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Abstract

Temperature plays an incredibly important role in determining what values a quantum mechanical property of a

chemical system can assume. The mechanism by which temperature and the other features of a chemical system’s

environment effects observable properties is through their effect on the population of thermally-accessible structures.

As temperature changes, the population of these thermally-accessible structures shifts, and correspondingly so do

the distributions of quantum mechanical properties. Prediction, calculation, and analysis of these distributions are

fundamental to the study of statistical mechanics, and are integral to understanding what role the chemical envi-

ronment has on any quantum mechanical property that may be of interest. One of the largest ongoing challenges

concerning the determination of quantum mechanical distributions is the need for 105 to 106 conformational samples

from the population of structures in order to obtain accurate and reliable distributions of properties. For large chem-

ical systems consisting of many electrons, performing ab-initio calculations on such a large number of structures is

computationally infeasible using traditional quantum chemistry methods. This problem is even further exacerbated

when distributions of excited electronic state properties such as electronic spectra are desired, due to the increased

computational cost of ab-initio excited-state techniques.

To overcome this computational barrier, I have developed the Effective Stochastic Potential (ESP) method which

addresses the challenge of conformational sampling. The ESP method is a first-principles technique which uses

random matrix theory to treat noisy chemical environments of a system stochastically. In doing so, the computa-

tional cost of performing conformational sampling on the system can be drastically reduced. The accuracy of the

ESP method has been confirmed by benchmarking against calculations of both ground and excited-state properties

of H2O. I have applied the ESP method on various systems, including semiconductor nanoparticles to efficiently

obtain temperature-dependent distributions of HOMO-LUMO gap energies, excitation energies, and exciton bind-

ing energies comprised of a million samples. For many of the systems studied, calculation of these distributions

using traditional first-principle methods would be infeasible. Using the ESP method, it has been calculated that the

distributions of excitation energies of PbS and CdSe nanoparticles have a pronounced red-shift as the temperature

of the system increases. It has also been found that the excitation energy distributions in PbS nanoparticles ex-

hibit sub-Gaussian characteristics at physically-relevant temperatures. These results highlight the ability of the ESP

method to uncover unique temperature-dependent features of quantum mechanical distributions that may otherwise

be impossible to obtain.
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Chapter 1

Scope: The Structure-Property Relationship in Quantum Chemistry

The Role of Structure in Quantum Chemistry

Chemical structure is foundational to the entire field of chemistry. Structure informs much of how we understand and

conceptualize the properties of materials and how they react. The importance of chemical structure is so broad, it can

be seen in areas of chemistry such as conformational isomers, crystal polymorphs, and transition-state theory.
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Figure 1.1: (a) Three different allotropes of carbon: diamond, graphene, and amorphous [1]. (b) A simplified depiction
of bromomethane reacting with hydroxide anion to form methanol. (c) Conformation energy as a function of dihedral
angle in butane [2].

Figure 1.1 shows a few of these examples in more detail. In panel (a) three different allotropes of elemental

carbon are shown (diamond, graphene, and amorphous/coal). Changing how the carbon atoms are arranged with

respect to one another results in materials with vastly different physical and chemical properties. In panel (b), a simple
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representation of the energetics of bromomethane reacting with hydroxide anion to form methanol is shown. The

reaction coordinate is an abstraction of the relative positions of all the atoms during the course of the reaction, and

the existence of a transition state as pictured can have a significant impact on the reaction kinetics. Finally, in panel

(c), the conformation energy as a function of dihedral angle in butane is plotted. The proximity of the atoms to one

another has a large effect on which conformations are energetically favorable.

The relationship between structure and property is immediately apparent in quantum chemistry through the elec-

tronic Schrödinger Equation ( Equation 1.1):

HelecΦelec = EelecΦelec (1.1)

where Helec is the electronic Hamiltonian and Φelec is the electronic wave function. Under the Born-Oppenheimer

approximation, Φelec has only a parametric dependence on the coordinates of all nuclei in the system, R ( Equa-

tion 1.2):

Φelec = Φelec ({r} ;{R}) . (1.2)

However, the positions of the nuclei still have a major role in the electronic properties of the system. To demon-

strate this, consider a general many-electron system, which typically requires an effective one-electron Hamiltonian

as a starting point, as in the Hartree-Fock (HF) approximation or in density functional theory (DFT). Such an effective

one-election Hamiltonian h(r) has the form seen in Equation 1.3:

h(r) =
−h̄2

2m
∇

2 + vext(r)+ veff(r), (1.3)

where −h̄2

2m ∇2 is the kinetic energy of the electron, vext(r) is the interaction of the electron with the external potential

field, and veff(r) is the effective interaction with all other electrons in the system. The problem of generating the

molecular orbitals of the system then reduces to solving the pseudo-eigenvalue equation in Equation 1.4

hiχi = εiχi, (1.4)

where hi is the effective one-electron Hamiltonian for an arbitrary electron i, χi is the molecular orbital of that electron,

and εi is the energy of that molecular orbital. This pseudo-eigenvalue problem can be solved through a mean-field

approximation, also known as a self-consistent field (SCF) procedure, in which each electron interacts with the average

field of all other remaining electrons [3]. The SCF procedure can be summarized as the process of first defining a
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guess Hamiltonian ( Equation 1.5):

hcore/Hückel[R], (1.5)

then diagonalizing to calculate guess molecular orbitals ( Equation 1.6):

hcore/Hückel
χi = εiχi[R]. (1.6)

The electron density of the resulting guess orbitals in Equation 1.6 can be used to construct a guess for the effec-

tive electron-electron (e-e) interaction potential. In this way, the self-consistent determination of the effective e-e

interaction potential makes it a functional of the nuclear coordinates, as shown in Figure 1.2. The key point to this

p p ph =

eff [{ }]pv F =

Figure 1.2: Simplified diagram of the functional dependence of molecular orbitals on the effective electron-electron
interaction.

discussion is that the nuclear coordinates of a chemical system and its environment have a profound effect on the

system’s observable electronic properties.

The Effect of Temperature and Chemical Environment on Structure

The connection between a system’s structure and its chemical environment is one of the central concepts in chemi-

cal thermodynamics. Specifically, in the case of a canonical ensemble, the population of various chemical structures

(R) depends on the temperature of the system, as given by Boltzmann statistics [4]. Consequently, all of the quan-

tum mechanical (QM) properties (X) of a chemical system at thermal equilibrium are determined not by its singular

minimum-energy structure, but by an ensemble of conformations which are mapped by the electronic Schrödinger

equation ( Equation 1.1).

Generation, evaluation, and analysis of the statistical distribution of QM properties is crucial for the description

and prediction of temperature-dependent phenomena. For example, atomic motion due to temperature and solvent

interaction is one of the primary sources of spectral line broadening in electronic spectra [5, 6, 7]. In computational

studies of spectra, this temperature effect is often approximated as a post-processing step by fitting the 0K line spec-

trum to a temperature-dependent Lorentzian or Gaussian function [8]. However, this approach is completely empirical,
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and is often a poor representation of the true finite-temperature spectra for many chemical systems. [9, 10, 11].

Specific examples of the relationship between temperature, structure, and property in chemistry are as broad as

there are molecules to investigate. One example where the computational cost of treating this temperature-structure

connection is especially demanding is in the area of crystal structure prediction (CSP). The arrangement of organic

molecules in a lattice can have a significant impact on the properties of the crystal. In the pharmaceutical industry,

different crystal polymorphs can exhibit very different solubilities and, correspondingly, bioavailabilities [12, 13,

14]. In CSP, the free energies of various configurations of a crystal lattice are calculated and ranked in order to

identify likely polymorphs at the temperature of interest [15]. The computational challenges of performing CSP for

pharmaceutical applications are multifaceted [14, 13, 16]. In summary, these include:

1. The huge search space of potentially viable crystal structures,

2. Wide varieties of intermolecular forces at play that must be properly treated,

3. Small energy differences between possible polymorphs, and

4. Molecular conformations which depend strongly on how electron correlation is treated.

Calculation of free energies in CSP involves accounting for the thermal expansion that the lattice undergoes at finite

temperature. This thermal expansion of pharmaceutical crystals is a result of changes to various intermolecular forces,

such as hydrogen and halogen bonding, π −π stacking, van der Waals forces, and covalent bonding [17]. Since the

interactions between organic molecules are relatively weak, the structure of a given crystal can expand significantly

between 0 K and room temperature, leading to significant thermal effects. The lattice-energy minimum found at higher

temperatures is often substantially different from the ones found at lower temperatures [18], resulting in major shifts

to the ensemble of structures. Various approaches for treating the effect of temperature in CSP have been employed,

including semi-empirical incorporation of thermal pressures or quasi-harmonic approximations in the model [19, 20].

However, thermal expansion of the lattice is often neglected entirely, and static lattice energies are ranked instead of

the temperature-dependent free energies for CSP.

A number of computational methods exist for treating the effects of temperature on QM properties. Ab-initio

molecular dynamics (AIMD) is one such first-principles technique, in which the structure of the system is able to

change over time due to interaction with a thermostat and solvent [21]. Mixed quantum-classical dynamics (MQCD)

is another technique for treating chemical dynamics in which an equilibrium trajectory of the system is obtained from

classical mechanics, and QM calculations are performed on structures sampled from the trajectory [22]. The classical

trajectory allows for simulation of longer time scales on larger systems than AIMD. However, regardless of how the

dynamics of the system is treated, neither is able to overcome the computational barrier of performing the necessary

sampling of structures at thermal equilibrium.
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The Importance of Performing Sufficient Conformational Sampling

The procedure to obtain distributions of QM properties from an ensemble of structures appears at first glance to be

simple from Figure 1.3: sample from the distribution of thermally-accessible structures and solve the electronic

Schrödinger equation for each one to get the distributions of properties of interest.
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Figure 1.3: Graphical depiction of how a distribution of structures corresponds to a distribution of quantum mechanical
properties.

Immediately, however, a computational hurdle is reached for nearly all chemical systems of interest; in order to

obtain accurate distributions of QM properties, sampling must be performed on the order of 105 - 106 conforma-

tions [23, 24]. For nearly any chemical system, it is computationally infeasible to solve the Schrödinger equation such

a large number of times.

This requirement of sampling so many times is not a characteristic that is unique to quantum mechanics or physical

systems in general. In Figure 1.4, a random normal variable with a mean of 0.0 and standard deviation of 1.0 has

been sampled an increasing number of times, starting from one hundred all the way up to one million. Here, the value

of the random variable is on the x-axes, and the probability of obtaining that value of the variable is on the y-axes. It

can be seen that, for smaller values of Nsample, the sampled distributions look nothing like what the true population of

the normal distribution should look like. It is not until Nsample = 106 in panel (d) of ?? that the distribution begins to

look indistinguishable from a normal distribution with µ = 0.0 and σ = 1.0.

In order to make reliable and quantitatively accurate predictions about the temperature and solvent-dependent

excited state properties of chemical systems, the following computational conditions should be satisfied: (1) The

chemical structures being sampled correspond to the ab-initio equilibrium trajectory, (2) the population of sampled

conformations are a good representation of the entire configuration space of the equilibrium system, and (3) the

excited electronic states of the population are treated from first principles. The difficulty in satisfying all three of these

conditions is the tremendous computational cost incurred. In order to be confident of obtaining ensemble-averaged

properties to within chemical accuracy (≈ 0.003 eV [3]), sampling must be performed on the order of at least 105

thermally-accessible structures [23, 24].
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(a)
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Nsample = 104 Nsample = 106

Figure 1.4: Random normal distributions (µ = 0.0, σ = 1.0) with (a) 102, (b) 103, (c) 104, and (d) 106 sampling
points.

While semi-empirical excited-state methods such time dependent density functional tight binding (TD-DFTB)

[25] can be used in conjunction with AIMD or MCQD methods to perform the necessary conformational sampling

over thermally-accessible structures, the QM results for the population are no longer obtained from first-principles.

(3) Ĥ E = (1) min E → R (2) ( )V= −F R
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Figure 1.5: Overview of the process for obtaining the temperature-dependent distribution of a quantum mechanical
property of interest.

Figure 1.5 shows the general process of how a temperature-dependent distribution of a QM property of interest can

be obtained (in this case, excitation energy). In step one, an energy-minimum structure is obtained from a geometry

optimization. In step two, a dynamics simulation at the temperature of interest is performed, generating hundreds of

thousands of ensemble structures. This can be done using classical MD or AIMD. In the third step, structures from

that trajectory are sampled to perform ab-initio QM calculations on. This must be done 105 to 106 times in order
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to reliably and accurately resolve the distribution. In the last step, the data is collected and analyzed to generate the

probability distribution of excitation energies.

In this work, I have developed a method, called the Effective Stochastic Potential (ESP) for alleviating the com-

putational cost of the third step in the process outlined in Figure 1.5. The chapters that follow introduce methods

for overcoming these challenges related to sampling and treating the effect of structure on chemical systems. In

Chapter 2, a mathematical overview of the necessary probability theory and statistical mechanics for the method is

presented. Chapter 3 provides insight into the effect of random noise in nuclear coordinates on electronic prop-

erties. In Chapter 4 I introduce the details of the ESP which has been developed for addressing the challenge of

conformational sampling. In Chapter 5 I introduce an extension of the ESP method to treat electronically excited

state properties. Chapter 6 is an investigation of isovolumetric deformation of semiconductor nanoparticles using the

electron-hole explicitly correlated Hartree-Fock (eh-XCHF) method. Chapter 7 is an investigation of cesium lead

halide nanoparticles using the electron-hole explicitly correlated Hartree-Fock (eh-XCHF) method. Chapter 8 dis-

cusses how the ESP and eh-XCHF method can be integrated to investigate temperature-dependent exciton properties

in nanoparticles. Finally, Chapter 9 contains some concluding remarks on these studies, and proposes some fruitful

directions this work can be progressed in the future.
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Chapter 2

Background: Probability Theory and Statistical Mechanics

Statistical Distributions

Random Variables

Quantum mechanics is fundamentally a statistical theory, and particles behaving quantum mechanically, by their very

nature, exhibit random behavior. For this reason, it will be beneficial to briefly cover some concepts from probability

theory concerning randomness and distributions of random variables.

In probability and statistics, a random (or stochastic) variable can be described as a variable whose values depend

on random outcomes [26]. Random variables are defined on some probability space, which describes the probability of

the variable assuming any given value. Generating all of the possible probabilities that a random variable X can assume

yields the probability distribution of X . A probability distribution function (PDF) is a mathematical representation of

the relative probabilities of all the possible outcomes of a random variable.

Probability Distribution Functions

A continuous probability distribution (one which corresponds to a real random variable and that is differentiable

everywhere) can be described by a PDF. While the probability that a random variable can assumes any specific value

is exactly zero, a PDF can give the relative probabilities in which the random variable may exist [26]. If x in a

continuous random variable, then it has a probability density function f (x) which gives the probability for falling

between an interval [a,b] by the integral Equation 2.1

P [a≤ X ≤ b] = ∫b
a f (x)dx. (2.1)

From this relationship, we find that the PDF for x has the property given in Equation 2.2
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∫
∞

−∞

f (x)dx = 1, (2.2)

which is equivalent to the statement that a random variable x always has some real value.

A cumulative distribution function (CDF) is a function that gives the probability that a random variable x can

take a value less than or equal to some number. Equivalently, it returns the area under the curve for a corresponding

probability density function from −∞ to some value x. An example of how the CDF relates to a corresponding PDF is

shown in Figure 2.1. The CDF of a continuous random variable X can be expressed as (Equation 2.3)

FX (x) = P [X ≤ x] . (2.3)

Integrating a PDF f from −∞ to a gives the probability that a random variable x is less than or equal to a, or
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Figure 2.1: Left: Probability distribution function and Right: the corresponding cumulative distribution function.

equivalently, gives the value of the corresponding CDF FX as shown in Equation 2.4:

FX (a) =
∫ a

−∞

f (x)dx. (2.4)

For continuous CDFs, the PDF is equal to the derivative of the CDF ( Equation 2.5:

d
dx

F(x) = f (x). (2.5)
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Normal Distributions

The normal distribution is a commonly encountered continuous probability distribution. Measured physical quantities

which are the sum of many independent processes often have normal, or approximately normal distributions [26].

The normal distribution is useful because of the central limit theorem, which states that the average values obtained

from samples of random variables that are independently drawn from the same PDF become normally distributed

when the number of samples drawn tends towards infinity. The PDF of the normal distribution has the form shown in

4 2 0 2 4
0.0

0.2
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0.6

0.8

1.0
0.2
1.0
5.0
0.5

Figure 2.2: Normal distributions with different means and standard deviations.

Equation 2.6

f (x | µ,σ2) =
1√

2πσ2
e−

(x−µ)2

2σ2 , (2.6)

where µ is the mean and σ is the standard deviation of the PDF corresponding to the random normal variable. Various

normal distributions with different values of µ and σ are shown in Figure 2.2. Random variables which are normally

distributed can be represented by the notation given in Equation 2.7

X ∼N
(
µ,σ2) , (2.7)

where µ and σ correspond to the PDF of X . The random normal distribution is convenient to use when applicable

because of this known analytical form.
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Expectation Values

The expectation value (also known as the expected value, mean, or first moment) of a random variable is a key element

of its probability distribution [26]. A random variable’s expectation value represents the average of a large number

of independently sampled drawings of the random variable. If a random variable x is given ,and its distribution

corresponds to a PDF f , then the expectation value can be calculated as the integral given in Equation 2.8:

E [X ] = ∫∞
−∞ x f (x)dx. (2.8)

In other words, each possible value the random variable can assume is multiplied by its probability of occurring, and

the resulting products are summed to produce the expectation value. For a data set, the expectation value is equivalent

to the arithmetic mean, or the central value of a discrete set of numbers. More specifically, it the sum of the values

divided by the number of values. The arithmetic mean of a set of numbers x1, x2, . . . , xn is can be denoted by x̄x̄.

If the data set is based on a series of observations obtained by sampling from a statistical population, the arithmetic

mean is called the sample mean (denoted x̄x̄) to distinguish it from the mean of the underlying distribution, which is

the population mean (denoted µµ or µxµx).

The population mean is a measure of the central tendency either of either a probability distribution or of the random

variable characterized by that distribution. In the case of a discrete PDF of a random variable X , the population mean

is equal to the sum over every possible value weighted by the probability of that value as computed in Equation 2.9:

µ =
N

∑
i=1

xi pi. (2.9)

For a finite population, the population mean of a property is equal to the arithmetic mean of the given property while

considering every member of the population. The sample can differ significantly from the population mean for small

samples. The law of large numbers dictates that the larger the size of the sample, the more likely it is that the sample

mean will be close to the population mean [26].

Statistical Metrics

Central Moments

In probability and statistics, a moment is a measure of a distribution’s shape. A central moment is a moment of a prob-

ability distribution of a random variable about the random variable’s mean. Central moments are the expected value
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of a specified integer power of the deviation of the random variable from the mean [26] as shown in Equation 2.10

µn = E [(X−E[X ])n] =
∫ +∞

−∞

(x−µ)n f (x). (2.10)

The central moments form one set of values by which the properties of a PDF can be characterized. For example,

central moments can be used to measure the asymmetry or the heaviness of the tails of a PDF. Central moments are

used in preference to ordinary moments, computed in terms of deviations from the mean instead of from zero, because

the higher-order central moments relate only to the spread and shape of the distribution, rather than also to its location.

Standard Scores

The standard score (or Z-score) is the signed fractional number of standard deviations by which the value of an ob-

servation or data point is above the mean value of what is being observed or measured [26]. This means that observed

values above the mean of a data set have positive Z-scores, while values below the mean have negative Z-scores.

Z-scores are useful metrics of distributions and observations of random variables, because they are dimensionless

quantities. They are calculated by subtracting the population mean from an individual raw score and then dividing the

difference by the population standard deviation, as shown in Equation 2.11

z =
x−µ

σ
. (2.11)

When the population mean and the population standard deviation are unknown, the Z-score may be calculated using

instead the sample mean and sample standard deviation as estimates of the population values. In these cases, the

z-score is calculated as in Equation 2.12

z =
x− x̄

S
, (2.12)

where x̄ is the mean of the sample and S is the standard deviation of the sample.

Skewness and Kurtosis

Skewness is a measure of the asymmetry of the probability distribution of a random variable about its mean [26]. The

skewness value can be positive or negative, or undefined. Mathematically, skewness is defined as in Equation 2.13,

γ1 = E

[(
X−µ

σ

)3
]
=

µ3

σ3 =
E
[
(X−µ)3

]
(E
[
(X−µ)2

]
)

3/2 =
κ3

κ
3/2
2

. (2.13)
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For a unimodal distribution (a distribution with one distinct peak or mode), negative skew commonly indicates that

the tail of the distribution is on the left side of the distribution, and a positive skew indicates that the tail is on the right.

For example, a skewness of zero means that the tails on both sides of the mean balance out overall. This is the case

for a symmetric distribution, and can also be true for an asymmetric distribution where one tail is long and thin, and

the other is short but fat.

Kurtosis is a measure of the ”tailedness” of the probability distribution of a real-valued random variable [26], and

is mathematically defined in Equation 2.14,

Kurt[X ] = E

[(
X−µ

σ

)4
]
=

E[(X−µ)4]

(E[(X−µ)2])
2 =

µ4

σ4 . (2.14)

Similar to skewness, the kurtosis of a distribution describes the shape of a probability distribution and, just as for

skewness, there are different ways of quantifying it for a theoretical distribution and corresponding ways of estimating

it from a sample from a population. The Kurtosis of a normal distribution is exactly 3. Distributions with a kurtosis

less than 3 have fewer outliers than the normal distribution does.

Sampling

A random sample is a subset of data points chosen from a larger set, called a population [4]. Each data point is chosen

randomly, with some probability of being chosen which is specific to the population at any stage during the sampling

process. Sampling is performed on a statistical population in order to estimate characteristics of the whole population.

Data points are drawn from a sample, rather than the entire population, when the entire population is too large to

feasibly measure a characteristic of interest from the entire set. Monte Carlo methods or simulations are a class of

computational algorithms that utilize random sampling to obtain numerical results [4]. The underlying motivation

of Monte Carlo methods is to use randomness to solve problems that may be deterministic in principle. They are

often used in physical and mathematical problems and are most useful when it is difficult or impossible to use other

approaches.

The standard deviation of a random variable or probability distribution is the square root of its variance, the

second-order central moment of a sample [4], and is given by Equation 2.15:

s =

√
1

N−1

N

∑
i=1

(xi− x̄)2. (2.15)

Standard deviation is a measure of how spread out the data of a sample is. A useful property of the standard deviation

is that, unlike the variance, it has the same units as the data being sampled from. For this reason, in addition to

expressing the spread of a sample, the standard deviation is commonly used to measure confidence in statistical
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results. This derivation of the standard deviation is often called the ”standard error” of the estimate or ”standard error

of the mean” when referring to a mean [4].

The sample distribution of means of a population is generated by repeatedly sampling and calculating mean values.

This forms a distribution of different means, and this distribution has its own mean and variance. The relationship

between the standard error and the standard deviation is such that, for a given sample size, the standard error is equal

to the standard deviation divided by the square root of the sample size (the number of times sampled). This means

that the standard error of the mean is a measure of the dispersion of sample means around the population mean,

mathematically shown in Equation 2.16,

σx̄ =
σ√
N
≈ s√

N
. (2.16)

Temperature and Boltzmann Statistics

A partition function describes the statistical properties of a system in thermodynamic equilibrium. Partition functions

are functions of the thermodynamic state variables, such as temperature and volume. The partition function is di-

mensionless, scalar quantity [4]. Each partition function is constructed to represent a particular statistical ensemble,

meaning they are specific to a given set of state variables.

A canonical ensemble is one in which the number of particles N, the volume V , and the temperature T are all

fixed. For this reason, the canonical ensemble is also known as an NV T ensemble. For a canonical ensemble that is

classical and discrete, the partition function can be written as ( Equation 2.17)

Q = ∑
i

e−βEi , (2.17)

where β = 1
kBT , kB is the Boltzmann constant, and T is the temperature. The principle thermodynamic variable of the

canonical ensemble is the temperature of the system, which determines the probability distribution of states that the

ensemble can exist in.

Each microstate of the canonical ensemble has a probability of existing given by Equation 2.18:

Pi =
1
Q

e
Ei
kT . (2.18)

The Boltzmann distribution is a probability distribution corresponding to a canonical ensemble. It gives the probability

of a certain state as a function of that state’s energy and temperature of the system to which the distribution is applied,
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and it is the distribution that maximizes the entropy of the system. The partition function can be calculated if we know

the energies of the states accessible to the system of interest. It is given by Equation 2.19

Pi =
1
Q

e
Ei
kT , (2.19)

where pi is the probability of state i, εi is the energy of state i, k the Boltzmann constant, T the temperature of the

system and M is the number of all states accessible to the system of interest. The canonical partition function Q can

be calculated as the sum over all possible Boltzmann probabilities Pi ( Equation 2.20),

Q =
M

∑
i=1

e−εi/kT . (2.20)

The probabilities of all accessible states must add up to 1, and so the partition functions serves as a kind of normaliza-

tion for each individual probability. The Boltzmann distribution shows that states with lower energy will always have

a higher probability of being occupied than the states with higher energy. It can also give the quantitative relationship

between the probabilities of any two states being occupied. The ratio of probabilities for states i and j is given as

( Equation 2.21

pi

p j
= e(ε j−εi)/kT pi

p j
= e(ε j−εi)/kT , (2.21)

where pi is the probability of state i, p j the probability of state j, and εi and ε j are the energies of states i and j,

respectively.
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Figure 2.3: Comparison of Boltzmann population distributions at 200K and 400K.

The Boltzmann distribution is often used to describe the distribution of particles, such as atoms or molecules, over

energy states accessible to them at a given temperature. The effect that temperature has on the Boltzmann population
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of states of a given energy are graphically shown in Figure 2.3.
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Chapter 3

The Effect of Random Noise in Structure on Electronic Properties

Introduction

The previous two chapters have highlighted the effects that temperature can have on chemical structure; temperature

and solvent are both responsible for the noise in the chemical environment. This noise in turn is responsible for

the distribution of chemical structures that can exist in that environment, and the corresponding distributions of QM

properties of those structures. This is the nature of the fundamental connection between temperature, random noise,

and the statistical ensemble of a chemical system, and a graphical representation of this phenomenon is pictured

in Figure 3.1. For this reason, it would be incredibly convenient if there was a method to approximately relate the
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Figure 3.1: Representation of how random noise in the nuclear coordinates of a molecule correspond to a probability
distribution of quantum mechanical properties (in this case, total ground state energy). As the magnitude of the random
noise increases, the form of the probability distribution changes.

distribution of structures directly to the distribution of QM properties we are interested in. For example, the bottleneck
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of the Effective Stochastic Potential (ESP) method detailed in the next chapter is performing QM calculations on a

sample population of structures in order to obtain a suitable basis for constructing the ESP. If an approximate ESP

could be constructed without having to perform any QM calculations, the computational speed-up of the already

highly-efficient method would be considerable.

From probability theory, we know that a PDF of one random variable X can be written in terms of a PDF of a

different random variable Y if Y can be written as a function of X , as in Equation 3.1

ρY (y0) =

+∞∫
−∞

dxρX (x)δ [g(x)− y0]. (3.1)

δ [g(x)− y0] is the Dirac delta function [26]. For functions of variables, the Dirac delta function has the form [26] in

Equation 3.2:

δ [g(x)− y0] = ∑
i

δ (x− xi)

|g′(xi)|
. (3.2)

Substituting this form of the Dirac delta function into Equation 3.1, we arrive at Equation 3.3:

ρY (y0) = ∑
i

ρX (xi)

|g′(xi)|
. (3.3)

The implications of this relationship with respect to the challenge of predicting temperature effects on electronic

properties are profound. Equation 3.3 can allow us to predict what the distribution of an electronic property is at a

certain temperature if we can write that property as a function of a known random variable. For example, we can run a

molecular dynamics simulation at some temperature and randomly sample structures from the equilibrium trajectory

to obtain a distribution of classical nuclear-nuclear repulsion energies. If we know a function that can transform

the nuclear-nuclear repulsion energy to the total electronic energy with reasonable accuracy, from that PDF we can

generate a PDF of total electronic energies. This computational route would be must faster than performing the QM

calculation directly, since calculating the classical nuclear-nuclear repulsion energy is so computationally inexpensive.

In the following investigation, in order to try and determine an underlying first-principle connection to structural

noise and distribution of electronic properties, I have calculated the distributions of a number of electronic proper-

ties for multiple molecules as a function of systematically increasing deformation in the nuclear coordinates of those

molecules. What follows is an overview of how these deformed structures were obtained, an analysis of the distribu-

tions calculated for each molecule, and a discussion of what insight can be gathered from these results.
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Theoretical and Computational Details

System Details and Setup

In this investigation, we wanted to calculate the effects of systematic noise in nuclear coordinates on H2O, NH3,

CH4, benzene, and C60 (fullerene). Starting with the minimum energy structure of each system (obtained from NIST

Computational Chemistry Comparison and Benchmark Database [27]), Gaussian random noise was applied to the x,

y, and z coordinates of each atom in the system, with the exception of the first three atoms in the system. For each

molecule, the first atom was fixed in space, and noise was applied only along one and two dimensions of the second

and third atoms, respectively. In this way, translational and rotational motion of the molecules due to the random noise

could be removed. The noise added to each nuclear coordincate was normally-distributed, such that the deformed

coordinates have the form shown in Equation 3.4

x = x0 +N (0.0,η) , (3.4)

where x is one of the three spatial coordinates, and N is a random normal variable, with µ = 0.0 and σ is equal to

a parameter η . In this way, each coordinate is a random variable with an analytically-expressible form. For example,

the total nuclear-nuclear repulsion term of the molecular Hamiltonian has the form ( Equation 3.5)

VN−N =
M

∑
A,B>A

ZAZB

RA−RB
, (3.5)

which, under the Born-Oppenheimer approximation, can be calculated analytically. Therefore, the nuclear repulsion

term for a single pair of nuclei is a random variable that is a function of the random normal noise shown in Equation 3.6

Y =
1√

(A+X)2 +B
(3.6)

where X in this case is the random normal variable N (0.0,η), and A and B are constants corresponding to the other

spatial dimensions of the nuclei.

Electronic Structure Calculation Details

We looked at the effects of systematic noise in the nuclear coordinates on the distributions of electronic properties at

η values of 0.001, 0.01, 0.025, 0.05, 0.075, and 0.1 bohr. This noise was systematically applied in order to generate

1,000 deformed structures of each molecule at all six values of η . For the H2O, NH3, CH4, and benzene systems,

ground-state second order MllerPlesset perturbation theory (MP2) [28] calculations were performed on each deformed

19



structure using cc-pVDZ basis functions. We have chosen to use MP2 due to its analytical form of the correction to

the ground state energy as given in Equation 3.7:

E(2)
0 =−1

4

Nvir

∑
ab

Nocc

∑
i j

∣∣〈ab|r−1
12 |i j〉

∣∣2
εa + εb− εi− ε j

. (3.7)

Because of the large number of electrons in the C60 system compared to the other systems being investigated, we

have used the Resolution-of-Identity (RI-MP2) method [29] with RIMP2-VDZ auxiliary basis functions [30]. The

RI-MP2 method replaces four-center two electron integrals with linear combinations of three-center integrals, making

the electronic structure calculations scale much better with system size.

All electronic structure calculations were performed using the Q-Chem software package [31]. The properties

of interest in this study were total ground state electronic energy, nuclear-nuclear repulsion energy, MP2/RI-MP2

correlation energy, and HOMO-LUMO gap energy. To generate PDFs of each property, the calculated values were

then histogrammed.

Results and Discussion

Population Distributions of Electronic Properties as a Function of Random Noise

Figures 3.2–3.6 show the PDFs of all properties of interest for the applied magnitudes of random noise in the nuclear

coordinates. From these figures, we have confirmation that all systems are within the small-deformation regime. 100%

of the total ground state electronic energies all fall into the smallest bin for η = 0.001 and η = 0.01 for all systems

under investigation. This is important because as the random noise increases further and further, it becomes less and

less applicable to physical stochastic interactions due to thermal and solvent effects. As the magnitude of the random

noise η that is applied to the nuclear coordinates increases, both the standard deviation σ and range of all distributions

also increases. While the σ values of these distributions tend to be larger for molecules with a higher number of

nuclear degrees of freedom, it is not universally true. For example, focusing only on the 10-electron systems (H2O,

NH3, and CH4), we see that as the nuclear degrees of freedom increase, σ values for the total energy and HOMO-

LUMO gap distributions increases at the same η value. However, this trend does not hold for the nuclear-nuclear

repulsion energy and MP2 correlation energy distributions, where we find that, for the same value of η , σ values for

CH4 are less than those for NH3.

One of the great insights we gain from these results is that it is not just the shape and spread of these distributions

that is changing as η increases. First, it can be seen that as η increases, the correlation energy distributions red-shift

for all molecules. Since more negative correlation energy implies a greater contribution to the total electronic energy,

this informs us that on average, it is even more important to accurately treat electron-electron correlation for deformed
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Figure 3.2: H2O population distributions at difference noise levels for Top Left: Total ground-state energy, Top Right:
Nuclear repulsion energy, Bottom Left: MP2 correlation energy, and Bottom Right: HOMO-LUMO gap energy. All
energies in hartrees.

structures than for their corresponding minimum-energy structure.

Second, we find that as η increases, the HOMO-LUMO gap distributions also red-shift. While this trend is true for

each molecule studied, this red-shifting is especially prominent in the cases of CH4, benzene, and C60. In the case of

C60, the mean of the HOMO-LUMO gap distribution shifts nearly 1 eV from η = 0.001 to η = 0.1. We can conclude

from this trend that on average, a random deformation of a minimum-energy structure tends to result in a narrowing

of the HOMO-LUMO gap, making low-lying excitations more energetically favorable in these conformations.

Fluctuation in CIS Oscillator Strengths in H2O

Oscillator strength is a measure of how strongly a particular electronic transition interacts with an external potential

inducing the interaction, such as an incoming photon of light. Accurate determination of oscillator strength is impor-

tant for predicting how strongly a particular electronic excitation will couple to that incoming photon. In atomic units,
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Figure 3.3: NH3 population distributions at difference noise levels for Top Left: Total ground-state energy, Top Right:
Nuclear repulsion energy, Bottom Left: MP2 correlation energy, and Bottom Right: HOMO-LUMO gap energy. All
energies in hartrees.

the mathematical description for oscillator strength can be calculated as ( Equation 3.8)

f12 =
2
3
(E2−E1) ∑

α=x,y,z
|〈1|Rα |2〉|2, (3.8)

Where f12 is the oscillator strength corresponding to an electronic transition from state |1〉 to state |2〉, E1 and E2

are the energies of |1〉 and |2〉, and the summation over Rα goes over all three spatial coordinates x,y and z [32]. In

??, population distributions of the first ten CIS oscillator strengths (in a.u.) have been calculated for 1,000 deformed

H2O structures at η = 0.1 bohr. The numbered arrows indicate which CIS root each distribution corresponds to. It is

immediately apparent that random noise in the nuclear coordinates in this system has a very different effect on each

of the CIS root distributions. For some CIS roots, such as the 4th root, the oscillator strength changes very little with

respect to the noise, while other roots (especially the 6th) are incredibly sensitive to deformations to the minimum

energy structure. There are also big differences in the higher-order moments of these distributions as well. Many
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Figure 3.4: CH4 population distributions at difference noise levels for Top Left: Total ground-state energy, Top Right:
Nuclear repulsion energy, Bottom Left: MP2 correlation energy, and Bottom Right: HOMO-LUMO gap energy. All
energies in hartrees.

of the distributions skew to the right, with an increase to the average oscillator strength with respect to the noise (as

seen in the 1st root). Conversely, a number of other distributions skew to the left, with a decreasing average oscillator

strength (as seen in the 9th root). The key point here is that even more so than these other electronic properties, the

effect of noise in the nuclear repulsion energy on oscillator strengths is especially difficult to predict.

Determining Effective Temperature of Noise from Distribution of Ground State Energy

We see that most of the PDFs we have calculated broaden in both directions along the axis of the random variable

in question. The exceptions are the PDFs of total electronic energy. Because the random variable of total electronic

energy cannot take values less than the energy corresponding to the minimum energy structure of the system, these

PDFs tend to follow a Boltzmann-like distribution. This is particularly true for η = 0.001 and η = 0.01 bohr, in

which the applied random noise to the molecular structure behaves as a small perturbation. While this behavior of

the total electronic energy PDFs breaks down for benzene and C60 at larger η values, it holds reasonably true for the
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Figure 3.5: Benzene population distributions at difference noise levels for Top Left: Total ground-state energy, Top
Right: Nuclear repulsion energy, Bottom Left: MP2 correlation energy, and Bottom Right: HOMO-LUMO gap
energy. All energies in hartrees.

10-electron systems, even at larger values of η .

This characteristic of these PDFs enables us to relate this random noise in the structure to an effective temperature.

We can search for a temperature that corresponds to a Boltzmann distribution which minimizes the error with respect

to the calculated total electronic energy PDFs. The form of these Boltzmann distributions is ( Equation 3.9)

fB (E) = eE/kBTeff , (3.9)

where E is the total ground state energy, kB is the Boltzmann constant, and Teff is the effective temperature, which

is treated as an optimizable parameter in this instance. Teff is then determined by minimizing the sum of the square

differences between the true PDF and fB, as in Equation 3.10:

min
T

[
Nbin

∑
i=1

[
f PDF
i − f B

i
]2]→ Teff. (3.10)
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Figure 3.6: C60 population distributions at difference noise levels for Top Left: Total ground-state energy, Top Right:
Nuclear repulsion energy, Bottom Left: MP2 correlation energy, and Bottom Right: HOMO-LUMO gap energy. All
energies in hartrees.

Figure 3.8 shows what these effective-temperature Boltzmann distributions look like for H2O at η values of 0.01,

0.05, 0.075 and 0.1 bohr. In all four cases the correlation coefficient R2 ≥ 0.98, so the effective temperature match

quite well with the total ground state energy distributions. As expected, increasing the amount of random noise to

the chemical structure corresponds to a higher effective temperature of the system. While this approach may not be

viable for certain molecules at certain η values, there should always be some η which corresponds to a small enough

perturbation of the minimum energy structure that this procedure may be applied.

Connection of Fluctuation in Nuclear Repulsion Energy to Electronic Properties

Now that we have a notion of how temperature relates to this random noise, and how the random noise we have applied

to the structure effects the distributions of properties we have calculated, we return to the original motivation: Is it

possible to find a functional relationship between the random variable of classical nuclear repulsion energy that exists

at some temperature, and a random variable that corresponds to a QM property of interest?
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Figure 3.7: Population distribution of the first ten CIS oscillator strengths (a.u.) for 1,000 deformed H2O structures at
η = 0.1 bohr. Numbered arrows indicate which CIS root the distribution correspond to.

We have preliminary results which show that the answer is very likely yes, which are presented in Figure 3.9. In

these scatter plots, we have taken the σ values of the total electronic energies, correlation energies, and HOMO-LUMO

gap PDFs, and normalized them against the corresponding σ value of the nuclear-nuclear repulsion PDF for the same

system. These plots then show how the spread in PDFs of the QM properties are changing relative to the spread in the

nuclear repulsion PDF as a function of η . What we find is that for both correlation energy and HOMO-LUMO gap

PDFs, these relative σ values are mostly invariant to increasing noise in the chemical structure. This implies that the

σ in the nuclear-nuclear repulsion PDF is directly proportional to the σ in these two QM property PDFs.

Similarly, we find that the relative σ value for the total electronic energy increases linearly with increasing values

of η , implying that σ of the total electronic energy PDF increases quadratically as σ in the nuclear-nuclear repulsion

PDF increases. There does not appear to be an obvious trend with what these scaling factors look like with respect

to system size, either in number of electrons or in number of degrees of nuclear freedom. However, this relationship

between σ of the nuclear-nuclear repulsion PDF and σ of the QM property PDFs implies that there should be a

function than can approximately transform from one random variable to the other in this small-perturbative regime.
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Figure 3.8: Effective temperatures for H2O at η = 0.1,0.05,0.075, and 0.1 bohr calculated by fitting total energy
population distributions to Boltzmann distributions.

Conclusions

The effect of systematic random normal noise in nuclear coordinates on electronic properties has been demonstrated.

Noise can be related to an effective temperature, indicating it may be possible to predict the effect of temperature on

distributions of quantum mechanical properties without doing electronic structure calculations. Even across different

chemical systems, the standard deviations of correlation energy, HOMO-LUMO gaps, and total electronic energy

tends to increase either linearly or quadratically with increasing standard deviations in the nuclear repulsion PDFs.

This may be a useful avenue toward predicting temperature-dependent distributions of electronic properties. A suitable

function relating distributions of nuclear repulsion energies to QM properties still needs to be determined.
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Chapter 4

The Effective Stochastic Potential Method

Introduction

The Effect of Temperature and Solvent on Semiconductor Nanoparticles

The goal of this published work [24] was to develop efficient theoretical and computational method for performing

ensemble-averaged properties of semiconductor nanoparticles (NPS). Semiconductor NPs such as quantum dots and

rods, have important technological applications. Because of quantum confinement effect [33], their optoelectronic

properties can be tuned by adjusting parameters such as the size, shape, material composition, and ligands of the NP.

Consequently, NPs have promising applications in photovoltaics, [34, 35, 36, 37, 38] light emitting devices, [39, 40,

41] charge and energy transfer processes [42, 43, 44, 45], and biological labeling. [46, 47]

One of the important environmental factors that influence their optical and electronic property is the temperature

and has been the focus of numerous theoretical and experimental studies. Early experimental investigation performed

by Joshi and co-workers in 2006 looked at this temperature dependence of band gap energies for colloidal CdSe/ZnS

core/shell nanocrystals of different diameters. They found that over a temperature range of 10K to 300K, the band

gap energies decreased with increasing temperature for all nanocrystal sizes [48]. Recent experimental results on the

temperature-effect on quantum dot optical properties have also been obtained by Savchenko and co-workers in 2017.

They studied the first exciton peak shift as a function of temperature in InP/ZnS core/shell NPs in the range of 6.5K

to 296K. Similarly to Joshi et. al. they found that the peak both broadens and shifts toward larger wavelengths with

increasing temperature [49]. In 2011, Chen and co-workers performed non adiabatic molecular dynamics simulations

on both spherical and elongated CdSe quantum dots using time-domain Kohn-Sham theory. Their results confirm

the inverse temperature dependence on band gap energy in quantum dots. They also calculated that the temperature

dependence on the relaxation rate of excited electrons was higher stronger in elongated quantum dots [50]. In the

same year, Fischer et. al. performed time-dependent density functional theory (TD-DFT) calculations on a Si29H24

quantum dot trajectory. They found that the band gap energy of the NP shifted significantly throughout the dynamics
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simulation [51]. More recent quantum dynamics simulations utilizing TD-DFT and the tight-binding approximation

performed by High and co-workers looked at the excited state energy transfer in a porphyrin light-harvesting device.

Their simulation showed that it is extremely important to couple the nuclear and electronic degrees of freedom in

order to accurately simulate excited state energy transfer [52]. Liu and Jakubikova have also investigated the electron

transfer rate in a pyridine-TiO2 light harvesting assembly, and found that the transfer rate is faster when sampling from

thermally accessible structures at room temperature compared to a single 0K optimized structure [53].

In colloidal systems, the NPs are surrounded by solvent molecules which provide a constant-temperature heat-

bath for NPs. Constant-temperature ensembles such as NVT or NPT are used extensively for calculation and analysis

of equilibrium properties. In molecular dynamics simulations, various methods are used to implement thermostat

such as Anderson, velocity-scaling, and Nose-Hoover. Investigation of temperature dependence is complicated and

computationally expensive because it requires electronic structure calculations on a large number of structures. This

imposes serious limitations on the size of the systems that is being investigated.

Using Random Matrix Theory to Solve Chemical Problems

In this work, we present the effective stochastic potential (ESP) method to address the computational bottleneck

associated with performing electronic structure calculations on a large number of molecular structures needed for

obtaining ensemble-averaged quantities. The central idea of the ESP method is to approximate the explicit interactions

between the system and the bath degrees of freedoms by statistically equivalent effective potential. In the ESP method,

the construction of the effective potential is performed using the random-matrix theory (RMT) method. Before we

describe this new method, a brief background in the history and usage of random matrix theory will be provided for

context. Originally, RMT was designed by Wigner in 1951 to deal with the statistics of eigenvalues and eigenfunctions

of complex many-body quantum nuclear systems [54]. Wigner later used RMT to investigate the statistical fluctuations

of scattering processes. [55] After Wigner, RMT was successfully applied to the description of spectral fluctuations

of atomic nuclei [56], complex atoms [57], and complex molecules [58]. The nature of the general theory greatly

lends itself to the investigation of highly complex and chaotic systems. Other, more recent examples of how RMT has

been applied to physical systems include equilibrium and transport properties of disordered and classically chaotic

quantum systems [59], transitions between classical and quantum distributions of hydrogen energy levels [60], and

spectral resonances in quartz [61]. Much work has also been done using RMT to investigate the quantum mechanical

phenomenon of so-called ”persistent current,” the perpetual flow of interacting electrons in a static magnetic field [62,

63, 64, 65, 66].

There are many forms of RMT that have been used, but in general, RMT is the process of replacing the Hamiltonian

of a system with an ensemble of Hamiltonians containing random matrix elements. Most popularly used in RMT is

the Gaussian orthogonal ensemble (GOE), where the Hamiltonian is partitioned into two parts: a reference component
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and a stochastic component where the matrix elements are uncorrelated, normally distributed random numbers. These

two components are then coupled to form the total Hamiltonian. Using the GOE approach in this way can be useful

for accurately reproducing the correct fluctuations of system properties, but fails dramatically at modeling average

properties of the system. For example, the density of states that is produced by GOE are (non-physically) semicircular

in shape [55]. Due to their highly complex nature, NPs are a natural candidate for investigation using RMT. One of

the earliest investigations of NPs using RMT was done by Jalabert, Stone, and Alhassid in 1992. They developed a

statistical theory of the effect of Coulomb blockade in NPs represented as a particle in a finite potential well using

random matrices to determine the Coulomb blockade amplitudes. They were able to obtain good agreement with

experiment. [67] In 1996, S̆eba et. al. used a random matrix model to describe the conductance of a model NP

connected to an ideal lead. To accurately match experimental results of NPs attached to two leads, they introduced a

coupling constant to their RMT Hamiltonian. [68] In that same year, Sivan and co-workers performed an experimental

investigation into the disorder of ground state energies of populations of GaAs NPs. They compared their experimental

results to those produced by traditional RMT methods, and found that RMT produced fluctuations in energy larger

than experimentally observed, and the overall distribution of energies was less symmetric. They concluded that RMT

in general would only produce accurate results in electronic systems with weak Coulomb interactions. [69] More

recently, in 2008 Kaplan et. al. investigated the fluctuation of two-body screen Coulomb interaction in ballistic NPs

using the random wave model (a model related to RMT). They were able to derive analytical expressions for these

fluctuations in terms of the linear size of the NP. Despite the Gaussian random single electron basis used in their theory,

they found that both two-body and one-body matrix elements followed non-Gaussian distributions. [70] Shankar in

2006, and later in 2008, has discussed a technique for studying NPs using the renormalization group method in

conjunction with RMT. [71, 72] Disorder arising from temperature or solvent effects can also impact the observed

properties of organic molecules and systems as well. Much theoretical and computational work has been performed

in this area. In 2001, Kwasniewski and coworkers have calculated UV-vis absorption spectra on various frames

throughout molecular dynamics simulations of trans-stilbene using the ZINDO-CIS method. They found that thermal

motion had a very strong impact on the the HOMO to LUMO transition energy. At temperatures less than 400K, the

energy levels displayed pronounced Gaussian thermal broadening of the related band, up to 30 nm [73]. In 2003,

Lewis and coworkers performed MD simulations combined with tight-binding density functional theory to calculation

the electronic states of a model DNA double helix as the molecule underwent room temperature thermal fluctuations.

They found that the population density of the HOMO state over time changed dramatically due to these thermal

fluctiations [74]. In 2006, Morth and Autschbach investigated the temperature dependence of the optical rotation of

fenchone using TDDFT. They found that optical rotation in this system increases linearly with temperature over the

range of 273K-373K, and concluded that the temperature-dependent vibrational effects were largely responsible for

the temperature-dependent rotational effects in rigid organic molecules [75].
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Many researchers have also investigated the effects of solvent and temperature on organic chemical systems ex-

perimentally as well. In 2002, Ariu et. al. studied the temperature dependence on photoluminescence quantum

yields (PLQYs) of poly(9, 9-dioctylfluorene) films in morphologies including spin-coated glass, quenched nematic

glass, crystalline, and vapor-treated glass. They found that the PLQYs increased as the temperature of the crystalline,

spin-coated glass, and quenched nematic glass systems was reduced. In 2005, Dauphas and co-workers investigated

β -casein protein aggregation and properties as a function of concentration, temperature, and calcium content, charac-

terized by dynamic light scattering, confocal microscopy, and fluorescence spectroscopy. Over a temperature range

of 283K to 323K, they saw that the fluorescence absorption profiles of the protein were vary different when the con-

centration and temperature were changed. In 2014, Mani et. al. looked at the fluorescent properties of the salt of

2,6-diaminopyridinium with dihydrogen phosphate. They found that as a result of proton transfer from phosphoric

acid in solution to the pyradine nitrogen, the band gap between the HOMO and LUMO states is smaller than compared

to 2,6-diaminopyridine. This finding was confirmed by a red shift that was observed in its absorption spectrum [76].

Conceptual Picture of the Effective Stochastic Potential

The Effective Stochastic Potential (ESP) method was inspired by the idea of capturing the statistical effects of noisy

chemical enviornments and using that information to predict what the ensemble should look like at a certain tempera-

ture. Figure 4.1 gives a conceptual idea of how the ESP method works.

0

0( ; )h h r R
0

defh h v = +

esp

0h h v = +

Random Matrix TheoryThermostat + Solvent

Reference 
Structure

Solved using 
Schrödinger Equation

Solved using stochastic
Schrödinger Equation

Figure 4.1: Conceptual diagram of how the Effective Stochastic Potential method corresponds to the chemical envi-
ronment of a system at a given temperature.

We start by determining an energy-minimum reference structure, corresponding to the 0K ensemble. This can

be done from a geometry optimization at the desired level of theory. The energy-minimum reference structure has a

corresponding reference one-electron Hamiltonian h0. By equilibrating this reference structure to a certain temperature

in a certain solvent, we obtain an ensemble of structures corresponding to that chemical environment. Each of these
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structures has its own one electron Hamiltonian h0, and a corresponding deformation potential v0
def which relates the

deformed Hamiltonian to the reference Hamiltonian.

From here, we can sample from these deformation potentials, compute the statistical properties of the potentials,

and construct a probability distribution function (PDF) that has the same statistical properties as the set of deformation

potentials. This PDF is the effective stochastic potential (vESP) for the system in this chemical environment. We can

apply RMT on this ESP to generate a stochastic Hamiltonian which we can sample from orders of magnitude more

efficiently than by directly performing quantum mechanical calculations on each structure.

The remaining part of this chapter is organized as follows. The main theoretical development of the ESP method

is described in section 4.2 The derivation includes definition of the quantum mechanical Hamiltonian under investi-

gation, definition of the deformation potential, and conceptual construction of the effective stochastic potential. The

computational details for implementation of the ESP method is presented in section 4.3. Issues such as choice of

sampling schemes, choice of 1-particle basis functions, and stochastic sampling using Gaussian random matrices

are presented. The developed ESP method was used to perform proof-of-concept calculations of ensemble-averaged

HOMO-LUMO gap in chemical systems, and results for H2O and Cd20Se19 are discussed in section 4.4.

Theory

System Setup and Definitions

We start by introducing key concepts and definitions that will be used repeatedly in this work. We will start by defining

the effective one-particle Hamiltonian as

h(r;R) =
−h̄2

2m
∇

2 + vext(r;R)+ veff(r) (4.1)

The one-particle Hamiltonian is the starting point for treating electron-electron correlation in many-electron systems.

In the above expression, veff is the effective one-particle operator for treating electron-electron interaction which can

be approximated using HF, DFT, pseudopotential, many-body perturbation theory (MBPT), or a model potential

veff = {vHF,vKS,vps,vmodel, . . .} (4.2)

For wave function based methods, the eigenfunctions of the one-particle Hamiltonian provide the one-particle basis

for performing, MP2, CI, and, CCSD calculations [3].

hχp = εpχp (4.3)
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In case of DFT, these one-particle basis functions are used to construct the one-particle density. The derivation

presented here is very general and does not make any a priori assumption about the form of the effective potential.

Typically, veff is not known in advance and has to constructed iteratively using a self-consistently procedure. However,

because of the SCF procedure, the final SCF-converged veff has a functional dependence on the nuclear geometry R

hχp = εpχp
SCF−−−−−−→

convergence
veff,SCF(r)[R] (4.4)

Using the SCF converged effective potential for any nuclear geometry Rη , we define the following one-particle Hamil-

tonian

f η(r;Rη) =
−h̄2

2m
∇

2 + vext(r;Rη)+ veff,SCF(r)[Rη ] (4.5)

We also define a reference structure R0 and the effective Hamiltonian corresponding to the reference structure is given

by f 0.

f 0(r;R0) =
−h̄2

2m
∇

2 + vext(r;R0)+ veff,SCF(r)[R0] (4.6)

Typically, the reference structure is selected to the minimum energy structure, however, the derivation does not impose

this as a requirement.

Definition of Deformation Potential

We define a structure Rη to be deformed if is different from the reference structure R0 and cannot be generated from

the reference structure by simple rotational and translational transformation on R0. The difference between Rη and R0

is a consequence of deformation in the internal coordinates of the molecular system. Associated with each deformed

structure, we define the deformation potential which is defined as

vη

def = f η − f 0 (4.7)

Using the above definition, the deformation potential can be interpreted as the potential which must be added to the

reference Hamiltonian to generate the deformed Hamiltonian. The existence of the deformation potential is an exact

condition and can be proved using the following argument. Because f η and f 0 exist, therefore, using Eq. (4.7) vη

def

must also exist.

Up until this point, we have used abstract Dirac representation for representing the reference and deformed Hamil-

tonians. However, now we seek a to represent the deformed potential as a matrix in a single-particle basis. The matrix
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representation of the above equation is given as

Fη = F0 +Vη

def (4.8)

where, the matrix elements are defined using as set of single-particle basis functions{φ [η ]
µ }

Fη

µν = 〈φ [η ]
µ |fη |φ [η ]

ν 〉 (4.9)

The choice of the single-particle basis functions is an important one and in principle, can or cannot depend on the

nuclear geometry Rη . The choice of the single-particle basis in which the deformed potential is represented is an

important topic and will be discussed in section 4.3.

Conceptual Construction of Effective Stochastic Potential

Calculation of the deformation potential becomes computationally expensive for a large set of structures. The effective

stochastic potential method is designed to address this computational bottleneck, by replacing the exact deformation

potential by the effective potential that shares common identical statistical metric with the deformation potential for a

set of structures. Conceptually, the ESP potential can be defined by the following three steps. First, we define a set of

all possible unique structures that a chemical systems can exist in by {Rη}∞
0 . Second, for each of the structures, the

deformation potential is determined, the set of all deformed potential is defined as

S V
def = {V

η

def}
∞
0 (4.10)

For each deformed structure Rη , we associate a corresponding probability of pη for existence of that structure in a

physical system. As the definition of probability implies, pη should satisfy the following two mathematical relation-

ships.

pη ≥ 0 (4.11)

and

∑
η∈Sdef

pη = 1 (4.12)

For the remainder of the derivation we will use the compact notation of vη

i j to refer to the individual matrix elements
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of the deformation potential

vη

i j ≡
[
Vη

def

]
i j (4.13)

For each matrix element of Vη

def the mean µ or the expectation value of the distribution is defined as

s(1)i j ≡ µi j = ∑
η∈Sdef

pη vη

i j (4.14)

Here, we have used both s(1)i j and µi j to refer to the mean for convenience. Analogously, the variance σ of the

distribution is defined as

s(2)i j ≡ σi j = ∑
η∈Sdef

pη [vη

i j−µi j]
2 (4.15)

Using the mean µi j, we define the mth central moment of the distribution by sm which is evaluated using the

following expression

s(m)
i j = ∑

η∈Sdef

pη [vη

i j−µi j]
m with (m > 1) (4.16)

Evaluation of the all the moments for each matrix elements of the set of deformation potential implies by the following

relationship

{Vη

def}
∞
0 →{s(1,def),s(2,def), . . . ,s(∞,def)} (4.17)

Using these statistical metrics, we are now in the position to define the effective stochastic potential in matrix

representation. We start by defining a stochastic matrix whose matrix elements are random numbers Z drawn from a

probability-distribution function f pdf
i j (z).

vsto
i j = Z (4.18)

The probability distribution function must satisfy the following two conditions.

f pdf
i j (z)≥ 0 (4.19)∫ +∞

−∞

dz f pdf
i j (z) = 1 (4.20)
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The probability of finding Z in the interval [a,b] is given by

P[a≤ Z ≤ b] =
∫ b

a
dz f pdf

i j (z) (4.21)

We define the effective stochastic potential as the stochastic potential whose central-moments are closest to the

central-moments of the deformed potential. Mathematical, the ESP potential is defined using the following constrained

functional minimization.

min
f pdf
i j

[
∞

∑
m=1

[
s(m,def)

i j − s(m,sto)
i j

]2
]
→ f pdf,min

i j → vesp
i j [ f pdf,min

i j ] (4.22)

where the constraints on f pdf
i j are given in Equation 4.20.

Computational Details

In this section, we present the implementation details of the ESP method by introducing additional approximations

needed for the practical implementation of the method. Practical implementation of the ESP method require us to

work with finite sets of data. As a consequence, only a finite sets of structures {Rη}M
0 are used for evaluation of the

deformation potential and set of deformation potential is also finite. Computational implementation also requires us to

limit the set of moments (s(1), . . . ,s(N)) on the set of deformation potential to a finite number. The various methods of

sampling, choice of single-particle basis functions, and determination of the probability distribution function for ESP

are presented below.

Canonical Ensemble Sampling Using Monte Carlo and Molecular Dynamics

The probability pη associated with the structure Rη depends on the thermodynamical conditions of the physical system

and can be chosen to described to both equilibrium and non-equilibrium conditions. In this work, we are interested

in systems at thermal equilibrium which are well-described using the constraints of canonical ensemble with constant

composition, temperature, and volume (N,V,T) For canonical ensemble, the probability is the well-known Boltzmann

expression as shown below

pη =
e−β (Eη−E0)

∑λ∈Sdef
e−β (Eλ−E0)

(4.23)

where, Eη is the energy and E0 is the energy associated with the minimum-energy structure.

The first step in the determination of the deformation potential is the generation of the set of structures Rη . In

principle, the set of structures can be achieved using either Monte Carlo (MC) by molecular dynamics simulations. The
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key point in both of these approaches is to generate a statistically meaningful sample of thermally accessible structures.

In the MC procedure this is achieved by randomly distorting the optimized structure, calculating its energy and and

calculating the mean and central moments using the Boltzmann-weighted procedure described in Equation 8.8. In

the MD procedure, equilibrium molecular dynamics calculations are performed at fixed N,V,T and the structures are

randomly selection from the equilibrium distribution. It is important to note that Boltzmann weights are only needed

for MC sampling and should not be included in case of MD sampling. The relevant equations for MD sampling are

presented in Equation 8.9

µ= ∑
η∈S MD

def

Vη

def (4.24)

In the above equation, the superscript (MD) implies that the set of structures were obtained from the MD simula-

tion.

1-Particle Basis for Representing the Deformation Potential

An important feature of the ESP method is the choice of the 1-particle basis that is used for representing the defor-

mation potential. In this work, we will use the eigenvectors of the reference Hamiltonian for representing both the

deformed and the ESP potential. We start by defining the AO-basis representation of the reference Hamiltonian matrix

Fη Cη = Sη Cηεη (4.25)

In the first step, we perform canonical orthogonalization

Xη†Fη Xη = F̃η (4.26)

Xη†Sη Xη = I (4.27)

In the next step, we obtain the unitary matrix that diagonalizes the reference transformed Fock matrix F̃0

U0†F̃0U0 = ˜̃F0 ≡ ε0 (4.28)

Using U0, we transformed all the deformed Fock matrices F̃η into the eigenbasis of the reference Fock matrix F̃0

U0†F̃η U0 = ˜̃Fη (4.29)

It is important to note that we are transforming using U0 instead of Uη . Finally, we obtain the matrix representation
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of the deformed potential in the eigenbasis of the reference Fock matrix using the following expression

Vdef =
˜̃Fη − ˜̃F0 (4.30)

which is equivalent to subtracting the eigenvalues of the reference Fock matrix from the deformed Fock matrix.

Vη

def =
˜̃Fη −ε0 (4.31)

Stochastic Sampling Using Gaussian Random Matrices

In practical implementation of the ESP method, require us to work with finite sets of data. As a consequence, only a

finite sets of structures Rη are used for evaluation of the deformation potential. In addition to that.

not all moments {sn} are included in the sampling and only a subset of moments are used for construction of the

ESP. In this work, we have restricted the sampling to only the mean and the variance

{Vη

def}→ {µ
def,σdef} (4.32)

The above sampling condition is computationally implemented using Gaussian random matrices. Each element of the

ESP matrix is is a Gaussian random number Z as shown in Equation 4.33

[
Vesp

]
i j ≡ vesp

i j = Z where Z ∈ { f Gauss
i j (z)}. (4.33)

The function f Gauss
i j is the Gaussian or normal probability distribution function with mean µ and variance σ and

has the following form

f Gauss
i j (z) =

1√
2πσdef

i j
2

exp[−
(z−µdef

i j )2

2σdef
i j

2 ] (4.34)

The corresponding Fock matrix associated with ESP is given by

˜̃Fesp =
˜̃F0 +Vesp(Z) (4.35)
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Results and Discussion

Statistical Distribution of HOMO-LUMO Gap of H2O at 300 K

We begin with a proof of concept for the ESP method, with the goal of demonstrating that the properties of a dis-

tribution of thermally-accessible configurations of a chemical system can be accurately reproduced with a stochastic

potential derived from that system. We use a single isolated water molecule as our test case. This serves as a use-

ful example as a simple, well-studied polyatomic system. Starting with NVT ensemble, our goal is to calculate the

frequency distribution of the HOMO-LUMO gap of water molecule at 300K.

System Setup and Electronic Structure Calculations

The calculations were performed using the canonical ensemble with constant N, V, and T at 300 K. The sampling

of the structures for this ensemble was performed using the Monte Carlo procedure. A set of the 1000 structures

of water molecules were generated by introducing random distortions to the bond-distances and bond-angles of the

optimized structure of water. For each of the 1000 structures, Hartree-Fock (HF) calculations were performed using

6-31G* basis functions, using the GAMESS software package. [77] The probability associated with each of the 1000

structures were calculated using the Boltzmann expression as shown below.

pi =
e−

Ei−E0
kBT

∑e−
Ei−E0

kBT

, (4.36)

where E0 is the energy of the minimum-energy structure. The eigenvalues of the Fock matrix from the converged HF

calculations, were used to calculate the HOMO-LUMO gap for the 1000 structures.

Egap,HF = ε
HF
LUMO− ε

HF
HOMO (4.37)

Using the thermal probabilities pi, the thermally-weighted, frequency distribution of the HOMO-LUMO gaps for 1000

structures obtained from the HF/cc-pVDZ calculation at 300K is presented in Figure 5.1. The mean and variance of

the distribution is presented in Table 4.1.

Construction of the Effective Stochastic Potential

The ESP for water at 300K was constructed from the set of 1000 Fock matrices obtained from the electronic structure

calculations. Using Equation 4.25,Equation 4.25, Equation 4.27, Equation 4.28, and Equation 4.29 all the Fock matri-

ces were first transformed into the eigenbasis of Fock matrix associated with the minimum-energy structure F0. Then,

using the Equation 4.31, the set of 1000 deformation potentials matrices were obtained. The mean and the variance
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associated with each matrix elements of the deformation potential matrices were calculated using Equation 4.14 and

Equation 4.15. The means and the variances were used in the next step to calculated the matrix elements of the ESP

using Gaussian random number as show in Equation 5.5. The ESP Fock matrix was constructed from the ESP matrix

using Equation 5.3. A set of 1000 ESP Fock matrices were generated by stochastic sampling, and the eigenvalues of

the ESP Fock matrices were used to calculate the ESP HOMO-LUMO gap

Egap,ESP = ε
ESP
LUMO− ε

ESP
HOMO (4.38)

Comparison of the ESP and Electronic Structure Results

Figure 5.1 compares the frequency distribution of HOMO-LUMO gap obtained using both Hartree Fock and ESP

methods. The comparison of the mean and variance of the frequency distributions are presented in Table 4.1.

In order to compare the statistics of the Hartree Fock and ESP method distributions, we used Z-score (also called

standard score) [78]. Z-score is defined mathematically as

Z− score =
x−µ

σ
, (4.39)

where x is a measured value, µ is the mean of the value over a distribution, and σ is the corresponding standard

deviation. Z-score is a unit-less quantity that is relative to the distribution’s standard deviation. A positive Z-score

reflects a value greater than the mean, and negative Z-score reflects a value smaller than the mean. A Z-score of 1

corresponds to a value that is exactly one standard deviation greater than the mean of the distribution. The mean

Z-score and standard deviation for the two methods coincided very well. We obtained excellent reproduction of not

only the fluctuation of system properties, but also the average system properties.

Comparing the computational cost of the electronic structure calculations and the ESP method calculations, we

found that even for a system this simple, our method was at least one full order of magnitude faster computationally.

Each single-point energy calculation took approximately 5 seconds to perform, or a total of about 80 minutes to

perform all 1000 calculations. The ESP method calculations took about 0.1 seconds per calculation, less than 2

minutes for 1000 calculations. This performance advantage becomes much greater as the size and complexity of the

system of interest grows, as the ESP method scales much more favorably with system size versus electronic structure

calculations.

Effect of Sample Size on Construction of ESP

As mentioned above, the distribution of ESP method properties for this system were generated by constructing the

ESP from 1000 Hamiltonians of randomized configurations. We next wanted to look at how much the statistics of
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Figure 4.2: Comparison of HOMO-LUMO gap energy Z-scores of a single gas-phase water molecule between Hartree
Fock (cc-pVDZ basis) and ESP method.

Method µ (hartrees) σ (hartrees)
Hartree Fock 0.5456664 0.0000725

ESP 0.5456658 0.0003847

Table 4.1: Absolute means (µ) and standard deviations (σ ) of HOMO-LUMO gap energy in atomic units, and ratios
of µ and σ HOMO-LUMO gap energy distributions between Hartree Fock (cc-pVDZ basis) and ESP method for
10,000 sampling points. Calculated Hartree-Fock values for µ and σ were 0.545523 hartrees and 0.004557 hartrees,
respectively. Water geometries were generated from a Monte Carlo procedure.

the ESP method distribution would change by generating a smaller number of random Hamiltonians from the ESP.

While generating these random matrices from the ESP is computationally cheap, it would be optimal to generate only

as many matrices as are needed to reproduce the proper statistics of the system, especially as the system’s complexity

grows.

We approached this problem by sampling the ESP a different number of times, and comparing the mean HOMO-

LUMO gap energy calculated awith the ESP method. Table 4.2 displays these mean values calculated using Ndef =

10-1000 sampling points. The main observation from these results is that across the different number of sample points

used, the mean fluctuates by only about 5 meV. Therefore, a small number of sample points from the ESP method

distribution seems to be sufficient to reproduce the same statistics that using many sample points would.
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Table 4.2: Mean HOMO-LUMO gap energy (in eV) of gas-phase water molecules calculated using the ESP method
for an increasingly larger set of deformation potentials, Ndef.

Ndef Mean HOMO-LUMO gap (eV)
100 14.8520
200 14.8477
300 14.8477
400 14.8488
500 14.8498
600 14.8508
700 14.8498
800 14.8507
900 14.8510

1000 14.8511

HOMO-LUMO Gap of Cd20Se19 in water at 300K

We now turn the discussion to the application of the ESP method to a small CdSe NP (1.2 nm in diameter) in aqueous

media at 300K . These systems are excellent candidates on which to apply the ESP method, due to the potentially

useful applications of NPs, the complexity of their electronic states, and the chaotic behavior of their nuclei at room

temperature.

System Setup and Construction of the Effective Stochastic Potential

Equilibrium molecular dynamics simulations with constant N,V,T were performed for the Cd20Se19 cluster with ex-

plicit water molecules at 300K. The force-field developed by Rabani et al. [79] was used for the CdSe cluster, and the

explicit water molecules were treated using TIP3 force. The MD calculations and analysis of the simulations were

performed by the GROMACS molecular dynamics program. The initial structure for the MD calculations was ob-

tained from the minimum-energy structure obtained from electronic structure theory at HF/LANL2Z ECP [80] level.

The initial structure was then re-optimized using the CdSe force-field in the MD program in vacuum. The simulation

cell was constructed by solvating the CdSe cluster in a water bath consisting of 11,763 water molecules. The entire

system was equilibrated at 300K by performing MD simulation for 500 ns. The equilibration conditions were verified

by monitoring the total energy, total potential energy, and the temperature of the system.

After equilibration, a set of 50 structures were randomly selected from the MD trajectories for construction of

the ESP matrix. As a first step, HF calculation using LANL2DZ ECP basis functions were performed for the set of

structures and the deformation potential matrices were calculated. The mean and variance of each matrix element were

calculated and the ESP matrix and the ESP Fock matrix were constructed using the procedure described in section 4.3.
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Table 4.3: Comparison of Cd20Se19 HOMO-LUMO gap energies (eV) calculated by ESP and Hartree Fock method
(LANL2DZ basis).

HOMO-LUMO gap (eV) Number
µ σ of structures

ESP 5.876 0.083 1000
Hartree Fock 5.756 0.073 45

Predictions from the ESP calculations

The results for this Cd20Se19 NP are shown below. Important to note about these results is the computation cost

involved in obtaining them relative to the cost of doing the equivalent electronic structure calculations. The distribution

of CdSe NP systems presented in this work here represents 10000 different thermally-accessible geometries of the NP.

Each of these geometries would take us approximately 30 minutes to perform one Hartree-Fock level calculation,

or about 5000 hours for the entire distribution. Instead we have spent fewer than 24 hours generating the ESP, and

then used the ESP to determine each of the single-electron states in about 0.5 seconds, or 90 minutes for the entire

distribution. This represents a calculation speed-up by more than a factor of 200 times.
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Figure 4.3: HOMO-LUMO gap Z-scores for a Cd20Se19 quantum dot at T = 300K.

Figure 8.3 show the Z-score frequencies for Cd20Se19 HOMO-LUMO gap energies calculated using the ESP

method at 300K, compared to those calculated using Hartree Fock. The purpose of looking at Z-scores for these

44



properties is to compare the characteristics of the different distributions. In comparing the two HOMO-LUMO gap

Z-score distributions, it can be seen that the two distributions share similar spreads and peak maxima.

Conclusions

We have developed the ESP method for calculating thermally averaged optical properties of quantum systems. The

ESP method has been benchmarked using a single water molecule, and the usefulness of the method has been demon-

strated by applying it to two CdSe quantum dots systems. Using the ESP method, we have been able to obtain

chemically accurate results that would otherwise have been been computationally infeasible using standard electronic

structure methods. The thermally averaged HOMO-LUMO gap energies and exciton binding energies of Cd20Se19

and Cd33Se33 quantum dots at both 300K and 350K were calculated, and our results compare well with experiment

and similar theoretical findings.
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Chapter 5

Using Effective Stochastic Potentials to Calculate Temperature-dependent

Distributions of Excited-state Properties

Introduction

As I have discussed in previous chapters, the connection between temperature and chemical conformations is one of

the central concepts in chemical thermodynamics. Specifically, for the canonical ensemble, the temperature dependent

population of various conformations (R) is given by the Boltzmann statistics. [4]

P(R) ∝ exp[−E(R)/kBT ] (5.1)

Consequently, the collective ground and excited state quantum mechanical properties (X) of chemical systems at

thermal equilibrium are determined not by the single minimum-energy structure but by an ensemble of conformations.

{R}→ H(R)Ψ = EΨ →{X(R)} (5.2)

Generation, evaluation, and analysis of the the statistical distribution of the quantum mechanical (QM) properties is

crucial for the describing and predicting temperature-dependent phenomena and continues to be an active field of

research.

One of the principle metrics governing the reliability of statistical distributions is the sample size of the distri-

bution. For example, the error in the sample-mean of a distribution approach zero with respect to increasing sample

size as 1/
√

Nsample. [81] Generation of distribution of QM properties from first-principles calculations is especially

challenging because of the high computational cost associated with performing calculations on large sample sizes to

obtain reliable statistics. In recent studies, it has been estimated that that a sample size in the order of 105− 106 is

needed to obtaining ensemble-averaged properties to within chemical accuracy. [23, 24] The problem is further exac-

erbated for excited state properties which have traditionally been more computationally demanding that ground state
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calculations.

The focus of this work is to investigate the excited state properties of PbS quantum dots. Specifically, we investi-

gate the S0→ S1 excitation energies of three differently-sized PbS NPs, at temperatures of 200 K-400 K, respectively.

PbS NPs have a great deal of promise in energy-related applications due to their tunable optoelectronic properties, and

have been utilized in the areas of photovoltaics, [82, 83, 84, 85, 86, 87, 88, 89, 90, 91] solid state lighting, [92, 93]

photodetectors, [94, 95, 96, 97] hydrogen generation, [98, 99] and energy transfer. [100, 101] In particular, PbS NPs

have been shown to be highly capable in the area of near-IR light harvesting. [102, 103] Traditionally, the popula-

tion of structures required to generate ensemble-averaged excited state properties is obtained from the trajectory of a

chemical dynamics simulation. Following this prescription, excited state properties of nanomaterials have been inves-

tigated using both ab initio molecular dynamics (AIMD) [104, 105, 106, 107, 108, 109, 110, 111] and mixed quantum

classical dynamics (MCQD). [112, 113, 25, 114, 115, 116, 117, 118, 119, 120, 121, 122]

In this work, we have obtained temperature-dependent statistical distributions of one million excitation energies by

developing the effective stochastic potential configuration interaction singles (ESP-CIS) method. We have developed

this approach by combining random matrix theory (RMT) with linear-response theory. We show the theoretical details

of integrating linear response theory into the ESP method, and how the computational cost of performing costly excited

state calculations on a large ensemble can be dramatically reduced via this approach. The results obtained also provide

new insights into the effect of temperature on these distributions.

Theory

Construction of the Stochastic Fock Matrix

: The complete mathematical derivation and the implementation details of the ground-state ESP method has been

presented earlier Chapter 4 , and summary of the key concepts are presented here to avoid repetition. The Fock matrix

associated with the Effective Stochastic Potential (ESP) method [24] is given by

FESP = F0 +VESP (5.3)

where F0 is the Fock matrix of the energy-minimized reference structure and VESP is the effective stochastic poten-

tial. Starting from a set of structures {R}, the corresponding set of Fock operators associated with each structure

is calculated. The ESP is obtained from the set of Fock operators using a Boltzmann-weighted moments expansion

method. [24]

{R}→ {F}→ VESP (5.4)
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In the present work, 1,000 PbS QD structures were used to construct the ESP for each corresponding QD size. The

ESP matrix is represented using a multivariate Gaussian random matrix shown in Equation 5.5,

[
VESP]

µν
=

1√
2πσµν

2
exp[−

(z−µµν)
2

2σµν
2 ] (5.5)

where z is a random variate, and µµν and σµν are obtained from Equation 5.4 using the method derived in Chapter 4.

After the construction of the ESP Fock matrix, the ESP eigenvalues and eigenfunctions are obtained from the solution

of the following equation. [24]

FESPCESP = ε
ESPCESP (5.6)

Derivation of the ESP-CIS Method

: The set of ESP molecular orbitals and energies
{

εESP
p ,χESP

p
}

can be used for performing excited state energy calcu-

lations. The CIS eigenvalue equation for a system sampled with the ESP method can be written as,

AESPXESP = ω
ESPXESP (5.7)

and was used to calculate electronic excitation energies ω and the corresponding amplitudes X. The matrix elements

of AESP have the form, [123, 124]

AESP
ia, jb = δi jδab

(
ε

ESP
a − ε

ESP
i
)
+KESP

ia, jb (5.8)

and the ESP electron-hole interaction kernel, KESP has matrix elements of the form as in Equation 5.9

KESP
pq,rs =

(
pESPqESP|r−1

12 |s
ESPrESP)

A, (5.9)

where the subscript A denotes that the integral is antisymmetrized.

The terms of the ESP-CIS eigenvalue equation can be obtained from the ESP molecular orbital energies, coeffi-

cients, and two-electron integrals.

Connection to Linear Response Time Dependent Hartree Fock and Density Functional Theory

: Extended the previous derivation of the ESP-CIS equation to linear response time-dependent density functional

theory is rather straightforward. The complete form of the linear response (or Casida) matrix equations is given by
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Equation 5.2.3

 A B

B∗ A∗


 X

Y

= ω

 1 0

0 −1


 X

Y

 , (5.10)

where X and Y are excitation amplitude vectors, and ω are the excitation energies. The A and B matrix elements have

the form ( Equation 5.12)

Aia, jb = δi jδab(εa− εi)+ 〈ia|r−1
12 |b j〉−〈i j|r−1

12 |ba〉 (5.11)

Bia, jb = 〈ia|r−1
12 | jb〉−〈ib|r

−1
12 | ja〉, (5.12)

where i, j are indexing occupied states, a,b are indexing unoccupied states, and ε are the molecular orbital energies.

The electron-hole interaction kernel in this case, given in Equation 5.13

Keh = 〈ia|r−1
12 |b j〉−〈i j|r−1

12 |ba〉 (5.13)

corresponds to the time dependent Hartree-Fock (TDHF) equations. The time dependent density functional theory

(TDDFT) equations can be arrived at by simply replacing the Hartree-Fock molecular orbital energies with Kohn

Sham orbital energies, and the electron-hole interaction kernel with one that corresponds to the exchange correlation

functional as shown in Equation 5.15 :

AESP
ia, jb = δi jδab(εa− εi)+ 〈ia|r−1

12 |b j〉−〈i j| fxc|ba〉 (5.14)

BESP
ia, jb = 〈ia|r−1

12 | jb〉−〈ib| fxc| ja〉. (5.15)

As the effect of the B matrix elements often has little impact on the final excited-state properties calculated,

and including them doubles the computational cost of the method, they are often assumed to be equal to 0. The

approximation is called the Tamm-Dancoff Approximation (TDA) [123, 124]. The final ESP TDA-TDDFT equations

can then be written using only A matrix elements in terms of the ESP Kohn Sham orbitals and ESP electron-hole

interaction kernel shown in Equation 5.16:

AESP
ia, jb = δi jδab(ε

ESP
a − ε

ESP
i )+ 〈ia|r−1

12 |b j〉−〈i j| f ESP
xc |ba〉. (5.16)
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Computational Details

Generation of a Boltzmann-like Sample Population

In order to generate an accurate sample population of 1,000 structures that corresponds to a temperature of interest,

we enforce a condition that population closely resemble the canonical ensemble at that temperature. This Boltzmann-

conditioning is performed in the following way:

1. Systematically deform the coordinate of a minimum-energy reference structure to obtain 1,000 randomly de-

formed structures.

2. Perform a Hartree-Fock calculation on each deformed structure

3. Histogram the total energies from the set of 1,000 structures to obtain a PDF of the total energies.

4. Select a representative structure from each energy bin, and deform it only slightly a number of times to en-

sure that the new sample population will have a similar energy population to the Boltzmann population at the

temperature of interest.

5. Perform Hartree-Fock calculations on the new population and confirm that the distribution of total energies

conforms to the desired Boltzmann population.

It is important to note that for all deformed structures in the investigations that follow, the ensembles correspond to

a system in vacuum. While studying most of these in vacuum is not a one-to-one comparison of what the the ensemble

looks like in solvent, these calculations are an important first step towards incorporating solvent effect. It is also very

straightforward to include the effect of solvent for these systems. By performing a molecular dynamics simulation on

the molecule in the solvent of interest, the population of equilibrium structures will shift, as seen in ??. Conformation

from the corresponding trajectory can be sampled with ESP, incorporating the effect of solvent into the calculation.

Computational Setails of the ESP-CIS Method

We make an approximation to the ESP-CIS A matrix with respect to fluctuations with respect to the reference system

A0,

AESP
ia, jb ≈ A0

ia, jb +δi jδab(∆ε ia)+(∆ca
i cb

j)(∆Kia, jb) (5.17)

where ∆ε ia is the fluctuation in the difference between the ESP orbital energy gap the reference gap, ∆ca
i cb

j is the

fluctuation in the difference between the molecular orbital coefficients of the deformation and the reference, and
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Figure 5.1: Example of histogrammed total ground state energies (in units of K) relative to the minimum energy
structure for a sample population of 1,000 structures of H2O at 300K.
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Figure 5.2: Example of how solvent can effect the ensemble of thermally-accessible structures at a given temperature.

∆Kia, jb is the fluctuation in difference between the e-h interaction kernel of the deformation and the reference. We

also approximate the fluctuation the eh-kernel ∆Kia, jb as the fluctuation in the average pair-wise Coulomb integral

obtained from the deformed ground-state population,

∆Kia, jb ≈
Nelec

∑
i j

(ii| j j)def− (ii| j j)0
Nelec(Nelec−1)/2

(5.18)
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The problem of finding ESP-CIS excitation energies and amplitudes is reduced to solving the eigenvalue equation for

Aesp (??) and sampling over the random variate z (Equation 5.5). The method was implemented in the locally modified

version of NWChem [125].

The ESP-CIS formulation and its computational implementation was benchmarked against 104 CIS calculations

on water at 300K and results are presented in the supporting information.

System-specific Computational Details

All electronic structure calculations were performed using the NWChem ( [125]) software package.

The 10,000 deformed structures of the H2O benchmark system was treated with 6-31G basis sets at Hartree-Fock

level of theory.

The 1,000 deformed structures of the three PbS NP systems were treated with the LANL2DZ-ECP basis sets and

effective core potentials [80] at Hartree-Fock level of theory.

The 1,000 deformed structures of the TKX-50, TADF (R)-1, PROTAC MD-224, and CDN1162 systems were

treated with cc-pVDZ basis sets at DFT level using B3LYP functionals [126].

Results

ESP-CIS Benchmark Calculations on H2O at 300K

The ESP-CIS method was benchmarked against traditional CIS using H2O, at 6-31g basis level. The ESP-CIS distri-

bution of lowest excitation energies at 300K is compared to the CIS distribution of energies at the same temperature

in Figure 5.3. Both the CIS and ESP-CIS distribution were generated from a population size of 10,000 samples. The

mean and standard deviations of these distributions are tabulated in Table 5.1. From these statistical metrics, it can be

seen that there is very good agreement between the ESP-CIS and CIS distributions.

CIS ESP-CIS
µ (eV) 9.441 9.463
σ (eV) 0.097 0.092

Table 5.1: Mean (µ) and standard deviation (σ ) of the S0 → S1 vertical excitation energies (in eV) of H2O (6-31G
basis) calculated using CIS and ESP-CIS (Nsample = 104) at 300K.

Excited-state Properties of PbS Nanoparticles

Effect of temperature: The probability distribution functions (PDF) and the cumulative distribution functions (CDF) of

Pb4S4, Pb28S28, and Pb43S43 ESP-CIS excitation energies in the range of 200 K to 400 K are shown in Figure 5.4. The

vertical dashed lines indicate the position of the lowest excitation energy of the minimum-energy reference structure
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Figure 5.4: Probability distributions and cumulative distributions for the lowest ESP-CIS excitation energies (in eV)
of Pb4S4, Pb28S28, and Pb43S43 at 200 K, 250 K, 300 K, 350 K, and 400 K (Nsample = 106). Vertical dashed lines
indicate the respective lowest CIS excitation energies of the energy-minimized reference systems.

corresponding to each PbS NP and corresponds to the 0 K distribution. For all the NPs, the PDFs (Fig. 1 a-c) were

found to be red-shifted with respect to the 0 K distribution for higher temperatures. This red-shift in excitation energy

with respect to temperature is consistent with previous studies on PbS NPs. [127, 128, 129, 130, 131, 132, 133, 134,

135, 136] Looking at the excitation energy CDFs (Fig. 1 d-f), it can be seen than in nearly all cases, > 90% of the

calculated ESP-CIS excitation energies are red-shifted with respect to the 0 K distribution. This fact demonstrates
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that the reference structure is pathological and is not an adequate metric for representing the global distribution of

excitation energies at non-zero temperatures. Figure 5.5 presents a breakdown of some of the key statistical metrics of

these distributions of ESP-CIS excitation energies as a function of temperature: the mean, mode, standard deviation,

and range. All the four metrics were found to scale linearly with respect to temperature. The mean and the mode

were found to decrease with increasing temperature, while the standard deviation and range were found to exhibit the

opposite trend and increased with temperature.
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Figure 5.5: Effect of temperature on (a) mean and modes, (b) standard deviations (σ ), and (c) ranges (all in eV) of
excitation energies for Pb4S4, Pb28S28, and Pb43S43 NPs from 200 K to 400 K using 106 ESP-CIS samples using the
LANL2DZ-ECP basis set and effective core potentials.

Skewness and sub-Gaussian character: The central moments of a distribution give important information about

the distributions spread and symmetry. [81] The skewness s = µ3/σ3 and kurtosis κ = µ4/σ4 are obtained from

the third (µ3) and fourth (µ4) central moments and are presented in Figure 5.6. The skewness of the data (Fig. 3a)

shows that unlike a Gaussian distribution, the present distribution is both non-symmetric and is skewed negatively.

For each NP, the skewness was found to increase monotonically with temperature, indicating that the distribution is

significantly non-Gaussian at higher temperatures. The analysis from the kurtosis also exhibit similar trends. The

kurtosis of a Gaussian distribution is exactly three, and distributions with kurtosis lower than that value are classified

as sub-Gaussian. [81] The kurtosis of the present distributions (Fig. 3b) all exhibit values much lower than three,

indicating the distributions are sub-Gaussian in nature. The analysis from both the PDFs (Figure 5.4) and skewness

(Figure 5.6) indicates than any random distortion from the reference structure is most likely to result in lowering the

excitation energy of these NPs.

Effect of size: From Figure 5.4 and Figure 5.5, it can be seen that larger NPs have a broader range of possible

excitation energies. This trend is expected, owing to the increase in the number of low-frequency vibrational degrees

of freedom in these bigger NPs. For all NP sizes, the distributions also broaden with increasing temperature as the
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Figure 5.6: (a) Skewness and (b) Kurtosis of ESP-CIS excitation energies (in eV) of Pb4S4, Pb28S28, and Pb43S43 at
200 K, 250 K, 300 K, 350 K, and 400 K calculated with ESP-CIS (Nsample = 106) using the LANL2DZ-ECP basis set
and effective core potentials.

higher-energy conformations become thermally accessible. The extent of broadening in the ensemble with respect to

size and temperature has been quantified by the standard deviation and the range of these distributions. For example,

while Pb4S4 spans a range of only 0.59 eV at 300 K, Pb43S43 has a range nearly four times as large, by comparison.

From Figure 5.6, it is also seen that both the skewness and kurtosis of the distribution increases with size of the NP.

Efficiency of the ESP-CIS method: Figure 5.7 shows the timing results from performing 106 ESP-CIS samples

for the three PbS NPs at 300 K, compared to the estimated timing for 106 conventional CIS samples based on the

computational time of the single CIS calculation performed. Across the three PbS NPs, the ESP-CIS method was

between 9,000 and 200,000 times more efficient than sampling using an equivalent number of CIS calculations. In

general, we expect this ratio to increase even more as both the size of the system and the number of samples further

increase. The timing analysis illustrates the power of the ESP-CIS method for performing efficient sampling.
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Importance of large sample size: In order to demonstrate the need for large sample size for obtaining accurate

statistics, a series of excitation energy distributions for Pb43S43 NP at 300 K were calculated using ESP-CIS with a

number of sampling points (Nsample) equal to 102, 103, 104, and 106. These distributions are shown in Figure 5.8.

The effect of increasing the number of sampling points is apparent: until Nsample is in the range of 105− 106, the
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Figure 5.8: A comparison of excitation energy (eV) distributions obtained for Pb43S43 at 300 K using ESP-CIS with
(a) Nsample = 102, (b) Nsample = 103, (c) Nsample = 104, and (d) Nsample = 106.

distributions exhibit significant noise and are not well-converged. Furthermore, large portions of the distribution,

particularly at the tails, have no population where it can be seen that there ought to be from using a larger number

of sampling points. This result highlights the importance of large sample sizes in order to obtain a reliably accurate

distribution and statistics of properties.

Excited-state Properties of Energetic Material TKX-50

Energetic materials (EMs) are a class of compounds which can store large amounts of chemical energy that can

be released through combustion or detonation. EMs have many important modern applications, including mining,

construction, welding, and defense [137].

Two of the largest goals of developing better EMs for these applications are optimizing their detonation properties,

and improving their safety characteristics.

In 2012, Fischer and coworkers were able to synthesize a new EM, dihydroxylammonium 5,5′-bitetrazole-1,1′-

diolate (TKX-50) which satisfied these goals [138]. They found that TKX-50 had superior thermal and mechanical

insensitivity compared to EMs with widespread industrial use such as RDX [139] and PETN [139]. Additionally, it

was able to maintain those insensitivities without compromising its energy density, detonation pressure, and detonation

velocity relative to those other EMs. Preliminary toxicity testing showed that TKX-50 also seems to have relatively

low cytotoxicity, which is an important green characteristic for EMs which can often end up having residual presence

in the environment.

Temperature-dependent stability of EMs is very important for their safe use, and HOMO-LUMO gap can been

used as a first-order indicator of kinetic stability [140]. Molecules with larger HOMO-LUMO gaps tends to have have
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Figure 5.9: Solid-state structure of TKX-50 at 100K.

kinetic stability and lower chemical reactivity. For this reason, HOMO-LUMO gap can be a good indicator for toxicity

and bioavailability of organic molecules [141].

For these reasons, we wanted to use the ESP-CIS method to investigate how increasing temperature changes the

electronic energy gaps in TKX-50.

Figure 5.10 shows the PDFs and CDFs of TKX-50 HOMO-LUMO gap energies in the range of 250K-450K.

Both the mean and the mode of the PDF are red-shifted with respect to the energy-minimized reference structure.

The range of thermally-accessible HOMO-LUMO gaps does not change significantly with increasing temperature.

However, in this temperature region, the calculated gap energies span a range of about 4 eV, indicating that the

HOMO-LUMO gap of TKX-50 appears to be very sensitive to deformations to its chemical structure.

From the CDF of HOMO-LUMO gap energies, it can be seen that for all temperatures, approximately 95% of the

sampled ESP HOMO-LUMO gap energies were below the reference HOMO-LUMO gap. This indicates that the 0K

reference structure poorly represents what the frontier orbital energy levels look like at finite temperature.

Figure 5.11 shows how the mean HOMO-LUMO gap energy in TKX-50 changes with increasing temperature.

Error bars indicate one σ standard deviation from the mean. The mean HOMO-LUMO gap decreases linearly by only

about 100 meV from 250K-450K. While standard deviation increases with increasing temperature, the systematic

shifting of the PDF is relatively small.

Table 5.2 is a table of the first eight statistical moments of the HOMO-LUMO gap distribution for each temperature

of interest. As indicated by the relatively high magnitude of odd central moments, these PDFs exhibit strongly non-

Gaussian behavior.

Figure 5.12 shows the distribution corresponding to the first 15 ESP-CIS excitation energies in TKX-50 from

250K to 450K. It can be seen that there is an abrupt broadening of the distribution from 250K-300K, followed by

more gradual broadening with further increasing temperature.
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Figure 5.10: Probability distributions and cumulative distributions for the ESP HOMO-LUMO gaps (in eV) of TKX-
50 at 250 K, 300 K, 350 K, 400 K, and 450 K (Nsample = 106). Vertical dashed lines indicate the respective HOMO-
LUMO gap of the energy-minimized reference system.
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Figure 5.11: Mean ESP HOMO-LUMO gap energies (in eV) in TKX-50 at 250 K, 300 K, 350 K, 400 K, and 450 K.
Error bars correspond to one standard deviation from the mean.

Excited-state Properties of (R)-1 TADF Organic Molecule

Thermally activated delayed fluorescence (TADF) is a type of photo-emission in which an electronic system absorbs

thermal energy from its surroundings while in the triplet state, and then undergoes reverse intersystem crossing (RISC)
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Table 5.2: First eight central moments (in eV) of the HOMO-LUMO gap distributions in TKX-50 at 250 K, 300 K,
350 K, 400 K, and 450 K (Nsample = 106).

Moment
(eV) 250K 300K 350K 400K 450K

1 6.496 6.476 6.440 6.405 6.383
2 0.661 0.674 0.683 0.697 0.708
3 -0.418 -0.429 -0.438 -0.451 -0.462
4 0.870 0.889 0.902 0.923 0.938
5 -0.790 -0.810 -0.827 -0.853 -0.872
6 1.046 1.070 1.089 1.118 1.138
7 -1.046 -1.073 -1.099 -1.135 -1.160
8 1.206 1.235 1.262 1.300 1.326
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Figure 5.12: Probability distributions for the first 15 ESP-CIS excitation energies (in eV) of TKX-50 at 250 K, 300 K,
350 K, 400 K, and 450 K (Nsample = 106).

to transition to a singlet excited state [142]. From the singlet state, the excited electron then de-excites and the system

fluoresces.

TADF emitters have unique optical and electronic properties due to the small energy gap between their singlet

and triplet excited states [143]. This class of photoemitters can be very advantageous, as RISC increases fluorescence

lifetimes, which makes harvesting their excitons much more efficient as compared to other emitters.
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Figure 5.13: Schematic depiction of a general reverse-intersystem crossing process.

Due to their unique properties, TADF materials show great promise for use in optoelectronic devices such as or-

ganic light emitting diodes (OLEDs) and as biological labels [144], owing to their typically low cytotoxicity [145].

More recently, there has been a growing interest in small organic molecule emitters featuring circularly polarized

luminescence emission (CPL-SOMs) [143]. CPL-SOMs would allow for development of even more advanced opto-

electronic devices, such as 3D digital displays [146], data storage [147], and in circular dichroism spectroscopy [148].

In 2016, Feuillastre et. al. were able to develop the first purely organic TADF molecule where CPL is enabled on

a single acting achiral chromophore through chiral perturbation [149]. They were able to synthesize the TADF emitter

in question (named simply (R)-1) using a one-pot synthesis, and found it has high quantum efficiency (up to 74%) and

fluorescence lifetimes on the order of µs time scales.

Chiral perturbing unit

Figure 5.14: Structure of the (R)-1 CPL-TADF emitter. The chiral perturbing unit is in the highlighted box. Molecule
modeled in Avogadro [150].

When it comes to determining good potential TADF material candidates, one of the difficulties is in predicting

where the HOMO and LUMO energy levels should be. In general though, it has been observed that spatially separated

HOMO and LUMO orbitals is desirable for efficient RISC processes [143]. For this reason, we are interested in invest-

ing the HOMO-LUMO gap and low-lying electronic energy gaps in (R)-1, and see how fluctuations in temperature
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Table 5.3: First eight central moments (in eV) of the HOMO-LUMO gap distributions in TADF (R)-1 at 275 K, 300 K,
325 K, 350 K, and 375 K (Nsample = 106).

Moment
(eV) 275K 300K 325K 350K 375K

1 3.090 3.086 3.082 3.078 3.071
2 0.125 0.132 0.137 0.143 0.149
3 -0.191 -0.198 -0.205 -0.211 -0.215
4 0.268 0.277 0.286 0.293 0.299
5 -0.339 -0.349 -0.360 -0.367 -0.374
6 0.406 0.417 0.430 0.437 0.445
7 -0.469 -0.481 -0.496 -0.503 -0.511
8 0.528 0.541 0.558 0.566 0.575

effect them.

Figure 5.15 shows the PDFs and CDFs of R)-1 HOMO-LUMO gap energies in the range of 275K to 375K.

While the mean HOMO-LUMO gap decreases by 20 meV from 275K-375K (Figure 5.16), the modes of the dis-

tribution at these temperatures are blue-shifted with respect to the energy-minimized reference structure. Thermally-

accessible HOMO-LUMO gaps at these temperatures span a range of around 1 eV.

From the CDFs, it can be seen that for all temperatures, just under 50% of the sampled HOMO-LUMO gaps were

below the reference HOMO-LUMO gap.
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Figure 5.15: Probability distributions and cumulative distributions for the ESP HOMO-LUMO gaps (in eV) of TADF
(R)-1 at 275 K, 300 K, 325 K, 350 K, and 375 K (Nsample = 106). Vertical dashed lines indicate the respective HOMO-
LUMO gap of the energy-minimized reference system.

Figure 5.17 shows the distribution corresponding to the first 15 singlet and triplet ESP-CIS excitation energies in

R)-1 from 275K to 375K. There is small, gradual broadening of ESP-CIS excitation energies over this temperature
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Figure 5.16: Mean ESP HOMO-LUMO gap energies (in eV) in TADF (R)-1 at 275 K, 300 K, 325 K, 350 K, and
375 K. Error bars correspond to one standard deviation from the mean.

range. In the bottom figure, the excitation axis is focused in on the region of the first few singlet and triplet ESP-CIS

excitations.

Important to note is how the line spectrum of the reference structure (indicated by the dashed lines) fails to illustrate

all the features of the thermally-broadened spectra. There is a large singlet-triplet overlap in S1-T1 energy space around

the first ESP-CIS roots, and weak singlet-triplet overlap around 3.0 eV.

Excited-state Properties of PROTAC MD-224

Human murine double minute 2 (MDM2) protein is a primary inhibitor of tumor suppressor p53 and has been a

recent target for cancer therapy [151]. By functioning as an E3 ligase, MDM2 binds to and ubiquitinates p53, causing

degradation of p53. The binding of MDM2 to p53 blocks interaction of p53 with targeted DNA molecules, transports

p53 from the nucleus to the cytoplasm which decreases transcriptional activity of p53.

Since MDM2 inhibits the tumor suppressor function of p53 through direct proteinprotein interaction, there is a high

level of interest in developing small-molecule inhibitors of the MDM2-p53 proteinprotein interaction. One avenue is

through PROteolysis TArgeting Chimera molecules (PROTACs). The first PROTAC-like molecule was developed in

2012 my Molle and coworkers [152], though they did name it as such at the time. PROTACs are two-headed molecules
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Figure 5.17: Probability distributions for the first 15 ESP-CIS excitation energies (in eV) of TADF R)-1 at 275 K,
300 K, 325 K, 350 K, and 375 K (Nsample = 106).

capable of removing specific unwanted proteins. They consist of two covalently linked protein-binding molecules. The

first binds to an E3 ubiquitin ligase, and the second binds to a target protein meant for degradation.

Recruitment of E3 ligase to the target protein results in ubiquitination and subsequent degradation of the target

protein by the proteasome. This property allows PROTACS to be used as effective cancer therapy drugs as they

can allow for the targeting of a broader range of proteins with fewer off-target effects compared to therapies which

continuously expose the target proteins with small molecule inhibitors [153].

A PROTAC molecule by the name MD-224 was developed in 2018 by Li and coworkers [151] which has been

shown to induce degradation of MDM2, inhibiting cell growth, and results in the apoptosis of leukemia cells. Li et.

al. was able to demonstrate that MD-224 could regress tumors in vivo in mice models at well-tolerated doses.

In vivo, PROTAC MD-224 will exist in a distribution of thermally accessible structures due to interaction with

temperature and solvent. It is important to understand what the distribution of corresponding energy gaps will be to

predict its ability to interact with other chemical species in vivo. We have used the ESP-CIS method to calculation
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Figure 5.18: Left: MI-1061 molecule bound to MDM2 protein. Right: PROTAC MD-224 molecule.

these distributions.

Figure 5.19 shows the PDFs and CDFs of MD-224 HOMO-LUMO gap energies in the range of 280K-320K.

The mean and mode of the PDFs are blue-shifted with respect to energy-minimized reference structure at these

temperatures. Interestingly, the HOMO-LUMO gap PDFs appear to be highly-invariant to temperature change over

the range of 280K-320K.

Thermally-accessible HOMO-LUMO gaps span a range of only around 0.3 eV and only about 40% of the sampled

HOMO-LUMO gaps were below the reference HOMO-LUMO gap. This is evidence that MD-224 is likely to be very

stable in-vivo.
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Figure 5.19: Probability distributions and cumulative distributions for the ESP HOMO-LUMO gaps (in eV) of MD-
224 at 280 K, 290 K, 300 K, 310 K, and 320 K (Nsample = 106). Vertical dashed lines indicate the respective HOMO-
LUMO gap of the energy-minimized reference system.

Figure 5.20 shows the distribution corresponding to the first three ESP-CIS excitation energies in MD-224 from
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280K-320K.

There is gradual broadening of the ESP-CIS excitation energies with increasing temperature. Additionally the line

spectrum of the reference structure fails to illustrate all the features of the thermally-broadened spectra. In particular,

the first ESP-CIS excitation energy distribution is roughly twice as broad as the third ESP-CIS excitation energy

distribution.

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

P
o

p
u

la
ti

o
n

ESP-CIS excitation energy (eV)

T=280K

T=290K

T=300K

T=310K

T=320K

Figure 5.20: Probability distributions for the first three ESP-CIS excitation energies (in eV) of MD-224 at 280 K,
290 K, 300 K, 310 K, and 320 K (Nsample = 106). Vertical lines correspond to theline spectra of the minimum energy
reference structure.

Excited-state Properties of SERCA Activator CDN1163

Alzheimers Disease (AD) and Parkinsons Disease (PD) both lead to loss of cognitive function, and effect millions

of people around the world [154]. while treatments which relieve symptoms do exist, there are none that halt the

progression of the disease, and a cure for either disease does not currently exist.

Endoplasmic reticulum (ER) stress is strongly linked to both AD and PD. ER stess is caused by dyshomeosta-

sis of Ca2+ ions, and extreme ER stress coincides with Unfolded Protein Response (UPR), and eventually neuron

death [155].
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Repairing the Ca2+ homeostasis of the damaged neurons presents a good pathway to alleviating the ER stress and

treating AD or PD. Compromised sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) has been identified as a major

cause of ER stress and neuron loss in AD and PD.

Sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) protein is responsible for Ca2+ ion transport in muscular

tissue. Low ER calcium caused by dysfunctional SERCA is a major cause of the UPR signaling cascade and subse-

quent ER stress. [156] The key point is that repairing SERCA activity seems like a good pathway towards restoring

Ca2+ homeostasis and treating AD and PD symptoms.

CDN1163 is a quinoline derivative discovered through medicinal chemistry optimization in 2017 by Dahl [155].

CDN1163 is a small molecule SERCA activator, which binds allosterically to SERCA protein.

Figure 5.21: Left: SERCA protein in the Ca2+/ATP bound state. Right: CDN1163 molecule.

Dahl showed that CDN1163 can raise ER Ca2+ concentration in-vitro. which has was developed for treating AD

and PD. It has been shown to be efficacious in mouse and rat models of AD and PD [155].

As with the previous investigation of a drug molecule, CDN1163 will exist in a distribution of thermally accessible

structures due to interaction with in-vivo temperature and solvent. We again have used the ESP-CIS method in order

to calculation ensemble distributions of energy gaps for CDN1163.

Figure 5.22 shows the PDFs and CDFs of CDN1163 HOMO-LUMO gap energies in the range of 280K-320K.

While the mode of the distribution aligns with the energy-minimized reference structure, the means are broad

and dramatically red-shifted. The HOMO-LUMO gap energy PDFs for this system at these temperatures have a

particularly interesting shape, with a sharp peak near the energy minimum reference HOMO-LUMO gap, followed
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Table 5.4: First eight central moments (in eV) of the HOMO-LUMO gap distributions in CDN1163 at 280 K, 290 K,
300 K, 310 K, and 320 K (Nsample = 106).

Moment (eV) 280K 290K 300K 310K 320K
1 3.932 3.863 3.848 3.758 3.736
2 0.479 0.565 0.614 0.636 0.645
3 -0.596 -0.712 -0.785 -0.772 -0.775
4 0.807 0.956 1.044 1.039 1.045
5 -0.976 -1.146 -1.244 -1.232 -1.237
6 1.136 1.320 1.423 1.411 1.415
7 -1.282 -1.474 -1.580 -1.565 -1.569
8 1.416 1.612 1.718 1.701 1.704

by a very long tail. Thermally-accessible HOMO-LUMO gaps span a range of around 4 eV for these PDFs. From

the CDFs, it can be seen that for all temperatures, nearly 90% of the sampled HOMO-LUMO gaps were below the

reference HOMO-LUMO gap.
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Figure 5.22: Probability distributions and cumulative distributions for the ESP HOMO-LUMO gaps (in eV) of
CDN1163 at 280 K, 290 K, 300 K, 310 K, and 320 K (Nsample = 106). Vertical dashed lines indicate the respec-
tive HOMO-LUMO gap of the energy-minimized reference system.

Figure 5.23 shows how the mean HOMO-LUMO gap energy in CDN1163 changes with increasing temperature.=,

and Table 5.4 is a table of the first eight statistical moments of the HOMO-LUMO gap distribution for each temperature

of interest.

While the standard deviation does increase with increasing temp, the mean HOMO-LUMO gap decreases only

by 200 meV from 280K-320K. These PDFs exhibit odd central moments that are both negative and of appreciable

magnitude, indicating strongly non-Gaussian behavior, apparent from how the PDFs themselves appear.

Figure 5.24 shows the distribution corresponding to the first ten ESP-CIS excitation energies in CDN1163 from
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Figure 5.23: Mean ESP HOMO-LUMO gap energies (in eV) in CDN1163 at 280 K, 290 K, 300 K, 310 K, and 320 K.
Error bars correspond to one standard deviation from the mean.

280K-320K. The ESP-CIS excitation energies smoothly broaden over this temperature range. The line spectrum of

the reference structure, indicated again by vertical dashed lines, fails to capture the effect of some excitations merging

together, forming a convolution of distributions.

Conclusions

In conclusion, this work presented the effect of both temperature and particle size on the distribution of excitation

energies in PbS quantum dots. The distributions at non-zero temperatures were found to be significantly red-shifted

with respect to the 0 K distribution, and were sub-Gaussian in nature with a negative skewness. This effect was found

to be more pronounced in bigger dots. The mean and mode of the distributions were found to linearly decrease with

temperature. In contrast, the range and the standard deviations were found to increase linearly with temperature.

All the calculations were performed using the newly-developed effective stochastic potential-configuration interaction

singles (ESP-CIS) method, and a total of 15 million excitation energy calculations were performed (1 million samples

for each of the three QDs at five different temperatures). The results from this work highlight the ability of the

ESP-CIS method to overcome the steep computational barrier of generating chemically accurate distributions of QM

properties at non-zero temperatures from first-principles excited state methods.
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Figure 5.24: Probability distributions for the first 10 ESP-CIS excitation energies (in eV) of CDN1163 at 280 K,
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reference structure.
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Chapter 6

The Effect of Isovolumetric Transformation on the Optoelectronic

Properties of Semiconducting Nanoparticles

Introduction

The Computational Challenge of Investigating Optoelectronic Properties of Semiconductor Nanoparticles

Semiconductor nanoparticles (NPs) have tunable optical and electronic properties that make them attractive in ap-

plications such as photovoltaics, [34, 35, 36, 37, 38] light emitting devices, [39, 40, 41] charge and energy transfer

processes [42, 43, 44, 45], and biological labeling. [46, 47]

One of the principle challenges of investigating the optoelectronic properties of NPs computationally is the large

number of electrons in the system. Most NPs reside in a system-size regime that makes them particularly difficult to

perform calculations on: they are finite systems, so treating them with periodic boundary conditions is inappropriate,

but they are still much bigger than most traditional electronic structure methods can handle.

Because NPs are semiconductors, they are amenable to approximations made after electron-hole quasiparticle

transformation. A diagram of this transformation is shown in Figure 6.1.

In the many-electron picture, there are many electrons in the ground energy state occupying so called ”occupied”

molecular orbitals. In this representation, electronic representations looks like one of the electrons in an occupied

molecular orbital exciting up to one of the unoccupied (or ”virtual”) molecular orbitals.

The electron-hole representation is mathematically equivalent to the many electron picture. In the e-h representa-

tion, the ground state looks like an empty vacuum state, and electronic excitation looks like an electron being created

in the unoccupied space, and a positively-charged hole get created in the occupied space. Both the electron and hole

are treated as quasi-particles, as the two particles mathematically represent all of the electrons in the system [157, 158].

A graphical representation of this property is shown in Figure 6.2. On the left, two electrons interact with one another

through a bare Coulomb potential (r−1
12 ). In the many-electron picture, there is one of these interaction for every pair

of electrons in the system. On the right, there is only one pairing of electron and hole quasiparticles, which interact
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Many-Electron Picture Electron-Hole Picture

Figure 6.1: Pictorial diagram of the difference between how electronic excitation is represented in the many-electron
picture and in the electron-hole picture.

with one another through a ”dressed” Coulomb potential (Keh). In this representation, the interaction is effectively

screened due to the presence of all other electrons in the system.

Figure 6.2: Graphical representation of the difference between two real electrons interacting and a quasi-electron
interaction with a quasi-hole.

The bound electron-hole pair is called an exciton. An exciton is a unit of electronic excitation, and can be created

in a NP when it absorbs light, exciting an electron from the valence band to the conduction band of the NP. The

electron-hole representation allows for prediction of chemical properties through study of exciton, rather than the set

of all electrons in the system [158].
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Size-tunability of Semiconductor Nanoparticles

This tunability is a consequence of differences in the quantum confinement effect with variations in the size and shape

of the NPs. The size of the NP not only determines its density of states, but also restricts the spatial localization of

excitons when the NP is electronically excited.

Adjusting the NP’s size has been used extensively to manipulate excitonic interactions. [159, 160, 161, 162, 163]

For example, one well-studied phenomenon is the change in photoluminescence spectra of quantum dots (QDs) as

function of dot size. [164, 165, 166, 167, 168, 169, 170, 162, 171, 172] The effect of dot size on Auger recombination

rates [173, 164, 174, 164, 165, 175, 176], electron-transfer processes [35, 42, 177, 178, 179, 180, 181, 182], energy

transfer processes [183, 184, 185, 165, 186, 187, 188, 189, 190, 191, 192, 193], carrier multiplicity [194, 195, 196,

197, 198, 199, 200, 201, 202, 203, 204, 205, 176, 206], and dissociation of excitons [170, 207, 208] has been and

continues to be extensively studied using both experimental and theoretical methods.

Shape-tunability of Semiconductor Nanoparticles

In contrast to size, NP shape controls the spatial asymmetry of the confinement volume, which leads to shape-

dependent effects on exciton behavior. The shape of a NP is associated with a number of different electron-hole

(eh-) confinement regimes. [209, 210, 211, 208, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223] Specifi-

cally, spherical NPs such as quantum dots exhibit 3D quantum confinement, nanoplatelets and nanodisks exhibit 2D

confinement, [224, 225, 226, 227] and nanorods and wires exhibit 1D confinement. [34, 228, 208] For 1D quantum

confined materials, theoretical and experimental studies have shown that modifying the aspect ratio in quantum rods

can substantially change their optical properties. [216, 210, 220, 229, 221, 230, 231, 232] Nanorods have been used to

enhance carrier multiplicity, [208] optimize resonance energy transfer, [183] and generate linear polarized light. [233]

The properties and shape effects of 2D quantum confined materials such as disks and plate-like nanoparticles have also

been investigated. [203, 234, 235] Song et al. have studied excitons confined to quantum disks, and calculated the ge-

ometrical effects on exciton binding energy, eh-separation, and the resulting linear optical properties observed. [171]

Bialda et al. investigated eh-recombination behavior in CdSe nanoplates, and observed that the behavior of this 2D

material was different than that of their corresponding 3D spherical CdSe NPs. [236, 237]

Isovolumetric Transformation on Semiconductor Nanoparticles

In this chapter, I present my published computational approach to investigate the effect of quantum confinement in a

series of semiconductor NPs [238]. To differentiate the effect of shape from size on the NP excitonic properties, we

performed calculations on semiconductor nanorods, nanodisks, and nanospheres under isovolumetric conditions. This

constraint ensures that the overall amount of material in the NPs is equivalent, while allowing the spatial distribution
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of the material to differ with shape. This isovolumetric condition is very difficult to reproduce experimentally, and the

control over NP structure in this way provides us with unprecedented theoretical insight into the structure-property

relationship of these materials.

For each NP shape, three representative particle sizes were selected (Figure 6.3), and each volume/shape com-

bination was investigated for four different materials: CdSe, CdS, CdTe, and PbS. These compositions were chosen

because many of these NPs have been successfully synthesized [239, 240], which allowed us to benchmark and vali-

date the computational procedures used.

Size
Chemical

Formula
Shape

A semi-axis

(nm)

B semi-axis

(nm)

C semi-axis

(nm)

Sphere 5.00 5.00 5.00

Disk 10.0 10.0 1.25

Rod 2.50 2.50 20.0

Sphere 7.00 7.00 7.00

Disk 14.0 14.0 1.75

Rod 3.50 3.50 28.0

Sphere 10.0 10.0 10.0

Disk 20.0 20.0 2.50

Rod 5.00 5.00 40.0

V = 524 nm
3

V = 1437 nm
3

V = 4189 nm
3

Cd9338Se9363

Cd25631Se25629

Cd74608Se74837

Sphere (A = B = C) Rod (8A = 8B = C) Disk (A = B = 8C)

Figure 6.3: A representative ellipsoid showing the A, B, and C semi-axes. The nanoparticles in this investigation are
ellipsoids with semi-axis lengths constructed so that there are three sets of differently shaped NPs of equal volume.
Nanorods are constructed to have length equal to eight times their diameter, and nanodisks are constructed to have
diameter equal to eight times their thickness.

The nanoscale dimensions (3D, 2D, and 1D) combined with the isovolumetric constraint of these systems led to

a number of significant questions about the excitonic interactions in the NPs. To elucidate the relationship between

shape and the excitonic properties of select material compositions, we conducted investigations on (1) the binding
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energy of the eh-interaction, (2) the spatial separation between the eh-pair, and (3) the eh-recombination probability.

Theory

Treatment of Electron-hole Correlation

The NPs in this study were modeled using the electron-hole explicitly correlated Hartree-Fock method. While the

complete details of this method are outlined in the work by Elward et al. [241], a brief overview of the method

is discussed here. To solve the electron-hole Schrödinger equation for these systems, the effective electron-hole

Hamiltonian [242, 243, 244, 245, 246] was used

Ĥ = ∑
i j
〈i|−h̄2

2me
+ ve

ext| j〉e
†
i e j (6.1)

+∑
i j
〈i|−h̄2

2mh
+ vh

ext| j〉h
†
i h j (6.2)

+ ∑
i ji′ j′
〈i ji′ j′|ε−1r−1

eh |i ji′ j′〉e†
i e jh

†
i′h j′ (6.3)

+∑
i jkl

wee
i jkle

†
i e†

jelek +∑
i jkl

whh
i jklh

†
i h†

jhlhk. (6.4)

The effective electron-hole Hamiltonian provides a computationally efficient means of calculating the optical proper-

ties of interest in these NPs.

The external potential used in this investigation is a parabolic potential for both the electron and hole. Parabolic

potentials have been used extensively to approximate the confinement potential of semiconductor NPs [247, 248, 249,

250].

vα
ext =

1
2

kα |rα |2 α = e,h, (6.5)

The magnitude of the force constants in this external confining potential is important for the accurate calculation of

exciton binding energy in these NPs. The force constants are calculated such that the electron and hole are confined

to the physical dimensions of the NP [250]

min
kmin

α

=

Nα −
∫ Ddot

2
0

drr2
∫

dΩρα(r)[vα
ext ]

2

, (6.6)

where α = e,h, dΩ= sindθdϕ , Ddot is the diameter of the corresponding spherical quantum dot, and kα is the smallest

force constant that satisfies the above minimization conditions. An appropriate force constant for the spherical CdSe

NP was obtained using this approach, and then the force constants corresponding to all other semi axis lengths were
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scaled using this quantity

kα a =
kα spherer2

sphere

a2 , (6.7)

where a is the length of the semi axis, and rsphere is the radius of a spherical NP with a corresponding force constant

kα sphere.

The ansatz of the eh-XCHF wave function is a product of electron and hole reference wave functions and a

correlation function [241]. The electron and hole reference wave functions are Slater determinants and the correlation

function is a Gaussian type geminal operator

Ψeh−XCHF = ĜΦ
e
Φ

h. (6.8)

The geminal operator Ĝ is a two body operator, and introduces an explicit dependence on the electron-hole separation

distance to the wave function, as well as variational parameters bk and γk. This geminal operator has the form of a

linear combination of Gaussian functions [241]

Ĝ =
Ne

∑
i=1

Nh

∑
j=1

Ng

∑
k=1

bke−γkreh
2
. (6.9)

The eh-XCHF wave function is obtained variationally by minimizing the total energy with respect to the parameters

of the electron and hole reference wave functions, as well as the geminal parameters bk and γk

E = min
Ĝ,Φe,Φh

〈Ψeh−XCHF|Ĥ|Ψeh−XCHF〉
〈Ψeh−XCHF|Ψeh−XCHF〉

. (6.10)

To improve the efficiency of the calculation in Equation 6.10, the effect of the geminal operator is moved from

the wave function to the Hamiltonian. This congruent transformation of the Hamiltonian has the form seen in Equa-

tion 6.11

H̃ = Ĝ†ĤĜ (6.11)

1̃ = Ĝ†1Ĝ. (6.12)

This transformation changes the form of the eh-XCHF energy, such that the wave function used is composed only of

Slater determinants for the electron and hole

E =
〈ΦeΦh|H̃|ΦeΦh〉
〈ΦeΦh|1̃|ΦeΦh〉

. (6.13)
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Table 6.1: Approximate chemical formula of CdSe, CdS, CdTe, and PbS nanoparticle systems in this study. All
volumes are in nm3.

Volume CdSe CdS CdTe PbS
524 Cd875Se875 Cd997S997 Cd746Te746 Pb925S925

1437 Cd2401Se2401 Cd2736S2736 Cd2046Te2046 Pb2537S2537
4189 Cd7000Se7000 Cd7976S7976 Cd5964Te5964 Pb7397S7397

Table 6.2: System parameters used to calculate properties of nanoparticles. [250, 251] ε is the dielectric screening
constant of the material, me is the effective mass of the electron, mh is the effective mass of the hole, and m0 is the mass
of a free electron. η is the composite material parameter that depends on ε and the reduced mass of the electron-hole
pair.

CdSe CdS CdTe PbS
ε 6.2 5.4 7.1 17.2

me 0.13 m0 0.19 m0 0.12 m0 0.08 m0
mh 0.38 m0 0.22 m0 0.13 m0 0.075 m0
η 0.0156 0.0189 0.0088 0.0023

Computational Details

The three optical properties of interest in this study are the exciton binding energy, the electron-hole recombination

probability, and the electron-hole separation distance. The exciton binding energy is defined as the total energy of a

fully interacting electron-hole system, less the fully non-interacting system.

EEB = 〈Enon−interacting〉−〈Eexciton〉. (6.14)

The electron-hole separation distance is calculated as the expectation value of the absolute difference between the

electron and hole coordinates

〈reh〉= 〈Ψeh−XCHF||re− rh||Ψeh−XCHF〉. (6.15)

The electron-hole recombination probability is calculated as the probability of finding a hole within a small finite

region around the electron coordinate

Peh =
1

NeNh

∫
dre

∫ re+
∆∆∆

2

re−
∆∆∆

2

drh ρeh(re,rh). (6.16)
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Results

Spheres, disks, and rods were selected to represent the 3D, 2D, and 1D, quantum confinement effect, respectively. We

calculated three excitonic properties of each NP: exciton binding energy (EEB), eh-recombination probability (Peh),

and eh-separation distance (〈reh〉). We performed these calculations using the eh-explicitly correlated Hartree-Fock

(eh-XCHF) method [241]. The effect of size, shape and NP material (i.e., chemical composition) on the calculated

excitonic properties was analyzed, and is presented here.

Effect of Shape and Size on Exciton Binding Energy
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Figure 6.4: Exciton binding energies (in meV) of CdSe, CdS, CdTe, and PbS nanoparticle spheres, disks, and rods.
Experimental results for CdSe nanospheres provided for comparison. Dashed lines correspond to the exciton Rydberg
energy (in meV) for each material.

An important first step for the evaluation of excitonic properties is to benchmark and validate the computational

procedure. In this work, we benchmarked the eh-XCHF method by comparing the calculated EEB values with exper-

imental data [252] for spherical CdSe NPs, and the results are presented in Figure 6.4. The calculated eh-XCHF EEB

values were found to recover between 86-99% of the experimental binding energies.

The effect of isovolumetric deformation on EEB for all other NPs are also presented in Figure 6.4. For CdSe

NPs, we found that the nanorods exhibited lower EEB than isovolumetric nanodisks and nanospheres. This trend is

observed at all three representative volumes. The EEB values showed significant variation with change in material
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type. Specifically, EEB was found to follow the trend of EEB(PbS) < EEB(CdTe) < EEB(CdSe) < EEB(CdS), which

was consistently observed across all NP shapes.

In addition to the eh-XCHF method, an approximate description of eh-interaction can also be obtained by modeling

the exciton as a hydrogenic system. [253] The advantage of this approach is that one can obtain an analytical expression

for the exciton binding energy (called the exciton Rydberg energy [253]) in terms of the material parameters. A

comparison between the hydrogenic and eh-XCHF exciton binding energies are presented in Figure 6.4. In all cases,

it was found that the hydrogenic model underestimated the exciton binding energies. Although the hydrogenic model

fails to capture the size-dependence of the exciton binding energies, it was able to capture the general trend with

respect to material types EEB(PbS) < EEB(CdTe) < EEB(CdSe) < EEB(CdS). The variation in observed EEB across

the different NP morphologies, as compared to the static exciton Rydberg energies, highlights the differences in the

quantum confinement effect in these systems.
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Figure 6.5: Material parameter η vs. exciton binding energy. Data points are grouped into four sets, each correspond-
ing to the labeled material type with volumes of V = 524 nm3.

The EEB values depend on the fundamental interactions between eh-pairs in these NPs, and are strongly influenced

by material parameters such as effective masses and dielectric screening parameters. To understand the roles of these

material parameters on EEB, we investigated how the excitonic wave function depends on them. Specifically, analysis

of the excitonic wave function in the vicinity of the eh-coalescence point (reh → 0) shows that up to first order, the

exciton wave function can be expressed as [254]

(
∂Ψeh

∂ reh

)
reh=0

∝ ηΨeh(reh = 0) (in atomic units) (6.17)
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where the unit-less parameter η is defined as ( Equation 6.18)

η =
memh

ε(me +mh)
× 1

m0
, (6.18)

where me and me are effective electron and hole masses, and ε is the dielectric constant. The dependence of EEB as

a function of η is presented in Figure 6.5 for NPs with volumes V = 524 nm3. For the present set of materials, each

material type has a unique value of η that is independent of NP size or shape. In general, we found that EEB increased

with increasing η . Figure 6.5 also shows the variation in binding energies of differently shaped NPs made of the same

material. The results showed that PbS, which had a total range of only 15 meV, is least sensitive to changing EEB with

respect to shape deformation. In contrast, CdSe was the material most sensitive to changing shape, with a total range

in EEB values of 39 meV.

Effect of Shape on Electron-hole Recombination Probability

Figure 6.6 presents results for the calculated eh-recombination probability (Peh) for the NPs investigated at the three

volumes and three morphologies of interest. As expected, smaller NPs had higher Peh values than larger NPs, since
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Figure 6.6: Electron hole recombination probabilities of CdSe, CdS, CdTe, and PbS nanoparticle spheres, disks, and
rods. Peh is presented relative to a referenced P0

eh with P0
eh = 2.9945×10−18).

smaller NPs confine the electron and hole to a smaller total volume, and the electron and hole are more likely to
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recombine when they are close to one another.

Focusing on the efect of shape, we found that nanospheres exhibited the smallest Peh values, followed by disks,

and then rods, which had the largest recombination probabilities. The CdS nanorods had the largest Peh, and the PbS

nanospheres had the smallest Peh. While Peh did become larger the smaller the NP volume became, unlike EEB it also

increased as the anisotropy of the NP increased. This result suggests that Peh is dominated not by the average eh-

separation distance in the NP, but rather by the smallest confining dimension of the system. Since the isovolumetric

nanorods have a comparatively small radial axis relative to their length, this small confining dimension forces the

electron and hole close together. Although on average the electron and hole can be further apart than in other NP

morphologies, they still have more opportunities to recombine than they do in nanospheres. Therefore, for NPs of

identical volume, nanospheres exhibit the least amount of recombination. Increasing the NP volume will still further

decrease the recombination probability of all morphologies.
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each corresponding to the labelled material type with volumes of V = 524 nm3. Peh is presented relative to a referenced
P0

eh with P0
eh = 2.9945×10−18).

Figure 6.7 shows the relationship between Peh vs. η . As observed with EEB, increases in η resulted in increased

Peh. The range of Peh values across spheres, disks and rods was again smallest for PbS, but largest for CdS, rather than

CdSe as it was with EEB. PbS was again the least sensitive to changing Peh with respect to changing NP shape. The total

range of Peh values was only 0.0302 relative units. CdS was most sensitive to changing Peh with respect to changing

shape, with a total range of 0.4434 relative units. This property of PbS to be highly resistant to changing optical

properties with respect to shape deformation is likely a result of its large dielectric screening of the eh-interaction.[253]
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Effect of Shape on Electron-hole Separation Distance

The eh-separation distance was obtained from the expectation value of the eh-distance 〈ρehreh〉. Figure 6.8 presents the

calculated values of 〈reh〉 for the investigated NPs. For comparison to the bulk material, the dashed lines on each plot

indicate the exciton Bohr radius [253] of these materials (in nm). As expected, 〈reh〉 increased with increasing volume.

The 〈reh〉 distance was inversely correlated with EEB, and thus NPs with large 〈reh〉 distances exhibited smaller EEB.

This phenomenon was true for all materials investigated, and suggests that unlike Peh, the largest structural dimension

of the system controls 〈reh〉.
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Figure 6.8: Electron-hole separation distance of CdSe, CdS, CdTe, and PbS nanoparticle spheres, disks, and rods.
The separation distance increases as both nanoparticle size and anisotropy increases. Dashed lines correspond to the
exciton Bohr radius (in nm) for each material.

We see that as with exciton Rydberg energies, our 〈reh〉 results followed a similar trend to the exciton Bohr

radii of these materials. However, 〈reh〉 is a much better description of the spatial separation of the bound eh-pair,

because unlike the exciton Bohr radius which treats the exciton approximately as a hydrogenic atom, 〈reh〉 is a system-

dependant property that will changed based on the NP size, shape, and composition.

Upon obtaining all of these calculated optical properties of each NP, we were interested in determining the struc-

tural parameters that make a particular NP more or less sensitive to changes in its observed optical properties. To do
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V  (nm
3
) E EB (meV) r eh (nm) V  (nm

3
) E EB (meV) r eh (nm)

524 109 2.41 0.503 524 129 2.37 0.557

1437 80 3.10 0.234 1437 96 3.15 0.269

4189 58 3.78 0.131 4189 70 4.04 0.166

524 85 2.84 0.830 524 101 3.01 0.895

1437 65 3.49 0.398 1437 76 3.99 0.476

4189 47 3.98 0.244 4189 59 5.79 0.257

524 77 2.93 0.838 524 90 3.42 1.000

1437 60 3.65 0.605 1437 76 4.90 0.571

4189 46 5.13 0.316 4189 66 7.38 0.365

V  (nm
3
) E EB (meV) r eh (nm) V  (nm

3
) E EB (meV) r eh (nm)

524 92 2.71 0.348 524 37 2.78 0.324

1437 67 3.70 0.137 1437 27 3.86 0.121

4189 48 5.05 0.055 4189 19 5.43 0.043

524 66 3.99 0.396 524 26 4.30 0.337

1437 49 5.22 0.170 1437 19 5.87 0.129

4189 37 6.75 0.075 4189 13 8.00 0.049

524 59 4.50 0.447 524 22 5.35 0.355

1437 45 5.63 0.196 1437 16 6.98 0.141

4189 33 7.23 0.086 4189 12 8.94 0.056
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Figure 6.9: The entire set of calculated results for each nanoparticle studied. Spheres, disks, and rods were studied at
volumes of 524, 1437, and 4189 nm3. CdSe, CdS, CdTe, and PbS nanoparticles were investigated at these morpholo-
gies, and exciton binding energy (EEB), electron hole recombination probability (Peh), and electron hole separation
distance (〈reh〉) were all calculated using eh-XCHF. Peh is presented relative to probabilty P0

eh = 2.9945×10−18.
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this, we define the root-mean-squared deviation A(α)RMSD below in Equation 6.19 as:

A(α)RMSD =

√√√√ n
∑

i=1
(Ai(α)−〈A(α)〉)2

n
, (6.19)

where α is a structural property of the NP being fixed, Ai(α) is the optical property of a particular NP satisfying α ,

〈A(α)〉 is the average of that optical property across all NPs satisfying α , and n is the total number of NPs that satisfy

α . A(α)RMSD was calculated for both EEB and Peh at fixed NP volume and fixed material composition. These results

are plotted in Figure 6.10. For a given NP size, we see that A(α)RMSD for both EEB and Peh were smaller for larger

NPs. Therefore, larger NPs are, on average, less susceptible to changing EEB and Peh with respect to changing shape

or material type. Compared to EEB, A(α)RMSD for Peh is smaller across all corresponding NP sizes. We conclude

that in general, NPs are more resistant to changes in Peh than they are to EEB when the particle shape or composition

is changed. With respect to material type, PbS NPs were, on average, more resistant to changing EEB and Peh with

respect to changing NP size and shape. CdS nanoparticles were more sensitive to changing EEB and Peh with respect

to changing NP size and shape.
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Figure 6.11: Exciton binding energy vs. recombination probability in CdSe, CdS, CdTe, and PbS nanoparticles. Data
includes nanoparticles of all shapes, sizes, and compositions investigated.

Understanding the relationship between EEB and Peh can help make informed decisions about what types of NP

systems to use when designing semiconductor devices. Figure 6.11 shows this relationship for the set of all CdSe,

CdS, CdTe, and PbS NPs studied. In general, as EEB increased, Peh also increased, but this trend was not strictly
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adhered to by all NPs. The actual relationship between these quantities is impacted largely by material type. Overall,

Peh scaled fastest with EEB in spheres, and slowest in rods. This scaling again varies based on NP material type. The

conclusion from this analysis is that in general, NP spheres may be the best candidates for semiconductor applications

where large binding energies and low Peh values are desired.

Effect of Shape on Exciton Binding Energy in Isovolumetric CdSe Nanoparticles

The calculated optical properties for the spheres, disks and rods were insightful, but limited our scope to only three

rigidly defined morphologies. We additionally wanted to investigate the effect on observed optical properties of

incremental deformation of the NP. In an effort to obtain a more detailed description of the shape-property relationship

in semiconductor NPs, we performed calculations on a set of 900 isovolumetric (V = 4189 nm3) ellipsoidal CdSe NPs.

Each ellipsoid’s shape in this investigation can be fully defined by the A and B semi-axes, since the C semi-axis

is defined by the other two as a result of the isovolumetric condition (A×B×C = 1000 nm3). In constructing these

systems in this way, we obtain a very large set of NPs with small, continuous shape deformation. Here we can see the

optical properties not only of spheres, disks, and rods, but also of the transitional morphologies as well.

(a)

E
xciton binding energy (m

eV
)

 5  10  15  20  25  30

A semi-axis (nm)

 5

 10

 15

 20

 25

 30

B
 s

em
i-a

xi
s 

(n
m

)

 0

 10

 20

 30

 40

 50

 60

(b)

Figure 6.12: Surface plot (a) and contour plot (b) of CdSe nanoparticle A and B semi axis lengths vs. exciton binding
energy. Representative ellipsoids are placed over the surface plot for reference.

The EEB values of the entire set of 900 CdSe NPs are presented in Figure 6.12. Representative ellipsoids are

placed above the surface to indicate what the NP morphology looks like within selected regions. The local maximum

and minimum can be seen more precisely in the corresponding contour plot in Figure 6.12b. A number of interesting

conclusions can be drawn from this data. The spherical CdSe NP exhibited the largest EEB (57.0 meV), whereas the

binding energy for the wire-like CdSe NP was much smaller (1.3 meV). The disk and ”surfboard” morphologies were

in between the sphere and the wire, with moderate decreases in binding energy relative to the sphere (23.8 meV and

22.6 meV respectively).

84



Effect of Shape on Electron-hole Separation Distance in Isovolumetric CdSe Nanoparticles

In addition to EEB, the effect of shape on 〈reh〉 in these CdSe systems was also investigated. As seen in our previous

results, the observed trend from the effect of shape on 〈reh〉 was essentially the opposite of the trend for EEB. The

wire-like ellipsoid exhibited an 〈reh〉 distance of 284 nm, while the spherical ellipsoid exhibited an 〈reh〉 distance of

only 5.6 nm. The 〈reh〉 distance of the disk and surfboard shapes increased moderately relative to the sphere (13.21

nm and 14 nm respectively). This data can be seen in Figure 6.13.
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Figure 6.13: Surface plot (a) and contour plot (b) of nanoparticle A and B semi-axis lengths vs. electron-hole separation
distance.

Interestingly, once a semi-axis of one of these isovolumetric NPs becomes sufficiently large, 〈reh〉 becomes very

insensitive to further changes in morphology. The contour plot in Figure 6.13b corresponds to this surface plot, and

focuses only on the region where the A and B semi-axis lengths are ≤ 5 nm, and therefore is centered where the C

semi-axis is very large. The sudden decrease in 〈reh〉 with increasing A and B semi-axis length is apparent. It can be

seen from these plots that EEB and 〈reh〉 distance had an inverse relationship with one another.

Effect of Shape on Electron-hole Recombination Probability in Isovolumetric CdSe Nanoparticles

Lastly we investigate the Peh exhibited by these CdSe NP systems. As seen in Figure 6.14, when the NP was deformed

stepwise in this manner, there is no simple trend observed for Peh as a function of NP shape as was seen with EEB and

〈reh〉.

The Peh values in this study were calculated relative to the recombination probability for the spherical (A = B =

C = 10nm) CdSe ellipsoid. In this way, the relative Peh calculated for the sphere is 1.000, for the wire (A = B =

1nm,C = 1000nm) is 0.620, and for a disk (A = B = 30nm,C = 1nm) is 1.814. The general trends of A and B axis

length on relative Peh are more easily distinguished in the contour plot corresponding to this data in Figure 6.14b.
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Figure 6.14: Surface plot (a) and contour plot (b) of nanoparticle A and B semi axis lengths vs. relative electron-hole
recombination probability.

The recombination behavior with respect to ellipsoid semi-axis length is non-uniform and complicated. However,

there are certain interesting characteristics in the data. Two local maxima exist in the plot of Peh, one where both A

and B semi-axes are large (as in disk-like ellipsoids), and one when a single semi-axis is very small. There are local

minima when both semi-axes are very small as in wire-like ellipsoids, and when both semi-axes are equal as in the

sphere. The surface plot forms a saddle point through the diagonal of the plot, where the A and B semi axis lengths

are equal.

The motivation for determining a relationship between NP geometry and optical properties is to be able to define

an intrinsic length scale that relates the shape of these NPs to their optical properties. Figure 6.15 shows EEB plotted
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Figure 6.15: Exciton binding energy vs. recombination probability for 900 ellipsoidal isovolumetric CdSe nanoparti-
cles.
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vs. Peh for the set of 900 isovolumetric CdSe NPs. The lack of a distinct trend demonstrates that for a system of fixed

size and material type, there is no clear relationship between EEB and Peh for a given NP. The data that corresponds

to the range of smaller EEB values belongs to the extremely anisotropic NPs. It can be seen that the ratio between Peh

and EEB did not change very much until extreme deformation of the NP shape from nanosphere to nanowire occurred.

EEB was additionally plotted against 〈reh〉−1, since an inverse relationship between the two was observed. A well-

behaved linear dependence was found from a plot of these two properties. Rather intuitively, the negatively charged

electron and positively charged hole bind more strongly the closer they are to one another, and less strongly the further

apart they are. It is for this reason that semiconducting nanowires (which exhibit large 〈reh〉) experience smaller values

of EEB, while spheres (which exhibit smaller reh) have larger EEB. This plot can be seen in Figure 6.16, and provides

evidence that the eh-separation distance is a characteristic length scale that relates to EEB in semiconducting NPs.
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Figure 6.16: Exciton binding energy vs. 〈reh〉−1 in CdSe ellipsoids. The linear relationship between exciton binding
energy and 〈reh〉−1 is readily apparent. The red line is a linear fit with the form f (x) = 321 meV(x), and has a corre-
lation coefficient [255] R2 = 0.9997, max deviation = 2.140, average signed deviation = 0.03909, average unsigned
deviation = 0.4510.

Conclusions

The eh-XCHF method was used to study optoelectronic properties of CdSe, CdS, CdTe, and PbS NP ellipsoids by

performing isovolumetric transformations. This general method can be used to study a large variety of electron-
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hole systems. In work presented here, the electron and hole were treated as an interacting pair confined to a three-

dimensional parabolic potential. The eh-XCHF wave function was used to calculate the ground state exciton binding

energy, electron-hole separation distance, and electron-hole recombination probability of the NPs. We found that all

three properties were found to have a strong dependence on ellipsoid shape, even at constant volumes. We also found

that exciton binding energy was maximum in the case of a sphere and minimum in rods, which had the largest aspect

ratio. The electron-hole separation distance exhibited the opposite trend. These trends were observed consistently

across all semiconductor NPs, regardless of size. The exciton binding energies exhibited a strong linear dependence

with respect to the inverse of the electron-hole separation distance, making this inverse distance a useful intrinsic

length scale for predicting optical properties in these materials.
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Chapter 7

Investigating Optoelectronic Properties of Perovskite Nanoparticles

Introduction

Cesium Lead Halide Nanoparticles

In 2015, Protesescu et al. were the first to synthesize all-inorganic CsPbX3 (X=Cl,Br,I) perovskite nanoparticles

(NPs) [256]. While these materials are not as soluble as their hybrid organic-inorganic MAPbX3 counterparts, they

have been observed to possess very advantageous and promising optical properties. They found that these NPs exhib-

ited narrow emission line widths of 12-42 nm, high quantum yields of 50-90%, and short radiative lifetimes of 1-29

ns. The NPs also possess band gap tunability though modification of the halide ion, as well as size-tunability of their

band gap energies through the entire visible spectral region. These NPs are able to exhibit these properties without the

need for an epitaxial shell material [256].

Optoelectronic Properties of CsPbX3 Nanoparticles

Since CsPbX3 were first synthesized, there has been a large amount of investigation done in order to better characterize

the electronic structure and optoelectronic properties of these NPs. In 2015, Nedelcu et al. showed that by adjusting the

halide ratios in CsPbX3 NPs with anion-exchange reactions, the photoluminescence they exhibit can be tuned over the

entire visible spectral region while maintaining high quantum yields and narrow emission line widths [257]. In 2015,

Akkerman et al. were able to tune the chemical composition and the optical properties of pre-synthesized colloidal

cesium lead halide perovskte NPs. Again using controlled anion-exchange reactions, they were able to change a

green-emitting CsPbBr3 NP to any other region of the visible spectrum by displacing the Br− ions and inserting Cl−

or I− ions [258].

In 2015, Park et al. investigated the properties of a single-photon emission from an isolated CsPbX3 NP at room

temperature. They calculated very fast nonradiative Auger recombination times, which they found rendered multiex-

citon states virtually non-emissive [259]. A year later in 2016, Makarov and coworkers investigated the properties of
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excitons and biexcitons in CsPbX3 NPs. They found that the spectroscopic properties of these NPs are very similar to

those of CdSe and PbSe NPs. However, two of the key differences they noted were that there is a strong effect of the

halide ion on the radiative lifetimes of the NP, and that there is a deviation in the size-dependent properties from the

so-called ”universal volume scaling” observed for CdSe and PbSe NPs. [260]

Applications of CsPbX3 Nanoparticles

Because of their excellent spectroscopic qualities and the convenient tunability of their properties through halide ion

exchange, much work has already been done to study the potential applications of CsPbX3 NPs in optoelectronic

devices.

Song and coworkers were able to develop CsPbX3 NP-based LEDS in 2015, where they were able to tune the

luminescence wavelength by changing both the size and halide composition o the NPs [261].

In 2016, Li et al. coated green-emissive CsPbBr3 NPs with red phosphors onto an InGaN chip, which produced

warm white light emission with a high rendering index of 93.2 [262]. The following year, Zhang et al. were able

to optimize CsPbBr3 NP-based LEDS by incorporating a small amount of methylammonium organic cation into the

lattice. They found that this improved the previously low efficiency resulting from high leakage current caused by

poor perovskte morphology [263].

In 2015, Yakunin and coworkers demonstrated that CsPbX3 (X=Cl, Br or I) colloidal NPs were capable of ex-

hibiting low-threshold amplified spontaneous emission and lasing over the entire visible spectrum [264]. Wang et al.

were also able to produce CsPbX3 NP lasers in 2016, where they were able to obtain a large two-photon absorption

cross-section of 1.2×105 GM for the 9 nm CsPbBr3 NPs [265].

Ramsay et al. were able to develop CsPbI3 NP photodetectors in 2016, which exhibited good on/off photocurrent

ratios of around 105 [266].

In 2015, Kulbak, Kahen, and Hodes showed that the organic cation in methylammonium lead halide perovskte

NPs was unnessecary to obtain high quality perovskte NP-based solar cells [267]. A year later, Sutton et al. developed

an efficient, all-inorganic, band-gap tunable CsPbX3 NP-based solar cell with high thermal stability [268].

Calculation of CsPbX3 Nanoparticle Optoelectronic Properties

In this work, we present theoretical calculations on CsPbX3 NPs similar in nature to Protesescu NP systems [256].

Here, we investigate the optical properties of spherical NPs (rather than cubic), which have radii equal to the edge

length of the cubic NP counterparts. Using the electron-hole explicitly correlated Hartree-Fock method (eh-XCHF),

we calculate the effect of NP size and composition on the exciton binding energy (EEB), the electron hole recombina-

tion probability (Peh), and the electron hole separation distance (〈reh〉).
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Table 7.1: System parameters used to calculate properties of NPs. ε is the dielectric constant of the material, me
is the effective mass of the electron, mh is the effective mass of the hole, and m0 is the mass of a free electron.

CsPbCl3 CsPbBr3 CsPbI3
ε 6.2 5.4 7.1

me 0.13 m0 0.19 m0 0.12 m0
mh 0.38 m0 0.22 m0 0.13 m0

Computational Details

System Setup and Parameters

The NPs in this study were modeled using the electron-hole explicitly correlated Hartree-Fock (eh-XCHF) method,

under the effective mass approximation regime. The complete details of the eh-XCHF method are outlined in the work

by Elward et. al. [241]. Only a brief overview of the method is discussed here. In order to solve the electron-hole

Schrödinger equation for these systems, the effective electron-hole Hamiltonian [242, 243, 244, 245, 246] was used,

shown in Equation 7.4:

Ĥ = ∑
i j
〈i|−h̄2

2me
+ ve

ext| j〉e
†
i e j (7.1)

+∑
i j
〈i|−h̄2

2mh
+ vh

ext| j〉h
†
i h j (7.2)

+ ∑
i ji′ j′
〈i ji′ j′|ε−1r−1

eh |i ji′ j′〉e†
i e jh

†
i′h j′ (7.3)

+∑
i jkl

wee
i jkle

†
i e†

jelek +∑
i jkl

whh
i jklh

†
i h†

jhlhk. (7.4)

The effective electron-hole Hamiltonian provides a computationally efficient means of calculating the optical proper-

ties of interest in these NPs. A table of the effective mass parameters used for each system is tabulated in Table 7.2.

The external potential used in this investigation is a parabolic potential for both the electron and hole. Parabolic

potentials have been used extensively to approximate the confinement potential of semiconductor NPs [247, 248, 249,

250].

vα
ext =

1
2

kα |rα |2 α = e,h, (7.5)

The magnitude of the force constants in the external confining potential are important for accurately calculating exciton

binding energy in these NPs. The force constants are calculated such that the electron and hole are confined to the
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physical dimensions of the NP [250] shown in Equation 7.6

min
kmin

α

=

Nα −
∫ Ddot

2
0

drr2
∫

dΩρα(r)[vα
ext ]

2

, (7.6)

where α = e,h, dΩ = sindθdϕ , Ddot is the diameter of the NP, and kα is the smallest force constant that satisfies the

above minimization conditions.

Mathematical Description of Optoelectronic Properties of Interest

The three optical properties of interest in this study are the exciton binding energy, the electron hole recombination

probability, and the electron hole separation distance. The exciton binding energy is defined as the total energy of a

fully interacting electron hole system, less the fully non-interacting system ( Equation 8.12)

EEB = 〈Enon−interacting〉−〈Eexciton〉. (7.7)

The electron-hole separation distance is calculated as the expectation value of the absolute difference between the

electron and hole coordinates ( Equation 7.8)

〈reh〉= 〈Ψeh−XCHF||re− rh||Ψeh−XCHF〉. (7.8)

The electron hole recombination probability is calculated as the probability of finding a hole within a small finite

region around the electron coordinate ( Equation 7.9)

Peh =
1

NeNh

∫
dre

∫ re+
∆∆∆

2

re−
∆∆∆

2

drh ρeh(re,rh). (7.9)

Results and Discussion

Effect of Dot Size on Electron-hole Separation Distance

In Figure 7.1, the electron hole separation distance (〈reh〉) is plotted vs. rdot. Defined in Equation 7.8, 〈reh〉 is the

average distance between the electron and hole in the NP. It can be seen that the 〈reh〉 was essentially independent of

halide ion in the crystal structure. 〈reh〉 increased linearly as the size of the NPs increased, and scaled nearly the same
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independent of halide type. This property of 〈reh〉 to increase linearly with increasing spherical NP radius has been

observed previously in other systems studied with eh-XCHF [250].
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Figure 7.1: Electron hole separation distance vs. NP radius for CsPbCl3 (y = 0.5145x,R2 = 0.9675), CsPbBr3 (y =
0.5263x,R2 = 0.9797), and CsPbI3 NPs (y = 0.5195x,R2 = 0.9763).

Effect of Dot Size on Exciton Binding Energy

In Figure 7.2, exciton binding energy (EEB) of each NP is plotted vs. the radius of the NP (rdot). EEB is defined as

the differences between the interacting and non-interacting electron-hole system, as seen in Equation 8.12. It can be

seen that EEB follows a power-scaling with respect to increasing NP radius. Additionally, the values were largest in

CsPbCl3 NPs at all corresponding NP sizes, and smallest in CsPbI3 NPs. This trend is additionally followed by the

exciton Rydberg energies of these materials.

Also observed is that EEB in smaller NPs were larger than the binding energies in larger NPs. As NP size increases,

the binding energies appear to decrease exponentially. This same property of CsPbX3 spherical NPs has been observed

in the past both experimentally and theoretically [269].
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Figure 7.2: Exciton binding energy vs. NP radius for CsPbCl3 (y = 12.284x−5.713,R2 = 0.993), CsPbBr3 (y =
14.522x−6.004,R2 = 0.9973), and CsPbI3 (y = 97.187x−6.938,R2 = 0.992) NPs.

Effect of Dot Size on Electron Hole Recombination

In Figure 7.3, the electron hole recombination probability (Peh) is plotted vs. rdot. Defined in Equation 7.9, Peh is the

on-top probability that an electron and hole will recombine . It can be seen that Peh follows a power-scaling law with

respect to NP radius, as it does with EEB. Peh was greatest in CsPbI3 NPs, and smallest in CsPbCl3 NPs. Perovskite

NPs with bromide ions are in-between the two. Interestingly, this relationship with halide type exhibited for Peh is the

opposite of the observed trend for exciton binding energy.

Also seen is that Peh in smaller NPs was larger than the recombination probabilities in larger NPs. Recombination

probability dropped off rapidly as the NP size increased. This is a trend that has been observed previously in other

systems studied with eh-XCHF [238, 241, 250].

Effect of Electron-hole Separation Distance on Exciton Binding Energy and Electron-hole Recombination

In Figure 7.4, exciton binding energy is plotted vs. inverse electron hole separation distance (〈reh〉−1). Here again,

the chloride-containing NPs exhibited larger EEB values than bromide NPs, which exhibited larger EEB values than

iodide NPs. EEB increased linearly with increasing 〈reh〉−1 for all NPs, but scaled differently for different NPs. It is the
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Figure 7.3: Electron hole recombination probability vs. NP radius for CsPbCl3 (y = 798.48x−0.949,R2 = 0.9907),
CsPbBr3 (y = 666.89x−0.98,R2 = 0.9955), and CsPbI3 (y = 466.33x−0.884,R2 = 0.9786) NPs.

halide ion in the perovskite structure that appears to determine this scaling relationship. This material-dependent linear

scaling of EEB with respect to r−1
eh has been observed in previous investigations of NPs using eh-XCHF. [238, 250]

In Figure 7.5, Peh is plotted vs. 〈reh〉−1. The trend for this data closely fits a power relationship. Here again,

the chloride-containing NPs exhibited larger EEB values than bromide NPs, which exhibited larger EEB values than

iodide NPs. EEB increased linearly with increasing 〈reh〉−1 for all NPs, but scaled differently for different NPs. It is

the halide ion in the perovskite structure that appears to determine this scaling relationship. This material-dependent

linear scaling of EEB with respect to 〈reh〉−1 has been observed in previous investigations on NPs using eh-XCHF.

[238, 250]

Comparison of Trends to Bulk CsPbX3 Exciton Properties

In order to demonstrate the size-tunability of the electron and hole confinement in these systems, Protesescu et. al.

calculated exciton Bohr radius and exciton Rydberg energy using effective electron and hole masses. They determined

that their calculations produced the same trend in exciton binding energies that we calculated using eh-XCHF, where

CsPbI3 NPs have smaller binding energies than the other perovskite NPs. This result is further confirmed by DFT

analysis done by Murtaza and coworkers [270], and experimental work by Diroll and cowrokers [271].
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Figure 7.4: Exciton binding energy vs. inverse electron hole separation distance for CsPbCl3 (y = 444.1x,R2 =
0.9962), CsPbBr3 (y = 363.53x,R2 = 0.9985), and CsPbI3 (y = 286.26x,R2 = 0.9454) NPs.

Table 7.2: Exciton Bohr radii of the three different perovskite systems, and their respective exciton Rydberg
energies. Calculated exciton binding energies for D = 5 nm spherical NPs are included for comparison.

Exciton Bohr radius Exciton Rydberg energy eh-XCHF EEB
CsPbCl3 5 nm 75 meV 152 meV
CsPbBr3 7 nm 40 meV 121 meV
CsPbI3 12 nm 20 meV 94 meV

Conclusions

In conclusion, we have been able to determine the effect of size and material composition on spherical CsPbX3 per-

ovskite NPs. We have demonstrated that these perovskite NPs exhibit size tunability similar to other semiconductor

NP systems. Additionally, modification of the halide ion in the perovskite structure has an equally important effect

on the calculated exciton binding energies and electron-hole recombination probabilities. In the future, fully atom-

istic calculations performed on cubic perovskite CsPbX3 NPs can be done in order to more fully characterize and

benchmark the exciton behavior in these perovskite systems,
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Figure 7.5: Electron hole recombination probability vs. inverse electron hole separation distance for CsPbCl3 (y =
0.3388x5.9377,R2 = 0.9926), CsPbBr3 (y = 0.3575x6.128,R2 = 0.9957), and CsPbI3 (y = 2.16x7.710,R2 = 0.9752) NPs.
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Chapter 8

Temperature-dependent Exciton Binding Energies of CdSe Nanoparticles

Introduction

In the previous chapters, I have presented the utility of both the Effective Stochastic Potential (ESP) [24] and electron-

hole explicitly correlated Hartree-Fock (eh-XCHF) [241] methods. Within the chapters on ESP and ESP-CIS, I demon-

strated the importance of obtaining very large sample sizes of thermally-accessible structures in order to accurately

calculate distributions of quantum mechanical properties. The previous two chapters on eh-XCHF covered answers to

a very different type of chemical challenge, namely the efficient treatment of calculating electron-hole correlation and

exciton properties in large NP systems.

Ideally, we would like be able to address both of these challenges simultaneously, since temperature and solvent

play a very important role in the distribution of exciton properties in semiconductor NPs.

Thermal and Solvent Effects on Optical Properties of Semiconductor Nanoparticles

The effect of temperature on calculated and experimentally observed exciton properties has been studied extensively.

In 2006, Kamisaka and co-workers performed quantum dynamics simulations on Pb16Se16 and Pb68Se68 QDs using

density functional theory (DFT). They found that at ambient temperatures the vibrationally-induced dephasing of elec-

tronically excited states was extremely rapid, and was only weakly depended on the magnitude of the excitation energy.

They also found that multiexciton states dephased more quickly than single exciton states [112]. In 2007, Morello and

co-workers used photoluminescence spectroscopy to showed that the optical gap of CdTe NPs decreased with increas-

ing temperature. They found that while the coupling constant with acoustic phonons was strongly enhanced in NPs

with respect bulk CdTe, the exciton-LO phonons coupling constant decreases as the NP size decreases [272]. In 2009,

Madrid et al studied multi-exciton generation (MEG) and fission (MEF) in hydrogen-passivated Si NPs using AIMD.

They found that the dynamics of the lower-frequency modes were more significantly affected by temperature varia-

tions, and the MEF dephasing time showed stronger temperature dependence than MEG in these systems. [273]. Chon

and co-workers found in 2011 that the band gaps of CdTe/CdSe core-shell NPs decreased with increasing temperature,
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and their PL peaks broadend. They also found that band gap shift was less temperature sensitive in NPs with thicker

shells, but the broadening was more sensitive. [274]. In 2013, Dey et al investigated the temperature dependence of

band gap of PbS and PbSe semiconductor nanocrystals of different diameter, which they measured using FTIR spec-

troscopy. They found that while in general the PbSe NPs showed increasing optical gap with increasing temperature,

at some critical size between D = 3.2 nm and D = 2.3 nm, the trend between gap and temperature flipped [275].

Early theoretical work performed on NPs in the area of solvent effect where Rabani et al. investigated the electronic

properties of CdSe nanocrystals, both in absence and presence of dielectric medium, using an empirical pseudopo-

tential method. They found that the band gaps for CdSe NPs decreased for all NP sizes investigated as dielectric

constant of the surroundings increased, but that the NPs with larger dipole moments were much more sensitive to

this effect than those with smaller dipoles. [276] In 2001, Leatherdale et al reported on solvatochromatic shifts in the

absorption spectra of colloidal CdSe NPs. Their results agreed well with expected change in polarization energy of the

confined exciton from theory when accounting from the screening effect on the exciton due to the ligand shell. [277]

In 2012, Lee and co-workers developed a method they call nanoscale solvothermal reaction in order to induce the

quantum confinement effect of CdSe on nanostructured TiO2. CdSE NP growth on the oxide surface only occured

in the presence of solvent, and increasing temperature of the synthetic conditions systematically decreased the band

gap of the NPs [278]. In 2014, Kuznetslv et al performed DFT (B3LYP/Lanl2dz) studies of the structural and elec-

tronic properties of both bare and NH3-, SCH3-, and OPH3-capped Cd33Se33 and Cd33Te33 NPs in the presence of

solvent. Specifically, they were able to calculate HOMO-LUMO gap stabilization effects, and found that inclusion of

implicit solvent tended to destabilize HOMO and LUMO energies in bare NPs, while it tended to stabilize them in

ligand-capped NPs. [279]

In 2011, Long et. al. reported on their NAMD simulation of electron transfer from PbSe NP to a TiO2 surface,

serving as a model NP-sensitized solar cell. Their simulation supported the observation that electron transfer suc-

cessfully competes with energy loss due to electron-phonon interaction. They described this difference between NPs

and molecules as arising from from increased rigidity of NPs compared to molecular systems. In molecular systems,

optical phonons are not thermally accessible in ambient conditions, while in the NPs, electron transfer can be pro-

moted by low-frequency optical phonons [181]. That same year, Chen et al also performed NAMD simulations to

study phono-assisted hot electron relaxation dynamics in both spherical and rod-like CdSe NPs. They found that the

band gap showed a stronger negative dependence in the rod-like NPs, and that electron-phonon coupling was gen-

erally stronger in the rod-like NP compared to the spherical one. They also saw that the relaxation of hot electrons

in the rod-like NP proceeded faster and had stronger temperature dependence than the spherical NP [221]. In 2012,

Hyeon-Duek et al investigated MEG and multiexciton recombination (MER) dynamics semidoncudtor NPs using

time-dependent density functional theory (TDDFT) combined with NAMD. They observed MEG at energies below

the purely electronic threshold in the presence of high-frequency ligand vibrations, and found that exciton-phonon
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coupling was essential for MER due to the fact that higher-energy biexcitons must relax to recombine into single exci-

tons, and the single excitons must further relax to avoid recreating the biexcitons. [280] In 2016, Pal and co-workers,

investigated excited state dynamics by developing an approach that combines NAMD with the self-consistent charge

density functional tight binding method. They tested their method against ab initio DFT and experimental data with

good agreement. They found their method was able to accurately and effciently treat excitation dynamics in large,

realistic nanomaterials. [281]

Integration of the ESP and eh-XCHF Methods

Our approach for calculating temperature-dependent electron-hole properties of NPs is to combine the ESP and eh-

XCHF methods. In this way, we are able to both capture the effect of the chemical environment on the NP ensemble

and sample exciton properties much more efficiently than with traditional ab-initio techniques. In this work, we

have used an effective stochastic potential in conjunction with the eh-XCHF method in order to calculate ensemble-

averaged exciton binding energies at room temperature in CdSe NPs. We call the combination of these two methods

the ESP-XCHF method.

An overview of the theoretical details of the ESP-XCHF is described in section 8.2. The computational details for

implementation of the ESP method with the eh-XCHF method, including sampling schemes, choice of basis, and form

of the ESP, and definitions of the properties of interest are presented in section 8.3. The developed ESP-XCHF method

was used to perform calculations of ensemble-averaged HOMO-LUMO gap energies and exciton binding energies in

chemical systems, and results for Cd20Se19 are presented in section 8.4.

Theory

Generation of Stochastic Electron-hole States

As in the previous chapters on the eh-XCHF method, the ansatz of the electron-hole wave function is a product of

electron an hole states, correlated by a two-body Gaussian-type geminal operator [241] shown in Equation 8.1

Ψeh = Ĝ|ΦeΦh〉, (8.1)

where Ψeh is the exact wave function of the system, Ĝ is the geminal operator, and Φe and Φh are the electron and

hole wave functions, respectively. If we make the approximation that the singly-excited state of the system is entirely

dominated by the HOMO-to-LUMO transition, we can then write Ψeh in terms of the HOMO and LUMO eigenvectors
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of the Fock operator as in Equation 8.2:

Ψeh = Ĝ|χLUMOχHOMO〉. (8.2)

With a suitable effective stochastic potential (ESP), the orbitals of the system are themselves stochastic eigenvectors

of the ESP Hamiltonian ( Equation 8.3):

FESP
χ

ESP = ε
ESP

χ
ESP. (8.3)

From here we are in position to define the ESP-XCHF electron-hole wave function Equation 8.4:

Ψ
ESP
eh = Ĝ|χESP

LUMOχ
ESP
HOMO〉. (8.4)

In this way, ΨESP
eh is a stochastic electron-hole wave function that depends explicitly on the electron-hole separation

distance and whose orbitals randomly fluctuate according to the ground-state ensemble at a given temperature.

Calculation of Temperature-Dependent Exciton Binding Energies

All CdSe NPs in this study were modeled using the ESP-XCHF method. We have defined the exciton binding energy,

as in previous chapters, as the total energy of a fully interacting electron-hole system, less the fully non-interacting

system, shown in Equation 8.5:

EEB = 〈Enon−interacting〉−〈Eexciton〉. (8.5)

The energy of the electron-hole ESP-XCHF interaction can be calculated by taking the expectation value given in

Equation 8.6

EEB =

〈
χeχh|r−1

12 |χeχh
〉

〈χeχh|χeχh〉
−
〈
χeχh|Gr−1

12 G|χeχh
〉

〈χeχh|GG|χeχh〉
, (8.6)

where χe and χh are the electron and hole states, G is the geminal operator, and r−1
12 is the inverse electron-hole

separation distance. The numerator bust be divided by the denominator to ensure the value is properly normalized for

the chosen geminal operator.

In the present work, where the electron and hole states are chosen to be the ESP LUMO and HOMO eigenvectors,

the expression for the electron-hole interaction energy can be expanded in terms of ESP molecular orbital coefficients
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of the HOMO and LUMO orbitals as shown in Equation 8.7

∑
µ ′ν ′

∑
µν

ce
µ ce

ν ch
µ ′c

h
ν ′ [µν |gr−1

12 g|µ ′ν ′]. (8.7)

Computational Details

System Details

The geometry of the reference system was generated by cutting out a spherical section from a CdSe wurtzite crystal

structure, and then optimizing the resulting cluster using the Universal Force Field [282]. The 1-particle states of

the minimum energy reference structure were obtained by performing single point energy calculation on the resulting

UFF optimized structure at restricted Hartree Fock (RHF) level of theory using LANL2DZ ECP basis [80] using the

GAMESS software package [283].

The ESP for this NP system is generated from 45 ground state Hartree-Fock calculations.

Canonical Ensemble Sampling Using Monte Carlo and Molecular Dynamics

The probability pη associated with the structure Rη depends on the thermodynamic conditions of the physical system,

and can be chosen to describe both equilibrium and non-equilibrium conditions. In this work, we are interested in

systems at thermal equilibrium, which are well-described using the constraints of canonical ensemble with constant

composition, temperature, and volume (N,V ,T ). For canonical ensemble, the probability is the well-known Boltzmann

expression as shown below:

pη =
e−β (Eη−E0)

∑λ∈Sdef
e−β (Eλ−E0)

, (8.8)

where, β = (kBT )−1 and Eη is the energy of the deformed structure and E0 is the energy associated with the minimum-

energy structure. The first step in the determination of the deformation potential is the generation of the set of structures

Rη . In principle, the set of structures can be achieved using either Monte Carlo (MC) by molecular dynamics (MD)

simulations. The key point in both of these approaches is to generate a statistically meaningful sample of thermally

accessible structures. In the MC procedure, this is achieved by randomly distorting the optimized structure, calculating

its energy, and and calculating the mean and central moments using the Boltzmann-weighted procedure described in

Equation 8.8. In the MD procedure, equilibrium molecular dynamics calculations are performed at fixed N,V ,T and

the structures are then randomly selected from the equilibrium distribution. It is important to note that Boltzmann

weights are only needed for MC sampling, and should not be included in the case of MD sampling. The relevant
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equations for MD sampling are presented in Equation 8.9

µ= ∑
η∈S MD

def

Vη

def. (8.9)

In the above equation, the superscript (MD) implies that the set of structures were obtained from the MD simulation.

In order to generate a set of realistic deformed geometries, molecular dynamics calculations were performed at 300K.

The deformation potential was generated by sampling 45 random geometries on the resulting MD trajectory and

performing RHF calculations on those sampled configurations.

As detailed in our previous work with ESP [24], each deformed potential was transformed into the 1-particle

basis of the reference structure. For practical generation of the ESP, only the mean and variance of each deformation

potential matrix element were used to construct the ESP. Higher order central moments were discarded, as it has been

shown that this Gaussian approximation to the ESP matrix elements is a good one [24].

To properly weight the deformed potentials by statistical significance, we used Boltzmann weighting of each of

the ESP matrix element terms, such that lower-energy conformations of the QD contribute proportionately more than

high-energy ones.

eh-XCHF Geminal Parameters and Exciton Binding Energy Approximations

In order to calculate e-h interaction in these stochastic systems, the eh-XCHF method was used on the resulting ESP

states. For the purposes of calculating EEB, we treat the ESP HOMO and LUMO states as the e-h reference states in

our eh-XCHF equation.

Approximate b and γ eh-XCHF parameters are obtained analytically in terms of the reh distance using the expres-

sions

b = 〈reh〉 (8.10)

γ =
1

2〈r2
eh〉

. (8.11)

The derivation for these analytical forms of the geminal parameters can be found in the work done by Bayne and

co-workers [284].

Exciton binding energy is calculated (as seen in Equation 8.12) as the the total energy of the non-interacting

exciton less the energy of the fully-interacting exciton:

EEB = 〈Enon−interacting〉−〈Eexciton〉. (8.12)
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We have used an in-house stratified sampling integration technique developed by Bayne et al. [285] to calculate

the necessary two-body integrals for determination of EEB. To expedite these calculations, we have only used the top

three most dominant AO contributions from HOMO and LUMO states to calculate these integrals.

Flowchart: Calculation of Exciton Binding Energy
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Figure 8.1: Flowchart of exciton binding energy calculation.

Figure 8.1 outlines the overall procedure used to combined ESP with eh-XCHF to calculate the distribution of

EEB. The steps from start to finish for running a set of ESP-XCHF calculations using the the current implementation

are as follows:

1. Obtain the 1-particle electronic states of the energy minimum reference structure from a geometry optimization

calculation at Hartree-Fock level.

2. Obtain the molecular dynamics (MD) trajectory of the equilibrated CdSe NP reference structure solvated in

explicit water at 300K.
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3. Perform Hartree-Fock calculations over 45 conformations of the MD trajectory using Monte Carlo sampling,

and calculate those structures’ corresponding deformation potentials (vdef) and total ground state energies

(Etotal).

4. Construct the ESP for the system from the set of obtained vdef and Etotal using Boltzmann weighting at 300K

and 350K.

5. Using stratified sampling integration developed by Bayne [285], and treating the ESP-HOMOESP and ESP-

LUMOESP states as ESP-hole and ESP-electron states, respectively, calculate the bare r−1
eh interaction. Use the

resulting analytical terms [284] of b and γ to calculate the screened e-h interaction,
Gr−1

eh G
GG

.

6. Continue sampling the stochastic ESP-HOMO and ESP-LUMO molecular orbitals to obtain 10,000 samples of

ESP-XCHF exciton binding energies.

Results and Discussion

Temperature-Dependent Mean HOMO-LUMO Gaps for Cd20Se19

These systems are excellent candidates on which to apply the ESP method, due to the potentially useful applications of

QDs, the complexity of their electronic states, and the chaotic behavior of their nuclei at room temperature. In order to

observe the effect of temperature and how the HOMO-LUMO gap energy of this system scales with temperature, we

generated ESPs at 49K, 100K, 140K, 197K, 248K, 296K, 342K, and 511K. These temperatures were selected in order

to compare to the temperature scaling results for Cd33Se33 obtained by Prezdo and coworkers [286]. These results are

shown in Figure 8.2. As expected there is a significant shift in the HOMO-LUMO gap energies, do to the difference

in QD sizes of the two systems being investigated. However, we do find that Cd20Se19 band gaps do decrease with

increasing temperature, as do the Cd33Se33 band gaps. This is good confirmation that the ESP method successfully

captures and reproduces the thermal effects of a chemical system.

Distribution of Exciton Binding Energies of Cd20Se19 at 300K and 350K

The results for this Cd20Se19 QD are shown below.

Important to note about these results is the computation cost involved in obtaining them relative to the cost of do-

ing the equivalent electronic structure calculations. The distribution of CdSe QD systems presented in this work here

represents 105 different thermally-accessible geometries of the QD. Each of these geometries would take us approx-

imately 30 minutes to perform one Hartree-Fock level calculation, or about 50,000 hours for the entire distribution.

Instead, we have spent fewer than 24 hours generating the ESP, and then used the ESP to determine each of the single-
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HOMO-LUMO gap (eV) EEB (eV)
µ σ µ σ

ESP 5.876 0.083 0.704 0.010
Hartree Fock 5.756 0.073 0.680 0.037

Table 8.1: Comparison of Cd20Se19 optical properties calculated by ESP and Hartree Fock method (cc-pVDZ basis).

electron states in about 0.5 seconds, or 90 minutes for the entire distribution. This represents a calculation speed-up

by more than a factor of 2000 times.

Figure 8.3 and Figure 8.4 show the Z-score frequencies for Cd20Se19 HOMO-LUMO gap and exciton binding

(EEB) energies calculated using the ESP method at 300K, compared to those calculated using Hartree-Fock.

The purpose of looking at Z-scores for these properties is to compare the characteristics of the different distribu-

tions. In comparing the two HOMO-LUMO gap Z-score distributions, it can be seen that the two distributions share

similar spreads and peak maxima.

Figure 8.5 shows the frequency of thermalized EEB energies for a Cd20Se19 QD at 300K. The mean EEB energy we

calculated is 0.704 eV (σ = 0.0100 eV). Elward et. al performed theoretical calculations on this system and obtained

an EEB energy of 0.855 eV. Zunger and coworkers pseudopotential method produces an EEB for this system of 1.003

eV. Meulenberg et. al. have calculated EEB energies for CdSe QDs experimentally, and found that Cd20Se19 QDs had

EEB energies of 0.990 eV.
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Figure 8.3: HOMO-LUMO gap Z-scores for a Cd20Se19 quantum dot at T = 300K.

Conclusions

In conclusion, the ESP method was successfully combined with the eh-XCHF method to perform conformational

sampling on water-solvated CdSe NPs and to obtain the distribution of corresponding HOMO-LUMP gaps and exciton

binding energies at 300K and 350K. It was shown that only looking at the optical properties of the minimum-energy

0K structure of the NP will fail to reproduce physically relevant results. Using a sufficiently large sample size of

deformed NP geometries was found to be very important in obtaining accurate HOMO-LUMO gaps and exciton

binding energies. It was shown that despite using a Gaussian approximation of the ESP matrix elements, non-Gaussian

distributions of properties can still be calculated. This technique is general and can be applied to any electron-hole

system.
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Figure 8.4: Exciton binding energy Z-scores for a Cd20Se19 quantum dot at T = 300K.
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at T=300K.
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Chapter 9

Conclusions and Future Work

In conclusion, the capabilities and usefulness of the Effective Stochastic Potential (ESP) method has been demon-

strated. The method developed here is general, versatile technique for studying the effect of temperature and solvent

on distributions of electronic properties. The ESP method has been applied to study the excited-state properties of

variety of chemical systems including H2O, PbS nanoparticles, CdSe nanoparticles, cesium lead halide nanoparticles,

an anti-cancer therapy molecule (MD-224), a drug molecule for treating neurodegenerative disease (CDN1163), an

energetic material, and an organic fluorophore (TADF (R)-1). In addition to these systems, the ESP method has been

successfully combined with eh-XCHF to calculate exciton binding energies of CdSe nanoparticles.

The accuracy of the ESP method has been demonstrated through benchmarking calculations on H2O. These cal-

culations have highlighted the importance of using the necessary number of sampling points in order to capture the

effect of chemical environment accurately.

Using the ESP method, I have been able to make a number of significant findings regarding the effect of temper-

ature on excited-state properties. Substantial red-shifting of excitation energies in both PbS and CdSe nanoparticles

were calculated using ESP-CIS and ESP-XCHF, respectively. Sub-Gaussian behavior of the excitation energy prob-

ability distribution of PbS nanoparticles was observed in the temperature range of 200K to 400K. The temperature

trends of HOMO-LUMO gaps of various molcules were calculated using ESP, and a general trend of pathological

behavior of energy minimum reference has been observed. In almost all cases, the HOMO-LUMO gap of the energy

mininum reference structure does not correspond to the most probable HOMO-LUMO gap energy.

These investigations have shown and confirmed the finding of others that an insufficient number of sampling points

leads to poor reproduction of probability distributions of quantum mechanical properties of interest. Specifically, we

have found from using the ESP method that on the order of 105 to 106 structures from a given ensemble need to be

sampled in order to calculate a property of that ensemble accurately. While most chemical systems are too large to

sample their quantum mechanical properties a million times, the ESP method is able to reproduce results for systems

for which many first-principles calculations can be performed. For the majority of systems which cannot be sampled
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such a large number of times using traditional methods, ESP can be used do to being so much more efficient.

One major advantage to the ESP method is that it is complementary to existing methods for treating molecular dy-

namics. Once an equilibrium trajectory for the system is obtained, it becomes a simple matter to sample conformations

along that trajectory using ESP.

While many advantages of the ESP method have been demonstrated, there are still multiple avenues for future

improvements to the method. Two major areas of possible future development include avoiding the computational

bottleneck of calculating a sample of deformation potentials, and including correlation in the ESP between matrix

elements. For the former, it may be possible to analytically derive an approximate ESP from a distribution of easier-

to-calculate classical properties, such as the nuclear repulsion energy. For the latter, machine learning presents ex-

citing possibilities with respect to generating more sophisticated potential that include the effects of cross-correlation

between the matrix elements of the ESP.
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[232] M. Artemyev, B. Möller, and U. Woggon. Unidirectional alignment of cdse nanorods. Nano Lett., 3(4):509–

512, 2003.

[233] J. Hu, L.-S. Li, W. Yang, L. Manna, L.-W. Wang, and A.P. Alivisatos. Linearly polarized emission from

colloidal semiconductor quantum rods. Science, 292(5524):2060–2063, 2001.

[234] A. Prudnikau, A. Chuvilin, and M. Artemyev. Cdse-cds nanoheteroplatelets with efficient photoexcitation of

central cdse region through epitaxially grown cds wings. J. Am. Chem. Soc., 135(39):14476–14479, 2013.

[235] S. Pedetti, B. Nadal, E. Lhuillier, B. Mahler, C. Bouet, B. Abécassis, X. Xu, and B. Dubertret. Optimized

synthesis of cdte nanoplatelets and photoresponse of cdte nanoplatelets films. Chem. Mater., 25(12):2455–

2462, 2013.

130



[236] L. Biadala, F. Liu, M.D. Tessier, D.R. Yakovlev, B. Dubertret, and M. Bayer. Recombination dynamics of band

edge excitons in quasi-two-dimensional cdse nanoplatelets. Nano Lett., 14(3):1134–1139, 2014.

[237] M.D. Tessier, P. Spinicelli, D. Dupont, G. Patriarche, S. Ithurria, and B. Dubertret. Efficient exciton concentra-

tors built from colloidal core/crown cdse/cds semiconductor nanoplatelets. Nano Lett., 14(1):207–213, 2014.

[238] J.A. Scher, J.M. Elward, and A. Chakraborty. Shape matters: Effect of 1D, 2D, and 3D isovolumetric quantum

confinement in semiconductor nanoparticles. J. Phys. Chem. C, 120(43):24999–25009, 2016. cited By 4.

[239] C.B. Murray, D.J. Norris, and M.G. Bawendi. Synthesis and characterization of nearly monodisperse cde (e =

s, se, te) semiconductor nanocrystallites. J. Am. Chem. Soc., 115(19):8706–8715, 1993.

[240] † Jin Joo, † Hyon Bin Na, † Taekyung Yu, † Jung Ho Yu, ‡ Young Woon Kim, § Fanxin Wu, § Jin Z. Zhang,

, and † Taeghwan Hyeon*. Generalized and facile synthesis of semiconducting metal sulfide nanocrystals. J.

Am. Chem. Soc., 125(36):11100–11105, 2003. PMID: 12952492.

[241] J.M. Elward, B. Thallinger, and A. Chakraborty. Calculation of electron-hole recombination probability using

explicitly correlated hartree-fock method. J. Chem. Phys., 136(12):124105, 2012.

[242] Xuejun Zhu, Mark S. Hybertsen, and P. B. Littlewood. Electron-hole system revisited: A variational quantum

Monte Carlo study. Phys. Rev. B, 54:13575–13580, November 1996.

[243] Y. Z. Hu, M. Lindberg, and S. W. Koch. Theory of optically excited intrinsic semiconductor quantum dots.

Phys. Rev. B, 42:1713–1723, July 1990.

[244] E. A. Burovski, A. S. Mishchenko, N. V. Prokof’ev, and B. V. Svistunov. Diagrammatic quantum Monte Carlo

for two-body problems: Applied to excitons. Phys. Rev. Lett., 87:186402, October 2001.

[245] Michael Wimmer, S. V. Nair, and J. Shumway. Biexciton recombination rates in self-assembled quantum dots.

Phys. Rev. B, 73:165305, April 2006.

[246] M. Braskén, M. Lindberg, D. Sundholm, and J. Olsen. Full configuration interaction calculations of electron-

hole correlation effects in strain-induced quantum dots. Phys. Rev. B, 61:7652–7655, March 2000.
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