
Syracuse University Syracuse University

SURFACE SURFACE

Dissertations - ALL SURFACE

December 2020

SECURING USER INTERACTION CHANNELS ON MOBILE SECURING USER INTERACTION CHANNELS ON MOBILE

PLATFORM USING ARM TRUSTZONE PLATFORM USING ARM TRUSTZONE

Amit Ahlawat
Syracuse University

Follow this and additional works at: https://surface.syr.edu/etd

 Part of the Engineering Commons

Recommended Citation Recommended Citation
Ahlawat, Amit, "SECURING USER INTERACTION CHANNELS ON MOBILE PLATFORM USING ARM
TRUSTZONE" (2020). Dissertations - ALL. 1183.
https://surface.syr.edu/etd/1183

This Dissertation is brought to you for free and open access by the SURFACE at SURFACE. It has been accepted for
inclusion in Dissertations - ALL by an authorized administrator of SURFACE. For more information, please contact
surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/etd
https://surface.syr.edu/
https://surface.syr.edu/etd?utm_source=surface.syr.edu%2Fetd%2F1183&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=surface.syr.edu%2Fetd%2F1183&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/etd/1183?utm_source=surface.syr.edu%2Fetd%2F1183&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

ABSTRACT

Smartphones have become an essential part of our lives, and are used daily for

important tasks like banking, shopping, and making phone calls. Smartphones provide

several interaction channels which can be affected by a compromised mobile OS. This

dissertation focuses on the user interaction channels of UI input and audio I/O. The

security of the software running on smartphones has become more critical because of

widespread smartphone usage. A technology called TEE (Trusted Execution

Environment) has been introduced to help protect users in the event of OS compromise,

with the most commonly deployed TEE on mobile devices being ARM TrustZone.

This dissertation utilizes ARM TrustZone to provide secure design for user interaction

channels of UI input (called Truz-UI) and Audio I/O for VoIP calls (called Truz-Call). The

primary goal is to ensure that the design is transparent to mobile applications. During

research based on TEE, one of the important challenges that is encountered is the ability

to prototype a secure design. In TEE research one often needs to interface hardware

peripherals with the TEE OS, which can be challenging for non-hardware experts,

depending on the available support from the TEE OS vendor. This dissertation discusses a

simulation based approach (called Truz-Sim) that reduces setup time and hardware

experience required to build a hardware environment for TEE prototyping.

SECURING USER INTERACTION CHANNELS ON MOBILE PLATFORM USING

ARM TRUSTZONE

by

Amit Ahlawat

B.Tech., Maharshi Dayanand University, 2010

M.S., Syracuse University, 2012

Dissertation

Submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Electrical and Computer Engineering.

Syracuse University

December 2020

Copyright c© Amit Ahlawat 2020

All Rights Reserved

ACKNOWLEDGMENTS

There are several people who I would like to thank for the successful completion of

my PhD thesis.

First and foremost, I would like to thank my advisor Dr. Wenliang Du for giving me

the opportunity to work in his lab as a Research Assistant during my Masters degree and

giving me a chance to work on a PhD degree under his guidance. I thank him for the

training he provided related to formulating research problems, judging the merits of a

formulated problem and applying constructive & critical thinking while doing research. I

also thank him for the feedback he provided in all the project meetings we had over the

years.

I would like to thank Dr. Jae Oh, Dr. Richard Tang, Dr. Fanxin Kong, Dr. Bryan Kim,

and Dr. Carlos E. Caicedo Bastidas, for agreeing to be on my thesis committee. I am

extremely grateful for their time in reading my dissertation and commenting on my views.

I would like to thank the department chair Dr. Jae Oh for his continued support during my

PhD study.

During my time in Dr. Wenliang Du’s lab, I have been very fortunate to have had the

opportunity to work with several colleagues, including Dr. Kailiang Ying, Dr. Xiao

Zhang, Dr. Yousra Aafer, Dr. Paul Ratazzi, Xing Jin, Ammar Salman, Francis Akowuah,

Yifei Wang, Haichao Zhang, Hanyi Li, Yuexin Jiang, Carter Yagemann, Zhenyu Wang,

iv

Amey Ashok Patil, Gautam Peri, Priyank Thavai and Bilal Alsharifi. I would like to thank

Dr. Andrew Henderson for all the guidance he provided on various projects in my thesis.

I would like to thank my family for their support of my decision to pursue a PhD

degree, and their continued support during my PhD study.

Finally I would like to thank the various staff members of the EECS department and

other departments responsible for ensuring the success of PhD students at Syracuse

University.

v

TABLE OF CONTENTS

Page

ABSTRACT . i

LIST OF TABLES . x

LIST OF FIGURES . xi

1 Introduction . 1

1.1 Risks faced by Smartphone Channels 1

1.2 ARM Architecture and Trusted Execution Environment 3

1.3 Component Binding Across OS . 4

1.4 Thesis Statement and Contributions 5

1.5 Organization of Dissertation . 9

2 Background . 10

2.1 ARM TrustZone . 10

2.2 TrustZone Development Boards . 12

2.3 Android Text Input . 13

2.3.1 Text Input UI Element . 14

2.3.2 Text Input via Binding . 16

2.4 Android Action Confirmation . 18

2.4.1 Using AlertDialog for Confirmation 18

2.4.2 Using Activity for Confirmation 19

2.4.3 Trigger Confirmation Code via Binding 22

2.5 Voice over IP (VoIP) Call . 24

3 Truz-UI: Secure Input Interaction . 26

3.1 Problem Overview . 26

3.2 Broken Binding between Code and UI 28

3.3 Main Idea: Cross-OS Binding . 29

vi

Page

3.4 Related Work . 30

3.5 Securing Text Input . 31

3.6 Securing Action Confirmation . 37

3.6.1 Action Confirmation using AlertDialog 37

3.6.2 Action Confirmation using Activity 41

3.6.3 Attestation Using Android Keystore 43

3.7 User Involved Access Control . 44

3.8 Sending TEE Protected Data to Server 46

3.9 Hardware Implementation . 47

3.10 Security Analysis . 51

3.11 Evaluation . 53

3.11.1 Effectiveness . 53

3.11.2 Ease of Adoption . 55

3.11.3 Performance . 58

3.12 Publication . 58

4 Truz-Call: Secure Voice Interaction for VoIP Calling 59

4.1 Problem Overview . 59

4.2 Factors Influencing TEE Integration Design 63

4.3 Related Work . 64

4.4 Secure VoIP Calling Problem Scope 65

4.4.1 Protocol Support . 66

4.4.2 VoIP App Computation Stages 66

4.5 Main Idea . 68

4.6 TEE Invocation and Data Encoding 70

4.6.1 Audio Data Encoding . 71

4.6.2 Independent Audio Pipeline Stages 72

4.6.3 TEE Bridges and TAs . 74

4.7 VoIP Call Initiation . 75

4.8 TEE Invocation by Audio Framework 78

vii

Page

4.8.1 TEE Invocation by AudioRecord 79

4.8.2 TEE Invocation by AudioTrack 80

4.9 TEE Invocation by SRTP . 81

4.10 Reference Data Management . 82

4.10.1 Data Management for Record 83

4.10.2 Data Management for Playback 85

4.11 Security Analysis . 87

4.12 Simulation Test Environment . 89

4.13 Evaluation . 92

4.13.1 Performance . 93

4.13.2 VoIP Quality . 94

4.14 Publication . 96

5 Truz-Sim: Hardware Simulation to Assist TrustZone Research 97

5.1 Problem Overview . 97

5.2 Related Work . 100

5.3 Main Idea . 101

5.4 Design . 102

5.4.1 High Level Design . 104

5.4.2 Camera Access Design . 106

5.4.3 GPS Access Design . 107

5.5 Implementation . 109

5.5.1 Trusted App APIs for Hardware Access 109

5.5.2 Simulation Driver . 111

5.5.3 Normal World App Testing 112

5.5.4 Camera Access Implementation 113

5.5.5 GPS Access Implementation 119

5.5.6 UI Touch Input . 123

5.6 Evaluation . 127

5.6.1 GPS Testing . 127

viii

Page

5.6.2 Camera Testing . 131

5.6.3 UI Touch Input Testing . 134

5.7 Discussion . 135

6 Conclusion And Future Work . 137

6.1 Secure Input Interaction for Hybrid Applications 138

6.2 VoIP Computation Stages in TEE . 139

6.3 Expanding Hardware Simulation Support 139

LIST OF REFERENCES . 141

VITA . 155

ix

LIST OF TABLES

Table Page

3.1 Evaluation Results for Open-Source Apps 56

3.2 Evaluation Result for Closed-Source Apps 58

4.1 Truz-Call Performance Evaluation . 94

4.2 Truz-Call VoIP Quality Evaluation . 95

5.1 Camera Access Steps in V1 and V2 APIs 115

5.2 List of Closed-Source GPS Apps Tested 128

5.3 List of Camera Apps Tested . 132

x

LIST OF FIGURES

Figure Page

1.1 Smartphone Interaction Channels . 2

1.2 ARM Architecture Privilege Levels . 3

1.3 OS Context and Binding . 5

1.4 Types of Binding . 6

2.1 Secure Boot . 11

2.2 96Boards Hikey 620 Development Board 12

2.3 Android Input Method Framework Overview 13

2.4 EditText UI Example . 15

2.5 Keyboard Input via Android Input Method Framework 16

2.6 AlertDialog Example . 20

2.7 Confirmation Activity Flow . 20

2.8 Trigger Dialog Button Code . 22

2.9 Trigger Requesting Activity Code . 23

2.10 VoIP Call Flow . 24

3.1 User Input Interactions . 27

3.2 Input Interaction Threat Model . 28

3.3 Binding Between Code and UI . 28

3.4 Seamless Keyboard Binding Across OS 32

3.5 IMMS Providing Binding to IME . 34

3.6 Switch to Proxy IME for Secure EditText 35

3.7 Proxy IME Commiting Reference Obtained from Keyboard Input TA 36

3.8 AlertDialog Confirmation using TEE . 38

3.9 Activity Confirmation using TEE . 42

3.10 Truz-UI Context Verification by User . 45

xi

Figure Page

3.11 Connection Between Truz-UI and Truz-HTTP/Split-SSL Works 47

3.12 Hardware Setup Overview for Truz-UI 48

3.13 Hardware Test Setup for Truz-UI . 49

3.14 Screen Transition for Truz-UI . 50

4.1 VoIP Call Overview . 60

4.2 VoIP App Stages and Secure VoIP Requirement 61

4.3 Voice Interaction Threat Model . 62

4.4 TEE Integration Design Factors . 63

4.5 VoIP App Stages . 67

4.6 Truz-Call Design Overview . 68

4.7 Android Audio Architecture . 70

4.8 TEE Invocation by Audio Framework and SRTP 73

4.9 Use of TEE in Native AudioRecord . 79

4.10 Reference Data Management for Record 83

4.11 Reference Data Management for Playback 86

4.12 Simulation Setup . 90

5.1 Access Hardware in Normal vs Secure Case 97

5.2 Existing Driver Support in TEE Kernel 98

5.3 Cross-OS Binding for Hardware Access 101

5.4 Cross-OS Binding Options . 103

5.5 High Level Design . 104

5.6 Camera Access Design . 107

5.7 GPS Access Design . 108

5.8 Use of RPC by Simulation Driver . 111

5.9 Normal World App Leveraging TEE for Secure Cases 113

5.10 Default Control Flow for Getting Picture from Camera 114

5.11 Truz-Sim Flow for Getting Picture from Camera 116

5.12 Truz-Sim Camera Library Modifications 117

5.13 Default Control Flow for Getting GPS Location 120

xii

Figure Page

5.14 Truz-Sim Flow for Getting GPS Location 121

5.15 GPS Sentences Observed On Raspberry Pi 122

5.16 Flow for Truz-UI Test Using Truz-Sim 124

5.17 Hardware Setup Overview for Truz-UI (From Chapter 3) 124

5.18 Event Queue Used By Python Program on Pi Board 126

5.19 GPS Test Case . 128

5.20 Paths Used to Obtain Location . 129

5.21 GPS Simulation Access Performance Breakdown 130

5.22 Camera Test Setup . 131

5.23 Camera Simulation Access Performance Breakdown 133

5.24 TA Log When Accessing UI Touch Input 134

xiii

1

1. INTRODUCTION

Smartphones have become a common tool in modern society. Based on recent

statistics [78] from the US, as of Feb 2019 81% of adults own a smartphone. One of the

popular mobile OS Android now has a majority market share [89]. The widespread

adoption of smartphones makes the security of mobile OS extremely important.

Unfortunately, the recent trend has not been promising. CVE numbers show that the

number of disclosed vulnerabilities in Android has remained high [71]. A recent attack on

Android could achieve arbitrary code execution in a privileged process by using a crafted

image file [63]. Smartphones provide several interaction channels which can be affected

by a compromised mobile OS. This chapter discusses the types of smartphone interaction

channels and provides an overview of secure solutions for specific interaction channels.

1.1 Risks faced by Smartphone Channels

Smartphones provide several interaction channels (Figure 1.1), including user

interaction channels (UI and audio I/O), context based channels (camera and GPS),

inter-phone channels (bluetooth and NFC), and back end channels (network interface to

communicate with server). A compromised mobile OS can affect various use cases for

these channels. For user interaction channels like UI input and audio I/O, a compromised

OS can steal user secrets (e.g. password). For context based channels like camera and

2

Fig. 1.1.: Smartphone Interaction Channels

location, a compromised OS can falsify environment (e.g. spoof location). For inter-phone

channels like NFC and bluetooth, a compromised OS can steal data being exchanged

between the devices. For back-end channels with servers, a compromised OS can steal

data sent to a server or send forged data to a server.

This dissertation focuses on the user interaction channels of UI input and audio I/O. UI

input is used to allow the user to enter a secret or to approve an action in a mobile

application. For example, in case of a banking application, a compromised OS can steal

user’s secret information such as bank passwords, and spoof actions such as transferring

money out of the user’s bank accounts on behalf of the user. An important use case of

audio I/O is user’s ability to make phone calls. In recent years, VoIP apps such as

Signal [25] and Whatsapp [14] have become popular ways for making a call. Recent

survey [64] indicates top social apps used have VoIP calling support. A compromised

mobile OS can listen to user’s VoIP call. Today different types of users need to have a

3

secure means of calling, including activists, journalists, government employees etc. Given

the risk to user interaction channels, there is a need to design solutions utilizing features in

mobile architectures that can provide security inspite of a compromised mobile OS.

1.2 ARM Architecture and Trusted Execution Environment

Majority of mobile devices use ARM architecture [26]. It is divided into two

worlds [65] as shown in Figure 1.2. The normal world contains normal apps and mobile

OS (like Android). As mentioned in previous sections, the mobile OS can be potentially

compromised. To design secure solutions, one may look at utilizing the hypervisor which

has higher privilege than the mobile OS. Existing research [155] shows vulnerabilities in

hypervisor on the ARM platform. Given the normal world cannot be trusted to design

secure solutions, ARM architecture contains a second world called the secure world.

Fig. 1.2.: ARM Architecture Privilege Levels

4

The secure world, also referred to as trusted execution environment (TEE), provides an

execution environment isolated from the normal world. The most commonly deployed

TEE on mobile devices is ARM TrustZone [96]. Other architectures also support TEE,

including AMD Platform Security Processor, Apple Secure Enclave and Intel Software

Guard Extensions (SGX). A compromised mobile OS cannot access data in the secure

world and cannot access hardware protected by the secure world. The secure world runs

an independent trusted OS (will be referred to as TEE OS) with its own set of trusted

applications (also referred to as TA). Popular examples of TEE include Samsung

TIMA [91] which uses TrustZone to provide various security services (e.g. keystore,

trusted user interface), and Trustonic [145] which uses TrustZone to provide security

solutions to various vendors (e.g. mobile payment apps like WeChat and AliPay).

1.3 Component Binding Across OS

In a typical computing system, components in userspace, kernel and hardware interact

with each other to form a single OS context. At userspace level, components can include

processes, and at a finer granularity level, the various libraries (modules) used in the

processes. At kernel level, components can include modules like various device drivers.

At hardware level, components can include various peripherals being used by the system.

Within an OS context, this dissertation uses the term binding to refer to interaction

between two components via OS support. Example of binding can include application

interacting with hardware, process interacting with another process via IPC etc. The key

to the term is that some type of OS support is involved.

5

Fig. 1.3.: OS Context and Binding

There can be circumstances where components cannot exist in the same OS context,

but rather exist across two different context. In such situations, if these components need

to interact, an OS-level binding needs to be created (Figure 1.3). The binding can be

created across two similar OSes (Figure 1.4). For example, an app on one Android phone

using the hardware on a different Android phone. In case where the components exist in

different types of OS, a cross-OS binding is needed (Figure 1.4). In this dissertation, two

types of cross-OS bindings are introduced in the designs for secure input interaction

(Truz-UI) and simulation platform for TEE prototyping (Truz-Sim).

1.4 Thesis Statement and Contributions

The thesis statement of this dissertation is that, design solutions transparent to

applications to protect user interaction channels on mobile platform using ARM

TrustZone. The dissertation focuses on the user interaction channels of UI input and

6

Fig. 1.4.: Types of Binding

audio I/O for VoIP calls. In support of this statement, this dissertation describes the

following contributions:

1. Truz-UI: Users provide secret data to the smartphone via the interaction channel of

UI input (touch input). To protect user’s secret data, we need to protect the

interaction between the user and the smartphone so that the secret data will be never

given to the normal-world OS. Two common types of touch based interactions are

typing text and confirming an action. A compromised normal-world OS poses a risk

to such interactions. Taking mobile banking as an example, when a user logs in to

the bank’s server, the user needs to type a password, which can be stolen if the OS is

compromised. Second, when the user conducts a money-transfer transaction, the

compromised OS can replace the receiver’s account number with the one belonging

7

to the attacker, leading to loss of money. TrustZone can be leveraged to protect such

interactions because of the hardware level isolation it offers. It is important to allow

apps to use TEE via existing normal-world OS APIs and without a need to install

app-specific TA in the secure world. This is a challenging requirement. Without

such support, developers need to make significant changes to their apps to use

TrustZone, discouraging them from using it in their apps.

This dissertation presents a transparent design that allows normal-world apps to

leverage TrustZone via existing OS APIs to protect user interaction via UI input.

The goal is achieved by incorporating generic TrustZone support at the OS level so

that normal-world apps can use TrustZone without the need to put their own code

inside the secure world. Reusing existing APIs can be achieved by moving the

sensitive UI interaction into the secure world, while still maintaining the UI’s

functionality related to its corresponding code in the normal-world app. This is

achieved by creating a cross-OS binding between the UI interaction in the secure

world and the code in the normal-world app. Using this approach, the app developer

requests a secure version of the UI and provides the code to be bound to this UI.

When the UI in the secure world finishes collecting inputs from users, the bound

code in the normal-world app is triggered. This design has been evaluated using

both open and closed source apps in this dissertation. The design has been tested on

the TrustZone-enabled Hikey development board. The performance evaluation

shows that the overhead from Truz-UI is not noticeable to users.

8

2. Truz-Call: Users make end-to-end encrypted VoIP calls using various apps on

mobile OS like Android. When the user initiates a VoIP call, the app uses OS APIs

to fetch audio, processes the audio, and sends out the packet over the network

(reverse flow for incoming packets). The app uses a VoIP protocol like SRTP to

encrypt and calculate HMAC for the audio payload (in RTP packets), and send the

encrypted payload to the callee device. With a compromised OS, the user’s privacy

is at risk during the call. TrustZone can be leveraged to protect user’s voice

interaction because of the hardware level isolation it offers. VoIP apps should be

enabled to use TrustZone to protect the user’s conversation while using the existing

OS APIs and existing VoIP protocols, without a need to install app-specific TA in

the secure world. The design should be transparent to developers and to the existing

VoIP infrastructure. This dissertation presents a transparent design to protect user’s

audio I/O during a VoIP call by integrating TEE at essential stages in a VoIP app’s

audio pipeline. The design allows VoIP apps to leverage TrustZone while using

existing OS APIs and VoIP protocol, and provides generic TA support so that no

app-specific TA code is needed. The conversation audio during a VoIP call is

protected from the normal-world OS. The design has been evaluated using an open

source VoIP app Linphone on the TrustZone-enabled Hikey development board.

3. Truz-Sim: TEE research often involves interfacing different types of hardware

peripherals with the TEE OS. This task can be challenging for non-hardware

experts, depending on the available support from the TEE OS vendor. There is a

need for a TEE prototyping environment that can allow researchers to interface

9

different category of hardware with the TEE OS irrespective of the available support

from the vendor, and can best retain the quality of data needed for prototyping. To

meet this requirement, this dissertation introduces a simulation based testing

environment that allows reduced setup time and requires no hardware experience for

setup. The idea involves creating a simulation driver in the TEE OS that facilitates a

cross-OS binding between the trusted application in the TEE and hardware attached

to a different OS, for example, on a different board like Raspberry Pi. This allows

TAs in the TEE on a TrustZone-enabled development board like Hikey, to

transparently access hardware attached to a binded board like Pi. The design has

been evaluated for the use cases of a TA needing access to data from camera, GPS

and UI hardware.

1.5 Organization of Dissertation

Chapter 2 provides background on ARM TrustZone and related development boards,

text input & action confirmation in Android, and VoIP calling. Chapter 3 discusses

Truz-UI to provide secure input interaction. Chapter 4 discusses Truz-Call to

provide secure voice interaction for VoIP calling. Chapter 5 discusses hardware simulation

to assist research related to TrustZone. Chapter 6 presents conclusion and future work.

10

2. BACKGROUND

2.1 ARM TrustZone

The TrustZone technology is a system-wide approach to security that allows building

secure endpoints with a root of trust. Using TrustZone, a System-on-Chip’s (SoC)

hardware and software resources are partitioned to provide security, s.t. the resources exist

in one of two hardware-separated worlds, the secure world for a security subsystem, and

the normal world for everything else (as shown in Figure 1.2). The normal-world software

is not allowed to access the secure-world resources. The concepts of normal and secure

world are applied to various parts of the SoC, including memory, software, bus

transactions, interrupts and peripherals.

The two worlds are partitioned using the hardware logic implemented in the bus

fabric, peripherals and processors. Each physical processor core executes two virtual

cores, one considered secure and the other considered non-secure. The two virtual

processors execute in a time-sliced fashion. The mechanism to context switch between

them is known as monitor mode. The entry to the monitor can be triggered by software

executing the Secure Monitor Call (SMC) instruction. The secure-world comprises of

various software components, including trusted boot, the secure-world switch monitor, a

small trusted OS and trusted apps (or TA). There are several trusted OSes currently in

development, including OP-TEE [85], T6 [1], Trustonic [145], etc.

11

Secure Boot. As shown in Figure 2.1 [96], after the SoC is powered-on, a ROM-based

bootloader is executed which initializes critical peripherals. It then invokes the device

bootloader located in flash memory. The boot sequence then proceeds through the secure

world OS initialization stages. Once completed, control is passed to the normal world

bootloader. This starts the normal world OS, at which point the system is considered

running. The secure boot sequence includes cryptographic checks to each stage of the

secure world boot process. It aims to assert the integrity of the secure world software,

preventing any unauthorized or maliciously modified software from running.

Fig. 2.1.: Secure Boot

OPTEE OS. This is an open-source TEE OS maintained by Linaro, based on the

GlobalPlatform TEE system architecture specification [54]. It is designed to be

compatible with any isolation technology suitable for TEEs, including TrustZone . In

TrustZone , the OP-TEE OS kernel allows trusted applications (TAs) to run in the user

12

space. A TA provides a set of commands, each of which is a function that can be invoked

by the normal world. The OP-TEE kernel forwards the normal-world request to a TA and

returns the result back to the normal world.

2.2 TrustZone Development Boards

To conduct TEE research one needs select a device for testing. Commercial Android

phones with the TrustZone feature have TrustZone locked down by the manufacturers.

Researchers have to instead rely on development boards that can allow modifications to

both normal world and secure world. Since the research done in this dissertation is

focused on mobile OS (primarily Android), the board selected is the one recommended by

Google to run Android upto the year 2020 [53, 106]. The board recommended by Google

is Hikey [125] (shown in Figure 2.2). This dissertation relies on the Hikey 620 board for

testing.

Fig. 2.2.: 96Boards Hikey 620 Development Board

In order to modify the secure world, the development board needs to be supported by a

TEE OS vendor. The vendor would provide a patch to the Android source code released

13

by Google, so that when the final version of the code is flashed on the board, both the

normal world and secure world OS can be updated. Fortunately OP-TEE OS provides

support [134] for the Hikey board. This allows a research environment where

modifications can be made at the user and OS levels in both Android and OP-TEE.

2.3 Android Text Input

Android allows users to provide text input to applications. Android supports this via

the input method framework [103]. It has three overall pieces as shown in Figure 2.3.

Applications include UI elements to accept text input. User interaction with these UI

elements requests Android framework to display a keyboard UI for input. The system

displays a keyboard UI based on the currently configured keyboard app (also referred to as

input method editor or IME). User can interact with the keyboard UI to provide text input

to application UI element.

Fig. 2.3.: Android Input Method Framework Overview

14

2.3.1 Text Input UI Element

Android allows app developers to create user interface to allow touch interaction with

users. Developers create app components called Activity which create windows in

which developers can place their UI. An application’s UI is represented in XML format.

App developers use a UI element called EditText [101] to accept text input from users.

Listing 2.1 shows an example of an application UI containing two EditText elements.

The corresponding app UI is shown in Figure 2.4. In the example, several attributes are

specified for EditText, including height, width and inputType [105]. The

inputType attribute informs the system whether expected input is just text or special

input like password. Other types include phone, time, date etc.

Listing 2.1: EditText Example

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/

android"

android:layout_width="match_parent"

android:layout_height="match_parent"

xmlns:tools="http://schemas.android.com/tools"

tools:context="com.example.edittext.MainActivity"

android:orientation="vertical">

<EditText

android:id="@+id/edittext1"

15

android:layout_width="200dip"

android:layout_height="50dip"

android:inputType="text"

android:layout_marginLeft="10dip"/>

<EditText

android:id="@+id/edittext2"

android:layout_width="200dip"

android:layout_height="50dip"

android:inputType="textPassword"

android:layout_marginLeft="10dip"/>

</LinearLayout>

Fig. 2.4.: EditText UI Example

16

2.3.2 Text Input via Binding

Fig. 2.5.: Keyboard Input via Android Input Method Framework

This section explains how the Android input method framework allows a keyboard app

to provide input to an Android application. Figure 2.5 shows the overall flow. The figure

is divided into three overall steps. Android allows users to install different keyboard apps

and select which one to use via Android’s settings app [61]. When user selects a particular

keyboard app, a system service (running in a privileged process) called

InputMethodManagerService (will be referred to as IMMS) is notified (step ¬).

When the user interacts with an EditText in an Android app, an in-app Android

framework component called InputMethodManager sends an IPC request for the

keyboard UI to IMMS (step ­). The IMMS requests currently selected keyboard app to

show its keyboard UI.

Keyboard apps (also referred to as Input Method Editor or IME [102]) are developed

by deriving the Android class InputMethodService [128]. Every IME app has a life

17

cycle. The IMMS is responsible for managing the life cycle for the currently selected IME.

One of the important steps in this life cycle is providing the current IME a binding (of type

InputConnection [104]) to the current application. The binding allows the IME to

send text input to the EditText in the app (step ®). Once the text input is completed,

the EditText in the app can get the text entered by the user using the API getText()

(as shown in Listing 2.2).

Listing 2.2: EditText getText() Example

public class MainActivity extends Activity {

@Override

protected void onCreate(Bundle savedInstanceState)

{

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_main);

EditText editText

= (EditText) findViewById(R.id.

edittext1);

String str = editText.getText().toString();

}

}

18

2.4 Android Action Confirmation

This section describes how Android app developers can ask user to confirm an action

and how user interaction with the confirmation UI results in the corresponding code being

triggered in the app. Two common Android components that can be used to ask for user

confirmation are AlertDialog and Activity.

2.4.1 Using AlertDialog for Confirmation

Dialogs [100] commonly consist of a user message and a set of buttons. Listing 2.3

shows an example of how Android developers create a dialog using the AlertDialog

class. Given a confirmation message (set using setMessage()), an app requests a

dialog using the show() API while providing button code for UI buttons. The

confirmation UI runs in the caller app process. The app gets a response upon user

interaction with the dialog UI via Android’s input event handling framework [30].

Figure 2.7 shows an example of a dialog UI.

Listing 2.3: AlertDialog Example

// "this" refers to the containing Activity

AlertDialog.Builder builder

= new AlertDialog.Builder(this);

builder.setMessage("Confirm transfer of $50 to Bob ?")

.setPositiveButton("OK",

new DialogInterface.OnClickListener() {

@Override

19

public void onClick(DialogInterface dialog, int

button)

{ /* Handle User Approval */ }

})

.setNegativeButton("Cancel",

new DialogInterface.OnClickListener() {

@Override

public void onClick(DialogInterface dialog, int

button)

{ /* Handle User Cancellation */ }

});

AlertDialog alertDialog = builder.create();

alertDialog.show();

2.4.2 Using Activity for Confirmation

As mentioned in Section 2.3.1, an Activity allows an Android developer to create a

UI for user interaction. To get user confirmation, an app Activity can invoke a second

Activity containing the confirmation UI. Based on the confirmation result,

corresponding code can be triggered in the calling Activity.

The calling Activity specifies the confirmation message as part of an Intent and

uses the startActivityForResult() API for confirmation UI invocation. The UI

may run in same or different process and is invoked via ActivityManagerService.

20

Fig. 2.6.: AlertDialog Example

Fig. 2.7.: Confirmation Activity Flow

Upon user interaction with the confirmation activity UI, the activity constructs a result

using finish() and sends to the caller app via the Intent IPC framework. The caller app

gets the response from the confirmation UI via the callback onActivityResult().

21

Listing 2.4: Confirmation Activity Request and Response

// Calling Activity

Intent intent = new Intent("com.example.ACTION");

intent.putExtra("msg",

"Confirm transfer of $50 to Bob ?");

startActivityForResult(intent, confirm_request);

// Confirmation Activity

OkButton.setOnClickListener(new OnClickListener() {

@Override

public void onClick(View view) {

setResult(Activity.RESULT_OK);

finish();

// Cancel button can use Activity.RESULT_CANCELED

// Data can also be returned (not used in example)

}

});

// Back to Calling Activity

protected void onActivityResult(int request_code,

int result_code, Intent data) {

if(request_code == confirm_request &&

22

result_code == RESULT_OK) {

// Handle user confirmation

}

}

2.4.3 Trigger Confirmation Code via Binding

This section explains how user interaction with the confirmation UI shown via

AlertDialog and Activity triggers corresponding app code via binding support

provided by the OS.

Fig. 2.8.: Trigger Dialog Button Code

23

When a user interacts with the dialog UI by pressing either the OK or the Cancel

button, the event associated with user’s touch interaction passes through several stages

before it reaches the AlertDialog in the app. The binding between the UI interaction

and corresponding app code is provided by the OS via the input event handling

framework [30] (shown in Figure 2.8). The UI interaction event is captured by the

hardware and passed onto the Linux device driver in the kernel. Android’s system server

process (a privileged process) receives the event in a component called InputReader.

It forwards it to InputDispatcher which sends the event to the application via the

InputChannel layer in the application process. Android app’s UI is organized as a

hierarchy of UI elements (also referred to as Views). The event is passed down the view

hierarchy in the app. Eventually the event triggers the code associated with the clicked

button via the onClick() callback function.

Fig. 2.9.: Trigger Requesting Activity Code

24

In the case of confirmation via Activity, the flow is similar upto the triggering of

code in the confirmation Activity. Based on whether the user confirmed or denied the

action, the confirmation Activity will use the Intent IPC framework to return the

result to the app requesting confirmation via the system server process (as shown in

Figure 2.9). The binding support provided by the OS thus has two stages, the input event

framework to trigger the code in the confirmation Activity and the Intent IPC

framework to trigger the callback onActivityResult() in the app requesting the

confirmation.

2.5 Voice over IP (VoIP) Call

Fig. 2.10.: VoIP Call Flow

Voice over Internet Protocol (VoIP) [178] allows delivery of voice communications

over Internet Protocol (IP) networks like the Internet. Common protocols used by VoIP

software for secure calling using end-to-end encryption can be found at [174]. From the

data available for protocols used by apps, a common protocol for VoIP with open source

25

implementation is SRTP [10] using SIP [6] for call initiation. Figure 2.10 gives a high

level view of the flow involved in connecting a VoIP call. If a caller wants to call a callee,

they will first use the SIP application-layer protocol [6, 22] to exchange information. The

information is exchanged using SDP messages [2] enclosed within SIP messages. The

SIP protocol does not carry any audio data; it is used to initiate a session between the two

end points. Once the connection is established, protocols like RTP [8] are used to deliver

audio between the two end points. RTP is used alongside the RTP Control Protocol

(RTCP). RTP is used to carry media streams, while RTCP is used to monitor transmission

statistics and quality of service. SRTP is a profile of RTP that provides confidentiality,

message authentication, and replay protection to RTP traffic. A sister protocol SRTCP

provides the same features for RTCP. SRTP resides between the RTP application and the

transport layer. It intercepts RTP packets and then forwards an SRTP packet containing

encrypted payload and HMAC on the sending side, and intercepts SRTP packets and

verifies HMAC and decrypts payload to provide an RTP packet up the stack on the

receiving side. SRTP and SRTCP need keys for encryption and HMAC. These keys are

derived from master keys which are set up using a key exchange mechanism. Protocols

used by VoIP to setup master keys include DTLS [15, 19] and ZRTP [18].

26

3. TRUZ-UI: SECURE INPUT INTERACTION

3.1 Problem Overview

Users provide sensitive inputs when using Android applications. Two common types

of input are text input and action confirmation (shown in Figure 3.1). In order for an app

to protect text input, users should be able to type a secret (e.g, password) without allowing

the compromised OS to see the secret. Given a protected secret, the app should be able to

send the secret to the authorized server without leaking the secret to the compromised OS.

TrustZone can allow users to type their secret in the right app without leaking to the

untrusted normal-world OS (this dissertation does not cover the sending of secret to

authorized server; covered in existing thesis [180]). In order for an app to enforce user’s

intention, users should be able to confirm an action (e.g., money transfer) and the

compromised OS should not be able to modify the user’s confirmed action. To protect this

interaction, before an important transaction is committed, TrustZone can ask users for

confirmation so that the transaction can be attested (signed using TrustZone) and its

integrity can be preserved. The attested confirmation should allow the receiving server to

verify that the action was confirmed by the user.

The problem of protecting user’s sensitive data and user’s intention has been solved by

TrustZone, but the current solutions like [24, 163] do not satisfy the following constraints:

(a) normal-world apps can reuse existing OS interfaces to leverage the TrustZone support,

27

Fig. 3.1.: User Input Interactions

(b) no app-specific logic in the secure world, and (c) minimize Trusted Computing Base

(TCB) while providing generic TEE support. In order to allow an app to protect user input

interaction with minimal changes, the developer should be able to use existing Android

components and APIs, and still be able to leverage TEE support. If an app is required to

replace Android components to integrate TEE support, it would result in a significant

change to the app.

Threat Model. The adversary model is shown in Figure 3.2. The user of the device is

trusted. The normal world that includes the apps and Android OS is untrusted. They may

attempt to steal the user’s secret data and spoof an unauthorized action on the user’s

behalf. The secure world that includes the Trusted Applications (TA) and TEE OS is

trusted. It will protect the user’s confidentiality and integrity when the normal world is

compromised. The server is assumed to be trusted after it is authorized by the user.

28

Fig. 3.2.: Input Interaction Threat Model

3.2 Broken Binding between Code and UI

Given the risks to user input interactions from a compromised OS, this dissertation

states the following problem: How to allow the normal-world apps to reuse existing APIs

to protect UI interaction for text input and action confirmation using ARM TrustZone?

Fig. 3.3.: Binding Between Code and UI

Reusing existing APIs can be achieved by moving the sensitive UI interaction into the

secure world, while still maintaining the UI’s functionality related to its corresponding

code in the normal-world app. Taking the example of Android dialog box for action

29

confirmation, using a dialog box in an app involves two parts: a UI component and a code

component. As shown in Figure 3.3 (path A), the OS provides a binding between the UI

and code to be triggered. Moving the sensitive UI interaction into the secure world breaks

the existing binding support provided by the OS, as shown in path B. To maintain the

same API interface, we should allow the developer to leverage TEE support while using

the existing dialog box component and should preserve the UI functionality of the dialog

box. The UI’s binding to its corresponding code in the app needs to be maintained. When

the dialog button is clicked in the secure world, the code for the dialog button in the

normal-world app should still be triggered.

3.3 Main Idea: Cross-OS Binding

The approach in this dissertation to achieve the required protection is to move the

sensitive UI interaction into the secure world and to maintain the binding between the UI

interaction and normal-world app code across OSes. This cross-OS binding allows the

apps to leverage the UI in TEE by using existing APIs. In normal cases, an app developer

requests a UI and provides the associated code to be triggered from the UI. Using the

proposed approach, the developer will instead request a secure version of the UI and

provide the code to be bound to this UI. To the developer, the way to request a secure UI is

the same as other UIs, but to the system, when the secure UI needs to be displayed, the

corresponding UI is displayed in the secure world. When the UI in the secure world

finishes collecting inputs from users, the bound code in the normal-world app is triggered.

This dissertation refers to this binding support as TruZ-UI. In order to have no app-specific

30

code in the secure world, the proposed design provides generic TAs for keyboard and

confirmation UIs.

In order to protect the user’s interaction in the secure world, the hardware input (touch

digitizer) and display (screen content) need to be protected. To protect the user’s

interaction when the device switches to the secure world, these peripherals should only be

accessible from the secure world. Users also need an indicator to identify whether they are

interacting with the normal world or secure world. The indicator should be exclusively

controlled by the secure world. The proposed design leverages the TrustZone Protection

Controller (TZPC) to allow the secure world to have exclusive control of I/O and the

indicator. When the device is in the secure world, the indicator (LED light) is turned on

and the secure UI is shown on the screen to accept input from the user without leaking

data to the normal world.

3.4 Related Work

Several existing works [162, 163, 168, 169, 179] protect user’s interactions by

leveraging TEE. All of them move the UI interaction into the secure world, and overcome

the broken binding between the UI and corresponding code by moving the code into the

secure world as well (binding is maintained within the secure world). These works require

the developer to provide the TA code to be executed, resulting in an app-specific TA.

VeriUI [165] protects the login web page by porting the WebKit engine and GUI library

into TrustZone. VeriUI is designed to protect the entire web page. However, TruZ-UI

targets the granularity of UI view elements that build the entire Activity. The existing

31

works require the developer to write TA code and change the app for the TA code

invocation. This changes how developers write normal world apps, preventing them from

leveraging TEE support by using existing Android components with minimal change to

their apps. This dissertation presents a transparent design that allows normal-world apps

to leverage TrustZone via existing OS APIs to protect user interaction without the need for

app-specific TA code inside the secure world.

3.5 Securing Text Input

This section describes how the user’s interaction for text input is protected by

seamlessly integrating with the secure-world keyboard UI using a cross-OS binding. As

described in Section 2.3, Android apps get user’s text inputs using a UI element called

EditText. When users interact with an EditText, the OS invokes a keyboard. The

OS sets up a binding between the app and the keyboard. The binding allows the keyboard

to send user’s typed characters to the app’s EditText.

To protect user’s interaction with the keyboard, the keyboard UI is moved into the

secure world and a binding is provided between the keyboard UI and app’s EditText

across OSes. Android allows developers to specify a keyboard type when using

EditText. To allow the developer to use the existing EditText component to

leverage the keyboard UI in the secure world, the design adds a special type called secure.

The effect of requesting a secure keyboard type is shown in Figure 3.4. The app’s secure

keyboard request is relayed via the modified Android framework service (InputMethod

ManagerService or IMMS) to a new proxy IME system app (shown as step À). The

32

OS sets up a binding between the proxy IME and the requesting app. This proxy IME app

communicates with a generic Keyboard Input TA (step Á), resulting in a secure keyboard

UI being displayed on the screen with the secure LED turned on. While the secure

keyboard is displayed, the normal world does not have access to the screen display or

input. In addition to the keyboard keys, the secure UI also displays a hostname (specified

with the secure EditText configuration) that represents the destination server for the

typed secret. The importance of the hostname is discussed in Section 3.8.

Fig. 3.4.: Seamless Keyboard Binding Across OS

The Keyboard Input TA communicates with the Keyboard UI (step Â) to get the user’s

input. Once the input capture has finished, the secret is saved in the secure-world memory,

which the normal world cannot access, and a reference (corresponding to the saved input)

is returned back to the proxy IME app (step Ã). The reference is a random string of the

same length as the user secret. The proxy IME app uses its binding with the app’s

EditText to return the reference (step Ä), made accessible via EditText’s standard

33

API getText() (normally used to get the text typed by the user). A visual feedback is

shown in the normal-world EditText by displaying a set of stars. The reference

returned from the secure world can support different formats for different scenarios such

as passwords, credit card numbers, etc. The design added 1114 LOC in Android

(including 634 LOC for a native bridge component to invoke the secure world) and 710

LOC in the TA. The following sections provide further details on the design on individual

components in Figure 3.4.

Configuring EditText. As shown in Section 2.3.1, an Android developer can declare an

EditText in XML with an inputType. To leverage Truz-UI, the developer will

specify the inputType as secure (as shown in Listing 3.1). When using a secure

type, the developer must also specify a hostname that indicates which server the secret is

associated with. Once the user types a secret in the secure world for the specified

hostname, the the secret is only sent to the corresponding server. This is further explained

in Section 3.8.

Listing 3.1: Normal vs Secure EditText

// Normal EditText

<EditText android:inputType="textPassword" />

// Secure EditText

<EditText android:inputType="secure"

android:allowTo="www.example.com" />

34

Modifications to InputMethodManager. The Android app sends a request for

keyboard display to the IMMS via the InputMethodManager. To accommodate the

new secure type for EditText, InputMethodManager was modified s.t. it can

inform IMMS whether the request was being sent on behalf of a secure or non-secure

EditText.

Modifications to IMMS. In order to explain the modifications made to IMMS, this

section first expands Figure 2.5 to show how the binding is provided to the IME app by

IMMS. As shown in Figure 3.5, when an Android application’s UI is initialized, the

application process informs the IMMS regarding a window having gained focus. The

IMMS creates a session with the InputMethodService [128] in the current IME app.

This provides the IME a binding of type InputConnection [104].

Fig. 3.5.: IMMS Providing Binding to IME

35

With the modification to InputMethodManager in place, when the user interacts

with a secure EditText, the IMMS will be informed of the EditText type. In order to

allow secure text input, the IMMS needs to interact with the proxy IME app. The IMMS is

aware of one IME at a time (default IME is the one selected via Settings). When IMMS

receives the secure request, the current IME known to IMMS is updated to the proxy IME

app name. This is followed by re-triggering the window focus gain function in the IMMS.

This forces a new session to be created with the proxy IME app, with it being provided a

binding to the current application, as shown in Figure 3.6. Once the user is done with

secure text input, the current IME in IMMS is switched back to the default IME which

allows it to continue providing text input to the app via the provided binding.

Fig. 3.6.: Switch to Proxy IME for Secure EditText

Proxy IME App. This section further explains how the proxy IME app provides a

reference for a user secret typed in the TEE to the EditText in an Android app. As

shown in Figure 3.7 (step À), the IMMS creates a session with the proxy IME app. The

36

IMMS does this by invoking bindInput() in the InputMethodService of the IME

app. This allows the proxy IME to get a binding of type InputConnection using the

function getCurrentInputConnection() in onBindInput().

Fig. 3.7.: Proxy IME Commiting Reference Obtained from Keyboard Input TA

To trigger the invocation of the keyboard input TA for secure text input, the design

uses the onWindowShown() function in the proxy IME’s InputMethodService.

onWindowShown() is called immediately before a IME window is shown to the user.

Since secure text input does not require any IME UI in the normal world, when

onWindowShown() is called in the proxy IME, a new thread is started in a separate

Java service, which invokes the keyboard input TA via a native TEE bridge (native

daemon process). The TA accepts user input, stores it in the TEE and returns a reference

(corresponding to the user secret) to the Java service. The reference is then sent to the

EditText in the application using the binding. The Keyboard Input TA will be further

explained in Section 3.9.

37

3.6 Securing Action Confirmation

This section describes how the user’s interaction to confirm an action via

AlertDialog and Activity is protected and attested by seamlessly integrating with

a confirmation UI in the secure world using cross-OS binding. As described in

Section 2.4, app developers can ask users to confirm an action by showing a confirmation

message and providing the code to be executed based on whether the user approves or

denies the message. The OS provides a binding between the confirmation UI and the code

provided by the app. Such user interactions face risk in case the normal-world OS is

compromised, as the OS can confirm a request on behalf of the user or change the

message confirmed before it is sent to the server. To allow the developer to leverage TEE

support for user’s confirmation while using existing components, cross-OS binding is

provided along the existing paths for AlertDialog and Activity components.

3.6.1 Action Confirmation using AlertDialog

As described in Section 2.4.1, an app developer requests a dialog using the show()

API by providing the message to be confirmed. The app gets back the result via Android

input event handling framework which triggers the onClick() callback for the dialog

button. Figure 3.8 shows the TruZ-UI design to allow secure confirmation UI integration

for apps. The cross-OS binding is setup between the confirmation UI interaction in TEE

and the onClick() callback in calling app. The design allows the developer to request a

secure confirmation UI via AlertDialog using the existing API by adding a secure

configuration. The secure confirmation UI request is sent by the modified AlertDialog

38

class and relayed via a TEEBridge service (step À). This causes the invocation of a

generic confirmation TA , which results in the switching of the screen to show the secure

confirmation UI. The normal-world OS cannot access the display or input at this stage.

Fig. 3.8.: AlertDialog Confirmation using TEE

The secure confirmation UI allows the user to approve a message and get it signed by

the secure world. As part of the secure configuration, the developer also specifies a

hostname, which reflects the server for which the message is being attested, and is

displayed in the confirmation UI along with the message. The hostname provides the user

a context of the requested confirmation. The hostname serves as a reference to lookup the

attestation key in the secure world. Each attestation key is bound with the hostname in the

TEE. The key is setup in the secure world when the user first logs in to the app (discussed

in Section 3.8).

39

Upon user’s confirmation (step Á), the message is attested (HMAC signed). The

attestation is generated using the key and displayed message, using a nonce to make it

non-replayable. In order to improve the user’s readability of the message, the developer is

allowed to add additional formatting in the message to highlight sensitive fields (e.g., a

destination account and amount in case of money transfer). On user’s approval, the

attestation is returned to the normal-world app. To ensure the confirmation attestation can

be returned to existing component, the result is returned via existing callback

(onClick()) for AlertDialog. To return the attestation to the dialog button code,

the cross-OS binding uses the event handling framework via an existing service (step Â)

in the system server process called InputManagerService. Using the API

injectInputEvent(), a modified MotionEvent [133] is sent carrying an

attestation (MotionEvent is extended to have an extra field called attestation). The

event triggers the app button’s onClick() callback (step Ã) where the attestation can be

retrieved.

Since the attestation obtained by the app does not contain any user secret, it can be

sent to the server using normal-world HTTP/SSL flow. The server can use the attestation

to verify the integrity of the request before taking action. The only difference is the

addition of the attestation argument in the request. Since the message approved by the

user using TruZ-UI consists of fixed and variable parts (for example, “transfer $500 to

John” contains “transfer .. to .. ” as fixed part and the arguments “$500” and “John” as

variable parts), the request will have to indicate the fixed and variable parts to allow the

server to regenerate the approved user message. By maintaining a strong mapping

between the request URI and fixed part of the message, the server can recalculate the

40

attestation based on arguments in the request, and verify it against the attestation in the

request to approve the requested action. The presented attestation scheme currently only

applies to user understandable message and cannot work for app-specific semantic like

GUID, which users cannot understand. The design added 820 LOC in Android and 680

LOC in the TA (the LOC count includes changes for Section 3.6.2). The design used the

native bridge mentioned in Section 3.5.

Configuring Secure Dialog Request. In case of dialog, configuring involves adding an

additional configuration to provide a common name (as shown in Line 5 in Listing 3.2).

Once the user has confirmed the action in TEE, the attestation will be returned to the

onClick() callback and can be accessed as shown in Line 12-13 in Listing 3.2.

Listing 3.2: Secure Dialog Request

1 // "this" refers to the containing Activity

2 AlertDialog.Builder builder

3 = new AlertDialog.Builder(this);

4 builder.setMessage("Confirm transfer of $50 to Bob ?")

5 .attestTo("www.example.com")

6 .setPositiveButton("OK",

7 new DialogInterface.OnClickListener() {

8 @Override

9 public void onClick(DialogInterface dialog,

10 int button)

11 {

41

12 AlertDialog dialog = (AlertDialog) d;

13 String attestation = dialog.getAttestation();

14 /* Handle User Approval */

15 }

16 });

17 AlertDialog alertDialog = builder.create();

18 alertDialog.show();

3.6.2 Action Confirmation using Activity

As described in Section 2.4.2, an app developer requests a confirmation Activity

using the startActivityForResult() API by providing the message to be

confirmed in an Intent. The result is received back via the Intent IPC framework. This

triggers the onActivityResult() callback. Figure 3.9 shows the TruZ-UI design to

allow secure confirmation UI integration when apps use Activity. The cross-OS

binding is setup between the confirmation UI interaction in TEE and

onActivityResult() callback in calling app. The design allows the developer to

request a secure confirmation UI via Activity using the existing API by adding a

secure configuration.

To request a secure confirmation, the developer can configure the Intent as secure

while using the existing Activity API. The request is relayed by a proxy Activity

(step À), which is provided as part of a system app. The proxy Activity doesn’t have a

UI; it instead allows transparency as the requesting app can use the existing Activity API.

42

Fig. 3.9.: Activity Confirmation using TEE

The proxy forwards the request to the TEEBridge service, which invokes a generic

confirmation TA . Once the user confirms the action, the message is attested (step Á). The

attestation is returned to the caller app via the ProxyActivity (step Â), which returns

the result to the caller by wrapping the attestation in an Intent. This triggers the

onActivityResult() callback where the attestation can be retrieved.

Configuring Secure Activity Request. In case of activity, configuring involves using a

different action in the Intent. The action will correspond to the

TEEProxyActivity. Configuration will also involve setting the message to be attested

and the common name as part of the Intent (Lines 2-5 in Listing 3.3). The design

assumes that the TEEProxyActivity will be provided by vendors as part of a system

app. The app developer can target an action (like the SECURE CONFIRM ACTION shown

in Listing 3.3) that can be agreed upon by vendors to indicate the proxy Activity.

43

Vendors can ensure that the action is only received by TEEProxyActivity from their

system app.

Listing 3.3: Secure Activity Request

1 Intent intent

2 = new Intent("com.example.SECURE CONFIRM ACTION");

3 intent.putExtra("msg",

4 "Confirm transfer of $50 to Bob ?");

5 intent.putExtra("attestTo", "www.example.com");

6 startActivityForResult(intent, secure_request);

7

8 protected void onActivityResult(int request_code,

9 int response_code, Intent data) {

10 if(request_code == secure_request &&

11 response_code == RESULT_OK) {

12 String attestation

13 = data.getStringExtra("attestation");

14 }

15 }

3.6.3 Attestation Using Android Keystore

In addition to the existing work discussed in Section 3.4, app developers today can use

Android’s keystore support to have a message attested (signed) using a private key stored

44

inside the secure-world and have a policy that allows use of the key only when user

authenticates with a fingerprint [62]. Since fingerprint hardware can only be accessed in

the secure world [108], this allows the developer to get a message signed with a TEE

protected key only when user authenticates in the secure world. This design assumes that

the key material is generated before the normal-world OS is compromised. For an app

relying on keystore and fingerprint, three problems can occur: (a) user cannot see what

message is being confirmed and signed; normal world OS could alter the msg to be

signed, (b) normal-world OS can fool the app and its server into thinking that the private

key is hardware backed when generated, while keeping the key pair in the normal-world

(c) when app requests user authentication for use of the private key, the normal-world OS

could provide positive response to the app without asking the user.

In order to not face the above issues, the app’s server needs a guarantee that the

message is signed using a key visible only to the secure-world, and the user needs a

guarantee that message is signed only if the user approves it in the secure world, with

normal-world not having any way to alter the message once it is approved. The design

discussed in this dissertation provides these features.

3.7 User Involved Access Control

The OS depends on the user’s action to decide how to provide confidentiality and

integrity protection for user intended activities. For instance, when a user types a

password, he/she depends on the OS (based on the app picked) to provide confidentiality,

i.e., the password should go to the right app and its corresponding server. When a user

45

confirms an action in an app, he/she expects the OS to maintain the integrity of the action,

i.e., the action that the user confirmed is sent to the server, without being modified. The

OS provides confidentiality and integrity guarantees by enforcing access control based on

a policy. Part of this policy is decided by the OS, but the other half comes from the user

and is derived from the user action. When the user types a password, the OS depends on

the user’s app selection to decide which app gets the password. When a user confirms an

action for a server, the OS can only guarantee that the context of the action will not be

modified after the user’s approval; the main job of the user is to proofread and ensure that

the context of the action indeed matches the user’s intention.

Fig. 3.10.: Truz-UI Context Verification by User

In Truz-UI’s threat model, the normal-world OS fails to provide such security

guarantees for users when it is compromised. The only solution for users to protect their

security sensitive activities is to convey their intentions to TrustZone to leverage its

confidentiality and integrity guarantees. When the user needs to get secure text input or

46

secure confirmation using Truz-UI, the user needs to verify two things (a) the secure

LED is on, and (b) the common name of the website. This is shown in Figure 3.10. The

effectiveness of using a secure LED and a common name has been measured via user

evaluation in a related work [180].

3.8 Sending TEE Protected Data to Server

When an app wants to send TEE-protected data corresponding to reference(s) to the

server, it will use the existing HTTP/SSL API. To use the secure world to construct an

encrypted packet containing the user’s secrets, one will need to integrate TEE with HTTP

and SSL. This part is not solved in this dissertation, and instead is covered in a related

work called TruZ-HTTP and Split-SSL [180]. Using this related work, the reference

acts as glue among application, HTTP, and SSL layers. The normal world cannot see the

user secret(s), and will get an encrypted packet constructed in the secure world. The

packet will be sent to the server via the normal-world TCP/IP stack. This is shown in

Figure 3.11.

As stated in Section 3.5, when getting user input in the TEE, the secure UI also

displays a hostname (specified with the secure EditText configuration). By typing the

secret for that hostname, the user acknowledges that the secret can only be sent to the

server with the displayed hostname. The SSL TA enforces the policy of sending the

secret only to the corresponding server. Section 3.6 states that when the user confirms an

action in the secure world, the message is attested using an attestation key. The key is

setup in the secure world when the user first logs in to the app. This is done by the SSL

47

Fig. 3.11.: Connection Between Truz-UI and Truz-HTTP/Split-SSL Works

TA. The confirmation TA uses the displayed hostname as a reference to lookup the

attestation key in the secure world. It can then use the key in the secure world to attest the

message confirmed by the user.

3.9 Hardware Implementation

All the commercial Android phones with the TrustZone feature have TrustZone locked

down by the manufacturers. In order to test Truz-UI, a TrustZone -enabled prototype

platform was built that could run Android OS (version 7.0) in the normal world and run

OP-TEE OS [85] (version 2.1.0) in the secure world. The prototype was built using the

HiKey development board. The prototype uses a TFT LCD panel as the screen. The

screen uses the HDMI interface for display and the USB interface for touch control.

Hardware Setup Overview. The hardware implementation provides isolation for the

user’s input and display. Even though both worlds share the same screen, when the secure

48

world controls it, the normal world cannot access the I/O of the screen. The isolation is

achieved at the circuit level. As shown in Figure 3.12, the I/O of the screen is connected to

a multiplexer/demultiplexer. The multiplexer takes the HDMI signal from both the worlds

and outputs one of the signals to the screen. The demultiplexer takes the touch input from

the screen and gives it to one of the worlds. A switch is used to control the

multiplexer/demultiplexer. Each world has separate I/O ports that connect to

multiplexer/demultiplexer. The control of the switch is accessible to secure-world I/O

ports only. To indicate to users which world they are interacting with, the secure world

will turn on a LED when the device is in the secure world. The TrustZone Protection

Controller (TZPC) is configured to allow the secure world to have exclusive control of the

switch, LED indicator, and secure-world I/O ports.

Fig. 3.12.: Hardware Setup Overview for Truz-UI

Hardware Setup Wiring. Figure 3.13 shows the wiring of hardware setup used for

testing Truz-UI. It follows the overview diagram in Figure 3.12. The touch screen is

connected to an input switch (input demultiplexer) and a HDMI display switch (output

multiplexer). The normal and secure world run on the Hikey board. The HDMI and USB

49

connected to the Hikey provide display output and input for the normal world. Due to lack

of vendor driver support, the secure world cannot directly provide input/output for the

touch screen. Due to this reason, the secure world relies on a Raspberry Pi board

(interfaced via UART). The UART is only accessible to the secure world using TZPC. The

HDMI and USB connected to the Pi board provide the display output and input for the

secure world. The UIs for the keyboard input TA and confirmation TA are provided by

Python code running on the Pi board. The TAs running in the secure world get results via

UART. The input switch and the HDMI display switch are controlled by the Pi board,

which in turn is controlled by secure world. There is an LED on each switch which

indicates which world is in control.

Fig. 3.13.: Hardware Test Setup for Truz-UI

50

Keyboard Input and Confirmation TA. In order to allow the TA to interact with the Pi

board, the TA needs to be able to access the UART driver. The OP-TEE OS version 2.1.0

comes with the PL011 UART driver. To provide access, the prototype modified the

userspace library libutee and the OP-TEE OS kernel (adding 150 LOC) to add new

system call so that the TA could utilize the driver.

Screen Transition. Since the normal world and secure world share the same screen,

when secure text input or confirmation is needed, the secure world takes control of the

screen and shows the secure UI. An example of this is shown in Figure 3.14 for the case of

secure text input in a banking app. An additional secure LED was added in the wiring of

Figure 3.13 to take the picture.

Fig. 3.14.: Screen Transition for Truz-UI

51

3.10 Security Analysis

This section presents the security analysis of TruZ-UI. The design can enforce user’s

intentions in the presence of either a malicious app or a malicious OS. The analysis uses

the stronger attack model and considers the malicious OS as the attacker. The analysis

assumes that the TrustZone hardware platform is trusted and the secure boot process has

initialized the integrity-verified OP-TEE OS. Hardware attacks, crypto attacks, side

channel attacks, and DOS attacks are considered out of scope.

TruZ-UI Secure Text Input Analysis. As discussed in Section 3.5, normal-world apps

can leverage the TruZ-UI to capture user’s secrets (text input) in the secure world. The

adversary’s goals include monitoring the secret typed, accessing the content displayed,

and reading the secret saved in the secure world.

As mentioned in the hardware setup in Section 3.9, the secure world shows the secure

UI and gets the screen input through the multiplexer/demultiplexer. The switch controls

the USB demultiplexer and HDMI multiplexer. The switch is only controlled by the

secure-world I/O ports. The TrustZone Protection Controller (TZPC) was configured to

allow the secure world to have exclusive control over the switch and secure-world I/O

ports. The security analysis of TruZ-UI secure text input involves three properties. The

first security property is that the secret typed in the secure world cannot be monitored by

the normal-world OS. Since the normal world can neither switch the screen USB input nor

read the screen input via the secure-world I/O port, the normal world cannot monitor the

user’s input in the secure world. This prevents keylogging attacks. The second property is

that the content displayed from the secure world is not accessible to the normal-world OS.

52

The normal world can neither switch HDMI output of the screen nor observe the screen

content over the secure-world I/O port, preventing it from observing content displayed in

the secure world. This helps prevent screen capture attacks. The third security property is

that the secret typed in the secure world is never disclosed to the normal world. When a

normal-world app uses a secure EditText, the secret typed in the secure world is saved

in the secure-world memory. Only the reference of the secret is returned to the normal

world.

TruZ-UI Attestation Analysis. As discussed in Section 3.6, normal-world apps can

request a secure confirmation UI that provides an attestation for user’s approved message.

The adversary’s goals include forging the approval of the message on behalf of the user

and forging or replaying the attestation sent to the server.

The security analysis involves three properties. The first security property is that the

attestation generated is always tied to the message displayed in the secure world. The

attestation is computed based on the message that the user approves in the secure world

when the content matches with the user’s intention. The second security property is that

the normal world cannot forge user’s approval of the message that is displayed in the

secure world by performing any type of key injection. This is because the normal world

cannot access the touch input when the device is in the secure mode (explained in

section 3.10). The message is attested in the secure world only when the user approves it.

The third security property is that the attestation generated in the secure world cannot be

forged by the normal-world OS. The attestation key is generated inside the secure world

and only saved in the secure-world memory. The normal world cannot forge an attestation

53

without the keys. Furthermore, a nonce is appended when computing the attestation to

avoid replayability.

3.11 Evaluation

In this section, Truz-UI’s design is evaluated from three aspects, namely,

effectiveness, ease of adoption, and performance. The design was tested on a variety of

use cases using real-world applications. Ease of adoption was measured for the

developers. To evaluate complete use cases, the evaluation utilized the existing work

Truz-HTTP and Split-SSL [180] when data (corresponding to reference) stored in

the secure world by Truz-UI needed to be sent to a server.

3.11.1 Effectiveness

To demonstrate the effectiveness, new security features were added to open-source

applications by making changes on the client side and server side (if needed). Seven

open-source applications were modified, including Elgg [46] and Drupal [44]. To measure

the effectiveness in the case of closed-source apps, the OS was modified only for

evaluation purpose.

Sensitive file upload. This case study demonstrated how normal-world apps can be

enabled to upload a TEE-protected file (e.g., a tax file, a medical record that is only

needed by the server, not the client) to the authorized server without adding any

app-specific code in the secure world. In contrast, DroidVault [163] requires the

54

app-specific code in the secure world. The open-source app called Seafile was used to

act as the tax e-file server. The Seafile client allows a user to enter a secret (e.g., tax

account) via EditTextand save it in a file. The app can then upload the tax file to its

server using HTTP/SSL. The Seafile app was modified to allow the user to enter the

secret file content using a secure EditText. The user types the file content using the

TruZ-UI keyboard, and the file content is saved in the secure world. The normal world

gets a reference, which is saved in a file. When the user asks for the file to be uploaded to

the server, the app issues an HTTP request using the normal-world file content (containing

the reference). TruZ-HTTP and Split-SSL are utilized to allow the file to be uploaded

successfully to the Seafile server.

TrustZone-enabled Android authenticator. To demonstrate that the design can

support the Account Manager framework (used to manage Android passwords), an

authenticator app for Elgg was written. When a third-party app needs to login to the Elgg

server, it will ask the Account Manager, which invokes the authenticator app’s login

Activity. This Activity uses a secure EditTextto trigger the TruZ-UI

keyboard in the secure world. Once the user types the password, a reference is given back

to the Elgg authenticator. The Elgg authenticator then sends the reference to the server

using TruZ-HTTP and Split-SSL. The password reference is saved by the Account

Manager, which is not even aware that what it stores is not the actual password. This

allows Account Manager to manage the authentication requests for third-party apps

without storing the actual passwords in the normal world. The design requires no change

to the Account Manager framework.

55

Attested post. Drupal was installed on an Ubuntu server and the handling of the post

content type was modified to verify attestation. The Drupal Editor app [45] was used as

a client. The app was modified to have an attested post functionality, which allows the

user to confirm the post in the secure world before it is sent to the server. The proxy

Activity (refer Section 3.6.2) was utilized for this test to integrate with the confirmation

TA. The app sends the secure world attestation along with the post message to the server.

The Drupal server verifies the attestation before it publishes the post.

Protecting secrets. Apps written today need to protect different types of user’s secrets.

TruZ-UI allows developers to protect any text-based secret that can be typed in apps.

This was evaluated by using seven different open-source apps, including Friendica, Elgg,

Drupal, MustardMod (with GNUSocial), Kandroid (with Kanboard), Redmine and

Seafile. Minimal changes were made to the apps corresponding to the secrets that needed

protection. This involved modifying the layout file containing the

EditTextcorresponding to those secrets and configuring them as secure. The types of

secrets protected in apps during the tests included login credentials and payment

information.

3.11.2 Ease of Adoption

The ease of adoption was evaluated by measuring how much effort developers need to

make to add TrustZone support to their apps. The evaluation was conducted using both

open and closed-source apps. For open-source, both the client and server code was

downloaded from public Github repositories [47]. For closed-source, apps were

56

downloaded from Google Play. To ensure their diversity, apps were downloaded from

different categories, including shopping, traveling, productivity, finance, medical,

business, food, etc.

Seven open-source apps were modified, by either adding new features to them (e.g.,

attestation) or leveraging TrustZone to protect their existing features (e.g., login). The

time spent on the modification and the number of lines of code (LOC) modified for each

app was recorded. Table 3.1 shows the result. 1 LOC for TruZ-HTTP, 2 LOC for secure

EditText, 4 LOC for secure confirmation. As shown in Table 3.1, for apps to protect

their login credentials, only 3 lines of code are modified on the client side and the time

spent on making the changes was within an hour. For server-side changes, 4 lines of code

were needed to extract the secret data from the HTTP request. In case of attestation, the

attestation logic varied depending on what to attest. The overall change on the server side

was less than 20 lines of code.

Table 3.1: Evaluation Results for Open-Source Apps

Test Case Client Server Time Spent
Drupal Attested Post 4 LOC 20 LOC 1 hour
Elgg Attested Payment 4 LOC 12 LOC 30 mins
Elgg Authenticator 3 LOC 4 LOC 30 mins
Drupal Login 3 LOC 4 LOC 30 mins
GNUSocial Login 3 LOC 4 LOC 40 mins
Kandroid Login 3 LOC 4 LOC 30 mins
Redmine Login 3 LOC 4 LOC 30 mins
Owncloud Login 3 LOC 4 LOC 40 mins
Seafile Upload 3 LOC 4 LOC 50 mins

To evaluate apps from the market, closed-source apps were enabled to leverage

TrustZone. To protect users’ secret in the secure world, the apps were modified to protect

57

user’s sensitive data, including passwords, credit card numbers, and files containing a

secret. The closed-source apps were repackaged by configuring some selected

EditTextin their layout files, so when sensitive data needs to be provided by users, the

TruZ-UI keyboard is invoked and the data are typed inside the secure world. To protect

users’ confirmation in the secure world, the confirmation UI name (Activity or

Activity containing AlertDialog) and the corresponding message was hardcoded

in a configuration file. The system used the file to get a message (corresponding to a

confirmation UI request) attested by the user in the secure world. To verify on the server

side, a proxy server was setup to verify the attestation. The secure world shares the SSL

keys with the proxy server (using existing work [180]), so it can intercept all the SSL

traffic. Configruration files were created to inform HTTP and SSL layers (based on [180])

whether the data to be sent to the server contains the TEE-protected secret, attestation

message or attestation keys. All configuration files and the proxy server are only for

demonstration purpose. If the apps could be modified, such files are not needed.

31 apps were collected, including Chase, Github, Southwest Airline, Piazza, Priceline,

Box, Poshmark, Listonic, Dropbox, MediaFire, Applebee’s, Discover, Secure Cloud

Storage, etc. 15 apps were used for TEE-protected login, 5 for TEE-protected payment, 2

for TEE-protected file upload, and 9 for attestation. The results are shown in Table 3.2.

All the experiments were successful, except two cases in the login category. The reason

for the failures is not representative; they calculate HMAC of the HTTP request inside the

payload. If the source code was available for these failed cases, they could be made to

work.

58

Table 3.2: Evaluation Result for Closed-Source Apps

Test Case Login Payment Upload Attestation
Success/Total 13/15 5/5 2/2 9/9

3.11.3 Performance

Experiments were designed to measure the round-trip time for code to secure UI

invocation and back. The overhead (average over 20 trials) of the implementation adds

over the normal case by not counting the drawing time or the user’s input time. The

TruZ-UI keyboard integration adds 123 ms overhead. The confirmation UI integration

adds 53 ms overhead. In TruZ-UI keyboard integration, the overhead is caused by the

interaction between the proxy IME app and the keyboard input TA. In the confirmation UI

integration, the overhead is caused by the interaction between the TEE bridge service and

the confirmation TA. Overall, the delay caused by the overhead for the TruZ-UI is barely

noticeable when users interact with TruZ-UI.

3.12 Publication

The Truz-UI design has been published in 2018 as part of a joint work in the paper

titled TruZ-Droid: Integrating TrustZone with Mobile Operating System [181]. The

dissertation author was the second author in this paper publication.

59

4. TRUZ-CALL: SECURE VOICE INTERACTION FOR VOIP

CALLING

4.1 Problem Overview

Mobile phones are one of the most common devices used by people today, with the

basic function of calling another person. In recent years, VoIP apps such as Signal [25]

and Whatsapp [14] have become popular ways for making a call. Unfortunately the

mobile OS platforms (like Android) on which these apps run have made the use of VoIP

apps more risky in terms of user privacy. The problem is also compounded by the fact that

various actors are trying to compromise Android OS including hacking groups [55] and

nation states [82]. The ever present risk of mobile OS compromise can limit one of the

important rights in human society i.e. freedom of speech. In context of mobile phones,

this translates to being able to call anyone and talk on any subject without fear of someone

else listening on the call. Today different types of users need to have a secure means of

calling, including activists, journalists, government employees etc.

A high level view of how a VoIP call works in shown in Figure 4.1. Once the VoIP call

is established, a caller/callee provides audio input and receives audio output via the

device’s audio peripherals. A compromised OS can listen to user’s conversation during a

VoIP call. TrustZone can be leveraged to protect user’s voice interaction because of the

hardware level isolation it offers.

60

Fig. 4.1.: VoIP Call Overview

In order to protect user’s voice interaction during a call, a VoIP app show be able to

leverage TrustZone to establish a end-to-end encrypted VoIP call. This dissertation states

the following problem: How can we allow a VoIP app to transparently leverage ARM

TrustZone to protect users conversation from an untrusted OS during a VoIP call ? The

design should be transparent to VoIP apps. It should allow the VoIP app to use existing OS

APIs used and VoIP protocols. The design should require no change to the VoIP

infrastructure.

VoIP apps contain several stages that work in parallel as a pipeline, each stage feeding

data to the next (Figure 4.2 (left)). The app uses OS APIs to fetch audio, processes the

audio, and sends out packets over the network (reverse flow for incoming packets). The

app uses a VoIP protocol like SRTP to encrypt and calculate HMAC for the audio payload

(in RTP packets), and send the encrypted payload to the callee device. A transparent

design involves preserving the relative structure of the VoIP app software stack, as it

61

affects the way developers write VoIP apps. This dissertation focuses on the essential

VoIP app stages of audio I/O, RTP packet construction / parsing, SRTP, and network I/O.

Fig. 4.2.: VoIP App Stages and Secure VoIP Requirement

Since the design would leverage TrustZone, it should minimize the TCB in the secure

world. This includes providing generic TA support so that app-specific TA code is not

required in the secure world. During the TEE protected VoIP call, the audio peripherals

should be controlled by the secure world and the user’s conversation audio should be

protected from the normal-world OS (Figure 4.2 (right)).

A challenge that is encountered in designing a system like Truz-Call is latency.

Since VoIP is a real time system, if the normal world stack invokes TEE at one or more

points, it will add computation time to the VoIP call. Any additional time will add latency

and will thus affect voice quality. The design should reduce end-to-end latency overhead.

62

Another challenge is the hardware setup to do prototype evaluation. In TEE research,

interfacing hardware peripherals like mic and speaker with the TEE OS on a development

board can be challenging for non-hardware experts with limited resources. In order to

evaluate the design, a hardware setup needs to be used that allows easier prototyping.

Fig. 4.3.: Voice Interaction Threat Model

Threat Model and Assumptions. The normal world (including Android OS and the

VoIP app) is not trusted. The secure world, including the TEE OS and trusted applications

(TA), is trusted. The user using the device is trusted. The device hardware, including the

audio peripherals (mic and speaker), is trusted. The VoIP network is not trusted, although

Truz-Call does not try to protect against network based attacks. Truz-Call is

targeted for users who want to securely call friends, family or someone they know

personally or have met before. It does not cover key exchange done by VoIP apps (at the

beginning of the call), which is why it cannot be used to call an unknown person. To use

the design discussed in this dissertation, two users need to exchange a secret phrase using

a secure side channel (this will be used to derive the key). Truz-Call can be extended

63

to add key exchange using the TEE by splitting protocols like DTLS [19]. It is also

assumed that the user wants to use Truz-Call for a one-to-one call, and not for

conference calling.

4.2 Factors Influencing TEE Integration Design

Fig. 4.4.: TEE Integration Design Factors

When designing a secure solution on mobile platform by integrating TEE into a

normal world stack (Figure 4.4 (right)), three factors need to be balanced (Figure 4.4

(left)). The solution needs to provide security, i.e. preventing the compromised

normal-world OS from accessing sensitive data. This is achieved using references.

Alongside references, there will data associated with the reference in secure-world

memory. The design (structure) of the reference impacts transparency in the normal world

stack, as stages of the normal-world stack operate on the reference data. TEE is integrated

64

and invoked at multiple stages in the normal-world stack. The number of normal-world

TEE integration points and the way data is managed in the TEE impacts overall latency.

4.3 Related Work

The idea of having a secure VoIP call on an untrusted OS has been discussed before in

the work ”A Hardware-Assisted Proof-of-Concept for Secure VoIP Clients on Untrusted

Operating Systems” [156]. This existing work has been done on a Xilinx board, which

includes a PS section and PL section (FPGA). The PS and PL sections are analogous to

normal and secure world respectively. The work is intended for devices like VoIP phones

(handset). They used the Linphone app [5] for testing and modified it such that for

incoming SRTP packet, the header information and payload is forwarded to secure

hardware, and for outgoing packet the SRTP header and encrypted payload are sent from

secure hardware to the normal world. There are several differences between this existing

work and Truz-Call: (1) Commercial mobile phones don’t rely on FPGA; instead they

ship with ARM boards that have TrustZone. The existing work does not address any

challenges related to leveraging TrustZone for secure VoIP. (2) Xillinux OS does not

reflect mainstream mobile OS like Android. The existing work does not address

leveraging TrustZone in mobile OS audio stacks to allow existing Audio APIs to be used.

(3) A VoIP app has a flow for handling audio packets. In the existing work the RTP layer

has been eliminated from the normal-world app flow as the design forwards

header/payload with secure hardware at the SRTP layer. This breaks the relative structure

of the software stack used to implement a VoIP app. The design does not utilize Audio

65

APIs in the normal world to record/play audio data which changes the way developers

write VoIP apps. Moving header generation/parsing functionality into the secure world

increases the TCB as only part of the SRTP layer remains in the normal world. TruzCall’s

goal is to maintain the relative structure of the essential parts of the software stack for a

VoIP app and avoid moving unnecessary components into the TEE. In summary, the

existing work [156] is not transparent (breaks app stack structure and makes the app no

longer use OS audio APIs) and has a large TCB.

DRM can provide secure audio/video playback using TEE, but the reference design

and TEE data management used in DRM do not apply to VoIP. TrustCall [143] is a

commerical product that leverages TEE for secure calling [40]. Based on the information

available online, it is not designed for transparency to Android VoIP apps. It only works

for the TrustCall app [144]. It also relies on TrustCall specific TA being present inside the

TEE [31, 32]. Truz-Call is designed to be transparent to any VoIP app that wants to

use existing OS APIs for a SIP/SRTP based call. Truz-Call provides generic TA

support, avoiding having app-specific TA code inside the TEE.

4.4 Secure VoIP Calling Problem Scope

In order to design Truz-Call, the problem scope needs to be narrowed down. The

problems scope pertains to the type of protocol support to be provided and whether all

VoIP app stages should be supported.

66

4.4.1 Protocol Support

VoIP apps can be written to conduct a call in plain text (using protocol combination

like SIP + RTP) or can choose to use end-to-end encryption to protect the user’s

conversation. Common protocols used by VoIP software for secure calling using

end-to-end encryption can be found at [174]. From the data available for protocols used

by apps, a common protocol for VoIP with open source implementation is SRTP [10]

using SIP [6] for call initiation. Popular apps like WhatsApp rely on SRTP [149]. Instead

of providing TEE support to protect calls for all VoIP apps, this dissertation focuses on the

problem scope of providing TEE support for apps that already provide end-to-end

encryption (using SIP and SRTP), but face a privacy risk due to a compromised OS.

Section 2.5 provides more information on how VoIP apps setup a call using SIP and

SRTP.

4.4.2 VoIP App Computation Stages

For a VoIP app using SIP and SRTP, audio processing is conducted in several stages

as shown in Figure 4.5. The stages comprise audio I/O, audio computation (like

resampling, compression), RTP packet construction / parsing, SRTP, and network I/O.

One of the stages in Figure 4.5 is marked as computation. To improve audio quality

and reduce bandwidth requirements, a VoIP app applies several types of additional

computation on the audio data. For audio data read from the mic, computations applied

can include read resampling (downsampling), volume adjustment, equalization and

67

Fig. 4.5.: VoIP App Stages

compression. Before playing received audio, applied computations can include

decompression, volume adjustment, equalization, and upsampling.

There is a performance penalty involved in supporting the additional computation

stages. End-to-end latency increases with every stage that uses TEE (due to invocation

time). Supporting the additional computation stages will add performance overhead. It

will also adds to the TCB in the secure world. For a design using references for audio

data, the additional audio computations can tamper with the reference data. For the

problem scope of Truz-Call, the additional computation stages are disabled. The

design focuses on the essential stages of audio I/O, RTP packet construction / parsing,

SRTP, and network I/O. The design sacrifices audio quality for security.

68

4.5 Main Idea

Figure 4.6 shows the main idea of Truz-Call. The various stages in a VoIP stack

work in parallel as a pipeline, each stage feeding data to the next. The audio pipeline in

the VoIP app consists of some essential stages. To allow the VoIP pipeline to maintain its

existing flow while keeping user’s conversation audio in the TEE, the design invokes TEE

at the stages for audio API usage and SRTP. This allows the use of the existing relative

structure of the software stack.

Fig. 4.6.: Truz-Call Design Overview

At the beginning of the call, TEE takes control of the audio peripherals. This can be

done using TrustZone hardware features and has been done in other works like

SeCloak [161]. In order for the TEE invocation at several stages of the VoIP stack to work

together, the design uses a reference design pattern. When the VoIP app asks for audio

using existing APIs, the TEE invocation provides it a reference to the real audio data

(saved in TEE) via the existing normal-world OS audio APIs. The app then proceeds with

69

preparing the RTP packet. When the flow reaches the SRTP layer and it needs to encrypt

the data in the RTP payload (which is a reference). The design invokes the TEE and

passes the audio data reference. The TEE encrypts the data corresponding to the reference

and returns the encrypted payload and HMAC to the SRTP layer to allow the VoIP app flow

to continue. This way only essential cryptography operations for SRTP are moved into the

TEE. The reverse flow happens for packets received by the device for playback.

The Truz-Call design has been tested on the open-source VoIP app Linphone [5].

It should be emphasized that the changes made to the Linphone app are within the various

libraries used by Linphone. The app is composed of several modules, including libraries

for SRTP, RTP [88], SIP [68] and audio I/O [77]. A different VoIP app using the same

libraries should be able to use Truz-Call ’s design. The changes made in the audio

framework would be applicable to any VoIP app.

Reference Design Constraints. The OS Audio API expects an audio payload. The

follow up stages of RTP and SRTP also operate on audio. Given the design returns

references from the TEE, the normal-world OS should not able to deduce the plain text

audio from the reference. The normal-world OS can be allowed to know length of the

audio.

TEE Data Management Constraints. A VoIP call is a two-way call, i.e. it involves

record and playback. The two way flow of audio must happen in parallel. Any

dependency between record and playback will add latency. The design should reduce the

70

number of operations in the TEE to reduce latency. Also, the design should reduce the

data size passed into the TEE to reduce latency.

Record and Playback Behavior. RTP protocol in the normal-world app uses

packetization feature to send data. The TEE data management should be able to

accommodate this behavior. Also the RTP protocol uses jitter handling feature to playback

data. The TEE data management should be able to accommodate this behavior.

4.6 TEE Invocation and Data Encoding

Fig. 4.7.: Android Audio Architecture

This section discusses how TEE is leveraged by various stages of the normal-world

VoIP audio pipeline. It also discusses what encoding is used by the TEE to convey the

audio data to the normal-world pipeline. Figure 4.7 shows the architecture of Android’s

audio stack [66]. An Android app can use various Java APIs for Audio I/O, all of which

use the same underlying native framework. This communicates with the underlying

71

AudioFlinger service (Android’s sound server [67]). In order to protect the user’s

conversation during a VoIP call, TEE needs to be leveraged to provide the VoIP app the

user’s audio without ever releasing the plain text audio from the secure world. The user’s

audio can only enter the normal world in an encoded form. The question becomes at

which layer in the normal-world stack should TEE be invoked for audio. In Figure 4.7,

Audioflinger (3) is responsible for resampling [90] and mixing audio streams [67], as

well as applying effects. If TEE is used at this layer, we would have to make sure that

there is a path that doesn’t alter the data obtained by or to be given to the TEE, in order not

to break the audio encoding. Using TEE at (4) or (5) will incur the same issue as data will

pass through the AudioFlinger. Layer (1) provides the app with several APIs to read/write

audio. To allow the VoIP app developer to use any API for Audio I/O, the design decision

was to use TEE at layer (2).

4.6.1 Audio Data Encoding

Once the TEE invocation point for the audio framework has been identified, we have

to decide an encoding to provide audio data to the normal world. The data provided to the

native audio framework can be encrypted by the TEE. In this case, the cryptographic

operations done in the app’s SRTP layer will become redundant; the audio data will be

encrypted twice. It will also add latency to the VoIP flow because of the additional time

spent encrypting the audio data again. One way to handle this design option would be to

disable the operations done in the normal world SRTP layer, but this would disable an

72

essential stage of the app flow. The goal of Truz-Call is to preserve the relative

structure of the essential layers in the VoIP app, including the SRTP layer.

In order to allow the app to still use the SRTP library for encryption and HMAC, the

design does not provide encrypted data to the native audio framework. When the app

requests audio data, the native audio framework gets a reference for the audio. The

reference is a string with the same length as the requested audio data. The RTP layer

prepares a packet containing audio reference(s) as the payload. When the SRTP layer

needs to encrypt the packet, it invokes the TEE which encrypts the audio data

corresponding to the audio reference(s) in the RTP payload and calculates the HMAC for

the RTP packet. Once the TEE returns the result, the SRTP flow can continue to send the

packet out. On the receiving device the reverse will happen. The SRTP library will invoke

the TEE to get an audio reference corresponding to the RTP encrypted payload, with the

decrypted audio staying in the TEE. When the native audio framework needs to play the

audio, the reference is given to the TEE which plays the corresponding audio. Figure 4.8

shows the TEE invocation points (the RTP layer is omitted).

4.6.2 Independent Audio Pipeline Stages

Given two types of TEE invocations (by the native audio framework and by the SRTP

library), Truz-Call needs to make sure that the TA logic and corresponding data for

these invocations is handled in a way such that there is no bottleneck created in the

normal-world audio pipeline. To handle the two types of TEE invocations, the design

needs to allow sharing of data via a common memory space between the corresponding

73

Fig. 4.8.: TEE Invocation by Audio Framework and SRTP

TA logic. The plain text audio in TEE must be accessible to the cryptographic logic when

SRTP library provides it a reference and conversely the audio data decrypted must be

accessible to the TEE audio playback logic when it is provided with a reference by the

native audio framework. When a TA is invoked, it can access three types of memory

including stack, heap and shared memory. Only data in heap and shared memory can

retain its value across multiple TEE invocations. TEE provides two types of shared

memory, namely unsecure shared memory (used by normal world to pass arguments) and

secure shared memory (not visible to normal world, but visible to TEE components). The

two candidates to keep plain text audio in common memory are heap and secure shared

memory. Heap cannot be used for this design because our design constraint demands

reduced latency. In order to use heap as a common memory, the TEE logic corresponding

to different normal-world stages will need to belong to the same TA because the TEE OS

74

provides isolated heaps for different TAs. This would require multiple normal-world

pipeline stages to invoke the same TA, which would require the TA to be configured with

TA FLAG MULTI SESSION [52]. This would make the TA invocations serialized i.e.

different normal-world stages won’t be able to call the TA simultaneously (the call from

one stage will have to wait for the call from the other stage to finish). This would create a

performance bottleneck and add latency. Therefore the design uses secure shared memory

to provide common memory for plain text audio in the TEE. OP-TEE provides this feature

via secure data path (SDP) [51]. It allows a secure pool of memory to be allocated in the

TEE with normal world having a reference to this memory. The SDP reference is made

available to the TEE bridges in the normal world. The normal-world bridges pass the

reference when invoking corresponding TAs so that the common memory containing the

plain text audio is accessible in the TA logic.

4.6.3 TEE Bridges and TAs

Figure 4.8 shows three TEE bridges and four TAs inside the TEE. The TEE bridges

are native daemons (running with root privilege) that allow normal world components to

invoke the TAs. The App TEE Bridge allows the SRTP layer (Java code) to invoke

the Record Crypto & Playback Crypto TAs responsible for cryptographic

operations (encryption and HMAC) in the TEE. The Framework TEE Bridge allows

the native audio framework to invoke the Record Data TA responsible for collecting

audio data and providing reference for audio data, and Playback Data TA responsible

for playing out audio data corresponding to the provided references. The Simulation

75

TEE Bridge allows the design to record & play audio using a simulation environment

by using a real phone to provide the audio hardware (discussed in Section 4.12).

Truz-Call sends and receives audio references to/from the TEE, which means each

time the normal world needs audio or wants to play audio a TEE invocation will be

needed. Each invocation from the normal world involves opening a session with the TEE

OS. Each TEE invocation session consumes some memory in the TEE OS due to saved

state. At the same time the TEE environment is only assigned a limited amount of

memory [56]. If the normal world keeps opening sessions based on the requirements of an

on-going VoIP call, the TEE OS will exhaust its memory and deny any more TA

invocations which will stop the secure call. Closing a session and opening it again for

each TEE invocation will contribute to latency. To solve this issue we make our TEE

bridges persistent by reusing TEE sessions. A bridge only initiates one TA session (with

each TA that needs to be used) at the beginning of the call. All other TEE invocations via

the bridge reuse the persistent session. This way the VoIP call can use TEE without

exhausting its memory and can go on for any duration.

4.7 VoIP Call Initiation

This section discusses how Truz-Call handles the VoIP call setup. As mentioned in

Section 4.1, the design assumes that the user wants to call a known person as key

exchange is not handled using the TEE. Before a secure call is setup, the caller and callee

need to exchange a secret phrase using a text entry that will be input using a secure UI.

This has been addressed in other works [162, 163, 181, 182]. When the user types in this

76

secret phrase, the user also enters the SIP address of the callee. The secret phrase and the

associated SIP address are saved in the TEE trusted storage [34].

The user will initiate the VoIP call using the app’s UI in the normal world. The call

will need to first establish a connection using SIP using a SIP INVITE packet to the

Linphone server. Before sending this packet, Truz-Call invokes a TA and passes the

callee’s SIP address. The user will be shown a confirmation UI asking whether a secure

call should be initiated. Once the user approves, the TA will lookup the secret phrase

associated with the SIP address. Both the SRTP and SRTCP protocols need two sets of

master key and salt (for send and receive directions). The TA concatenates the secret

phrase with a random string generated using the TEE random device. The TA calculates

the master keys and salts by concatenating this new string with four fixed values and

generating SHA-256 hashes. Each master key needs to be 16 byte and master salt needs

to be 14 byte, so each key + salt pair is 30 bytes (first 240 bits of the hash is used). The TA

keeps the master keys and salts in memory. Next the TEE would take control of the audio

peripherals on the device so that normal world cannot access the user’s conversation audio

during the VoIP call (in Truz-Call ’s testing a simulation based environment is used,

but in an actual product TEE will need to control the audio hardware). A secure LED light

(only accessible to the TEE) will be turned on which allows the user to know whether the

audio hardware is under TEE’s control. The TA returns control to the normal world and

returns the random string that was concatenated to the secret phrase. The SIP flow

continues and uses this random string as its CALL-ID [6]. The CALL-ID will be

conveyed to the receiving device when it receives the SIP INVITE so that it can

generate the corresponding master keys and salts. Once SIP has established a connection,

77

the app will use the RTP protocol to communicate with the other device on the call. RTP

RFC [8] dictates that the initial value of the sequence number should be random. After

SIP has established a connection, a TA is invoked which generates a random number

using TEE random device. This number is returned to the normal world and is used as the

initial sequence number. Section 4.9 discusses how the TEE checks whether the normal

world has obeyed to use the sequence number given by the TEE.

As shown in Figure 2.10, after an RTP channel is setup, a key exchange needs to take

place to obtain master keys and salts to secure RTP and RTCP. Instead of using protocols

like DTLS [19] and ZRTP [18], the app invokes the TA which has the master keys and

salts in memory. Instead of returning the master keys and salts, the TA returns references

(random strings with same length as key/salt and mapped to these data in the TA memory)

to the normal world. For secure RTP / RTCP channel to be setup the app uses a key

derivation function (KDF). This derives a session encryption key, session HMAC key and a

session salt based on a master key and salt. Truz-Call uses the TA to generate the

session keys and salts, by passing it the references for master keys and salts. Truz-Call

uses the same approach to generate the keys in the TA as the normal world does in the

non-secure case. The keys are generated using AES-CTR. The counter and plain text are

fixed in the app for individual cases of key calculation; only variable involved is the

master key and salt. The KDF passes the counters and plain texts to the TA. The TA returns

references for session keys and salts to secure RTP. The TA returns the sessions keys &

salts to secure RTCP in plain text, because RTCP is not handled in the TEE for the

Truz-Call design as RTCP does not carry audio payload. It should be noted that the

TEE invocation by KDF is only utilized once (at the beginning of call). It does not add any

78

latency to user’s conversation once the secure call is setup. Once the session keys and salts

are setup, RTP and RTCP can be secured using SRTP and SRTCP.

So far, this section has covered the call setup flow on the caller’s device. The flow on

the callee device will be similar. When the SIP INVITE is received, before handling it,

a TA is invoked and is passed the caller’s SIP address and the CALL-ID. The control of

the audio hardware will be taken over by the TEE. The TA looks up the secret phrase

corresponding to the SIP address. The TA will calculate the master keys and salts. The

KDF in normal world will invoke the TA in a similar manner to generate session keys and

salts to secure RTP and RTCP.

4.8 TEE Invocation by Audio Framework

Android native framework consists of AudioRecord and AudioTrack, which

contain the functions obtainBuffer() and releaseBuffer(). All Audio I/O

utilizes these functions. Truz-Call invokes TEE in these native framework functions.

This section discusses how these invocations work. In Android’s implementation (AOSP),

these native functions interact with the Audio Flinger, which provides the app process

a buffer to either read data from or write data to. In Truz-Call, the native functions

interact with the TAs to either get audio reference from or send audio reference to the

TEE. The native framework allows reading and writing audio in different modes [42, 43],

including a callback mode using which the audio data is fetched from or provided to a

callback function. Linphone’s native mediastreamer library [77] uses the callback

mechanism for audio I/O. The native framework runs native threads

79

(AudioRecordThread and AudioTrack Thread) which use obtainBuffer(),

the callback and releaseBuffer() in a while loop (Figure 4.9). The

threadloop() function containing this while loop is executed periodically based

native Thread class [28, 50].

Fig. 4.9.: Use of TEE in Native AudioRecord

4.8.1 TEE Invocation by AudioRecord

VoIP apps using RTP buffer audio data before sending it out (packetization [98]). In

case of Linphone, 640 bytes is buffered. In AOSP’s implementation, to construct 640

bytes of audio data, at the call initiation the app instructs the audio framework that it

should be notified each time 640 bytes of audio data is available. As the call progresses,

the AudioRecordThread attempts to get the requested amount of audio from the

AudioFlinger via obtainBuffer(). If enough audio data is not available, the

framework notifies the app with the available amount via the callback and makes up for

80

the remainder by continuing the loop. Truz-Call emulates this behavior as the

AudioRecordThread uses obtainBuffer() to allocate a buffer and ask the

Record Data TA for a reference based on the size requested by the app. If the

requested amount of audio data is not available, the Record Data TA returns a

reference of the same length as the available amount. The AudioRecordThread sends

the reference to the mediastreamer library via a callback. The releaseBuffer()

call frees the buffer. The AudioRecordThread makes up for the remainder by

continuing the loop.

4.8.2 TEE Invocation by AudioTrack

VoIP apps using RTP use a jitter buffer. The RTP library [88] uses this buffer to hold

packets as they arrive because of the possible variable delay involved. This allows the

packets to be played in sequence. When the call is in progress, the amount of audio played

by the app varies based on how much data the app wants to make available. When using

Android’s AOSP implementation, at call initiation the app instructs the native audio

framework to request a certain number of bytes from the app during the call. The

AudioTrackThread is constrained by the amount of audio data the AudioFlinger

can take based on the obtainBuffer() call. The AudioTrackThread requests the

app based on the buffer size available from AudioFlinger. The app responds with a

size equal to the minimum of size asked and size available. The AudioTrackThread

sends the audio data to AudioFlinger using releaseBuffer(). The

AudioTrackThread handles the remainder by continuing the loop. Truz-Call ’s

81

design emulates this behavior. Initially AudioTrackThread requests the app based on

the configured size via the callback. The callback gets the audio reference from

mediastreamer. The reference received from the app is sent to the Playback Data

TA in releaseBuffer(). The TA responds with the available size in TEE. If there is a

remainder from the configured size (set at call initiation), then the loop is continued, and

the AudioTrackThread requests a size from the app based on the buffer size available

in the TEE.

4.9 TEE Invocation by SRTP

This section discusses how SRTP leverages the TEE for encryption and HMAC. The

SRTP library does replay detection [10], which is not moved into the TEE in

Truz-Call. The SRTP library in Linphone uses AES-CTR for encryption using 128 bit

keys and uses SHA-128 when calculating HMAC. For AES-CTR, the SRTP library

calculates the counter from four values: packet index, SSRC, salt and a block counter

[29]. Packet index is a combination of the sequence number and a rollover counter (counts

sequence number rollover of 65535). Packet index is distinct for each packet. The salt is

calculated at the beginning of the call and is kept in the TEE. SSRC is an identifier for a

source of RTP packets involved in a VoIP call and is given to TEE at the beginning of the

call. The block counter increments from zero for each packet. As mentioned in

Section 4.8, the native audio framework provides audio references to the app based on the

size of available audio. This results in the RTP packet eventually constructed in the app

consisting of a set of references in the payload. For each RTP packet, the SRTP layer

82

sends the entire packet and session encryption & HMAC key references to the Record

Crypto TA. The TA calculates the counter for AES-CTR using the sequence number in

the RTP header. For the first packet the TA compares the sequence number against the

initial sequence number to ensure that the normal world is using the sequence number

specified by the TEE. For subsequent packets the sequence number is expected to

increment by one each time and the TA verifies this (in case of rollover the TA verifies that

the packet index is increasing). The TA encrypts the audio data corresponding to the set of

references in the RTP payload (further discussed in Section 4.10). Once the encrypted

payload is in place in the packet, the TA computes the HMAC and returns the result to the

normal world. The SRTP library can then continue with sending the packet out. On the

receiver device, the reverse steps happen. The Playback Crypto TA is given the

received packet. The TA verifies the HMAC. If the verification fails, the TA informs the

normal world. Otherwise, the TA calculates the counter from the sequence number and

SSRC in the packet, the salt (from call setup) and the block counter. The TA decrypts the

payload, replaces it with a reference and returns the result to the normal world. The SRTP

layer forwards the packet containing the reference to the RTP handling layer to continue

playback.

4.10 Reference Data Management

This section explains how Truz-Call manages the plain text audio data in the TEE

memory, and how it translates references to audio data or generates references for audio

data. To manage audio data in the TEE, ring buffers are utilized similar to the normal

83

world. Android follows the standard practice of using FIFO buffers to manage audio data.

This is done in the AudioFlinger [41] and in Linux’s ALSA driver [35]. Truz-Call

uses two ring buffers inside TEE’s SDP memory, one for record data and other for

playback data.

4.10.1 Data Management for Record

Fig. 4.10.: Reference Data Management for Record

RTP in normal world uses packetization. The VoIP app buffers a certain number of

bytes before constructing an RTP packet. The native audio framework may send multiple

requests to the TEE to provide the required number of bytes to the app. Truz-Call

matches VoIP packetization behavior in the TEE. As shown in Figure 4.10, each time the

native audio framework requests a certain number of bytes, the Record Data TA

moves the requested (or available) number of bytes from the ring buffer to a separate

84

cache in the SDP memory. The data in the ring buffer is provided by the Simulation

TEE Bridge which gets it from the simulation hardware setup. The cache is necessary

because by the time the SRTP layer invokes TEE, the data corresponding to the

reference(s) may have been overwritten in the ring buffer (the overwriting behavior is

similar to how audio drivers in Linux buffer data [9]). The TEE needs to give the audio

framework a reference corresponding to the audio data moved into the cache. As

discussed in Section 4.9, when the SRTP library invokes the Record Crypto TA, it

needs to encrypt the RTP payload, for which it needs a buffer containing all the audio data

corresponding to the set of references.

One of the design constraints of TruzCall is to reduce latency. A simple

implementation would be to lookup the audio data corresponding to each reference,

assemble the buffer and then proceed to encryption and HMAC. This would add latency

because of the time spent in the TEE to assemble the buffer before actually starting the

encryption (data corresponding to each reference would require two memcpy()

operations). In order to reduce latency an approach is needed that uses less time in the

TEE to prepare the buffer to be encrypted. When the SRTP library invokes the TEE, the

buffer corresponding to the RTP payload should already be setup ready to be used. To

achieve this, the cache in the SDP memory is organized holding plain text audio in

multiples of packetization buffer size (configurable at call initiation). Whenever the native

audio framework asks the TEE for audio data, before returning a reference the

corresponding (or available) bytes of audio are copied into the cache. The cache is always

preparing the next buffer for RTP. Since the reference to be returned by TEE is supposed

to be the same length as requested (or available) number of bytes, the TA returns a string

85

which is generated by using memset() and repeating the index in the cache (e.g. in

Figure 4.10, string returned is 0x01..0x01). This string is the reference for the normal

world. When the SRTP library invokes TEE, the first byte in the RTP payload is the index

in the cache for the next buffer to be encrypted (reduction in data sent to the TEE from

640 bytes to 1 byte reduces latency). This approach results in one memcpy() needed for

data per reference. The difference between two vs one memcpy() may appear

insignificant, but it should be noted that TEE invocation happens several times per second

during a call, and all that latency adds up to affect voice quality.

4.10.2 Data Management for Playback

RTP in the normal world does jitter handling using a jitter buffer [76]. Out-of-order

delivery and/or delay variation in RTP causes jitter [23]. As RTP data is decrypted in the

TEE, a cache is required to hold decrypted data until the app plays it via audio API.

Truz-Call matches VoIP jitter buffer behavior in the TEE. It allows playing of received

audio after being reordered by the normal world (in case of out-of-order RTP packets).

Individual tracking is done for amount of played audio in the TEE for each decrypted RTP

payload.

Similar to how a cache is maintained to prepare RTP payload for encryption, a

separate cache is used in the SDP memory to keep the playback RTP payload decrypted in

the TEE. As shown in Figure 4.11, when the SRTP library receives a packet from the

network, it forwards it to the Playback Crypto TA for HMAC verification and

decryption. Once decrypted the buffer is added to the next index in the cache. The

86

Fig. 4.11.: Reference Data Management for Playback

reference returned to the SRTP library is of the same length as the RTP payload, and is

assigned the cache index value (using memset()). When the native audio framework

requests playback data from the app, the size can vary (discussed in Section 4.8). As the

Playback Data TA gets requests to play audio, it copies data from the cache index

into the playback ring buffer and keeps track of how much data has been played from the

index. Cache index used to play audio is specified by the passed reference. Figure 4.11

shows a case when 5 RTP packets are received in the normal world, but they are out of

order, with correct order requiring audio for packet 4 to be played first, followed by packet

2. The figure shows the state when 600 bytes have been played from packet 4, and the

playback request spans audio data from two indexes 0x04 and 0x02 (the passed

87

reference string had 0x04 40 times and 0x02 460 times). The data in the playback ring

buffer is played out by the Simulation TEE Bridge.

A question that can be asked is why can’t one just make the ring buffers large enough

so that enough data is always available for record or enough space is available for

playback ? TEE environments operate with limited amount of memory. In a production

environment, severals TAs can be present in the TEE for various use cases, which can

reduce the amount of memory available. In addition, the amount of audio data available in

TEE at any time depends on the type of audio hardware and the type of interface used.

Also, 640 bytes is used to organize the cache based on the packet size used by Linphone.

A different VoIP app may ask more or less bytes per packet. The goal of Truz-Call ’s

design is to be generic such that it can help reduce latency in different scenarios for VoIP.

4.11 Security Analysis

This section discusses the security analysis of the Truz-Call design. It is assumed

that side channel attacks, covert channel attacks, hardware related attacks and attacks

related to VoIP network are out of scope. The analysis assumes that the TrustZone

hardware platform is trusted and the secure boot process has initialized the

integrity-verified OP-TEE OS. The goal of the malicious normal-world OS is to obtain the

plain text audio for a VoIP call. The OS can attempt to do this at various phases of the

VoIP call. In each phase, the described scenarios won’t work because of the various

properties of the design. The OS may try to obtain the secret phrase typed by the user.

During the secret phrase entry, TEE controls the UI and input, and user is informed of this

88

using a secure LED. This has been discussed in existing work [162, 163, 181, 182]. The

OS may try to fool the user that the secure call is initiated, but not give control to the TEE

and mimic the secure UI for call initiation as shown by the TEE. The OS will not be able

to access the secure LED, which is used to inform the user whether the audio peripherals

are indeed in control of the TEE. Due to this, the OS cannot fool the user regarding secure

call initiation. The OS may try to obtain the master key. The OS won’t know the master

key calculated during call initiation as the secret phrase used for its calculation is

protected and the TEE gives the normal world only a reference to the master key. The

encryption and decryption for SRTP in the TEE uses AES-CTR, which is a stream cipher

and can be subjected to various attacks [173], including keystream reuse, bit-flipping and

chosen-IV attacks. The normal-world OS can influence the counter because the sequence

number is sent by the normal world. If the same key and counter are used, the XOR of

cipher text can give XOR of plain text. In Truz-Call, the counter is not allowed to be

repeated. As mentioned in Section 4.9, the counter calculated in TEE is derived from

packet index, which is derived from sequence number and rollover counter. The TA

verifies that the packet index is increasing each time. Bit-flipping requires knowledge of

part of the plain text. The normal-world OS does not have access to the plain text audio.

Chosen-IV attack relies on choosing certain IVs and analyzing the generated keystreams.

The normal-world OS cannot observe the keystream as it resides in TEE memory.

As mentioned in Section 4.9, the SRTP library does replay detection. It does this

based on packet index and uses a replay list & window to detect replay attacks. This

functionality is not moved into the TEE. The normal-world OS may attempt to replay

received packets. This is countered as the TA checks to ensure that the packet index

89

handled is always increasing. The normal-world OS can attempt to replay voice payload

for outgoing packets by holding onto references seen before. The size of the audio cache

in the SDP memory provides a brief time gap before same index is used again due to index

roll over. The TA zeros out the memory once the data at a certain index has been used.

Reuse of an older index won’t result in re-sending of data.

4.12 Simulation Test Environment

This section discusses the simulation based approach used for building the hardware

environment for testing Truz-Call. This is the first time a simulation based approach

has been applied to the area of TEE research. Similar approach is used in other areas like

embedded system testing where it is referred to as hardware-in-the-loop simulation [12].

In TEE research one often needs to interface hardware peripherals with the TEE OS. This

task can be challenging for non-hardware experts, depending on the available support

from the TEE OS vendor. In the Truz-Call prototype, the Hikey 620 development

board [72] is used. The OP-TEE OS provides different driver support [86] for different

boards, and for the Hikey it provides UART and SPI drivers. Common audio

hardware [60] used in prototyping rely on I2S for which no driver is provided by

OP-TEE. Given the lack of support from the vendor and the community, with limited

resources it would not be efficient to develop a board specific driver stack to make I2S

work on Hikey. The board has USB interface available, but using it with TEE would

require introducing the USB stack in the TEE OS. UART could be used to get audio into

TEE, but it would require audio compression techniques like DPCM [171] and

90

ADPCM [170] with sample rate limited by the UART bandwidth. SPI could be used for

audio, but it presents its own challenges including data buffering, full bus utilization,

unnecessary conversion/overhead, and fine-grained clock speed control [58]. To build a

hardware test environment to demonstrate Truz-Call, an approach needs to be used

that does not depend on the available support from the vendor, and can best retain the

quality of data needed for the experiment. To meet this requirement, a simulation based

testing environment is introduced, in which a real phone is used to provide the audio

hardware. The audio data from the phone is streamed to the TA in the TEE OS via the

Simulation TEE bridge. The bridge is considered part of the secure world.

Fig. 4.12.: Simulation Setup

To setup the environment (Figure 4.12), a Nexus 5X phone is used with each of two

Hikey 620 development boards (two ends of VoIP call during evaluation). Both Hikeys

run Android OS version 7.1.2 in the normal world and OP-TEE OS version 2.5 in the

91

secure world. The Hikeys use USB ethernet adapters for internet access. Both Hikeys are

connected to the same switch and can reach the internet via a connected router. The

internet access is needed because the VoIP app needs to connect to its server for call

initiation. The open source Linphone app [5] is used for testing (version v3.3.2).

Figures 4.10 and 4.11 showed how the Simulation TEE bridge provides data for

record and gets data for playback. The bridge communicates with an Android app on the

Nexus phone over TCP to send / receive audio data. The combination of the bridge and the

external phone replaces the need for drivers inside the TEE OS for audio hardware access

by the TAs. The simulation bridge does send/receive plain text audio between the external

phone and the TEE Data TAs, but this component is used for easier prototyping. If a

vendor adopted Truz-Call, the simulation bridge would no longer be needed as TAs

would directly use audio drivers provided by the vendor in the TEE. In that case user’s

conversation plain text audio would never be returned to the normal world. The app on the

Nexus phone records and plays audio in 16-bit PCM format (mono) at a sample rate of 16

KHz. The app continuously sends recorded audio to the bridge which makes it available to

the ring buffer for record data in the TEE. The bridge periodically gets available audio in

the TEE playback ring buffer and sends it to the app for playback on the phone. Although

the simulation environment provides the benefit of making hardware setup easier for

prototyping, it does add latency because of the time taken to send/receive audio data

to/from the external phone. A video demo of the simulation setup can be found at [141].

92

4.13 Evaluation

This section discusses the evaluation done for Truz-Call using the Linphone app

and the simulation test environment. From the point a call is established Truz-Call

uses existing VoIP protocols. Any additional delay added is on the end device. The design

doesn’t change the delay on the network. The evaluation focuses on measuring

modifications for secure VoIP on the end device. Network delay can vary as it does in

everyday usage of VoIP. Since both Hikey boards act as sender and receiver during a VoIP

call, metrics reported were collected on one of the devices. The reported metrics are based

on three VoIP app configurations: (1) C-Off, (2) C-On and (3) Secure. In the first two

cases, the VoIP app does not use Truz-Call, but the additional audio computation

stages are turned off vs on respectively. In the third case, the VoIP app uses Truz-Call

and the additional stages are turned off. Comparing the non-secure cases with USB audio

(hardware attached to normal world) against secure case with simulation setup would be

unfair because the simulation would add some latency. In all cases, the simulation

environment was used for audio data. In the non-secure cases, audio data obtained by the

Simulation Bridge is passed directly to the native audio framework.

For the test cases C-off and Secure, the additional audio computations in the Linphone

app are disabled. In case of the computations resampling and compression, simply

disabling them breaks the flow of the app because how it is engineered. So the code of

these two stages was modified so that the reference audio data is not modified. Linphone

downsamples 48KHz to 16KHz (reverse on receiving), so the configuration of the app was

changed s.t. it directly asks for 16 KHz, in which case downsampling is not needed. In

93

case of compression, the data is directly copied over to the target buffer instead of actually

compressing. With these changes, the app needs 16-bit PCM audio data, and the

simulation test environment is configured to read / write 16-bit audio.

4.13.1 Performance

This section compares the impact of Truz-Call on the time taken during a VoIP

call. Truz-Call impacts the amount of time the app uses between getting audio data

and sending out a packet (and vice versa for received audio). The time taken in the SRTP

layer is reported as that involves the use of TEE in the secure case. Once a call is

established, the time taken for a spoken word to be heard at the other end of the call will

change when Truz-Call is used (end-to-end time). The time it takes the app to get

audio data for record or send audio data for playback using our simulation setup is also

reported. The evaluation focuses here on the time taken between native audio framework

and the Simulation Bridge (the time taken by the daemon to send/receive audio

data to/from the external phone over the network is excluded). The reported results are the

average from 20 measurements. The overhead added in SRTP is 0.48 ms for outgoing

packets and 0.54 ms for incoming packets. This has little impact on overall performance

as Truz-Call adds a quarter second average overhead compared to C-off for end-to-end

time during a call. The end-to-end time for C-on is higher because it uses additional

computation stages in the VoIP pipeline, which are not used by the secure case.

94

Table 4.1: Truz-Call Performance Evaluation

Non-Secure Secure
SRTP Time per Outgoing packet (ms) 0.16 0.64
SRTP Time per Incoming packet (ms) 0.12 0.66
End-to-End Time (seconds) C-off: 4.27 4.51

C-on: 5.6
Audio Input Time (ms / KB) 16.95 18.45
Audio Output Time (ms / KB) 14.31 32.96

4.13.2 VoIP Quality

VoIP call quality can be affected by several factors [23, 79, 98], including packet loss,

voice quality, delay and delay variation (jitter). For VoIP, 1-2.5% of packet loss is

considered acceptable [172]. The evaluation includes measurements for 2% packet loss in

the test for voice quality. To test packet loss, the evaluation uses the Linux iptables

tool. Mean opinion score (MOS) is a well-known measure of voice quality [80]. It is a

subjective test wherein participants judge the quality of a voice transmission system by

rating the voice quality on a scale of 1 to 5. The evaluation used Amazon Mechanical

Turk [81] to gather the data from 60 participants (US-based). The audio recordings from

calls using non-secure (C-on) and secure cases were provided. The recordings were audio

data received on one of the Nexus phones in the simulation setup. The participants were

also asked to answer a question based on each recording to check if they understand the

content and to ensure survey quality. The survey and the recordings can be found

at [83, 84, 92, 93, 97]. The MOS scores and percentage of participants that answered the

questions correctly are reported. The MOS scores were expected to be low because of the

additional latency from the simulation setup. MOS scores provide user perceived quality

difference between the non-secure and secure cases. The participants were able to

95

comprehend the contents of the secure call at least 81% of the time. This result would be

better if an audio driver was available in the TEE, as simulation makes prototyping easier

but adds latency during testing.

Table 4.2: Truz-Call VoIP Quality Evaluation

C-on Secure
MOS (no packet loss) 2.1 1.3
MOS (2% packet loss) 2.0 1.2
Correct Answer (no loss) 95% 95%
Correct Answer (2% loss) 98% 81%

C-off C-on Secure
JBM (ms) 55 211 207
IAJ (average) 26.41 27.38 26.12
IAJ (median) 26.5 27.3 26.6
JB (ms) 67.5 89.06 79.26

There are several types of delay [11, 98] involved in VoIP. In Truz-Call ’s

evaluation, the relevant delays include processing delay and packetization delay.

Processing delay relates to the audio codec algorithm which is used for compression.

Since the additional audio computation stages were disabled in the secure case, the delay

incurred for this stage was not measured. The packetization delay relates to the buffering

of audio by the RTP library before sending out a packet. Truz-Call does not change

the amount of audio buffered for each packet. The evaluation measures the time taken to

prepare each RTP packet before it is handed off to the SRTP layer. The average time taken

for each case was as follows: (1) C-On: 19.98 ms, (2) C-off: 18.08 ms, (3) Secure: 21.23

ms. During a VoIP call, RTP packets may arrive out of sequence and/or at varying

intervals [23, 57, 73]. VoIP apps like Linphone use a jitter buffer [76] to hold incoming

packets before the corresponding audio is played out, which adds some delay. Since

96

Truz-Call uses TEE at different layers of the VoIP stack, TEE invocations can add

timing irregularity and contribute to jitter. Three metrics related to jitter are reported: (1)

JBM: maximum jitter buffer delay obtained from RTCP XR [7], (2) IAJ: inter-arrival

jitter obtained from RTCP SR [8], (3) JB: jitter buffer size. Metric (1) is the maximum

delay applied to received packets by the jitter buffer. Metric (2) is mean deviation of the

difference in packet spacing at the receiver compared to the sender for a pair of packets

(the average and median are reported). For metric (3), the average value is reported. The

values correspond to a 15 minute call. The secure case adds average 1.25 ms overhead in

RTP packet construction, but adds less jitter compared to C-on, due to less number of

stages in the VoIP pipeline. When compared to equal number of pipeline stages in C-off,

secure case does add jitter overhead, but still results in a quarter second average

end-to-end time overhead.

4.14 Publication

The Truz-Call design has been published in 2020 in the paper titled TruzCall:

Secure VoIP Calling on Android using ARM TrustZone [150]. The dissertation author was

the first author in this paper publication.

97

5. TRUZ-SIM: HARDWARE SIMULATION TO ASSIST

TRUSTZONE RESEARCH

5.1 Problem Overview

In TEE research one often needs to interface different types of hardware peripherals

with the TEE OS. This task can be challenging for non-hardware experts, depending on

the available driver support from the TEE OS vendor. In this chapter, the TEE OS in focus

will be OP-TEE, given its wide adoption [154, 157, 159, 160, 167, 184, 185] in research.

The TEE board in focus will be Hikey (as discussed in Section 2.2).

Fig. 5.1.: Access Hardware in Normal vs Secure Case

Referring Figure 5.1, in normal case an Android app requests hardware related data

(e.g. GPS location) from the Android framework, which fetches it from hardware attached

98

to the normal world via drivers in the Android kernel. To maintain transparency, in secure

case an Android app will still use existing APIs, but will require data to be fetched from

the TEE via the existing Android framework. The data obtained will vary based on the use

case. It could be attested raw data obtained via the TEE. It can also be reference to raw

data saved in the TEE memory. Currently there is no usable driver in the TEE kernel to

allow a TA to read data from different types of hardware like GPS and camera.

Fig. 5.2.: Existing Driver Support in TEE Kernel

The OP-TEE OS vendor provides UART and SPI drivers for Hikey. There are several

issues a researcher can face when trying to interface hardware with the TEE OS.

1. Interfacing hardware with UART / SPI interface: If the researcher wants to use

existing drivers (like UART and SPI), he/she must write a driver stack on top of

those existing drivers. The researcher will have to spend considerable amount of

99

time to investigate the protocol of the specific hardware to be interfaced. Example

for this can be the JPEG camera [74] (manual [75]).

2. Interfacing hardware with I2C / CSI / I2S interface: Since the TEE OS does

not provide a driver for these interfaces, the researcher cannot attach the

corresponding hardware and interact using the mentioned protocols. Example of

such hardware can include CSI based camera [113], audio peripherals [60] and

sensors (e.g. accelerometer [127]). For interfaces like I2C, one can use a bridge

(example [146]) to connect with UART. In order to use a bridge hardware setup,

some hardware experience would be needed and could be challenging for

non-hardware experts.

3. Limited pins for multiple attachments: The Hikey board provides two UART ports

and one SPI port on its low speed expansion header. One UART port is usually used

for console. In the case where the researcher wants to attach multiple devices to

UART, techniques like multiplexing [13] will need to be used, which would require

hardware experience.

The researcher cannot write a custom driver stack for each hardware vendor, and

cannot write interface specific driver layer into the TEE. Due to the previously listed

challenges, there is a need for a TEE prototyping environment that can allow researchers

to interface different category of hardware from different vendors with the TEE OS

irrespective of the available driver support. The design should provide trusted applications

with quality of data that matches a real phone. The design should also require reduced

100

setup time and no hardware experience. The goal is to provide a design that can encourage

independent researchers to prototype their ideas based on TEE.

5.2 Related Work

There are several works that provide hardware access across the same OS. Most of

these works have been done on the Android OS, allowing apps on one Android device to

access hardware on a second Android device. Rio [152] provides I/O sharing between

mobile devices by splitting the I/O stack at the device file boundary. Semantics-Aware

Design for Mounting Remote Sensors on Mobile Systems [158] builds a remote sensor

I/O stack that is efficient in terms of communication energy and time costs.

Interconnecting Heterogeneous Devices in the Personal Mobile Cloud [164] builds a

resource sharing framework as a middleware in the mobile OS. Mobile Plus [166] allows

Android applications to utilize system functionalities across devices by extending

Android’s binder inter-process communication (IPC) mechanism. Heterogeneous

Multi-Mobile Computing [151] allows mobile apps to share and combine multiple devices

by redirecting and transforming heterogeneous device input and output across mobile

devices. It uses a data-centric approach by importing and exporting data to and from each

mobile system using common cross-platform device data formats.

TrustUI [162] uses a split device driver architecture to allow a TA in the TEE to use

hardware using normal-world drivers. The work is funded by a vendor and likely has

vendor driver support in the TEE. For example, the TA in this work can operate on a

framebuffer for display, which would require a framebuffer driver [21, 175]. Also the

101

approach is not viable for peripherals like GPS sensor and camera as the normal world

will be able to tamper with raw data being given to the secure world. There is no existing

work that solves the problem for TEE to provide TAs transparent hardware access for

different category of hardware, under the constraint that the researcher does not have the

relevant drivers for hardware access in the TEE kernel.

5.3 Main Idea

Since there isn’t sufficient driver support in the TEE OS, the design would need to

leverage drivers outside the TEE to interface with the hardware. The idea involves

creating a driver in the TEE OS that uses a cross-OS binding with a driver in a different

OS to allow the trusted application in the TEE to transparently access hardware attached

to the second OS.

Fig. 5.3.: Cross-OS Binding for Hardware Access

102

To maintain transparency, in secure case an Android app will still use existing APIs of

the Android framework. The TEE integration with the Android framework will invoke a

TA inside the secure world. The TA needs to be fetch hardware data. Depending on the

use case, TA could attest it to return to the normal world, or save it in TEE memory and

return a reference to the normal world. The TA will utilize a thin driver layer added in the

TEE kernel to access hardware. The driver leveraged by the TA inside the TEE will be

referred to as simulation driver. A simulation in general is a system that exhibits the

behavior of and performs functions of a real-world entity. In Truz-Sim, the design is

trying to provide behavior / function of hardware attached to the TEE by leveraging

hardware attached to the second OS and using corresponding drivers.

There are two aspects that need to be addressed: (1) How to interface the TEE with the

second OS via cross-OS binding ? (2) How to transparently use devices from another OS

? Section 5.4 discusses interfacing between the TEE and the second OS. Transparency is

discussed in Sections 5.4 and 5.5.1.

5.4 Design

As mentioned in Section 5.3, the design needs to utilize drivers outside the TEE to

interface with hardware. In Truz-Sim, Raspberry Pi is used to provide the second OS,

as it has rich community support to attach a variety of hardware. Figure 5.4 shows three

options for cross-OS binding:

1. Bind with USB driver in the normal-world OS to interact with hardware attached to

the normal world.

103

2. Bind with driver in Raspberry Pi OS via UART / SPI driver in the TEE OS.

3. Bind with driver in Raspberry Pi OS via network driver in normal-world OS.

Fig. 5.4.: Cross-OS Binding Options

UART and SPI for Interfacing with Hikey. In Figure 5.4, the use of UART and SPI

has been crossed out. The Hikey board has two UART ports on its low speed expansion

connector. One UART is used for console. The other UART was observed as disabled in

the Android + OP-TEE branch used for testing (this may change in the future). In order to

use SPI, devices would need to communicate in a master/slave relationship [39], using

the Pi board as a slave and the Hikey board as a master. There is no working demo to

make SPI slave work on the Raspberry Pi in the community [33, 94, 95]. In addition to

these, using UART / SPI also comes with the challenge discussed in Section 5.1.

Selecting Cross-OS Binding Option. Given the options shown in Figure 5.4, one or

more options need to be selected for the design. In addition to the constraints mentioned

104

in Section 5.1, there is also a security constraint which requires the cross-OS binding

option to provide the same security guarantee as the real TEE driver path. Under the

option selected, the normal-world OS should not be able to read data from the hardware.

For hardware attached to the normal-world, the security constraint cannot be guaranteed.

The option selected is to access hardware attached to Raspberry Pi via normal-world

network driver, as the path can provide required security properties. For prototyping

purposes, researchers can encrypt the data passed betweent the TEE and the Pi board.

Fig. 5.5.: High Level Design

5.4.1 High Level Design

Based on selected cross-OS binding option, the high level design is shown in

Figure 5.5. The TA will use a simulation API to invoke a thin simulation driver layer

added in the TEE kernel to access hardware. The simulation driver will provide the TA a

cross-OS binding with the required driver in the Raspberry Pi OS, allowing the TA to read

105

data from hardware attached to the Raspberry Pi board. The data will be transparently

returned to the Android app via TEE integration. The simulation driver will provide a

cross-OS binding with drivers in the Raspberry Pi OS using the RPC channel via the

normal-world network driver. In the existing OP-TEE OS, RPC is used in situations when

a TEE thread needs to call some service from the normal world. In such case, the TEE

saves the TEE execution state in its executing thread and invokes the normal world. When

the normal world returns to the TEE, it resumes its thread execution. There are two main

RPC services invoked by the TEE: (1) forwarding of a non-secure interrupt, and (2)

invocation of a normal-world service (allocate shared memory, access normal-world

filesystem, etc.).

The simulation design allows both normal world and secure world to get data from the

Raspberry Pi OS. The normal-world Android framework can get data from the Raspberry

Pi OS via the normal-world network driver and provide it transparently to the Android

app. This data will be received in plain text. To simulate the real scenario, the researcher

can hard code a symmetric key in the TEE and the Pi board to encrypt the data passed

between the TEE and the Pi board to prevent the normal world from reading the data.

Hardware Support. Truz-Sim will be designed to allow testing of TEE based

research ideas on mobile devices. A reference diagram of a modern mobile architecture

can be found at [130]. There are various peripherals used with recent mobile devices

including UI, sensors, audio, camera, bluetooth etc. In the project Truz-Call, an early

version of simulation has been used to get audio data using external drivers. In the

Truz-Sim project, the hardware covered includes GPS sensor, camera and UI.

106

Use Cases. There are several possible use cases for Truz-Sim. It can be used in

scenarios where the TA needs to gets raw data from hardware, save it in TEE memory and

return a reference to the normal world. This can be useful to address use cases as those

discussed in chapters 3 and 4. It can also be useful in cases where TA needs to return

attested raw data to the normal world. The use case of attestation will be used to explain

the design for camera and GPS access in the next section. It should be noted that the

attestation use cases as problems have been identified by a different PhD student 1.

Truz-Sim is providing the design to facilitate the testing of these use cases.

5.4.2 Camera Access Design

The camera access use case (Figure 5.6) involves both normal world and secure world

needing data from the Pi board. The user takes a picture via a camera app in two steps.

First the user needs to request a camera preview to allow the user to position the object in

front of the camera. During this step, the camera needs to get live images from the camera

hardware. The camera app requests preview via the camera library. In order to maintain

transparency, the app will use existing APIs in secure case. The camera library would use

the normal-world network driver to get the camera feed (series of camera pictures) from

the driver in the Raspberry Pi OS. Once the object is in the right position, the user will

click the camera button to take the picture. The camera app will request the picture via the

camera library. The camera library will utilize TEE integration to send the request to the

TA in the secure world. The TA will utilize the simulation API to request a camera picture.

The simulation driver in the TEE kernel will use the cross-OS binding to forward the

1Ammar Salman (assalman@syr.edu)

107

request to the driver in the Raspberry Pi OS to get the camera picture. In order to show the

entire flow works, in Truz-Sim the TA returns the obtained camera picture data to the

normal world where it is transparently returned to the app via TEE integration with the

camera framework. A complete test by a researcher would involve the TA also returning

an attestation for the camera picture to the normal-world app, which could eventually be

sent to the server.

Fig. 5.6.: Camera Access Design

5.4.3 GPS Access Design

The GPS access use case (Figure 5.7) involves only the secure world needing data

from the Pi board. An Android app gets a GPS location (latitude and longitude) via the

Android framework’s LocationManagerService. In the secure case, for

108

transparency reasons the app will use the existing API. The location service will get the

location via TEE integration by invoking a TA, which will use the simulation API to

request a GPS location. The simulation driver in the TEE kernel will use the cross-OS

binding to forward the request to the driver in the Raspberry Pi OS to get the next GPS

sentence. If the received GPS sentence does not contain latitude / longitude information,

then the TA will try again until a GPS sentence with latitude / longitude information is

obtained. In order to show the entire flow works, in Truz-Sim testing the TA returns the

GPS data to the normal world where it is transparently returned to the app via TEE

integration with the Android location framework. A complete test by a researcher would

involve the TA also returning an attestation for the GPS data to the normal-world app,

which could eventually be sent to the server.

Fig. 5.7.: GPS Access Design

109

5.5 Implementation

This section provides implementation details for TEE library support for simulation,

simulation driver, and details of camera and GPS access design.

5.5.1 Trusted App APIs for Hardware Access

The TA accesses hardware via APIs provided by a library in the TEE. In a real world

scenario, the TA will use APIs specified by Global Platform [119] (abbreviated as GP).

The TA API categories set by GP include Peripheral API and Event API [59]. In order to

be transparent in case of simulation, it is important that the TA uses either the same API or

an API with compatible behavior as GP APIs. OP-TEE does not provide GP APIs in the

TEE library. In order to demonstrate that Truz-Sim can be compliant with GP, the

design customizes the existing TEE library (libutee) to provide a simulation API that

has compatible behavior with GP APIs. The GP APIs are not ported into OP-TEE.

It is also important that when a TA accesses hardware via the simulation API, it is not

aware of where the data is coming from or the type of interface being used. The

simulation is currently accessing data via the normal world using an external Pi board, but

in the future researchers may extend it to use local interfaces inside the TEE (to access Pi

or other external board) depending on the interface support at the time. When using

simulation, the TA should only worry about the category of device being used (e.g. GPS,

camera etc.).

110

GlobalPlatform Peripheral and Event APIs. Reading using peripheral API [59,

Section 9.7.8] allows a TA to implement polled communication with a peripheral. The TA

does not wait on any hardware signal and can use the API to retrieve the data available at

the time of calling. The TA allocates a buffer of bufSize bytes before reading using

peripheral API. On return, this will contain as much data as is available from the

peripheral, up to the limit of bufSize. The bufSize parameter will be updated with the

actual number of bytes placed into the buffer. The TA can use the peripheral API to write

a buffer of certain size to the peripheral [59, Section 9.7.10].

The event API [59, Section 9.8] supports an event loop that enables a TA to process

messages from peripherals. The event loop is useful in scenarios where peripheral

interaction occurs asynchronously. This API is based on use of an event queue. A TA can

call the event API to check if there are any events available. A TA can get multiple events

at a time. The TA can specify the maximum number of events to be returned. The TA can

also specify a timeout, so that a TA with multiple responsibilities can address them

periodically without needing to use multi-threading. Events submitted to the event queue

for a given peripheral are submitted in the order in which they occur. As Truz-Sim does

not port the GP APIs into OP-TEE, this behavior is demonstrated by having a simulation

API that can allow a TA to interact with peripherals using both polling and event queues.

The hardware scope of Truz-Sim testing includes GPS, camera and UI (touch input).

Peripheral API behavior is demonstrated in case of the GPS sensor, and the event API

behavior is demonstrated in case of Camera and UI (touch input).

111

5.5.2 Simulation Driver

In order for the TA to use the simulation driver in TEE to interact with drivers on the

Pi board (to leverage hardware attached to Pi), a cross-OS binding is needed. This binding

is shown in Figure 5.8. The TA invokes the simulation driver via the modified userspace

library libutee and a new system call added to the OP-TEE OS kernel. The simulation

driver sends the request via the normal world using a RPC call [87]. This allows the

request to reach the normal world daemon called tee-supplicant [136]. The daemon

forwards the request using a TCP connection (via normal world network driver) to a

Python program running on the Raspberry Pi board. The Python program can use

available libraries to interact with hardware via drivers in the kernel.

Fig. 5.8.: Use of RPC by Simulation Driver

Using RPC Call. A contiguous buffer will be utilized when sending arguments using

the RPC channel across to the normal world. The simulation driver will receive serialized

112

and encrypted simulation request payload from user space. The TEE library in user space

will transparently serialize, encrypt and decrypt data for the TA. Since the RPC is a

cross-world call, memory is required for data sent to normal world, and data expected

from normal world. The simulation driver will allocate shared memory for input and

output. In the OP-TEE kernel, a RPC can be invoked [135] by allocating input / output

parameters using thread rpc alloc payload(), preparing parameters of type

struct thread param and invoking the RPC using thread rpc cmd(). OP-TEE

uses pre-defined commands to inform tee-supplicant in the normal world about the

type of RPC request, for example OPTEE MSG RPC CMD LOAD TA for loading a TA. For

Truz-Sim, a new RPC command called OPTEE MSG RPC CMD SIM was added to

tee-supplicant RPC handling in process one request() [137] to interact

with the Raspberry Pi board using TCP.

5.5.3 Normal World App Testing

In order for the Truz-Sim design to be useful for testing TEE based ideas, the

Truz-Sim project must evaluate normal-world TEE integration for various device types.

As shown in Figure 5.9, in normal cases an Android app uses libraries provided by the

Android to interact with devices via normal-world device drivers (black arrows in figure).

It is important to maintain transparency for the Android app for testing secure cases, i.e.

the app should be able to use the same APIs with minor configuration change to indicate

use of TEE. To evaluate testing of secure cases, the existing Android library and Android

framework are modified s.t. the app can use the same APIs to leverage TEE. In such cases,

113

Fig. 5.9.: Normal World App Leveraging TEE for Secure Cases

the TEE driver in the normal world is used so that a TA is invoked and data for

corresponding hardware is obtained via the TEE.

5.5.4 Camera Access Implementation

This section discusses how an Android app obtains a picture via the Android camera

API and how the Truz-Sim design is used to transparently provide the Android app a

picture via the TEE. An Android app can control the camera and get a picture using the

architecture [112] shown in Figure 5.10. The app will use the camera API via a library

provided by Android. The API allows the app to interact with a camera service in the

mediaserver process. For Truz-Sim design evaluation for the camera use case, the

camera library was modified such that the app can transparently use the existing camera

API and request a picture via the TEE (e.g. attested) for the secure case.

114

Fig. 5.10.: Default Control Flow for Getting Picture from Camera

Camera API Versions 1 and 2. Android provides two versions of the camera API

(v1 [70, 110] and v2 [111]). v1 was deprecated in Android API 21. However when

evaluating Truz-Sim for various apps, it was observed that many of the apps tested still

used the v1 API. This may due to the fact that the v1 API is simpler and more

consistent [69]. To evaluate the camera test case, integration for both camera v1 and v2

APIs was done to test the Truz-Sim design. Four major steps are involved when an

Android app uses the Camera API: (1) the app accesses the camera to get a camera

instance, (2) the app creates a camera preview, which involves using a view in the app’s

Activity to display what is observed by the camera as this allows the user to position

the camera to take the picture, (3) capture is initiated to get a picture from the camera, (4)

the picture is displayed or saved to a file. The comparison of the steps for v1 and v2 APIs

is shown in table 5.1.

Camera Integration Changes. The Truz-Sim design needs to be tested for cases

where the Android app needs to get a camera picture (e.g. attested) from the TEE. To

115

Table 5.1: Camera Access Steps in V1 and V2 APIs

Step V1 API V2 API
Access
Camera

Using Camera API open() Using CameraManager API
openCamera()

Camera
Preview

Using a class derived from
SurfaceView and using Camera
API startPreview()

Creating a
CameraCaptureSession
and using the API
setRepeatingRequest()

Initiate
Capture

Using API takePicture() and
providing callback using Picture-
Callback’s onPictureTaken()
to obtain picture data

Creating a CaptureRequest,
with output Surface (e.g.
TextureView) added us-
ing addTarget(); using
CameraCaptureSession
API capture(); callback
onCaptureCompleted()
invoked once picture is taken

Display
Picture

Example: convert picture data to
Bitmap and display in a view

The camera device sends a frame
of the picture data into the output
Surface included in the request

maintain transparency, the Android app needs to use the existing API to take a picture.

Figure 5.11 shows the control flow for getting a picture via Truz-Sim. Before initiating

the capture, the app will need a camera preview for the user. During this step, the app will

get the pictures from the Pi board via the modified camera library (step À). Once the

camera has been positioned to take the picture, the user will click the button in the app.

This will send a request to the TEE via a bridge (native daemon), causing the invocation of

a TA (step Á). The TA will use simulation API to request a camera picture, which will

result in a request sent to the external Pi board via RPC (step Â). The picture is returned to

the TA, which returns it to the camera library. The library replies to the Android app via

the corresponding callback based on the camera API version.

116

Fig. 5.11.: Truz-Sim Flow for Getting Picture from Camera

Camera Library Changes. Since the Android app will use the existing API for

transparency, the Truz-Sim integration needs to ensure that the behavior matches the

original case when getting the picture via the TEE. Figure 5.12 shows how the camera

library was modified to evaluate the Truz-Sim design. To ensure that the simulation

handling for camera behavior does not block the app’s UI thread, the handling is done on

separate threads via a new defined type CameraThread inside the camera library.

Using Truz-Sim, when an app uses the v1 API to open the camera, it will get a

Camera instance and can proceed to use API startPreview() for the camera

preview. When using the v2 API, the app invokes openCamera() to get a

CameraDevice, and gets a special derived type called SimulationCamera. The app

uses the CameraDevice reference to create a CameraCaptureSession, which

117

Fig. 5.12.: Truz-Sim Camera Library Modifications

creates a special type called SimulationCameraSession. The app can use the API

setRepeatingRequest() to start the camera preview.

When an app wants to provide a camera preview (for both v1 and v2 APIs), the

CameraThread follows a loop involving getting a picture from the Pi board, creating a

Bitmap using the received data, and writing the bitmap to a Surface [107]. This

involves using a Canvas [17, 99], with the steps involving use of the Surface APIs

lockCanvas(), and unlockCanvasAndPost(), and the Canvas API

drawBitmap(). When the app wants to take a picture using the v1 API via

takePicture(), the CameraThread is used to get a picture from the TEE and

118

converting the received data to a JPEG byte array to be returned via the callback

onPictureTaken(). When the app uses the v2 API capture(), the picture

retrieved from TEE is written to the output Surface.

TA API Usage for Camera. As mentioned in Section 5.5.1, in the Truz-Sim project

the event API behavior is demonstrated for the use case of camera. The test case involves

an Android app requesting one picture (e.g. attested) from the camera via the TEE. Unlike

a GPS sensor which is always streaming data, the camera picture will not be immediately

available at the time of request at the Pi board. The TA uses the simulation API and waits

for next complete camera picture event by using parameters for maximum number of

number of events as 1 and timeout as 5 seconds. Once the TA receives the camera picture,

it can further attest the picture. In the evaluation, to demonstrate that the path works, the

picture is simply returned to the camera library in the normal world, which returns it

transparently to the Android application.

Accessing Camera Picture on Raspberry Pi. The Python program on the Pi board

uses the PiCamera [37] library to access a camera image from a camera module [113].

The Truz-Sim evaluation focuses on taking the picture of a QR code, so the Python

code uses a resolution of 224 X 208 when requesting the picture. PiCamera provides a 3D

RGB array [3] via PiRGBArray. The python code returns the raw 3D array data to the TA

in the TEE.

119

5.5.5 GPS Access Implementation

This section discusses how an Android app obtains GPS location via the Android

framework and how the Truz-Sim design is used to transparently provide the Android

app a GPS location via the TEE. An Android app gets GPS location from an Android

service called Location ManagerService. As shown in Listing 5.1, the app creates

a LocationListener with a callback called onLocationChanged(). The app

requests the location service for GPS location using the API

requestLocationUpdates() [129]. Once the location service has a GPS location

(from a provider like GNSS), it invokes the onLocationChanged() callback

providing a Location object, which can be used to obtain latitude and longitude

information. Figure 5.13 shows the control flow for an app obtaining location.

Listing 5.1: Android App Getting GPS Location

public class MainActivity extends AppCompatActivity {

private LocationManager locationManager;

private LocationListener listener;

@Override

protected void onCreate(Bundle savedInstanceState) {

locationManager = (LocationManager)

getSystemService(LOCATION_SERVICE);

listener = new LocationListener() {

@Override

120

public void onLocationChanged(Location location) {

// location.getLatitude()

// location.getLongitude()

}

};

locationManager

.requestLocationUpdates("gps", 5000, 0, listener);

}

Fig. 5.13.: Default Control Flow for Getting GPS Location

Location Integration Changes. The Truz-Sim design needs to be tested for cases

where the Android app needs to get GPS location (e.g. attested) from the TEE. To

maintain transparency, the Android app needs to use the same API to get the location.

Figure 5.14 shows the control flow for getting the GPS location via Truz-Sim. The app

uses the API requestLocation Updates() to ask for GPS location from

LocationManagerService (LMS) (step À). The LMS forwards the request to the

121

TEE via a bridge (native daemon), leading to the invocation of a TA (step Á). This is

blocking call done on a separate thread, so that LMS is not blocked. The TA will use the

simulation API to request GPS location, which will result in a request sent to the external

Pi board via RPC (step Â). The python code on the Pi board uses the pySerial

library [140] to will retrive the location from GPS hardware [121]. The location is

returned to the TA, which returns it to LMS. The location service replies to the Android

app via the callback onLocationChanged() to provide the GPS location (step Ã).

Fig. 5.14.: Truz-Sim Flow for Getting GPS Location

GPS NMEA Sentence. A GPS receiver module uses a protocol called NMEA, with each

block of data received referred to as a NMEA sentence or a just “sentence”. There are

different types of GPS sentences [4, 20]. When GPS hardware [121] is connected to the Pi

board, different types of GPS sentences are observed as shown in Figure 5.15. In the

122

Truz-Sim project, the focus is on three sentences, namely GPGLL, GPRMC and GPGGA.

These sentences can provide latitude and longitude information. From the example of

GPGLL sentence shown in the Figure 5.15, 4302.29963 (N) and 07607.84018 (W) are

latitude and longitude respectively. During testing, values except latitude and longitude

were hard coded in the LMS as several apps need more information that just latitude and

longitude. Researchers can further expand the scope and analyze other sentences for more

information.

Fig. 5.15.: GPS Sentences Observed On Raspberry Pi

TA API Usage for GPS. As mentioned in Section 5.5.1, in the Truz-Sim project the

peripheral API behavior is demonstrated for the use case of the GPS sensor. The TA will

use the simulation API and specifies a maximum size for GPS sentence length. The

python code on the Pi board retrieves the next GPS sentence seen. The TA requests the

next GPS sentence (one at a time) until a GPGLL sentence is found. The TA gets the raw

GPGLL data from the Pi board, and returns GPGLL sentence to the LMS. The LMS parses

latitude and longitude from GPGLL and converts to decimal coordinates before returning

to the app. In Truz-Sim evaluation, the GPS sentence is simply returned to the normal

123

world, but in a real test case, the TA can also return an attestation of the GPS location to

the normal world.

Record and Replay. Depending on the type of building the researcher is testing in,

there may be issues observed when using GPS indoors [122]. It will depend on the

building’s construction material and potential interference sources. The researcher can

choose to use a GPS signal amplifier. The researcher can also use a record and replay

approach, wherein the researcher records a raw GPS trace when outside the building and

save it to a file. When using the simulation setup, the researcher can use the saved file in

the Python program to provide the next GPS sentence upon request from the TEE.

5.5.6 UI Touch Input

As discussed in Sections 2.3 and 2.4, Android apps can use EditText and

AlertDialog to get text input and action confirmation respectively. Text input is used

as a test case to evaluate whether Truz-Sim’s design can be used for UI touch input.

Chapter 3 discusses how seamless keyboard binding can be used to allow an Android app

to get secure text input via the TEE (shown in Figure 3.4). The interaction between the

normal-world input method framework and the TEE will be assumed to be the same as

Figure 3.4. Under the scope of Truz-Sim, the evaluation needs to establish that the TA

can use the simulation based approach to reliably get the text input. The final flow for a

researcher using Truz-Sim to test Truz-UI will look like Figure 5.16.

124

Fig. 5.16.: Flow for Truz-UI Test Using Truz-Sim

Fig. 5.17.: Hardware Setup Overview for Truz-UI (From Chapter 3)

Hardware Setup. Section 3.9 presents a overview picture of the hardware setup for

testing the use case of secure text input (under Truz-UI). The picture is duplicated in

Figure 5.17 for reference. The same picture can apply when a researcher is testing based

on the Truz-Sim’s design. The difference with Section 3.9 is the use of the RPC channel

instead of the UART channel from the TEE. It was the intention of the disseration author to

125

use the most recent AOSP + OP-TEE build available at the time to evaluate Truz-Sim

and UART was not an option.

When the TA is invoked by the normal-world method framework, it can use the RPC

channel (similar to UART) to inform the Pi board of the request, which is also lead the

Python code to change the switch setting for the mulitplexer and demultiplexer. The Pi

board will have control of display and touch input. Figure 5.16 shows a snapshot of this

state where normal-world is not controlling the display or touch input.

In previous sections (5.5.5 and 5.5.4) and corresponding evaluation sections (5.6.1 and

5.6.2), the use of switches was not discussed. A researcher can use a hardware setup

similar to Figure 5.17 for the use cases of camera and GPS to further extend the setup

shown in Figure 5.22. The researcher can use a USB based camera / GPS, and use a USB

switch (under Pi’s control) to decide which world can control the peripheral. When the

peripheral is in normal world’s control, its workability will depend on whether the AOSP

build at the time has necessary support for the USB peripheral.

TA API Usage for Touch Input. As mentioned in Section 5.5.1, in addition to camera,

the event API behavior is also demonstrated for the use case of UI (touch input). Unlike

the evaluation for camera, where only one event is read at a time (picture event), the UI

touch input evaluation covers reading multiple events at a time. Taking the example of a

TA needing password input from the user, the TA will use the simulation API to send a

RPC request to the Python code on the Pi board to request text input. During the test, the

TA specified maximum number of events as 5 and timeout as 3 seconds. The Python

program on the Pi board uses the Tkinter library [142] to draw the UI, similar to the one

126

Fig. 5.18.: Event Queue Used By Python Program on Pi Board

shown in Figure 3.14 (right). The Python code will maintain an event queue and accept

user input. Each event will correspond to one character typed by the user. The Python

code uses the perf counter from the time package to keep track of the elapsed time

to decide when to return the result. The python code will respond with the character set

obtained within the timeout period. If the input has not been terminated, the TA will

request the next set of typed characters. Once the TA verifies the user input has been

terminated, the TA will use the provided characters as the password input.

127

5.6 Evaluation

5.6.1 GPS Testing

The setup for doing GPS testing for Truz-Sim involved using a Hikey board with

AOSP (version 9) and OP-TEE (version 3.6.0) installed. Three APKs for Google

Play store, firebase and Google Play services were also installed as apps need their

support in order to run. The packages com.android.vending,

com.google.android.gms and com.google.android.gsf were obtained

from the website apk mirror [109]. The testing was done only on closed source apps

downloaded from the Google Play store. The hardware setup is similar to the picture

shown in Figure 5.22, except instead of a camera, a USB GPS dongle [121] is attached to

the Pi board. The HDMI display in the figure shows the normal world (Android) from the

Hikey board. The Pi board has a Wifi dongle that allows the Hikey to reach it via the

network. An example result of testing with a closed source app is shown in Figure 5.19

(results corresponds to the app “My GPS Location”) with latitude and longitude obtained

from the TEE. Table 5.2 shows the list of apps successfully tested for latitude and

longitude information using Truz-Sim.

Attestation Issue. In addition to using APIs for LMS to obtain location, Android apps

can also get location from GMS [118]. During testing it was observed that on the Hikey

build, GMS is using LMS to get the location (see Figure 5.20). For the ten apps tested, it

is observed that the location provided by simulation can be used by closed source apps

(three test apps used LMS and seven used GMS + LMS). LMS and GMS return a

128

Fig. 5.19.: GPS Test Case

Table 5.2: List of Closed-Source GPS Apps Tested

App Name Google Play Link
My GPS Location https://play.google.com/store/apps/

details?id=com.digrasoft.mygpslocation
MapQuest https://play.google.com/store/apps/

details?id=com.mapquest.android.ace
Latitude Longitude https://play.google.com/

store/apps/details?id=
com.mylocation.latitudelongitude

Driving Route Finder https://play.google.com/
store/apps/details?id=
com.virtualmaze.drivingroutefinder

Foursquare City Guide https://play.google.com/store/apps/
details?id=com.joelapenna.foursquared

Accuweather https://play.google.com/store/apps/
details?id=com.accuweather.android

Lyft https://play.google.com/store/apps/
details?id=me.lyft.android

EventBrite https://play.google.com/store/apps/
details?id=com.eventbrite.attendee

Meetup https://play.google.com/store/apps/
details?id=com.meetup

HotPads Apartments
& Home Rentals

https://play.google.com/store/apps/
details?id=com.hotpads.mobile

https://play.google.com/store/apps/details?id=com.digrasoft.mygpslocation
https://play.google.com/store/apps/details?id=com.digrasoft.mygpslocation
https://play.google.com/store/apps/details?id=com.mapquest.android.ace
https://play.google.com/store/apps/details?id=com.mapquest.android.ace
https://play.google.com/store/apps/details?id=com.mylocation.latitudelongitude
https://play.google.com/store/apps/details?id=com.mylocation.latitudelongitude
https://play.google.com/store/apps/details?id=com.mylocation.latitudelongitude
https://play.google.com/store/apps/details?id=com.virtualmaze.drivingroutefinder
https://play.google.com/store/apps/details?id=com.virtualmaze.drivingroutefinder
https://play.google.com/store/apps/details?id=com.virtualmaze.drivingroutefinder
https://play.google.com/store/apps/details?id=com.joelapenna.foursquared
https://play.google.com/store/apps/details?id=com.joelapenna.foursquared
https://play.google.com/store/apps/details?id=com.accuweather.android
https://play.google.com/store/apps/details?id=com.accuweather.android
https://play.google.com/store/apps/details?id=me.lyft.android
https://play.google.com/store/apps/details?id=me.lyft.android
https://play.google.com/store/apps/details?id=com.eventbrite.attendee
https://play.google.com/store/apps/details?id=com.eventbrite.attendee
https://play.google.com/store/apps/details?id=com.meetup
https://play.google.com/store/apps/details?id=com.meetup
https://play.google.com/store/apps/details?id=com.hotpads.mobile
https://play.google.com/store/apps/details?id=com.hotpads.mobile

129

Fig. 5.20.: Paths Used to Obtain Location

Location object to the app. In the current Truz-Sim testing, LMS returns a Location

object for transparency, and TEE simply returns the location information to demonstrate

the entire flow works. In case a researcher uses simulation to get the location attestation

from the TEE, the LMS path will guarantee to provide the attestation to the app, as the

attestation can be attached to the Location object. The GMS path does not guarantee this,

as the GMS may alter the Location object, reconstruct it or may forward it as it received it.

Performance. To evaluate performance, the time taken to get GPS location using the

Truz-Sim setup was measured. The timing reported does not include time taken in the

app logic. Timing was measured starting when the app requests GPS data, and ending

when the GPS data is handed over to the app. The testing was done using the app

“MapQuest”. The test was repeated 20 times. Figure 5.21 shows the round trip times for

individual steps.

130

Fig. 5.21.: GPS Simulation Access Performance Breakdown

The most amount of time is taken between the TA and the Python code on the Pi board.

The setup used a Pi 3B board with a USB Wifi adaptor and the Hikey using a USB ethernet

adaptor. Tests were also done using an ethernet cable attached to the Pi board (Hikey and

Pi connected via a switch) and the timing result was similar. The time between the TEE

and the Pi board is influenced by several factors. Different Raspberry Pi boards have

different networking performance [138]. The Hikey board used in the experiment supports

USB 2.0 [123]. More recent version of the board provides USB 3.0 support [124]. If the

researcher chooses to use a LAN setup, then the category of the ethernet cable used [117]

will affect the transmission speed. In future if SPI can work for the Raspberry Pi board in

slave mode, then different performance would be observed compared to using RPC.

The GPS receiver was used at an update rate [120] of 1 Hz and a baud rate of 115200.

The GPS receiver was connected via USB 2 which provides a bit rate of upto 480 Mbps

(the four USB ports on the Pi board are connected to a common bus operating at max rate

of 480 Mbps [139]). GPS receivers used in industry can provide 20 Hz update rate [16]

and are connected via [130] the I2C interface (with bit rate of upto 5 Mbps [176]) or I3C

interface (using bit rate of 10 to 11 Mbps [132]).

131

5.6.2 Camera Testing

Similar to the discussion in the previous section, the setup for the testing of the camera

use case for Truz-Sim involved a Hikey board (AOSP and OP-TEE installed) with

necessary Google packages installed. The testing was done using the camera app in the

AOSP Hikey build and several closed source apps downloaded from the Google Play

store. The hardware setup is shown in Figure 5.22, where a camera module [113] is

attached to the Raspberry Pi board via the CSI interface. An example result of testing

with a closed source app (FastScanner) can be found in the demo video [114]. The test

shows the app getting a picture of a QR code via the TEE. In the video, the recording

camera is put down at time 0:30 for 4 seconds, in order to press the button in the app to

request camera capture. Table 5.3 shows the list of apps tested to get a camera picture

using Truz-Sim. In the table, only the AOSP Camera test is for an app using the v2 API;

the rest of the apps in the table used the v1 API.

Fig. 5.22.: Camera Test Setup

132

Table 5.3: List of Camera Apps Tested

App Name Google Play Link
AOSP Camera Part of Hikey Build
FastScanner https://play.google.com/

store/apps/details?id=
com.coolmobilesolution.fastscannerfree

Cam Scanner https://play.google.com/store/apps/
details?id=com.bcaapps.scanner

Clear Scan https://play.google.com/
store/apps/details?id=
com.indymobileapp.document.scanner

Document Scanner https://play.google.com/store/apps/
details?id=com.cv.docscanner

ScanBizCards Lite https://play.google.com/store/apps/
details?id=com.scanbizcards

Smart Doc Scanner https://play.google.com/store/apps/
details?id=com.mobilicy.docscanner

Jet Scanner Lite https://play.google.com/store/apps/
details?id=com.stoik.jetscanlite

Receipts by Wave https://play.google.com/store/apps/
details?id=com.waveaccounting.receipts

There were several issues observed while testing camera apps from the Google play

store on the Hikey board. The issues corresponded to support not provided by Truz-Sim

and to various errors observed during runtime. Errors included multi-dex support and

ImageView / TextView inflation errors. Some apps didn’t work because they relied on

Google’s CameraX library [115] or the Mobile Vision API [49]. Other apps didn’t work

because they didn’t follow Google’s recommended steps for using the camera API. Some

apps applied additional rotation which sometimes results in mirror picture. This can be

solved by researchers by applying an additional orientation change (in the python code)

based on the test case the researcher is pursuing. In case of the camera app in AOSP’s

Hikey build, the app can take a picture without any issue, but when a second app requests

https://play.google.com/store/apps/details?id=com.coolmobilesolution.fastscannerfree
https://play.google.com/store/apps/details?id=com.coolmobilesolution.fastscannerfree
https://play.google.com/store/apps/details?id=com.coolmobilesolution.fastscannerfree
https://play.google.com/store/apps/details?id=com.bcaapps.scanner
https://play.google.com/store/apps/details?id=com.bcaapps.scanner
https://play.google.com/store/apps/details?id=com.indymobileapp.document.scanner
https://play.google.com/store/apps/details?id=com.indymobileapp.document.scanner
https://play.google.com/store/apps/details?id=com.indymobileapp.document.scanner
https://play.google.com/store/apps/details?id=com.cv.docscanner
https://play.google.com/store/apps/details?id=com.cv.docscanner
https://play.google.com/store/apps/details?id=com.scanbizcards
https://play.google.com/store/apps/details?id=com.scanbizcards
https://play.google.com/store/apps/details?id=com.mobilicy.docscanner
https://play.google.com/store/apps/details?id=com.mobilicy.docscanner
https://play.google.com/store/apps/details?id=com.stoik.jetscanlite
https://play.google.com/store/apps/details?id=com.stoik.jetscanlite
https://play.google.com/store/apps/details?id=com.waveaccounting.receipts
https://play.google.com/store/apps/details?id=com.waveaccounting.receipts

133

the camera app for a picture using an Intent, the camera app doesn’t send the result

back via an Intent. This issue was not further investigated as it was presumed that the

issue would be fixed in the future as the build matures.

Fig. 5.23.: Camera Simulation Access Performance Breakdown

Performance. To evaluate performance, the time taken to get the camera picture using

the Truz-Sim setup was measured. The timing reported does not include time taken in

the app logic. Timing was measured starting when the app requests the camera to take

picture (after user presses the button), and ending when the picture data is handed over to

the app. The testing was done using the app “FastScanner”. The test was repeated 10

times. Figure 5.23 shows the round trip times for individual steps. The factors influencing

the timing between TEE and the Pi board are similar to the discussion in Section 5.6.1.

The delay in getting the picture from the camera on the Pi board will be influenced by

shutter delay and bandwidth of the CSI interface. Before a picture is taken, 100 ms are

used in Python code to wait for the camera to warm up. Cameras used with Raspberry Pi

use an image capture approach called rolling shutter [38, 177]. This is similar to mobile

phone digital cameras. The Raspberry Pi uses MIPI CSI-2 interface with bandwidth of

134

upto 2 Gbps [36]. Cameras used in industry are also connected via CSI [130], with MIPI

CSI-3 interface supporting a bit rate of upto 14.88 Gbps [131].

5.6.3 UI Touch Input Testing

Testing UI touch input with Truz-Sim involves testing interaction between the

normal-world input method framework and the TA , and the path used by the TA when it

uses simulation to get user input. The first part has already been evaluated in chapter 3.

This section shows an example for the flow shown in Figure 5.18, involving the TA getting

user touch input from the Pi board. For this independent test, the TA was directly invoked

from command line in the normal-world, with the expected returned result to be the

password typed by the user.

Fig. 5.24.: TA Log When Accessing UI Touch Input

Figure 5.24 shows an example log for the TA using simulation to get user input. The

log corresponds to a TA using maximum number of events as 5 and a timeout of 3

seconds. The occurence of sim test() in the log corresponds to the system call added

in OP-TEE. The string ‘abcdpassword’ was typed slowly on the UI displayed by the

135

Python code to check timeout behavior. In this test the password is simply returned to the

normal world. In a real test for Truz-UI, the researcher will use the reference concept

discussed in chapter 3, save the password in the TEE memory, and return a reference

corresponding to the password to the normal-world input method framework.

5.7 Discussion

Truz-Sim achieves the goal of reducing setup time and reducing hardware

experience required on behalf of the researcher in order to setup a hardware test

environment to do TEE research, given the rich community support available for

interfacing peripherals with the Raspberry Pi. For a typical research project where

researcher wants to use a peripheral (like sensors, camera etc.) in the design, using

Truz-Sim will suffice in order to evaluate the feasibility of the researcher’s design.

Given the current iteration of Truz-Sim is based on Hikey and Raspberry Pi, the

interface support the researcher will get via the Pi board matches that on Hikey’s low /

high speed header including I2C, SPI, CSI, USB, I2S. The researcher can use these

interfaces without vendor support in the TEE.

Truz-Sim has a limitation when it comes to latency. In the performance evaluation

for GPS and camera, there is a delay observed between the TA and the Pi board when

using the RPC channel. The time spent on RPC and in the Python code on the Pi board is

additional overhead, compared to a real phone case [130] where a direct CSI or I3C bus

would be used for communication between the application processor and the peripherals.

136

The additional latency will impact researchers who want to test a system with real time

requirements.

Peripheral bit rate used in simulation depends on the interface support available.

Taking camera and GPS as example, the latest iteration of Raspberry Pi at the time of

writing provides CSI support for camera, but only provides I2C support and does not

provide I3C support for connecting GPS. GPS can also connected via USB. Existing

developer board hardware support will impact the interface researcher can use in the

simulation experiment. This will impact researchers who want to test a given peripheral

with the latest interface specification.

137

6. CONCLUSION AND FUTURE WORK

In summary, this dissertation provides solutions transparent to applications to protect user

interaction channels on a mobile platform using ARM TrustZone. The dissertation

focuses on the user interaction channels of UI input and audio I/O. First, this dissertation

has proposed Truz-UI, a transparent design that allows normal-world apps to leverage

TrustZone via existing OS APIs to protect user interaction via UI input. The design

utilizes a cross-OS binding between the UI interaction in the secure world and the code in

the normal-world app, allowing the app developer to request a secure version of the UI

and provide the code to be bound to this UI. Second, this dissertation has proposed

Truz-Call, a transparent design to protect users audio I/O during a VoIP call by

integrating TEE at essential stages in a VoIP apps audio pipeline. The design allows VoIP

apps to leverage TrustZone while using existing OS APIs and VoIP protocol, and provides

generic TA support so that no app-specific TA code is needed. Lastly this dissertation

proposed Truz-Sim, a design for a simulation based TEE prototyping environment that

can allow researchers to interface different category of hardware with the TEE OS

irrespective of the available support from the vendor. The design utilizes a cross-OS

binding between the trusted application in the TEE and hardware attached to a different

OS on a different board like Raspberry Pi. All solutions have been implemented and

tested on the TrustZone-enabled Hikey development board.

138

6.1 Secure Input Interaction for Hybrid Applications

A hybrid mobile application is developed using web technologies like HTML, CSS

and JavaScript, and then wrapped in a native application [27, 126]. This is facilitated by

an embedded browser component in the native application. In Android, this feature is

provided by the WebView component [147]. WebView allows an app developer to

display web content as part of the Activity layout. A recent survey [48] shows an

increase in preference on part of app developers to adopt hybrid app development. Given

the adoption of hybrid apps, there is a need to provide secure user input interaction for

cases involving WebView. Truz-UI can be further extended to cover hybrid apps.

Since Android 4.4 (KitKat), the WebView component has been based on the

Chromium open source project [148]. The Chromium architecture [153] involves two

major components, the browser kernel and the rendering engine. To access operating

system functionality such as user interaction, the rendering engine relies on the browser

kernel API. In case of text input, Chromium under its content module uses

ImeAdapterImpl [116] which uses Android framework’s InputMethodManager

to request display of a keyboard. This pattern matches the keyboard request covered in

chapter 3. This indicates that the proxy IME app can be used to request invocation of a

secure keyboard in the TEE. Further investigation would be required on how to allow

marking of UI elements inside the WebView as secure and how to setup the cross-OS

binding to allow a reference result from the TEE to be returned transparently to the web

application code inside the WebView.

139

6.2 VoIP Computation Stages in TEE

As shown in Figure 4.5, one of the stages in a VoIP app is marked as computation. For

input audio, this includes computation like read resampling (downsampling), volume

adjustment, equalization and compression. For output audio, this can include

decompression, volume adjustment, equalization, and upsampling. Truz-Call disables

the additional computation stages as end-to-end latency increases with every stage that

uses TEE (due to invocation time), and the stages will also add to the TCB in the secure

world. The design also needs to ensure that no computation stage tampers with the

reference data in the normal world.

Instead of supporting these stages by integrating each stage with the TEE, an alternate

solution can be to move the additional computation stages entirely into the TEE. Simply

moving the computation stages in their existing form will increase the TCB. Therefore

there is a need for a lightweight audio computation pipeline in the TEE that can achieve

sufficient audio quality improvement. The design for this would need to address the

tradeoff of acceptable TCB in the TEE vs acceptable audio quality for the VoIP call.

6.3 Expanding Hardware Simulation Support

Truz-Sim has so far been tested for camera, GPS and UI touch input. There is

further expansion and testing that can be done to demonstrate support for broader variety

of peripherals. Referring a mobile system diagram [130], testing can be expanded to

include peripherals like fingerprint, baseband, sensors (including accelerometer,

gyroscope etc.) and NFC. This can facilitate further tests like fingerprint login where

140

fingerprint data is only accessible by the secure world, and secure SMS with SMS text

only visible to the secure world. Testing can also be expanded to ensure simultaneous

peripheral access. Current testing involves only one type of peripheral at a time. Further

testing can be done to ensure simulation is stable enough to support cases where multiple

peripherals need to be accessed, e.g. in facial authentication [183] where camera and

accelerometer data is needed. Given that there is no existing work to use SPI in slave

mode on Raspberry Pi, further investigation can be done as that would provide an

alternative channel between the TEE and the Pi board.

LIST OF REFERENCES

141

LIST OF REFERENCES

[1] Enhance Device Security With T6.
https://www.trustkernel.com/en/products/tee/t6.html.
[Accessed: March 27, 2019].

[2] SDP: Session Description Protocol.
https://tools.ietf.org/html/rfc2327, 1998.

[3] 3D RGB Matrix.
https://web.archive.org/web/20200704235426/https:
//www.researchgate.net/figure/A-three-dimensional-RGB-
matrix-Each-layer-of-the-matrix-is-a-two-dimensional-
matrix fig6 267210444, 2001.

[4] GPS - NMEA sentence information.
https://web.archive.org/web/20200606033839/http:
//aprs.gids.nl/nmea/, 2001.

[5] Linphone - Open Source VoIP project. https://www.linphone.org/, 2001.
[Accessed: Feb 2019].

[6] SIP: Session Initiation Protocol.
https://tools.ietf.org/html/rfc3261, 2002.

[7] RTP Control Protocol Extended Reports (RTCP XR).
https://tools.ietf.org/html/rfc3611, 2003.

[8] RTP: A Transport Protocol for Real-Time Applications.
https://tools.ietf.org/html/rfc3550, 2003.

[9] Introduction to Sound Programming with ALSA.
https://web.archive.org/web/20190421034814/https:
//www.linuxjournal.com/article/6735, 2004.

[10] The Secure Real-time Transport Protocol (SRTP).
https://tools.ietf.org/html/rfc3711, 2004.

[11] Understanding Delay in Packet Voice Networks.
https://web.archive.org/web/20200529042111/https:
//www.cisco.com/c/en/us/support/docs/voice/voice-
quality/5125-delay-details.html, 2006.

[12] What Is Hardware-in-the-Loop?
http://www.ni.com/en-us/innovations/white-papers/17/
what-is-hardware-in-the-loop-.html, 2006.

https://www.trustkernel.com/en/products/tee/t6.html
https://tools.ietf.org/html/rfc2327
https://web.archive.org/web/20200704235426/https://www.researchgate.net/figure/A-three-dimensional-RGB-matrix-Each-layer-of-the-matrix-is-a-two-dimensional-matrix_fig6_267210444
https://web.archive.org/web/20200704235426/https://www.researchgate.net/figure/A-three-dimensional-RGB-matrix-Each-layer-of-the-matrix-is-a-two-dimensional-matrix_fig6_267210444
https://web.archive.org/web/20200704235426/https://www.researchgate.net/figure/A-three-dimensional-RGB-matrix-Each-layer-of-the-matrix-is-a-two-dimensional-matrix_fig6_267210444
https://web.archive.org/web/20200704235426/https://www.researchgate.net/figure/A-three-dimensional-RGB-matrix-Each-layer-of-the-matrix-is-a-two-dimensional-matrix_fig6_267210444
https://web.archive.org/web/20200606033839/http://aprs.gids.nl/nmea/
https://web.archive.org/web/20200606033839/http://aprs.gids.nl/nmea/
https://www.linphone.org/
https://tools.ietf.org/html/rfc3261
https://tools.ietf.org/html/rfc3611
https://tools.ietf.org/html/rfc3550
https://web.archive.org/web/20190421034814/https://www.linuxjournal.com/article/6735
https://web.archive.org/web/20190421034814/https://www.linuxjournal.com/article/6735
https://tools.ietf.org/html/rfc3711
https://web.archive.org/web/20200529042111/https://www.cisco.com/c/en/us/support/docs/voice/voice-quality/5125-delay-details.html
https://web.archive.org/web/20200529042111/https://www.cisco.com/c/en/us/support/docs/voice/voice-quality/5125-delay-details.html
https://web.archive.org/web/20200529042111/https://www.cisco.com/c/en/us/support/docs/voice/voice-quality/5125-delay-details.html
http://www.ni.com/en-us/innovations/white-papers/17/what-is-hardware-in-the-loop-.html
http://www.ni.com/en-us/innovations/white-papers/17/what-is-hardware-in-the-loop-.html

142

[13] Talk To Multiple Devices With One UART.
https://web.archive.org/web/20190330012545/https:
//www.electronicdesign.com/4g/talk-multiple-devices-one-
uart, 2007.

[14] Whatsapp - Simple, Secure, Reliable messaging.
https://www.whatsapp.com/, 2009.

[15] Datagram Transport Layer Security (DTLS) Extension to Establish Keys for the
Secure Real-time Transport Protocol (SRTP).
https://tools.ietf.org/html/rfc5764, 2010.

[16] GPS Receiver Features 20Hz Update Rate. https:
//www.eetimes.com/gps-receiver-features-20hz-update-rate,
2010.

[17] Understanding Canvas and Surface concepts.
https://web.archive.org/web/20200709011746/https:
//stackoverflow.com/questions/4576909/understanding-
canvas-and-surface-concepts/38496500, 2011.

[18] ZRTP: Media Path Key Agreement for Unicast Secure RTP.
https://tools.ietf.org/html/rfc6189, 2011.

[19] Datagram Transport Layer Security.
https://tools.ietf.org/html/rfc6347, 2012.

[20] GPS Sentences.
https://web.archive.org/web/20200628203050/https:
//www.rfwireless-world.com/Terminology/GPS-sentences-or-
NMEA-sentences.html, 2012.

[21] Linux Framebuffer Drivers.
https://web.archive.org/web/20200619212653/https:
//moi.vonos.net/linux/framebuffer-drivers/, 2012.

[22] From SIP to RTP - Overview.
https://www.informaticapressapochista.com/asterisk/from-
sip-to-rtp-part-1/, 2012. [Accessed: Feb 28, 2019].

[23] RTP, Jitter and Audio Quality in VoIP.
https://web.archive.org/web/20200528213941/https:
//kb.smartvox.co.uk/voip-sip/rtp-jitter-audio-quality-
voip/, 2012.

[24] Samsung KNOX Whitepaper, 2013.

[25] Signal Messenger. https://www.signal.org/, 2013.

[26] ARM’s Reach: 50 Billion Chip Milestone. https://www.broadcom.com/
blog/arms-reach-50-billion-chip-milestone-video, 2014.

[27] Native vs Hybrid App Development. https:
//www.sitepoint.com/native-vs-hybrid-app-development/,
2014.

https://web.archive.org/web/20190330012545/https://www.electronicdesign.com/4g/talk-multiple-devices-one-uart
https://web.archive.org/web/20190330012545/https://www.electronicdesign.com/4g/talk-multiple-devices-one-uart
https://web.archive.org/web/20190330012545/https://www.electronicdesign.com/4g/talk-multiple-devices-one-uart
https://www.whatsapp.com/
https://tools.ietf.org/html/rfc5764
https://www.eetimes.com/gps-receiver-features-20hz-update-rate
https://www.eetimes.com/gps-receiver-features-20hz-update-rate
https://web.archive.org/web/20200709011746/https://stackoverflow.com/questions/4576909/understanding-canvas-and-surface-concepts/38496500
https://web.archive.org/web/20200709011746/https://stackoverflow.com/questions/4576909/understanding-canvas-and-surface-concepts/38496500
https://web.archive.org/web/20200709011746/https://stackoverflow.com/questions/4576909/understanding-canvas-and-surface-concepts/38496500
https://tools.ietf.org/html/rfc6189
https://tools.ietf.org/html/rfc6347
https://web.archive.org/web/20200628203050/https://www.rfwireless-world.com/Terminology/GPS-sentences-or-NMEA-sentences.html
https://web.archive.org/web/20200628203050/https://www.rfwireless-world.com/Terminology/GPS-sentences-or-NMEA-sentences.html
https://web.archive.org/web/20200628203050/https://www.rfwireless-world.com/Terminology/GPS-sentences-or-NMEA-sentences.html
https://web.archive.org/web/20200619212653/https://moi.vonos.net/linux/framebuffer-drivers/
https://web.archive.org/web/20200619212653/https://moi.vonos.net/linux/framebuffer-drivers/
https://www.informaticapressapochista.com/asterisk/from-sip-to-rtp-part-1/
https://www.informaticapressapochista.com/asterisk/from-sip-to-rtp-part-1/
https://web.archive.org/web/20200528213941/https://kb.smartvox.co.uk/voip-sip/rtp-jitter-audio-quality-voip/
https://web.archive.org/web/20200528213941/https://kb.smartvox.co.uk/voip-sip/rtp-jitter-audio-quality-voip/
https://web.archive.org/web/20200528213941/https://kb.smartvox.co.uk/voip-sip/rtp-jitter-audio-quality-voip/
https://www.signal.org/
https://www.broadcom.com/blog/arms-reach-50-billion-chip-milestone-video
https://www.broadcom.com/blog/arms-reach-50-billion-chip-milestone-video
https://www.sitepoint.com/native-vs-hybrid-app-development/
https://www.sitepoint.com/native-vs-hybrid-app-development/

143

[28] How to Write a Native Thread and How to Use It. http://
shooting.logdown.com/posts/247468-android-native-thread,
2014.

[29] SRTP Crypto - AES ICM. https://github.com/Linphone-sync/srtp/
blob/master/crypto/cipher/aes icm.c, 2014.

[30] The Android Input Architecture.
https://web.archive.org/web/20200412022343/http:
//newandroidbook.com/files/AndroidInput.pdf, 2015.

[31] Electronics Weekly - KoolSpan Encrypting Voice Comms for Secure Channel.
https://web.archive.org/web/20200526002658/https:
//www.electronicsweekly.com/blogs/eyes-on-android/
security/koolspan-encrypting-voice-comms-secure-
channel-2015-02/, 2015.

[32] Intercede’s MyTAM Enabled Enhanced Trust for Android apps to Protect Against
Hackers and Malware.
https://web.archive.org/web/20200526002924/https:
//www.intercede.com/investor-news/intercedes-mytam-
enables-enhanced-trust-for-android-apps-to-protect-
against-hackers-and-malware/, 2015.

[33] Raspberry Pi StackExchange - Can Raspberry Pi function as SPI slave ?
https://web.archive.org/web/20200628202509/https:
//raspberrypi.stackexchange.com/questions/36169/can-
raspberry-pi-function-as-spi-slave, 2015.

[34] Secure Storage in OP-TEE. https://www.slideshare.net/linaroorg/
sfo15503-secure-storage-in-optee, 2015.

[35] ALSA Driver–HW Buffer.
http://www.echojb.com/hardware/2016/12/21/283392.html,
2016.

[36] Raspberry Pi CSI bandwidth.
https://raspberrypi.stackexchange.com/questions/51715/
what-is-the-speed-of-the-camera-serial-interface-csi-
and-its-cable, 2016.

[37] PiCamera. https:
//picamera.readthedocs.io/en/release-1.13/index.html, 2016.

[38] Picamera - Camera Hardware.
https://picamera.readthedocs.io/en/release-1.13/fov.html,
2016.

[39] Basics of the SPI Communication Protocol.
https://web.archive.org/web/20200616211306/https:
//www.circuitbasics.com/basics-of-the-spi-communication-
protocol/, 2016.

[40] Trustonic - A Day in the Life of the TEE.
https://www.trustonic.com/news/blog/day-life-tee/, 2016.

http://shooting.logdown.com/posts/247468-android-native-thread
http://shooting.logdown.com/posts/247468-android-native-thread
https://github.com/Linphone-sync/srtp/blob/master/crypto/cipher/aes_icm.c
https://github.com/Linphone-sync/srtp/blob/master/crypto/cipher/aes_icm.c
https://web.archive.org/web/20200412022343/http://newandroidbook.com/files/AndroidInput.pdf
https://web.archive.org/web/20200412022343/http://newandroidbook.com/files/AndroidInput.pdf
https://web.archive.org/web/20200526002658/https://www.electronicsweekly.com/blogs/eyes-on-android/security/koolspan-encrypting-voice-comms-secure-channel-2015-02/
https://web.archive.org/web/20200526002658/https://www.electronicsweekly.com/blogs/eyes-on-android/security/koolspan-encrypting-voice-comms-secure-channel-2015-02/
https://web.archive.org/web/20200526002658/https://www.electronicsweekly.com/blogs/eyes-on-android/security/koolspan-encrypting-voice-comms-secure-channel-2015-02/
https://web.archive.org/web/20200526002658/https://www.electronicsweekly.com/blogs/eyes-on-android/security/koolspan-encrypting-voice-comms-secure-channel-2015-02/
https://web.archive.org/web/20200526002924/https://www.intercede.com/investor-news/intercedes-mytam-enables-enhanced-trust-for-android-apps-to-protect-against-hackers-and-malware/
https://web.archive.org/web/20200526002924/https://www.intercede.com/investor-news/intercedes-mytam-enables-enhanced-trust-for-android-apps-to-protect-against-hackers-and-malware/
https://web.archive.org/web/20200526002924/https://www.intercede.com/investor-news/intercedes-mytam-enables-enhanced-trust-for-android-apps-to-protect-against-hackers-and-malware/
https://web.archive.org/web/20200526002924/https://www.intercede.com/investor-news/intercedes-mytam-enables-enhanced-trust-for-android-apps-to-protect-against-hackers-and-malware/
https://web.archive.org/web/20200628202509/https://raspberrypi.stackexchange.com/questions/36169/can-raspberry-pi-function-as-spi-slave
https://web.archive.org/web/20200628202509/https://raspberrypi.stackexchange.com/questions/36169/can-raspberry-pi-function-as-spi-slave
https://web.archive.org/web/20200628202509/https://raspberrypi.stackexchange.com/questions/36169/can-raspberry-pi-function-as-spi-slave
https://www.slideshare.net/linaroorg/sfo15503-secure-storage-in-optee
https://www.slideshare.net/linaroorg/sfo15503-secure-storage-in-optee
http://www.echojb.com/hardware/2016/12/21/283392.html
https://raspberrypi.stackexchange.com/questions/51715/what-is-the-speed-of-the-camera-serial-interface-csi-and-its-cable
https://raspberrypi.stackexchange.com/questions/51715/what-is-the-speed-of-the-camera-serial-interface-csi-and-its-cable
https://raspberrypi.stackexchange.com/questions/51715/what-is-the-speed-of-the-camera-serial-interface-csi-and-its-cable
https://picamera.readthedocs.io/en/release-1.13/index.html
https://picamera.readthedocs.io/en/release-1.13/index.html
https://picamera.readthedocs.io/en/release-1.13/fov.html
https://web.archive.org/web/20200616211306/https://www.circuitbasics.com/basics-of-the-spi-communication-protocol/
https://web.archive.org/web/20200616211306/https://www.circuitbasics.com/basics-of-the-spi-communication-protocol/
https://web.archive.org/web/20200616211306/https://www.circuitbasics.com/basics-of-the-spi-communication-protocol/
https://www.trustonic.com/news/blog/day-life-tee/

144

[41] In-Depth Understanding of the Android Audio Framework.
https://blog.csdn.net/ch97ckd/article/details/78641457,
2017. [Accessed: Feb 28, 2019].

[42] AndroidXref Android 7.1.2 - AudioRecord.h. http://androidxref.com/
7.1.2 r36/xref/frameworks/av/include/media/AudioRecord.h,
2017.

[43] AndroidXref Android 7.1.2 - AudioTrack.h. http://androidxref.com/
7.1.2 r36/xref/frameworks/av/include/media/AudioTrack.h,
2017.

[44] Drupal: Open Source CMS. https://www.drupal.org/, 2017.

[45] Drupal Editor - App by Dissem on Github.
https://github.com/Dissem/Drupal-Editor, 2017.

[46] Elgg: A Powerful Open Source Social Networking Engine.
https://elgg.org/, 2017.

[47] F-Droid repository. https://f-droid.org/en/packages/, 2017.

[48] Ionic Developer Survey: App Trends.
https://ionicframework.com/survey/2017#trends, 2017.

[49] Mobile Vision Barcode API. https:
//developers.google.com/vision/android/barcodes-overview,
2017.

[50] AndroidXref Android 7.1.2 - Thread.h. http://androidxref.com/
7.1.2 r36/xref/system/core/include/utils/Thread.h, 2017.

[51] Secure Data Path with OPTEE. https://www.slideshare.net/
linaroorg/bud17400-secure-data-path-with-optee, 2017.

[52] Meanings of TA FLAGS.
https://web.archive.org/web/20190312204816/https:
//github.com/OP-TEE/optee os/issues/1590, 2017.

[53] Android Reference Boards.
https://web.archive.org/web/20180521054301/https:
//source.android.com/setup/build/devices, 2018.

[54] GlobalPlatform - TEE System Architecture v1.2.
https://globalplatform.org/specs-library/tee-system-
architecture-v1-2/, 2018.

[55] Hacking Group Spies on Android Users in India Using PoriewSpy.
https://blog.trendmicro.com/trendlabs-security-
intelligence/hacking-group-spies-android-users-india-
using-poriewspy/, 2018. [Accessed: Feb 28, 2019].

[56] OPTEE OS - Hikey Platform Memory Config.
https://github.com/OP-TEE/optee os/blob/master/core/
arch/arm/plat-hikey/platform config.h, 2018.

https://blog.csdn.net/ch97ckd/article/details/78641457
http://androidxref.com/7.1.2_r36/xref/frameworks/av/include/media/AudioRecord.h
http://androidxref.com/7.1.2_r36/xref/frameworks/av/include/media/AudioRecord.h
http://androidxref.com/7.1.2_r36/xref/frameworks/av/include/media/AudioTrack.h
http://androidxref.com/7.1.2_r36/xref/frameworks/av/include/media/AudioTrack.h
https://www.drupal.org/
https://github.com/Dissem/Drupal-Editor
https://elgg.org/
https://f-droid.org/en/packages/
https://ionicframework.com/survey/2017#trends
https://developers.google.com/vision/android/barcodes-overview
https://developers.google.com/vision/android/barcodes-overview
http://androidxref.com/7.1.2_r36/xref/system/core/include/utils/Thread.h
http://androidxref.com/7.1.2_r36/xref/system/core/include/utils/Thread.h
https://www.slideshare.net/linaroorg/bud17400-secure-data-path-with-optee
https://www.slideshare.net/linaroorg/bud17400-secure-data-path-with-optee
https://web.archive.org/web/20190312204816/https://github.com/OP-TEE/optee_os/issues/1590
https://web.archive.org/web/20190312204816/https://github.com/OP-TEE/optee_os/issues/1590
https://web.archive.org/web/20180521054301/https://source.android.com/setup/build/devices
https://web.archive.org/web/20180521054301/https://source.android.com/setup/build/devices
https://globalplatform.org/specs-library/tee-system-architecture-v1-2/
https://globalplatform.org/specs-library/tee-system-architecture-v1-2/
https://blog.trendmicro.com/trendlabs-security-intelligence/hacking-group-spies-android-users-india-using-poriewspy/
https://blog.trendmicro.com/trendlabs-security-intelligence/hacking-group-spies-android-users-india-using-poriewspy/
https://blog.trendmicro.com/trendlabs-security-intelligence/hacking-group-spies-android-users-india-using-poriewspy/
https://github.com/OP-TEE/optee_os/blob/master/core/arch/arm/plat-hikey/platform_config.h
https://github.com/OP-TEE/optee_os/blob/master/core/arch/arm/plat-hikey/platform_config.h

145

[57] RTP, RTCP and Jitter Buffer.
https://web.archive.org/web/20200628202653/https:
//blog.wildix.com/rtp-rtcp-jitter-buffer/, 2018.

[58] Why I2S is Better for Transmitting Audio Compared to SPI.
https://web.archive.org/web/20200529014701/https:
//electronics.stackexchange.com/questions/384328/why-
i2s-is-better-for-transmitting-audio-compare-to-spi,
2018.

[59] GlobalPlatform Technology - TEE Internal Core API Specification (Version 1.2).
https://web.archive.org/web/20200614015034/https:
//globalplatform.org/wp-content/uploads/2016/11/
GPD TEE Internal Core API Specification v1.2 PublicRelease.pdf,
2018.

[60] I2S Amplifier Breakout. https://www.digikey.com/short/pzp5n4,
2019. [Accessed: April 15, 2019].

[61] How to Change the Keyboard on Your Android Phone.
https://www.androidcentral.com/how-set-default-keyboard-
your-android-phone, 2019.

[62] Android Developers: Android Keystore System. https:
//developer.android.com/training/articles/keystore.html,
2019.

[63] Hackers Can Compromise Your Android Phone With a Single Image File.
https://web.archive.org/web/20200326001718/https:
//news.yahoo.com/hackers-compromise-android-phone-
single-153148548.html, 2019.

[64] Global Messenger Usage, Penetration and Statistics.
https://web.archive.org/web/20200326001944/https:
//www.messengerpeople.com/global-messenger-usage-
statistics/, 2019.

[65] ARM - Changing Exception levels.
https://web.archive.org/web/20191018025500/https:
//developer.arm.com/docs/den0024/latest/fundamentals-of-
armv8/changing-exception-levels, 2019.

[66] Android Audio Overview.
https://source.android.com/devices/audio/, 2019.

[67] Android Audio Terminology.
https://source.android.com/devices/audio/terminology, 2019.

[68] Belle-sip in Linphone architecture.
http://linphone.org/technical-corner/belle-sip, 2019.
[Accessed: April 2, 2019].

[69] Conquering Android Camera APIs. https:
//web.archive.org/web/20200703193550/https://infinum.com/
the-capsized-eight/conquering-android-camera-api, 2019.

https://web.archive.org/web/20200628202653/https://blog.wildix.com/rtp-rtcp-jitter-buffer/
https://web.archive.org/web/20200628202653/https://blog.wildix.com/rtp-rtcp-jitter-buffer/
https://web.archive.org/web/20200529014701/https://electronics.stackexchange.com/questions/384328/why-i2s-is-better-for-transmitting-audio-compare-to-spi
https://web.archive.org/web/20200529014701/https://electronics.stackexchange.com/questions/384328/why-i2s-is-better-for-transmitting-audio-compare-to-spi
https://web.archive.org/web/20200529014701/https://electronics.stackexchange.com/questions/384328/why-i2s-is-better-for-transmitting-audio-compare-to-spi
https://web.archive.org/web/20200614015034/https://globalplatform.org/wp-content/uploads/2016/11/GPD_TEE_Internal_Core_API_Specification_v1.2_PublicRelease.pdf
https://web.archive.org/web/20200614015034/https://globalplatform.org/wp-content/uploads/2016/11/GPD_TEE_Internal_Core_API_Specification_v1.2_PublicRelease.pdf
https://web.archive.org/web/20200614015034/https://globalplatform.org/wp-content/uploads/2016/11/GPD_TEE_Internal_Core_API_Specification_v1.2_PublicRelease.pdf
https://www.digikey.com/short/pzp5n4
https://www.androidcentral.com/how-set-default-keyboard-your-android-phone
https://www.androidcentral.com/how-set-default-keyboard-your-android-phone
https://developer.android.com/training/articles/keystore.html
https://developer.android.com/training/articles/keystore.html
https://web.archive.org/web/20200326001718/https://news.yahoo.com/hackers-compromise-android-phone-single-153148548.html
https://web.archive.org/web/20200326001718/https://news.yahoo.com/hackers-compromise-android-phone-single-153148548.html
https://web.archive.org/web/20200326001718/https://news.yahoo.com/hackers-compromise-android-phone-single-153148548.html
https://web.archive.org/web/20200326001944/https://www.messengerpeople.com/global-messenger-usage-statistics/
https://web.archive.org/web/20200326001944/https://www.messengerpeople.com/global-messenger-usage-statistics/
https://web.archive.org/web/20200326001944/https://www.messengerpeople.com/global-messenger-usage-statistics/
https://web.archive.org/web/20191018025500/https://developer.arm.com/docs/den0024/latest/fundamentals-of-armv8/changing-exception-levels
https://web.archive.org/web/20191018025500/https://developer.arm.com/docs/den0024/latest/fundamentals-of-armv8/changing-exception-levels
https://web.archive.org/web/20191018025500/https://developer.arm.com/docs/den0024/latest/fundamentals-of-armv8/changing-exception-levels
https://source.android.com/devices/audio/
https://source.android.com/devices/audio/terminology
http://linphone.org/technical-corner/belle-sip
https://web.archive.org/web/20200703193550/https://infinum.com/the-capsized-eight/conquering-android-camera-api
https://web.archive.org/web/20200703193550/https://infinum.com/the-capsized-eight/conquering-android-camera-api
https://web.archive.org/web/20200703193550/https://infinum.com/the-capsized-eight/conquering-android-camera-api

146

[70] Android Camera API - android.hardware.Camera. https://
developer.android.com/reference/android/hardware/Camera,
2019.

[71] Android : Vulnerability Statistics. https://www.cvedetails.com/
product/19997/Google-Android.html?vendor id=1224, 2019.

[72] Hikey (LeMaker). https://www.96boards.org/product/hikey/, 2019.
[Accessed: April 15, 2019].

[73] VoIP Basics: About Jitter.
https://web.archive.org/web/20200628202555/http:
//toncar.cz/Tutorials/VoIP/VoIP Basics Jitter.html, 2019.
[Accessed: April 7, 2019].

[74] JPEG Camera Module.
https://web.archive.org/web/20190706225446/https:
//jpegcamera.com/home-featured-product/sc03mpa/, 2019.

[75] JPEG Camera Manual. https://drive.google.com/file/d/1LeTp-
novusl9LDquRAPBmsdwOKs1dqiC/view, 2019.

[76] Linphone - Introduction to Our New RTP Adaptive Jitter Buffer Algorithm.
https://web.archive.org/web/20200529042853/https:
//www.linphone.org/news/introduction-our-new-rtp-
adaptive-jitter-buffer-algorithm, 2019. [Accessed: April 7, 2019].

[77] Mediastreamer2 in Linphone Architecture.
http://linphone.org/technical-corner/mediastreamer2, 2019.
[Accessed: April 2, 2019].

[78] Pew Research Center - Mobile Phone Ownership Over Time.
https://www.pewresearch.org/internet/fact-sheet/mobile/,
2019.

[79] Mean Opinion Score for VoIP Testing.
https://web.archive.org/web/20200528214158/https:
//www.voipmechanic.com/mos-mean-opinion-score.htm, 2019.
[Accessed: March 23, 2019].

[80] Measuring Voice Quality.
https://web.archive.org/web/20190419110821/https:
//route-test.com/mean-opinion-score-mos-measure-voice-
quality-voip/, 2019. [Accessed: April 7, 2019].

[81] Amazon Mechanical Turk. https://www.mturk.com/, 2019. [Accessed: April
7, 2019].

[82] An Inside Look at Nation-State Cyber Surveillance Programs.
https://blog.lookout.com/shmoocon-2019, 2019. [Accessed: Feb 28,
2019].

[83] TruzCall Voice Recording - Non-Secure 0 Percent Loss.
https://drive.google.com/file/d/1Fz8pR-
FjLl4ug5jrt0BZ2KU2cJ5JKUeT/view?usp=sharing, 2019.

https://developer.android.com/reference/android/hardware/Camera
https://developer.android.com/reference/android/hardware/Camera
https://www.cvedetails.com/product/19997/Google-Android.html?vendor_id=1224
https://www.cvedetails.com/product/19997/Google-Android.html?vendor_id=1224
https://www.96boards.org/product/hikey/
https://web.archive.org/web/20200628202555/http://toncar.cz/Tutorials/VoIP/VoIP_Basics_Jitter.html
https://web.archive.org/web/20200628202555/http://toncar.cz/Tutorials/VoIP/VoIP_Basics_Jitter.html
https://web.archive.org/web/20190706225446/https://jpegcamera.com/home-featured-product/sc03mpa/
https://web.archive.org/web/20190706225446/https://jpegcamera.com/home-featured-product/sc03mpa/
https://drive.google.com/file/d/1LeTp-novusl9LDquRAPBmsdwOKs1dqiC/view
https://drive.google.com/file/d/1LeTp-novusl9LDquRAPBmsdwOKs1dqiC/view
https://web.archive.org/web/20200529042853/https://www.linphone.org/news/introduction-our-new-rtp-adaptive-jitter-buffer-algorithm
https://web.archive.org/web/20200529042853/https://www.linphone.org/news/introduction-our-new-rtp-adaptive-jitter-buffer-algorithm
https://web.archive.org/web/20200529042853/https://www.linphone.org/news/introduction-our-new-rtp-adaptive-jitter-buffer-algorithm
http://linphone.org/technical-corner/mediastreamer2
https://www.pewresearch.org/internet/fact-sheet/mobile/
https://web.archive.org/web/20200528214158/https://www.voipmechanic.com/mos-mean-opinion-score.htm
https://web.archive.org/web/20200528214158/https://www.voipmechanic.com/mos-mean-opinion-score.htm
https://web.archive.org/web/20190419110821/https://route-test.com/mean-opinion-score-mos-measure-voice-quality-voip/
https://web.archive.org/web/20190419110821/https://route-test.com/mean-opinion-score-mos-measure-voice-quality-voip/
https://web.archive.org/web/20190419110821/https://route-test.com/mean-opinion-score-mos-measure-voice-quality-voip/
https://www.mturk.com/
https://blog.lookout.com/shmoocon-2019
https://drive.google.com/file/d/1Fz8pR-FjLl4ug5jrt0BZ2KU2cJ5JKUeT/view?usp=sharing
https://drive.google.com/file/d/1Fz8pR-FjLl4ug5jrt0BZ2KU2cJ5JKUeT/view?usp=sharing

147

[84] TruzCall Voice Recording - Non-Secure 2 Percent Loss.
https://drive.google.com/file/d/
1pKitr GN19tP46pAEORQfQ9N8E8vyl0x/view?usp=sharing, 2019.

[85] Open Portable Trusted Execution Environment. https://www.op-tee.org/,
2019. [Accessed: March 27, 2019].

[86] OPTEE OS Drivers (Github). https:
//github.com/OP-TEE/optee os/tree/master/core/drivers,
2019.

[87] OPTEE Core Documentation.
https://web.archive.org/web/20200625005933/https:
//optee.readthedocs.io/en/latest/architecture/core.html,
2019.

[88] oRTP in Linphone Architecture.
https://www.linphone.org/technical-corner/ortp, 2019.
[Accessed: April 2, 2019].

[89] GlobalStats Stat Counter - Mobile Operating System Market Share Worldwide.
http:
//gs.statcounter.com/os-market-share/mobile/worldwide,
2019.

[90] Sample Rate Conversion.
https://source.android.com/devices/audio/src, 2019.

[91] Samsung Trusted Boot and TrustZone Integrity Management Explained.
https://web.archive.org/web/20191227100204/https:
//insights.samsung.com/2019/09/04/samsung-trusted-boot-
and-trustzone-integrity-management-explained/, 2019.

[92] TruzCall Voice Recording - Secure 0 Percent Loss.
https://drive.google.com/file/d/
1kf77uWONtPZzkMzoMf9eIWCCvQf3P0T /view?usp=sharing, 2019.

[93] TruzCall Voice Recording - Secure 2 Percent Loss.
https://drive.google.com/file/d/1yy-
ZzMecRMfbW6ho6xDV9xtye5Regy9L/view?usp=sharing, 2019.

[94] Raspberry Pi Forum - Pi 3 B+ as SPI slave.
https://web.archive.org/web/20190918175505/https:
//www.raspberrypi.org/forums/viewtopic.php?p=1413070, 2019.

[95] Raspberry Pi Forum - SPI Slave Interface on RPi 4.
https://web.archive.org/web/20200616212705/https:
//www.raspberrypi.org/forums/viewtopic.php?t=250788, 2019.

[96] Building a Secure System using TrustZone Technology.
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-
genc-009492c/PRD29-GENC-
009492C trustzone security whitepaper.pdf, 2019.

[97] TruzCall Voice Quality Survey. https://drive.google.com/file/d/
1HdEPQqIUBORvzESjy2zKUcW-6XnUV3Wr/view?usp=sharing, 2019.

https://drive.google.com/file/d/1pKitr_GN19tP46pAEORQfQ9N8E8vyl0x/view?usp=sharing
https://drive.google.com/file/d/1pKitr_GN19tP46pAEORQfQ9N8E8vyl0x/view?usp=sharing
https://www.op-tee.org/
https://github.com/OP-TEE/optee_os/tree/master/core/drivers
https://github.com/OP-TEE/optee_os/tree/master/core/drivers
https://web.archive.org/web/20200625005933/https://optee.readthedocs.io/en/latest/architecture/core.html
https://web.archive.org/web/20200625005933/https://optee.readthedocs.io/en/latest/architecture/core.html
https://www.linphone.org/technical-corner/ortp
http://gs.statcounter.com/os-market-share/mobile/worldwide
http://gs.statcounter.com/os-market-share/mobile/worldwide
https://source.android.com/devices/audio/src
https://web.archive.org/web/20191227100204/https://insights.samsung.com/2019/09/04/samsung-trusted-boot-and-trustzone-integrity-management-explained/
https://web.archive.org/web/20191227100204/https://insights.samsung.com/2019/09/04/samsung-trusted-boot-and-trustzone-integrity-management-explained/
https://web.archive.org/web/20191227100204/https://insights.samsung.com/2019/09/04/samsung-trusted-boot-and-trustzone-integrity-management-explained/
https://drive.google.com/file/d/1kf77uWONtPZzkMzoMf9eIWCCvQf3P0T_/view?usp=sharing
https://drive.google.com/file/d/1kf77uWONtPZzkMzoMf9eIWCCvQf3P0T_/view?usp=sharing
https://drive.google.com/file/d/1yy-ZzMecRMfbW6ho6xDV9xtye5Regy9L/view?usp=sharing
https://drive.google.com/file/d/1yy-ZzMecRMfbW6ho6xDV9xtye5Regy9L/view?usp=sharing
https://web.archive.org/web/20190918175505/https://www.raspberrypi.org/forums/viewtopic.php?p=1413070
https://web.archive.org/web/20190918175505/https://www.raspberrypi.org/forums/viewtopic.php?p=1413070
https://web.archive.org/web/20200616212705/https://www.raspberrypi.org/forums/viewtopic.php?t=250788
https://web.archive.org/web/20200616212705/https://www.raspberrypi.org/forums/viewtopic.php?t=250788
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
https://drive.google.com/file/d/1HdEPQqIUBORvzESjy2zKUcW-6XnUV3Wr/view?usp=sharing
https://drive.google.com/file/d/1HdEPQqIUBORvzESjy2zKUcW-6XnUV3Wr/view?usp=sharing

148

[98] How To Measure VoIP Quality And Jitter.
https://web.archive.org/web/20190419065704/https:
//route-test.com/voip-quality-delay-jitter-measurement/,
2019. [Accessed: March 23, 2019].

[99] Android Developers: Canvas. https://developer.android.com/
reference/android/graphics/Canvas, 2020.

[100] Android Dialog.
https://developer.android.com/guide/topics/ui/dialogs,
2020.

[101] Android EditText. https://developer.android.com/reference/
android/widget/EditText, 2020.

[102] Android - Input Method. https://developer.android.com/guide/
topics/text/creating-input-method, 2020.

[103] Android - Input Method Framework.
https://developer.android.com/reference/android/view/
inputmethod/InputMethodManager#ArchitectureOverview, 2020.

[104] Android InputConnection. https://developer.android.com/
reference/android/view/inputmethod/InputConnection, 2020.

[105] Android Specify the Input Method Type. https:
//developer.android.com/training/keyboard-input/style,
2020.

[106] Android Reference Boards.
https://web.archive.org/web/20200312161243/https:
//source.android.com/setup/build/devices, 2020.

[107] Android Developers: Surface. https:
//developer.android.com/reference/android/view/Surface,
2020.

[108] Android Fingerprint HAL. https://source.android.com/security/
authentication/fingerprint-hal, 2020.

[109] APKMirror. https://www.apkmirror.com/, 2020.

[110] Android Camera API v1.
https://developer.android.com/guide/topics/media/camera,
2020.

[111] Android Camera API v2 - android.hardware.camera2.
https://developer.android.com/reference/android/
hardware/camera2/package-summary, 2020.

[112] Android Camera Architecture.
https://source.android.com/devices/camera, 2020.

[113] Raspberry Pi Camera Module.
https://web.archive.org/web/20200707220428/https:
//www.amazon.com/gp/product/B07DNSSDGG/ref=
ppx yo dt b search asin image?ie=UTF8&psc=1, 2020.

https://web.archive.org/web/20190419065704/https://route-test.com/voip-quality-delay-jitter-measurement/
https://web.archive.org/web/20190419065704/https://route-test.com/voip-quality-delay-jitter-measurement/
https://developer.android.com/reference/android/graphics/Canvas
https://developer.android.com/reference/android/graphics/Canvas
https://developer.android.com/guide/topics/ui/dialogs
https://developer.android.com/reference/android/widget/EditText
https://developer.android.com/reference/android/widget/EditText
https://developer.android.com/guide/topics/text/creating-input-method
https://developer.android.com/guide/topics/text/creating-input-method
https://developer.android.com/reference/android/view/inputmethod/InputMethodManager#ArchitectureOverview
https://developer.android.com/reference/android/view/inputmethod/InputMethodManager#ArchitectureOverview
https://developer.android.com/reference/android/view/inputmethod/InputConnection
https://developer.android.com/reference/android/view/inputmethod/InputConnection
https://developer.android.com/training/keyboard-input/style
https://developer.android.com/training/keyboard-input/style
https://web.archive.org/web/20200312161243/https://source.android.com/setup/build/devices
https://web.archive.org/web/20200312161243/https://source.android.com/setup/build/devices
https://developer.android.com/reference/android/view/Surface
https://developer.android.com/reference/android/view/Surface
https://source.android.com/security/authentication/fingerprint-hal
https://source.android.com/security/authentication/fingerprint-hal
https://www.apkmirror.com/
https://developer.android.com/guide/topics/media/camera
https://developer.android.com/reference/android/hardware/camera2/package-summary
https://developer.android.com/reference/android/hardware/camera2/package-summary
https://source.android.com/devices/camera
https://web.archive.org/web/20200707220428/https://www.amazon.com/gp/product/B07DNSSDGG/ref=ppx_yo_dt_b_search_asin_image?ie=UTF8&psc=1
https://web.archive.org/web/20200707220428/https://www.amazon.com/gp/product/B07DNSSDGG/ref=ppx_yo_dt_b_search_asin_image?ie=UTF8&psc=1
https://web.archive.org/web/20200707220428/https://www.amazon.com/gp/product/B07DNSSDGG/ref=ppx_yo_dt_b_search_asin_image?ie=UTF8&psc=1

149

[114] Truz-Sim Camera Test. https://drive.google.com/file/d/
174uYHpo7heROq-Ox bE18oWbugAtbGez/view?usp=sharing, 2020.

[115] CameraX Overview.
https://developer.android.com/training/camerax, 2020.

[116] Chromium ImeAdapterImpl.
https://web.archive.org/web/20200718211020/https:
//chromium.googlesource.com/chromium/src/+/refs/heads/
master/content/public/android/java/src/org/chromium/
content/browser/input/ImeAdapterImpl.java#515, 2020.

[117] How to Choose an Ethernet Cable. https://www.digitaltrends.com/
computing/different-types-of-ethernet-cables-explained/,
2020.

[118] Android Developers - Get the Last Known Location. https://
developer.android.com/training/location/retrieve-current,
2020.

[119] Global Platform. https://globalplatform.org/, 2020.

[120] The Basics of GPS.
https://learn.sparkfun.com/tutorials/gps-basics/all, 2020.

[121] GPS Dongle.
https://www.amazon.com/gp/product/B078Y52FGQ/ref=
ppx yo dt b search asin image?ie=UTF8&psc=1, 2020.

[122] Why Doesn’t GPS Work Inside a Building? https://itstillworks.com/
doesnt-gps-work-inside-building-18659.html, 2020.

[123] User Manual for HiKey 620.
https://www.96boards.org/documentation/consumer/hikey/
hikey620/hardware-docs/hardware-user-manual.md.html, 2020.

[124] User Manual for HiKey 960.
https://www.96boards.org/documentation/consumer/hikey/
hikey960/hardware-docs/hardware-user-manual.md.html, 2020.

[125] 96Boards Hikey. https://www.96boards.org/product/hikey/, 2020.

[126] What is Hybrid App Development? https://ionicframework.com/
resources/articles/what-is-hybrid-app-development, 2020.

[127] Triple-Axis Accelerometer.
https://web.archive.org/web/20200617213051/https:
//www.adafruit.com/product/2019, 2020.

[128] Android Developers - InputMethodService.
https://developer.android.com/reference/android/
inputmethodservice/InputMethodService, 2020.

[129] Android Developers - LocationManager.
https://developer.android.com/reference/android/
location/LocationManager, 2020.

https://drive.google.com/file/d/174uYHpo7heROq-Ox_bE18oWbugAtbGez/view?usp=sharing
https://drive.google.com/file/d/174uYHpo7heROq-Ox_bE18oWbugAtbGez/view?usp=sharing
https://developer.android.com/training/camerax
https://web.archive.org/web/20200718211020/https://chromium.googlesource.com/chromium/src/+/refs/heads/master/content/public/android/java/src/org/chromium/content/browser/input/ImeAdapterImpl.java#515
https://web.archive.org/web/20200718211020/https://chromium.googlesource.com/chromium/src/+/refs/heads/master/content/public/android/java/src/org/chromium/content/browser/input/ImeAdapterImpl.java#515
https://web.archive.org/web/20200718211020/https://chromium.googlesource.com/chromium/src/+/refs/heads/master/content/public/android/java/src/org/chromium/content/browser/input/ImeAdapterImpl.java#515
https://web.archive.org/web/20200718211020/https://chromium.googlesource.com/chromium/src/+/refs/heads/master/content/public/android/java/src/org/chromium/content/browser/input/ImeAdapterImpl.java#515
https://www.digitaltrends.com/computing/different-types-of-ethernet-cables-explained/
https://www.digitaltrends.com/computing/different-types-of-ethernet-cables-explained/
https://developer.android.com/training/location/retrieve-current
https://developer.android.com/training/location/retrieve-current
https://globalplatform.org/
https://learn.sparkfun.com/tutorials/gps-basics/all
https://www.amazon.com/gp/product/B078Y52FGQ/ref=ppx_yo_dt_b_search_asin_image?ie=UTF8&psc=1
https://www.amazon.com/gp/product/B078Y52FGQ/ref=ppx_yo_dt_b_search_asin_image?ie=UTF8&psc=1
https://itstillworks.com/doesnt-gps-work-inside-building-18659.html
https://itstillworks.com/doesnt-gps-work-inside-building-18659.html
https://www.96boards.org/documentation/consumer/hikey/hikey620/hardware-docs/hardware-user-manual.md.html
https://www.96boards.org/documentation/consumer/hikey/hikey620/hardware-docs/hardware-user-manual.md.html
https://www.96boards.org/documentation/consumer/hikey/hikey960/hardware-docs/hardware-user-manual.md.html
https://www.96boards.org/documentation/consumer/hikey/hikey960/hardware-docs/hardware-user-manual.md.html
https://www.96boards.org/product/hikey/
https://ionicframework.com/resources/articles/what-is-hybrid-app-development
https://ionicframework.com/resources/articles/what-is-hybrid-app-development
https://web.archive.org/web/20200617213051/https://www.adafruit.com/product/2019
https://web.archive.org/web/20200617213051/https://www.adafruit.com/product/2019
https://developer.android.com/reference/android/inputmethodservice/InputMethodService
https://developer.android.com/reference/android/inputmethodservice/InputMethodService
https://developer.android.com/reference/android/location/LocationManager
https://developer.android.com/reference/android/location/LocationManager

150

[130] MIPI Alliance Overview.
https://web.archive.org/web/20200604215742/https:
//www.mipi.org/about-us, 2020.

[131] MIPI CSI-3. https://mipi.org/specifications/csi-3, 2020.

[132] MIPI I3C. https:
//www.mipi.org/resources/I3C-frequently-asked-questions,
2020.

[133] Android Developers: MotionEvent. https://developer.android.com/
reference/android/view/MotionEvent, 2020.

[134] OP-TEE: Platforms Supported. https:
//optee.readthedocs.io/en/latest/general/platforms.html,
2020.

[135] OP-TEE OS - Load TA RPC Example.
https://web.archive.org/web/20200704205942/https:
//github.com/ForgeRock/optee-os/blob/master/core/arch/
arm/kernel/ree fs ta.c, 2020.

[136] OP-TEE: optee client - tee-supplicant. https://github.com/OP-TEE/
optee client/tree/master/tee-supplicant, 2020.

[137] OP-TEE: optee client - tee-supplicant C code.
https://web.archive.org/web/20200704212421/https:
//github.com/OP-TEE/optee client/blob/master/tee-
supplicant/src/tee supplicant.c, 2020.

[138] Raspberry Pi Networking Benchmarks.
https://www.pidramble.com/wiki/benchmarks/networking, 2020.

[139] USB on Raspberry Pi. https://www.raspberrypi.org/
documentation/hardware/raspberrypi/usb/README.md, 2020.

[140] Python pySerial.
https://pythonhosted.org/pyserial/pyserial.html, 2020.

[141] Simulation Setup Demo. https://drive.google.com/file/d/
1 kuxg2lp NnOGm1D8U7HsZP -wyRyvwa/view?usp=sharing, 2020.

[142] Python tkinter. https://docs.python.org/3/library/tkinter.html,
2020.

[143] Koolspan TrustCall. https://koolspan.com/trustcall/, 2020.

[144] Koolspan TrustCall Android FAQ.
https://koolspan.com/newsroom/android-support-faqs/, 2020.

[145] Trustonic. https://www.trustonic.com/about-us/, 2020.

[146] I2C to UART Bridge Controller.
https://web.archive.org/web/20200617215238/https:
//www.digikey.com/product-detail/en/diodes-incorporated/
PI7C9X762BLE/PI7C9X762BLE-ND/4924179, 2020.

https://web.archive.org/web/20200604215742/https://www.mipi.org/about-us
https://web.archive.org/web/20200604215742/https://www.mipi.org/about-us
https://mipi.org/specifications/csi-3
https://www.mipi.org/resources/I3C-frequently-asked-questions
https://www.mipi.org/resources/I3C-frequently-asked-questions
https://developer.android.com/reference/android/view/MotionEvent
https://developer.android.com/reference/android/view/MotionEvent
https://optee.readthedocs.io/en/latest/general/platforms.html
https://optee.readthedocs.io/en/latest/general/platforms.html
https://web.archive.org/web/20200704205942/https://github.com/ForgeRock/optee-os/blob/master/core/arch/arm/kernel/ree_fs_ta.c
https://web.archive.org/web/20200704205942/https://github.com/ForgeRock/optee-os/blob/master/core/arch/arm/kernel/ree_fs_ta.c
https://web.archive.org/web/20200704205942/https://github.com/ForgeRock/optee-os/blob/master/core/arch/arm/kernel/ree_fs_ta.c
https://github.com/OP-TEE/optee_client/tree/master/tee-supplicant
https://github.com/OP-TEE/optee_client/tree/master/tee-supplicant
https://web.archive.org/web/20200704212421/https://github.com/OP-TEE/optee_client/blob/master/tee-supplicant/src/tee_supplicant.c
https://web.archive.org/web/20200704212421/https://github.com/OP-TEE/optee_client/blob/master/tee-supplicant/src/tee_supplicant.c
https://web.archive.org/web/20200704212421/https://github.com/OP-TEE/optee_client/blob/master/tee-supplicant/src/tee_supplicant.c
https://www.pidramble.com/wiki/benchmarks/networking
https://www.raspberrypi.org/documentation/hardware/raspberrypi/usb/README.md
https://www.raspberrypi.org/documentation/hardware/raspberrypi/usb/README.md
https://pythonhosted.org/pyserial/pyserial.html
https://drive.google.com/file/d/1_kuxg2lp_NnOGm1D8U7HsZP_-wyRyvwa/view?usp=sharing
https://drive.google.com/file/d/1_kuxg2lp_NnOGm1D8U7HsZP_-wyRyvwa/view?usp=sharing
https://docs.python.org/3/library/tkinter.html
https://koolspan.com/trustcall/
https://koolspan.com/newsroom/android-support-faqs/
https://www.trustonic.com/about-us/
https://web.archive.org/web/20200617215238/https://www.digikey.com/product-detail/en/diodes-incorporated/PI7C9X762BLE/PI7C9X762BLE-ND/4924179
https://web.archive.org/web/20200617215238/https://www.digikey.com/product-detail/en/diodes-incorporated/PI7C9X762BLE/PI7C9X762BLE-ND/4924179
https://web.archive.org/web/20200617215238/https://www.digikey.com/product-detail/en/diodes-incorporated/PI7C9X762BLE/PI7C9X762BLE-ND/4924179

151

[147] Android Developers: WebView. https:
//developer.android.com/reference/android/webkit/WebView,
2020.

[148] WebView for Android. https:
//developer.chrome.com/multidevice/webview/overview, 2020.

[149] Analyzing WhatsApp Calls. https:
//web.archive.org/web/20200209095556/https://medium.com/
@schirrmacher/analyzing-whatsapp-calls-176a9e776213, 2020.

[150] A. Ahlawat and W. Du. TruzCall: Secure VoIP Calling on Android using ARM
TrustZone. In 2020 Sixth International Conference on Mobile And Secure Services
(MobiSecServ), pages 1–12, 2020. URL
https://ieeexplore.ieee.org/abstract/document/9042945.

[151] N. AlDuaij, A. Vant Hof, and J. Nieh. Heterogeneous Multi-Mobile Computing. In
Proceedings of the 17th Annual International Conference on Mobile Systems,
Applications, and Services, MobiSys 19, page 494507, New York, NY, USA, 2019.
Association for Computing Machinery. ISBN 9781450366618. doi:
10.1145/3307334.3326096. URL
https://doi.org/10.1145/3307334.3326096.

[152] A. Amiri Sani, K. Boos, M. H. Yun, and L. Zhong. Rio: A System Solution for
Sharing I/O between Mobile Systems. In Proceedings of the 12th Annual
International Conference on Mobile Systems, Applications, and Services, MobiSys
14, page 259272, New York, NY, USA, 2014. Association for Computing
Machinery. ISBN 9781450327930. doi: 10.1145/2594368.2594370. URL
https://doi.org/10.1145/2594368.2594370.

[153] A. Barth, C. Jackson, and C. Reis. The Security Architecture of the Chromium
Browser. Technical report, 2008. URL
http://css.csail.mit.edu/6.858/2018/readings/chromium.pdf.

[154] F. Brasser, D. Gens, P. Jauernig, A.-R. Sadeghi, and E. Stapf. SANCTUARY:
ARMing TrustZone with User-space Enclaves. In Network and Distributed Systems
Security (NDSS) Symposium, February 24-27 2019. URL
https://dx.doi.org/10.14722/ndss.2019.23448.

[155] R. Buhren, J. Vetter, and J. Nordholz. The Threat of Virtualization:
Hypervisor-Based Rootkits on the ARM Architecture. volume 9977, 11 2016. doi:
10.1007/978-3-319-50011-9 29.

[156] M. Ender, G. Duppmann, A. Wild, T. Poppelmann, and T. Guneysu. A
Hardware-Assisted Proof-of-Concept for Secure VoIP Clients on Untrusted
Operating Systems. In Proceedings of 2014 International Conference on
ReConFigurable Computing and FPGAs, ReConFig’ 14, Cancun, Mexico, Dec
8-10 2014. URL https://doi.org/10.1109/ReConFig.2014.7032489.

[157] C. Göttel, P. Felber, and V. Schiavoni. Developing Secure Services for IoT with
OP-TEE: A First Look at Performance and Usability. In J. Pereira and L. Ricci,
editors, Distributed Applications and Interoperable Systems, pages 170–178,
Cham, 2019. Springer International Publishing. ISBN 978-3-030-22496-7.

https://developer.android.com/reference/android/webkit/WebView
https://developer.android.com/reference/android/webkit/WebView
https://developer.chrome.com/multidevice/webview/overview
https://developer.chrome.com/multidevice/webview/overview
https://web.archive.org/web/20200209095556/https://medium.com/@schirrmacher/analyzing-whatsapp-calls-176a9e776213
https://web.archive.org/web/20200209095556/https://medium.com/@schirrmacher/analyzing-whatsapp-calls-176a9e776213
https://web.archive.org/web/20200209095556/https://medium.com/@schirrmacher/analyzing-whatsapp-calls-176a9e776213
https://ieeexplore.ieee.org/abstract/document/9042945
https://doi.org/10.1145/3307334.3326096
https://doi.org/10.1145/2594368.2594370
http://css.csail.mit.edu/6.858/2018/readings/chromium.pdf
https://dx.doi.org/10.14722/ndss.2019.23448
https://doi.org/10.1109/ReConFig.2014.7032489

152

[158] Y. Jong, P. Hsiu, S. Cheng, and T. Kuo. A Semantics-Aware Design for Mounting
Remote Sensors on Mobile Systems. In 2016 53nd ACM/EDAC/IEEE Design
Automation Conference (DAC), pages 1–6, 2016. URL
https://ieeexplore.ieee.org/document/7544382.

[159] F. Kohnhuser, D. Pllen, and S. Katzenbeisser. Ensuring the Safe and Secure
Operation of Electronic Control Units in Road Vehicles. In 2019 IEEE Security and
Privacy Workshops (SPW), pages 126–131, 2019.

[160] D. Kwon, J. Seo, Y. Cho, B. Lee, and Y. Paek. PrOS: Light-Weight Privatized
Secure OSes in ARM TrustZone. IEEE Transactions on Mobile Computing, 19(6):
1434–1447, 2020.

[161] M. Lentz, R. Sen, P. Druschel, and B. Bhattacharjee. SeCloak: ARM
TrustZone-based Mobile Peripheral Control. In Proceedings of the 16th Annual
International Conference on Mobile Systems, Applications, and Services, MobiSys
’18, pages 1–13, New York, NY, USA, 2018. ACM. ISBN 978-1-4503-5720-3. doi:
10.1145/3210240.3210334. URL
http://doi.acm.org/10.1145/3210240.3210334.

[162] W. Li, M. Ma, J. Han, Y. Xia, B. Zang, C.-K. Chu, and T. Li. Building Trusted Path
on Untrusted Device Drivers for Mobile Devices. In Proceedings of 5th
Asia-Pacific Workshop on Systems, APSys ’14, pages 8:1–8:7, New York, NY,
USA, 2014. ACM. ISBN 978-1-4503-3024-4. doi: 10.1145/2637166.2637225.
URL http://doi.acm.org/10.1145/2637166.2637225.

[163] X. Li, H. Hu, G. Bai, Y. Jia, Z. Liang, and P. Saxena. DroidVault: A Trusted Data
Vault for Android Devices. In Proceedings of the 2014 19th International
Conference on Engineering of Complex Computer Systems, ICECCS’ 14, Tianjin,
China, Aug 4-7 2014. URL https://doi.org/10.1109/ICECCS.2014.13.

[164] Y. Li and W. Gao. Interconnecting Heterogeneous Devices in the Personal Mobile
Cloud. In IEEE INFOCOM 2017 - IEEE Conference on Computer
Communications, pages 1–9, 2017. URL
https://ieeexplore.ieee.org/document/8057083.

[165] D. Liu and L. P. Cox. VeriUI: Attested Login for Mobile Devices. In Proceedings
of the 15th Workshop on Mobile Computing Systems and Applications, HotMobile’
14, Santa Barbara, CA, USA, February 26-27 2014.

[166] S. Oh, H. Yoo, D. R. Jeong, D. H. Bui, and I. Shin. Mobile Plus: Multi-Device
Mobile Platform for Cross-Device Functionality Sharing. In Proceedings of the
15th Annual International Conference on Mobile Systems, Applications, and
Services, MobiSys 17, page 332344, New York, NY, USA, 2017. Association for
Computing Machinery. ISBN 9781450349284. doi: 10.1145/3081333.3081348.
URL https://doi.org/10.1145/3081333.3081348.

[167] D. J. Sebastian, U. Agrawal, A. Tamimi, and A. Hahn. DER-TEE: Secure
Distributed Energy Resource Operations Through Trusted Execution Environments.
IEEE Internet of Things Journal, 6(4):6476–6486, 2019.

[168] H. Sun, K. Sun, Y. Wang, J. Jing, and H. Wang. TrustICE: Hardware-Assisted
Isolated Computing Environments on Mobile Devices. In Proceedings of the
International Conference on Dependable Systems and Networks, DSN’ 15, Rio de
Janeiro, Brazil, June 22-25 2015.

https://ieeexplore.ieee.org/document/7544382
http://doi.acm.org/10.1145/3210240.3210334
http://doi.acm.org/10.1145/2637166.2637225
https://doi.org/10.1109/ICECCS.2014.13
https://ieeexplore.ieee.org/document/8057083
https://doi.org/10.1145/3081333.3081348

153

[169] Trustonic. Trustonic TEE Trusted User Interface.
https://www.trustonic.com/news/blog/benefits-trusted-
user-interface/, 2019.

[170] Wikipedia. Adaptive Differential Pulse-Code Modulation — Wikipedia, The Free
Encyclopedia. https://en.wikipedia.org/wiki/
Adaptive differential pulse-code modulation, 2018.

[171] Wikipedia. Differential Pulse-Code Modulation — Wikipedia, The Free
Encyclopedia. https://en.wikipedia.org/wiki/
Differential pulse-code modulation, 2018.

[172] Wikipedia. Packet Loss — Wikipedia, The Free Encyclopedia.
https://en.wikipedia.org/wiki/Packet loss, 2019.

[173] Wikipedia. Stream Cipher Attacks — Wikipedia, The Free Encyclopedia.
https://en.wikipedia.org/wiki/Stream cipher attacks, 2019.

[174] Wikipedia. Comparison of VoIP Software — Wikipedia, The Free Encyclopedia.
https://en.wikipedia.org/wiki/Comparison of VoIP software,
2019.

[175] Wikipedia. Framebuffer — Wikipedia, The Free Encyclopedia.
https://en.wikipedia.org/wiki/Framebuffer, 2020.

[176] Wikipedia. I2C — Wikipedia, The Free Encyclopedia.
https://en.wikipedia.org/wiki/I%C2%B2C, 2020.

[177] Wikipedia. Rolling Shutter — Wikipedia, The Free Encyclopedia.
https://en.wikipedia.org/wiki/Rolling shutter, 2020.

[178] Wikipedia. Voice over ip — Wikipedia, the free encyclopedia.
"https://en.wikipedia.org/wiki/Voice over IP", 2020.

[179] S. D. Yalew, G. Q. M. Jr., and M. Correia. Light-SPD : A Platform to Prototype
Secure Mobile Applications. In Proceedings of Workshop on Privacy-Aware
Mobile Computing, PAMCO’ 16, Paderborn, Germany, July 05 2016. URL
https://dl.acm.org/doi/10.1145/2940343.2940349.

[180] K. Ying. Integrating TrustZone Protection with Communication Paths for Mobile
Operating System. PhD thesis, Syracuse University, 2019. URL
https://surface.syr.edu/cgi/viewcontent.cgi?article=
2019&context=etd.

[181] K. Ying, A. Ahlawat, B. Alsharifi, Y. Jiang, P. Thavai, and W. Du. TruZ-Droid:
Integrating TrustZone with Mobile Operating System. In Proceedings of the 16th
Annual International Conference on Mobile Systems, Applications, and Services,
MobiSys ’18, pages 14–27, New York, NY, USA, 2018. ACM. ISBN
978-1-4503-5720-3. doi: 10.1145/3210240.3210338. URL
http://doi.acm.org/10.1145/3210240.3210338.

[182] K. Ying, P. Thavai, and W. Du. TruZ-View: Developing TrustZone User Interface
for Mobile OS Using Delegation Integration Model. In Proceedings of the Ninth
ACM Conference on Data and Application Security and Privacy, CODASPY ’19,
pages 1–12, New York, NY, USA, 2019. ACM. ISBN 978-1-4503-6099-9. doi:
10.1145/3292006.3300035. URL
http://doi.acm.org/10.1145/3292006.3300035.

https://www.trustonic.com/news/blog/benefits-trusted-user-interface/
https://www.trustonic.com/news/blog/benefits-trusted-user-interface/
https://en.wikipedia.org/wiki/Adaptive_differential_pulse-code_modulation
https://en.wikipedia.org/wiki/Adaptive_differential_pulse-code_modulation
https://en.wikipedia.org/wiki/Differential_pulse-code_modulation
https://en.wikipedia.org/wiki/Differential_pulse-code_modulation
https://en.wikipedia.org/wiki/Packet_loss
https://en.wikipedia.org/wiki/Stream_cipher_attacks
https://en.wikipedia.org/wiki/Comparison_of_VoIP_software
https://en.wikipedia.org/wiki/Framebuffer
https://en.wikipedia.org/wiki/I%C2%B2C
https://en.wikipedia.org/wiki/Rolling_shutter
"https://en.wikipedia.org/wiki/Voice_over_IP"
https://dl.acm.org/doi/10.1145/2940343.2940349
https://surface.syr.edu/cgi/viewcontent.cgi?article=2019&context=etd
https://surface.syr.edu/cgi/viewcontent.cgi?article=2019&context=etd
http://doi.acm.org/10.1145/3210240.3210338
http://doi.acm.org/10.1145/3292006.3300035

154

[183] D. Zhang. Trustfa: TrustZone-Assisted Facial Authentication on Smartphone.
Technical report, 2014. URL
http://www.donglizhang.org/trustfa.pdf.

[184] S. Zhao, Q. Zhang, Y. Qin, W. Feng, and D. Feng. Minimal Kernel: An Operating
System Architecture for TEE to Resist Board Level Physical Attacks. In 22nd
International Symposium on Research in Attacks, Intrusions and Defenses (RAID
2019), pages 105–120, Chaoyang District, Beijing, Sept. 2019. USENIX
Association. ISBN 978-1-939133-07-6. URL https:
//www.usenix.org/conference/raid2019/presentation/zhao.

[185] S. Zhao, Q. Zhang, Y. Qin, W. Feng, and D. Feng. SecTEE: A Software-Based
Approach to Secure Enclave Architecture Using TEE. In Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Security, CCS 19,
page 17231740, New York, NY, USA, 2019. Association for Computing
Machinery. ISBN 9781450367479. doi: 10.1145/3319535.3363205. URL
https://doi.org/10.1145/3319535.3363205.

http://www.donglizhang.org/trustfa.pdf
https://www.usenix.org/conference/raid2019/presentation/zhao
https://www.usenix.org/conference/raid2019/presentation/zhao
https://doi.org/10.1145/3319535.3363205

VITA

155

VITA

Amit Ahlawat received his Bachelor of Technology degree in Computer Engineering

from Maharshi Dayanand University, Haryana, India. He received his Masters of Science

degree in Computer Engineering from Syracuse University (Syracuse, New York, USA).

This dissertation was defended in October 2020 at Syracuse University.

	SECURING USER INTERACTION CHANNELS ON MOBILE PLATFORM USING ARM TRUSTZONE
	Recommended Citation

	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Risks faced by Smartphone Channels
	ARM Architecture and Trusted Execution Environment
	Component Binding Across OS
	Thesis Statement and Contributions
	Organization of Dissertation

	Background
	ARM TrustZone
	TrustZone Development Boards
	Android Text Input
	Text Input UI Element
	Text Input via Binding

	Android Action Confirmation
	Using AlertDialog for Confirmation
	Using Activity for Confirmation
	Trigger Confirmation Code via Binding

	Voice over IP (VoIP) Call

	Truz-UI: Secure Input Interaction
	Problem Overview
	Broken Binding between Code and UI
	Main Idea: Cross-OS Binding
	Related Work
	Securing Text Input
	Securing Action Confirmation
	Action Confirmation using AlertDialog
	Action Confirmation using Activity
	Attestation Using Android Keystore

	User Involved Access Control
	Sending TEE Protected Data to Server
	Hardware Implementation
	Security Analysis
	Evaluation
	Effectiveness
	Ease of Adoption
	Performance

	Publication

	Truz-Call: Secure Voice Interaction for VoIP Calling
	Problem Overview
	Factors Influencing TEE Integration Design
	Related Work
	Secure VoIP Calling Problem Scope
	Protocol Support
	VoIP App Computation Stages

	Main Idea
	TEE Invocation and Data Encoding
	Audio Data Encoding
	Independent Audio Pipeline Stages
	TEE Bridges and TAs

	VoIP Call Initiation
	TEE Invocation by Audio Framework
	TEE Invocation by AudioRecord
	TEE Invocation by AudioTrack

	TEE Invocation by SRTP
	Reference Data Management
	Data Management for Record
	Data Management for Playback

	Security Analysis
	Simulation Test Environment
	Evaluation
	Performance
	VoIP Quality

	Publication

	Truz-Sim: Hardware Simulation to Assist TrustZone Research
	Problem Overview
	Related Work
	Main Idea
	Design
	High Level Design
	Camera Access Design
	GPS Access Design

	Implementation
	Trusted App APIs for Hardware Access
	Simulation Driver
	Normal World App Testing
	Camera Access Implementation
	GPS Access Implementation
	UI Touch Input

	Evaluation
	GPS Testing
	Camera Testing
	UI Touch Input Testing

	Discussion

	Conclusion And Future Work
	Secure Input Interaction for Hybrid Applications
	VoIP Computation Stages in TEE
	Expanding Hardware Simulation Support

	LIST OF REFERENCES
	VITA

