).14

In the exponential case the density of Uc is

Uc ∼ Exp(b)⇐⇒ fUc(u) =
1

b
exp(−u

b
) u > 0

For the half normal case, the density of Uc is

Uc ∼ |N(0, σ2)| ⇐⇒ fUc(u) =

√
2

σ
√
π

exp(− u2

2σ2
) u > 0

Experiments with various noise-to-signal ratios under the above distribution and zero

probability settings are considered. Details are provided in Table 1. To facilitate the com-

parison, we increase the noise-to-signal ratio (i.e., ρnts := σv/σu) by doubling the variance

of the random noise V and fixing the (mixture) distribution of inefficiency U .

For all the simulations, the following three measurements are reported for the point

estimates π̂1:

Bias2(π̂1) = (
1

R

R∑
r=1

π̂1r − π1)2

V ar(π̂1) =
1

R

R∑
r=1

(π̂1r −
1

R

R∑
r=1

π̂1r)
2

MSE(π̂1) =
1

R

R∑
r=1

(π̂1r − π1)2

where R = 100 is the replication times. Similar measurements for frontier estimates α̂. For

14For the simulation design for Case 1, we do not need unimodality assumption.
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the continuous density estimator f̂c(u)( e.g., the estimator of fUc(u)), we report

∫
Bias2(f̂c(u))du = h

M(n)∑
j=1

( 1

R

R∑
r=1

f̂cr(uj)− fc(uj)
)2

∫
V ar(f̂c(u))du = h

M(n)∑
j=1

1

R

R∑
r=1

(
f̂cr(uj)−

1

R

M(n)∑
j=1

f̂cr(uj)
)2

∫
MSE(f̂c(u))du = h

M(n)∑
j=1

1

R

R∑
r=1

(
f̂cr(uj)− fc(uj)

)2

where h := uj+1−uj and M(n) is the number of evaluating points defined in Section 2. Here

we choose equidistant points so h = M2−M1

M(n)
, where M1 = min(log Y ) and M2 = max(log Y ).

We choose M(n) = max(3, c ∗ ln(n)) with c = 1 as we proposed in Section 4.

2.5.1 Simulation Design I: logY = U + V

In this simulation experiment, we consider the basic setting with Case 1, namely, α = 0. As

mentioned before, the proposed method extends the LS sieve estimation in Lee et al. (2015)

to the case with unknown variance but with known point mass. Simulations with three

sample sizes are conducted: N = 500 (small), N = 1000 (medium) and N = 3000 (large),

for the two sets of noise-to-signal ratio scenarios (i.e., V ∼ N(0, 0.22) and V ∼ N(0, 0.42))

in Table 1.

Table 2 reports the results for simulation design I under the first noise-to-signal ratio

set, e.g., V ∼ N(0, 0.22), with different sample sizes. The first panel of the table repre-

sents the case with Uc ∼ Exp(1) where Uc is the continuous portion of the inefficiency,

and the second panel is for the case with Uc ∼ |N(0, 1)|. In the last row of each panel,

optimal penalty parameter λn are reported. These are chosen by minimizing the sum of

RMSE(π1) and RMSE(θ̂). Vertically, the three pair columns correspond to the three scenar-

ios with aforementioned sample sizes. Each column in a pair represents a specific case for

the zero point mass probability, specifically, π1 = 0.4 and π1 = 0.7. Looking through the
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table, we can observe that the proposed estimators behave as expected. Horizontally, when

the sample size increases, the estimation improves for both π1 and fc(u). Vertically, the

proposed estimators (π̂1 and f̂c(u)) perform better with half-normally distributed Uc than

with exponentially distributed Uc in general. When zero point mass probability increases,

exponentially distributed Uc yields a better estimator of π1 but a worse estimator of fc(u)

compared with those with Uc ∼ |N(0, 1)|, see, e.g., for the case of π1 = 0.7 with N = 1000.

For the penalty parameter, optimal value for exponentially distributed Uc is more varied

than those with half-normally distributed Uc. This may partially explain the variability of

the estimates with exponentially distributed Uc.

Similarly, Table 3 reports the results for simulation design I under the large noise-to-

signal ratio setting, e.g., V ∼ N(0, 0.42), with different sample sizes. Layout in Table 3

is the same as that in Table 2 for ease of comparison. All the patterns in Table 2 still

exist in Table 3. Compared with Table 2, the absolute values for all three measurements

are relatively larger due to the increased (doubled) noise-to-signal ratios. However, we can

obtain more precise and stable estimates with half-normally distributed Uc than those with

exponentially distributed Uc.

2.5.2 Simulation Design II: log Y = α + U + V

In simulation design II, we consider Case 2 in Section 2.1, namely, α is a nonzero constant.

We choose α = 1 here. The estimation is accomplished deploying the two-step procedure

proposed in Section 2 under the unimodality assumption. The first step is to estimate the

mode of α − U without considering the zero point mass, then subtract the estimated mode

(which is also the unknown intercept α under unimodality) from logY , and apply the same

procedure as in Case 1 to estimate the zero point mass probability π1 and the continuous

density fc(u). To improve performance of the density estimators, roughness penalties are

considered for both steps.

We consider a small sample size N=1000 and a large sample size N=3000 under two sets
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of noise-to-signal ratio scenarios. Table 3.4 reports the results under the small noise-to-signal

setting, namely, V ∼ N(0, 0.22). There are two row panels in the table: each represents one

estimation step. Four pair columns in the table correspond to the four combinations of two

sample sizes and two distributions for Uc. Each column in the pair represents a specific

case with certain zero point mass probability, specifically, π1 = 0.4 or π1 = 0.7 as before.

Horizontally, the proposed estimators for α, π1 and fc(u) converge in MSE as sample size

increases with fixed ρnts, e.g., pair column one VS pair column three. Scenario with π1 = 0.4

and Uc ∼ |N(0, 1)| seems to be the hardest case for estimation.15 The MSE of estimated

intercept increases as sample size increases from 1000 to 3000 (column 3 VS column 7). The

reason is that in the first step, the mode (also the intercept) is not precisely estimated due

to the fact that the evaluating points of the continuous density are a little far from the

true mode in the large sample size N=3000 (column 7). This consequently results in the

under-performance of the estimates for π1 and fc(u) in the second step. Vertically, the mode

estimates in the first step are more precise than the second step estimates, as expected.

Large zero point mass probability (i.e., π1) tends to result in a better estimation of the mode

as well as better fit of the target continuous density fc(u).

Table 2.5 reports the simulation results in the same layout with a large noise-to-signal

setting, namely, V ∼ N(0, 0.42). All patterns in Table 4 still hold in Table 5. The hardest

cases (the case with π1 = 0.4 and Uc ∼ |N(0, 1)|, column 3 and column 7) perform worse

than those with smaller noise-to-signal ratios in Table 4. Table 5 and Table 4 are comparable

with each other in the remaining cases and do not show significant differences for the change

of noise variance. This is due to the optimal choices of penalty parameters in both steps,

which absorb most of the differences caused by the increasing noise variance.16

15One reason may be that it is very hard to estimate the mode with a mixture distribution containing a
small probability of point mass mixed with a half normal distribution as what is observed in Table 2 and
Table 3.

16Note that the optimal choice of penalty parameter λn is very different between Table 4 and Table 5. It
may absorb much of the differences which should exist without penalty optimization.
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2.5.3 Simulation Design III: log Y = α(W ) + U + V

In this simulation experiment, we consider the heteroskedastic frontier case with α = α(W ) in

Section 2, which is motivated by the zero-inefficiency stochastic frontier model. Specifically,

we consider a cost frontier model:

logY = α(W ) + U + V

where α(W ) = 2W 2 reflects the convexity of a cost function, the continuous part of cost

inefficiency Uc ∼ Exp(1/3) with π1 = 0.4 and 0.7, V ∼ 0.2∗N(0, 1) and W ∼ Uniform[0, 1]

representing the output. This is similar to the setting in KSVK, Hall and Simar (2002).

However, there are three major differences in the present setting: firstly, this is a cost

frontier design with convex α(W ) and non-negative inefficiency rather than a production

frontier with concave α(W ) and non-positive inefficiency in KSVK17 ; secondly, we consider

a zero-inefficiency stochastic frontier in present paper, which is different and exclusive from

above references; lastly, the present setting is more noisy compared with previous literature,

that is, the noise-to-signal ratio ρnts = 0.60 here, comparing the noise V and continuous

inefficiency Uc.

Based on the procedures in Section 2.2, we transform logYi by a local least squares

regression and then implement the two-step procedure for Case 2 (i.e., α 6= 0) to estimate

α(w), π1(w) and θ(w). For simplicity, we implement the first transformation proposed in

Section 2.2, i.e., log Ỹi := log Yi−βT (w0)(Wi−w0), and focus on the heteroskedastic frontiers

α(w) here.18 We consider two sample sizes N = 500 and N = 1000. For N = 500, the

frontiers are evaluated at 5 quintiles of W from 0.1 to 0.9, and 10 quintiles for N = 1000. The

penalty parameters are chosen by minimizing the corresponding RMSE with 50 replications.

Details about the selected penalty parameters are reported in Table 6.

17The methodology proposed in KSVK is not readily applied to a cost frontier. But a modified version is
applicable. See Cai (2020).

18One could also look at the conditional expected inefficiency Ê(U |W = w) which may contain some
useful information on the inefficiency.
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Figure 3.1-3.4 shows the four combinations for small/large sample sizes and low/high

probability of zero point mass. The blue lines are the estimated frontiers and the smooth

red lines are the true frontier. A quick look at the figures confirms that the estimated het-

eroskedastic frontiers are going in the expected directions: for a fixed level of zero probability

level π1, as the sample size N increase, the fit of frontier gets better. One reason is that

we could evaluate the heteroskedastic frontiers at more points as N increases, and another

reason is that each evaluated frontier point is estimated more precisely as there are more

observations in each quintile with N increasing. Second, comparing Figure 3.1 (Figure 3.2)

with Figure 3.3 (Figure 3.4), the estimated frontiers perform better with a high level of zero

point mass probability, namely, large π1. This follows from the two-step procedures in Case

2. We also find large zero point mass probability leads to a better estimation of the mode,

i.e., α(w), in Table 4 and 5. Finally we observe that the estimated frontiers perform very well

with confounding zero point mass even in a decent sample size such as N = 1000, concerning

that multiple steps are implemented.19

2.6 Application

In this section, we apply the proposed method to data from 6,010 US banks observed in

2005. For each bank, we have data on the total cost Yi which includes labor salary, interest

of borrowed funds and depreciation of physical capital along with total output Wi consisting

of three output quantities: consumer loans, commercial loans and securities. All outputs are

deflated by the Consumer Price Index (CPI) to the base year of 1988. This data set comes

from the call report in the Chicago Fed website and has been used in a different context

(nonparametric panel heteroskedastic frontiers) in Cai et al. (2019).20

We are interested in the cost frontier, conditional on the value W = w, from the sample

19Here we just connect the evaluated points on the frontier by straight lines in the figures. One can
implement spline interpolation to get a smoother and more precise frontier as Florens, Simar and Van
Keilegom (2019) did.

20For details of the data, please refer to Cai et al. (2019) or Feng and Serletis (2009).
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of N = 6010 observations (Yi,Wi), where i = 1, . . . , N and Yi is the noisy version of the true

total cost. We consider the following stochastic frontier model:

log Yi = α(logWi) + Ui + Vi, i = 1, . . . , N (2.17)

where V ∼ N(0, σ2
v) is the random noise or shock with unknown variance,

U ∼

 0 with probability π1(W )

Uc with probability π2(W )

where 0 ≤ π1(W ) ≤ 1, π1 + π2 = 1 and Uc is a continuous positive random variable which

follows a one-sided distribution. Our primary interests focus on the heteroskedastic frontiers

α(logW ) and the zero inefficiency probability π1(W ).

Estimation consists of two steps. The localization of first-step least square estimation

is done by choosing 10 equidistant groups of the log total output logW (with a bandwidth

b = 1.254). We also try 6, 8, and 12 groups which yields similar results. As explained earlier,

we use a local linear approximation suggested by KSVK and Hall and Simar (2002), to

estimate the cost frontier around W = w. Specifically, we use the local linear transformation

of log Yi: log Ỹi := log Yi − βT (w)(Wi − w) obtained from application of local least squares,

to estimate the frontiers evaluated at each of W = w points in the second step (see details

in Section 2.2).

The estimates are computed for a fixed grid of 10 values of logw. Within each equidistant

group, the number of evaluation points is chosen by M(n) = max(3, ln(nb)) as in the sim-

ulations. We apply the proposed procedures in Section 2.2 to estimate the heteroskedastic

frontiers and zero inefficiency probabilities. For the penalty parameters in both steps, we

search on a grid of logλ = −2,−1.5,−1,−0.5, 0, 0.5, 1, 1.5, 2. The optimal penalty parame-

ters logλ1n and logλ2n are obtained by minimizing the bootstrap estimate of RMSE(α̂) and

RMSE(π̂1)+RMSE (θ̂) respectively as discussed earlier (100 bootstrap replications at each
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evaluation point w).

The results are displayed in Figure 3.5 and the estimated 10 values of the frontiers are

shown in the blue circles. We connect the 10 blue circles by dash blue line to form the final

frontier. We can see how the estimated cost frontier “envelope” the cloud of bank points but

allowing some observations stay below the frontiers at certain intervals of the total output.

This is very different from the typical stochastic frontier model which does not consider

the (potential) zero inefficiency, i.e., the existence of (most) efficient firms. Based on the

estimates of zero inefficiency probability π̂1, 28.5% of the banks are estimated to be fully cost

efficient. About 8.49% of the banks around the fourth equidistant point of logw, namely, the

banks with logw ∈ [11.58, 12.78], are (most) efficient. However, 60% of banks around the

seventh evaluating point, namely the banks with logw ∈ [14.90, 16.10], are (most) efficient.

Details on the ten subgroup analysis along with the proposed QLR test statistics are reported

in Table 2.7.21 The mean cost inefficiency (i.e., E(U |W )) decreases as the output increases.

The QLR test shows that we can reject the full inefficiency null hypothesis, i.e., H0 : π1 = 0

(no zero inefficiency banks) at 5% significance level in seven out of the ten groups: Group

2-3 and Group 6-10. Statistic evidence suggests that there are (cost) efficient banks in the

groups with bigger output and medium size banks tend to be cost inefficient as a whole.

We do find some evidence suggesting the presence of scale economies in the US bank

industry in 2005. Big banks are more likely to be fully efficient, though some medium sized

banks also obtain low levels of estimated cost inefficiency. This is intuitive when considering

the consolidation process of US banks over the 1998-2005 period, a fact mentioned in Feng

and Serletis (2009) who used the same data for their analysis.

2.7 Conclusion

This paper presents a novel nonparametric analysis of the model Y = α + U + V where U

follows a mixture distribution with zero point mass and a continuous one-sided distribution,

21The variance of test statistics are obtained from a bootstrap procedure with 100 replications.
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and V ∼ N(0, σ2
v) with unknown variance. We also consider extension to the newly proposed

zero-inefficiency stochastic frontier model (Kumbhakar et al., 2013). A penalized minimum

distance estimation procedure based on the least square sieve methods studied in Lee et

al. (2015) is proposed and the asymptotic properties of the proposed estimators are derived

following the theorems of Chen and Pouzo (2012, 2015). Moreover, we propose an useful QLR

test on the zero inefficiency hypothesis based on the penalized sieve least square estimator.

Several practical procedures are proposed concerning different cases and the power of our

estimators is shown via simulations and an application to a US bank data.

In this paper, we assume the random noise V ∼ N(0, σ2
v) for convenience which may

not be true though we leave its variance unspecified. We can easily extend the distribution

assumption of V to be any one parameter distribution with unknown variance and symmetric

around zero, for instance, V ∼ Laplace(b), as Horrace and Parmeter (2018) proposed in

the context of stochastic frontier model. In addition, even though we estimate the zero-

inefficiency frontiers i.e., the minimum (maximum) value of the cost (production) with a

consideration of the existence of most efficient firms, we do not investigate its inference or

related test in this paper. These are left for future research.
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Table 2.1: Noise to signal ratios for different scenarios

V ∼ N(0, 0.22) V ∼ N(0, 0.42)

Uc ∼ Exp(1) Uc ∼ |N(0, 1)| Uc ∼ Exp(1) Uc ∼ |N(0, 1)|
π1 = 0.4 π1 = 0.7 π1 = 0.4 π1 = 0.7 π1 = 0.4 π1 = 0.7 π1 = 0.4 π1 = 0.7

V ar(u) 0.840 0.510 0.371 0.243 0.840 0.510 0.371 0.243
ρnts 0.22 0.28 0.33 0.41 0.44 0.56 0.66 0.82

Notes: The noise-to-signal ratio is defined as ρnts := σv/σu. Uc is the continuous part of
inefficiency U .
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Table 2.2: DESIGN I, log Y = U + V , V ∼ N(0, 0.22)

N = 500 N = 1000 N = 3000

π1 = 0.4 π1 = 0.7 π1 = 0.4 π1 = 0.7 π1 = 0.4 π1 = 0.7
Bias2(π̂1) 0.0785 0.0242 0.0734 0.0223 0.0701 0.0190
V ar(π̂1) 0.0023 0.0007 0.0015 0.0006 0.0006 0.0003
MSE(π̂1) 0.0808 0.0249 0.0749 0.0229 0.0708 0.0193

Uc ∼ Exp(1)
∫
Bias2(f̂c(u))du 0.0435 0.0217 0.0292 0.0215 0.0213 0.0143∫
V ar(f̂c(u))du 0.0031 0.0027 0.0010 0.0016 0.0002 0.0005∫
MSE(f̂c(u))du 0.0466 0.0245 0.0302 0.0230 0.0215 0.0148

log(λn) 0.5 -0.5 0 -0.5 0 -0.5
Bias2(π̂1) 0.0318 0.0345 0.0306 0.0324 0.0212 0.0311
V ar(π̂1) 0.0037 0.0010 0.0025 0.0003 0.0018 0.0003
MSE(π̂1) 0.0354 0.0354 0.0330 0.0326 0.0230 0.0314

Uc ∼ |N(0, 1)|
∫
Bias2(f̂c(u))du 0.0189 0.0089 0.0138 0.0047 0.0098 0.0027∫
V ar(f̂c(u))du 0.0005 0.0022 0.0002 0.0009 0.0001 0.0004∫
MSE(f̂c(u))du 0.0194 0.0110 0.0141 0.0057 0.0099 0.0031

log(λn) 0 0 0 0 0 0

Notes: The number of evaluation points M(n) = max(3, ln(n)). U comes from a mixed distribution with
π1 probability being a point mass at zero and 1−π1 probability being a continuous random variable Uc
with a pdf fc. For the tuning parameter λn, we search with a grid log(λn) = −1,−0.5, 0, 0.5, 1.
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Table 2.3: DESIGN I, log Y = U + V , V ∼ N(0, 0.42)

N = 500 N = 1000 N = 3000

π1 = 0.4 π1 = 0.7 π1 = 0.4 π1 = 0.7 π1 = 0.4 π1 = 0.7
Bias2(π̂1) 0.1080 0.0298 0.0909 0.0307 0.0906 0.0314
V ar(π̂1) 0.0024 0.0005 0.0007 0.0002 0.0003 0.0001
MSE(π̂1) 0.1104 0.0303 0.0916 0.0308 0.0908 0.0315

Uc ∼ Exp(1)
∫
Bias2(f̂c(u))du 0.0706 0.0582 0.0449 0.0307 0.0248 0.0268∫
V ar(f̂c(u))du 0.0040 0.0044 0.0007 0.0026 0.0006 0.0019∫
MSE(f̂c(u))du 0.0746 0.0626 0.0457 0.0333 0.0254 0.0286

log(λn) 0.5 -0.5 0.5 -0.5 0 -0.5
Bias2(π̂1) 0.0434 0.0431 0.0219 0.0386 0.0083 0.0376
V ar(π̂1) 0.0036 0.0009 0.0032 0.0005 0.0029 0.0003
MSE(π̂1) 0.0470 0.0440 0.0250 0.0391 0.0112 0.0379

Uc ∼ |N(0, 1)|
∫
Bias2(f̂c(u))du 0.0328 0.0156 0.0152 0.0087 0.0106 0.0045∫
V ar(f̂c(u))du 0.0008 0.0050 0.0004 0.0019 0.0002 0.0004∫
MSE(f̂c(u))du 0.0336 0.0205 0.0156 0.0106 0.0108 0.0049

log(λn) 0 -0.5 0 0 0 0

Notes: The number of evaluation points M(n) = max(3, ln(n)). U comes from a mixed distribution with
π1 probability being a point mass at zero and 1−π1 probability being a continuous random variable Uc
with a pdf fc. For the tuning parameter λn, we search with a grid log(λn) = −1,−0.5, 0, 0.5, 1.
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Table 2.4: DESIGN II, log Y = α + U + V , V ∼ N(0, 0.22), α = 1

N = 1000 N = 3000

Uc ∼ Exp(1) Uc ∼ |N(0, 1)| Uc ∼ Exp(1) Uc ∼ |N(0, 1)|

π1 = 0.4 π1 = 0.7 π1 = 0.4 π1 = 0.7 π1 = 0.4 π1 = 0.7 π1 = 0.4 π1 = 0.7

Bias2(α̂) 0.0002 0.0048 0.0170 0.0027 0.0027 0.0105 0.0275 0.0001
V ar(α̂) 0.0350 0.0313 0.0147 0.0090 0.0231 0.0296 0.0310 0.0217
MSE(α̂) 0.0352 0.0361 0.0318 0.0118 0.0258 0.0401 0.0585 0.0218

log(λ1n) -1 -1.5 0 -1.5 -0.5 -0.5 0 -1.5

Bias2(π̂1) 0.0722 0.0031 0.1192 0.0428 0.0542 0.0050 0.1349 0.0076
V ar(π̂1) 0.0153 0.0198 0.0173 0.0056 0.0121 0.0162 0.0253 0.0163
MSE(π̂1) 0.0875 0.0228 0.1365 0.0483 0.0663 0.0212 0.1602 0.0239∫

Bias2(f̂c(u))du 0.0436 0.0177 0.0182 0.0358 0.0351 0.0130 0.0117 0.0063∫
V ar(f̂c(u))du 0.0225 0.0460 0.0115 0.0038 0.0168 0.0338 0.0184 0.0114∫
MSE(f̂c(u))du 0.0661 0.0637 0.0297 0.0395 0.0519 0.0468 0.0301 0.0177

log(λ2n) 0 0 0.5 0.5 0 0 0 0.5

Notes: The number of evaluation points M(n) = max(3, ln(n)). U comes from a mixed distribution with
π1 probability being a point mass at zero and 1 − π1 probability being a continuous random variable Uc
with a pdf fc. For the tuning parameter λn, we search with a grid log(λn) = −1.5,−1,−0.5, 0, 0.5, 1, 1.5.
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Table 2.5: DESIGN II, log Y = α + U + V , V ∼ N(0, 0.42), α = 1

N = 1000 N = 3000

Uc ∼ Exp(1) Uc ∼ |N(0, 1)| Uc ∼ Exp(1) Uc ∼ |N(0, 1)|

π1 = 0.4 π1 = 0.7 π1 = 0.4 π1 = 0.7 π1 = 0.4 π1 = 0.7 π1 = 0.4 π1 = 0.7

Bias2(α̂) 0.0001 0.0048 0.0299 0.0002 0.0062 0.0174 0.0001 0.0001
V ar(α̂) 0.0195 0.0282 0.0210 0.0140 0.0187 0.0177 0.0518 0.0140
MSE(α̂) 0.0196 0.0331 0.0508 0.0142 0.0249 0.0351 0.0519 0.0141

log(λ1n) 0.5 -0.5 0 0 -0.5 -0.5 -0.5 0

Bias2(π̂1) 0.0725 0.0049 0.1239 0.0233 0.0448 0.0009 0.0120 0.0171
V ar(π̂1) 0.0133 0.0172 0.0375 0.0106 0.0153 0.0148 0.0897 0.0121
MSE(π̂1) 0.0858 0.0222 0.1614 0.0339 0.0600 0.0157 0.1017 0.0292∫

Bias2(f̂c(u))du 0.0532 0.0281 0.0219 0.0101 0.0406 0.0196 0.0222 0.0073∫
V ar(f̂c(u))du 0.0107 0.0302 0.0240 0.0112 0.0080 0.0210 0.0452 0.0118∫
MSE(f̂c(u))du 0.0639 0.0584 0.0459 0.0213 0.0486 0.0406 0.0675 0.0191

log(λ2n) 0.5 0 -0.5 0 0.5 0 -0.5 0

Notes: The number of evaluation points M(n) = max(3, ln(n)). U comes from a mixed distribution with
π1 probability being a point mass at zero and 1 − π1 probability being a continuous random variable Uc
with a pdf fc. For the tuning parameter λn, we search with a grid log(λn) = −1,−0.5, 0, 0.5, 1.
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Table 2.6: Selected Penalty Parameters for Heteroskedastic Frontier Estimation

logλ1n logλ2n

N = 500, π1 = 0.4 {-0.5,-1,-1,-1,-1} {0.5,1,1,1,1}
N = 500, π1 = 0.7 {-1,1,-1,1,0} {1,0.5,0.5,0,1}
N = 1000, π1 = 0.4 {-1,0,-0.5,-1,-0.5,-1,-1,-1,0.5,0.5} {1,1,1,1,1,0,0,1,1,0.5}
N = 1000, π1 = 0.7 {-0.5,-1,1,0.5,-1,0, 0.5,-1,0,-1} {1,1,1,0.5,1,1,1,0,1,1}

Notes: logλ1n and logλ2n stand for the penalty parameter for the first step
and the second step respectively. There are 5 quintiles for N = 500 and 10
quintiles for N = 1000. Each is chosen based on the bootstrap procedure with
50 replications.
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Figure 2.1: Heteroskedastic Frontiers with N=500, π1 = 0.4
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Figure 2.2: Heteroskedastic Frontiers with N=1000, π1 = 0.4
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Figure 2.3: Heteroskedastic Frontiers with N=500, π1 = 0.7
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Figure 2.4: Heteroskedastic Frontiers with N=1000, π1 = 0.7
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Figure 2.5: Estimate of Cost Frontiers With US Bank Data
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Table 2.7: ZISF Analysis for Subgroups on US Banks in 2005

Subgroups 1 2 3 4 5 6 7 8 9 10
log(W ) 8.57 9.77 10.98 12.18 13.39 14.59 15.79 17.00 18.20 19.41
E(U |W ) 1.38 1.01 0.75 0.16 0.99 0.49 0.63 -0.96 -0.74 -0.03

Inefficiency portion (%) 22.7 14.5 9.46 1.71 9.73 4.31 5.00 -6.97 -5.04 -0.16
QLR Test 0.829 0.0001 58.84 2.174 2.376 69.11 13.56 13.97 19.91 8.471

Number of Obs 222 1370 2230 1499 467 128 56 23 9 5

Notes: The inefficiency portion is calculated by E(U |W )/E(Y ) for each of the groups, measured in percent-
age. The negative inefficiency portion means efficiency gains from the random shocks. For a 0.5χ2

1 + 0.5χ2
0

distribution, the 95% confidence interval is (0.001, 2, 512).
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Appendices

2.A Iterative EM Algorithm

We focus on the iterative EM algorithm used to solve the proposed LS sieve method based

on characteristic functions (LS-ChF) in Section 2.1.2. The iterative EM algorithm is an

extension of the iterative minimum algorithm in Lee et al. (2015). The main differences are

that now we deal with a case with known zero point mass but unknown noise variance. For

the LS sieve method based on cumulative probability functions (LS-CDF), we can derive

similarly.

The goal is to estimate the unknown parameters: zero point mass probability π1, the dis-

cretized continuous density θ and the unknown noise variance σ2
v by minimizing the objective

function Schf (π, θ, σv), which is defined by equation (2.7):

(π̂, θ̂, σ̂v) = arg min
π∈Π,θ∈Θ,σ∈Σ

Schf (π, θ, σv)

= arg min
π∈Π,θ∈Θ,σ∈Σ

∫
|ϕ̂n(t)− ϕ̃Y (t|π, θ, σv)|2w(t)dt

where Π = {(π1, π2) : π1 ≥ 0, π2 ≥ 0, π1 + π2 = 1}, Θ = {(θ1, . . . , θM) : θj ≥ 0, j =

1, . . . ,M(n),
∑M

j=1(n)θj = 1}, Σ = {σv : 0 < σ2
v ≤ V ar(logY )}. ϕ̂n(t) = 1

n

∑n
k=1 exp(it ·
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logYk) is the empirical characteristic function of logY and

ϕ̃Y (t|π, θ, σv) = π1e
it·0ϕV (t) + π2

M(n)∑
j=1

θje
itujϕV (t) = π1ϕV (t) + π2

M(n)∑
j=1

θje
itujϕV (t)

where ϕV (t) := E(eitV ) =
∫
eitvfv(v)dv = exp(−0.5σ2

vt
2) as V ∼ N(0, σ2

v).

Suppose σv and θ are given. Then Schf (π|θ, σv) is a quadratic form in π. In addition, the

parameter space of π is given by

Π = {(π1, π2) : π1 ≥ 0, π2 ≥ 0, π1 + π2 = 1}

which is a compact set. From these facts, we can confirm the existence and uniqueness of

the minimum of Schf (π|θ, σv). The situation is exactly the same when we fixed σv and π.

The differences are coefficients of the optimization problem, and the fact that θ is defined

on

Θ = {(θ1, . . . , θM) : θj ≥ 0, j = 1, . . . ,M(n),
M∑
j=1

(n)θj = 1}

where M(n) = max(3, ln(n)).

The situation is a little different when we fixed π and θ and try to derive an estimate

of σv. As we can see from the above minimization problem, the objective function Schf is

quadratic in ϕV (t) rather than σv. this is an ill-posed problem. The good news is that

ϕV (t) := E(eitV ) = exp(−0.5σ2
vt

2) (as V ∼ N(0, σ2
v)), which is a monotonic decreasing

function of σ2
v (and σv as well if we restrict σv > 0). So still we can solve a semi-quadratic

optimization problem by minimizing Schf (σv|π, θ) where σv is defined on

Σ = {σv : 0 < σ2
v ≤ V ar(logY )}

which is a compact support. With some penalty term λP (θ), we can get a smoother density

estimates θ̂.
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Hence, we suggest an iterative EM algorithm to achieve the global minimum of Schf (., ., .)

as follows:

Step 1. Initialization: Set σ
(0)
v , π(0) and θ(0);

Step 2. Updating:

π(1) = arg min
π∈Π

∫
|ϕ̂n(t)− ϕ̃Y (t|π, θ(0), σ(0)

v )|2w(t)dt

= arg min
π∈Π

πT
∫ (

a1(t)w(t)aT1 (t) + a2(t)w(t)aT2 (t)
)
dt× π

− 2

∫ (
b1(t)w(t)aT1 (t) + b2(t)w(t)aT2 (t)

)
dt× π

θ(1) = arg min
θ∈Θ

∫
|ϕ̂n(t)− ϕ̃Y (t|π(1), θ, σ(0)

v )|2w(t)dt

= arg min
θ∈Θ

θT
∫ (

a3(t)w(t)aT3 (t) + a4(t)w(t)aT4 (t)
)
dt× θ

− 2

∫ (
b3(t)w(t)aT3 (t) + b4(t)w(t)aT4 (t)

)
dt× θ

σ(1)
v = arg min

σ∈Σ

∫
|ϕ̂n(t)− ϕ̃Y (t|π(1), θ(1), σv)|2w(t)dt

= arg min
σ∈Σ

∫
ϕV (t)

(
a5(t)w(t)aT5 (t) + a6(t)w(t)aT6 (t)

)
ϕV (t)dt

− 2

∫ (
b1(t)a5(t) + b2(t)a6(t)

)
ϕV (t)dt

for some functions ai and bi defined below.

Step 3. Set π(0) = π(1), θ(0) = θ(1) and σ
(0)
v = σ

(1)
v and repeat Step 2 until convergence.

Since the random noise V is symmetric about zero (recall V ∼ N(0, σ2
v)), the characteristic

function of V is real-valued, the coefficient term in Step 2 can be explicitly given as

a1(t) =

(
ϕV (t, σ

(0)
v )

ϕV (t, σ
(0)
v )
∑M

j=1(n)θ
(0)
j cos(tuj)

)
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a2(t) =

(
0

ϕV (t, σ
(0)
v )
∑M

j=1(n)θ
(0)
j sin(tuj)

)

b1(t) =
1

n

n∑
k=1

cos(tYk), b2(t) =
1

n

n∑
k=1

sin(tYk)

Similarly, for all j = 1, . . . ,M(n)

[a3(t)]j = ϕV (t, σ(0)
v )π

(1)
2 cos(tuj), [a4(t)]j = ϕV (t, σ(0)

v )π
(1)
2 sin(tuj)

b3(t) =
1

n

n∑
k=1

cos(tYk)−ϕV (t, σ(0)
v )π

(1)
1 , b4(t) =

1

n

n∑
k=1

sin(tYk)−ϕV (t, σ(0)
v )π

(1)
1 sin(0) =

1

n

n∑
k=1

sin(tYk)

a5(t) = π
(1)
1 + π

(1)
2

M∑
j=1

(n)θ
(1)
j cos(tuj), a6(t) = π

(1)
2

M∑
j=1

(n)θ
(1)
j sin(tuj).

2.B Proof of Theorem 1

Proof. The proof is straightforward following the Theorem 3.1 in Chen and Pouzo (2012).

We just need to check that the conditions of their theorem are satisfied in the present context.

First, for each integer k <∞, dim(Hk) <∞, Hk is bounded as

Hn = {h ∈ H : h(t) = [π1 + π2

k(n)∑
j=1

θj(i sin(txj) + cos(txj))]φv(t, σ)}

k(n) → ∞ slowly as n → ∞. E[||m(t, h)||2W ] ≡ E[m(t, h)Tm(t, h)] is continuous on (Hk, || ·

||s), hence, lower semicontinuous on (Hk, || · ||s).

Second, we need to verify the restriction max{η0,n, E[||m(t,Πnh0)||2W ], δ̄2
m,n, λn} = o(g(k(n), ε))

for all ε > 0 (*). We discuss it for two cases: λn = 0 (no penalty) and λn 6= 0 (penalty case).
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For the no penalty case, λn = 0, lim infk(n)→∞ g(k(n), ε) ≡ infh∈H:||h−h0||s≥εE[||m(t, h)||2W ].

Thus, given Assumption 1 (ii), for all ε > 0, lim infk(n)→∞ g(k(n), ε) > 0 if (H, || · ||s) is com-

pact, restriction (∗) becomes max{η0,n, E[||m(t,Πnh0)||2W ], δ̄2
m,n, λn} = o(1) and it is trivially

satisfied.

For the penalty case, rewrite the sieve space as

Hn = {h ∈ H : h(t) = [π1 + π2

k(n)∑
j=1

θj(i sin(txj) + cos(txj))]φv(t, σv),

||∆2h(t)||2 ≤ log2(n)}

m(t, h) = E[|φn(t)−φY (t|π, θ)|] = E[h0(Y )−h(Y )|t]. Under very mild regular conditions on

the conditional density of Y given t, E[·|t] is a compact operator mapping from H ⊆ L2(fY )

to L2(ft) (See, Blundell, Chen and Kristensen, 2007), which has a singular value decompo-

sition {µk;ϕ1k, ϕ0k}∞k=1, where {µk}∞k=1 are the singular numbers arranged in nonincreasing

order (µk ≥ µk+1 ↘ 0) and {ϕ1k}∞k=1 and {ϕ0k}∞k=1 are eigenfunctions in L2(fY ) and L2(ft)

respectively.

Note that E[||m(t,Πnh0)||2W is continuous ion (H, || · ||s) and by the contradiction deduc-

tion arguments in NPIV Example (2) in Chen and Pouzo (2012), we can derive the same

conclusion:

E[||m(t,Πnh0)||2W
g(k(n), ε)

≤ const× ||Πnh0 − h0||2s = o(1).

By letting
max{η0,n,δ̄2m,n,λn}

g(k(n),ε)
= o(1), Theorem 3.1 in Chen and Pouzo (2012) is applicable here.

Hence, we have ||h̃0 − h0||s = op(1). The result follows.
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2.C Proof of Theorem 2

Proof. Proof for the first part of the theorem is straightforward based on Lemma 3 by

substituting M(n) = k(n) and note that

||ϕ̃− ϕ0||s ≤ ||ϕ̂− ϕ0||s + ||ϕ̃− ϕ̂||s = O(n−1/2) +Op

(
M(n)−κ +

√
M(n)

n× ϕ(k(n)−2)

)
,

where ϕ̃ is the estimated characteristic function based on the proposed penalized LS sieve

and ϕ̂ is the empirical characteristic function from the sample. For the second step, the

convergence rate for the second term is derived in Lemma 3. Following Chen and Pouzo

(2012), when ϕ̃ and ϕ̂ are measurable function of (discretized) Y , we have ϕ(k(n)−2) = const

which results in the ln(n) convergence rate of ϕ̃. Explicitly, we have

||ϕ̃(t)− ϕ(t)||s = Op

(
n−1/2 +M(n)−κ +

√
M(n)

n× ϕ(M(n)−2)

)
= Op([lnn]−κ/ς)

where ϕ(τ) = exp(−τ−ς/2) for some ς > 0 and M(n) = c[lnn]1/ς for some c ∈ (0, 1).

To prove the second part of the theorem, we apply Lemma 1 with the severe ill-posed

case, i.e., ϕ(τ) = exp(−τ−ς/2) for some ς > 0. Hence, we have

E||f̃U − fU ||2 = Op(||f̃c(u|θ̂)− fc||)

= Op(M(n)−1 + ||θ̂j − θj||)

= Op

(
max([lnn]−1/ς , [lnn]−κ/ς

)
That is, H2(f̃U , fU) = Op

(
max([lnn]−1/ς , [lnn]−κ/ς)

)
.

The convergence rate of the estimated frontiers α can be derived similarly but with two

steps. First, consider estimation of the constant frontier. Under the unimodality assumption,
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we have α̂ = u∗j where j∗ = index(max(θ̂j)), hence

||α̂− α|| = ||u∗j − uj||

= Op(max(M(n)−1, ||ĥn − h0||s))

= Op

(
max([lnn]−1/ς , [lnn]−κ/ς

)
= Op((lnn)−const)

Then for the heteroskedastic frontier estimator α(W ), a similar result can be derived: the

convergence rate is of the same order as θ̂j (as well as ĥn) since lnn and ln(nbd) are asymp-

totically equivalent under Assumptions 1-5 where b is the bandwidth in Section 2.2. The

conclusion follows.

2.D Proof of Theorem 3

To prove Theorem 3, we list the main theorem (e.g., Theorem 4.1) utilized here from Chen

and Puozo (2015) first and then check that each assumption holds in our setting.

Theorem 4.1 (Chen and Puozo, 2015) Let α̂n be the PSMD estimator and Assumption

3.1-3.4 hold. If Assumption 3.5-3.6 hold. Then

√
n
φ(ĥn)− φ(h0)

||v∗n||sd
→d N (0, 1).

Then we check the assumptions. Assumption 3.1-3.3 in Chen and Pouzo (2015) are the

identification assumptions, penalty assumptions and sample criteria, which correspond to

the Assumption 1-3 in the present paper respectively. Assumption 3.4 concerns the local

curvature of the population criterion Q(h0) at h0. When Q̂n(h) is computed using the series

LS estimator, CP (2012) show it is automatically satisfied. Assumption 3.5 restricts the local

behavior of φ(·). Specifically, Assumption 3.5(ii) controls the nonlinear bias of φ which will

be automatically satisfied for a quadratic functional. Assumption 3.5(i) places a restriction
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on how fast the sieve dimension k(n) can grow with the sample size n. Assumption 3.5(iii)

controls the linear bias part due to the finite dimensional sieve approximation of h0,n to h0,

which corresponds to our Assumption 4 on sieve approximation error. Assumption 3.6 is a

local quadratic assumption which corresponds to our Assumption 5 sieve link condition.

Note that m̂ is the LS series estimator in (*): m̂(t, h) = pk(n)(t)T ·(P TP )−
∑
pk(n)(ti)ρ(Yi, h)

for model E( ˆρ(Y, h)|ti) = 0 a.s. any t. Moreover φ(h) =
∫
m̂(ti, h)′m̂(ti, h)dti is a reg-

ular functional of h. For any regular functional φ(·)22, the above theorem implies that

√
n(φ(ĥn)− φ(h0))→ N(0, σ2

v∗) with

σ2
v∗ = lim

n→∞
||v∗n||2sd = ||v∗||2sd = E[

dφ(h)

dh
[pk(n)(.)]′D−n ΦnD

−
n

dφ(h)

dh
[pk(n)(.)]]

and dφ(h)
dh

[pk(n)(.)] = 2
∫
m̂(ti, h)pk(n)(ti)dti (Chen and Pouzo, 2015). Consequently, we have

||v∗n||sd = 2
∫
m̂(ti, h0)pk(n)(ti)dtiD

−
n ΦnD

−
n 2
∫
m̂(ti, h0)pk(n)(ti)dti, D

−
n = E

(
E[pk(n)(Y )|ti]E[pk(n)(Y )|ti]′

)
,

Φn = E
(
E[pk(n)(Y )|ti]ρ2(ti, h0)E[pk(n)(Y )|ti]′

)
and ρ(ti, h0) = |φn(ti)−φY (ti|π, θ)|. Therefore

the conclusion follows.23

22We call φ(·) regular (or irregular) at h0 whenever limk(n)→∞ ||v∗n|| ≤ ∞ (or ∞).
23One could also apply Remark 6.1 in Chen and Puozo (2015) to prove Theorem 3.
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Chapter 3

Panel Nonparametric Identification and Estimation of

Conditional Heteroskedastic Frontiers with an

Application to CO2 Emission Productivity Analysis

Jun Cai1

3.1 Introduction

Since Aigner et al. (1977), stochastic frontier analysis (SFA) has been an important tool

in the analysis of productive efficiency. The original model includes a log-linear production

or cost function with an additively separable noise term and an additively separable, time-

invariant, inefficiency term, which decreases output in the production function or increases

costs in the cost function. It is a leading case of the “composed error model” with two inde-

pendent components, and it has been the workhorse for countless empirical investigations of

firm-level cost or productive inefficiency. While estimation of the linear production or cost

1Department of Economics, Syracuse University, jcai106@syr.edu. I am extremely grateful for the in-
valuable support and guidance of my advisor, William C. Horrace, and committee members Yoonseok Lee,
Alfonso Flores-Lagunes and Subal Kumbhakar from Binghamton University. Special thanks to Hugo Jales,
Yulong Wang, and participants at 16th EWEPA conference, SU Econometrics lunch, SUNY-Albany Seminar,
and Binghamton University Seminar, for insightful comments and suggestions.

110



function is important in these models, the primary concern is often characterization of the

error components. In particular, interest centers on characterizing the inefficiency term in a

meaningful way. That is, most regression-based empirical studies treat errors or error com-

ponents as nuisance parameters and focus on the marginal effects in the conditional mean

function. However, in the stochastic frontier literature estimation of the error components

or features of the error component distributions is an important aspect of the model’s spec-

ification: one can not specify a production or cost function with inefficiency without trying

to understand the statistical and economic significance of that inefficiency.

While early models were designed for cross sectional data and were fully parametric, pro-

liferation of panel data has facilitated relaxation of parametric assumptions. Pitt and Lee

(1981), Schmidt and Sickles (1984), and Battese and Coelli (1988) consider fixed-effect and

random-effect estimation of the stochastic frontier model with additively separable time-

invariant technical or cost inefficiency. Here, the fixed- or random-effect embodies ineffi-

ciency. Cornwell et al. (1990), Kumbhakar (1990), Lee and Schmidt (1993), Han et al.

(2005) and Ahn et al. (2007, 2013) propose time-varying inefficiency versions of the model.

These models are more sensible because they allow firms to decrease their inefficiency over

time. That is, any reasonable model specification should allow firms to move closer to the

efficient frontier over time. More recently, Greene (2005a, 2005b) introduces a “true” fixed-

effect/random-effect stochastic frontier which includes the additively separable noise and

inefficiency terms but also features an additively separable, time-invariant fixed or random

effect. That is, each firm in the sample has an idiosyncratic and persistent effect in addition

to a time-varying effect and a draw from the noise distribution. Wang and Ho (2010), Chen,

Schmidt and Wang (2014), Wikstrom (2015) and more recently Belotti and Ilardi (2018)

study estimation techniques for these models. This paper presents a nonparametric version

of the “true” fixed-effect/random-effect model, where (a) the production or cost function is

a general function of the inputs (and some other factors) allowing non-separable fixed or

random effects, (b) inefficiency is time-varying (or heteroskedastic), and (c) relax the distri-
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butional assumption on random noise term. To the best of our knowledge we are the first to

consider panel nonparametric estimation of the stochastic frontier model with nonseparable

fixed/random effects.

Studies on nonparametric or semi-parametric stochastic frontier models for cross-sectional

data are Fan et al. (1996), Kumbhakar et al. (2007), Parmeter and Racine (2012), Noh

(2014), Martins-Filho and Yao (2015), Parmeter et al. (2017). They tried to relax one or a

few specification restrictions in the cross-sectional stochastic frontier model. For panel data,

there are only a couple nonparametric stochastic frontier models. Kneip and Simar (1996)

employ a Nadaraya-Watson estimator to estimate a nonparametric version of the Schmidt

and Sickles (1984) model with time-invariant inefficiency. Yao et al. (2018) investigate a

semi-parametric smooth coefficient stochastic frontier model for panel data. It should be

noted that, however, these studies do not consider (non-separable) fixed/random effects.

In this paper, we identify and consistently estimate the variance parameters associated

with the noise and inefficiency components in the panel stochastic frontier model with non-

separable fixed/random effects and added time effects, using the results of Kotlarski (1967)

and Evdokimov and White (2012).2 These variance components are often the primary focus

of the stochastic frontier literature and of this paper. In particular, we consider

Yit = λt +m(Xit, αi) + εit (3.1)

εit = Uit + Vit, i = 1, ..., n, t = 1, ..., T, (3.2)

where m(Xit, αi) is the unspecified cost function or production function which allows non-

separable unobserved heterogeneity αi; λt is an added time effects which is a constant for

each period; Xit ∈ Rp, αi is the random effects (RE) or fixed effects (FE). Uit is the in-

efficiency term which could be conditionally heteroskedastic in some exogenous Xit. It is

2The results of Kotlarski (1967) have been applied in a variety of economic settings. See, for example,
Li and Vuong (1998), Schennach (2004), Li, Perrigne, Vuong (2000), Krasnokutskaya (2011), Arellano and
Bonhomme (2009), Bonhomme and Robin (2010) and Kennan and Walker (2011).
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constrained positive in a cost function and negative in a production function. The Vit is the

random noise or disturbance term from unspecified distributional family. We derive moment

conditions, based on which the model can be identified and consistently estimated with two

time periods.

The nearest neighbors to our model and contribution is the aforementioned approach of

Evdokimov (2010) and Evdokimov and White (2012), which are concerned with estimation

of the model in equation (3.1) with the restriction εit = Vit. Like Evdokimov (2010) our

model is quite general and only requires that the noise component (V ) be from a zero-

mean, conditionally symmetric distribution with finite second moment. However, unlike

Evdokimov (2010), our contribution is identification and estimation of the variances of the

error components (U and V ) in equation (3.2) allowing added time effects, instead of the

distribution of αi or m(x, α) itself, though the latter can be obtained with a straightforward

application of Evdokimov (2010) or more recently Ju, Gan and Li (2017). Since the model is

identified when inefficiency equals zero (i.e., U = 0), we show that the model with non-zero

inefficiency is still identified when its distribution is known up to its variance (i.e., half-normal

or exponential inefficiency). Showing this requires a “common support” assumption on Xi1

and Xi2, which will often be met in empirical applications where inputs are relatively stable

across (short) periods and which allows us to remove the m function with time-differencing

of equation (3.1). It also requires independence between Vit and (αi, Vis, Xis) for any t 6= s

conditional on Xit which is standard in a non-linear panel data setting.

The paper is organized as follows. In Section 3.2 we introduce the assumptions needed

to identify the model in equation (3.1) and derive moment conditions for estimation of

the variance components. Section 3.3 discusses estimation issues and bandwidth selection

methods. Section 3.4 derives the large sample properties of the estimator. We study the

finite sample properties of the estimator with Monte Carlo simulations in Section 3.5. In

Section 3.6 we apply the model to investigate CO2 emission productivity with a panel of 136

countries over 25 years and discuss the policy implications. Directions for future research
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and conclusions are in Section 3.7. Proofs of theorems are in the Appendix.

3.2 Identification

For stochastic frontier analysis, the inefficiency term Uit in equation (3.2) is of primary

interest. We focus on the identification of the distribution of Uit, especially its conditional

variance. In what follows, we consider Xit ∈ R1 (i.e., p = 1) for simplicity of presentation

and assume that m is a cost function so that Uit ≥ 0. We let T = 2 and assume the following

conditions:

Assumption 6 (Identification). (i) {Xit, Uit, Vit, αi} are i.i.d. across i and stationary over

t. λt is an added time effects and we normalize λ1 = 0.

(ii) The inefficiency satisfies Uit|Xit = x is distributed as either half-normal, |N (0, σ2
u(x))|;

or Exponential, Exp(σu(x)), where 0 < σ2
u(.) <∞ is time-invariant.

(iii) Given Xit, the random noise Vit is independent of Uit and its distribution is symmetric

with E(Vit|Xit = x) = 0 and V ar(Vit|Xit = x) = σ2
v(x) <∞ for all x and t = 1, 2.

(iv)(Conditional Independence) fVit|Xit,αi,Xiτ ,Viτ (v|x, α, x̃, ṽ) = fVit|Xit(v|x) for all (v, x, α, x̃, ṽ)

and t 6= τ , where fVit|· is the conditional density function of Vit.

(v)(Common Support)The joint density of Xi = (Xi1, Xi2) satisfies fXi1,Xi2(x, x) > 0 for all

x ∈ χ, where χ is the common support of Xi1 and Xi2.

(vi) The conditional characteristic function φVit|Xit(s|x) does not vanish for all s, x and

t = 1, 2.

Assumptions 6-(i) and (ii) are standard assumptions for a two-way panel data or for the

panel stochastic frontier model. We allow for conditional heteroskedastic variances, σ2
v(x)

and σ2
u(x), which may be a function of environmental variables, say Zit which can be a

subset of Xit. In that case, the model allows for the “scaling property” specification Uit ∼

G(Zit)|N (0, σ2
u)| of Wang and Ho (2010).3 In addition to the half-normal and exponential

3The scaling property specification possesses some appealing features. See Wang and Ho (2010), Wang
and Schmidt (2002), Alvarez et al. (2006) and some others.
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distributions, Assumption 6-(ii) can be generalized to include single-parameter distributional

families with bounded second moments. In Assumption 6-(iii), both Uit and Vit are related

to Xit through the variance terms, but they are independent once Xit is given.

Assumption 6-(iv) is crucial for identification. It implies that conditional on the contem-

poraneous covariate Xit, the disturbance term Vit is independent of αi, Viτ , and Xiτ for any

t 6= τ . For example, we let Vit = σv(Xit)ηit, where σv(x) is a bounded positive function and

ηit are i.i.d N (0, 1) that are independent of (αi, Xiτ ). It rules out lagged dependent variables

in Xit and serially correlated disturbances. The assumption is strong but necessary for the

derivation of identification moments that follow and also the deconvolution techniques for

recovering m function. For the case with serially correlated Vit, we need at least three periods

to identify the model as Evdokimov (2010). To avoid an overload of current paper, we omit

it here.

Assumption 6-(v) is also important for identification, but it generally holds in the stochas-

tic frontier models since Xit includes input elements, prices, and some environment variables

that are continuous. Assumption 6-(vi) is satisfied for most of the distributions, including

normal, log-normal, Cauchy, Laplace, χ2 and Student-t distributions.

If we only care about characterizing the inefficiency term Uit (which may be reasonable in

frontier analysis), then only Assumption 6 is needed for identification. Under Assumption 6,

we first introduce the following theorem, which is the key identification result of this paper.

Proof of Theorem 4 is in the Appendix, which is based on proof of Lemma 1 in Evdokimov

and White (2012).

Theorem 4. Suppose Assumption 6 holds. Then the time effects, the distribution of ineffi-

ciency Uit and the elasticity of the mean inefficiency µE := E[Uit] with respect to covariates

Xit are identified. That is, λt, σ
2
u(x) and ξµX := ∂µE

∂x
x
µE

are identified for all x ∈ χ and

t = 1, 2.

Identification of the distribution of Uit is achieved by recovering σ2
u(x) under Assumption

6-(ii). In particular, it is identified based on the following two moment conditions, which is
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obtained when Uit is half-normal for instance:

Ex[Yit(Yit − Yiτ )]− Ex[Yit]Ex[(Yit − Yiτ )] =

(
1− 2

π

)
σ2
u(x) + σ2

v(x), (3.3)

and

Ex[Yit(Yit − Yiτ )2]− Ex[Yit]Ex[(Yit − Yiτ )2]− 2Ex[(Yit − Yiτ )](Ex[Yit(Yit − Yiτ )]−

Ex[Yit]Ex[(Yit − Yiτ )]) =
(4− π)

√
2

π
√
π

σ3
u(x),

(3.4)

where Ex denotes expectation conditional on Xit = Xiτ = x. These moment conditions

are calculated similarly to the moment conditions in Simar et al. (2017).4 When Uit has

exponential distribution, we can obtain the same moment conditions by just replacing the

scaling terms (1 − 2/π) and (4 − π)
√

2/(π
√
π) by 1 and 2 in equations (3.3) and (3.4),

respectively.

And as a byproduct, the added time effects λt can be identified as well

E[Yit − Yi1|Xit = Xi1 = x] = E[εit + λt − εi1|Xit = Xi1 = x] = λt

with the normalization λ1 = 0. Moreover, the elasticity of the mean efficiency with respect

to the covariate Xit can be identified based on the derived moment conditions. Define the

elasticity as ξµX = ∂µE
∂x

x
µE

, note that µE(x) := E[Uit(x)] =
√

2σu(x)√
π

for the half-normal

distribution (σu(x) for exponential distribution), so we can easily derive:

ξµX =
∂σu(x)

∂x

x

σu(x)
=

1

3

∂(σ3
u(x))

∂x

x

(σ3
u(x))

in which σ3
u(x) is identified in equation (3.4).

In addition to the inefficiency term Uit, if the cost or production function m is also of

interest, we need additional conditions as follows, similarly as Evdokimov (2010).

4If one would like to assume that higher central moments exist for U and V , more odd moment conditions
can be used to identify the unknown variance parameters σ2

u in a similar way.
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Assumption 7 (Identification of m). (i) m(x, α) is weakly increasing in α for all x ∈ χ.

(ii) αi|Xi is continuously distributed for all Xi ∈ χ× χ.

(iii) m(x, α) and conditional densities fVit|Xit(v|x), fαi|Xit(α|x), and fαi|Xi1,Xi2(α|x1, x2) are

almost everywhere continuous in the continuously distributed components of x, x1, x2 for all

α and v.

Assumption 7-(i) is not too restrictive in the stochastic frontier models. It can be weakened

to “monotonic in α”. Assumption 7-(ii) and Assumption 7-(iii) are standard. For further

discussions, see Evdokimov (2010).

Finally, in order to identify the idiosyncratic term αi, we need to decide if it will be

treated as a random-effect (RE) or a fixed-effect (FE) and use either set of the following

assumptions.

Assumption 8 (RE). (i) αi and Xi are independent. (ii) αi is Uniform on [0, 1].

Assumption 8-(i) defines the random effects model, while Assumption 8-(ii) is a standard

normalization. This normalization is necessary because the function m(x, α) is modeled

nonparametrically.

Assumption 9 (FE). (i) m(x, α) is strictly increasing in α for all x.

(ii) For some x̄ ∈ χ, m(x̄, α) = α for all α.

(iii) Supp{αi|(Xit, Xiτ ) = (x, x̄)} = Supp{αi|Xit = x} for all x ∈ χ and t 6= τ , where

Supp{αi|ϑ} denotes the support of αi conditional on an event ϑ.

Assumption 9-(i) is standard and guarantees invertibility of function m(x, α) in α. Assump-

tion 9-(ii) is a normalization given Assumptions 7-(ii) and 9-(i). Assumption 9-(iii) requires

that the “extra” conditioning on Xiτ = x̄ does not reduce the support of αi. A conceptually

similar support assumption is made by Altonji and Matzkin (2005).

Direct application of the results in Evdokimov (2010) leads to the following two theorems.

We let Fαi denote the distribution function of αi.
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Theorem 5. Suppose Assumptions 6, 7, and 8 hold. Then m(x, α), σ2
u(x) and σ2

v(x) are

identified for all x ∈ χ, α ∈ (0, 1)and t = 1, 2.

Theorem 6. Suppose Assumptions 6, 7, and 9-(i), (ii) hold. Then m(x, α), σ2
u(x), σ2

v(x),

Fαi(α|Xit = x) and Fαi(α) are identified for all x ∈ χ, α ∈ Supp{αi|(Xit, Xi(−t)) = (x, x̄)}

and t = 1, 2. If in addition Assumption 9-(iii) is satisfied, σ2
u(x), σ2

v(x), Fαi(α|Xit = x) and

Fαi(α) are identified for all x ∈ χ, α ∈ Supp{αi|Xit = x} and t = 1, 2.

The proofs of Theorems 5 and 6 directly follow from Evdokimov (2010), which we sketch

in the Appendix. Specifically, we consider a cost stochastic frontier model with fixed effects

αi, which is a common case in the literature. The proof can be easily extend to the random

effects setting.

Remark 1. For Theorem 4-6, the identification results still hold even with an added func-

tional time effects, namely, λt = λt(Xit). Indeed, normalize λ1(x) = 0 for all x ∈ χ, then

for any t > 1 time effects λt(x) are identified as follows:

E[Yit − Yi1|Xit = Xi1 = x] = E[εit + λt(x)− εi1|Xit = Xi1 = x] = λt(x)

Once the time effects are identified, identification of the rest of the model proceeds as described

above with the random variable Yit replaced by Yit − λt(Xit) and setting the constant time

effects as zeros.

3.3 Estimation

Since we focus on nonparametric identification and estimation of the variance components

in equation (3.2), we now derive their estimation strategy under T = 2. As a by-product,

the elasticity of mean inefficiency with respect to the covariates Xit, ξµX , is also estimated.

Specifically, consistent estimators for the heterogeneous variance of the inefficiency and ran-

dom noise (i.e., σ2
u and σ2

v) are obtained by taking advantage of the conditional covariance
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structure of the panel model. This is consistent with the literature on nonparametric panel

model estimation as well as the panel stochastic frontier model. For instance, Wang (2003)

proposes a novel method for estimating nonparametric panel data models that utilize the in-

formation contained in the covariance structure of the model?s disturbances, as do Henderson

et al. (2008) and some others (see Wang et al., 2005).

Note that the variance of the inefficiency term and the random noise are important in the

stochastic frontier model, both theoretically and empirically. Theoretically, technical or cost

inefficiency, which is usually defined as E(Uit|εit), is a function of σ2
u and σ2

v , and they are

closely related to one another. Here, we allow E(Uit|εit) to be not only a function of σ2
u and σ2

v

but also a function of Xit though the variance components. Wang and Schmidt (2009) point

out that the variance of random noise matters and the technical efficiency estimate E(Uit|εit)

is a shrinkage of Uit toward its mean in a probabilistic sense. Empirically, the expectation

of time-varying inefficiency E(Uit) equals
√

2/πσu under the half-normal assumption and

σu under the exponential distributional assumption. Both are monotonic functions of the

inefficiency variance. Alternatively, instead of using the formula for E(Uit|εit), we can use

the best linear predictor of Uit given εit (i.e., a + bεit for some finite constant a and b),

which was analyzed in detail in Waldman (1984). In particular, a simple calculation leads

to b = V ar(Uit)/(V au(Uit) + V ar(Vit)) and a = E(Uit)(1 + b).

To estimate σ2
u (x) and σ2

v (x), we first define A(x) as the conditional covariance between

Yit and its first difference (Yit− Yiτ ) and B(x) as the conditional covariance between Yit and

(Yit − Yiτ )2. Ex(Yi1 − Yi2) = −λ2 as we already normalize λ1 = 0. It follows that, for the

half-normal Uit case, the moment conditions in (3.3) and (3.4) are written as

A(x) =

(
1− 2

π

)
σ2
u(x) + σ2

v(x)

B(x) + 2 ∗ λ2A(x) =
(4− π)

√
2

π
√
π

{
σ2
u(x)

}3/2
,
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from which σ2
u (x) and σ2

v (x) are identified as

σ2
u(x) =

{
π
√
π

(4− π)
√

2
B(x)

}2/3

σ2
v(x) = A(x)−

(
1− 2

π

){
π
√
π

(4− π)
√

2

(
B(x) + 2λ2A(x)

)}2/3

.

For the exponential case, we similarly have

σ2
u(x) =

{
1

2
B(x)

}2/3

σ2
v(x) = A(x)−

{
1

2

(
B(x) + 2λ2A(x)

)}2/3

.

Then, σ2
u (x) and σ2

v (x) can be estimated using the following nonparametric kernel (condi-

tional mean) estimators:

Â(x) =
1

2

{
n∑
i=1

Yi1(Yi1 − Yi2)ωi,A1(x)−
n∑
i=1

Yi1ωi,A1(x)
n∑
i=1

(Yi1 − Yi2)ωi,A1(x)

}
(3.5)

+
1

2

{
n∑
i=1

Yi2(Yi2 − Yi1)ωi,A2(x)−
n∑
i=1

Yi2ωi,A2(x)
n∑
i=1

(Yi2 − Yi1)ωi,A2(x)

}
,

B̂(x) =
1

2

{
n∑
i=1

Yi1(Yi1 − Yi2)2ωi,B1(x)−
n∑
i=1

Yi1ωi,B1(x)
n∑
i=1

(Yi1 − Yi2)2ωi,B1(x)

}
(3.6)

−1

2

{
2

n∑
i=1

(Yi1 − Yi2)ωi,A1(x)Â(x)

}

+
1

2

{
n∑
i=1

Yi2(Yi2 − Yi1)2ωi,B2(x)−
n∑
i=1

Yi2ωi,B2(x)
n∑
i=1

(Yi2 − Yi1)2ωi,B2(x)

}

−1

2

{
2

n∑
i=1

(Yi2 − Yi1)ωi,A2(x)Â(x)

}
,

where

ωi,j(x) =
K ((Xi1 − x)/hj)K ((Xi2 − x)/hj)∑n
i=1K ((Xi1 − x)/hj)K ((Xi2 − x)/hj)

for j = A1, A2, B1, B2. The A1 and A2 denote the bandwidth index for ωi,A1 and ωi,A2 in
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A(x) respectively and B1 and B2 stand similar for B(x). Note that K is a non-negative

kernel function and hj is an appropriate bandwidth that is common for t = 1, 2.5 The

obtained variance estimator based on Â(x) and ˆB(x) is essentially a local method of moments

estimator (Lewbel, 2007).

In practice, we can readily apply the bandwidth selection methods for nonparametric

conditional mean estimation, which we summarize as follows.

The first approach is the adapted rule of thumb method:

h = C ·Xsdn
−1/(4+2p)

where p is the dimension of X; Xsd is the sample standard deviation of {Xit}ni=1; C is a

constant and in practise we choose C = 1.06. Note that though X ∈ R1, we use two

dimensions based on the conditional argument Ex(·) := E(·|Xit = Xiτ = x). Hence, the

power of n is −1/(4 + 2p) rather than −1/(4 + p).

Alternatively, one can directly apply the least squares leave-one-out cross validation

method to the covariance, following Li et al. (2007) and Diggle and Verbyla (1998). In

choosing hA, for instance, we suggest minimizing the following cross-validation criterion6

CVLS(h) =
n∑
i=1

(A0(Xi)− Âh(X−i))2W (Xi),

where A0(Xi) = Y 0
it (Y

0
it −Y 0

iτ ) with Y 0
it = Yit−n−1

∑n
i=1 Yit and Âh(X−i) is the leave-one-out

estimator of A(x) with the bandwidth h, defined in equation (3.5). The W (x) is a weight

5For the multivariate case (i.e., p > 1), we let

ωi,j(x) =
K
(
H−1j (Xi1 − x)

)
K
(
H−1j (Xi2 − x)

)∑n
i=1K

(
H−1j (Xi1 − x)

)
K
(
H−1j (Xi2 − x)

)
for j = A,B, where K is a non-negative p-variate kernel function, and Hj is a p× p bandwidth matrix that
is symmetric and positive definite. The rest of the discussion holds if we simply consider the product kernel
K(r) =

∏p
`=1 k(r`) and Hj = hjIp for some bandwidth parameter hj , where Ip is the identity matrix of

rank.
6Here A and following B are generic symbols for A1, A2 and B1, B2.
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function, such as the probability density function of X. If n is large, above cross validation

evaluation could be performed on a random subsample of nb units, where nb < n reduces

the computational burden. The hB can be derived similarly by replacing (Yit − Yiτ ) with

(Yit − Yiτ )2.

Though both the identification theorem in Section 2 and the estimation strategy in

Section 3 are derived based on the basic setting with T = 2, they can be extended to more

general cases with T > 2 accordingly. A sequential conditional independence assumption

and a corresponding common support assumption are needed to identify the models and we

propose a consecutive-period estimation strategy. The basic idea is for each consecutive time

periods, we implement a similar estimation strategy with T = 2. With this we could obtain

λt and the variance parameter σ2
u,t(x) for t = 2, ..., T . If the variance parameter σ2

u,t(x) is

assumed to be time-invariant, i.e.,σ2
u,t(x) = σ2

u(x), multiple time periods would benefit the

estimation precision with larger sample size. In the following application, we illustrate this

by applying proposed method to a CO2 emission panel with T = 3.

3.4 Asymptotics

In this section, we drive the asymptotic properties of σ̂2
u (x) and σ̂2

v (x). For any t 6= τ(τ =

1, 2) and Xit ∈ R1, we let

Ỹ[i,t,τ ] =


Yit

Yit − Yiτ

(Yit − Yiτ )2

 (3.7)

and denote Ỹ[i,t,τ ],j as the jth element of Ỹ[i,t,τ ], mj(x) = E(Ỹ[i,t,τ ],j|Xit = Xiτ = x) for

j = 1, 2, 3. We assume the following regularity conditions from Yin et al. (2010).

Assumption 10. (i) Xit has compact support and probability density f(x), which is bounded

away from zero and has two continuous derivatives.

(ii) For any 1 ≤ j1, j2 ≤ 3, there exists δ ∈ [0, 1) such that supxE[|Ỹ[i,t,τ ],j1Ỹ[i,t,τ ],j2|2+δ|Xit =

122



Xiτ = x] <∞.

(iii) The conditional mean E[Ỹ[i,t,τ ],j|Xit = Xiτ = x] has two continuous derivatives.

(iv) E[Ỹ k1
[i,t,τ ],j1

Ỹ k2
[i,t,τ ],j2

Ỹ k3
[i,t,τ ],j1

Ỹ k4
[i,t,τ ],j2

|Xit = Xiτ = x] has two continuous derivatives in x for

k1, k2, k3, k4 ∈ {0, 1}, where 1 ≤ j1, j2, j3, j4 ≤ 3, and j1, j2, j3, and j4 are not necessarily

different.

(v) The Bandwidth satisfies h→ 0 and nh5 → c > 0 for some 0 < c <∞.

(vi) Kernel function K(v) is a bounded probability density function symmetric about 0. For

the δ in (ii),
∫
K2+δ(v)vjdv < ∞ for j = 0, 1, 2. For two arbitrary indices v1 and v2,

|K(v1)−K(v2)| ≤ Kc|v1 − v2| for some Kc > 0.

(vii) |A(x)| > 1/M1 > 0, |B(x)| > 1/M2 > 0 for all x ∈ χ, where χ is the support of x

defined in Assumption 6-(v) and M1 and M2 are some positive constants.

Assumption 10-(i) restricts the density of the covariates Xit and it is slightly stronger than

Assumptions 6-(v) and 7-(iii). Assumption 10-(ii) is a moment requirement for the dependent

variables. Assumptions 10-(iii) and (iv) are smoothness constraints on the conditional mean

and conditional variance, respectively (Fan, 1993 and Yao and Tong, 1996). Assumption

10-(v) holds with the optimal bandwidth choice, which yields the optimal convergence rate

as optimal rate of convergence n−1/5. When p > 1, we suppose nh4+p → c > 0. Assumption

10-(vi) is a standard requirement for the kernel function (Li and Racine, 2007), which is

trivially satisfied by the Gaussian and Epanechnikov kernels. Assumption 10-(vii) ensures

the reciprocal of A(x) and B(x) are bounded which is necessary for the convergence proof

of target parameters σ2
u(x) and σ2

v(x).7

Define σj1j2(x) as the (j1, j2)th element of the 3 × 3 matrix Σ(x) = V ar[Ỹ[i,t,τ ]|Xit =

Xiτ = x] for 1 ≤ j1, j2 ≤ 3, and σ̂j1j2(x) as its consistent estimator. Then, A(x) = σ12(x)

and B(x) = σ13(x). The following lemma characterizes the joint asymptotic distribution

of (Â(x), B̂(x))′ = (σ̂12(x), σ̂13(x))′, which extends Theorem 1 of Yin et al. (2010). We let

ν0 =
∫
K2(u)du and µ2 =

∫
u2K(u)du. For any continuously differentiable function g(x),

7Recall the target (distribution) parameter σu(x) and σv(x) is a power function of the nonparametric
covariance A(x) and B(x). This is also necessary for the uniform convergence of the target parameter.
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we denote ġs(x) and g̈ss(x) be the first and the second derivative of g(x) with respect to the

sth dimensional element of X, respectively.

Lemma 4. Under Assumption 10,

√
nh2

 σ̂12(x)− σ12(x)− h2γ12(x)

σ̂13(x)− σ13(x)− h2γ13(x)

→d N

0,
ν0

f(x)

 φ2
12(x) φ12,13(x)

φ12,13(x) φ2
13(x)




as n→∞, where γj1j2(x) = µ2
2
{(σ̈j1j2)11(x)+2(σ̇j1j2)1(x) ḟ1(x)

f(x)
}+µ2

2
{(σ̈j1j2)22(x)+2(σ̇j1j2)2(x) ḟ2(x)

f(x)
},

φ2
j1j2

(x) = V ar[εj1j2(x)|Xit = Xiτ = x], φj1j2,j3j4(x) = Cov[εj1j2(x), εj3j4(x)|Xit = Xiτ = x]

and εj1j2(X) = {Ỹ[i,t,τ ],j1 −mj1(X)}{Ỹ[i,t,τ ],j2 −mj2(X)} − σj1j2(X).

From Lemma 4 and by the delta method, we derive asymptotic distributions of σ̂2
u(x)

and σ̂2
v(x). The proof is in the Appendix.

Theorem 7. Suppose Assumptions 6 and 10 are satisfied. Then, as n→∞,

√
nh2

{
σ̂2
u(x)− σ2

u(x)− h2b(x) (γ13(x) + 2λτγ12(x))
}
→d N

(
0,
ν0b

2(x) (φ2
13(x) + 4λτφ12,13 + 4λ2

τφ
2
13)

f(x)

)

and

√
nh2

{
σ̂2
v(x)− σ2

v(x)− h2
(
γ12(x)− ab(x)(γ13(x) + 2λτγ12)

)}
→d N

(
0,
ν0 {(1− 2λτab(x))2φ2

12(x)− 2(1− 2λτab(x))ab(x)φ12,13(x) + a2b2(x)φ2
13(x)}

f(x)

)

where λτ is the added time fixed effects for period τ and

a = 1− 2

π
and b(x) =

2

3

(
π
√
π

(4− π)
√

2

)2/3

(σ13(x) + 2λτσ12(x))−1/3

for half-normal Uit; or a = 1 and and b(x) = 2
3
(1/2)2/3(σ13(x)+2λτσ12(x))−1/3 for exponential

Uit.
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Under the optimal bandwidth of h ∼ n−1/6, the optimal convergence rate of the con-

ditional variance estimators σ̂2
u(x) and σ̂2

v(x) is obtained as n−2/6, which is the standard

result of the kernel estimator.8 It hence can be conjectured that the uniform rate of conver-

gence of these two estimators is also the standard one, specifically, Op((lnn/(nh
2))1/2 +2h2).

Note that, however, this result does not extend to the regression function estimator m̂(x, α).

For instance, Evdokimov (2010) shows that, depending on either ordinary smooth or super

smooth Uit, the convergence rate of m̂(x, α) is of order (lnn/n)c and (lnn)c for some c > 0.9

The main reason for this difference lies in the different strategies for identification and es-

timation. Identification in the present paper uses properties of (conditional) characteristic

functions and their (conditional) moments, while identification in Evdokimov (2010) is based

on nonparametric deconvolution techniques.

3.5 Simulation

This section presents a Monte Carlo study of the finite sample properties of the proposed

estimators σ̂2
u and σ̂2

v in the stochastic cost frontier model for both the fixed effects and

random effects specifications (Greene 2005a, 2005b). We consider the following panel data

8Recall that we have two kernels for a univariate Xit as we consider two consecutive periods.
9Here c is a function of d1, d2 and p where d1 is the maximum continuous derivative of conditional

cumulative distribution function Fm(t|x), d2 is the maximum continuous derivative of the joint density
f(x, x) and p is the dimension of X. For details, see the Theorem 4-5,Theorem 7-8 in Evdokimov (2010).
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model with non-separable unobserved heterogeneity and added time effects:

Yit = λt +m(Xit, αi) + Uit + Vit for i = 1, ..., n, t = 1, ..., T = 2

m(x, α) = α + (1 + 0.5α)(2x− 1)3

Uit ∼ |N (0, σ2
u(Xit))| or Exp(σu(Xit))

Vit ∼ N (0, σ2
v(Xit))

Xit ∼ iid U [0, 1], λ1 = 0, λ2 = 1

αi =

 (ρ/T )
∑T

t=1

√
12(Xit − 0.5) +

√
1− ρ2φi for FE√

1− ρ2φi for RE

with ρ = 0.5 and φi ∼ iid N (0, 1)

for n = 2500 and 10000. The following specifications for the variance of inefficiency and

noise are considered:

Specification I: σ2
u = 2, σ2

v = 1;

Specification II: σ2
u = 2X2

it, σ
2
v = 1;

Specification III: σ2
u = 2, σ2

v = X2
it;

Specification IV: σ2
u = 2X2

it, σ
2
v = X2

it;

Since we focus on identification and estimation of the variance components which hinges on

the first three conditional moments of the compound error term εit = Uit + Vit in equation

(3.2), the signal to noise ratio defined by V ar(ε)
V ar(ε)+V ar(m(X))

is important. In particular, for

Specification I (with constant variance) the signal-to-noise ratio is 1.73/2.73 ≈ 0.63 in the

half-normal case and 3/4 = 0.75 in the exponential case. For the remaining specifications,

the average signal-to-noise ratios are between 0.2 and 0.75 for different realizations of Xit.

Each Monte Carlo experiment is based on 1,000 replications. We use the rule of thumb

bandwidth h = 1.06× std(Xit)n
−1/6 for simplicity and consistency. We can also use the pro-
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posed maximum likelihood or leave-one-out cross validation method to choose the unknown

bandwidths. Recall that for univariate Xit ∈ R1 with the special conditional argument

Xi1 = Xi2 = x, we need to choose two bandwidths for each of ωi,A1, ωi,A2, ωi,B1, ωi,B2 in

equation (3.5) and (3.6) respectively.10

We report the root integrated mean squared error (RIMSE), the root integrated squared

bias (RIBIAS2), and the root integrated variance (RIV AR) of the estimated variances and

the root mean squared error (RMSE) of the estimated time effects, which are calculated as

RIMSE =

√√√√ 1

100

100∑
k=1

1

R

R∑
r=1

[σ̂2
ur(xk)− σ2

u(xk)]
2,

RIBIAS2 =

√√√√ 1

100

100∑
k=1

[
1

R

R∑
r=1

σ̂2
ur(xk)− σ2

u(xk)

]2

,

RIV AR =

√√√√√ 1

100

100∑
k=1

 1

R

R∑
r=1

(
σ̂2
ur(xk)

)2 −

{
1

R

R∑
r=1

σ̂2
ur(xk)

}2
,

RMSE =

√√√√ 1

R

R∑
r=1

(λ̂2r − λ2)2,

where xk = 0.1 + 0.008k for k = 1, 2..., 100 is the kth grid point between the 10th and 90th

percentiles of x; σ̂2
ur and λ̂2 is the estimate of the cost inefficiency variance function and the

time effects in the rth Monte Carlo replication with R = 1000.11

Table 3.1 contains the results for the design n = 2500 and T = 2. The rows of the

table are divided into four panels for each of our four specifications: I, II, III and IV,

respectively. For example, the first panel contains the results for Specification I (σ2
u = 2

and σ2
v = 1,). The first three rows of each panel contain the RIMSE, the RIBIAS2 and

the RIV AR (respectively) for the proposed estimator. The last row contains the RMSE

10In the case of N=2500, T=2, one Monte Carlo simulation is less than 1 second with rule of thumb band-
width but about one hour implementing the leave-one-out cross validation method to choose the bandwidth.
In the application section, we use leave-one-out cross validation to choose the bandwidths.

11The support trimming procedure ensures that the joint density fXi1,Xi2(x, x) > 0, which is a key
identification assumption in the nonparametric panel setting.
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of the estimated time effects. The columns of results are (left to right) for fixed effects

with half-normal inefficiency, random effects with half-normal inefficiency, fixed effects with

exponential inefficiency, and random effects with exponential inefficiency.

Table 3.1 suggests that both proposed estimators of the variance components perform

reasonably well. Vertically, the proposed method performs best (compared to itself) for

the both heteroskedastic specification (fourth row panel), then heteroskedastic u or het-

eroskedastic v (third and second row panel) and lastly both homoskedastic specification

(first row panel). The rule of thumb bandwidth choice may be the driving force behind this

result since the bandwidth should go to infinity in the homoskedastic specifications in light

of the irrelevance of the covariates. The feasible estimators perform better (compared to

itself) when inefficiency is exponentially distributed than when it is half-normal (first and

second column VS third and fourth column). This is probably due to the fact that in all

specifications the random noise vit is normally distributed, and disentangling moments from

the same distributional family is always more difficult than from different families.12 An-

other interesting pattern is that with the proposed method the fixed effects models and the

random effects models yield similar results in both the variance and time effects estimation.

This corresponds to Theorem 4 in which the identification and estimation of σ2
u and σ2

v does

not hinge on the fixed effects or random effects assumptions.13 The slight difference between

them is an artifact of finite sampling variability.

Continuing with Table 3.1, one may observe that the estimated time effects has a smaller

RMSE with half-normally distributed inefficiency when compared with its exponential coun-

terpart. This may come from the rule of thumb bandwidth selection as we use the same

bandwidth for all the conditional first-differences and conditional covariances. It is not a

general rule.

12Half-normal and normal distribution are both in the super smooth distributional family while exponen-
tial distribution is in the ordinary smooth distributional family. It is always more difficult to disentangle
inefficiency from the random noise in the former case than in the latter.

13Actually, it is also true for the time effects identification and estimation as we could observe in the proof
of Theorems 5 and 6 .
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Similar findings can be found when we increase the sample size to 10000 for each period.

Table 3.2 reports the results for the larger sample size design n = 10000 and T = 2. The

proposed estimator performs better in all specifications with either heteroskedastic ineffi-

ciency or heteroskedastic noise or both than the case with none of them (second, third and

fourth panel vs first panel). Exponential stochastic frontier model yields more precise vari-

ance estimators (in terms of RIMSE) than the half-normal counterpart while the differences

between fixed effects estimators and random effects estimators are negligible within the same

inefficiency distribution. Both proposed estimators of the variance components and the time

effects have decent identification power in terms of RIMSE and RMSE. Another main

finding is that in all specifications, the proposed estimators perform better in Table 3.2 than

in Table 3.1. For instance, the first RIMSE 0.609 and RMSE 0.036 in Table 3.2 versus

0.847 and 0.065 in Table 3.1 for the half-normal fixed effects model. This demonstrates the

consistency and decent rate of convergence of the proposed estimators.

3.6 Application

We apply the proposed method to study an environmental Kuznets curve (EKC) on CO2

emission and economic development. We are especially interested in the relationship between

CO2 emission technology development and human capital represented by average schooling

years and capital stock per capita across 136 countries from 1990 to 2014. The EKC has

been a popular approach among economists to model ambient pollution concentrations and

aggregate emissions since Grossman and Krueger (1991) introduced it almost thirty years

ago. It is a hypothesis that states the environmental impacts or pollutant emissions are an

inverse U-shaped function of income per capita. For details, please refer to Stern (2017)

which provides an excellent review on EKC. One theory behind the EKC is that technology

improvement embedded in the production and environmental friendly processing may drive

the inverse-U shape relationship between emissions and income per capita. This is referred
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to as the technique effect (Copeland and Taylor, 2004). The proposed nonparametric panel

model could help provide quantitative evidence on this theory. As far as we acknowledge,

there are few trials on this except Bertinelli and Strolb (2005), Azomahou et al. (2006) and

Lee et al. (2019).

3.6.1 Data and Model

The data comes from the World Bank which provides CO2 emission per capita (in metric

kilograms) from 1990 to 2014 worldwide and Penn World Table version 9.1 from where capita

stosck per capita (in 2011 US dollars) is obtained.14 The average schooling years worldwide

from 1990 to 2017 is scripted from the Human Development Reports under the United Nation

Development Programme. We merge the data by country and year and obtain a balance

panel of 136 countries and 25 years from 1990 to 2014. As the average schooling by country

evolves very slowly and changes very little across years, we choose three equidistant periods

to investigate the technique effects underlying the EKC: 1990, 2002 and 2014.15 Summary

statistics of the collected data are reported in Table 3.3 . The average schooling years and

capita stock per capita increase slowly across the three periods.

Existing studies typically specify a log linear panel model with one-way or two-way

fixed effects to test the inverse-U shape relationship between CO2 emission and GDP per

capita, namely the EKC hypothesis (Bertinelli and Strolb, 2005; Azomahou et al., 2006

and Lee et al., 2019). Here we advance steps further. First, rather than merely exploring

the relationship between the CO2 emission and GDP per capita, which is determined by

human capital and capita stock in the Solow growth model, we focus on the evolving of CO2

emission technology (i.e., the CO2 emission productivity) based on the two fundamentals

of GDP per capita: human capital represented by schooling years and capital stock per

capita across different countries in the past 25 years. Second, a flexible relationship between

14 The capita stock per capita equals to the ratio between capita stock (in million 2011 US dollars) and
population (in millions) in the Penn World Table 9.1.

15We also tried several other choices such as five periods or twelve periods and similar results could be
found.
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the CO2 emission and the two fundamental inputs of GDP per capita is modeled with a

nonparametric panel model with non-separable country fixed effects and added time effects.

Specifically we consider a model as follows

Cit = λt +m(αi, xit) + uit + vit i = 1, 2..., N ; t = 1, 2..., T, (3.8)

where Cit = ln(CO2it) is the logarithm of CO2 emission (in metric kilograms) per capita

for country i in year t; λt is the time effects and αi is the non-separable unobserved hetero-

geneity (i.e., non-separable fixed effects or random effects); uit > 0 is a time-varying CO2

emission productivity emancipated from the technology development or technology adaption

in country i at year t; vit is random noise which is assumed to be (conditional) symmetric;

and xit = lnXit where Xit includes the average schooling years and capital stock per capita.

The m(αi, Xit) is a general nonparametric function which models the complicated production

process of CO2 with a panel.

One thing worthy noting here is that though the CO2 emission productivity uit is unob-

served, we assume it follows a Half-Normal or Exponential distribution as that in a typical

stochastic frontier model for efficiency or productivity analysis, i.e., uit ∼ |N (0, σ2
u)| or

Exp(σu). Hence, the mean productivity is determined by the variance parameter, namely,

E(uit) = (1 − 2
π
)σu(xit) or E(uit) = σu(xit) which provides key insight on the evolution of

CO2 emission technology or adaption worldwide during the past 25 years.16 Understanding

the nature of technology improvement related to environment is crucial for understanding

the determinants of Green House Gas (GHS) emission like CO2 emission. The latter could

provide practical and insightful directions for policy makers who care about GHS emission

and more broadly, global warming and climate change.

16We assume uit ∼ |N (0, σ2
u)| for the following analysis. For exponentially distributed uit, similar analysis

could be derived.
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3.6.2 Model Estimation

To apply the proposed method, we first check the validity of common support assumptions

by drawing probability distribution density (pdf) functions of all covariates. Specifically, the

pdf of each covariate across three periods are depicted in one graph in Figure A: the upper

one shows those for ln(CapitalStockPercapita) and the bottom for ln(AvgSchoolY ear). We

could observe that both of them share a very good common support, although their mean

value shift slowly across the three periods. Another assumption is conditional independence

assumption. It assumes that given the contemporaneous inputs (capital stock per capita and

average school year), the random noise is independent with the past time period inputs and

the country specific effect. This assumption is not unreasonable if the random noise mainly

comes from the measurement error and the conditioning covairates contain the main factors

that affect the output.17

We apply the proposed nonparametric kernel estimation procedure with a panel of three

periods: 1990, 2002, 2014. Hence, there are two time effects and four conditional covariances

to be estimated as follows:

E[Yit − Yi1|Xit = Xi1 = x] = E[εit + λt − εi1|Xit = Xi1 = x] = λt

where t = 2 or 3 for year 2002 and 2014 and year 1990 is set as the benchmark year with

normalization λ1 = 0, and

A12(x) = Covx(Yi1, Yi1 − Yi2); A23(x) = Covx(Yi2, Yi2 − Yi3);

B12(x) = Covx
(
Yi1, (Yi1 − Yi2)2

)
; B23(x) = Covx

(
Yi2, (Yi2 − Yi3)2

)
;

where Covx(C,D) = Ex(CD) − Ex(C) ∗ Ex(D) with Ex(·) = E(·|Xt = Xt+1 = x) and

C = Yi1 or Yi2, D = Yi1 − Yi2 or (Yi1 − Yi2)2. The bandwidths are chosen by leave-one-out

17We would talk about this in detail when we explain the empirical results and talk about the implications.
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Cross Validation and we choose the same bandwidth for one covariate in two consecutive

periods.18 Specifically, we search the grid of 0.2 to 10 times the rule of thumb bandwidth

in each period: hrot1, hrot2 and hrot3, and obtain the optimal bandwidth by minimizing the

cross validation objective function. The optimal bandwidths and rule-of-thumb bandwidths,

as a benchmark, are reported in Table 3.4.

Based on the cross validation bandwidth, we obtain the variance parameters as a function

of inputs which determines the mean CO2 emission productivity, and the constant time

effects for each period. Specifically, λ2 = 0.2107 and λ3 = 0.2989. Note that these estimates

indicate an yearly increase of 2.79% and 3.88% respectively concerning the fact that the

mean logarithm of CO2 emission per capita in 2002 and 2014 are 7.5366 and 7.7134. It

shows an accelerating trend of CO2 emission per capita from 2002 to 2014 than from 1990

to 2002. At the same time period, the world average GDP per capita increase from 4, 290

(current US) dollars in 1990 to 5, 527 dollars in 2002 to 10, 934 dollars in 2014.19 Though

both increase rapidly, the growth GDP per capita overwhelmingly dominates that of CO2

emission. This reflects the nonlinear relationship between the CO2 emission per capita and

GDP per capita in which the environmental technology development may be a driving force.

3.6.3 Empirical Results

Figure 3.1 shows a 3D surface indicating the mean CO2 emission productivity (i.e., CO2 emis-

sion technology) as a function of two inputs: ln(CapitalStockPercapita) and ln(AvgSchoolY ear)

. In general, the 3D surface representing the estimated nonparametric relationship between

the unobserved CO2 emission productivity and the observed inputs is very smooth. Interest-

ingly, the CO2 emission productivity is an increasing function of the average schooling year

but shows an inverse U-shape relationship with capital stock per capita. We could observe

this point more clearly in Figures 3.2 and 3.3 when we take out two median slices of the

3D surface and explore the heterogeneous effects of different inputs on the CO2 emission

18This is a convenient simplification as the covariates change very little in two consecutive periods.
19The GDP data comes from World Bank.
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productivity. The dash lines shows the 95% confidence interval bands derived from 199

bootstrap simulations. Fixing the other covariate at its median, CO2 emission productiv-

ity demonstrates an obvious monotone increasing trend with average schooling year and an

inverse U-shape relationship with capital stock per capita with a turning point around 9.7

(i.e., 16318 dollars per capita). Both these patterns are statistically significant. The results

indicate that capita stock may be a driving force underlying the technique effects but hu-

man capital is not.20 This has huge implications for environmental policy makers worldwide.

Details would be laid out in the implication subsection.

In Figure 3.1 , we also locate and highlight the world average CO2 emission productivity

in each of the three investigated periods by its average schooling year and average capital

stock per capita. Overall, the world average CO2 emission productivity was increasing in

the first period in the 1990s and then decreasing over the second period, which covers the

post 21th century years. This pattern is very intuitive concerning that one of the earliest

global climate agreement - the Kyoto Protocol - was adopted in Kyoto, Japan, in 1997 and

entered into force in 2005. However, there is a long way to go for the world as a whole given

the fact that CO2 emission productivity is still very high and imbalanced.

To see the imbalance among different countries on CO2 emission productivity, we ob-

tain the CO2 emission productivity of China and US similarly with information on average

schooling year and average capital stock per capita and highlight them in Figure 3.4 and

Figure 3.5 , respectively. In Figure 3.4 , as the biggest developing country in the world (in

terms of GDP), China overally followed the evolving path of the world average. Specifically

China was better than world average in 1990 in terms of CO2 emission productivity (1.42

VS 1.66), was slightly worse than the world average in 2002 (1.824 VS 1.74), which it out-

performed a little bit in 2014 (1.14 VS 1.29) mainly due to a smaller than average schooling

year compared with the world average (2.03 VS 2.08).21 However, as the biggest developed

20More education should make people more aware of environmental protection. However, we don’t find
that in the data.

21Recall that CO2 emission productivity is the negative side of CO2 emission technology development,
so the smaller it is, the better it is.
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country in the world, the US was better than the world average across all three periods.

China’s CO2 emission productivity is almost three times worse of that of US in 2014 (1.13

VS 0.41). Even in 2014, China was lagged behind the 1990 US in terms of CO2 emission

productivity (1.14 VS 0.68). There is a huge gap between developing countries and developed

countries on CO2 emission productivity(i.e., CO2 emission technology) in the world.

To get an overview of the CO2 emission productivity among all 136 countries in the

collected data, we fit a liner model for the ridge line of the 3D surface in Figure 3.1 and

project it onto the XY plane. The ridge line represents the inputs combinations which achieve

the maximum value of the Z axis, i.e., the maximum value of CO2 emission productivity.

The fitted ridge line is

ln(AvgSchoolY ear) + 2.15
(0.02)

∗ ln(CapitalStockPercapita)− 21.76
(0.21)

= 0

and the coefficients are statistically significant at 99% confidence interval. For each of the

three periods, a scatter plot with the fitted ridge line can be drawn using the information of

ln(CapitalStockPercapita) and ln(AvgSchoolY ear) in the data. We depict them in Figures

3.6 -3.8 with highlights of OECD countries and BRICS countries. In each figure, the horizon-

tal and vertical red lines represent the mean value of corresponding variables and the yellow

line represent the fitted ridge curve which stays the same over three periods. Note that as

time goes on, both the OECD countries and the BRICS countries move away from the ”bad”

ridge line and the OECD countries become more concentrated on the right upper quadrant.

India, another large developing country, followed the path of China in the reduction of CO2

emission though it was still the least developed in terms of CO2 emission technology among

BRICS countries in 2014. Another finding is that in the bottom left quadrant, most of

African countries are trapped in the less developed (in terms of capita stock) and less CO2

emission circle. They are in dire need of assistance on CO2 emission technology from the

developed countries to climb and cross over the ”bad” ridge curve of CO2 emission.
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3.6.4 Implications and Discussion

The observed fact that CO2 emission productivity (i.e., CO2 emission technology develop-

ment) monotonically increases with human capital (represented by average schooling years)

and demonstrates an inverse U-shape relationship with the capital stock per capita from

the empirical analysis has insightful implications in at least three aspects. First, increasing

the capita stock in poor and heavy CO2 emission countries could be a useful and effective

recipe to reduce the CO2 emission globally and enforce the Paris Climate Agreement. There

are two underlying explanations to behind this: the needed CO2 emission technology, or

environmental friendly technology, are capital-intensive and people would care about the

overall well being such as climate change and global warming more when they are getting

richer. Secondly,the education we received so far has little effect on reducing the CO2 emis-

sion per capital or is far from enough for people to put carbon reduce propaganda into

daily action. One explanation is that some people just do not believe that it matters at

all. Education policy makers should reflect on this. Another explanation is that as people

receive more education, they accumulate wealth and tend to enjoy life in a luxury way:

driving too much and alone, frequent and unnecessary travel (especially flights), excessive

entertainment, ect. The education making us rich is not enough to make us environmentally

self-conscious. Thirdly, the inverse U-shape relationship between CO2 emission productivity

provides a possible mechanism for a similar correlation between CO2 emission and GDP per

capita in a typical EKC. Capital stock could be the driving force behind the EKC hypothesis

rather than human capital.

Nevertheless, one empirical study on CO2 emission is not enough to demonstrate all the

stunting questions or challenges on climate change and global warming economics. One cau-

tion is on the usage of the proposed model. Even though the proposed nonparametric panel

model incorporates an added time effects and non-separable country fixed effects, allows

flexible CO2 production function and imposes less restrictive distributional assumption on

random noise (i.e., conditional symmetry), we still specify a Half-Normal (or Exponential)
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distributional assumption on the unobserved CO2 emission productivity. Though typically

used by researcher in stochastic frontier analysis, this distributional assumption may not be

truth or even close to the truth.22 It may just be a convenient way to model the unknowns.

Another caveat comes from the vulnerability of the conditional independence assumption.

Due to data limitation, we only get information of CO2 emission per capita, average school-

ing years and capita stock per capita with a balance panel of 136 countries over 25 years from

1990-2014. Other factors such as political freedom, output structure or even trade may also

impact the CO2 emission per capita (Stern, 2017). Though we build our CO2 production on

a Cobb-Douglas model with main inputs human capital and capital stock, there is still the

possibility that the conditional independence assumption is violated due to omitted variables

other than the main inputs. Also, information on 136 countries may not reflect the whole

picture of world, but hopefully it contains the major information of it.

3.7 Conclusion

We propose a new methodology to identify and estimate a nonparamtric panel model with

composed errors. A typical example is a stochastic production/cost frontier model for panel

data. Specifically, we are interested in identifying and estimating the variance parameters

of the time-varying inefficiency (or productivity) as a function of multiple inputs or environ-

mental variables. Compared with existing methods, the proposed methodology (a) doesn’t

impose log-linearity for the cost/production function and incorporates a non-separable un-

observed heterogeneity and added time effects; (b) allows for heteroskedastic inefficiency and

noise which may be a function of environmental variables; and (c) relaxes the distribution

assumption for the random noise which is typically assumed to be normal or Laplace in the

literature. Identification and estimation of the unknown production/cost function is built

22The minimum assumption is to forge the distribution assumption on the unobserved productivity and
just keep the conditional symmetry assumption on the random noise. But with that the best we could obtain
is the odd cumulants (or moments) of the productivity rather than a whole distribution. For details, please
refer to Florens. et al. (2019).
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on the novel deconvolution methodology of Evdokimov (2010). Identification and estimation

of the time effects and variance parameters does not require specific information about the

unspecified cost/production function as they are built upon the conditional first-difference

transformation of the model. The proposed method for estimating the variance parameters

is straightforward and easy to implement as it requires no deconvolution techniques.

As a useful demonstration, we apply the proposed method to study the evolving of

CO2 emission productivity on human capital and capital stock with a collected panel of

136 countries over 25 years, which yields useful insights. While CO2 emission productivity

increases with human capital accumulation, we find an inverse U-shape relationship of CO2

emission productivity on capital stock which is similar to that of CO2 emission on GDP per

capita in a typical Environmental Kuznets Curve (EKC).

For future research, some refinements of the nonparametric estimation can be pursued.

Hall and Horowitz (2013) propose a new bootstrap method to construct more precise non-

parametric confidence bands for estimated functions which can be directly applied on our

proposed estimators. Also the distribution assumption on inefficiency (productivity) could

be relaxed to one-side distributed and with just conditional symmetry assumption of the

random noise. In that case, we could identify and estimate the odd cumulants (or moments)

of the unobserved inefficiency (or productivity). For details, please refer to Florens et al.

(2019). This can be a straightforward and useful extension based on the present results.
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Table 3.1: DESIGN I, n=2,500, T=2

Uit ∼ |N(0, σ2
u)| Uit ∼ Exp(σu)

σ2
u σ2

v Fixed Effects Random Effects Fixed Effects Random Effects
(σ̂2
u, σ̂2

v) (σ̂2
u, σ̂2

v) (σ̂2
u, σ̂2

v) (σ̂2
u, σ̂2

v)

RIMSE (0.864, 0.300) (0.845, 0.296) (0.535, 0.388) (0.536, 0.386)
2 1 RIBIAS2 (0.216, 0.055) (0.205, 0.062) (0.084, 0.114) (0.152, 0.096)

RIV AR (0.831, 0.294) (0.823, 0.292) (0.540, 0.376) (0.538, 0.373)
λ2 = 1 RMSE 0.065 0.063 0.090 0.080

RIMSE (1.033, 0.345) (1.006, 0.334) (0.300, 0.248) (0.289, 0.238)
2x2 1 RIBIAS2 (0.848, 0.246) (0.817, 0.261) (0.120, 0.123) (0.118, 0.071)

RIV AR (0.588, 0.217) (0.588, 0.216) (0.272, 0.233) (0.263, 0.227)
λ2 = 1 RMSE 0.055 0.054 0.065 0.063

RIMSE (0.640, 0.206) (0.612, 0.204) (0.492, 0.310) (0.489, 0.312)
2 x2 RIBIAS2 (0.203, 0.042) (0.126, 0.039) (0.192, 0.084) (0.107, 0.081)

RIV AR (0.609, 0.201) (0.600, 0.199) (0.498, 0.298) (0.498, 0.301)
λ2 = 1 RMSE 0.051 0.050 0.074 0.075

RIMSE (0.673, 0.196) (0.577, 0.172) (0.245, 0.173) (0.237, 0.165)
2x2 x2 RIBIAS2 (0.525, 0.130) (0.417, 0.098) (0.090, 0.035) (0.076, 0.016)

RIV AR (0.421, 0.146) (0.398, 0.142) (0.228, 0.169) (0.225, 0.164)
λ2 = 1 RMSE 0.037 0.037 0.047 0.048

Notes: RIMSE, RIBIAS2, and RIV AR are “Root of the Integrated Mean Squared Error,”
“Root of the Integrated Squared Bias,” and “Root of the Integrated Variance,” respectively.
RMSE refers to the Root Mean Squared Error of the time effects λ2. “Exp(b)” is the exponential
pdf: f(x) = 1

be
−x
b for x ≥ 0.
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Table 3.2: DESIGN II, n=10,000, T=2

Uit ∼ |N(0, σ2
u)| Uit ∼ Exp(σu)

σ2
u σ2

v Fixed Effects Random Effects Fixed Effects Random Effects
(σ̂2
u, σ̂2

v) (σ̂2
u, σ̂2

v) (σ̂2
u, σ̂2

v) (σ̂2
u, σ̂2

v)

RIMSE (0.601, 0.219) (0.603, 0.218) (0.351, 0.251) (0.356, 0.253)
2 1 RIBIAS2 (0.084, 0.015) (0.062, 0.011) (0.019, 0.044) (0.033, 0.036)

RIVAR (0.597, 0.218) (0.601, 0.218) (0.353, 0.245) (0.358, 0.249)
λ2 = 1 RMSE 0.036 0.037 0.048 0.048

RIMSE (0.691, 0.235) (0.669, 0.225) (0.196, 0.161) (0.188, 0.158)
2x2 1 RIBIAS2 (0.548, 0.156) (0.518, 0.163) (0.081, 0.044) (0.072, 0.047)

RIVAR (0.421, 0.159) (0.424, 0.159) (0.179, 0.153) (0.174, 0.153)
λ2 RMSE 0.029 0.030 0.036 0.035

RIMSE (0.423, 0.139) (0.407, 0.135) (0.329, 0.214) (0.323, 0.211)
2 x2 RIBIAS2 (0.143, 0.024) (0.095, 0.019) (0.026, 0.041) (0.062, 0.040)

RIVAR (0.397, 0.137) (0.400, 0.134) (0.332, 0.210) (0.326, 0.207)
λ2 RMSE 0.028 0.029 0.043 0.041

RIMSE (0.466, 0.133) (0.401, 0.121) (0.167, 0.111) (0.160, 0.108)
2x2 x2 RIBIAS2 (0.364, 0.085) (0.283, 0.062) (0.074, 0.027) (0.062, 0.014)

RIVAR (0.290, 0.102) (0.284, 0.104) (0.149, 0.108) (0.148, 0.107)
λ2 RMSE 0.020 0.021 0.026 0.026

Notes: RIMSE, RIBIAS2, and RIV AR are “Root of the Integrated Mean Squared Error,”
“Root of the Integrated Squared Bias,” and “Root of the Integrated Variance,” respectively.
RMSE refers to the Root Mean Squared Error of the time effects λ2. “Exp(b)” is the exponential
pdf: f(x) = 1

be
−x
b for x ≥ 0.
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Table 3.3: Summary Statistics for CO2 Emission Data, 1990-2014

Full Sample Year 1990 Year 2002 Year 2014
Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

ln(CO2 emission) 7.54 1.67 7.36 1.79 7.53 1.70 7.71 1.49
ln(AvgSchoolYear) 1.86 0.58 1.62 0.66 1.88 0.53 2.08 0.44
ln(CapitaStock) 9.96 1.57 9.37 1.58 9.82 1.47 10.69 1.37

N 408 136 136 136

Notes: CO2 emission per capita is in metric kilograms. Average schooling years refer to Average number
of years of education received by people ages 25 and older, converted from education attainment levels
using official durations of each level. Capita Stock per capita is in 2011 US dollars.

Figure A. Common Support of Selected Covariates
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Table 3.4: Bandwidths for Nonparametric Covariance Estimators

Cross-Validation Rule-of-Thumb

Covariates hA12 hA23 hB12 hB23 hrot1 hrot2 hrot3

ln(CapitaStockPercapita) 0.908 2.179 0.505 2.188 0.740 0.686 0.640

ln(AvgSchoolYear) 0.759 0.835 1.086 3.017 0.309 0.246 0.203

Notes: hAj , hBj are bandwidths for covariance Aj(x) and Bj(x) which are defined
in the application section.

Figure 3.1: CO2 Emission Productivity as a Function of School Year and Capita Stock.
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Figure 3.2: CO2 Emission Productivity as a Function of School Year at Median Capita
Stock.
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Figure 3.3: CO2 Emission Productivity as a Function of Capita Stock at Median School
Year.
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Figure 3.4: China’s CO2 Emission Productivity Over Periods.
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Figure 3.5: US’s CO2 Emission Productivity Over Periods.
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Figure 3.6: Overview of All Countries’ CO2 Emission Productivity in 1990
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Figure 3.7: Overview of All Countries’ CO2 Emission Productivity in 2002
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Figure 3.8: Overview of All Countries’ CO2 Emission Productivity in 2014
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Appendices

3.A Proof of Theorem 4

Proof. 1. Rewrite the model as:

Yit = m̃(Xit, αi) + ε̃it (3.9)

ε̃it = λt + Uit + Vit − E[Uit], i = 1, ..., n, t = 1, ..., T (3.10)

Observe that E[Yit − Yi1|Xit = Xi1 = x] = E[εit + λt − εi1|Xit = Xi1 = x] = λt with the

normalization λ1 = 0, then the time effects λt is identified.

Observe that m̃(Xi1, αi) = m̃(Xi2, αi) when Xi1 = Xi2 = x. For any x ∈ χ,

(
Yi1
Yi2

)
|{Xi1 = Xi2 = x} =

(
m̃(x, α) + ε̃i1
m̃(x, α) + ε̃i2

)
|{Xi1 = Xi2 = x}. (3.11)

There are four conditions (which come from the original Kotlarski’s Lemma) to check

before applying Lemma 1 on Evdokimov and White (2012): (1) m̃, ε̃i1 and ε̃i2 are mutually

(conditional) independent; (2) m̃, ε̃i1 and ε̃i2 have at least one absolute moment; (3) E(ε̃i1) =

0; (4) characteristic function φε̃it(s) 6= 0 for all s and t ∈ {1, 2}.

For condition (1), condition on Xi1 = Xi2 = x, m̃ is independent with ε̃i1 and ε̃i2

respectively. The crucial part is to show ε̃i1 are conditionally independent with ε̃i2. Recall

that εit = Uit + Vit. Vi1 is conditional independent with Vi2 by Assumption ID 4. Based

on Assumption ID 2 Uit can be represented as Uit = σu(Xit)ηit where σu(x) is a bounded
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positive function and ηit are i.i.d |N(0, 1)| which is independent of (αi, Xi(−t)) where −t

stands for other period. So Uit also satisfy the conditional independence in Assumption ID

4. As Uit and Vit are conditional independent with each other by Assumption ID 3, εit is

also conditional independent with εi(−t), so as its demeaned version ε̃it = Uit + Vit − E(Uit)

since E(Uit) is just a constant conditional on Xi1 = Xi2 = x.

For Condition (2), it is trivially satisfied since m(·|Xi1 = Xi2 = x) is a bounded function,

Uit ∼ |N(0, σ2
u(Xit))|, and Vit is conditionally symmetrically distributed with finite variance.

For condition (3), obviously E(ε̃i1|Xi1 = Xi2 = x) = 0 due to the normalization λ1 = 0.

For condition (4), it holds since Uit ∼ |N(0, σ2
u(Xit))| and conditional characteristic function

φVit|Xit(s|Xit = x) does not vanish for all s, x and t = 1, 2 by Assumption ID 6.

Assumption ID 1-6 ensures that the Lemma 1 on Evdokimov and White (2012) applies

to (3.11), conditional on the event Xi1 = Xi2 = x and identifies the conditional distribu-

tions (or characteristic functions) of m(x, α), ε̃i1 and ε̃i2, given that Xi1 = Xi2 = x, for

all x ∈ χ. By the conditional independence Assumption ID 4 and its above discussion,

fε̃it|Xit,αi,Xi(−t),ε̃i(−t)(εt|x, α, x(−t), ε̃(−t)) = fε̃it|Xit(ε̃t|x) for t ∈ {1, 2}. That is the conditional

density fε̃it|Xit(ε̃|x) is identified for all x ∈ χ, ε̃ ∈ R and t ∈ {1, 2}, as is the conditional

characteristic function φε̃it|Xit(s|x) for all s.

φε̃i1|Xi1(s|x) = exp(

∫ s

0

iE[Yi1 exp(iξ(Yi1 − Yi2))|Xi1 = Xi2 = x]

E[exp(iξ(Yi1 − Yi2))|Xi1 = Xi2 = x]
dξ − isE(Yi1|Xi1 = Xi2 = x))

(3.12)

φε̃i2|Xi2(s|x) =
E[exp(is(Yi1 − Yi2))|Xi1 = Xi2 = x]

φε̃i1|Xi1(−s|x)
(3.13)

where i =
√
−1.23

2. Note that, given Xit = x, Uit ∼ |N(0, σ2
u(x))| by Assumption ID 2 which is a one-

parameter asymmetric distribution and Vit is conditionally independent of Uit and symmetric

23Note the slight notational abuse: the subscript i is an index, while the bold i is the imaginary number.
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with E(Vit|Xit = x) = 0 and finite variance σ2
v(x) by Assumption ID 3. Therefore, given

Xit = x, for the first three moments of the demeaned disturbance ε̃it can be written as

E(ε̃it|Xit = x) = 0

E(ε̃2
it|Xit = x) = (1− 2

π
)σ2

u(x) + σ2
v(x)

E(ε̃3
it|Xit = x) =

(4− π)
√

2

π
√
π

σ3
u(x)

3. We can also calculate the first three moments of the demeaned disturbance ε̃it condi-

tional on Xit = x by taking derivative of the conditional characteristic function and setting

s = 0: E(εk) = (−i)k
∂φε|X(s|x)

∂sk
|s=0 for k = 1, 2, 3.

Plugging this into equation (3.12) and rearranging,

− i ∗ e0(

∫ s

0

iEx[Yitexp(iξ(Yit − Yiτ ))]
Ex[exp(iξ(Yit − Yiτ ))]

dξ − isEx(Yit))|s=0 = 0 (3.14)

Ex[Yit(Yit − Yiτ )]− Ex[Yit]Ex[(Yit − Yiτ )] = (1− 2

π
)σ2

u(x) + σ2
v(x) (3.15)

Ex[Yit(Yit − Yiτ )2]− Ex[Yit]Ex[(Yit − Yiτ )2]− 2Ex[(Yit − Yiτ )](Ex[Yit(Yit − Yiτ )]−

Ex[Yit]Ex[(Yit − Yiτ )]) =
(4− π)

√
2

π
√
π

σ3
u(x)

(3.16)

where Ex(.) = E(.|Xit = Xiτ = x) and τ ∈ {1, 2} and τ 6= t.

Given Xit = Xiτ = x, the two unknowns σ2
u(x) and σ2

v(x) can be uniquely solved out by

equation (3.15) and equation (3.16). The third term in equation (3.16) is a constant or a

function of x as Ex(Yit−Yiτ ) = Ex(−λτ ). Varying x ∈ χ, we can identify the nonparametric

function of σ2
u(.). Therefore, the distribution of inefficiency, Uit, is identified.

Consequently, the elasticity of the mean efficiency with respect to the covariate Xit can
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be identified following Simar et al. (2017). Define the elasticity as ξµX = ∂µE
∂x

x
µE

, note

that µE(x) := E[Uit(x)] =
√

2σu(x)√
π

for the half-normal distribution (σu(x) for exponential

distribution), so we can easily derive:

ξµX =
∂σu(x)

∂x

x

σu(x)
=

1

3

∂E(ε̃3
it|Xit = x)

∂x

x

E(ε̃3
it|Xit = x)

(3.17)

in which E(ε̃3
it|Xit = x) is identified in equation (3.16).

For Uit ∼ Exp(σu) where variance is σ2
u(x), just replace (1 − 2

π
) and ( (4−π)

√
2

π
√
π

) by 1 and

2 in equation (3.15) and (3.16).24, and the result follows.

3.B Sketch Proof of Theorem 5 and 6

Proof. We consider a cost stochastic frontier model with fixed effects αi which is a common

case in the literature. The proof can be easily extended to the random effects setting. With

assumption ID 1-9 and FE 1-3, we can sketch a procedure for identifying the m(Xit, αi)

which is the production function ( or profit function) in the SFA context.

(I) Step one: Identifying the conditional distribution of ε̃it given Xit exactly follows the

first step of the proof of Theorem 4 . In particular, the conditional characteristic functions

φε̃it|Xit(s|x) are identified for all t ∈ {1, 2}.

(II) Step two: Identifying λt and the distribution of m̃(x, α)|{Xi1 = x,Xi2 = x̄} and

α|{Xi1 = x,Xi2 = x̄}.

E[Yit − Yi1|Xit = Xi1 = x] = E[εit + λt − εi1|Xit = Xi1 = x] = λt

with the normalization λ1 = 0. Conditional on the event {(Xi1, Xi2) = (x, x̄)}, by the

conditional independence Assumption ID 4 and the normalization Assumption FE 2, we

24E(u) = σu, V ar(u) = σ2
u, Skewness(u) = 2.
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have

φYi1(s|Xi1 = x,Xi2 = x̄) = φm̃(Xi1,αi )
(s|Xi1 = x,Xi2 = x̄)φε̃i1(s|Xi1 = x),

φYi2(s|Xi1 = x,Xi2 = x̄) = φαi(s|Xi1 = x,Xi2 = x̄)φε̃i2(s|Xi2 = x̄).

Then,

φm̃(Xi1,αi )
(s|Xi1 = x,Xi2 = x̄) =

φYi1(s|Xi1 = x,Xi2 = x̄)

φε̃i1(s|Xi1 = x)
, (3.18)

φαi(s|Xi1 = x,Xi2 = x̄) =
φYi2(s|Xi1 = x,Xi2 = x̄)

φε̃i2(s|Xi2 = x̄)
. (3.19)

The left-hand side of equation (3.18) and equation (3.19) can be identified since the

numerators can be identified from the data and the denominators are already identified from

the previous step. The conditional CDFs of Fm̃(x,αi)|Xi1,Xi2(w|x, x̄) and Fαi|Xi1,Xi2(a|x, x̄) can

be obtained following (Gil-Pelaez 1951; Evdokimov 2010):

Fm̃(x,αi)|Xi1,Xi2(w|x, x̄) =
1

2
− lim

χ→∞

∫ χ

−χ

e−isw

2πis
φm̃(Xi1,αi)|Xit,Xiτ (s|x, x̄)ds, t, τ = 1, 2, t 6= τ

Fαi|Xi1,Xi2(a|x, x̄) =
1

2
− lim

χ→∞

∫ χ

−χ

e−isa

2πis
φαi|Xit,Xiτ (s|x, x̄)ds, t, τ = 1, 2, t 6= τ

(III) Step three: Identifying the functional m(x, .).

Inverting the conditional CDF Fm̃(x,αi)|Xi1,Xi2(a|x, x̄), we can obtain the conditional quan-

tile function

Qm̃(x,αi)|Xi1,Xi2(q|x, x̄) = inf{w : Fm̃(x,αi)|Xi1,Xi2(w|x, x̄) ≥ q}, q ∈ (0, 1)

According to property of quantiles, we have

m̃(x, a) = Qm̃(x,αi)|Xi1,Xi2(Fαi|Xi1,Xi2(a|x, x̄)|x, x̄)
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for all x and a. And m(x, α) = m̃(x, α)− E(u) where E(u) is a function of σu(x).

(IV) Step four: identifying Fαi(a|Xit = x).

Similar to step 2, function φYit(s|Xit = x) is identified from the data and hence

φm̃(Xit,αi)(s|Xit = x) = φYit(s|Xit = x)/φε̃it(s|Xit = x)

is identified. Hence, the CDF Fm̃(x,αi)|Xit(w|x) and the quantile function Qm̃(x,αi)|Xit(q|x) can

be identified. By assumption FE 1, m̃(x, α) is strictly increasing in α, by the property of

quantiles,

Qαi|Xit(q|x) = m̃−1(x,Qm̃(Xit,αi)|Xit(q|x))

Finally, one can identify the conditional cumulative distribution function Fαi(a|Xit = x) by

inverting the quantile function Qαi|Xit(q|x).

3.C Proof of Lemma 4

Proof. Under Assumption 10, Theorem 1 in Yin et al. (2010) holds. That is

√
nh{σ̂j1j2(x)− σj1j2(x)− θn} →d N (0, f−1(x)ν0wj1j2(x))

as n → ∞, where θn = h2µ2
2
{σ̈j1j2(x) + 2σ̇j1j2(x) ḟ(x)

f(x)
}, ν0 =

∫
K2(u)du, µ2 =

∫
u2K(u)du,

f(x) is the probability density function of X evaluated at X = x; wj1j2 ≡ V ar(εj1j2(i)|Xi),

where εj1j2(i) = {Ỹ[i,t,τ ],j1 − mj1(Xi)}{Ỹ[i,t,τ ],j2 − mj2(Xi)} − σj1j2(Xi). Ỹ[i,t,τ ] is defined in

equation (3.7) and mj(x) = E(Ỹ[i,t,τ ],j|Xit = x).

As we consider a panel model with T=2 periods, there are two kernels for the special

conditional argument Ex(.) = E(.|Xit = Xiτ = x) with univariate Xit. Assume the same

bandwidth are chosen for the two kernels and let (σ̈j1j2)s(x) ( or (σ̇j1j2)ss(x)) denote the first

(or second) order derivative with respect to the sth dimensional element of X, then we have
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√
nh2{σ̂j1j2(x)− σj1j2(x)− θn} →d N (0, f−1(x)ν0wj1j2(x))

as n→∞, where θn = h2µ2
2
{(σ̈j1j2)11(x)+2(σ̇j1j2)1(x) ḟ1(x)

f(x)
}+h2µ2

2
{(σ̈j1j2)22(x)+2(σ̇j1j2)2(x) ḟ2(x)

f(x)
},

ν0 =
∫
K2(u)du, µ2 =

∫
u2K(u)du, f(x) is the probability density function of X evalu-

ated at X = x (X ∈ R2 here), ḟs(x) denotes the first (or second) order derivative with

respect to the sth dimensional element of X; wj1j2 ≡ V ar(εj1j2(i)|Xi), where εj1j2(i) =

{Ỹ[i,t,τ ],j1 −mj1(Xi)}{Ỹ[i,t,τ ],j2 −mj2(Xi)} − σj1j2(Xi). Ỹ[i,t,τ ] is defined in equation (3.7) and

mj(x) = E(Ỹ[i,t,τ ],j|Xit = Xiτ = x).

Specifically, we have

√
nh2{σ̂12(x)− σ12(x)− h2γ12} →d N (0, f−1(x)ν0w12(x))

where γ12 = µ2
2
{(σ̈12)11(x) + 2(σ̇12)1(x) ḟ1(x)

f(x)
} + µ2

2
{(σ̈12)22(x) + 2(σ̇12)2(x) ḟ2(x)

f(x)
} and w12 =

V ar(ε12(i)|Xit = Xiτ = x), and

√
nh{σ̂13(x)− σ13(x)− h2γ13} →d N (0, f−1(x)ν0w13(x))

where γ13 = µ2
2
{(σ̈13)11(x) + 2(σ̇13)1(x) ḟ1(x)

f(x)
} + µ2

2
{(σ̈13)22(x) + 2(σ̇13)2(x) ḟ2(x)

f(x)
} and w13 =

V ar(ε13(i)|Xit = Xiτ = x).

Jointly, we have

√
nh

 σ̂12(x)− σ12(x)− h2γ12(x)

σ̂13(x)− σ13(x)− h2γ13(x)

→d N

0,
ν0

f(x)

 φ2
12(x) φ12,13(x)

φ12,13(x) φ2
13(x)




where φ2
12(x) = w12(x) = V ar(ε12(i)|Xit = Xiτ = x), φ2

13(x) = w13(x) = V ar(ε13(i)|Xit =

Xiτ = x) and accordingly φ12,13(x) = Cov(ε12, ε13|Xit = Xiτ = x)25 with εj1j2(i) = {Ỹ[i,t,τ ],j1−
25The second equality holds as m1(X), m2(X), m3(x) and σ12(X), σ13(X) are constants given Xit =

Xiτ = x.
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mj1(Xi)}{Ỹ[i,t,τ ],j2 −mj2(Xi)} − σj1j2(Xi).

Then the conclusion follows.

3.D Proof of Theorem 7

Proof. By Lemma (4),

√
nh2

 σ̂12(x)− σ12(x)− h2γ12(x)

σ̂13(x)− σ13(x)− h2γ13(x)

→d N

0,
ν0

f(x)

 φ2
12(x) φ12,13(x)

φ12,13(x) φ2
13(x)




where φ2
12(x) = w12(x) = V ar(ε12(i)|Xit = Xiτ = x), φ2

13(x) = w13(x) = V ar(ε13(i)|Xit =

Xiτ = x) and accordingly φ12,13(x) = Cov(σ̂12(x), σ̂13(x)|Xit = Xiτ = x) = Cov(ε12, ε13|Xit =

Xiτ = x).

As A(x) = σ12(x), B(x) = σ13(x) by definition, the identification strategy simplifies to

σ2
u(x) = c−2/3 (σ13(x) + 2λτσ12(x))2/3

σ2
v(x) = σ12(x)− ac−2/3 (σ13(x) + 2λτσ12(x))2/3

where a and c are constants. For example, if the inefficiency term Uit ∼ |N(0, σ2
u(Xit))|,

a = 1− 2
π
, c = (4−π)

√
2

π
√
π

; if Uit ∼ Exp(b) where V ar(Uit) = σ2
u(Xit), a = 1 and c = 2.

By the delta method, the asymptotic distribution of σ2
u(x) and σ2

v(x) follows

√
nh2

{
σ̂2
u(x)− σ2

u(x)− h2b(x) (γ13(x) + 2λτγ12(x))
}
→d N

(
0,
ν0b

2(x) (φ2
13(x) + 4λτφ12,13 + 4λ2

τφ
2
13)

f(x)

)

where b(x) = 2
3

(σ13(x) + 2λτσ12(x))−1/3 (x)c−2/3 and
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√
nh2

{
σ̂2
v(x)− σ2

v(x)− h2
(
γ12(x)− ab(x)(γ13(x) + 2λτγ12)

)}
→d N (0, D′ΣD)

whereD = ∂σ2
v(x)

∂σ12,13
=
(

1−2λτab(x)
−ab(x)

)
where σ12,13 =

(
σ12
σ13

)
, b(x) = 2

3
(σ13(x) + 2λτσ12(x))−1/3 (x)c−2/3

which is bounded constant by (vii) in Assumption 10;

Σ =
ν0

f(x)

 φ2
12(x) φ12,13(x)

φ12,13(x) φ2
13(x)


Specifically, we have

√
nh2

{
σ̂2
v(x)− σ2

v(x)− h2
(
γ12(x)− ab(x)(γ13(x) + 2λτγ12)

)}
→d N

(
0,
ν0 {(1− 2λτab(x))2φ2

12(x)− 2(1− 2λτab(x))ab(x)φ12,13(x) + a2b2(x)φ2
13(x)}

f(x)

)

The results follow.
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