
Syracuse University Syracuse University 

SURFACE SURFACE 

Dissertations - ALL SURFACE 

May 2020 

Cortical auditory processing of informational masking effects by Cortical auditory processing of informational masking effects by 

target-masker similarity and stimulus uncertainty target-masker similarity and stimulus uncertainty 

Christopher Edward Niemczak 
Syracuse University 

Follow this and additional works at: https://surface.syr.edu/etd 

 Part of the Social and Behavioral Sciences Commons 

Recommended Citation Recommended Citation 
Niemczak, Christopher Edward, "Cortical auditory processing of informational masking effects by target-
masker similarity and stimulus uncertainty" (2020). Dissertations - ALL. 1167. 
https://surface.syr.edu/etd/1167 

This Dissertation is brought to you for free and open access by the SURFACE at SURFACE. It has been accepted for 
inclusion in Dissertations - ALL by an authorized administrator of SURFACE. For more information, please contact 
surface@syr.edu. 

https://surface.syr.edu/
https://surface.syr.edu/etd
https://surface.syr.edu/
https://surface.syr.edu/etd?utm_source=surface.syr.edu%2Fetd%2F1167&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/316?utm_source=surface.syr.edu%2Fetd%2F1167&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/etd/1167?utm_source=surface.syr.edu%2Fetd%2F1167&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu


 

  

Abstract  

Purpose: Understanding speech in a background of other people talking is one of the most 

difficult listening challenges for hearing-impaired individuals, and even for those with normal 

hearing. Speech-on-speech masking, is known to contribute to increased perceptual difficulty 

over non-speech background noise because of informational masking provided over and above 

the energetic masking effect. While informational masking research has identified factors of 

similarity and uncertainty between target and masker that contribute to reduced behavioral 

performance in speech background noise, critical gaps in knowledge including the underlying 

neural-perceptual processes remain. By systematically manipulating aspects of similarity and 

uncertainty in the same auditory paradigm, the current study proposed to examine the time 

course and objectively quantify these informational masking effects at both early and late stages 

of auditory processing using auditory evoked potentials (AEPs) in a two-factor repeated 

measures paradigm.  

Method: Thirty participants were included in this cross sectional repeated measures design. 

Target-masker similarity between target and masker were manipulated by varying the 

linguistic/phonetic similarity (i.e. language) of the talkers in the noise maskers. Specifically, four 

levels representing hypothesized increasing levels of informational masking were implemented: 

(1) No masker (quiet), (2) Mandarin (linguistically and phonetically dissimilar), (3) Dutch 

(linguistically dissimilar, but phonetically similar), and (4) English (linguistically and 

phonetically similar). Stimulus uncertainty was manipulated by task complexity, specifically 

target-to-target interval (TTI) of an auditory paradigm. Participants had to discriminate between 

English word stimuli (/bæt/ and /pæt/) presented in an oddball paradigm in each masker 



 

  

condition at +3 dB SNR by pressing buttons to either the target or standard stimulus (pseudo-

randomized between /bæt/ and /pæt/ for all participants). Responses were recorded 

simultaneously for P1-N1-P2 (standard waveform) and P3 (target waveform). This design 

allowed for simultaneous recording of multiple AEP peaks, including analysis of amplitude, 

area, and latency characteristics, as well as accuracy, reaction time, and d’ behavioral 

discrimination to button press responses. Finally, AEP measurers were compared to performance 

on a behavioral word recognition task (NU-6 25-word lists) in the proposed language maskers 

and at multiple signal-to-noise ratios (SNRs) to further explore if AEP components of 

amplitude/area and latency are correlated to behavioral outcomes across proposed maskers.  

Results: Several trends in AEP and behavioral outcomes were consistent with the hypothesized 

hierarchy of increasing linguistic/phonetic similarity from Mandarin to Dutch to English, but not 

all differences were significant. The most supported findings for this factor were that all babble 

maskers significantly affected outcomes compared to quiet, and that the native language English 

masker had the largest effect on outcomes in the AEP paradigm, including N1 amplitude, P3 

amplitude and area, as well as decreased reaction time, accuracy, and d’ behavioral 

discrimination to target word responses. AEP outcomes for the Mandarin and Dutch maskers, 

however, were not significantly different across all measured components. Outcomes for AEP 

latencies for both N1 and P3 also supported an effect of stimulus uncertainty, consistent with a 

hypothesized increase in processing time related to increased task complexity when target 

stimulus timing was randomized. In addition, this effect was stronger, as evidenced by larger 

effect sizes, at the P3 level of auditory processing compared to the N1. An unanticipated result 

was the absence of the expected additive effect between linguistic/phonetic similarity and 

stimulus uncertainty. Finally, trends in behavioral word recognition performance were generally 



 

  

consistent with those observed for AEP component measures such that no differences between 

Dutch and Mandarin maskers were found, but the English masker yielded the lowest percent 

correct scores. Furthermore, correlations between behavioral word recognition and AEP 

component measures yielded some moderate correlations, but no common AEP components 

accounted for a majority of variance for behavioral word recognition. 

Conclusions: The results of this study add to our understanding of auditory perception in 

informational masking in four ways. First, observable effects of both similarity and uncertainty 

were evidenced at both early and late levels of auditory cortical processing. This supports the use 

of AEPs to better understand the informational masking deficit by providing a window into the 

auditory pathway. Second, stronger effects were found for P3 response, an active, top-down level 

of auditory processing providing some suggestion that while informational masking degradation 

happens at lower levels, higher level active auditory processing is more sensitive to 

informational masking deficits. Third, the lack of interaction of main effects leads us to a linear 

interpretation of the interaction of similarity and uncertainty with an equal effect across listening 

conditions. Fourth, even though there were few and only moderate correlations to behavioral 

word recognition, AEP and behavioral performance data followed the same trends as AEP 

measures across similarity. Through both auditory neural and behavioral testing, language 

maskers degraded AEPs and reduced word recognition, but particularly using a native-language 

masker. The behavioral and objective results from this study provide a foundation for further 

investigation of how the linguistic content of target and masker and task difficulty contribute to 

difficulty understanding speech in noise. 
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  1 

1.0   Introduction  

 

1.1 Overview 

In everyday listening situations, understanding speech in a noisy environment is a 

challenge, even for individuals with normal hearing. These background noises can be composed 

of any sound that covers or masks a target signal, including variable noises such as other people 

talking. This complex interaction of signal and noise creates difficulty comprehending speech, 

and is also one of the most common complaints of those with hearing impairment (Abutan et al. 

1993; Oticon 2016) and even those with normal hearing. In addition, increased speech in noise 

difficulties have been documented for individuals with central auditory processing disorder 

(CAPD), head injury, and suspected cochlear synaptopathy, all of whom may have hearing 

within normal limits on the audiogram (Fausti et al. 2009; Festen et al. 1990; Kujawa et al. 2015; 

Putter-Katz et al. 2008). While extensive research has documented the prevalence of difficulty 

with this critical perceptual task, understanding the nature of the deficits across these populations 

remains incomplete. In addition, the specific acoustic factors of noise that degrade speech 

recognition and how cognitive factors, such as attention, modulate this process are not fully 

understood.  

Background noise comprised of competing speech has generally been shown to be the 

most detrimental to speech understanding compared to continuous noises such as white noise or 

speech-shaped noise (continuous noise spectrally shaped to speech), even at similarly 

challenging signal-to-noise ratios (SNRs) (Brungart et al. 2001; Helfer et al. 2008). It is also in 

the presence of competing speech that those with auditory deficits have the most difficulty 
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understanding a target speaker (Killion et al. 2004). Speech and non-speech competing 

background noise have been generally categorized as providing two kinds of masking to the 

target speech – energetic and informational. Energetic masking, the type provided by continuous 

white noise and speech-shaped noise, is caused by physical interactions between the target signal 

and masker at the auditory periphery. Informational masking, which is more detrimental to 

speech perception, not only physically interferes at the periphery, but also perceptually interferes 

with speech understanding at higher top-down levels (Durlach, Mason, Shinn-Cunningham, et al. 

2003). That is, informational masking includes energetic components, but increases perceptual 

difficulty due to the addition of relevant auditory content. When background noise is other 

people talking, it can be difficult for the listener to attend to and separate out the target speaker 

they are trying to listen to from the competing speech signals. Energetic and informational 

masking, therefore, appear to operate at different levels of processing within the auditory 

pathway. Deficits in speech recognition in speech background noise are part of a complex 

interaction of target speech, masker speech, and listener related factors involved in this 

combination of energetic and informational masking.  

Speech Recognition in Noise: Energetic Masking 

Energetic masking can be defined to occur when target and masker energy are present at 

a similar time and frequency (Brungart et al. 2001), such that they directly compete at the 

auditory periphery. This phenomena has much in common with the neurophysiological concept 

of “line-busy” masking, in which the presence of an auditory signal does not increase the average 

response rate of the auditory nerve above the response rate elicited by the masker at a similar 

frequency (Culling 2013). Thus, it was hypothesized that speech can be masked by continuous 

noise that shares the same frequency spectrum at similar intensity levels. In the auditory 
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system, a broadband steady-state noise masker is filtered into a series of narrowband signals, 

each with a bandwidth corresponding to the bandwidth of the auditory filter at that center 

frequency (Glasberg et al. 1990). Therefore, if the noise energy falls within the same bands as 

the target speech, masking will occur.  

Across speech perception studies, is has been shown that the effect of purely energetic 

masking on speech recognition is determined not only by the level of spectral overlap, but also 

by the temporal fluctuations within that spectrum (Billings et al. 2011; Culling 2013; Hall et al. 

2002; Stuart et al. 1995). If the temporal envelope of the noise is not completely steady, but has 

fluctuations, there will be periods of time where the target signal is not completely masked 

within each channel (Elhilali et al. 2003). The effects of spectro-temporally modulated maskers 

on speech recognition have generally shown a release from masking (i.e. improved speech 

recognition) with modulations of energetic masking (Brungart et al. 2001; Rosen et al. 2013; 

Stone et al. 2016). For example, Stone et al. (2012) manipulated the depth and bandwidth of the 

fluctuations of a white noise masker and found that listeners performance increased with the 

depth and duration of envelope fluctuation of the maskers. Cooke (2006) found that speech 

recognition scores in various temporally modulated masking conditions confirmed that sufficient 

information exists during “dips” in the noise modulation to support consonant identification and 

that the proportion of the dips in a noise source is a good predictor of intelligibility. The 

theoretical basis for listening during dips, termed glimpsing, is based on taking advantage of 

glimpses where the target signal is least affected by the background noise (Cooke 2006; Stone 

and Canavan 2016). 

It might be expected, therefore, that background noise composed of speech, which 

contains temporal fluctuations, would also provide the listener improved recognition due to this 
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advantage of listening during these glimpses. However, Brungart et al. (2001) found poorer 

sentence recognition in normal-hearing young adults on a speech recognition task of a target 

phrase in the presence of speech-on-speech masking (termed babble masking) compared to 

energetic speech-shaped noise with and without envelopes modulated to mimic the temporal 

variations in speech. Specifically, they found that in a binaural listening condition, 2- and 3-

talker maskers resulted in ~30% worse speech understanding than a matched envelope 

modulated speech-shaped noise at the same SNR. That is, continuous noise with the same 

spectral shape and temporal fluctuations matched to mimic the fluctuation of babble maskers 

provided the listeners an advantage (masking release), but performance decreased in the babble 

conditions. The difference in performance between babble and modulated continuous noise was 

attributed to informational masking effects that were not present in the energetic masking of 

speech-shaped noise. Thus, if the spectral and temporal properties of the masker cannot explain 

the difficulty of speech in noise recognition when the background noise is also speech, what 

other factors make informational masking remarkably troublesome for listeners? 

1.2 Speech Recognition in Noise: Informational Masking  

Informational masking can be understood as masking effects that occur in addition to and 

beyond overlap on the auditory periphery, involving higher-order top-down auditory processing 

such as discrimination, attention, and memory. In the presence of informational masking noise, 

which is typically background speech, the listener must listen to and separate a particular person 

(the target speech) talking from a background of other people talking. The maskers therefore 

may be similar to the target speech in spectral and temporal features, may come from a similar 

location, may be more or less intense, and may also contain similar linguistic content – all of 

which may affect how much masking the listener experiences.  
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While Pollack (1975) has been credited with devising the term “informational masking”, 

the classic hypothesis of informational masking was defined by Durlach, Mason, Kidd, et al. 

(2003) stating that similarity and uncertainty of the target speech to the babble masker result in 

difficulty separating and, thus accurately perceiving the target speech. Although this definitional 

structure of informational masking remains broad, researchers have studied many aspects of 

similarity and uncertainty and how these phenomena affect speech recognition in noise (Brungart 

et al. 2001; Durlach, Mason, Shinn-Cunningham, et al. 2003; Hall et al. 2002; Kidd et al. 1998; 

Lutfi 1990; Neff et al. 1988; Watson and Nichols 1976). Target-masker similarity factors may 

include similar acoustic characteristics of the target speech and masker speech (such as intensity, 

spectral content, and timing, etc.) and the linguistic content and intelligibility of the target and 

masker speech (Brungart et al. 2001; Calandruccio et al. 2013; Cooke et al. 2008; Culling 2013; 

Freyman et al. 2007; Lutfi et al. 2003). Stimulus uncertainty can be related to factors such as the 

predictability of the presence of the target speech (whether someone is speaking) and consistency 

of the timing of the target relative to the background noise, both of which affect the ability to 

maintain focus on the target rather than become distracted by the background (Arbogast et al. 

2002; Brungart et al. 2001; Freyman et al. 2004; Hoen et al. 2007; Leibold et al. 2010; Watson, 

Kelly, et al. 1976).  

The concepts of similarity and uncertainty are not completely independent factors. For 

example, the more similar the target and masker on some acoustic dimension, the more 

uncertainty the listener may experience about whether the target is present within the masker(s). 

However, as theorized, these two important aspects of the target and masker relationship form 

the basis of experimental manipulations to better understand contributions to informational 

masking. It is the interaction of multiple factors that contributes to the perceived informational 
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masking phenomenon. While behavioral research has described several aspects of target and 

masker speech that contribute to the perceived informational masking deficits and decreased 

speech recognition scores, the complex interaction, specifically the additive effects of similarity 

and uncertainty factors are not fully understood. In particular, how similarity and uncertainty 

affect physiological encoding in the auditory neural pathway and the relationship between this 

neural processing of speech-in-noise and resulting behavioral performance are not known. 

1.2.1 Target-Masker Similarity  

When target speech and background speech share similar acoustic features, speech 

recognition performance decreases (Brungart et al. 2001; Cooke et al. 2008; Culling 2013). 

Behavioral studies have shown a release from masking by decreasing the similarity between 

target and masker in a variety of acoustic dimensions including intensity, spectral content, and 

temporal pattern (Bertoli et al. 2005; Brungart et al. 2004; Cusack et al. 2004; Rosen et al. 2013; 

Sharma et al. 2014). As with energetic noise maskers, the similarity in intensity level between 

target and masker as reflected by the SNR plays a large role in the amount of perceived masking 

when speech maskers are used, with more challenging SNRs of 0 dB or poorer resulting in 

reduced speech recognition compared to more favorable SNRs (Billings et al. 2009; Brungart et 

al. 2001; Scott et al. 2004). These results are likely due to both energetic masking effects at the 

periphery and increased competition for the listener’s attention between target and masker 

speech (Brungart et al. 2001; Cooke et al. 2008). However, as stated above, similarity in intensity 

or SNR alone do not fully account for informational masking effects as purely energetic maskers 

do not degrade speech recognition performance as much as speech babble masking with the same 

SNR (Brungart et al. 2001; Rosen et al. 2013).  
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Spectral similarity between target and masker speech also affects the amount of perceived 

informational masking in behavioral paradigms when speech maskers are used (Brungart et al. 

2001; Helfer and Freyman 2008). Studies examining spectral differences between target and 

masker speech, such as dissimilar sex speakers or spectral vocoded speech (with differences in 

fundamental frequency), have shown that changes in the frequency similarity of the target and 

masker voices have a substantial impact on listener performance in multi-talker listening tasks 

(Helfer and Freyman 2008; Rosen et al. 2013). For example, Helfer and Freyman (2008) found 

significantly poorer sentence recognition in young normal-hearing participants when target and 

masker were presented in the same-sex compared to opposite-sex speakers. As previously 

discussed, however, it is not solely the spectral similarity that increases the masking effect, as 

purely energetic random noise maskers with similar spectral content do not cause the same 

decrease in performance (e.g. Brungart et al. (2001). Even artificial vocoded speech with the 

same spectral content as natural speech does not result in the same reduction in listener 

performance. Rosen et al. (2013) found that spectral vocoded (filtering speech into reduced 

freqeuncy bands) speech yielded significantly better speech recognition as compared to speech 

babble with matched spectral content and equal numbers of talkers (vocoded 4-talker vs. 

naturally spoken 4-talker). Thus, results show that spectral content of the masker alone cannot 

fully explain the informational masking deficit. There must be something inherent to speech that 

is contributing to this informational masking phenomena.  

An aspect unique to speech is the linguistic and phonetic content, and similarity in these 

features between target and masker speech have been shown to contribute to informational 

masking in behavioral studies (Calandruccio, Buss, et al. 2014; Rhebergen et al. 2005; Van 

Engen et al. 2007). Linguistic similarity can be defined as how similar a target and masker 
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language are to each other on a continuum of linguistic components, such as phonology, 

morphology, or semantic meaning (Calandruccio, Bradlow, et al. 2014). Phonetic similarity is 

one fundamental component of linguistic similarity and can be defined as how similar 

permissible sound combinations between target and masker language result in difficultly 

perceiving target from masker. As previously reviewed, it has been shown that speech-shaped 

energetic noise or even vocoded speech are less detrimental to speech recognition as compared to 

actual spoken language (Brungart et al. 2001; Culling 2013; Freyman et al. 2001; Rosen et al. 

2013). The fact that natural speech babble maskers are more detrimental to speech understanding 

than other maskers suggests that the linguistic and phonetic content of the masker has a potential 

impact on informational masking. 

Linguistic and phonetic similarity between target and masker speech have typically been 

studied by using a native or foreign language as the target and/or masker, as well as the use of 

accented speech (Burnett et al. 1996; Culling et al. 2005; Scharenborg et al. 2016). Use of a 

listener’s native language, such as English, as target and masker would theoretically provide the 

highest level of informational masking (poorest behavioral speech recognition scores) due to 

highly similar linguistic and phonetic properties between the target speech signal and the 

background talkers (Brouwer et al. 2012; Calandruccio et al. 2013). Behavioral speech 

recognition studies have supported this hypothesis. For example, Rogers et al. (2004) found that 

listeners had significantly reduced performance when the target and background speech babble 

were both in the listener’s native language (English) and spoken by native English speakers 

compared to when the background maskers spoke English with a Chinese accent. This finding 

suggests that listeners process speech signals differently when the phonetic structure of the target 

is dissimilar to the masker regardless of linguistic content. Lecumberri et al. (2006) showed that 
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monolingual English listeners performed better on a speech perception of English consonants 

when the language of a competing speaker was Spanish rather than English. Van Engen and 

Bradlow (2007) demonstrated that for native English listeners, English sentence speech 

perception was better when the noise consisted of two-talker Mandarin Chinese babble than 

when it was composed of two-talker English babble. These results suggest that babble noise in a 

native language increases informational masking, decreasing behavioral speech recognition 

performance relative to an unknown foreign language.  

The linguistic similarity hypothesis proposed by Brouwer et al. (2012) states that the 

more similar the target and masker speech language, the harder it is to segregate the two streams 

effectively. This definition is analogous to Durlach’s definition of similarity of informational 

masking, but the linguistic similarity hypothesis further defines listener related factors, such as 

knowledge/experience with the target speech and the linguistic and phonetic content which 

ultimately affect behavioral speech recognition. For example, intelligible maskers with similar 

linguistic and phonetic content will be more detrimental to target speech recognition than 

unintelligible maskers (Van Engen and Bradlow 2007). Thus, the target-masker linguistic 

similarity hypothesis claims that a significant predictor of speech-on-speech recognition 

accuracy is target-masker similarity along linguistically defined dimensions. This hypothesis was 

tested by Calandruccio et al. (2013) using English, Dutch (linguistically dissimilar, but has 

similar permissible phonemes related to English), and Mandarin (linguistically and phonetically 

dissimilar to English) language maskers in combination with an English sentence recognition 

task. By using Dutch and Mandarin maskers, Calandruccio et al. (2013) with native English 

speakers, created a hierarchy of linguistic and phonetic effects defined by linguistic distance 

from English (Dutch similar in linguistic/phonetic content and Mandarin being dissimilar in 
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linguistic/phonetic content). Linguistic distance was defined by differences in sound structure of 

the language at the level of the phoneme inventories, syllable- and phrase-level phonetic 

structures, and rhythmic structure (Calandruccio et al. 2013). Subsequently, they found that 

sentence recognition improved as the target-to-masker linguistic distance increased with the 

English-on-English masker yielding the poorest speech processing performance and Mandarin-

on-English yielding the best speech performance of the study. Based on their results, they 

concluded that linguistic similarity operates on a continuum in the degree of linguistic distance 

from the target speech. In addition, Calandruccio et al. (2013) recognized the spectral and 

temporal differences between language maskers that could have contributed to masker effects 

and thus controlled for them by matching either to the long-term average speech spectra 

(LTASS) or to the temporal modulations of the individual language maskers. Spectral 

differences between the maskers accounted for some, but not all of the variation in behavioral 

performance between masker; however, temporal differences between language maskers were 

not significant. In summary, the behavioral results suggest that listeners experience a greater 

release from informational masking release when the target and masker speech are more 

linguistically and phonetically dissimilar and have greater deficits in performance when the 

target and masker are the most linguistically/phonetically similar, regardless of differences in 

spectral and temporal structure of the language. These findings highlight that the linguistic 

properties of speech on similar speech contributes to informational masking.  

1.2.2      Stimulus Uncertainty  

 A second and related contribution to the amount of informational masking listeners 

experience is stimulus uncertainty. Uncertainty has been defined as the influence on listener’s a-

priori knowledge of the timing or content of the target speech and/or interfering speech has on 
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their ability to understand the target (Brungart and Simpson 2004; Durlach, Mason, Shinn-

Cunningham, et al. 2003; Watson, Kelly, et al. 1976; Watson et al. 2007). Psychophysical 

definitions of stimulus uncertainty have been based on the amount of trial-by-trial variability in 

the stimulus across a single or limited number of dimensions, such as its spatial location or 

timing relative to the background maskers (Dollezal et al. 2017; Durlach, Mason, Shinn-

Cunningham, et al. 2003; Pollack 1975; Watson, Kelly, et al. 1976).  

Behavioral informational masking studies have manipulated stimulus uncertainty using 

various paradigms such as dichotic listening tasks, varying spatial location, and varying the 

timing of stimuli (Freyman et al. 2001; Gallun et al. 2008; Kidd et al. 1998; Oxenham et al. 

2003; Watson, Kelly, et al. 1976; Watson and Kidd 2007; Watson and Nichols 1976), many of 

which used non-speech paradigms. Uncertainty, in terms of informational masking was first 

examined through the work of Charles Watson and his colleagues using a novel experimental 

technique in which the discriminability of an alteration in some acoustic aspect of an element of 

a sequence of tones was measured as a function of uncertainty. In one of the first studies of 

stimulus uncertainty, Watson and Nichols (1976) asked listeners to detect a change in target tone 

frequency or intensity with trial-by-trial variation in timing of the target. Listeners performed a 

target tone detection task in a background sequence of tones that was either fixed or randomly 

varying in frequency. They found that ability to detect target tones was significantly reduced 

when the target tone sequence was randomly varying (more uncertainty) than when the sequence 

was predictable (less uncertainty). Others have shown similar results using comparable 

psychophysical non-speech paradigms (Kidd et al. 1998; Neff 1995; Watson and Kidd 2007). In 

addition, previous research has shown that presenting a cue, or preview of the stimulus or masker 

prior to a detection task can reduce uncertainty. For example, Richards et al. (2004) showed that 
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when listeners received a pre-trial cue to either the target tone or masker signal, they experienced 

a significant release from masking as compared to not receiving a cue. Overall, these studies 

show that when the target tone and/or masker presentation are more predictable over time to the 

listener, the amount of informational masking decreases.  

Relatively few studies have examined the influence of stimulus uncertainty on speech-on-

speech masking and these results have been mixed. For example, Brungart and Simpson (2004) 

varied the degree of uncertainty in an informational masking dichotic listening paradigm. They 

used a closed-set, forced-choice, speech identification task (Coordinate Response Measure, 

CRM) in which participants were asked to extract information from a target phrase (“Ready <call 

sign> go to <color> <number> now.”) that was presented in their right ear while ignoring 

masking phrases that were also color-number coordinates presented in the same ear, opposite ear 

or both ears. In comparison to a randomized CRM task varying talker and content of the masking 

phrase, Brungart and Simpson (2004) manipulated masker uncertainty by either freezing the 

masker talker, where the talker was always the same for all trials, or by freezing the masker 

content, where the content of the masking phrase was always the same for all trials. Task 

performance was not improved when uncertainty was decreased by freezing the talker of the 

masker phrase, in either the target ear or the contralateral ear. Freezing the content of the masker 

also did not improve performance when presented to the contralateral ear. It was only when the 

target phrase and masker phrase were in the same ear and the content of the masker phrase was 

fixed (predictable) that performance improved by ~20%. That is, only uncertainty in the semantic 

content of the masker phrase in the same ear as the target speech had an effect on performance.  

 Freyman et al. (2007) also investigated the role of masker uncertainty but used open set 

nonsense sentences (syntactically but not semantically correct) for both target and maskers. The 
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target sentences were a single female talker and the masker sentences were recorded by 10 

different female talkers, combined into five two-talker pairs. Participants’ sentence recognition 

performance was measured in each of these five masker conditions by in both a non-spatial 

condition (target and masker presented from a front loudspeaker), and under a spatially separated 

condition (target and masker loudspeakers separated by 60). Listeners in their study showed 

larger variation in target recognition performance across the five different maskers in the non-

spatial condition compared to the spatial. These differences in performance between the spatial 

and non-spatial conditions for each masker were interpreted as due to informational masking 

because in the spatial condition the target and masker were more easily separated and 

distinguished due to decreased uncertainty of masker spatial separation. In a second experiment, 

they increased or decreased masker uncertainty from trial to trial by manipulating masker 

content, masker talkers, and SNR in fixed and random conditions. Results showed very little 

effect of masker uncertainty in the spatially separated condition, and surprisingly only a small 

influence of uncertainty in the non-spatial condition. Recognition of the target did not improve 

when uncertainty was reduced by the participants knowing the masker content was the same for 

each trial. 

 While both experiments outlined above manipulated masker uncertainty, a-priori 

knowledge of the target was not manipulated as each experiment utilized a predictable source 

designation (e.g. the callsign for the CRM test and the “Ready” for the nonsense sentences) that 

was constant for the entirety of each study. This predictability of the target source may have been 

sufficient to overcome the uncertainty caused by the masker variation in both studies. In another 

study using the CRM task, Kidd et al. (2005) varied uncertainty and task complexity by 

manipulating the probability of the location of the target sentence among the three speaker 
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locations, and by either presenting the callsign before or after the color-number coordinates. 

Kidd et al. (2005) presented three sentences simultaneously on each trial from three different 

loudspeakers (0 and  60). One of the sentences was designated the target by telling the 

listener the callsign to listen for, and the other two sentences with different callsigns were 

considered maskers. Their results showed that when the listener did not know where the target 

sentence would be located and when the callsign was after the target color/number coordinate, 

performance was poor. Performance improved significantly when the callsign was before the 

target and when the listener was provided probability about the expected location of the target. 

While this study and the previously reviewed studies have varied spatial location of target and 

masker, spatial segregation itself decreases difficulty in separating target and masker. By 

increasing the listener’s uncertainty about where the target may be located on a given trial, and 

particularly by limiting the predictability of the target sentence/content until after the coordinates 

are presented, informational masking and thus task difficulty is increased. Under conditions of 

decreased predictability of the target, more interference from the distractor sentences is likely. 

As reviewed, the effects of stimulus uncertainty in informational masking have only been 

examined by a few studies using speech targets and speech maskers. In general, a-priori 

knowledge about when or where the target and/or maskers will occur, can reduce the interference 

of other distracting talkers. Conversely, if the target speech from trail to trial is less predictable, 

making the task more challenging, behavioral performance in informational masking tasks can 

be greatly reduced. As discussed in the next section, early cortical processing of acoustic 

features, as well as later auditory cognitive processing of target-masker uncertainty are likely 

involved in the listener’s ability to separate out target and masker in challenging speech-in-noise 

situations. 
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1.2.2 Levels of processing and target-masker segregation 

Understanding the relative influence of informational vs. energetic masking is important 

in the context of complex listening environments, where the challenge for speech understanding 

is not discriminating specific speech sounds but focusing on and understanding a specific 

speaker in a background of one or more competing talkers. As described by Brungart et al. 

(2001), “Higher-level informational masking occurs when the signal and masker are both 

audible, but the listener is unable to disentangle the elements of the target signal from a similar 

sounding distracter.” It is this ability to separate or group sound sources, and to appropriately 

focus on one that is affected by informational but not energetic masking. While challenging for 

all listeners, understanding a target speech stream in noise is more difficult for certain 

populations, such as older adults, those with hearing loss, and those with acquired and 

developmental central auditory dysfunction (Bertoli et al. 2005; Desjardins et al. 2013; Helfer 

and Freyman 2008; Putter-Katz et al. 2008; Russo et al. 2008). Therefore, understanding more 

about the influence of informational masking on the ability to separate out talkers has important 

clinical applications. 

In many natural settings, humans are able to perceive and attend to a specific person 

talking even in a complex background of multiple sound sources such as other voices and music 

(i.e. cocktail party effect). That is, a listener is able to separate a distinct auditory stream from 

other auditory objects. Both bottom-up and top-down processing influence the listener’s 

streaming or grouping ability. Bottom-up factors, such as the physical/acoustic attributes of the 

sounds are processed at early peripheral and binaural sensory processing stages, for example, 

voice fundamental frequencies or spatial location of the talker based on inter-aural timing and 



 

  16 

intensity differences. Top-down factors may include linguistic content and familiarity of the 

timing of the target and masker speech, as well as the listener’s memory and attentional capacity.  

In the context of speech-on-speech competition, informational masking challenges the 

listener’s ability to separate and attend to a target speech stream because multi-talker babble 

contains linguistic information. One way this is demonstrated is by evidence from behavioral 

studies that informational masking effects are highest (i.e. decreased speech understanding 

performance) when the masker is composed of 2-4 background talkers and decrease as the 

number of talkers increases beyond four (Carhart et al. 1975; Hall et al. 2002; Rosen et al. 2013). 

Once the number of talkers exceeds four, the temporal dips and amount of distinguishable words 

in the masker is decreased, thus resulting in less intelligible babble with little significant 

linguistic content (Hall et al. 2002). When listening to 2-talker babble, the individual streams of 

each talker are intelligible with relevant linguistic information that may easily divide auditory 

attention (Hoen et al. 2007). For example, Brungart et al. (2001) asked listeners to repeat a color 

and number spoken by a specific target talker and ignore a second background talker 

simultaneously saying color and number pairs. They found that incorrect responses made by the 

listeners were more likely to be the color-number pair from the masker speech than they were to 

be unrelated color-number pairs not spoken by either target or masker (or a combination of the 

target and masker pairs). Even when the listener is confident of which object is the target, 

auditory object selection may fail when a competing object is inherently more salient than the 

target due to any multitude of factors: SNR, spatial separation, linguistic or phonetic similarity, 

or even clarity of speech (Calandruccio et al. 2010; Freyman et al. 2001; Fritz et al. 2007). In 

these cases, the top-down bias of attention may be insufficient to override bottom-up salience 

and win the biased competition of that specific auditory scene.  
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How the specific effects of target-masker similarity and uncertainty in combination, as 

well as individually contribute to informational masking and the ability to separate target from 

masker streams is not fully known. This is especially true for some of the higher-level influences 

of the predictability of target and masker speech when considering uncertainty and the influence 

of the linguistic information in the target and masker when considering similarity. For example, 

linguistic similarity between target and masker may increase early-attentive salience of the 

simultaneous auditory sources. It is also possible that acoustic timing cues may serve to enable 

listeners to focus auditory attention, which can then impact perceptual segregation via top-down 

mechanisms. These higher-level factors beyond the acoustic features and spatial location of the 

sound sources are likely to separately and in combination challenge the listener’s ability to attend 

to the target and ignore the interfering masker. There is evidence that even the more complex 

processing required when lexical, syntactic or semantic information is present can take place 

early as well as at later stages of auditory attention (see Bronkhorst (2000) review). There is a 

need for additional research to help clarify how similarity and uncertainty contribute to 

informational masking, where in the stages of processing these factors might influence speech 

recognition, and to help explain why some individuals find listening in noise particularly 

problematic (e.g. those with hearing impairment, older adults, auditory processing disorder, etc.). 

One approach toward better understanding of these issues is to use neural responses in 

combination with behavioral performance to help identify the time course and stages of 

processing where disruption in encoding the target speech in the presence of background noise 

may occur. Relating differences in neural activity within and across individuals in response to 

specific manipulations of target-masker similarity and uncertainty at cortical levels and relating 
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these to listener performance is an important step towards understanding the informational 

masking phenomenon.  

 

1.3 Neural Correlates of Informational Masking Effects  

While behavioral studies have confirmed several factors related to target-masker 

similarity and uncertainty contributing to informational masking, the effect of these factors on 

underlying neuro-physiologic processes are not yet established. Neural correlates of 

informational masking can provide evidence to aid in further understanding the timing and level 

of the auditory pathway where masking interferes with speech understanding, and how this 

varies based on specific target and masker factors. Auditory evoked potentials (AEPs) have been 

used to explore many aspects of speech understanding, including speech-in-noise processing 

providing sensitive measures of timing and activity of postsynaptic potentials within the auditory 

pathway (Davis et al. 1939; Hillyard et al. 1971; Martin et al. 2008; Naatanen et al. 1987). AEPs 

provide information regarding the timing (latency) and salience (amplitude) of sound processing, 

and also a general cortical activation map (scalp topography) (Martin et al. 2008; Stapells 2008). 

AEPs also provide information regarding the size of the neural population indexing processing 

(amplitude) and can be used to infer the difficulty of stimulus detection and discrimination. The 

underlying assumption is that speech perception is dependent on the neural processing of the 

frequency, amplitude, and timing cues contained within the speech signal. While recording with 

non-invasive electrodes, passive and active evoked responses can be measured and manipulated 

by the recording paradigm. While AEPs have helped examine how speech processing in the 

auditory system is affected by background noise at both early (Billings et al. 2011; Kaplan-

Neeman et al. 2006; Niemczak et al. 2019; Whiting et al. 1998) and late (Bennett et al. 2012; 
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Koerner et al. 2017; Wong et al. 2008; Zhang et al. 2016) top-down auditory levels, no current 

research study has combined results of multiple levels of auditory cortical processing that 

represents perception of spoken words in the presence of informational masking with a 

behavioral paradigm. In order to fill this gap in knowledge, this study seeks to examine how 

target-masker similarity and stimulus uncertainty relate to the informational masking deficit in 

normal-hearing young adults using neural correlates of auditory processing.  

There are a family of AEPs, from early to late potentials that can be elicited in response 

to auditory stimuli, and several methods to classify them. One method of classification divides 

AEP into two major categories: pre-attentive “exogenous” evoked potentials and cognitive 

“endogenous” evoked potentials (Naatanen and Picton 1987; Stapells 2008). Exogenous AEP 

responses are primarily elicited by the specific acoustic properties of the stimuli (Martin et al. 

2008; Naatanen et al. 1992). This type of AEP reflects activation of the auditory pathways, from 

the cochlea to the cortex. They occur as early as stimulus onset and extend to as late as 250ms 

post stimulus (Crowley et al. 2004; Naatanen and Picton 1987). In general, these AEPs are often 

called exogenous because they are thought to represent obligatory auditory processing occurring 

before conscious auditory processing (Naatanen and Picton 1987). In comparison, cognitive 

“endogenous” evoked potentials are measured in response to active conscious auditory 

processing that occur later than 250ms post stimulus onset. Cognitive AEP responses represent a 

transitional component between early attentive auditory cortical processing and the behavioral 

response. However, Stapells (2008) and other auditory electrophysiology researchers have 

highlighted that most cortical AEPs reflect a combination of exogenous and endogenous 

dynamics that can be affected by acoustic characteristics of stimuli in addition to top-down 

factors such as arousal state and attention. Thus, the reason why “before” is italicized above is 
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because the N1 component is affected by attention, but not driven by conscious active auditory 

processing. For example, the N1 component of the cortical auditory evoked potential, which is of 

interest in the current study, is primarily considered to be exogenous, but is nonetheless affected 

by processes such as attention (Billings et al. 2011; Holcomb 1988; Woldorff et al. 1993; Zhang 

et al. 2016). Thus, the classification from exogenous to endogenous is a spectrum rather than a 

dichotomy. For the purpose of this project, two levels of auditory processing were examined that 

focus on early and late auditory top-down cortical components. 

1.3.1 Early Cortical Processing Component  

At the early level of cortical processing, the cortical auditory evoked potential (CAEP) 

consists of a complex of three peaks, the P1-N1-P2, can be recorded without active participation 

of the listener and is a transient response evoked by an acoustic change, typically from silence to 

sound onset (Martin et al. 2008; Naatanen and Picton 1987; Ostroff et al. 1998; Sharma et al. 

2014; Whiting et al. 1998). The P1-N1-P2 generally reflects synchronous neural activity of 

structures in the thalamo-cortical connections to the central auditory system (Naatanen and 

Picton 1987) and reflects encoding of sound that underlies perceptual events. Particularly, the N1 

component is present when sounds such as tones or speech are audible, but are not necessarily 

discriminated from other sounds (Osterhammel et al. 1973; Stapells 2008). The N1 occurs as an 

obligatory response in a passive listening condition, reflecting primarily sensory processing of 

stimulus features up to the level of the cortex. However, the response is influenced by early 

attention processes (Billings et al. 2013; Naatanen and Picton 1987; Pereira et al. 2014; Stapells 

2008; Zhang et al. 2016). As described by Naatanen et al. (1992), the N1 wave of the CAEP has 

at least three generators giving rise to this cortical component. One generator of the N1 wave is 

thought to be most sensitive to acoustic changes within the auditory environment, the second and 
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third generators of the N1 wave are thought to represent processes of early attention and an 

auditory orienting response (Naatanen et al. 1992; Roth et al. 1976). The amplitude of N1 is 

decreased under conditions of drowsiness and appears to be enhanced with overt attention to the 

stimulus (Hillyard et al. 1971; Naatanen and Picton 1987; Squires et al. 1973). P1-N1-P2, 

therefore, provides a method to examine the influence of informational masking on neural 

encoding that includes early acoustic and attentional auditory top-down processing, but prior to 

conscious auditory discrimination, memory, or decision making.  

Although several studies have used speech syllables to elicit the P1-N1-P2, few have 

used naturally spoken words, which have both phonetic and linguistic structure. More complex 

speech stimuli with consonant and vowel changes within the stimulus can elicit multiple 

overlapping P1–N1–P2 responses, resulting in distinct morphologies for different phoneme 

sequences (Martin et al. 1999, 2000; Ostroff et al. 1998). Wagner et al. (2016) demonstrated that 

P1-N1-P2 morphology to spoken words that approximate the natural variability of a single 

speaker, reflecting the spectral and temporal features within the words. Importantly, these studies 

and others have demonstrated that the P1-N1-P2 waveform patterns to complex speech stimuli 

are sufficiently robust and reliable for use in research on the encoding of acoustic speech features 

from an early level of processing of speech perception in noise (Martin et al. 2008; Parbery-

Clark et al. 2012; Tremblay, Friesen, et al. 2003a; Tremblay et al. 2006).  

Presenting target stimuli in competing background noise affects the morphology of P1-

N1-P2 responses when compared to quiet conditions, specifically by decreasing amplitude and 

increasing latency of component peaks. For example, degraded N1 morphology to target tones 

and syllables has been reported in varying energetic noise conditions, such as white noise 

(Billings et al. 2009; Kaplan-Neeman et al. 2006). Martin and Stapells (2005) recorded AEPs in 
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response to /ba/ and /da/ target speech stimuli in a background of continuous masking noises 

filtered at various low-pass cutoff frequencies along with broadband noise and found the greatest 

masking effects, (i.e. greatest changes in amplitude and latency) when the noise bands directly 

overlapped the frequency region containing the primary acoustic cues differentiating the target 

signals /ba/ from /da/. This result provided evidence of energetic masking effects, specifically 

overlapping spectral content on the P1-N1-P2. Furthermore, Billings et al. (2011) recorded P1-

N1-P2 responses to both tonal (1000 Hz) and speech stimuli (/ba/) in three types of background 

noise conditions (i.e. interrupted, continuous, and 4-talker babble). Results showed decreased 

amplitudes and increased latencies specifically for the N1 component in all background noise 

conditions compared to the quiet condition for the speech stimulus. The informational masking 

4-talker babble condition resulted in the longest latencies and smallest amplitudes of all three 

conditions. This is consistent with a differential effect of background noise that is speech 

compared to random continuous noise, and with the idea of informational masking effects at the 

N1 level of auditory processing. Studies such as these suggest that changes in the amplitude and 

latency of the P1-N1-P2 evoked to speech stimuli may be sensitive to informational masking in a 

background of competing speech.  

In two recent studies conducted in our lab, P1-N1-P2 morphology has been shown to be 

sensitive to different types of background noise that vary in the amount of informational masking 

(Niemczak and Vander Werff 2019; Vander Werff et al. 2016). Similar to the previous studies, 

neither white noise and nor continuous speech-shaped noise reduced P1-N1-P2 amplitudes and 

prolonged latencies as much as multitalker speech babble noise (Vander Werff et al. 2011). In a 

follow-up study to examine whether temporal differences between speech babble noise and 

continuous noise might be responsible for these effects, envelope-modulated noises were created 
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to temporally match the babble with 

different numbers of talkers. (Vander Werff 

et al. 2016). Results showed that even 

though energetic maskers that were both 

temporally and spectrally matched, the 

envelope noises did not impact amplitudes 

and latencies as much as babble noise. In 

another study (Niemczak and Vander Werff 

2019) we examined the effects of both two-

talker (2T) and eight-talker (8T) babble compared to continuous speech-shaped noise (SSN) on 

the P1-N1-P2 recorded to more complex speech stimulus with a linguistic vowel change from /u/ 

to /i/. We hypothesized that due to informational masking, the speech maskers would have a 

greater effect on waveform morphology for both the onset and change responses, and that the 

number of talkers would also significantly affect amplitudes and latencies. As shown in Figure 1, 

trends in results supported our hypotheses, with a large reduction in N1 amplitude for the 8T and 

2T maskers compared to SSN at the onset in particular. All noise conditions significantly 

reduced onset N1 and P2 amplitudes, onset N1-P2 peak to peak amplitudes, as well as both onset 

and change response area compared with quiet conditions. Further, all amplitude and area 

measures were significantly reduced for the two babble conditions compared with continuous 

SSN, which is consistent with informational masking. However, the differences between 2T and 

8T didn’t reach statistical significance which may be due to the small size of the response for this 

particular stimulus paradigm.  

Figure 1- P1-N1-P2 recorded to /u-i/ stimuli in four background 

masking conditions representing an increase in informational 

masking from quiet to energetic masking (SSN), then two levels of 

informational masking noise (8- and 2-talker).  
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This lack of difference by number of talkers, which is known to affect informational 

masking, between babble maskers in previous behavioral studies could have been due to the 

acoustics of the stimuli, or decreased sensitivity of the P1-N1-P2 to relative levels of 

informational masking. Although the P1-N1-P2 is generally considered pre-attentive, Billings et 

al. (2011) found that, compared to an energetic masker, a four-talker speech masker caused a 

larger N1 masking effect for a spoken syllable (/ba/) when listeners' attention was drawn away 

from the acoustic signals (passive paradigm), but not when listeners paid attention to the acoustic 

signals (active oddball paradigm). To further examine whether attention affected the P1–N1–P2 

complex under masking conditions, Billings et al. (2011) collapsed the AEP waveforms across 

the three masking conditions (continuous energetic, interrupted noise, 4-talker speech) and found 

that the N1 amplitude was significantly larger under the active paradigm compared to the passive 

paradigm, indicating a facilitating effect of attention on the N1 component. There is evidence, 

therefore, that some aspects of informational masking have influence on these earlier processing 

components. Because the P1-N1-P2 represents both the encoding of stimulus features and 

obligatory processing, but is also sensitive to some aspects of at least early attention, this 

response may provide important information about whether similarity and uncertainty have an 

influence on this earlier stage of processing 

1.3.2 Late Cortical Processing Component  

Later AEP components following the P2 have been associated with active, attention-

dependent, top-down cognitive processing of auditory stimuli, beyond the physical properties of 

the stimulus (Stapells 2008). Of these, the auditory P300 (P3) has been used extensively to study 

conscious processing of auditory stimuli. The P3 occurs approximately 300ms post-stimulus 

onset, representing the first transitional component between auditory cortical processing and 
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behavioral responses. The P3 has been utilized in various modality paradigms, but in terms of 

acoustic stimulation, the P3 indexes conscious acoustic discrimination, being present when 

audible speech sounds are discriminable, but only when the subject is actively attending 

(Katayama et al. 1996; Lew et al. 1993; Martin et al. 2008; Picton 1992; Polich 2007; Polich et 

al. 1994). The P3 potential is generally thought to consist of two subcomponents, P3b and P3a, 

the presence of which vary depending on the evoking paradigm. The earlier fronto-central P3a, is 

primarily elicited by novel task irrelevant stimuli in a paradigm, and arises from variation in fast-

acting attention mechanisms engaged to evaluate incoming stimuli. The late, more parietal P3b is 

thought to be proportional to the amount of attentional resources engaged in discriminating a 

given auditory stimulus and its peak latency is related to auditory evaluation time of that 

stimulus (Kutas et al. 1977b; Polich and McIsaac 1994; Schochat et al. 2012). For the paradigm 

used in this project, the P3b, which indexes active stimulus evaluation related to auditory context 

updating operations, is the main elicited sub-component and is referred to simply as the P3.  

The P3 can be elicited by various auditory stimuli, and studies provide evidence of 

involvement of distinct mechanisms in the processing of speech targets compared to tones in an 

active attentional paradigm. In addition to reported differences in latency and amplitude, P3 to 

speech targets may also differ in the scalp distribution, generally indicating left hemisphere 

advantage for phonemes, syllables (Kayser et al. 2001) and words (Henkin et al. 2002; Novick et 

al. 1985). 

Significant reductions in P3 amplitude and increases in latency have been demonstrated 

when target stimuli are presented in background noise, (Bennett et al. 2012; Kaplan-Neeman et 

al. 2006; Koerner et al. 2017; Polich 2007). Kaplan-Neeman et al. (2006) found that white noise 

resulted in prolonged latency for both the P3 and N1 components under various SNR conditions, 
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but that P3 showed longer latency increases than N1 as the SNR became less favorable (Kaplan-

Neeman et al. 2006). They attributed this finding to noise affecting the later stages of top-down 

processing involving discrimination and speed of conscious processing more than the initial 

stages of early attentive stimulus detection. Studies have also shown that masking noises that are 

presumed to contain informational masking, such as speech babble, increased P3 latency 

compared to purely energetic noise maskers (Bennett et al. 2012; Kaplan-Neeman et al. 2006; 

Krishnamurti 2001). Bennett et al. (2012) found that 4-talker babble resulted in prolonged P3 

latencies compared to speech-shaped energetic noise conditions in the normal-hearing adult 

listeners. Bennett et al. (2012) also found that better behavioral sentence intelligibility scores 

were correlated with decreased P3 peak latency for a phonemic target contrast (/ba/ vs. /da/) and 

that slower behavioral reaction times were correlated with prolonged P3 latencies. Thus, the P3 

response for a phonetic discrimination task appears to be a potential neurophysiological marker 

for speech-in-noise perception.  

Another benefit of the P3 is the ability to manipulate task complexity and active top-

down listener factors such as attention allocation and working memory during an auditory 

discrimination task. The classic two-stimulus oddball paradigm is a common experimental 

design to evoke the P3 and has proven particularly useful for investigating timing of stimulus-

evaluation processes. In this paradigm, rare target stimuli (occurrence ~20%) are inserted in 

series of much more frequent standard stimuli (occurrence ~80%) of the same modality (Polich 

et al. 1988). The task given to the subject is to perceive the target stimulus and to react to it, 

typically by pressing a button, or just by mental counting. P3 responses with a similar 

topography can also be generated in a single stimulus task where a single target is randomly 

presented as in the oddball paradigm, but with the standard stimuli replaced by silence (Polich 
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2007; Wronka et al. 2008). The P3 appears to reflect processing time of attending to and 

discriminating auditory stimuli and the updating of working memory with sequential 

presentations of stimuli (Polich 2007; Steiner et al. 2014). A three-stimulus variant is an example 

of a more complex paradigm that can elicit the P3, in which an additional infrequent non-target 

stimulus is inserted into a sequence of rare target and frequent standard stimuli (Katayama et al. 

1998, 1999). The resulting P3 wave is elicited by both target and non-target stimuli, however the 

waveform for the stimulus which the subject is instructed to respond (target) is typically larger in 

amplitude as the subject is actively listening for and attending to the target stimulus (Polich 

2007). Using this more complex stimulus paradigm can provide information about listener 

attention allocation and effects of task complexity. 

Another way to vary task complexity relevant is to manipulate the trial-to-trial variability 

in the presentation of the target and/or non-target stimuli. In a three-stimulus auditory P3 

paradigm, this has been referred to as varying the target-to-target interval (TTI) (Gonsalvez et al. 

1995). In general, P3 studies have shown an inverse relationship between target probability and 

P3 amplitude under a wide range of experimental conditions, with optimal infrequent target 

probability around 20% of total stimulus presentations (Duncanjohnson et al. 1977; Kutas et al. 

1977a; Sqires et al. 1977). Probability can also be considered in terms of not only overall rate of 

occurrence but in time between evoking stimuli. For example, P3 amplitude increases linearly 

when targets (T) follow a longer rather than a shorter string of non-targets (N) (Gonsalvez et al. 

2007). The effects of this stimulus presentation structure have been termed “sequence effects,” 

and several studies have demonstrated that P3 amplitude to targets is significantly affected by 

sequential structure, such as match-versus-mismatch (TT vs. NT) and repetitions-versus-

alternation sequences (TTTT vs. NTNT) (Johnson et al. 1982a, 1982b; Squires et al. 1977). TTI 
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is defined as the time between a given target and the preceding target and is manipulated by 

varying the number/timing of non-targets between target presentations. TTI provides a direct 

way to manipulate stimulus uncertainty in an informational masking paradigm. For example, for 

a fixed TTI, uncertainty would be decreased as listeners would recognize the pattern in which 

target stimuli occur, with little trial-to-trial variability of the target speech occurrence relative to 

the background speech noise. However, for a random TTI, trial-to-trial variability and therefore 

stimulus uncertainty is increased. Listeners would presumably need to invest increased auditory 

attention to discriminate targets from non-target words and separate these from the distracting 

background maskers, which may be varied in terms of target-masker similarity. Currently, the P3 

auditory evoked potential has not been studied by means of linguistic and phonetic similarity. 

The distinctive effect of linguistic similarity and stimulus uncertainty effects on the P3 may 

provide insight into how active attentional neural processing effects of sound discrimination in 

the presence of informational masking.  

Furthermore, studies have used AEPs to better understand the difficulties of speech-in-

noise processing and shown that they are sensitive to several aspects of informational masking. 

Few studies have examined two levels of multiple levels auditory neural processing by means of 

an informational masking paradigm. In addition, no studies to date utilizing AEPs have directly 

manipulated similarity in terms of the linguistic content of the maskers vs. targets, as well as 

stimulus uncertainty in a complex auditory task. Results of this study will aid in understanding 

how earlier and later stages of auditory neural encoding are related to the processes of 

informational masking effects. 
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1.4 Specific Aims and Secondary Objectives  

While informational masking research has identified factors of both similarity and 

uncertainty that contribute to reduced behavioral performance in noise, critical gaps in 

knowledge regarding the informational masking phenomenon, including the underlying neural-

perceptual processes remain. In order to further understand informational masking deficits and 

provide converging evidence with behavioral findings, the current project examined neural 

correlates of informational masking by systematically manipulating both target-masker similarity 

and stimulus uncertainty in an auditory evoked potential (AEP) paradigm. The goals of this study 

were to provide objective evidence of how both increased target-masker similarity and stimulus 

uncertainty increase the amount of informational masking experienced by the listener and 

examine two levels of top-down auditory processing using temporally sensitive auditory 

electrophysiology measures.  

By their definitional structure these aspects of informational masking are not completely 

dichotomous. However, by systematically manipulating aspects of similarity and uncertainty, the 

current study proposed to examine the time course and objectively quantify these informational 

masking effects at both early and late stages of auditory processing using auditory evoked 

potentials in a two-factor repeated measures paradigm. Specifically, linguistic similarity between 

target and masker were manipulated by varying language of the talkers in the noise maskers. 

Stimulus uncertainty was manipulated by task complexity, specifically target-to-target interval 

(TTI). This design allowed for simultaneous recording of multiple AEP peaks, including analysis 

of amplitude, area, and latency characteristics, which were used to determine the relative 

influence of target-masker similarity and stimulus uncertainty, known to affect behavioral speech 

recognition performance, on neural indices of both early (focusing on the N1) and late (focusing 
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on the P3) levels of top-down auditory processing. Finally, AEP measurers were compared to 

performance on a behavioral speech-in-noise task to further explore if AEP components of 

amplitude/area and latency are correlated to behavioral outcomes across proposed maskers.  

Specific Aim I: To establish AEP correlates of increased informational masking through 

manipulations of 1) linguistic similarity between target and masker, 2) uncertainty in target 

speech timing in the presence of these maskers, and 3) interaction between target-masker 

similarity and target uncertainty. To accomplish this aim, an oddball paradigm was used to 

evoke AEP components to target speech consisting of spoken words in English (listener’s native 

language) in the presence of background maskers.  

Objective 1: Objectively quantify the effects of linguistic similarity on neural indices of cortical 

auditory processing. 

Target-masker similarity was manipulated through the use of multi-talker maskers (2-

talker) using three different languages and a quiet control condition. AEP responses were 

recorded to the target stimuli, which will consist of spoken words in English, the native language 

of the listener (discussed in objective 2). Masking conditions will set up a hierarchy of target-

masker similarity from low to high using Mandarin, Dutch, and English 4-talker maskers. 

 

 

 

 

 

Table 1 - Proposed linguistic/phonetic hierarchy  

Condition 
Target-masker 

similarity 
Masker 

1 None No masker (quiet condition) 

2 Low Mandarin – linguistically and phonetically dissimilar 

3 Medium Dutch – linguistically dissimilar, but phonetically similar 

4 High English – linguistically and phonetically the same 
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Based on existing behavioral and electrophysiological literature, the hypothesis was that 

the English babble masker with the highest linguistic similarity to the target English words 

would result in the largest reduction in amplitude/area and increase in latency for the N1 and P3 

AEP components. The Mandarin masker was expected to provide the least amount of 

informational masking because of the largest linguistic differences to the target English words, 

and therefore have the smallest effect on amplitudes/areas and latencies. The Dutch babble 

condition was hypothesized to yield shorter latencies and larger amplitudes compared to 

Mandarin, but smaller amplitudes compared to the English masker due to a similar linguistic 

structure and similar permissible phonemes to the English language. 

Because the P3 component reflects active top-down stages of processing that are more 

affected by active discrimination, the effects of target-masker similarity were expected to be 

most prominent for this component. Based on previous research, however, including previous 

studies in our lab (Figure 1.), we expected informational masking to also have an effect at the 

earlier level on the N1 component, but robust effects were expected at the P3 level of auditory 

processing.  

 

Objective 2: Objectively quantify the effects of stimulus uncertainty on neural indices of cortical 

auditory processing. 

Stimulus uncertainty were manipulated by systematically varying the expected timing of 

target presentation, specifically by varying target-to-target interval (TTI) in an oddball paradigm. 

TTI will either be fixed or random, thus increasing task difficulty in discriminating target vs. 

non-target stimuli in the presence of each multi-talker masker described in Objective 1. The two 

levels of experimental task were as follows:  
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Table 2 - *Targets and Standards were switched systematically such that half of the subjects receive /pæt/ as the 

target and /bæt/ as the target to control for one-way stimulus detection. 

We hypothesized, based on previous literature, that because informational masking is 

increased when stimulus uncertainty relative to the masker is increased, AEP amplitudes/areas 

would be increased, and latencies prolonged as uncertainty in timing of the target stimulus is 

increased from low to high due to random variation in TTI. Amplitudes/areas, at least for the P3, 

were expected to increase when stimulus uncertainty is high due to increased attention required 

for the task. It was expected that the effects on the earlier N1 would be more complex, but as 

active attention is known to have some effect, similar but less robust effects were also expected 

on this peak due to later top-down effects.  

Objective 3: Determine the extent of interaction between target-masker similarity and target 

uncertainty on neural indices of cortical auditory processing  

Experimental 

Task  
Stimulus Uncertainty Presentation Paradigm* TTI 

1 Low 
Target /pæt/,  

Standard /bæt/ 

Fixed 6 

seconds 

2 High 
Target /pæt/,  

Standard /bæt/ 

Random 2-10 

seconds 
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The third objective was to determine 

the interaction of stimulus uncertainty and 

target-masker similarity on AEP outcomes 

resulting in a comprehensive examination of 

two informational masking factors. A 

significant interaction term would indicate 

that the similarity and uncertainty 

contributions to informational masking are 

additive. If increasing the uncertainty 

specifically increased the cognitive demand 

of the task, then the listener would be likely 

to have more difficulty under conditions 

where the target and masker are the most similar (i.e. the most challenging to separate). Because 

the P1-N1-P2 is early attentive level of top-down processing, no significant interaction effect 

between similarity and uncertainty was expected for the amplitude or latency of the N1 

component. However, if a significant interaction was found, this would be consistent with 

previous work (e.g. Billings et al. (2011) suggesting that auditory attention does have an effect at 

this level of processing for speech-in-noise tasks. 

A hypothesized interaction effect for P3 amplitude is shown in Figure 2, in which 

increasing target-masker similarity is shown from left to right on the x-axis and uncertainty 

conditions are shown by the solid (fixed TTI, low uncertainty) and dashed (random TTI, high 

uncertainty) lines. The additive effect of target uncertainty and target-masker similarity is seen in 

the separation of the two lines as target-masker similarity increases. We hypothesized that 

Figure 2 - Proposed masking/task interaction for P3 amplitude. 

High uncertainty and low uncertainty task conditions are 

indicated in dashed and solid lines respectively. An additive 

effect of uncertainty and similarity is hypothesized to occur at 

the highest level of similarity (English masking). 
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increased uncertainty would modulate active top-down auditory neural processing, such that 

overall P3 amplitudes increased relative to the low uncertainty conditions, more so for (the most 

difficult) highest target-masker similarity conditions.  

 

Specific Aim II: To characterize the relationship between physiological AEP outcomes of 

informational masking and behavioral performance on a task of speech recognition in noise. 

To accomplish this aim, behavioral word recognition was measured under the same linguistic 

masking conditions as Aim I. The underlying theory of this objective was that accurate speech 

recognition in noise is dependent on the neural encoding of the auditory stimulus. Therefore, we 

proposed to answer two questions: 1.) Are individual changes in AEP component amplitude and 

latency across masking conditions related to changes in speech recognition scores across 

masking conditions? 2.) Which AEP components better explain the variability in behavioral 

performance between masker conditions? 

In order to answer the proposed questions, we measured reaction time, accuracy, and d-

prime (d’) performance during the AEP tasks and behavioral word recognition-in-noise scores 

for all masker conditions. We analyzed behavioral performance at multiple SNRs, including the 

same SNR as the AEP conditions as well as more and less favorable SNRs. We hypothesized 

that AEP outcome variables would be related to behavioral speech recognition-in-noise 

performance such that larger amplitudes and decreased latencies would be correlated with better 

speech recognition abilities, specifically on the P3 due to active top-down auditory processing.  
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2.0  Design and Methodology  

2.1  Design 

A factorial (4x2) repeated measures experimental design was implemented to examine 

the effects of target-masker similarity and stimulus uncertainty on AEP morphology. The 

independent variable of target-masker similarity consisted of four different background speech 

babble masker conditions including quiet, Mandarin, Dutch, and English. (Aim I - objective 1). 

The independent variable of stimulus uncertainty consisted of two levels of target-to target 

interval (TTI), fixed and random (Aim I - objective 2). Primary dependent variables included 

mean amplitude, area, and peak latency measures for the N1 and P3 components. Eight total 

AEP waveforms were recorded per person (4x2). Masking language and TTI conditions were 

randomized and counter-balanced across participants.  

 

2.2  Methodology  

2.2.1  Participants  

In order to establish the relationships between target-masker similarity and stimulus 

uncertainty on neural indices of informational masking in the normal auditory system, 

participants for the current study were young adults with clinically normal audiometric 

thresholds. To sample this population, individuals between the ages of 18–30 years (Helfer and 

Freyman 2008; Polich et al. 1985) with no history of auditory pathology were eligible to 

participate in this study. The sample size was based on a-priori power analysis for two-way 

repeated measures ANOVA (RM-ANOVA) conducted using estimated effect sizes based on data 

from previous electrophysiology studies related to speech-in-noise and aspects of informational 
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masking (Bennett et al. 2012; Billings et al. 2013; Koerner et al. 2017). Using a significance 

level of α = 0.05, power level of 0.9, and medium effect size (eta squared (η2) of 0.09 and 

Cohen’s ƒ2 0.25), produced a required sample size of approximately 31 total participants. 

Participants were recruited from the general public from Syracuse University via approved 

flyers, and approved college email list-serves, including the SU-News. To minimize the 

confounding factor of peripheral hearing loss, participants were required to demonstrate 

clinically normal hearing, defined as bilateral pure tone air conduction thresholds ≤ 15 dB HL at 

octave frequencies from 0.25 - 8 kHz. Normal tympanometric compliance (226 Hz 

tympanogram, peak compliance ≥ .3 mmho) were required for inclusion. In order to further 

account for possible variability across individuals in peripheral hearing that could confound 

results, both distortion-product otoacoustic emissions (DPOAEs: Mimosa Acoustics HearID 

Software: f2/f1 ratio = 1.22, 55/65 dB SPL, 1.0-6.0 kHz) and extended high frequency 

audiometric thresholds (9 – 16 kHz) were measured for all participants. Neither measure was 

exclusionary. 

Exclusionary criteria included non-native English speakers, extended exposure to Dutch 

or Mandarin languages (dual citizenship, study abroad, etc. see appendix for screening survey), 

left handedness (Hoffman et al. 1999; Polich et al. 1998), regular nicotine smokers (Friedman et 

al. 1980; Polich et al. 2004), history of head injury/concussion (Hall et al. 1982; Rugg et al. 

1993; Vander Werff et al. 2019), history of diagnosed learning, speech/language (Ferguson et al. 

2011), psychiatric or neurological disorders, specifically schizophrenia and bipolar disorder 

(Blackwood et al. 1987; Souza et al. 1995). Additionally, participants were excluded if they have 

had ≥1 year of professional musical training to rule out any enhancement of speech-in-noise 

processing (Anderson et al. 2013; Oxenham et al. 2003; Parbery-Clark et al. 2012). Use of 
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categories of medications (e.g. benzodiazepines, prescription sedatives, anticholinergics, 

antipsychotics) known to affect AEP responses were also exclusionary (Polich et al. 1995; 

Qidwai et al. 2002). Handedness was assessed in the screening survey using questions from the 

Edinburgh handedness inventory (Veale 2014).  

Measures of working memory and attention were also implemented as a control for 

cognitive functioning using two subtests of the NIH Toolbox Cognition Battery for the 

Assessment of Neurological and Behavioral Function (Weintraub et al. 2013; Weintraub et al. 

2014). Specifically, working memory was be measured by the List Sorting Task and attention 

scores on the Flanker Attentional Task. Both tests were administered on an iPad. The List 

Sorting Task is a series of stimuli presented on the iPad screen visually (object) and orally 

(spoken name), one at a time. Participants are instructed to repeat the stimuli to the examiner in 

order of size, from smallest to largest. In one condition, all stimuli come from 1 category. In the 

second, stimuli are presented from two categories, following which the participant must report 

first all stimuli from the first category, then from the other, in order of size within each. The 

number of items in each series increases from one trial to the next and the test is discontinued 

when two trials of the same length are failed. The List Sorting task takes approximately 7 

minutes to administer (Weintraub et al. 2014). Test scores consist of total items correct across all 

trials. 

The Flanker Attentional Task, version of the Eriksen Flanker Task, tests the ability to 

inhibit visual attention to irrelevant task dimensions. On each trial, a central directional target 

(using arrows) is flanked by similar stimuli on the left and right. The task is to indicate the 

direction of the central stimulus. On congruent trials, the flankers face the same direction as the 

target. On incongruent trials, they face the opposite direction. A scoring algorithm integrates 
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accuracy and reaction time, yielding scores from 0 to 10. There are 40 trials and the average time 

to complete the task is 4 minutes (Weintraub et al. 2014). 

Both instruments were validated in English, in a sample of 476 participants ranging in 

age from 3 to 85 years, with representation from both sexes, 3 racial/ethnic categories, and 3 

levels of education (Weintraub et al. 2013). Both the List Sorting Task and Flanker Attentional 

Task have normative values accessible within the iPad app (Weintraub et al. 2014). 

2.2.2  AEP Stimuli  

Target and standard stimuli for all experimental tasks consisted of two English words 

spoken by a female native speaker of English. These experimental target and standard stimuli 

for all experimental tasks consisted of the consonant-vowel-consonant (CVC) English words 

/bæt/ (“bat”) and /pæt/ (“pat”). Recording of stimuli took place in a sound treated booth using a 

Senhiesser mke 600 microphone, Behringer umc22 amplifier, and Praat software (Boersma and 

Weenink, 2012). Praat software was utilized to create equal duration of 500ms for each word, as 

well as equal duration of plosive lead, formant transition, steady-state portion of the vowel, and 

plosive stop to minimize secondary acoustic length cues for identification. Amplitude of the 

stimuli were standardized by normalizing the burst, formant transition, and stead-state vowel 

amplitude in Audacity.  

All stimuli were presented binaurally using Etymotic ER-3A insert earphones at 70 dB 

SPL in a double walled sound attenuated booth. This intensity was chosen due to its similarity to 

normal conversational speech levels and is also sufficiently loud enough to elicit a reliable AEP 

response. In order to control for acoustic differences between stimuli in a one-way oddball (/bæt/ 

as target and /pæt/ as standard), stimuli were be randomized such that half of recruited subjects 
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received /bæt/ as the target with /pæt/ at the standard and the other half received /pæt/ as the 

target and /bæt/ as the standard. 

Both /bæt/ and /pæt/ translate to /knuppel/ and /tijke/ respectively in Dutch. In addition, 

both /bæt/ and /pæt/ do not have an English translation to Dutch or Mandarin (i.e. those specific 

phonetic combinations are meaningless). The primary reason this word-word contrast was 

chosen was due to voice onset time (VOT), which is a relevant acoustic precept necessary for 

accurate speech perception (Oden et al. 1978). The /b/ and /p/ voiced and unvoiced bilabial stops, 

which represents a significant phonetic contrast that needs to be accurately coded in order to 

accurately perceive speech. In addition, this paradigm more directly connects with the masking 

hierarchy making interpretation clearer, such that the masker language can be interpreted in 

comparison to only English words (i.e. reduces the difference between interpretation a semantic 

effect between word and non-word.)  

2.2.3 Masking Conditions  

Following the masking hierarchy from Calandruccio et al. (2013), target and masker 

similarity were manipulated by using multi-talker babble maskers in three languages; one native 

to the listener, (English), and two foreign languages, (Dutch and Mandarin). A control quiet 

condition was also recorded (no masker present). Each babble masker was composed of 2-talkers 

spoken by female native speakers. Female target and maskers were chosen to eliminate sex 

differences between target and masker. 2-talker babble has been shown to provide the highest 

amount of informational masking (Brungart et al. 2001). The English masker consisted of 

syntactically correct, meaningful sentences spoken in English taken from the Harvard/Institute of 

Electrical and Electronics Engineers (IEEE) sentence lists (IEEE, 1969). An example of a 

sentence from these lists is, "A white silk jacket goes with any shoes." The Dutch sentences used 
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during testing were direct translations of the IEEE sentences that are syntactically correct but 

semantically anomalous. An example of these sentences is, "The great car met the milk." An 

example of the same sentence translated into Dutch is "De geweldige auto ontmoette de melk." 

The Mandarin sentences, originally used in Van Engen and Bradlow (2007), are also 

syntactically correct but semantically anomalous materials. It should be noted that although the 

English competing sentences were meaningful and the Dutch and Mandarin competing sentences 

were semantically anomalous, all listeners were monolingual speakers of English and had no 

knowledge of either Dutch or Mandarin. Brouwer et al. (2012) reported data for monolingual 

English listeners in the presence of meaningful and anomalous Dutch maskers. Results indicated 

no significant differences between the masker conditions; therefore, we would expect that 

because the listeners in the present study were all monolingual English speakers, the fact that 

Dutch and Mandarin maskers were anomalous should not matter. 

The two-talker maskers were created by concatenating sentences spoken by each talker 

with no silent intervals between sentences to eliminate the potential for glimpsing. Though each 

of the two talkers spoke the same sentences in each language, the order of concatenation differed 

between the talkers in each masker condition. The sentences were equalized to the same root-

mean-square (RMS) pressure level using Praat prior to concatenation. The two strings of 

sentences were combined into a single audio file using Audacity. The final audio files (one for 

each masker condition) were RMS equalized to the same overall pressure.  
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In order to account for the spectral differences between maskers, we manipulated the 

long-term average speech spectrum (LTASS) of all two-talker babble tracks as a means of 

reducing unequal amounts of energetic masking between conditions. Figure 3 plots the LTASS 

of all three maskers before (left panel) and after (right panel) the normalization.  

 

The left panel of figure 3 shows substantial spectral differences in the higher frequencies 

(6-8 kHz), specifically for the Mandarin masker. LTASS normalization eliminated these 

difference by adjusting each masker LTASS to match the average LTASS. This normalization 

procedure was implemented in Praat (scripting acquired from Dr. Susanne Brouwer and 

originally created by Dr. Chun Liang Chan) and involved first computing the LTASS separately 

for each masker speech wave file. The LTASS for a given wave file was then computed by 

breaking up the file into windows of 2048 samples. The fast Fourier transformation was then 

taken of each window and the mean was subsequently taken across all windows. After that, the 

average LTASS across all masker files was computed and each masker file LTASS was adjusted 

to the average LTASS. Following this manipulation, informal listening tests with native English 
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Figure 3 - Long term average speech spectrum (LTASS) for each language masker before (left panel) and after (right panel) 

normalization. 
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and native Dutch listeners on the original and the spectrally-transformed sound files to ensure 

that the stimuli maintained their naturalness after signal processing. The results of these tests 

showed that normal-hearing listeners could not reliably distinguish between the original and 

normalized sound files. This was not surprising since the amount of spectral manipulation was 

relatively small. 

To examine effects of whether the target stimuli are differently “glimpsed” across time 

for the various maskers (heard in the temporal gaps, affecting the amount of energetic masking), 

masking sentences were concatenated and ideal time-frequency segregation (ITFS) was 

implemented to quantify the spectral overlap of maskers and target stimuli across time. First, 

each 2-talker masker was created such that no sentence began or ended at that same time creating 

an interleaved pattern with no visible temporal gaps in each masking waveform. Second, ITF, a 

signal processing technique implemented through Matlab, was used to identify both temporal 

areas within a combined target-masker acoustic waveform where the target would be 

undetectable in the presence of the masker due to spectral overlap and temporal areas where the 

target would be detectable or glimpsed above the masker. The ITFS scripting that was used by 

Brungart and colleagues (Brungart et al. 2006, 2009) for separating energetic and informational 

masking components in psychophysical and speech perception tasks was implemented in this 

study and adapted from a Matlab toolbox created by Dr. DeLiang Wang. However, ITFS in this 

experiment was simply implemented to measure and compare the energetic masking effects and 

evaluate whether these affects are similar across the maskers and ensure that the relationship 

between the amount of masking and glimpsing of the targets are approximately equalized across 

maskers.  
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SNR for each target-masker condition was held constant at +3 dB, which has been shown 

to not only be representative of real world difficulty listeners experience, but produce reliable 

AEP morphology (Bennett et al. 2012; Koerner et al. 2017). Previous behavioral results have 

also showed that this SNR with a same sex target and masker, yields approximately 50-75% 

correct detection (Words-In-Noise test, and CRM task), limiting celling and floor effects 

(Brungart et al. 2001; Wilson, Carnell, et al. 2007).  

2.2.4 Stimulus Paradigm/Listener Tasks 

Target uncertainty was manipulated by the target stimulus paradigm, specifically the 

target-to-target interval (TTI), in two task conditions – fixed and random. Both tasks used a 

three-stimulus auditory paradigm, with AEPs recorded to naturally spoken words in each 

phonetic/linguistic masking condition, as well as quiet. As stated above, target (T) and non-

target standard (N) stimuli were either /bæt/ or /pæt/ depending on subject randomization. In 

addition to target and standard words, periods of quiet (Q) (500ms duration, identical to word 

stimuli) were also presented as additional non-target standard stimuli to reduce habituation 

effects of perceiving between two CVC words (Kok 2001; Polich and McIsaac 1994). In this 

active paradigm, subjects attended to the stimuli and pressed buttons corresponding to either 

target or standard stimuli as quickly as possible while refraining from pressing a button during 

silent blocks.  
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Table 3- Depicts presentation sequence for fixed TTI (low uncertainty - top panel) and random TTI (high 

 uncertainty - bottom panel). T stands for target, S standard, and Q quiet block.  

 

 

 

 

 

For the fixed task, as shown in the top part of Figure 4, the TTI was held constant at 6 

seconds. Probability of target words in the experiential paradigm was 20% as compared to 60% 

non-target standard words and 20% silent blocks (Gonsalvez et al. 1999; Gonsalvez et al. 2002; 

Katayama and Polich 1996). While the TTI was fixed at 6 seconds, the order of standard stimuli 

between targets was random and counterbalanced occurrence of silence and standards. A TTI of 

6 seconds has been shown to result in measurable P3 morphology, and this pattern of results has 

been linked with working memory-updating processes (Steiner et al 2016). The interstimulus 

interval (ISI) between any N, T, and Q interval was 1100ms with a 100ms jitter from trial to trial. 

150 target presentations were recorded for each noise condition for a total test time of 

approximately one hour per task (~12 min per noise condition – four noise conditions).  

For the random task, as shown in the bottom part of Figure 4, the same three-stimuli and 

four masker conditions were used but with pseudo-randomization of TTI. TTI was randomized 

from 2-10 seconds (2, 4, 6, 8, 10). In order to control for TTI effects on AEP morphology, TTI 

was averaged to 6 seconds, similar to Task 1, to compare across tasks. Probability of target 

words, ISI, button press response, and noise randomization was identical to task 1. This 

Fixed TTI – Low Uncertainty 
 5s  5s  5s 

T S Q S Q S T Q Q S Q S T S S Q S Q 
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Time 

Random TTI – High Uncertainty 
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 Time 
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manipulation of TTI provided a high level of uncertainty of target presentation, in that the 

participant was unsure of the timing of the target across trials under each noise condition. 

2.2.5  Electrophysiological Methodology 

Auditory neural responses were recorded using the Neuroscan Synamps2 recording 

system using a 64-channel electrode cap. Responses were referenced to the mastoids in the 

online and offline analysis. Cap position from nasion to inion was measured for each subject to 

ensure consistent cap placement between testing sessions. Blink artifact rejection using a vertical 

eye channel was utilized. Inter-stimulus interval (ISI) from 1200-1000ms (jittered 100ms) was 

employed to ensure no overlapping of AEP activity and that temporal and spectral content of 

stimuli and noise for each condition was random. Responses were analyzed over a 100ms pre- 

and 1200ms post stimulus window. Within each task/noise condition, there was approximately 

750 stimulus presentations (150 target, 450 non-target, and 150 quiet). Participants were seated 

in a comfortable chair within a double-walled sound-treated booth. Subjects were given an 

indicator with two buttons, in which they responded with a button press using two fingers of the 

same hand to each target and standard word stimulus to reduce motor artifact differences (Luck 

2014a). The subjects were instructed to remain awake and attended, pressing the corresponding 

button to the stimuli as quickly as possible whenever they hear the stimulus. Prior to testing, a 

practice condition, in which all stimuli are played in quiet, was presented to acclimate all 

subjects to the experimental paradigm. Performance measures of reaction time, accuracy, and 

stimulus discrimination indexed by measures of d’ were recorded simultaneously via Neuroscan 

software and button response box. Using signal detection theory (Macmillan, and Creelman, 

1991) as shown in Table 4, the d' statistic was calculated as the difference between z-transforms 
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for hit rate and false alarm rate (d' = z(H) - z(F)). Subjects were given a 2-5 minute break 

between conditions if needed. 

Table 4 - d' stimulus discrimination response example used for calculation. 

 

Evoked responses were analyzed offline using Matlab ERPLab toolbox (Lopez-Calderon 

and Luck 2014), an open-source Matlab package for analyzing ERP data. Offline artifact 

rejection was performed using Matlab ERPLab moving-window technique with a window width 

of 200ms and step size of 100ms. Trials in which the amplitude exceeded the threshold value of 

100µV were marked for rejection. After artifact rejection, remaining sweeps were averaged and 

filtered from 0.1-30 Hz for standard and 0.1-20 Hz for target responses (12 dB/octave). Response 

analysis focused on waveforms recorded from the three midline locations (Fz, Cz, Pz), but overall 

scalp distribution and global field power (GFP) were used to aid in component identification. 

Outcome measures included peak and mean amplitudes and local peak latencies within specified 

time windows of the primary peaks N1 and P3, as well as total rectified area of the N1 and P3 

(Luck 2014b). All amplitude and latency measurements were made using the ERPLab 

measurement tool and verified by two judges. The judges were blinded to the conditions and 

used surrounding electrodes sites to verify peaks. Absolute peak amplitudes were calculated 

relative to baseline and absolute peak latencies were calculated relative to stimulus onset (0ms). 

Time windows for peak identification were based on Martin et al. (2008) and confirmed across 

all noise conditions as to not exclude any peaks due to increased latency, specified as N1: 50-

 Response: Yes (button click) Response: No (no button click) 

Stimuli: Present Hit Miss 

Stimuli: Absent False alarm Correct rejection 
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150ms, and P3: 250-550ms from stimulus onset. Absolute peak amplitude and peak latency were 

also measured to compare across conditions and to previous electrophysiological studies. In 

addition, exploratory analysis of scalp distribution of informational masking effects were 

conducted (e.g. left vs. right hemisphere, frontal vs. parietal). 

2.2.6 Behavioral Methodology 

Behavioral speech-in-noise performance was assessed using a word recognition task in 

quiet and each of the three language masker conditions described in Aim I. Northwestern 

University Auditory Test No. 6.4 (NU-6) monosyllabic word lists were the stimuli, chosen to 

provide an open-set test free of contextual cues and to match AEP stimuli (Tillman et al. 1963). 

Testing was administered under insert earphones and participants were be asked to repeat the last 

word following each carrier phrase (“Say the word…”). In addition to testing behavioral speech 

recognition at a fixed +3 dB SNR (identical to AEP conditions), SNR at which 50%-word 

recognition was also found using an adaptive procedure in order to better characterize individual 

differences in performance. Methodology was adapted from the Words-in-Noise (WIN) Test, 

which evaluates word recognition in multitalker babble at seven signal-to-noise ratios and uses 

the 50% correct point (in dB SNR) calculated with the Spearman-Kärber equation as the primary 

metric (Wilson and McArdle 2007). SNR-50 was calculated at 12, 8, 4, and 0 dB SNR, by taking 

accuracy of the first five words in each SNR (+3 dB SNR was left out of the equation due to 

mathematical constraints). The Spearman-Kärber equation which is expressed as: 
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in which i is the highest presentation level (12 dB SNR), d is the step size (4 dB steps), 

and five words were presented per step. This procedure is similar to the procedure used in the 

Words in Noise Test (WIN). 

2.2.7 Statistical Analysis  

There were six primary AEP outcomes analyzed as dependent variables as shown in 

Table 3: N1 amplitude, N1 latency, P1-N1-P2 response area, P3 amplitude, P3 latency, and P3 

response area. A two-factor repeated measures analysis of variance (4x2 RM-ANOVA) was used 

to analyze the main effects of target-masker similarity (4 levels: quiet, Mandarin, Dutch, and 

English language maskers) and target-masker uncertainty (2 levels: fixed TTI and random TTI 

task) and the interaction of these main effects. The three N1 primary outcome variables were 

measured at Cz and the three P3 primary outcome variables were measured at Pz, resulting in 

total of six separate RM-ANOVAs (Table 3). Tests of normality and sphericity were conducted, 

with Bonferroni correction for multiple comparisons. Accuracy and reaction time to target 

stimuli obtained from button press responses was analyzed across masking and task conditions.  

Behavioral word recognition in noise performance (% correct and SNR50) scores were 

used as outcome variables for Aim II. A 5 x 4 RM-ANOVA was used to evaluate the effects of 

SNR and masker similarity condition on behavioral performance outcomes. Stepwise linear 

regression and correlation analyses were conducted to assess relationship among behavioral and 

AEP outcomes for each language masker condition masking conditions. This statistical 

procedure was used to probe the relationship between AEP outcomes and behavioral responses 

to better understand what specific AEP components (or combination of components) are 

correlated to behavioral outcomes. Accuracy and reaction time to target stimuli obtained from 
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button press responses, were also be analyzed across masking and task conditions and utilized in 

the stepwise linear regression. 

Paired t-tests were used to test for significant differences between left and right ears for 

peripheral measures include pure tone audiometric thresholds (0.25-16 kHz) and DPOAE 

amplitudes.  

 

 

3.0 Results  

3.1  Participant characteristics and peripheral hearing status 

  Thirty-four individuals consented and were enrolled in the study, but three individuals 

were excluded due to pure tone thresholds exceeding criteria and one subject withdrew due to the 

electrode preparation materials irritating the scalp. Therefore, a total of 30 individuals completed 

the study, 25 female and 5 male. Participants were 18-30 years of age, with an average age of 

23.4 years (SD=3.32). All participants met the inclusion criteria as listed in the methodology. All 

participants were native English speakers as determined by self-report, none of the participants 

reported any exposure to Dutch or Mandarin, and all were dominantly right-handed. No subject 

reported being diagnosed with a speech/language impairment (or ever had speech therapy), 

learning, psychiatric, or neurological disorder. No history of ear disease was reported, but one 

subject did report occasional mild tinnitus in the right ear.  

 Primary Outcome Variables 

 Early N1 Response Late P3 Response 

4x2 RM-ANOVA 
N1 Mean 

Amplitude 

N1 Peak 

Latency 

N1 Rectified 

Area 

P3 Mean 

Amplitude 

P3 Peak 

Latency 

P3 Rectified 

Area 

Table 5 – Primary outcome variables for both early N1 and late P3 responses. 
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As determined by inclusion criteria, all participants had pure-tone thresholds of 15 dB HL 

or better in both ears for standard audiometric frequencies from 0.25-8 kHz. Figure 4 shows 

mean pure tone thresholds for standard and extended high frequencies for the right and left ears 

for all participants. There were no significant differences in thresholds between right and left 

ears for any single frequency from 0.25-16 kHz by paired t-test (p>.05).  

Distortion product otoacoustic emissions were also measured to further establish 

peripheral hearing status. All subjects had present DPOAE responses across all tested 

frequencies, with the exception of one subject with present, but abnormally low DPOAE 

responses at 1 and 1.5 kHz in the left ear (4.6 and 5.9 dB SNR respectively). Figure 5 shows 

mean DPOAE signal and noise levels for the left and right ears of all subjects. Of note, the 

lowest mean DPOAE SNR was found for 1000 Hz (15.17 ±5.57 and 14.27 ±6.57 for right and 
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left ears, respectively). There were no significant differences between right and left DPOAE 

SNRs by paired t-test (p>.05).  

 

Overall, pure tone threshold and DPOAE results suggest that the participants had little 

peripheral hearing damage. As a group, they also reported relatively low levels of noise 

exposure. Self-reported noise exposure history was assessed using the Noise Exposure 

Questionnaire (NEQ). Scores for each question on the NEQ represent a rating from 0 to 4 of how 

often they were exposed to loud noises in each category over the past year (0 – never, 1 – every 

few months, 2 – monthly, 3 – weekly, and 4 – daily). Summed (up to 120 possible) and mean 

ratings by question as shown in Table 6. Results of the NEQ demonstrate that participants had 

relatively low amounts of noise exposure, except for listening to music under headphones and by 

speakers. Interestingly, every subject reported listening to music on a daily basis, whether it be at 

home, in a car, or on a device through headphones. A screening score based on the average rating 

for either the first three or six questions has been suggested by Johnson et al. (2017) to identify 
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individuals at risk for noise induced hearing loss (last two columns of Table 6). For a more 

conservative estimate, the six question screen was used to assess noise exposure risk. Johnson et 

al. (2017) stated that a score of 3 or 4 should be used as a possible criterion for noise exposure 

risk, and 5 or 6 as a more lenient criterion to reduce false positives. The average screening scores 

were 1.70 (SD 1.24) and 2.54 (SD 1.81) for the three and six item screening scores, respectively, 

which are less than either cutoff criteria. Only three individuals had screening scores that 

exceeded 4, indicating that their noise exposure over the past year was reported to be higher risk. 

Interestingly, all three of these scores were highly driven by attending Syracuse University 

sporting events, but none of these individuals had exposure to heavy machinery or firearms.  

Table 5- NEQ ratings per question and summed screening scores. 

 
Power 

tools 

Heavy 

Equipment 

Sporting  

events 

Motorized  

vehicles 

Small 

 aircraft 
Firearms 

Play a musical  

instrument 

Listen to music  

using headphones 

Listen to music  

from speakers  

3 Item 

screen score 

6 Item 

screen score 

Sum of ratings 7 5 39 15 6 4 28 100 115 51 76 

Average rating 0.23 0.16 1.33 0.50 0.20 0.13 0.93 3.33 3.83 1.70 2.53 

SD 0.56 0.59 0.95 0.86 0.44 0.34 1.41 1.12 0.59 1.23 1.81 

 

Because it is possible that general cognitive function would influence AEP results, 

particularly in an auditory oddball task, tests of working memory and selective attention were 

administered to all subjects. Working memory was measured by the List Sorting Task and 

attention was measured on the Flanker Selective Attentional Task from the NIH Toolbox 

Cognition Battery (Weintraub et al. 2014). Figure 6 shows the range of age-corrected scores and 

uncorrected standard scores, with a normal performance metric mean of 100 and SD of 15 for 

each. The age-corrected scores account for age and other demographic characteristics (education, 

gender, and race/ethnicity) that may affect the performance of individuals in the general 

population. A cut-off score of 70 (two standard deviations below the mean) was used as a 

criterion for normal cognitive function to be enrolled in the study. All participants met this 
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criteria for both the working memory and attention tests, and only two subjects scored below a 

90 for the standard/age-corrected score. While no subjects scored below the normal cut-off, one 

subject scored just above two SD above the mean on the working memory and another subject 

scored two SD above the mean on the attentional task. The results are consistent with normal 

working memory and attentional skills across participants, with minimal across-subject variation, 

particularly for the age-corrected scores.  

 

 

3.3  AEP grand means and individual variability 

 Informational masking effects were examined using an AEP oddball paradigm in which 

similarity between target and masker was manipulated by four background noise masker 

conditions varying in linguistic/phonetic content (Quiet, Mandarin, Dutch, and English), and 

uncertainty was manipulated by varying the TTI of target stimulus presentations in a predictable 

(low uncertainty) and random (high uncertainty) manner. For each participant, therefore, a total 

of eight average waveforms to the standard stimulus and eight waveforms to the target stimulus 
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Figure 6 - Box and whisker plots for age corrected and standard scores for both working memory 

(left panel) and attentional tasks (right panel). The box represents the 25th and 75th percentile, the 

middle line the median, and the whiskers the 10th and 90th percentiles. Filled circles are outliers.  
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were obtained. The P1-N1-P2 was analyzed in the standard waveform and the P3 was analyzed 

in the target average waveform. Waveforms were averaged across all button press accuracy 

responses including hits, misses, false alarms, and correct rejections. The number of misses and 

false alarms as determined per participant was low, and these epochs containing performance 

errors were not removed from the average waveform for each condition (see section 3.6.1 for 

further discussion).  

Figure 7 shows standard and target grand mean averaged time waveforms by electrode 

location across the scalp (shown for the quiet low uncertainty condition). Consistent with the 

literature (Hillyard et al. 1971; Martin et al. 2008; Naatanen and Picton 1987; Picton 1992), 

response amplitudes were generally largest at midline locations and decreased at sites moving 

away from the midline. Note that electrodes were re-referenced to mastoids, resulting in flat 

waveforms for the M1 and M2 electrode locations (pictured in the bottom right corner of Figure 

7). In addition, heat maps for the time windows of the N1 (25-300ms) and P3 (250-550ms) 

generally verify the expected distribution of maximum voltages at the vertex for the N1 and a 

wider pattern with more parietal distribution for the P3. Neither N1 (amplitude averaged from 

25-300ms) nor P3 (averaged from 250-550ms) average peak amplitude were significantly 

different across the left and right hemispheres as determined by comparing averaged electrodes 

sites of Fc6, C6, Cp6, and P6 on the right and Fc5 C5, Cp5, and P5 on the left hemisphere (p>.05 

for both N1 and P3). Further analyses were therefore conducted only for the Cz site for N1 and 

Pz site for P3, consistent with the literature and maximum amplitude distributions.  
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Figure 7 - Scalp topography for quiet low uncertainty target and standard waveforms across the entire electrode cap. A heat map 

of N1 (amplitude averaged from 25-300ms) and P3 (averaged from 250-550ms) voltages are shown in the bottom panels. Voltage 

scales are in µV for both grand mean waveforms and heat maps. 
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 Figure 8 shows individual waveforms from one participant recorded to target stimuli in 

the infrequent waveform at Pz for all similarity and uncertainty conditions. As demonstrated by 

this individual, general trends in the individual data are consistent with smaller amplitudes, 

longer latencies and poorer morphology for the language masking conditions compared to quiet. 

Waveforms generally showed the smallest amplitudes and poorest morphology in the English 

condition. Individual differences in waveforms between the two uncertainty conditions were 

generally consistent with longer peak latencies for the high uncertainty condition compared to 

low uncertainty.  
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Figure 8 - Example individual waveforms from a single subject for all conditions to target stimuli 

(infrequent) at the Pz electrode Similarity conditions are separated across each of the four panels and 

uncertainty conditions are indicated with either a solid or dashed lines.  
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 Variability across individual waveforms is demonstrated in Figure 9, which shows the 

grand mean and a shaded range of ±1 standard deviation shading around the mean for target and 

standard stimuli in across all language maskers. Responses are shown for the high uncertainty 

condition only. In this figure, the blue shading shows variability around the mean for the 

standard stimulus and red shading the variability around the waveform for the target stimulus. 

Though there is relatively large inter-individual variability observed, the range is consistent 

across conditions. There is a slightly greater variability for target responses (red) compared to 

standard, consistent with the smaller number of stimulus presentations for the target compared to 

standard. Variability is also greater for later time periods compared to earlier.  

Figure 9 - Grand mean and standard deviation of grand mean waveforms target (at Pz) and standard 

(at Cz) stimuli across language masking conditions for high uncertainty conditions. Standard deviation 

of +1 SD is shown in red for the target and blue for the standard. 
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Figures from here will show only the grand mean waveforms, but peak measures 

(amplitude, latency, and area) were obtained from the individual waveforms for each participant 

in each condition, therefore the inter-subject variability is accounted for in the statistical 

analyses. All further time waveform figures display the grand means only. 

Figure 10 shows overall grand means for the similarity conditions. As in the previous 

figure (but without the range of variability), target and standard grand average responses for each 

of the language masking conditions are shown only for the high uncertainty. N1 and P3 peaks, as 

analyzed for each individual in the standard and target waveforms respectively, are visible and 

labeled in the grand means. In quiet, a large P1-N1-P2 predominates the standard waveform, and 

is clearly visible in the target waveform. The P3 response is identified as a broad and large peak 

with a maximum in the 300ms range. Within each language masking conditions there is an 

evident N1 around 150ms and a clear difference in amplitude around 300-400ms between the 

standard and target responses consistent with the P3 response. General changes in the 

morphology of these grand average waveforms are apparent across the noise conditions, with a 

decreasing amplitude N1 and P3 from Mandarin to Dutch to English, roughly consistent with the 

linguistic/phonetic similarity hypothesis 
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For a better visual comparison within each language masking condition and between 

uncertainty conditions, Figure 11 displays grand mean waveforms for the P1-N1-P2 time 

window for the standard waveform (left column) and the P3 time window (right column) for the 

target waveform across language masking conditions (rows) and uncertainty conditions (solid 

and dashed lines). Several trends consistent with the hypotheses for the effects of 

linguistic/phonetic similarity and uncertainty factors on informational masking are observed in 

these grand averages. In quiet, morphology of each component is strong with distinct component 

peaks and expected latencies. Across language masking conditions, the amplitude of N1 and P3 

is markedly reduced compared to quiet. The latencies of the peaks can also be observed to 
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Figure 10 - Grand mean waveforms for target (P3) and standard (N1) stimuli in high uncertainty 

conditions. Target waveforms are from the Pz electrode, where P3 responses were analyzed, and 

standard waveforms from the Cz electrode where N1 responses were analyzed. 
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generally shift later from top to bottom. Between the uncertainty conditions, there are differences 

in overall morphology, amplitude and latency of the peaks within each quiet or noise condition, 

but there are not obvious consistencies. Of note, the low uncertainty condition for the P1-N1-P2 

waveform standard response in English masking displayed an overall higher baseline amplitude 

compared to high uncertainty. A review of the individual data indicated that this was a relatively 

consistent trend across subjects. Specific analysis of the peak amplitude, latency and area 

measures are presented in the next section. 
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Figure 11 - Grand mean waveforms for the P1-N1-P2 (standard) recorded at Cz (left panels) and for the P3 (target) at Pz (right 

panels) with low uncertainty and high uncertainty indicated with solid and dashed lines. Grand means in quiet are shown in the 

top row, with the three language masker conditions in the rows below. The color scheme is consistent with the previous figure 

and throughout the following figures, with Mandarin in red, Dutch in green, and English in blue.  
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3.4  Similarity and uncertainty effects on peak measures  

 Peak amplitude, mean amplitude, peak latency, and area were measured on the individual 

waveforms for all participants as described in the methods. For each of these primary outcomes 

for N1 and P3, 4x2 RM-ANOVA analyses were conducted to analyze main effects of similarity 

and uncertainty, as well as the interaction. Results are presented below for the P1-N1-P2 first, as 

analyzed in the standard waveform, and then for the P3, with the effects of similarity (Aim 1- 

objective 1) presented first and the effects of uncertainty (Aim 1 – objective 2) presented second. 

3.4.1   N1 Similarity 

Table 7 shows the ANOVA results for the primary outcome variables related to P1-N1-

P2 responses. Significant results based on corrected p-values ≤ 0.05 are highlighted in gray. 

Mauchly’s test of sphericity was performed for the similarity effect (4 repeated conditions) for 

all ANOVAS. Results of this test are reported only in cases where the assumption of sphericity 

was violated. If sphericity was violated, Greenhouse-Geisser corrections were implemented.  

Table 6- Results of the overall 4x2 RMANOVA for N1 and P1-N1-P2 primary outcome measures, values, F-values, 

and effect sizes (partial eta squared) are shown for each of the main effects and the interaction term. Degrees of 

freedom for the F statistic were (3,87), (1,29), and (3,87) for similarity, uncertainty, and interaction terms 

respectively. Significant results (p<.05) are highlighted in gray.  

 

 

N1 P1-N1-P2 

N1 Peak 

Amplitude 

N1 Mean 

Amplitude 
N1 Latency N1 Area P1-N1-P2 Area 

p F ηp
2 p F ηp

2 p F ηp
2 p F ηp

2 p F ηp
2 

Main Effect 

of Similarity 
.003 4.95 .146 .617 .600 .020 .005 4.56 .136 .165 1.75 .057 .001 5.76 .166 

Main Effect 

of Uncertainty 
.181 1.87 .061 .253 1.36 .045 .025 5.61 .162 .692 .160 .005 .307 1.082 .036 

Interaction .217 1.51 .050 .477 .837 .028 .851 .264 .009 .764 .410 .014 .537 .730 .025 
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First, it is noted in Table 7 that the interaction effect between similarity and uncertainty 

was not significant for any of the outcome measures for the P1-N1-P2 response. Effect sizes 

were small based on classification partial eta squared (ηp
2), based on a small effect <.01, 

moderate ~ .09, and strong >.24 (Kotrlik, and Williams, 2003; Tabachnick, and Fidell, 2001). In 

the left panel of Figure 12, the hypothesized experimental interaction (figure 2 in the objectives 

section) is shown, although it was hypothesized this would be an additive or a non-parallel effect 

would be seen for the P3 more than for N1. The panel on the right shows the pattern of the actual 

N1 amplitude data. Consistent with the hypothesis, there is not an apparent interaction effect 

observed for this outcome measure, or any of the P1-N1-P2 outcomes. Because none of the 

interactions were significant, the ANOVA results for the simple main effects can be considered 

separately for each of the variables for the P1-N1-P2, and the results for similarity and 

uncertainty and their relationship to the hypotheses will be presented below 
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Figure 12 - Hypothesized interaction effect between similarity and uncertainty compared to actual N1 amplitude data. 
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To better illustrate the effects of just one factor at a time, the grand means for each 

similarity condition as evaluated by the effect of the four conditions, including Quiet and three 

different 2-talker language maskers, combined across the two uncertainty conditions for the P1-

N1-P2 and within each uncertainty condition are shown in Figure 13. While these grand means 

are useful in visualizing some of the trends and statistical outcomes for similarity to follow, it 

should be remembered that the results for the outcome measures below are obtained from the 

individual waveforms for each separate condition (e.g. English masker, high uncertainty) and 

analyzed in the overall 4x2 ANOVA shown in Table 1 above.  

 

 



 

  65 

 

 

 

  

Time (ms)

0 100 200 300 400 500

A
m

p
lit

u
d

e
 (

μ
V

)

-3

-2

-1

0

1

2

3

Quiet
Mandarin
Dutch
English

Time (ms)

0 100 200 300 400 500 600

A
m

p
lit

u
d

e
 (

u
V

)

-3

-2

-1

0

1

2

3

Quiet High 
Mandarin High 
Dutch High 
English High 

Time (ms)

0 100 200 300 400 500 600

A
m

p
lit

u
d
e
 (

u
V

)

-3

-2

-1

0

1

2

3

Quiet Low 
Mandarin Low 
Dutch Low 
English Low 

Figure 13 - Grand mean P1-N1-P2 standard waveforms at Cz for similarity conditions averaged across combined high and low 

uncertainty conditions (top panel) and for each uncertainty condition separately in the bottom left (low uncertainty conditions) 

and right (high uncertainty conditions) panels. 
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 Figure 14 displays average peak and mean amplitude measures across all participants for 

the similarity conditions. As a reminder, peak and mean amplitude were both measured because 

peak measures can be easily compared to previous studies, while mean amplitude gives a better 

understanding of the entire amplitude of the underlying component. For either method of 

measuring amplitude, the magnitude was largest for quiet and decreased in the presence of any of 

the language maskers. In both cases, the average amplitude was the smallest for the English 

masker condition, and appear similar between the Mandarin and Dutch conditions.  

 

Although the trends appear similar, as shown in Table 7, the main effect of similarity was 

significant for N1 peak amplitude, but did not reach significance for the mean amplitude 

measure. Pairwise comparisons with adjustment for multiple comparisons (Bonferroni) revealed 

that peak amplitudes were larger in the quiet condition compared to English (p=.002). Although 

they appear larger on average, peak amplitudes in quiet were not significantly different compared 

to either Dutch (p = .083) or Mandarin (p=.059), although they approached significance in 

comparison to Mandarin. Peak amplitudes were also not significantly different between Dutch 
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Figure 14 - Average N1 peak amplitude (left panel) and mean amplitude (left and right panels) for all similarity 

conditions averaged across uncertainty conditions. Error bars represent +1 SD.  
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and Mandarin (p>.05). However, peak amplitude in the Dutch condition was significantly larger 

than the English condition (p=.027), while Mandarin and English were not significantly different 

(p = .124).  

 

 

 

 

 

 

 

 

Figure 15 shows mean N1 peak latencies across language maskers. As shown in Table 7, 

there was a significant overall main effect of similarity for N1 peak latency. Pairwise 

comparisons revealed that the N1 in quiet was significantly earlier than for Dutch (p=.002), but 

not earlier than the Mandarin condition (p=.140). N1 latency was not significantly different 

between the Dutch and Mandarin conditions (p>.05). Contrary to the hypothesized delay in 

latency for the most linguistic/phonetic similar masker, N1 latency for the English condition 

appeared to be shorter than the other language maskers. This resulted in N1 latency in English 

masking being not significantly different to either Dutch, Mandarin, or quiet (p>.05). 
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Figure 15 - Average N1 peak latency for all similarity conditions averaged 

across uncertainty conditions. Error bars represent +1SD. 
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Because both peak amplitude and peak latency can be affected by small waveform 

variations and do not provide a encompassing measure of the entire component, area measures 

were also calculated for a comparison of changes in size and morphology of neural responses 

less dominated by the absolute peaks of the waveform. The rectified area under the curve 

(negative area in the case of N1 region, and total rectified area for the P1-N1-P2) was calculated 

as described in the methods for the N1 time window as well as for the entire P1-N1-P2 response 

area (25-300ms). Figure 16 shows mean N1 area across similarity conditions. While N1 area for 

the English condition had the smallest mean, the main effect of similarity did not reach 

significance for N1 area (p>.05).  
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across uncertainty conditions. Error bars represent +1SD. 
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Figure 17 shows area measures across the entire P1-N1-P2 time window (25-300ms) for 

all similarity conditions averaged across uncertainty conditions. The effect of similarity was 

significant for P1-N1-P2 area. Pairwise comparisons showed that response are in quiet was 

significantly larger than all other conditions (p=.015, .017, and .002 for Mandarin, Dutch and 

English comparisons respectively). However, there were no other significant differences in 

overall area among the three language masking conditions (p>.05).  

3.4.2   P3 Similarity 

Similar peak outcome measures were analyzed for the later processing P3 component for 

the similarity main effect, graphed and summarized in the same way below. Table 8 shows the 

results from the 4x2 RMANOVA for the primary outcome variables related to the P3 responses. 

Significant results based on corrected p-values ≤ .05 are highlighted in gray. Mauchly’s test of 

sphericity was performed for the similarity effect (4 repeated conditions) for all ANOVAS. 

Results of this test are reported only in cases where the assumption of sphericity was violated, 
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Figure 17 - Average P1-N1-P2 total area across similarity conditions 

averaged across uncertainty. Error bars represent +1SD. 
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which only happened in the P3 area measure, and Greenhouse-Geisser corrections were 

implemented in this case. 

Table 7 –Results of the overall 4x2 RMANOVA for the P3 primary outcome measures, values, F-values, and effect 

sizes (partial eta squared) are shown for each of the main effects and the interaction term. Degrees of freedom for 

the F statistic were (3,87), (1,29), and (3,87) for similarity, uncertainty, and interaction terms respectively. 

Significant results (p<.05) are highlighted in gray. 

 

 

P3 

P3 Peak 

Amplitude 

P3 Mean 

Amplitude 
P3 Latency P3 Area 

Sig F ηp
2 Sig F ηp

2 Sig F ηp
2 Sig F ηp

2 

Main effect of 

Similarity 
.000 7.23 .199 .006 4.39 .132 .000 7.51 .206 .000 12.4 .300 

Main Effect of 

Uncertainty 
.203 1.68 .055 .771 .143 .005 .005 9.37 .244 .031 5.11 .150 

Interaction .866 .244 .008 .918 .167 .006 .917 .169 .007 .989 .042 .001 

 

 As was the case for all N1 outcomes, table8 shows that there were also no significant 

interaction effect between similarity and uncertainty for any of the P3 outcome measures for the 

P3. Effect sizes were small based on the classifications for partial eta squared presented 

previously. Figure 18 shows the hypothesized experimental interaction (based on hypothetical 

data) and actual measured data for P3 amplitude, similar to the figure presented in the previous 

section for N1. In the case of P3 amplitude, the trend across similarity conditions was more 

similar to the hypothesized pattern, but the difference between high and low uncertainty 

conditions small and largely parallel, indicating a lack of interaction between the two factors. For 

the P3, the hypothesis was that for the English masking (the highest level of similarity), 

uncertainty would have the largest effect (i.e. there would be an additive effect at this level of 
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processing). The statistical outcome indicate and the graphed data verify that this was not the 

case.  

 

Because none of the interactions were significant, the ANOVA results for the simple 

main effects of uncertainty can be considered separately for each of P3 outcome variables. 

Figure 19 shows the averaged similarity grand mean waveforms for the P3 responses in the 

target waveform for all language masking conditions averaged across both uncertainty 

conditions. As with the P1-N1-P2 grand means, low and high uncertainty are also show in the 

left and right bottom panels respectively. Overall results show a relatively large width of the P3 

component response (verified across electrode locations) and a clear decrease in morphology of 

the P3 in the presence of all language maskers. The trends in these grand means show a reduction 

in P3 amplitude from Mandarin to Dutch to English. In addition, the reduction in area under the 

curve of the P3 component appears to follow the hypothesized increase in informational masking 
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Figure 18 - Hypothesized interaction effect between similarity and uncertainty compared to actual P3 amplitude data.  
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from least to most similar to the English target words. This trend is more apparent in the high 

uncertainty condition than for low uncertainty.  
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Figure 19 - Grand mean P3 target waveforms at Pz for the similarity conditions averaged across combined high and low 

uncertainty conditions (top panel) and for each uncertainty condition separately in the bottom left (low uncertainty conditions) 

and right (high uncertainty conditions) panels. 
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As previously described, P3 outcomes across conditions similarity were analyzed by the 

4x2 RM-ANOVA, but are shown graphically averaged across uncertainty conditions. Figure 20 

shows average P3 amplitude for both peak and mean amplitude measures across similarity 

conditions. Trends in the mean individual data displayed the same effects observed in the grand 

mean waveform, in that amplitudes were largest for the quiet condition and decreased for all 

masker conditions. As shown in Table 8, the main effect of similarity was significant for both 

peak and mean amplitude. Results of the pairwise comparisons revealed that peak amplitude 

measures were significantly larger in quiet compared to English (p=.001), no significant 

differences between Mandarin and Dutch (p>.05), and English had the smallest peak amplitude 

compared to quiet, Mandarin, or Dutch (p=.001, p=.012, p= .027 respectively). P3 mean 

amplitudes were also significantly larger in quiet compared to English (p=.017), but were not 

significantly different from either Mandarin or Dutch (p>.05). The difference between English 

and Mandarin approached significance (p=.067). It is important to note that because mean 

amplitude is measured across a specified time window, rather at the maximum peak, the average 

voltage around the P3 component in the English background noise was below baseline, resulting 
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Figure 20 - Average P3 peak and mean amplitude (left and right panels respectively) for all language masking 

conditions averaged across uncertainty conditions. Error bars represent +1SD. 
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in a negative value for this measure. Both P3 peak and mean amplitude show a trend of 

decreasing amplitude consistent with the proposed informational masking hierarchy, although 

few of the amplitude differences reached statistical significance. 

Figure 21 shows P3 peak latency across similarity conditions. Latency results for the P3 

were less consistent with the proposed increase in latency as linguistic/phonetic similarity 

increased across maskers. As shown in Table 8, there was a significant overall main effect of 

similarity on P3 latency. However, as shown in the figure and revealed by pairwise comparisons, 

the only differences were between quiet and the noise conditions. P3 peak latency was earlier in 

quiet compared to Mandarin, Dutch, or English (p=.003, p= .005, p=.001 respectively) but none 

of the latency differences between language masker were significant (p>.05). 

 

 

 

 

 

 

 

 

As observed in the grand means, the overall width of the P3 responses was wide in quiet 

and became smaller and narrower across language masker. To better capture this change in 

waveform morphology, total rectified area of the P3 response was calculated across the time 
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Figure 21 - Average P3 peak latency for similarity conditions 

averaged across uncertainty conditions. Error bars represent +1SD. 
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window from 275-550ms. Figure 22 shows average P3 area for each similarity condition 

averaged across uncertainty. There was a significant overall effect of similarity on P3 area, with 

the largest effect size of any of the AEP outcome measure (ηp
2 = .300, interpreted as a large 

effect). Pairwise comparisons showed that P3 areas for the quiet condition were significantly 

larger than those for either Dutch (p=.005) or English (p<.001). P3 area for the English 

condition, with the highest similarity, was significantly smaller than all other conditions (quiet 

p<.001, Mandarin p<.001, Dutch p=.015). P3 areas fell between quiet and English for the two 

non-native maskers, but were not significantly different between Mandarin and Dutch (p=.315).  

 

 

 

 

 

 

 

 

In summary, the overall effect of similarity was significant for N1 peak amplitude, 

latency and total P1-N1-P2 area, as well as P3 amplitude, latency, and area outcomes measures. 

Differences among the amplitude and area measures outcomes for N1 and P3 showed that in 

general quiet was significantly different from all other background noise conditions. Across the 

different language masker conditions there were trends consistent with reductions across the 
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Figure 22 - Average P3 total area across similarity conditions 

averaged across uncertainty. Error bars represent +1SD. 
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proposed hierarchy of increasing linguistic/phonetic similarity from Mandarin to Dutch to 

English, but only a few of the comparisons reached statistical significance including P3 peak 

amplitude and area. Results for latency also showed that quiet was significantly different from 

other background noise conditions, but none of the differences within language maskers were 

significant for N1 or P3 latency.  

 

3.5  Uncertainty  

 3.5.1   N1 Uncertainty 

The effect of stimulus uncertainty was manipulated through fixed (low uncertainty) vs. 

random (high uncertainty) time-to-target interval (TTI) conditions in the auditory oddball 

paradigm. Results for the main effect of uncertainty on P1-N1-P2 outcomes from the overall 

ANOVA results Table 7 (in section 3.4.1) indicated a significant effect only for N1 latency. N1 

amplitude (peak or mean) and area of either N1 or P1-N1-P2 did not show an overall main effect 

of the uncertainty manipulation, and the effect sizes were small. These results are graphed and 

discussed further below. 

Grand means for high and low uncertainty combined across all similarity conditions for 

the P1-N1-P2 response to the standard stimulus are shown in Figure 23. Overall, the grand mean 

trends show shows a smaller and earlier N1 response for the low uncertainty condition (easier 

task, dashed lines compared to the high uncertainty condition (more difficult task, solid line).  
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Average N1 amplitudes across individuals for both peak and mean amplitude measures 

across uncertainty conditions are shown in Figure 24. While the mean peak measures also show a 

trend for increasing amplitude from low to high uncertainty, as previously mentioned, the main 

effect of uncertainty did not reach significance for either amplitude measure (p=.181 and p=.253 

respectively).  
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Figure 23 - Grand mean P1-N1-P2 waveforms for the standard stimuli at Cz for 

high and low uncertainty conditions averaged across all similarity conditions. 

compared to low uncertainty. 

 



 

  78 

 

 N1 peak latency, on the other hand, did show an overall significant effect of uncertainty 

(p=.025). This effect can be seen in Figure 25, which shows that N1 peak latency increased from 

low to high uncertainty. This was consistent with the hypothesis that an increased difficulty on 

an auditory task manipulated by TTI, would increase the stimulus processing time even at the 

earlier level of the N1, as well as increasing the attentional resources required for the task.  

 

 

 

 

 

 

 

Condition

Low Uncertainty High Uncertainty

A
m

p
lit

u
d
e
 (

u
V

)

-3

-2

-1

0

Condition 

Low Uncertainty High Uncertainty

A
m

p
lit

u
d
e
 (

u
V

)

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

Figure 24 - Average N1 peak and mean amplitude (left and right respectively) for both low and high uncertainty 

conditions averaged across similarity conditions. Error bars represent +1 SD. 
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 Area outcomes for the P1-N1-P2 are shown in Figure 26, with the N1 peak area and 

overall P1-N1-P2 area for each uncertainty condition averaged across all similarity conditions. 

The main effect of uncertainty on N1 or P1-N1-P2 area did not reach significance (p= .692 and 

p=.307 respectively).  

 

3.5.2   P3 Uncertainty 

Effects of uncertainty on the later P3 component were summarized previously as part of 

the overall ANOVA results in Table 8. There were significant main effects of uncertainty on P3 

latency and area overall, but not for P3 amplitude. Figure 27 shows the grand mean waveforms 

for each uncertainty condition averaged across all similarity conditions to visualize these results. 

The significant increase in latency between low and high uncertainty is observed in these grand 

means.  
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Figure 26 - Average N1 (left panel) and P1-N1-P2 area (right panel) measures for low and high conditions averaged 

across similarity conditions. Error bars represent +1 SD. 
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Average P3 amplitudes across individuals for both peak and mean measures across 

uncertainty conditions are shown in Figure 28. Although the mean P3 amplitude increases 

between low and high uncertainty for both measures, this effect did not reach significance 

(p=.203 and p=.771 respectively).  
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Figure 27 - Grand mean waveforms for the P3 response to target stimuli at Pz for 

high and low uncertainty averaged across all similarity conditions.  
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Figure 28 - Average P3 amplitude for peak (left panel) and mean (right panel) measures for both uncertainty conditions 

averaged across similarity conditions. Error bars represent +1 SD. 
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P3 latency, alternatively, did show a significant effect of uncertainty as shown in Table 8 

(p=.005). Mean individual peak latency data in Figure 29 show this significant increase in 

latency from the low uncertainty to the high uncertainty condition. This significant effect for P3 

latency is consistent with the hypothesis that a harder auditory task would increase latency of the 

P3 response due to increased time in categorizing and discriminating stimuli 

 

 

 

 

 

 

 

 

 

Finally, the effect of uncertainty on P3 area is shown in Figure 29, with increasing 

average response area from low to high uncertainty. This effect was significant for P3 area 

(p=.031) is consistent with our hypothesis that a harder auditory task would yield larger neural 

responses, combined with increases in latency.  
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Figure 29 - Displays N1 peak latency measures for uncertainty conditions 

averaged across similarity. Error bars represent +1SD. 
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3.6  Comparison between AEP and behavioral outcomes 

3.6.1   Reaction Time, Accuracy, and d’ 

For the AEP oddball task, participants actively attended to and pressed separate buttons 

for each presentation of both the standard and target stimuli. The reaction time for each button 

press following stimulus presentation and whether it was a correct or incorrect response were 

recorded. These behavioral outcomes were recorded for all eight conditions of similarity and 

uncertainty for 26 of the 30 participants. For 4 of the participants, button press data was not 

accurate for all stimulus presentations because of insufficient pressure applied to the center of the 

response button. Once this problem was determined, subjects were instructed on how to press the 

button correctly so that all responses would be recorded correctly. Even though a full set of data 

were not available for these four subjects, there were at least 20-60 recordable responses in each 

condition that were accurately recorded, and the data was evaluated and considered reliable 
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Figure 30 - Average P3 area for low and high uncertainty conditions 

averaged across similarity. Error bars represent +1 SD. 
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enough across this more limited number of responses to include in the overall analysis. Table 9 

displays results of reaction time, accuracy, and d’ of the button press response. Of note, large 

effect sizes in accuracy and d’ across both effects of similarity and uncertainty were observed. 

Table 8- Results of the overall 4x2 RMANOVA for reaction time, accuracy and d’ measures. p- values, F-values, 

and effect sizes (partial eta squared) are shown for each of the main effects and the interaction term. Degrees of 

freedom for the F statistic were (3,87), (1,29), and (3,87) for similarity, uncertainty, and interaction terms 

respectively. Significant results (p<.05) are highlighted in gray. 

 

Reaction 

Time 
Accuracy d’ 

p F ηp
2 p F ηp

2 p F ηp
2 

Main Effect 

of Similarity 
.001 6.16 .175 .000 40.9 .585 .000 8.71 .231 

Main Effect 

of Uncertainty 
.037 4.72 .141 .000 69.2 .732 .000 14.5 .334 

Interaction .797 0.34 .012 .620 .595 .020 .447 .896 .030 

 

Mean reaction times to target stimuli in each language masker and uncertainty condition 

are shown in Figure 31. A factorial 4x2 RMANOVA on reaction time revealed a significant main 

effects of similarity (p=.001) and uncertainty (p=.037) but the interaction was not significant 

(p=.797). Pairwise comparisons revealed that reaction times were significantly shorter overall for 

quiet compared to either the Dutch (p=.012) or English (p=.002) masker conditions, but not 

significantly different from the Mandarin condition (p=.291). Reaction times were not 

significantly different among any of the three language conditions (p>.05). Reaction times were 

faster overall for the low uncertainty task compared to the high uncertainty task (p=.037), which 

can also be observed within each similarity condition. 
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The accuracy of button press identification of target stimulus measured in percent correct 

is shown in Figure 32. As shown in Table 9, percent correct scores, revealed a significant main 

effects of similarity (p<.001) and uncertainty (p<.001) but not a significant interaction (p=.602). 

Mauchly’s test of sphericity was significant, indicating that the assumption of sphericity was 

violated, and Greenhouse-Geisser corrections were applied. Pairwise comparisons revealed that 

accuracy was highest in the quiet condition compared to all three background noise conditions 

(p≤.004). Accuracy of target identification was not significantly different between Mandarin and 

Dutch conditions (p=.150), but was significantly worse in English compared to either of the other 

language masker conditions (p≤.001). Overall accuracy was also significantly higher in the low 

uncertainty conditions compared to high uncertainty conditions (p=.001).  
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Figure 31 - Average reaction time in for high and low uncertainty conditions in 

each similarity. Error bars represent +1 SD. 
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As described in the methods, because percent correct scores may have a ceiling effect and 

not accurately represent the participants difficulty in identifying standard and target stimuli in 

each condition, d’ was calculated as a measure of behavioral discrimination. Figure 33 shows 

mean d’ scores for each similarity and uncertainty condition. In general, average behavioral 

discrimination between target and standard was better for low compared to high uncertainty 

across all similarity conditions. As displayed in Table 9, d’ scores showed significant main 

effects of similarity (p<.001) and uncertainty (p<.001), but the interaction was again not 

significant (p=.447). Pairwise comparisons revealed that d’ scores were significantly higher for 

the quiet condition compared to either the Mandarin (p=.011) or English (p=.003) conditions, but 

were not significantly different from d’ scores for the Dutch condition (p=.219). However, d’ 

scores for the Dutch condition were significantly higher than those for the English condition 

(p=.024). The difference between d’ scores for Mandarin and Dutch conditions was not 

Condition

Quiet Mandarin Dutch English

P
e
rc

e
n
t 
C

o
rr

e
c
t 

(%
)

70

80

90

100

High Uncertainty
Low Uncertainty

Figure 32- Average accuracy scores (% correct) for button press identification of 

the target stimulus for high and low uncertainty conditions within each similarity 

condition. Error bars represent +1 SD. 
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statistically significant (p>.05). Comparisons of uncertainty showed that d’ in low uncertainty 

conditions yielded significantly higher d’ compared to high uncertainty. In general, therefore, it 

was most difficult for participants to perform the task of detecting target stimuli in the English 

language background masker, easiest in quiet, and no different between the two non-native 

language maskers. In addition, across all language maskers, it was easier to detect target stimuli 

in the low uncertainty conditions compared to the high.  

 

 

 

 

 

 

 

 

 

3.6.2   Word recognition in noise 

The effect of informational masking on a behavioral speech recognition performance task 

was also assessed for the effect linguistic-phonetic similarity between target and masker. While 

the same Mandarin, Dutch and English language masker noises were used, the task differed from 

the AEP task in a number of ways. Target stimuli were NU-6 words (in English) and the SNR of 

the masker varying from more favorable (+12) to less favorable (0) compared to the +3 dB SNR 
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Figure 33 - Average d' behavioral discrimination scores for high and low 

uncertainty with each similarity and uncertainty condition. Error bars represent +1 

SD. 
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condition used for AEPs. Five NU-6 words were presented in SNRs of +12, 8, 4, and 3 dB, in 

addition to 25 words in 0 dB SNR. As discussed in the methods, multiple SNRs were presented 

to calculate the SNR50. There was no manipulation of uncertainty for this task. 

Results for percent correct word recognition performance in each of the language masker 

conditions by SNR are shown in Figure 34. In general, performance improved for SNRs better 

than 4 dB for all maskers. Results for +3, the same SNR as the AEP task, and the more difficult 0 

dB SNR condition are shown in the bottom panel of the figure. Performance for these two and all 

but the 12 dB SNR condition, followed a trend of higher percent correct in the presence of the 

Mandarin masker, followed by the Dutch masker condition, and the poorest performance in the 

English masker condition.  
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A factorial 5x3 (SNR by similarity condition) RM-ANOVA was conducted on these 

behavioral percent correct scores. Because Mauchly’s test of sphericity indicated a significant 

violation of sphericity, Greenhouse-Geisser corrections were used. The main effects of SNR 

(p=<.001, F(2.76, 80.2)=201.4, ηp
2=0.874) and language masker (p=<.001, F(0.186, 

57.3)=18.27, ηp2=0.387) were significant with large effect sizes, but there was not a significant 
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Figure 34 - Average percent correct word recognition for each language masking condition for all SNR levels 

(top panel). The bottom panels highlight results for the +3 (bottom left) and 0 dB SNR (bottom right) conditions 

in each language masker condition. Error bars represent +1 SD. 
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interaction between these two factors (p=.186, F(4.99, 144.7)=1.43, ηp
2=.047). Pairwise 

comparisons for the effect of SNR revealed a significant decrease performance between +12 and 

+4 dB SNR, with all comparisons significant (p≤.001). The overall difference between +4 to +3 

(p=.139) and between +3 to 0 dB SNR (p=.753) was not significant. Pairwise comparisons for 

the effect of similarity condition revealed that overall performance for Mandarin and Dutch were 

not significantly different (p=.069), but overall performance in the English condition was 

significantly worse than either Dutch or Mandarin (p=.001, each). SNR50 was calculated for 

each individual for each language masker to estimate the level at which subjects could repeat 

back 50% of the words correctly. SNR50 has been used in previous studies of linguistic/phonetic 

masking and was used in this study to as a comparison and to equalize performance rather than 

choose a fixed SNR over which performance may vary. Figure 35 shows calculated SNR50 for 

each noise condition (error bars = +1 SD).  

One-way RM-ANOVA (3 language masker conditions) revealed a significant effect of 

masker similarity on SNR50 (p<.001, F(2,56)=22.0, ηp
2=0.441) with a large effect size. Post hoc 

analysis revealed that SNR50s were not significantly different between Mandarin and Dutch 

conditions (p=.076), but SNR50 was significantly higher for English (a more favorable SNR was 

required to achieve 50% correct) compared to either Mandarin (p<.001) or Dutch (p=.001).  
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To establish whether there were significant relationships between AEP outcomes and 

behavioral word recognition, six stepwise linear regressions were conducted. Each of the 

measured AEP variables (N1 and P3 peak and mean amplitude, N1 and P3 peak latency, N1 and 

P3 area, P1-N1-P2 area, reaction time, accuracy and d’) were added into the model to establish 

which significantly accounted for the variance in behavioral performance outcomes within each 

of the language masker conditions separately for SNR50 and at the same +3 dB SNR as used for 

the AEP task. Figure 36 shows Pearson correlation coefficients for all AEP variables entered into 

the model and the behavioral outcomes of SNR50 and % correct at +3 dB SNR. This figure was 

included to visualize all predictor variable correlation coefficients instead of individual plots. 

Dotted lines across -.4 and .4 are shown to indicate moderate correlations that were found. Note 

that Figure 36 shows Pearson correlation coefficients for all predictor variables entered into the 

model, but significant predictors are summarized in Table 10.  
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Figure 35 - Average SNR50 behavioral word recognition across language maskers. 

Lower scores indicate better performance (50% correct achieved in a less favorable 

SNR). Error bars represent +1 SD. 
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For the Mandarin masker, only button press accuracy in the high uncertainty condition 

was a significant predictor (p=.003), which accounted for 28% of the variance in SNR50 scores. 

None of the other variables significantly increased the r2 (p>.05) for prediction of SNR50. For 

word recognition scores at +3 dB SNR, no variable resulted in a significant prediction in the 

model summary. For the Dutch masker, two variables significantly contributed to the prediction 

of SNR50, N1 peak amplitude (p=.012, r2=.218) and N1 latency (p=.032, r2= .134) for the Dutch 

high uncertainty conditions accounted for 35% of the variance. For +3 SNR, no variables were 

significant predictors of performance in the model summary. For the English masker, P3 area for 

the English high uncertainty condition (p=.007), was a significant predictor of SNR50 (p-value), 

accounting for 23% of the variance. None of the AEP variables were significant for +3 dB SNR 

for the English condition.  

Table 9 - Displays significant predictor variables for stepwise linear regressions for Mandarin, Dutch, and English 

SNR50. p-value, r2 value and correlation coefficients are also listed. Regressions for +3 dB SNR are not listed due to 

lack of statistical significance.  

 

 

 

 

Stepwise Linear Regressions 

Mandarin Dutch English 

SNR50 SNR50 SNR50 

Significant Predictor 

Variables 

Accuracy for 

Mandarin high 

uncertainty 

N1 Peak Amplitude 

for Dutch high 

uncertainty 

P3 Latency for 

Dutch low 

uncertainty 

P3 Area for English 

high uncertainty 

p-value .003 .012 .032 .007 

r2 value .280 .218 .134 .233 

Correlation 

Coefficient 
-.530 -.467 .407 -.483 
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Figure 36 - Pearson correlation 

coefficients for all variables 

entered into the stepwise linear 

regression for Mandarin (top 

panel), Dutch (middle panel), and 

English (bottom panel). Naming 

convention for each of the 

predictor variables followed the 

language masker (first letter) then 

uncertainty condition (second 

letter). For example, MH stands 

for Mandarin high uncertainty. 

Correlation coefficients are 

depicted for SNR50 in black and 

+3 dB SNR in grey. Dotted lines 

show moderate correlations.  
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While a few AEP outcomes were found to serve as significant predictors of behavioral 

performance, however patterns of correlations were not consistent across language maskers. N1 

amplitude and latency were significantly related to performance for Dutch, such that larger and 

earlier N1s were associated with better performance. P3 latency provided the strongest 

correlation with any of the aspects of behavioral performance, with shorter latencies associated 

with higher performance, but only for the English masker condition SNR50. Figure 37 shows 

correlations for N1 peak amplitude in the Dutch high uncertainty condition for Dutch SNR50 and 

P3 area in the English High uncertainty for English SNR50.  
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Figure 37 - Correlations for significant predictors variables. Left panel shows N1 peak amplitude in the Dutch high uncertainty 

condition(x-axis) by SNR50 in Dutch (y-axis). The right panel shows P3 area in the English high uncertainty condition (x-axis) 

by SNR50 in English (y-axis). 
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4.0  Discussion 

4.1  General Discussion 

 The purpose of the present study was to objectively identify the effects of two factors of 

informational masking on neural information processing along the auditory pathway. In order to 

further understand informational masking deficits and provide converging evidence with 

behavioral findings, the goals of the current project were twofold. The first was to determine 

how informational masking factors of increased target-masker similarity and stimulus 

uncertainty alter neural processing of speech information at earlier and later stages of top-down 

auditory processing using temporally sensitive auditory electrophysiology measures. The second 

was to characterize the relationship between physiological AEP outcomes of informational 

masking and behavioral performance on a word recognition task. This was the first study to 

manipulate the aspects of linguistic/phonetic similarity between target and masker speech while 

also experimentally controlling stimulus uncertainty via timing of target stimuli in the same 

paradigm. In addition, this was the first study to use objective indices to identify the neural 

processing time course within the auditory nervous system of these factors related to 

informational masking. The main findings of the study as they are related to target-masker 

similarity, stimulus uncertainty, and the interaction between these factors are discussed below, as 

well as the relationship between these AEP outcomes and behavioral performance in the same 

participants. The strengths and limitations of the study, and directions for future research are 

presented.  

The present results support an effect of linguistic/phonetic similarity and stimulus 

uncertainty on AEP responses and linguistic/phonetic similarity on behavioral word recognition. 

Several trends in AEP and behavioral outcomes were consistent with the hypothesized hierarchy 
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of increasing linguistic/phonetic similarity from Mandarin to Dutch to English, but not all 

differences were significant. The most supported findings for this factor were that all babble 

maskers significantly affected outcomes compared to quiet, and that the native language English 

masker had the largest effect on outcomes in the AEP paradigm, including N1 amplitude, P3 

amplitude and area, as well as decreased reaction time, accuracy, and d’ behavioral 

discrimination to target word responses. AEP outcomes for the Mandarin and Dutch maskers, 

however, were not significantly different. Outcomes for AEP latencies for both N1 and P3 also 

supported an effect stimulus uncertainty, consistent with the hypothesized increase in processing 

time related to increased task complexity when target stimulus timing was randomized. An 

unanticipated result was the absence of the expected additive effect between linguistic/phonetic 

similarity and stimulus uncertainty. None of the AEP outcome measures demonstrated a 

statistically significant interaction effect in the RMANOVA analyses. Finally, trends in 

behavioral word recognition performance were generally consistent with those observed for AEP 

component measures. Behavioral word recognition at +3 dB SNR, the same SNR used in the 

AEP paradigm, was no different in the Dutch and Mandarin maskers, but the English masker 

yielded the lowest percent correct scores. Furthermore, correlations between behavioral word 

recognition and AEP component measures yielded some moderate correlations, but no common 

AEP components accounted for a majority of variance for behavioral word recognition. 

 

4.2  Effect of linguistic/phonetic similarity on neural indices of cortical 

auditory processing  

The presence of a masker and the degree of target-masker similarity affected auditory 

neural processing. Specifically, significant effects of similarity were found on AEP outcomes for 
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N1 and P3 where the target was an English word (native-language) and the maskers were 

linguistically and phonetically similar (English talkers), linguistically dissimilar but phonetically 

similar (Dutch talkers), and linguistically and phonetically dissimilar (Mandarin talkers). That is, 

the findings of this study supported a target-masker similarity effect at both earlier and later 

levels of top-down auditory processing. 

4.2.1   N1 Similarity 

At the earlier level of processing, there were large effects on the morphology of the 

response in the noise conditions compared to the quiet condition. N1 amplitudes were 

significantly decreased and N1 latencies significantly prolonged by the presence of any of the 

three language maskers. This result is consistent with a body of previous literature and consistent 

with the N1 indexing an early orienting response of acoustic change in the stimulus (Billings et 

al. 2011; Culling 2013; Koerner et al. 2017; Niemczak and Vander Werff 2019; Sharma et al. 

2014; Stapells 2008; Wong et al. 2008). When noise of any kind is present, but particularly 

speech babble noise, the N1 response is known to be decreased and delayed (Billings et al. 2011; 

Niemczak and Vander Werff 2019; Vander Werff and Arduini 2011; Vander Werff et al. 2016).  

One possible interpretation of the current results is that Mandarin and Dutch speech 

babble maskers provided less informational masking, and functioned as energetic maskers, 

because they were not understandable to the listeners. Several of the previously mentioned 

studies have directly compared the effects of speech babble noise to energetic maskers such as 

continuous white noise or speech-shaped noise. These results are consistent with speech babble 

masking having a larger effect on P1-N1-P2 responses compared to continuous noise maskers. 

Unlike continuous white noise or speech-shaped noise, Mandarin and Dutch babble have 

temporal envelopes similar to the English masker, which could comparable to interrupted or 
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modulated noise maskers. The effects of non-speech noise with temporal gaps are not consistent 

with the same informational masking effects as speech babble in either behavioral or 

electrophysiological research. For example, Cooke (2006) demonstrated improved behavioral 

speech recognition scores in various temporally modulated energetic masking conditions 

compared to continuous noise maskers, and that the proportion of the glimpses in a noise source 

is a good predictor of intelligibility. In contrast, Brungart et al. (2001) found poorer sentence 

recognition in normal-hearing young adults in the presence of babble masking compared to 

energetic speech-shaped noise modulated to mimic the temporal variations of the babble. That is, 

noise with the same spectral shape and temporal  fluctuation of babble maskers provided the 

listeners an advantage (masking release) over continuous noise, but speech babble degraded 

performance through informational masking. In AEP studies, noise that is interrupted or has 

temporal envelopes similar to speech babble has not been found to have the same effects as 

speech babble on P1-N1-P2 amplitudes and latencies. Billings et al. (2011), for example, found 

decreased N1 amplitudes for the response to both tone and speech (/ba/) stimuli in a 4-talker 

babble condition compared to either continuous or interrupted noise. Differences in amplitude or 

latency  between the interrupted and continuous noise conditions were not significant in either an 

active or passive recording paradigm. Similarly, Zhang et al. (2014) showed reduced amplitude 

of N1 to a speech target /bi/ in 2-talker babble compared to either modulated or steady state 

energetic noise in an active paradigm. Vander Werff et al. (2016) recorded the P1-N1-P2 to /ba/ 

in speech babble with two to eight talkers, continuous SSN, and SSN modulated using the same  

temporal envelope as each of the  multi-talker babble maskers. Results showed greater effects of 

speech babble on the entire P1-N1-P2 responses, including significantly greater reductions in 

amplitude and latency of the N1 and P2 peaks compared to the enveloped noise conditions. 
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Babble noise degraded the overall response morphology considerably, while the envelope noises 

resulted in reduction in amplitude and increase in latency, but typical P1-N1-P2 morphology. P1-

N1-P2 responses in all three language maskers in the current study are morphologically similar 

to the responses in babble in the previous experiment, rather than to the energetic modulated 

masker conditions, which argues against Dutch and Mandarin acting as purely energetic 

modulated noise maskers. While Mandarin and Dutch babble maskers therefore appear to have 

contributed some informational masking, though to a lesser extent than English, a purely 

energetic masker condition was not implemented in the study to verify this conclusion. In a 

future study, a direct comparison of spectrally and temporally matched enveloped speech noise 

and the foreign language maskers would be needed to determine whether they provide additional 

informational masking beyond the energetic content. The current study adds to the existing 

literature on auditory neural processing of speech in noise at the level of the P1-N1-P2 by using 

2-talker babble and three different language maskers and recording responses to word stimuli 

rather than syllables in an active oddball paradigm. The convergence of evidence across studies, 

therefore, demonstrates that N1 amplitude is sensitive to informational masking in that it is 

reduced when the masker is composed of multi-talker babble.  

The presence of any background babble also delayed N1 latencies suggesting an 

influence of the masking noise on stimulus processing time at this earlier level of top-down 

auditory processing. These results are also consistent with multiple studies (Bennett et al. 2012; 

Billings et al. 2011; Niemczak and Vander Werff 2019; Zhang et al. 2016). For example in our 

previous study using the acoustic change complex (ACC) in a passive listening paradigm to /u-i/ 

stimuli in SSN (energetic masker), 8-talker, and 2-talker babble, we found that all background 

noise conditions significantly delayed latency of N1, but in the babble conditions more than the 
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energetic maskers (Niemczak and Vander Werff 2019). In addition, Zhang et al. (2016) found 

that in both a passive and active paradigm recorded to speech stimuli, N1 latency was delayed 

more for 2-talker babble compared to continuous noise at all SNRs tested (4, 0, -4, -8 dB SNR). 

That is, in both passive and active listening paradigms, N1 latency is generally affected by the 

presence of babble noise compared to energetic masking regardless of linguistic/phonetic 

similarity. 

Area measures also supported the overall effect of informational masking provided by 

babble noise. The main result of decreased P1-N1-P2 area across all language maskers is most 

likely the result of not only decreased N1, but the large change in the P2 component between 

quiet and noise conditions. P2 in the quiet condition dominated the area measure, while P2 

amplitudes in language masking conditions were greatly reduced and had increased variability. 

While the P2 component was not a primary outcome in this study, the area measure was used to 

account for this effect. Decreased P2 amplitude in speech babble masking, in addition to 

reduction in N1 has been reported in numerous studies (Billings et al. 2011; Billings et al. 2009; 

Niemczak and Vander Werff 2019; Vander Werff et al. 2016; Zhang et al. 2016). Area measures 

taken from our previous study (Niemczak and Vander Werff 2019) showed that both levels of 

informational masking (8- and 2-talker) resulted in decreased area compared to continuous 

speech-shaped noise, but there were no area differences by number of talkers in the babble. The 

previous study was a passive listening paradigm compared to the active oddball paradigm for the 

current study. Nevertheless, these results are consistent with the previous literature suggesting 

that speech babble maskers provide more masking than continuous noise makers, which is 

consistent with an informational masking effect. 
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While supporting a general informational masking effect of babble noise, outcomes for 

the hierarchy of linguistic/phonetic similarity across languages at the N1 level were only 

partially consistent with hypotheses. N1 peak amplitudes in English were the smallest compared 

to all other conditions. That is, the native language masker caused the largest reduction in the 

neural response for preconscious detection of stimulus features and orienting to the English 

words. N1 amplitude between the non-native language masker conditions, however, was not 

significantly different, suggesting that the similarity contrasts between these non-native 

languages did not have an effect at this level. 

Although there was a significant overall effect of similarity, the results for N1 latency 

were also not clearly consistent with the hypothesized hierarchy of linguistic/phonetic similarity 

between target and masker. The overall effect was only quiet vs. babble, as across the different 

language maskers there no significant differences in latency. Only N1 latency for the Dutch 

masking condition was significantly longer in latency compared to quiet. This result does not 

follow expectations that the most similar English condition would result in the longest latency 

and Mandarin, with the least similarity to the target English words, would result in the earliest 

latency. In fact, in the grand mean waveforms and mean bar graphs (e.g. Figure 13 and 15) the 

N1 peak for the English masker condition is actually slightly earlier, than for either Mandarin or 

Dutch. This non-significant result may relate to individual variability and generally poorer 

waveform morphology in the noise conditions, particularly those for the English masker which 

had the smallest amplitudes. It is likely absolute peak latency measures were not sensitive to 

differences between noise conditions due to this. There is also a possibility that the active 

paradigm used in this experiment had an effect on N1 latency measures such that the English 

condition required more attention, or that the non-native languages were more distracting. While 
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N1 amplitude increases in an active compared to an purely passive listening condition have been 

demonstrated fairly consistently, the effects of active attention on N1 latency are inconclusive in 

the literature, such that latency is unchanged between active and passive conditions 

(Michalewski et al. 2009; Picton et al. 1974; Woldorff et al. 1993; Zhang et al. 2016; Zhang et al. 

2014). However, Zhang et al. (2014) found conflicting results on N1 latency in their study using 

an active and passive paradigm comparing between modulated noise to 2-talker babble. They 

found significantly longer latencies for babble compared to the modulated noise, but only in the 

active condition. The results suggest that the attentional effects on the cortical representation of 

the speech stimulus was masker specific. However, in the current study, the latency results for 

N1 also supported a difference in processing time at this earlier level of processing for all 2-

talker language maskers, but not between the maskers as an effect of linguistic/phonetic 

similarity. Addressing some of the limitations in absolute peak measures, overall P1-N1-P2 

showed a decrease in area of the entire response complex in the presence of language maskers 

compared to quiet, but there were no significant differences in N1 or overall P1-N1-P2 area 

among the three language masker conditions. Therefore, only the results for N1 amplitude in 

English partially supported this hypothesis at the early cortical level. 

Amplitudes in Mandarin and Dutch conditions did not differ, which may suggest that 

because they are not understandable to the listener, they are more similar to modulated noise in 

terms of the effects on neural responses. However, the general similarity in N1 component 

morphology across all language maskers that was not observed in previous published 

comparisons between babble and modulated noise maskers suggests that theses speech maskers 

were still influencing the neural encoding of the targets in a different way from purely energetic 

maskers. Future experimental designs should include purely energetic maskers for comparisons 
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of energetic and informational masking, as well as examine the effects of “understandability” of 

the masker. Overall, these changes in the N1 response to all language maskers suggest at least 

some decrease in the ability to encode stimulus features and perhaps selectively orient to 

standard stimuli in the presence of multi-talker babble masking consistent with an informational 

masking effect. 

4.2.2   P3 Similarity 

 At later level of auditory processing, all P3 outcomes (amplitude, latency, and area) were 

significantly affected by the overall manipulation of target-masker similarity in this paradigm. In 

addition to responses in all language masking conditions being significantly different from quiet, 

some of the findings were consistent with the English language masker having a largest effect 

compared to the non-native language maskers.  

P3 peak and mean amplitude as well as area outcomes were consistent with reduced P3 

amplitudes/area in babble noise compared to quiet. P3 latency was also significantly increased 

for the all masking conditions compared to quiet. These results are overall consistent with 

previous studies that have recorded P3 in active paradigms under speech noise conditions. 

Several studies have demonstrated that P3 amplitude is reduced in speech masking compared to 

quiet and compared to non-speech masking conditions (Bennett et al. 2012; Kaplan-Neeman et 

al. 2006; Koerner et al. 2017; Whiting et al. 1998). Both Bennett et al. (2012) and Koerner et al. 

(2017), used 4-talker babble to mask speech syllable targets in active paradigms. Both studies 

found significantly decreased P3 amplitude and increased P3 latencies in those conditions 

compared to quiet. In addition, Bennett et al. (2012) found that 4-talker babble compared to 

continuous noise maskers resulted in further reductions in amplitude and increases in latency 

compared to continuous noise.  
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These results and the current study are consistent with an informational masking effect of 

babble noise in general, regardless of language. P3 amplitude indexes attentional resources and 

the cognitive demands of the task, while latency is usually interpreted as the speed of processing 

the difference between stimuli. In general, P3 amplitude would be expected to increase as more 

attentional resources are required, and P3 latency would be expected to increase as the time to 

process and categorize/discriminate stimuli increase (Hillyard et al. 1971; Picton 1992; Polich 

2007). While the latency prolongation in noise is consistent with this expected effect, P3 

amplitude decreased rather than increased. This result is likely consistent with difficulty in 

detecting and discriminating stimuli in noise associated with a reduction in neural synchrony 

under babble maskers. Stimuli near threshold or with small differences near detection thresholds 

(like small frequency and intensity differences) evoke smaller and later P3s (Gonsalvez et al. 

1999; Hillyard et al. 1971; Hink et al. 1976; Polich 1987). Therefore, this effect may be 

dominated by difficulty discriminating the stimuli in all the babble noises versus the overall 

attentional demands of the task. In quiet, the task of discriminating between target and standard 

words is relatively undemanding resulting in a larger and earlier P3 peak. In the presence of the 

informational masking of various language babble, therefore, it appears the latency is prolonged 

due to slower time to evaluate and increased difficulty discriminating the target from the 

standard overall.  

Differences in P3 amplitude and latency outcomes across the hierarchy of increasing 

similarity from Mandarin to Dutch to English followed the hypothesized trends, but were not 

statistically significant. Findings for P3 peak amplitude and area, however, had the largest effect 

sizes of outcomes in the study, and results most consistent with the proposed hierarchy of 

informational masking by linguistic/phonetic similarity. P3 amplitude and area was the largest in 
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quiet, the smallest for the English masker condition, and the outcomes for Dutch and Mandarin 

fell in between. The differences between quiet and both English and Dutch were significant. 

There was not a significant difference in P3 peak amplitude and area between the two non-native 

language conditions. 

These results for P3 are therefore at least partially consistent with a high similarity or 

native language informational masking effect. It may be that the combined effect of changes in 

attentional resources between native versus non-native maskers and the difficulty of the 

discrimination task at the +3 dB SNR converge making between-language differences smaller or 

more variable. Percent correct detection of targets showed that the discrimination task was more 

challenging in English compared to the other languages. This could have resulted in a larger 

reduction in amplitude for that masker, but counteracted by an increased attention paid to the 

task because the masker was understandable and required more cognitive resources to separate 

from target stimuli. Previous studies have also found similar decreases in P3 amplitude for active 

speech tasks in babble noise conditions suggesting that even with an increase in task difficulty, 

P3 amplitudes are decreased partiality in the native language babble. Both Koerner et al. (2017) 

and Bennett et al. (2012) found that P3 amplitude decreased along with button press accuracy to 

a target speech stimulus in 4-talker babble masking.  

There was also not a significant between-language masker difference in P3 latency, and 

in fact mean latencies were very similar between conditions (as seen in the bar graph in Figure 

21). This result was contrary to our hypothesis that there would be an effect of 

linguistic/phonetic similarity, specifically at this later top-down level of auditory processing. The 

current results could be interpreted as a language effect on speed of processing at this level, no 

matter what language is comprises the auditory background. 
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The morphology of the peaks may have contributed to this result, in that peak latency 

might not be the most sensitive measure to between condition differences. The advantage of P3 

area measures in capturing this overall morphology change may have contributed to why 

measures of P3 area were more consistent with the effect of a linguistic/phonetic similarity 

hierarchy (i.e. a native vs. non-native language masking effect). Visually (e.g. Figure 22), the 

change in area between masker conditions is apparent, while the absolute peaks show less 

change. English had the smallest area, quiet the largest area, and area for Mandarin and Dutch 

masker conditions fell between but were not significantly different from each other. P3 area 

measures had the largest effect size of all AEP component measures (ηp
2=0.300) for the target-

masker similarity condition, which would be interpreted as a large effect size. This supports that 

an active cognitive top-down auditory response was at least partially sensitive to informational 

masking effects across the linguistic/phonetic similarity hierarchy, and possibly more so than the 

earlier N1 component based on the effect size.  

General results for the linguistic/phonetic similarity manipulation across both N1 and P3 

auditory neural responses were consistent with a general effect of informational masking effect 

provided by language maskers compared to quiet at both earlier and later stages of auditory 

processing. Specifically, there was an overall significant effect on measures of amplitude, area, 

and latency, where response in babble noise were smaller and later than those in quiet. There was 

some indication that the English masker, with the highest level of linguistic/phonetic similarity 

had at least a partial effect on the N1 and P3 amplitudes and the strongest effect on P3 area 

consistent with the stated hypotheses, but these were not consistent across all measures. There 

were no significant differences between AEP outcomes in the English masker compared to the 

non-native language maskers, except for P3 amplitude and area. Because of the differences in 
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magnitude of absolute latencies and amplitudes of the N1 and P3, it is difficult to directly 

compare in the same analysis whether there was a larger effect of informational masking at one 

level compared to the other. Effect sizes were largest for the P3 amplitude and area outcomes 

compared to any other variables in the study, which partially supports that the linguistic/phonetic 

similarity contrast had a larger effect at this level of processing. However even for these 

variables of amplitude and area there were no difference between the two non-native language 

maskers as Dutch and Mandarin did not reach statistical significance. The maskers used in the 

current study were based on previous behavioral research demonstrating significant effects of 

linguistic and phonetic similarity on behavioral performance. The AEP outcomes did not 

completely agree with the findings from these behavioral studies. These comparisons are 

discussed further in section 4.4 below. 

4.3  Effect of stimulus uncertainty on neural indices of cortical auditory 

processing 

The other classic factor theorized to contribute to the amount of informational masking 

listeners experience is stimulus uncertainty. Behaviorally, uncertainty has been defined as the 

influence on listener’s a-priori knowledge of the timing or content of the target speech and/or 

interfering speech has on their ability to understand the target (Brungart and Simpson 2004; 

Durlach, Mason, Shinn-Cunningham, et al. 2003; Watson, Kelly, et al. 1976; Watson and Kidd 

2007). Uncertainty in this AEP experimental paradigm manipulated the timing between 

presentation of the target stimuli relative to the standard and quiet intervals. An advantage of 

using AEPs as an index of uncertainty effects is that the timing of the presentation of the stimuli 

and therefore task difficulty, which has known effects on the timing of the neural response 

(Gonsalvez and Polich 2002; Kutas et al. 1977b; Picton 1992; Polich et al. 1985). For the 

paradigm used in the current study, uncertainty was manipulated by changing the TTI or timing 
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between target stimuli. When the timing of the target was consistent and predictable (i.e. every 6 

seconds) uncertainty of target presentation was coming was low. When target to target timing 

was random (i.e. 2, 4, 6, 8, or 10 seconds), uncertainty of target presentation was high.  

4.3.1   N1 Uncertainty  

At the earlier stage of processing, the effect of uncertainty was only significant for N1 

latency, specifically that N1 peak latency was longer in the high uncertainty condition compared 

to low uncertainty. Results of N1 peak and mean amplitude as well as area measures across both 

levels of uncertainty are consistent with no effect of uncertainty on the strength of the neural 

response. Although visual inspection of both bar graphs and grand mean waveforms trend toward 

higher amplitude for high uncertainty conditions, none of the mentioned measures were 

statistically different between low and high uncertainty conditions. N1 latency, on the other 

hand, was significantly longer for the high uncertainty condition consistent with hypotheses, 

suggesting that the more difficult task increased thalamo-cortical processing time for identifying 

and orienting to the standard stimuli. 

Few studies of the P1-N1-P2 on its own, which is typically recorded in a passive 

paradigm, directly manipulate task difficulty. Between passive and active tasks, studies have 

generally shown that amplitudes are larger for the active paradigm, but have not generally shown 

significant differences in latency between passive and active (Billings et al. 2011; Pereira et al. 

2014; C. Zhang et al. 2016; C. X. Zhang et al. 2014). In relation to task difficulty, AEP studies 

have shown that the size of attention effects on early AEP increases with increasing task 

difficulty, as manipulated for example by lower stimulus intensity (Schwent et al. 1976) or lower 

target discriminability (Alho 1992; Squires et al. 1973). Mulert et al. (2007) found increased N1 

amplitude when task difficulty increased in an active auditory oddball paradigm recorded to 
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standard stimuli. On the contrary, Cranford et al. (2004) found significant task related decreases 

in P2 amplitude, but no effects on N1 amplitudes using a stimulus oddball procedure to tone 

stimuli. Task difficulty was manipulated by decreasing the size of the frequency differences 

and/or adding competing speech babble to the non-test ear. This finding of selective effects on 

components of the P1-N1-P2 provides objective evidence that there is at least some effect of task 

difficulty at this level of the central auditory system. 

4.3.2   P3 Uncertainty 

Results of stimulus uncertainty on are also consistent with an effect of delayed auditory 

discrimination on later auditory top-down processing as evidenced by increased latency and area 

of P3 in high uncertainty conditions. Effect sizes for the uncertainty outcomes for these P3 

latency and area measures were stronger than observed for the N1 outcomes. This finding 

supports our hypothesis that a later cognitive AEP that indexes auditory discrimination would 

yield larger effects between experimental conditions, due to the higher level auditory processing 

that is present during informational masking tasks. Results of stimulus uncertainty on P3 latency 

and area are consistent with a delay in top-down evaluation time of the target stimulus during 

high uncertainty conditions. Specifically, results showed that across all language maskers, high 

uncertainty yielded longer latencies and smaller areas compared to low uncertainty. Therefore, it 

could reasonably be interpreted that participants had to pay more attention to stimuli under this 

uncertainty condition, due to the complexity of the task.  

In general, P3 studies have shown an inverse relationship between target probability and 

P3 amplitude under a wide range of experimental conditions, with optimal infrequent target 

probability around 20% of total stimulus presentations (Duncan-Johnson et al. 1977; Kutas et al. 

1977a; Sqires et al. 1977). For this study uncertainty was defined in terms of the time between 
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target stimuli being fixed or random and not the percentage of presentations (targets equaled 

20% of presentations). Given that attention allocation reflects by P3 size and timing, the nature 

of the timing between target events appears to affect P3 values of latency across all background 

noise conditions. Results from this study are consistent with previous studies that have shown 

increased P3 latency when task difficulty is increased (Comerchero et al. 1999; Gonsalvez et al. 

2007; Hoffman and Polich 1999; Katayama and Polich 1996). For example, Polich (1987) 

employed a binaural listening task to target tones presented at 40 (standard) and 60 (target) dB 

SPL for an easy listening condition and at 40 (standard) and 45 (target) dB SPL as a hard 

condition. They found significantly longer P3 latency in the hard condition compared to the easy 

condition. Another example, Comerchero and Polich (1999) showed that P3 latency was 

increased in a difficult auditory perceptual discrimination task versus an easy tone frequency 

discrimination task. Interestingly, Comerchero et al. (1999) used a three stimulus auditory 

oddball and found that latencies to the target were delayed, but also to the infrequent non-target 

tone. That is, instead of using a silent block as a third stimulus to control for attention, as was 

implement in the current study, they introduced a tone that had a large frequency difference and 

also measured the P3 and found increased latencies.  

Even though the peak amplitude difference between conditions did not reach 

significance, P3 area reflected a strong overall change in morphology that occurred across 

conditions. This is again consistent with effects of increased task difficulty seen in other studies 

(Bennett et al. 2012; Blackwood et al. 1987; Kok 2001; Polich 1987; Wronka et al. 2008). As 

area is a more encompassing measure of an auditory neural component that combines amplitude 

and latency, it was unexpected that uncertainty yielded significant effects due to the absence of 

statistical significance of P3 peak and mean amplitude. However, when visualizing grand means 
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particularly between P3 uncertainty conditions (e.g. Figure 28), area appears larger in higher 

uncertainty conditions compared to lower uncertainty. This effect was found across all noise 

conditions and this is consistent with auditory task difficulty affecting both amplitude and 

latency aspects of the complex waveform. Consistent with effects of latency mentioned above, 

Polich (1987) also found significant reduced amplitude of the P3 in the hard auditory 

discrimination task as compared to the easy task. Moreover, this effect was observed across all 

conditions, including quiet. This can be reasonably interpreted that auditory uncertainty has an 

equal effect across all tested background noise conditions.  

Interestingly, for all but the quiet condition not only was the task difficulty manipulated 

through TTI, but also the task was more difficult because participants were listening in 

background noise. The presentation of noise in general can be considered a manipulation of task 

difficulty and uncertainty. As already reviewed, noise decreased amplitudes and decreased 

latencies compared to quiet in general. The effects of similarity and uncertainty are therefore not 

completely separate in this study, nor can they be considered completely separately in 

informational masking theory in general. This is part of the reason it was hypothesized there 

would be an additive or interactive effect of the two factors on AEP outcomes. This is discussed 

further in the next section. 

 

4.4  Interaction between linguistic/phonetic similarity and stimulus 

uncertainty 

One of the most unanticipated results of this study was the absence of the interaction 

between linguistic/phonetic similarity and stimulus uncertainty. A significant interaction was 

hypothesized to indicate that the similarity and uncertainty contributions to informational 
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masking were likely to be additive in nature, such that the highest target-masker similarity in the 

most uncertain condition would have the largest effect on AEP outcomes. That is, if increasing 

stimulus timing uncertainty specifically increases the cognitive demand of the task, then the 

listener was hypothesized to have more difficulty under conditions where the target and masker 

were the most linguistically/phonetically similar (i.e. English).  

We hypothesized that this interaction would be true for the higher level of auditory 

processing, but not necessarily at the lower level of earlier auditory stimulus processing. This 

hypothesis was partially supported in that there was no significant interaction effect between 

similarity and uncertainty for the amplitude or latency of the N1 component. Although previous 

work demonstrates that auditory attention significantly affects this earlier level of auditory 

processing, specifically N1 amplitude and not latency (Billings et al. 2011; Pereira et al. 2014; C. 

Zhang et al. 2016; C. X. Zhang et al. 2014), the combined effects of language of the masker and 

unpredictability of target stimuli did not yield an additive effect. Both similarity and uncertainty 

affected N1 latency separately, but the effects of stimulus uncertainty were the same across the 

English, Dutch and Mandarin maskers. It is possible that the amplitude was already so small in 

noise conditions that further reductions were not reliably measurable, contributing to a potential 

floor effect. It is also important to note that N1 did not yield strong effects across Mandarin, 

Dutch, and English and the effects of similarity was largely driven by quiet vs. noise at the level 

of the N1.  

At the level of the P3, a later auditory processing level, we expected that there would be a 

significant interactive effect of the two factors related to informational masking, because this 

level should relate most highly to the cognitive processing that would be required in behavioral 

recognition tasks. As shown in the proposed and actual interaction results in Figure 18, 
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uncertainty affected each of the masking conditions equally by reducing the amplitude 

approximately 0.5-1.0 uV. This linear pattern of significant main effects, but absence of 

interactions, as indicated by parallel lines, was generally seen for all AEP measures.  

The fact that uncertainty or task difficulty had the same effect on auditory encoding of 

target words in noise regardless of the language of the masker is a novel finding in the 

informational masking literature. Few studies have manipulated aspects of similarity and 

uncertainty in the same paradigm, and in particularly not for speech in noise tasks. In traditional 

auditory psychophysical approaches that study informational masking, it is common to map 

perception of changes across individual acoustic dimensions. For example, measurement of the 

frequency difference threshold between two tones could be operationally defined as the 

measurement of the similarity between those tones. If the target stimulus remains fixed, the only 

uncertainty is due to the change in comparison tone frequency. However, in more complex 

designs the two factors may result in changes in opposite directions that cancel out (e.g., Kidd et 

al., 1994; Neff, 1995; Durlach et al., 2003). In this study, for example, the increases in amplitude 

for high uncertainty could have been counteracted by decreases in amplitude when similarity is 

increased (made harder, more similar) between target and background noise. Thus, it is 

comparatively difficult to truly define the interaction of experimental stimuli within the construct 

of complex auditory paradigms like this experiment, which is one of the reasons why knowledge 

about this phenomena remains incomplete. In addition, it possible that the task manipulation of 

uncertainty was not a robust enough effect to yield an interaction in the current study. While TTI 

is a valid manipulation of trial-by-trial variability, and did have significant effects on AEP 

outcomes, it is possible that randomly varying TTI did not sufficiently alter the perceived 

uncertainty in the relatively repeated simple oddball paradigm to provide additional task 
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difficulty that depended on the masker condition. Nevertheless, in the confines of this 

experimental paradigm we can interpret one finding that aids in our understanding of 

informational masking, which is that the manipulations of similarity and uncertainty did not 

interact at either level of auditory cortical processing for this AEP paradigm. Because we see 

effects of both speech babble masking and target-to-target interval, we know these manipulations 

affected auditory cortical processing in their own way, but they weren’t additive for this 

paradigm at either level. 

 

4.5  The relationship between AEP outcomes and behavioral performance 

To compare informational masking effects on AEP outcomes to behavioral performance, 

word recognition performance in noise was measured for English words under the same 

linguistic/phonetic similarity masking conditions that were used in the AEP experiment. The 

linguistic similarity hypothesis proposed by Brouwer et al. (2012) states that the more similar the 

target and masker speech language, the harder it is to segregate the two streams effectively. This 

definition is analogous to Durlach’s definition of similarity of informational masking, but the 

linguistic similarity hypothesis further defines listener related factors, such as 

knowledge/experience with the target speech and the linguistic and phonetic content which 

ultimately affect behavioral speech recognition. This hypothesis was tested by Calandruccio et 

al. (2013) using Mandarin, Dutch, English and language maskers in combination with an English 

sentence recognition task. This hierarchy provided the basis for the current study. Calandruccio 

et al. (2013) found that sentence recognition in -5 dB SNR improved as the target-to-masker 

linguistic distance increased with the English-on-English masker yielding the poorest speech 

processing followed by Dutch, then Mandarin.  
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For the current study behavioral performance was measured using the same language 

masker conditions. Unlike the Calandruccio et al. (2013) study, however, stimuli for the current 

study were NU-6 single-syllable words, which are theoretically harder to discriminate compared 

to sentences due to lack of context. The pattern of performance across language maskers was the 

same, with SNR50s of 2.35 dB in English, 0.77 dB in Dutch, and -0.12 dB in Mandarin. While 

performance was worst for the English masker, scores were not significantly different between 

Dutch and Mandarin. This was also true for the fixed +3 dB SNR level, a direct comparison to 

the AEP results, and visualized across levels. Even at 0 dB SNR, hypothesized to provide a 

larger performance spread between language maskers, Dutch and Mandarin were not 

significantly different.  

These behavioral results are generally in agreement with the AEP results, which also did 

not show any significant differences for any of the outcomes between the Dutch and Mandarin 

conditions. There could be several reasons for the lack of a hierarchy effect in behavioral 

performance in the current study compared to previous literature. As mentioned, the task used 

words rather than sentences, which made the task more difficult in terms of speech recognition 

but also limited the linguistic demands of the task. It may be that the effects of linguistic and 

phonetic similarity were not as relevant in this case. The English condition still resulted in the 

poorest performance, which partially supports the similarity hypothesis. Previous studies support 

the result of a native language masker contributing to decreased behavioral speech perception 

(Brouwer et al. 2012; Calandruccio, Bradlow, et al. 2014; Calandruccio et al. 2013; Cooke et al. 

2008; Van Engen and Bradlow 2007). Lecumberri and Cooke (2006) showed that monolingual 

English listeners performed better on a speech perception of English consonants when the 

language of a competing speaker was Spanish rather than English. Van Engen and Bradlow 
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(2007) demonstrated that for native English listeners, English sentence speech perception was 

better when the noise consisted of two-talker Mandarin Chinese babble than when it was 

composed of two-talker English babble. These results suggest that babble noise in a native 

language increases informational masking, decreasing behavioral speech recognition 

performance relative to an unknown foreign language. 

Although these behavioral word recognition performance outcomes only reflect the 

target-masker similarity portion of the informational masking question, reaction time, accuracy, 

and d’ of button press responses during AEP testing provide behavioral outcomes that can be 

compared for both factors. Reaction time results showed significant effects of similarity and 

uncertainty similar to that of P3 latency, with increased reaction times for all language maskers 

as well as for high uncertainty conditions. Results of button press accuracy revealed result 

similar to P3 area, with the highest accuracy in the quiet condition, performance in the middle for 

Dutch and Mandarin in the middle, and the lowest accuracy scores for the English masker. The 

d’ behavioral discrimination scores were higher in quiet compared to Mandarin and English, but 

interestingly not compared to Dutch. However, d’ scores were higher in Dutch compared to 

English. Both % correct accuracy and d’ scores were significantly higher for low vs. high 

uncertainty, and none of the interactions were significant for any of these behavioral measures. 

In general, these results were consistent with quiet being the easiest task, no difference between 

Mandarin and Dutch, and English being the most difficult behavioral detection task. The effect 

of uncertainty was consistent across all measures, with low uncertainty results indicating an 

easier task than high, but the effect was the same for all maskers. These results follow the same 

trend in AEP component measures. This result is similar to previous studies which have shown 

increases in button press reaction time and decreases to accuracy with the addition of the 
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maskers (Bennett et al. 2012; Kaplan-Neeman et al. 2006; Koerner et al. 2017; Martin et al. 

2008), consistent with listeners taking longer to make a distinction between the speech targets 

and standards and increasing the rate of errors.  

Results of the stepwise linear regression and correlations showed that some AEP 

outcomes were significantly related to behavioral outcomes in the same individuals, but did not 

reveal an identifiable pattern of AEP outcomes related to behavioral performance across masking 

conditions. For example, N1 mean amplitude accounted for 11% of the variance on Mandarin 

SNR50, but <2% on Dutch and English. P3 peak amplitude and latency accounted for 35% of the 

variance in Dutch, but <5% in Mandarin and English. Furthermore, significant model predictors 

did not account for a majority of the variance in any language masking condition. There were 

significant correlations for each language masking condition. Area measures seemed to have the 

most numerous significant correlations across SNR50 for each language masking condition, but 

again no AEP measure was consistently correlated with SNR50, or word recognition scores 

across SNR. For English SNR50, P1-N1-P2 and P3 area in English high uncertainty conditions 

showed significant moderate correlations respectively, with increasing area associated with 

decreasing (better) SNR50. There were also moderate correlations for Dutch SNR50 with N1 

peak amplitude in Dutch high uncertainty and P3 latency in low uncertainty and for Mandarin 

SNR50 withN1 latency). Interestingly, correlations between reaction time, accuracy, and d’ 

scores and AEP components were not significant for all languages and only moderate at best. It 

has been previous reported to have a mixed relationship with behavioral response accuracy or 

reaction time (Koerner et al. 2017; McCarthy et al. 1981; Verleger 1997). This is consistent with 

the discrepancy of correlations of behavioral word recognition performance and accuracy, 

reaction time, and d’ across listening conditions AEP component measures. For example, 
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Bennett et al. (2012) and Koerner et al. (2017) found that P3 latency or amplitude did not predict 

sentence-level recognition across listening conditions or accuracy and reaction time of target 

speech stimuli. Differences between analysis methods were noted by Koerner et al. (2017), as 

Bennett et al. (2012) used Pearson correlations to examine brain-behavior relationships while 

their analysis used stepwise regression models similar to the current study.  

Relationships between AEP outcomes and behavioral outcomes are complex and while 

there was some agreement between outcomes in the current study, no consistent trend between 

brain and behavior emerged. In fact, the only trend that was similar between both AEP and 

behavioral outcomes was the effect of similarity across language maskers. Therefore, while AEP 

and behavioral tasks are not entirely parallel, AEP outcomes did show the same effects of 

language masking. Results of this study do support the use of AEPs as windows into the levels of 

auditory processing that behavioral outcomes overshadow. 

 

4.6  Limitations and Future Directions    

 Although this study adds to knowledge about informational masking and the effects on 

neural processing, there are several limitations in our ability to draw conclusions about target-

masker similarity and stimulus uncertainty effects on the earlier and later stages of auditory 

processing.  

As it has been previously noted, the AEPs recorded in this study were recorded in an 

active paradigm, which may have influenced results for N1 in some confounding ways, as well 

limit the ability to interpret this response as primarily sensory. Processing of auditory 

information occurs throughout the central auditory nervous system, reflected by the series of 

AEP components that represent different aspects of detecting and interpreting the input stimuli. 
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Although sometimes categorized as pre-attentive “exogenous” evoked potentials and cognitive 

“endogenous” evoked potentials, it is well known that AEPs reflect a combination of exogenous 

and endogenous dynamics that can be affected by acoustic characteristics of stimuli in addition 

to top-down factors such as arousal state and attention (Martin et al. 2008; Naatanen and Picton 

1987; Squires et al. 1973; Stapells 2008). Due to the active paradigm used in the current study, 

higher level cognitive processing, such as working memory, auditory inhibition, and listening 

effort, could have affected AEP components. For example, all participants were actively 

attending to the oddball paradigm as indicated by button press responses, but variability in 

motivation to quickly and accurately press the correspond button to the target or standard was 

not measured. All participant were told to listen and press the button as soon as they 

discriminated between stimuli, but there was no incentive for increased accuracy or decreased 

reaction time. The addition of the third stimulus in the oddball paradigm (the silent interval) was 

also implemented to maintain attention throughout the task. Future studies could measure and 

account for listener attention and motivation or effort across the tasks in active auditory oddball 

tasks using EEG or other methods of quantifying vigilant attention and effort. Regardless, 

because a completely passive condition where participants did not have to respond to the target 

or standard words was not recorded, effects of passive versus active attention on these AEP 

components in general and between language masker and uncertainty conditions cannot be 

quantified. A true auditory obligatory effect of linguistic/phonetic similarity and stimulus 

uncertainty on the P1-N1-P2 cannot be interpreted from these results. While previous research 

and results from the current study are consistent with informational masking affecting higher-

level active auditory processing, it would be interesting to record each of the conditions in a non-

attended or ignored condition to evaluate this effect.  
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Another limitation of the current study that is present in all AEP studies is the 

comparison between the current AEP paradigm and behavioral word recognition. The linguistic 

complexity of repeatedly discriminating between /bæt/ and /pæt/ is not entirely comparable to 

behavioral word recognition of NU-6 open set list of words. The primary reason the /bæt/ vs. 

/pæt/ word-word contrast was chosen was due to voice onset time (VOT), which is a relevant 

acoustic precept necessary for accurate speech perception (Oden et al. 1978). The /b/ and /p/ 

voiced and unvoiced bilabial stops, represent a significant phonetic contrast that needs to be 

accurately coded in order to accurately perceive speech. While, VOT is a distinction of 

production of plosive consonants, it is only one of a multitude of phonetic place, manner, and 

voicing properties that makes up the English language. That is, in order to distinguish between 

/bæt/ vs. /pæt/ in the AEP paradigm could be considered relatively simple as compared to 

behavioral word recognition. This could be the reason for an absence of a consistent AEP 

predictor variable between SNR50 and AEP component measures. However, it is particularly 

interesting, given the difference between AEP and behavior, that the effects of 

linguistic/phonetic similarity are similar in trends across languages (no difference between 

Mandarin and Dutch, but English yields the lowest percent correct and decreased 

amplitudes/areas).  

Additionally, word stimuli in AEP paradigms have been used sparingly and thus further 

investigation of more auditory complex stimuli in AEP paradigms was implemented in the 

current study. The results of this study support the use of word stimuli in AEP recording 

paradigms, but a direct comparison to behavioral word recognition, as stated above, should be 

interpreted with caution. While previous studies have used tone (Billings et al. 2011; Katayama 

and Polich 1996; Naatanen and Picton 1987; Picton and Hillyard 1974; Tremblay, Friesen, et al. 
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2003b) and speech tokens such as /ba/, /pa/, and /ga/ (Bennett et al. 2012; Koerner et al. 2017; 

Niemczak and Vander Werff 2019; Novick et al. 1985; Whiting et al. 1998), this study adds to 

the literature by using a simple word stimuli to evoke an N1 and P3 in an active oddball 

paradigm. It has been previous shown that speech as AEP speech stimuli typically results in 

delayed component peak latencies relative to tonal signals. (Billings et al. 2011; Dai et al. 2016; 

Onishi et al. 1968; Ruhm et al. 1969). The reason for the results may be due to the specific 

spectral characteristics of the speech token itself. A relatively simple and interesting follow-up 

manipulation would be to use variation of frequency tones instead of /bæt/ and /pæt/ to further 

investigate whether the same trends of experimental manipulations would occur. In other words, 

is the effect of similarity and uncertainty still present for a tone discrimination task that does not 

carry semantic meaning. Or, a more interesting future direction, would be to use stimuli with 

increased semantic meaning directly related to behavioral word or sentence discrimination, such 

as categorical discrimination of words with an oddball category. Regardless, future AEP 

investigations into informational masking employing word stimuli, or even more complex 

stimuli such as sentences, will be important to better relate AEP measures to real-world 

behavioral speech discrimination. 

Limitations of experimental manipulations were also present, but should lead to future 

examinations of both informational masking factors. First, linguistic/phonetic similarity had a 

strong effect on both amplitude and latency of AEP response overall when the quiet condition 

and all maskers were included. There was some evidence that a native language masker is more 

detrimental to neural auditory perception especially at a later level of auditory processing. 

Language maskers consisted 2-talker IEEE sentences across language maskers, but were only 

understandable by the listeners in the English condition (as none of the participants had 
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experience with either Dutch or Mandarin). It would be interesting to determine whether native-

language maskers that were less understandable, or less meaningful, would have the same effects 

as understandable maskers. For example, would the effects of similarity to auditory neural 

processing be changed if the masker was constructed of anomalous sentences in English (e.g. 

“The walks table by cat the”)? In other words does, does the correct syntactic order of the words 

in each sentence affect the ability to detect a speech target when the masker is essentially 

incomprehensible? Previous behavioral research studies have generally shown that anomalous 

sentences provide less masking compered to sentences that are syntactically constructed 

(Brouwer et al. 2012; Calandruccio, Bradlow, et al. 2014; Calandruccio et al. 2010). For 

example, found that accuracy in discrimination of sentences was higher in an anomalous English 

masker than a syntactically meaningful English masker. This result indicates that speech-on-

speech masking not only involves interference at the phonetic/phonemic level, but also at the 

syntactic level. In addition, it was found that the syntactic content effect was not present with the 

Dutch maskers due to a non-native language effect. In other words, the listeners were not 

affected by the difference between meaningful and anomalous Dutch background speech. 

Nevertheless, examination of meaningfulness of speech for both the target and maskers (i.e. the 

semantic content of the sentences) would need to be further examined at both the auditory 

cortical and behavioral level. 

Another limitation of the current study is that definitional structure of theoretical 

constructs of similarity and uncertainty as two independent manipulations. Specifically, the 

factor of stimulus uncertainty is difficult to pinpoint and manipulate in an auditory paradigm. For 

the purposes of this study, stimulus uncertainty was manipulated by varying the timing between 

target stimuli, but it is also possible that decreasing or increasing target-masker similarity also 
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affected stimulus uncertainty. However, while manipulation of uncertainty did contribute to task 

difficulty, as evidenced by AEP latency, reaction time, and accuracy, it did not change the 

masker type or language of the masker. This could be interpreted in two ways. First, the 

manipulation of stimulus uncertainty could be viewed as not contributing to an informational 

masking effect, but more so a task difficulty effect. The absent interaction supports this 

interpretation to which presenting target stimuli in a random compared to predictable fashion just 

increased latency across every condition equally. Another interpretation could be that uncertainty 

is essential to studying informational masking causing a change in the auditory environment that 

cannot be classified by the acoustic properties of the target and masker in isolation. That is, 

without taxing the auditory system in informational masking tasks by varying the uncertainty 

(via timing, location, etc.) of target and masker speech, is informational masking actually being 

studied? It is important to understand these two factors of similarity and uncertainty in the 

framework of the listening task, and future research will be needed to extend the definitional 

structure of similarity and uncertainty and find objective correlates of processing of 

informational masking using more externally valid manipulations that better relate to behavioral 

speech perception.  

The population in which this study was conducted was young normal hearing individuals. 

There was relatively little evidence that peripheral hearing differences or differences in cognitive 

function confounded results. Although most of the participants reported frequent listening to 

music under headphones, and a few individuals met screening criteria for higher risk of noise 

exposure, mean pure tone thresholds were better than 20 dB HL across all frequencies, including 

extended high frequencies. DPOAEs were also robust across all frequencies tested. It seems 

unlikely that peripheral hearing damage influenced the variability in AEP or behavioral 
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outcomes. Similarly, there was little inter-individual variation in cognitive abilities as assessed 

by the working memory and attention tests.  

It may be that the effects of informational masking on AEPs were not robust in these 

normal hearing young adults, but may be more apparent in populations more vulnerable to the 

effects of masking, such as older adults and those with hearing loss. It will be interesting in 

future studies to focus on the aging auditory system and the influence of hearing loss on how 

linguistic/phonetic similarity and uncertainty may contribute to increased difficulty 

understanding speech and how this is encoded in the pathological auditory nervous system. The 

overall goal in better defining the informational masking deficits is to help those with auditory 

difficulties, especially in background noise. The effects and possible interaction of informational 

masking factors could be different in these populations. Previous research has demonstrated 

delayed latency and increased variability of AEP responses in older adults (Bertoli et al. 2005; 

Helfer and Freyman 2008; Picton 1992; Polich et al. 1985; Tremblay, Piskosz, et al. 2003; 

Woldorff et al. 1993). One potential explanation for this age effect suggested by Tremblay, 

Piskosz, et al. (2003), could be age-related neural refractory differences in younger and older 

auditory systems. Refractory issues, evidenced by differences in latency, may affect 

synchronized neural activity underlying the perception of time-varying speech cues. While the 

effects of age on behavioral speech perception in noise have been extensively studied, limited 

research on auditory physiological effects of background noise and age is still remain largely 

undefined. One such study by Maamor et al. (2017) found age related differences for P2 

latencies elicited by speech tokens in a passive oddball paradigm in various background noise 

where morphology of the P2 peak was delayed in latency for two older groups (one with hearing 

impairment) than for the younger group. In contrast, Maamor and Billings (2017) also found that 
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N1 peaks appeared later and with poorer morphology for younger and older normal-hearing 

groups relative to an older group with hearing impairment. Interestingly, they also found that the 

N1 wave was sensitive to the more energetic masking (continuous and modulated energetic 

masking) effects whereas, the P2 was more sensitive to informational masking noise (4-talker 

babble), whose magnitude varied as a function of age. The authors suggested that due to the P2 

involving more high-level auditory processing effects of informational masking were more 

apparent. Comparing to the current study, both the N1 and P3 and the overall area of the 

responses were susceptible to informational masking, but if older individuals were recruited for 

this study, it is possible that the hypothesized effect of increased target-masker similarity and 

stimulus uncertainty would have been present at a later stage of auditory processing. While the 

P2 was not a primary outcome variable, all language maskers greatly reduced the amplitude of 

the P2 component in the current study. Area measures of the entire P1-N1-P2 encompass this 

effect, and support decreased strength of auditory processing in all language masking conditions. 

Moving farther along the auditory pathway, the P3 indexed a language masking effect and in 

particular a native language masking effect for P3 amplitude and area. However, this result needs 

to be validated in and older and/or hearing loss population. Future studies should seek to 

examine later, more cognitive levels of auditory processing of speech perception in informational 

background noise in older adults with and without hearing loss.  

 

5.0  Conclusions 

The results of this study add to our understanding of auditory perception in informational 

masking in four ways. First, observable effects of both similarity and uncertainty are evidenced 

at both top-down levels of auditory neural processing. This supports the use of AEP to better 
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understand the informational masking deficit by providing a window into the auditory pathway. 

Second, larger effect sizes were found for some outcomes for the P3 response, providing some 

suggestion that while informational masking degradation happens at lower levels, higher level 

cognitive auditory processing may be more sensitive to informational masking deficits. Future 

studies on informational masking should focus on the entire auditory pathway, but should 

emphasize cognitive affects such as auditory attention and discrimination. Third, the lack of 

interaction of main effects leads us to a linear interpretation of similarity and uncertainty with an 

equal effect across listening conditions. This results of this experimental paradigm provides a 

better understanding to how similarity and uncertainty factors of informational masking may be 

processed separately and do not have a combined effect. Fourth, even though there were few and 

only moderate correlations to behavioral word recognition, AEP and behavioral performance 

data followed the same trends of linguistic/phonetic similarity. Through both auditory neural and 

behavioral testing, language maskers degraded AEPs and reduced word recognition, but 

particularly using a native-language masker. Nevertheless, it is important to be cautious of the 

direct comparison between AEP and behavior due to substantial differences in the auditory 

stimuli and tasks. The auditory neural and behavioral results from this study provide a 

foundation for further investigation of how the linguistic content of target and masker, as well as 

task difficulty contribute to difficulty understanding speech in noise.  
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