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ABSTRACT

Fusing heterogeneous data from multiple modalities for inference problems has been an at-

tractive and important topic in recent years. There are several challenges in multi-modal fusion,

such as data heterogeneity and data correlation. In this dissertation, we investigate inference

problems with heterogeneous modalities by taking into account nonlinear cross-modal depen-

dence. We apply copula based methodology to characterize this dependence.

In distributed detection, the goal often is to minimize the probability of detection error at

the fusion center (FC) based on a fixed number of observations collected by the sensors. We

design optimal detection algorithms at the FC using a regular vine copula based fusion rule.

Regular vine copula is an extremely flexible and powerful graphical model used to characterize

complex dependence among multiple modalities. The proposed approaches are theoretically

justified and are computationally efficient for sensor networks with a large number of sensors.

With heterogeneous streaming data, the fusion methods applied for processing data streams

should be fast enough to keep up with the high arrival rates of incoming data, and meanwhile

provide solutions for inference problems (detection, classification, or estimation) with high ac-

curacy. We propose a novel parallel platform, C-Storm (Copula-based Storm), by marrying

copula-based dependence modeling for highly accurate inference and a highly-regarded par-

allel computing platform Storm for fast stream data processing. The efficacy of C-Storm is

demonstrated.

In this thesis, we consider not only decision level fusion but also fusion with heterogeneous

high-level features. We investigate a supervised classification problem by fusing dependent

high-level features extracted from multiple deep neural network (DNN) classifiers. We employ

regular vine copula to fuse these high-level features. The efficacy of the combination of model-

based method and deep learning is demonstrated.



Besides fixed-sample-size (FSS) based inference problems, we study a distributed sequen-

tial detection problem with random-sample-size. The aim of the distributed sequential detec-

tion problem in a non-Bayesian framework is to minimize the average detection time while

satisfying the pre-specified constraints on probabilities of false alarm and miss detection. We

design local memory-less truncated sequential tests and propose a copula based sequential test

at the FC. We show that by suitably designing the local thresholds and the truncation window,

the local probabilities of false alarm and miss detection of the proposed local decision rules

satisfy the pre-specified error probabilities. Also, we show the asymptotic optimality and time

efficiency of the proposed distributed sequential scheme.

In large scale sensors networks, we consider a collaborative distributed estimation prob-

lem with statistically dependent sensor observations, where there is no FC. To achieve greater

sensor transmission and estimation efficiencies, we propose a two-step cluster-based collabo-

rative distributed estimation scheme. In the first step, sensors form dependence driven clusters

such that sensors in the same cluster are dependent while sensors from different clusters are

independent, and perform copula-based maximum a posteriori probability (MAP) estimation

via intra-cluster collaboration. In the second step, the estimates generated in the first step

are shared via inter-cluster collaboration to reach an average consensus. The efficacy of the

proposed scheme is justified.
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1

CHAPTER 1

INTRODUCTION

The problem of inference by fusing data from multiple modalities has a wide variety of ap-

plications, such as activity monitoring, autonomous robotics and military/security surveil-

lance. Typically, a large number of spatially distributed sensors are deployed in a network

and these sensors operate collaboratively to solve an inference problem, such as detection,

estimation and classification. Fusing observations of multiple sensors can improve decision

making and provide global information of a certain phenomenon. However, sensors used for

observing the same phenomenon are usually of different modalities, namely, they are incom-

mensurate/heterogeneous. Sensors are said to be heterogeneous if their respective observation

models cannot be described by the same statistical distribution. Moreover, sensor observations

are often dependent due to a variety of reasons such as sensing of the same phenomenon. The

nature of this dependence can be quite complex and nonlinear, especially in cases where the

signal may propagate through a non-homogeneous medium. Inference in such multi-sensor

systems is the major topic of this thesis.

In networks with limited communication resources, local observations are usually com-

pressed at the sensors according to certain local rules, and only the compressed information

is transmitted to the FC. In such distributed networks, the challenge is to achieve high perfor-
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mance in terms of accuracy efficiency and time efficiency while satisfying energy and band-

width constraints. The existence of nonlinear cross-modal dependence and heterogeneity of

sensors in the network make the design of local inference rules and the fusion rule at the FC

highly complex. In terms of accuracy, we study the design of local and fusion rules in this

thesis, where we take the underlying spatial dependence into consideration to improve infer-

ence performance. In terms of time efficiency, we consider a distributed sequential network,

and design sequential tests at the local sensors and a copula based sequential test at the FC. A

parallel platform for fusing heterogenous streaming data is also investigated to accelerate infer-

ence response. Moreover, in a fully distributed network with no FC, intra-cluster collaboration

and inter-cluster collaboration are studied to exploit the underlying dependence among sensors

so that inference performance is improved to the largest extent under limited communication

budget.

1.1 Background

Copula theory, which forms the basis of a lot of work in this thesis, is presented in this section.

Copulas provide a flexible and powerful approach for modeling underlying dependence among

continuous random variables. A multivariate copula, specified independently from marginals,

is a multivariate distribution with uniform marginal distributions. The unique correspondence

between a multivariate copula and any multivariate distribution is stated in Sklar’s theorem [75]

which is a fundamental theorem of copula theory. Standard well defined multivariate copulas

may lack the ability to model high dimensional nonlinear dependencies due to factors such

as limited number of parameters to characterize the dependence. Based on this, regular vine

copula based methodology has been developed for more flexible modeling of dependencies in

larger dimensions. In the following, we first give the theoretical background of copula theory

and present some well defined multivariate copulas, and then introduce the regular vine copula.
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1.1.1 Copula Theory

Theorem 1.1 (Sklar’s Theorem). The joint distribution functionF of random variables x1, . . . , xd

with continuous marginal distribution functions F1, . . . , Fd can be cast as

F (x1, x2, . . . , xd) = C(F1(x1), F2(x2), . . . , Fd(xd)|φ), (1.1)

where C is a unique d-dimensional copula with dependence parameter φ. Conversely, given a

copulaC and univariate Cumulative Distribution Functions (CDFs) F1, . . . , Fd, F in Equation

(1.1) is a valid multivariate CDF with marginals F1, . . . , Fd. Note thatφ is used to characterize

the amount of dependence among the d random variables. In general, φ may be a scalar, a

vector or a matrix.

For absolutely continuous distributions F and F1, . . . , Fd, the joint Probability Density

Function (PDF) of random variables x1, . . . , xd can be obtained by differentiating both sides of

Equation (1.1):

f(x1, . . . , xd) =
( d∏
m=1

fm(xm)
)
c(F1(x1), . . . , Fd(xd)|φ), (1.2)

where f1, . . . , fd are the marginal densities and c is referred to as the density of multivariate

copula C that is given by

c(u|φ) =
∂d(C(u1, . . . , ud|φ))

∂u1, . . . , ∂ud
, (1.3)

where um = Fm(xm) and u = [u1, . . . , ud].

Thus, given specified univariate marginal distributions F1, . . . , Fd and the copula model C,

the joint distribution function F can be constructed by

F (F−1
1 (u1), F−1

2 (u2), . . . , F−1
d (ud)) = C(u1, u2, . . . , ud|φ), (1.4)
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where um = Fm(xm) and F−1
m (um) are the inverse distribution functions of the marginals,

m = 1, 2, . . . , d.

Note that C(·|φ) is a valid CDF and c(·|φ) is a valid PDF for uniformly distributed random

variables um, m = 1, 2, . . . , d. Since different copula functions may model different types of

dependence, selection of copula functions to characterize joint statistics of random variables is

a key problem. Various families of multivariate copula functions are described in [75]. A brief

summary of some popularly used copula functions is provided next.

1.1.2 Summary of Some Multivariate Copula Functions

Elliptical copulas

The Gaussian and the Student-t copula functions belong to the family of elliptical copulas.

They are derived from multivariate Gaussian and Student-t distributions, respectively. They

both specify dependence using the correlation matrix and are given as follows.

The multivariate Gaussian copula, derived from a d-dimensional multivariate Gaussian dis-

tribution, is defined as

CG(u|Σ) = ΦΣ(Φ−1(u1), . . . ,Φ−1(ud)), (1.5)

where Σ is the correlation matrix, Φ is the univariate normal CDF and ΦΣ denotes the multi-

variate normal CDF.

Similarly, the Student-t copula is derived from a d-dimensional multivariate Student-t dis-

tribution, which is given by

Ct(u|Σ, ν) = tν,Σ(t−1
ν (u1), . . . , t−1

ν (ud)), (1.6)

where tν,Σ denotes the multivariate Student-t distribution with correlation matrix Σ and de-
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grees of freedom ν (ν ≥ 3), and tν is the univariate Student-t distribution with degrees of

freedom ν. It is common to set ν = 3 to incorporate heavy tail dependence. As ν → ∞, the

Student-t copula approaches the Gaussian copula function.

Archimedean copulas

Archimedean copulas are defined as follows,

C(u|φ) = Ψ−1

(
d∑

m=1

Ψ(um)

)
, (1.7)

where we refer to Ψ(·) as the generator function and φ as the parameter of the copula. Some

Archimedean copula functions are indicated in Table 1.1 [41].

Table 1.1: Archimedean copula functions.
Copula Generator Function Ψ Copulas in the Parametric Form

Clayton 1
φ

(
u−φ − 1

) (∑d
m=1 u

−φ
m − 1

)− 1
φ
, φ ∈ [−1,∞)\{0}

Frank − log exp{−φu}−1
exp{−φ}−1

− 1
φ

log
(

1 +
∏d
m=1 [exp{−φum}−1]

exp{−φ}−1

)
, φ ∈ R\{0}

Gumbel − lnuφ exp

{
−
(∑d

m=1(− lnum)φ
) 1
φ

}
, φ ∈ [1,∞)

Independent − lnu
∏d

m=1 um

1.1.3 Copulas and Measures of Dependence

An attractive feature of copulas is that nonparametric rank-based measures of dependence, such

as Kendall’s τ , can be expressed as expectations over the copula distribution. For independent

pairs of random variables (X1, Y1) and (X2, Y2) having the same distribution as (X, Y ), con-

cordance is defined as the condition that (X1−X2)(Y1−Y2) ≥ 0 and discordance is defined as

the condition that (X1−X2)(Y1−Y2) < 0. Kendall’s τ is defined to be the difference between
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the probabilities of concordance and discordance:

τ , P [(X1 −X2)(Y1 − Y2) ≥ 0]− P [(X1 −X2)(Y1 − Y2) < 0].

Nelsen has proved the relationship in Equation (1.8) for a copula, C(·|φ), and random variables

X ∼ fX(x), Y ∼ fY (y) [75], i.e.,

τ(φ) = 4

∫ ∫
[0,1]2

C(FX(x), FY (y)|φ)dC(FX(x), FY (y)|φ)− 1. (1.8)

This relationship allows τ to be expressed in terms of the dependence parameter of the

copula, C (Σ for the elliptical copulas and φ for the Archimedean copulas in Table 1.1). For

the case of elliptical copulas, parametrized by the matrix Σ = [ρij],

ρij = sin
(πτij

2

)
, (1.9)

where τij is the Kendall’s τ evaluated for the pair (Ui, Uj) = (FXi(·), FXj(·)). The sample

estimate of Kendall’s τ , for N observations, can be calculated as the ratio of the difference in

the number of concordant pairs, ccor, and discordant pairs, dcor, to the total number of pairs of

observations, i.e.,

τ̂ =
ccor − dcor

ccor + dcor
=
ccor − dcor(

N
2

) . (1.10)

Typically, φ is unknown a priori and needs to be estimated, e.g., using Maximum Like-

lihood Estimation (MLE) [41]. On the other hand, Equation (1.8) and Equation (1.10) imply

that Kendall’s τ can be used for calculating computationally efficient estimates of φ.

1.1.4 Regular Vine Copula

Regular vine (R-Vine) copulas, introduced by Bedford and Cooke in [11, 12], are extremely

flexible in modeling high dimensional multivariate dependence, where a set of bivariate cop-
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ulas are used to construct the multivariate copula. A regular vine copula is a tree-structured

graphical model that consists of a regular vine and a set of bivariate copulas. We first present

the definition of the regular vine in the following. A regular vine is defined as follows.

Definition 1.1 (R-Vine). V = (T1, . . . , Td−1) is a regular vine on d elements if the following

conditions are satisfied.

1. T1 is a tree with nodes N1 = {1, . . . , d} and a set of d− 1 edges denoted as E1.

2. For i = 2, . . . , d− 1, Ti is a tree with nodes Ni = Ei−1 and edge set Ei.

3. For i = 2, . . . , d − 1 and {a, b} ∈ Ei with a = {a1, a2} and b = {b1, b2}, |(a ∩ b)| = 1

(proximity condition) holds, where | · | denotes the cardinality of a set.

A d-dimensional vine consists of d(d−1)/2 edges in total. The proximity condition implies

that two edges in tree Ti are connected in tree Ti+1 if the two edges share a common node in

tree Ti.

R-Vine copula is obtained by specifying bivariate copulas, the so-called pair-copula, on

each of the edges. Before introducing R-Vine copula, some sets associated with its edges need

to be defined. The complete union Ue of an edge e = {a, b} ∈ Ei, a, b ∈ Ni is defined as

Ue = {m ∈ N1 | ∃ej ∈ Ej, j = 1, 2, . . . , i − 1, such thatm ∈ e1 ∈ . . . ei−1 ∈ e}. The

conditioning set of the edge e = {a, b} is De = Ua ∩ Ub and the conditioned sets of the edge

e = {a, b} are Ce,a = Ua\De and Ce,b = Ub\De. A regular vine copula is defined as follows.

Definition 1.2 (R-Vine Copula). (F,V ,B) is called a R-Vine copula if

1. F = [F1, F2, . . . , Fd]
T ∈ [0, 1]d is a vector with uniform marginals.

2. V is a d-dimensional regular vine.

3. B = {CCe,a,Ce,b|De | e ∈ Ei, i = 1, 2, . . . , d− 1} is a set of bivariate copulas.
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Fig. 1.1: An example R-Vine for five variables.

The joint density of a random vector x = [x1, x2, . . . , xd]
T is given by

f1,...,d(x) =
d∏

m=1

fm(xm)
d−1∏
i=1

∏
e∈Ei

×cCe,a,Ce,b|De(FCe,a|De(xCe,a|xDe), FCe,b|De(xCe,b |xDe)),

(1.11)

where e = {a, b}, xDe = {xj|j ∈ De}, fm is the marginal PDF of variable xm, m = 1, . . . , d.

The conditional distribution FCe,a|De(xCe,a |xDe) can be obtained recursively tree by tree by the

following equation [51].

FCe,a|De(xCe,a |xDe) =
∂CCa,a1 ,Ca,a2 |Da

(
FCa,a1 |Da(xCa,a1 |xDa), FCa,a2 |Da(xCa,a2 |xDa)

)
∂FCa,a2 |Da(xCa,a2 |xDa)

, (1.12)

where e = {a, b} ∈ Ei, a = {a1, a2} and b = {b1, b2} are the edges that connect Ce,a and Ce,b

given the conditioning variables De. Similarly, we can obtain FCe,b|De(xCe,b |xDe).

As an example, a 5-dimensional R-Vine copula is shown in Fig. 1.1. The R-Vine has four

trees Ti and the tree Ti has nodes Ni = 6 − i and edges Ei = 5 − i, where i = 1, 2, 3, 4.

Each edge is associated with a bivariate copula density c and its corresponding parameters φ

used to model dependence between two variables. Moreover, at each edge e = {a, b} ∈ Ei,

the term Ce,a and Ce,b are separated by a comma and given to the left of the “|" sign, while
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De appears on the right. In the first tree T1, the dependences of the four pairs of variables

(1, 2), (2, 3), (2, 4), (3, 5) are modeled using four bivariate copulas, c1,2(·;φ1,2), c2,3(·;φ2,3),

c2,4(·;φ2,4) and c3,5(·;φ3,5). In the second tree T2, three conditional dependencies are modeled.

The pair (1, 3|2) using bivariate copula density c1,3|2(·;φ1,3|2) characterizes the dependence

between the first and third variables given the second variable. Also, the pair (3, 4|2) using

bivariate copula density c3,4|2(·;φ3,4|2) characterizes the dependence between the third and

fourth variables given the second variable. Similarly, we can obtain the bivariate copula density

for the pair (2, 5|3). In the third tree T3, the dependence of the first and fourth variables given

the second and third variables is modeled using bivariate copula density c1,4|23(·;φ1,4|23). Also,

we can obtain the bivariate copula density for the pair (1, 5|23). In the fourth tree T4, the

bivariate copula density c4,5|123(·;φ4,5|123) captures the dependence between the fourth and

fifth variables given the first, second and third variables.

For the 5-dimensional case, using Equation (1.11), the joint PDF of z = [z1, z2, z3, z4, z5]

can be expressed as

f(z1, z2, z3, z4, z5) =

[
5∏
l=1

f(zl)

]
· c1,2

(
F (z1), F (z2);φ1,2

)
· c2,3

(
F (z2), F (z3);φ2,3

)
· c2,4

(
F (z2), F (z4);φ2,4

)
· c3,5

(
F (z2), F (z3)·;φ3,5

)
· c1,3|2

(
F (z1|z2), F (z3|z2);φ1,3|2

)
· c3,4|2

(
F (z3|z2), F (z4|z2);φ3,4|2

)
· c2,5|3

(
F (z2|z3), F (z5|z3);φ2,5|3

)
· c1,4|23

(
F (z1|z2z3), F (z4|z2z3);φ1,4|23

)
· c1,5|23

(
F (z1|z2z3), F (z5|z2z3);φ1,5|23

)
· c4,5|123

(
F (z4|z1z2z3), F (z5|z1z2z3);φ4,5|123

)
.

(1.13)
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1.1.5 Array Representation of Regular Vine

Generally, it is quite expensive to store the nested set of trees and also not convenient to de-

scribe inference algorithms. In [72], a lower triangular array was proposed to store a R-Vine.

Definition 1.3 (R-Vine Array). A lower triangular array M = (mi,j)i,j=1,2,...,d is called a R-

Vine array if for i = 1, . . . , d−1 and for all k = i+1, . . . , d−1, there is a j in i+1, . . . , d−1

with (mk,i, {mk+1,i, . . . ,md,i}) ∈ BM(j) or ∈ B̃M(j), where BM(j) := {(mj,j, D)|k = j +

1, . . . , d} with D = {mk,j, . . . ,md,j} and B̃M(j) := {(mk,j, D̃)|k = j + 1, . . . , d} with

D̃ = {mj,j} ∪ {mk+1,j, . . . ,md,j}.

For the R-Vine copula example in Fig. 1.1, the R-Vine matrix M∗ is given as



5

4 4

1 1 1

2 3 3 3

3 2 2 2 2


,

where the first column represents the dependence of four pairs of variables, (5, 4|123), (5, 1|23),

(5, 2|3) and (5, 3). Going through all columns, we can see that the matrix M∗ codes all infor-

mation needed to represent the R-vine copula in Fig. 1.1.

An R-Vine array has the following two properties:

• {mi,i, . . . ,md,i} ⊂ {mj,j, . . . ,md,i} for 1 ≤ j < i ≤ d,

• mi,i /∈ {mi+1,i+1, . . . ,md,i+1} for i = 1, . . . , d− 1,

where the first property states that every column in the left contains all the entries that a col-

umn in the right contains, and the second property guarantees that there is a new entry on the

diagonal in every column.
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Given an R-Vine array M = (mi,j)i,j=1,...,d, the R-Vine copula based modeling of the joint

PDF [27] is

f1,...,d =
d∏
j=1

fj

1∏
k=d−1

k+1∏
i=d

cmk,k,mi,k|mi+1,k,...,md,k

(
Fmk,k|mi+1,k,...,md,k , Fmi,k|mi+1,k,...,md,k

)
.

(1.14)

For notational simplicity, we have removed the arguments of all the functions in Equation

(1.14).

1.2 Literature Review

Multimodal signal processing enables fusion of information from several sources in order to

form a unified picture and produce a global decision/estimation. There are mainly three fusion

strategies: data-level fusion, feature-level fusion and decision-level fusion. Signal process-

ing for inference problems with distributed sensors has been studied extensively. Centralized

inference (also known as data-level fusion), where raw observations are available at the pro-

cessing unit or FC, have been well studied in standard textbooks [13, 59, 101]. Distributed

inference, on the other hand, relies on the topology of a network that can either transmit a com-

pressed/processed version of the raw data to the FC (can be feature-level fusion or decision-

level fusion) or arrive at a consensus solution by locally sharing compressed/processed infor-

mation (e.g., see [55, 56, 67, 78, 105, 117] and references cited therein).

This section reviews some recent progress that has been made in the field of multimodal

signal processing, and focuses on developments where data dependence plays a significant role

in the design of fusion rules for inference problems. The aim of this discussion is to motivate

our current research.
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1.2.1 Linear Dependence: Covariance Matrix

Covariance matrix, or equivalently correlation matrix, models linear dependence among jointly

normal random variables or variables that possess a finite second moment. In networks with

multiple sensors/sources, it is used extensively to model dependency information across the

sensors/sources, especially where it is reasonable to assume linearity of the medium of sig-

nal propagation. In MIMO systems, the dependence among multiple antennas/channels was

modeled in [52, 63, 71]. In [4], linear dependence among multiple datasets was characterized

for joint blind source separation. Canonical correlation analysis (CCA) has also been used to

perform feature-level information fusion for recognition problems [29, 35, 39].

Optimal schemes for distributed detection and estimation with dependent observations have

also been a topic of significant interest. In the case of distributed detection, it has been shown

in [105] that the optimal sensor decision rule is the likelihood-ratio-based binary quantizer,

and the optimal fusion statistic at the FC is a weighted sum of sensor decisions under the as-

sumption of conditional independence. These sensor decision rules and fusion statistic are no

longer optimal when correlation is taken into account. Examples of the consequent loss in

performance were presented in [1]. Moreover, it has been shown in [102] that the distributed

detection problem with dependent observations is NP-complete and cannot be solved using

a polynomial time algorithm. Therefore, the design of optimal local decision rules may not

be possible due to computational intractability resulting from the dependence among sensor

observations. One way to get past the computational intractability is to assume some prior in-

formation about the joint statistics, e.g., in [28,57], fusion rules for correlated binary decisions

were studied by considering known correlation coefficients and known correlated sensing noise

PDFs, respectively. Another way is to constrain local detectors to be binary quantizers and de-

sign optimal fusion rules at the FC, e.g., in [18, 109], optimal fusion rules were proposed with

correlated Gaussian noise. Also, in [58], noisy correlated sensing channels were studied for

multi-bit decision based distributed detection and a likelihood ratio test was used to generate



13

the global decision at the FC.

The distributed estimation problem by modeling dependent observations has been studied

in [32,61,66]. In [61], a distributed estimation scheme was studied with multivariate Gaussian

correlated sensor observations and the covariance was assumed to be known at the FC. In [32],

the estimation of a random scalar parameter in a power constrained wireless sensor network

was studied with generally correlated sensor observations that can accommodate nonlinear

measurement models and spatially correlated observation noise. The goal was to design opti-

mal power allocation strategy. In [66], the problem of sensor selection for parameter estimation

was considered with spatially correlated Gaussian measurement noise and the aim was to seek

optimal sensor activations by formulating an optimization problem which minimizes estimation

error subject to energy constraints. Besides these formulations, designing estimation schemes

in the presence of dependent data often gives rise to intractable problem formulations. In such

situations, applying well-known strategies derived from conditional independence assumption

may turn out to be fairly suboptimal. One way to address this issue is to allow inter-sensor

communication/collaboration instead of modeling this dependence [16, 20, 31, 55, 56, 67, 87].

In [31, 56, 67], collaborative distributed estimation problems with a fusion center were con-

sidered, where collaboration was restricted to be a linear operation. Collaborative distributed

estimation problems without a FC were studied in [16, 20, 55, 87], where different distributed

collaboration strategies were proposed, such as diffusion-based, consensus-based and gossip-

based algorithms.

1.2.2 Nonlinear Dependence: Nonparametric Approach

Multimodal signal processing using nonparametric approaches has attracted significant atten-

tion in applications where it is infeasible to model the complex nonlinear dependencies that

may exist among sensor observations/features. These methods, in essence, estimate or learn

the joint distribution across sensor observations/features directly from the data.
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Information theoretic approaches make it possible to characterize arbitrary nonlinear de-

pendence compared to methods using covariance matrix. In [15], mutual information and joint

entropy based methodologies were proposed to model the underlying dependence between au-

dio and video data. In [14,40,85], mutual information based methods were proposed for image

fusion. Graphical models such as Bayesian networks generalize hidden Markov models and

have also been successfully used for multimodal fusion (see e.g. [23, 53, 81, 96]).

Machine learning and deep learning techniques have had breakthroughs in a wide range of

multimodal applications: from audio-visual speech recognition to image captioning [7, 8, 38,

86]. The advantage of machine learning and deep learning based methodologies is that they

can extract significant amount of information from sensor data with no need of modeling the

joint distribution of the data. There are plenty of networks including shallow networks, such

as Support Vector Machines (SVMs), Random Forests and Decision Trees, and deep networks,

such as deep forward neural networks and convolutional neural networks. Compared to the

shallow networks, the deep networks can learn high-level features directly from raw data (or

lightly processed data) and provide joint representations for multimodal data.

1.2.3 Nonlinear Dependence: Copula-based Approach

Recall from Section 1.1 that copulas are parametric functions that can model nonlinear depen-

dence among multiple random variables. The copula based dependence modeling approach

is attractive and powerful because it can characterize potentially any nonlinear spatial depen-

dence among sensor observations and allow different marginal distributions. Moreover, while

nonparametric approaches have shown their superiority in characterizing the joint distribution

among multimodal data, they also suffer from issues, such as scalability problems stemming

from the curse of dimensionality (information theoretic/graphical model based approaches)

and the availability of enough training data (deep learning based approaches). Recently, con-

siderable progress has been made in the study of copulas and their applications in statistics.
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The usage of copulas is widespread in the fields of econometrics and finance [19] and they are

beginning to be used in the signal and image processing context [24, 42, 48, 70, 93].

Multivariate copula based approaches have shown their superiority in improving the per-

formance of inference problems [43, 45, 50, 94, 95]. In [50], a general framework of copula

based detection has been investigated. The performance loss due to copula misspecification

was quantified. The efficacy of the proposed copula based detection scheme was demonstrated

using a NIST multibiometric dataset. In [95], the problem of distributed detection has been

studied, where a copula based optimum fusion rule was derived for a Neyman-Pearson detector.

In [45], the utility of non-stationary dependence modeling with copulas has been considered

for detecting the presence of a phenomenon being observed jointly by heterogeneous sensors.

In [94], a copula-based estimation scheme has been proposed for the localization of a radiation

source, and the overall estimation performance was shown to be improved by taking the under-

lying dependence among sensor observations into account. In [43], the fusion of social media

and sensor data has been addressed using the copula-based dependence modeling approach.

However, the class of known multivariate copulas required for the fusion of observations

from more than two sensors is limited. Gaussian copulas perform poorly on data with heavy

tails. Student-t copulas allow for symmetric tail dependence, but they have only a single pa-

rameter to capture tail dependence among all the variables. While standard Archimedean mul-

tivariate copulas can characterize asymmetric tail dependence, they are quite limited as they

are characterized by only a single parameter. This shows that there is a growing need for more

flexible copulas especially for modeling high-dimensional dependence structures. Vine copu-

las, tree-structured graphical models, are more flexible and powerful compared to multivariate

copulas, where a set of bivariate copulas are used to construct the multivariate copula [2,11,12].
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1.3 Main Contributions and Organization

The main contributions of the research results presented in this dissertation to the signal pro-

cessing and information fusion literature, are as follows:

In Chapter 2, we propose a regular vine copula based methodology for the fusion of sta-

tistically dependent decisions. Regular vine copula can express a multivariate copula by using

a cascade of bivariate copulas, the so-called pair copulas. Assuming that local detectors are

single threshold binary quantizers and taking complex dependence among sensor decisions

into account, we design an optimal fusion rule using a regular vine copula under the Neyman-

Pearson framework. In order to reduce the computational complexity resulting from the com-

plex dependence, we propose an efficient and computationally light regular vine copula based

optimal fusion algorithm. Numerical experiments are conducted to demonstrate the effective-

ness of our approach.

Nowadays, we are inundated by a large amount of streaming data that are generated con-

tinuously with high arrival rates from sources such as sensors and social media. The methods

applied for processing data streams should be fast enough to keep up with the high arrival rate

of incoming data, and at the same time provide solutions for inference problems (detection,

classification, or estimation) with high accuracies. In Chapter 3, we design a novel parallel

platform, C-Storm (Copula-based Storm), for the computationally complex problem of fusion

of heterogeneous data streams for inference. C-Storm is designed by marrying copula-based

dependence modeling for highly accurate inference and a highly-regarded parallel computing

platform Storm for fast stream data processing. C-Storm has the following desirable features:

1) C-Storm offers fast inference responses. 2) C-Storm provides high inference accuracies. 3)

C-Storm is a general-purpose inference platform that can support data fusion applications. 4)

C-Storm is easy to use and its users do not need to have deep knowledge of Storm or copula

theory.

In Chapter 4, we study the problem of multi-sensor based human activity recognition via
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the fusion of multiple deep neural network classifiers. We take the cross-modal dependence

into account by employing regular vine copulas to characterize complex dependence among

multiple modalities. More specifically, multiple deep neural networks are used to extract high-

level features from multiple sensing modalities, with each deep neural network processing

the data collected from a single sensor. The extracted high-level features are then combined

using a regular vine copula model. Numerical experiments are conducted to demonstrate the

effectiveness of our approach.

In Chapter 5, we consider the problem of distributed sequential detection using wireless

sensor networks in the presence of imperfect communication channels between the sensors

and the fusion center. Sensor observations are assumed to be spatially dependent. Moreover,

the channel noise can be dependent and non-Gaussian. We propose a copula based distributed

sequential detection scheme that takes the spatial dependence into account. More specifically,

each local sensor runs a memory-less truncated sequential test repeatedly and sends its binary

decisions to the fusion center synchronously. The fusion center fuses the received messages

using a copula-based sequential test. To this end, we first propose a centralized copula based se-

quential test and show its asymptotic optimality and time efficiency. We then show the asymp-

totic optimality and time efficiency of the proposed distributed scheme. We also show that

by suitably designing the local thresholds and the truncation window, the local probabilities of

false alarm and miss detection of the proposed memory-less truncated local sequential tests sat-

isfy the pre-specified error probabilities. Numerical experiments are conducted to demonstrate

the effectiveness of our approach.

In Chapter 6, we consider the problem of collaborative distributed estimation in a large

scale sensor network with statistically dependent sensor observations. In the collaborative

setup, the aim is to maximize the overall estimation performance by modeling the underlying

statistical dependence and efficiently utilizing the deployed sensors. To achieve greater sen-

sor transmission and estimation efficiency, we propose a two-step cluster-based collaborative
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distributed estimation scheme, where in the first step, sensors form dependence driven clusters

such that sensors in the same cluster are dependent, while sensors from different clusters are

independent, and perform copula-based maximum a posteriori probability (MAP) estimation

via intra-cluster collaboration. In the second step, the estimates generated in the first step are

shared via inter-cluster collaboration to reach an average consensus. A merge based K-medoid

dependence driven clustering algorithm is proposed. Moreover, we further propose a cluster-

based sensor selection scheme using mutual information prior to the estimation. The aim is to

select sensors with maximum relevance and minimum redundancy regarding the parameter of

interest under certain pre-specified energy constraint. Also, the proposed cluster-based sensor

selection scheme is shown to be equivalent to the global/non-cluster based selection scheme

with high probability, which at the same time is computationally more efficient. Numerical

simulations are conducted to demonstrate the effectiveness of our approach.

Finally, in Chapter 7, we summarize the findings and results of this dissertation. Several

directions and ideas for future research are also presented.
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CHAPTER 2

DISTRIBUTED DETECTION BASED ON

REGULAR VINE COPULAS

2.1 Motivation

Fusion of data from heterogeneous sensors/sources has been shown to improve the performance

of inference tasks. In many practical cases, these sensor observations are dependent due to

a variety of reasons such as sensing of the same phenomenon and dependent transmission

channels. Ignoring this dependence may degrade inference performance.

In this chapter, we consider the problem of distributed detection with dependent sensor ob-

servations under the Neyman-Pearson framework. We assume that local detectors are single

threshold binary quantizers, and the aim is to derive an optimal fusion rule at the FC by taking

the dependent decisions into consideration. We propose a novel and powerful fusion method-

ology for the fusion of dependent decisions, R-Vine copula based fusion, for more flexible

modeling of complex dependency especially for larger number of sensors. In order to reduce

the computational complexity resulting from the complex dependence, we further propose an

efficient and computationally light regular vine copula based optimal fusion algorithm.
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2.2 Problem Formulation

Consider a distributed detection problem, where a random phenomenon is monitored by L

sensors. A binary hypothesis testing problem is studied, where H1 denotes the presence of

the random phenomenon and H0 denotes the absence of the phenomenon. The sensors make

a set of observations at time instant n, zn = [z1n, z2n, . . . , zLn], n = 1, 2, . . . , N . We assume

that the sensor observations are dependent across sensors. Moreover, we further assume that

the sensor observations are continuous random variables that are conditionally independent

and identically distributed (i.i.d.) over time. Let f(zln|H1) and f(zln|H0) be the PDFs of the

observation at the lth sensor and nth time instant underH1 andH0 hypotheses, respectively. No

knowledge about the joint distribution of the sensor observations is available a priori. Instead

of transmitting noisy raw observations, local binary sensor decisions uln are sent to the FC by

using a binary quantizer which is defined as

uln =


0 −∞ < zln < τl

1 τl ≤ zln < +∞
, (2.1)

where τl is the quantizer threshold at the lth sensor. At the FC, local binary decisions are

combined to obtain a global decision.

Under the Neyman-Pearson criterion, the design problem for the parallel distributed detec-

tion system consists of deriving individual sensor thresholds τl to form sensor decisions and

the optimal fusion rule that fuses local sensor decisions to obtain the global decision. The sen-

sor thresholds τl, l = 1, 2, . . . , L are obtained by maximizing the local probability of detection

subject to a constraint on the local probability of false alarm. Note that these sensor thresh-

olds are not necessarily optimal in the global sense. The design of the optimal fusion rule for

multiple sensors is discussed next.
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Since sensor decisions are independent over time, the optimal test statistic [104] is given as

Λ(u) =

∏N
n=1 P (u1n, u2n, . . . , uLn|H1)∏N
n=1 P (u1n, u2n, . . . , uLn|H0)

, (2.2)

where P (u1n, u2n, . . . , uLn|Hk) is the joint probability mass function (PMF) of the sensor deci-

sions at the nth time instant under kth hypothesis, k = 0, 1. We define S = {u1nu2n . . . uLn|uln ∈

{0, 1}, l = 1, 2, . . . , L} as the set of all permutations that specify L-sensor decisions at time

instant n. There are a total of 2L permutations for L sensors. For a three-sensor problem,

S = {{000}, {001}, {010}, {011}, {100}, {101}, {110}, {111}}. Let

P (u1n, u2n, . . . , uLn|H1) = Ps, and

P (u1n, u2n, . . . , uLn|H0) = Qs,

(2.3)

where s ∈ S. Ps and Qs, s ∈ S are required while computing the test statistic at the FC.

For a three-sensor problem, the set of probabilities P000, P001, P010, . . ., P111 and Q000, Q001,

Q010, . . ., Q111 that characterize the joint PMFs of sensor decisions u1n, u2n and u3n under

hypotheses H1 and H0, respectively, are needed. By integrating the joint PDFs of the sensor

observations under both hypotheses, these probabilities can be obtained with the quantizer

threshold τl, l = 1, 2, 3. For example,

P000 =

∫ τ1

z1=−∞

∫ τ2

z2=−∞

∫ τ3

z3=−∞
f(z1, z2, z3|H1)dz1dz2dz3,

P010 =

∫ τ1

z1=−∞

∫ z2=+∞

τ2

∫ τ3

z3=−∞
f(z1, z2, z3|H1)dz1dz2dz3,

(2.4)

where for the simplification of notation, we omit the time index n in the example.

However, due to existing complex and nonlinear dependence, the joint PDFs of sensor

observations under both hypotheses are not known. Before determining the joint PMFs of

sensor decisions, we first need to obtain the joint PDFs of sensor observations given only the

knowledge of marginal PDFs of the sensor observations and the marginal PMFs of sensor
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decisions. Typically in many applications, we do not have any prior information related to the

phenomenon of interest. Therefore, we may also need to determine the marginals of sensor

observations.

The dependence across sensors can be quite complicated and nonlinear. Simple dependence

modeling through methods such as the use of multivariate normal model, is very limited and in-

adequate to characterize complex dependence among multiple sensors. Assuming conditional

independence among multiple sensors may result in substantial performance degradation. To

design the optimal fusion rule, we propose a copula based fusion methodology to characterize

the existing dependence and determine the joint PDFs of sensor observations. Due to the lim-

itations of the class of standard multivariate copulas and complex dependence that generally

exists among multiple sensors, more flexible dependence modeling approaches are needed to

obtain the joint PDFs of sensor measurements. R-Vine copula based dependence modeling

provides us a solution. It can express a multivariate copula using a cascade of bivariate copulas

embedded in a tree structure that is shown to be more flexible and powerful to model the com-

plex dependence. Note that learning of the joint distribution requires raw sensor observations.

It can be done offline. Here, we assume that the joint statistics of the sensors does not change

over time. After measurement collection, raw measurements are sent to the FC. The FC uses

these analog measurements to learn the joint statistics of the sensors. After that, only binary

decisions are sent to the FC.

Taking the above considerations into account, in the following, we develop a novel and

powerful R-Vine copula based fusion methodology for distributed detection. We will propose

the optimal test statistic for the parallel distributed detection system and derive its asymptotic

statistic when the number of observations is large. Furthermore, at the end, via simulations,

we will show its power and flexibility to capture complex dependence and improve detection

performance.
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2.3 R-Vine Copula Based Fusion of Multiple Statistically

Dependent Decisions

2.3.1 Optimal Test Statistic

The optimal test statistic for L sensors is characterized in Equation (2.2). The joint PMF of

uln, l = 1, 2, . . . , L, at time n, n = 1, 2, . . . , N under H1 and H0, respectively, is given as:

P (u1n, u2n, . . . , uLn|H1) =
∏
s∈S

P
∏L
l=1 xln

s ,

P (u1n, u2n, . . . , uLn|H0) =
∏
s∈S

Q
∏L
l=1 xln

s ,

(2.5)

where sl indicates the lth element of s, and xln = uln if sl = 1, otherwise, xln = 1 − uln for

s ∈ S. For example, please see Equation (2.7) and Equation (2.8), which are special cases of

Equation (2.5) for L = 3.

Substituting Equation (2.5) in Equation (2.2) and taking log on both sides, the log test

statistic is given by

logΛ(u) =
∑
{i1n}∈I1

Au1

N∑
n=1

u1 +
∑

{i1n,i2n}∈I2

Au2

N∑
n=1

u2 + . . .+ (2.6)

∑
{i1n,i2n,...,itn}∈It

Aut

N∑
n=1

ut + . . .+
∑

{i1n,i2n,...,iLn}∈IL

AuL

N∑
n=1

uL

where I = {ln|uln ∈ {0, 1}, l = 1, 2, . . . , L, n = 1, 2, . . . , N}, Ii is a subset of I and the car-

dinality of the set Ii is i, namely, |Ii| = i. Moreover, ut = {ui1nui2n . . . uitn}, t ∈ [1, 2, . . . , L]

and its weight is given as Aut = log
∏

0≤k≤t P
(−1)t

Ĩe
tk

∏
0≤k≤tQ

(−1)t

Ĩo
tk∏

0≤k≤tQ
(−1)t

Ĩe
tk

∏
0≤k≤t P

(−1)t

Ĩo
tk

which is determined by the joint

PMFs of sensor decisions, see Appendix A for details. Also, please see Equation (2.9) as an

example for L = 3.
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The optimal test statistic for the three-sensor case

Considering the three-sensor case, the joint PMF of u1n, u2n and u3n at any time instant, 1 ≤

n ≤ N , under H1 and H0 is given as follows, respectively,

P (u1n, u2n, u3n|H1) =

P
(1−u1n)(1−u2n)(1−u3n)
000 P

(1−u1n)(1−u2n)u3n
001 P

(1−u1n)u2n(1−u3n)
010

P
(1−u1n)u2nu3n
011 P

u1n(1−u2n)(1−u3n)
100 P

u1n(1−u2n)u3n
101

P
u1nu2n(1−u3n)
110 P u1nu2nu3n

111 ,

(2.7)

and

P (u1n, u2n, u3n|H0) =

Q
(1−u1n)(1−u2n)(1−u3n)
000 Q

(1−u1n)(1−u2n)u3n
001 Q

(1−u1n)u2n(1−u3n)
010

Q
(1−u1n)u2nu3n
011 Q

u1n(1−u2n)(1−u3n)
100 Q

u1n(1−u2n)u3n
101

Q
u1nu2n(1−u3n)
110 Qu1nu2nu3n

111 .

(2.8)

For simplification of notation, we use A1 to A7 to denote the coefficients of ut, t = 1, 2, 3.

Substituting Equation (2.7) and Equation (2.8) into Equation (2.2) and taking log on both sides,

we get

logΛ1(u) =

A1

N∑
n=1

u1n + A2

N∑
n=1

u2n + A3

N∑
n=1

u3n + A4

N∑
n=1

u1nu2n+

A5

N∑
n=1

u1nu3n + A6

N∑
n=1

u2nu3n + A7

N∑
n=1

u1nu2nu3n,

(2.9)
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where
A1 = log

Q000P100

P000Q100

, A2 = log
Q000P010

P000Q010

,

A3 = log
Q000P001

P000Q001

, A4 = log
P000Q100Q010P110

Q000P100P010Q110

,

A5 = log
P000Q100Q001P101

Q000P100P001Q101

, A6 = log
P000Q010Q001P011

Q000P010P001Q011

,

A7 = log
Q000P100P010P001Q110Q101Q011P111

P000Q100Q010Q001P110P101P011Q111

.

When sensor decisions among L sensors are conditionally independent, only the term∑
{i1n}∈I1

Au1

∑N
n=1 u1 in Equation (2.6) is left and the optimal fusion rule reduces to the Chair-

Varshney fusion rule statistic (i.e., weighted sum of sensor decisions [17]). For dependent

sensor decisions, the optimal fusion rule depends on both the weighted sum of sensor deci-

sions and the weighted sum of the cross products of sensor decisions. The cross products of

the sensor decisions are due to dependence among multiple sensors. The joint PMFs of sensor

decisions, namely Ps andQs, s ∈ S, determine the weights of the optimal test statistic, and can

be obtained by solving L integrals on the joint PDFs of the corresponding sensor observations

(see the example in Equation (2.4)). In the following subsection, we will propose an R-Vine

copula based approach to model existing complex dependence and construct the joint PDFs of

sensor observations. After obtaining the joint PMFs and given sensor decisions, the optimal

fusion rule is given by

logΛ(u)
H1

≷
H0

γ, (2.10)

where γ is the threshold for the test at the FC.

To characterize the fusion performance at the FC using the system probabilities of detection

and false alarm, we consider the asymptotic distribution of the optimal fusion rule statistic

under H0 and H1.

Theorem 2.1. The optimal fusion test statistic logΛ(u) is asymptotically (when N is large)

Gaussian.

Proof: See Appendix B. �
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The first and second order statistics of logΛ(u) under both hypotheses are given in Ap-

pendix B. Let the first and second order statistics of logΛ(u) be denoted by µ0 and σ2
0 under

H0 and µ1 and σ2
1 under H1. These can be easily derived using the joint PMFs of sensor deci-

sions. The system probability of detection (PD) and system probability of false alarm (PF ) are

then given by

PD = Q

(
γ − µ1

σ1

)
, (2.11)

PF = Q

(
γ − µ0

σ0

)
, (2.12)

where Q(·) is the complementary CDF of the Gaussian distribution. Under the Neyman-

Pearson framework and by constraining PF = α, γ can be obtained by

γ = σ0Q
−1(PF ) + µ0. (2.13)

Note that the local sensors compress their raw measurements into binary decisions (see

Equation (2.1)) prior to their transmission to the FC and the corresponding sensor thresholds

are assumed to be τl, l = 1, 2, . . . , L. Let τ be the vector of sensor thresholds. Constraining

PF = α, PD can be written as

PD(τ ) = Q

(
σ0Q

−1(PF ) + µ0(τ )− µ1(τ )

σ1(τ )

)
, (2.14)

where τ is chosen to maximize PD at a particular value of PF .

It should be noted that the computational complexity for obtaining the joint PMFs is very

high since we need to perform multi-dimensional integration at each time instant. In what

follows, we first propose the R-Vine copula based methodology to characterize the joint PDFs

of sensor observations and then develop an efficient optimal fusion algorithm based on the

R-Vine copula model.



28

2.3.2 R-Vine Copula Based Dependence Modeling

According to Sklar’s theorem (Section 1.1.1), the joint PDF of sensor observations can be

separated into its marginals and the dependence structure that is fully characterized by the

copula density (see Equation (1.2)). As indicated earlier, the R-Vine copula model (Section

1.1.4) is more flexible to decompose the joint PDF into its marginals and a cascade of bivariate

copula densities. In the following, we will use the R-Vine copula to model the dependence

structure and obtain the joint PDF of sensor observations.

In our parallel distributed detection sensor network, L sensors make a set of observations

zn = [z1n, . . . , zLn] at time instant n. Recall that we assume the sensor observations to be

conditionally i.i.d. over time. Therefore, it is sufficient to consider the joint PDF of zn. For

notational convenience, we omit the index n in this subsection and let z = [z1, . . . , zL] be the

L-dimensional observation vector with its marginal CDFs, F = [F1(z1), . . . , FL(zL)]. The R-

Vine copula (F,V ,B) (see Definition 1.2) of z is specified by its marginal CDFs F, R-Vine V =

(T1, . . . , TL−1) and a set of bivariate copulas B = {CCe,a,Ce,b|De | e ∈ Ei, i = 1, 2, . . . , L − 1}

with a set of parameters φ.

From Equation (1.11), the joint PDF of z is given as

f(z|V ,B,φ) =
L∏
l=1

f(zl)
L−1∏
i=1

∏
e∈Ei

× (2.15)

cCe,a,Ce,b|De(FCe,a|De(zCe,a |zDe), FCe,b|De(zCe,b|zDe);φ),

where e = {a, b}, zDe = {zj|j ∈ De}, f(zl) is the marginal PDF of the observation of sensor

l, l = 1, . . . , L.

Given a set of N observed data z1, . . . , zN , the joint PDF of the observations is given as

f(z1, . . . , zN) =
N∏
n=1

f(zn|V ,B,φ). (2.16)
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2.3.3 Model Selection and Estimation

The fitting of an R-Vine copula model to given data requires the selection of the R-Vine tree

structure V , the choice of copula families for the bivariate copula set B and the estimation of

their corresponding parameters φ. Since the bivariate copula families and their corresponding

parameters both depend on the R-Vine tree structure, the identification of trees accurately is

key to the R-Vine copula model. It has been shown that the number of possible R-Vines for

n variables increases very rapidly and is given by
(
n
2

)
× (n − 2)! × 2(n−2

2 ) [73]. It is not

computationally feasible to find the best model by fitting all possible R-Vine constructions.

Suboptimal R-Vine copula selection strategies have been investigated in the literature. In [27],

a sequential method to select an R-Vine model based on Kendall’s tau was proposed, where

a maximum spanning tree algorithm was used. Moreover, the feasibility and efficiency of

this method was demonstrated. The sequential method starts with the selection of the first

tree T1 and continues tree by tree up to the last tree TL−1. The trees are selected in a way

that the chosen bivariate copula models the strongest pair-wise dependencies present which

are characterized by Kendall’s tau. There are other possible choices to measure the pair-wise

dependencies besides Kendall’s tau, for example, the Akaike Information Criterion (AIC) [3]

of each bivariate copula proposed in [21] and the p-value of a copula goodness of fit test and

variants proposed in [22].

In this chapter, we adopt the sequential method proposed in [27] to construct the R-Vine

copula model. Also, we use Kendall’s tau as the measure of dependencies and select the span-

ning tree that maximizes the sum of the absolute values of empirical Kendall’s tau. Kendall’s

tau can be expressed as an expectation over a bivariate copula distribution as shown in [75],

and typically, the log likelihood of a bivariate copula increases with increasing absolute values

of Kendall’s tau. Moreover, the advantage of using Kendall’s tau is that one does not need to

select and estimate the bivariate copulas prior to the tree selection step. We summarize the

sequential method based on Kendall’s tau for obtaining the joint PDF of sensor observations in
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Algorithm 2.1.

Besides the selection of the R-Vine tree structure, we need to define a copula family for

each pair of sensors and select the copula that best characterizes the pair-wise dependencies.

Consider a library of copulas, C = {cm : m = 1, . . . ,M} and assume that we have a set

of N observations z1, . . . , zN . Based on Equation (2.15), to obtain the joint PDF of sensor

observations, we need to specify the marginal PDFs, marginal CDFs including conditional

marginal CDFs of individual local sensor observations as well as the bivariate dependence

structure. If we do not have any prior knowledge of the phenomenon of interest, the marginal

PDFs f(zln) for sensor l, l = 1, 2, . . . , L at time instant n, n = 1, 2, . . . , N can be estimated

non-parametrically using Kernel density estimators [108], and the marginal CDFs F (zln) can

be determined by the Empirical Probability Integral Transforms (EPIT) [45]. Note that the

conditional marginal CDFs need to be obtained recursively using Equation (1.12). Before

selecting the best bivariate copula, the copula parameter set φ is obtained using MLE, which

is given by

φ̂ = arg max
φ

N∑
n=1

log c(F (zl1n), F (zl2n)|φ), (2.17)

where (l1, l2), l1, l2 ∈ [1, 2, . . . , L] is a connected pair in R-Vine tree V and for simplification

of notation, we omit the conditioned elements for conditional marginal CDFs.

To decide on the best copula, we consider three widely used model selection criteria: AIC,

Bayesian Information Criterion (BIC) [88], and MLE,

AIC = −
N∑
n=1

log c(F (zl1n), F (zl2n)|φ̂) + 2qc,

BIC = −
N∑
n=1

log c(F (zl1n), F (zl2n)|φ̂) + qc log(N),

MLE =
N∑
n=1

log c(F (zl1n), F (zl2n)|φ̂),

(2.18)

where qc is the number of parameters in the copula model andN is the number of observations.
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2.4 Efficient R-Vine Copula Based Fusion with Statisti-

cal Dependent Decisions

As observed in the optimal test statistic in Equation (2.5), the set of joint PMFs Ps and Qs, s ∈

S are required to be obtained at each time instant. To tackle the computational complexity

resulting from multi-dimensional integration, we propose an efficient R-Vine copula based

fusion approach of dependent decisions.

Let the local sensor probability of detection and local sensor probability of false alarm be

represented by pl and ql for sensor l, l = 1, 2, . . . , L. Therefore, pl and ql are given as

pl =

∫ +∞

τl

f(zl|H1)dzl,

ql =

∫ +∞

τl

f(zl|H0)dzl,

(2.19)

where τl is the quantization threshold for sensor l. The local optimal sensor thresholds under

the Neyman-Pearson criterion are obtained by solving the following problem:

maximize
τl

pl,

subject to ql ≤ βl,

(2.20)

where βl is the constraint on the local probability of false alarm for sensor l, pl and ql are given

in Equation (2.19).

Consider the set of joint PMFs under hypothesisH1, namely Ps, s ∈ S. Let Ãl = {u1u2 . . . ul . . . uL|ul =

0} and Ãcl denote the complement of Ãl for l = 1, 2, . . . , L. Note that the union of the sets

Ã1, Ã2, . . . , ÃL is S. For the three-sensor case, we have Ã1 = {{011}, {010}, {001}, {000}},

Ã2 = {{101}, {100}, {001}, {000}} and Ã3 = {{110}, {100}, {010}, {000}}. For any s ∈ S,
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the PMF under hypothesis H1 is given as

Ps = P (
L⋂
l=1

Bl), (2.21)

where Bl = Ãl if sl = 0, otherwise, Bl = Ãcl . Ps can be obtained using copula functions. For

example, P101 is given as

P101 = P (Ãc1 ∩ Ã2 ∩ Ãc3) (2.22)

= P (Ã2 − Ã2 ∩ Ã3 − Ã1 ∩ Ã2 + Ã1 ∩ Ã2 ∩ Ã3)

= 1− p2 − C23(1− p2, 1− p3)− C12(1− p1, 1− p2)

+ C123(1− p1, 1− p2, 1− p3),

where C12, C23 and C123 are copula functions.

Consider the three-sensor case, the joint PMFs under H1 is given as

P (u1 = 0, u2 = 0, u3 = 0) = C123 (2.23)

P (u1 = 0, u2 = 0, u3 = 1) = C12 − C123

P (u1 = 0, u2 = 1, u3 = 0) = C13 − C123

P (u1 = 0, u2 = 1, u3 = 1) = 1− p1 − C12 − C13 + C123

P (u1 = 1, u2 = 0, u3 = 0) = C23 − C123

P (u1 = 1, u2 = 0, u3 = 1) = 1− p2 − C12 − C23 + C123

P (u1 = 1, u2 = 1, u3 = 0) = 1− p3 − C23 − C13 + C123

where we omit the marginal CDFs of C, namely 1−pl, l = 1, 2, . . . , L. Similarly, PMFs under

H0 are obtained with pl replaced by ql, l = 1, 2, . . . , L.

Define C as the set that specifies all the copula functions involved in the PMFs of sensor
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Algorithm 2.1 Sequential method to obtain the joint PDF of sensor observations.
Inputs: Marginal PDFs of local sensor observations f(zi|H1) for sensor i, i = 1, 2, . . . ,m,m ∈
[1, 2, . . . , L], data (z1n, . . . , zmn), n = 1, 2, . . . , N and a predefined copula library C.
Output: Joint PDF of sensor observations.

1. Get marginal CDFs of local sensor observations Fi, i = 1, 2, . . . ,m.

2. Calculate the weight wi,j for all possible pairs of sensors {i, j}, 1 ≤ i ≤ j ≤ m.

3. Select the maximum spanning tree that maximizes the sum of absolute empirical weights,
i.e.,

T1 = max
∑

e={i(e),j(e)} in spanning tree

|wi(e),j(e)|.

4. For each edge e ∈ E1, select a copula C∗i(e),j(e) and estimate the corresponding parame-
ter(s) φ∗i(e),j(e).

5. Obtain Fi(e)|j(e)(zi(e)|zj(e)) and Fj(e)|i(e)(zj(e)|zi(e)) using Equation (1.12).

6. For s = 2, . . . ,m− 1 do

(a) Calculate the weight wi(e),j(e)|D(e) for all conditional variable pairs
{i(e), j(e)|D(e)} that can be part of Ts.

(b) Among these edges, select the maximum spanning tree, i.e.,

Ts = max
∑

e={i(e),j(e)|D(e)} in spanning tree

|wi(e),j(e)|D(e)|.

(c) For each edge e ∈ Es, select a best conditional copula C∗i(e),j(e)|D(e) and estimate
the corresponding parameters φ∗i(e),j(e)|D(e).

(d) Obtain Fi(e)|j(e)∪D(e)(zi(e)|zj(e), zD(e)) and Fj(e)|i(e)∪D(e)(zj(e)|zi(e), zD(e)) using
Equation (1.12).

7. end For

8. Obtain the R-Vine copula density c.

9. Obtain the joint PDF of sensor observations using Equation (2.15).
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decisions. We further define the index set of C as G which is the union of all the nonempty

subsets with at least two elements of set {1, 2, . . . , L} in sorted order and the cardinality of

set G is |G| = NG =
∑L

k=2

(
L
k

)
. For the three-sensor case, we have the copula function set

C = {C12, C13, C23, C123} and its index set G = {{1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.

As we can see, knowing C, we can obtain all combinations of the joint PMFs. Any arbi-

trary copula density function of C ∈ C can be obtained through Algorithm 2.1. By integrating

the copula density function, we can obtain the copula function C ∈ C. The computation is

significantly reduced using the copula function set C to obtain the joint PMFs since we only

need to perform multi-dimensional integration once for each copula function C ∈ C. To further

reduce computational complexity, we start with L-dimensional R-Vine copula model selection

by applying Algorithm 2.1 and then use the obtained optimal tree structure with its R-Vine

matrix M∗ (see Definition 1.3), R-Vine copula family matrix F∗ and the corresponding pa-

rameter matrix P ∗ to directly get the copula density functions that need to be estimated in

C. For the rest of the copula functions to be estimated, we again start with selecting an ap-

propriate R-Vine copula model with largest dimension and use its optimal tree structure to

obtain lower dimensional copula functions that have not been estimated. We proceed with this

procedure till we obtain all the copula functions in the set C. For the R-Vine copula exam-

ple in Fig. 1.1, from its R-Vine matrix M∗ (see Section 1.1.5) with its optimal R-Vine copula

family matrix and the corresponding parameter matrix, we can directly obtain the density of

c35, c24, c12, c23, c123, c1234, c12345.

The proposed efficient optimal fusion rule is summarized in Algorithm 2.2.

2.5 Simulation Results

In this section, we demonstrate the efficacy of our proposed R-Vine copula based fusion

methodology for the problem of distributed detection through numerical examples. We assume

that there are two hypotheses, where H1 denotes the presence of a signal s and H0 indicates
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Algorithm 2.2 Efficient optimal fusion rule.
Inputs: Marginal PDFs of local sensor observations f(zl|H1), l = 1, 2, . . . , L.
Output: Log optimal detection statistics.

1. Obtain optimal local quantizer threshold τl, l = 1, 2, . . . , L for all sensors by solving
problem in Equation (2.20).

2. Calculate local sensor probability of detection pl and probability of false alarm ql for all
sensors, l = 1, 2, . . . , L.

3. Obtain optimal R-Vine structure of L sensors using algorithm 2.1 and its R-Vine matrix
M∗ and the corresponding R-Vine copula family matrix F∗ and parameter matrix P∗.

4. For i = 1, 2, . . . , L− 1,

(a) Let G1 = ∅.
(b) Obtain CM∗i,i,M

∗
L,i

and CM∗i,i,M
∗
i+1,i,...,M∗L,i directly from the obtained R-Vine copula

family matrix F∗ and parameter matrix P∗.

(c) G1 = G1 ∪ {{M∗
i,i,M

∗
L,i}, {M∗

i,i,M
∗
i+1,i, . . . ,M

∗
L,i}}.

5. For g = 1, 2, . . . , NG − 1,

(a) if G(g) 6= a,∀a ∈ G1.

(b) Apply algorithm 2.1 and obtain CG(g).

6. Calculate the PMFs of sensor decisions under hypotheses H1 and H0, respectively, using
Equation (2.21).

7. Solve the detection testing problem in Equation (2.6).
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the absence of s. In the distributed sensor network we consider in this chapter, we assume that

three sensors sense and acquire raw measurements of the signal s via a linear sensing model,

and then quantize the detected signal into a single-bit local decision. After compression, the

decisions are transmitted to the FC. The signals received at the sensors can be modeled as:

H1 : zin = hinsin + win, i = 1, 2, 3;n = 1, . . . , N (2.24)

H0 : zin = win, i = 1, 2, 3;n = 1, . . . , N

where zin, hin and win denote the received signal, the fading channel gain and the measurement

noise at sensor i and time instant n. Moreover, sin is the target signal received by the ith sensor

at nth time instant. The intensity of the signal s is assumed to be a constant. We assume that

the channel gain hin is chosen randomly and independently from Rayleigh(ξ) distribution with

parameter ξ over time. However, hin can be spatially dependent. The measurement noise win is

drawn from zero-mean Gaussian distribution with standard deviation σw (σw1 = 1, σw2 = 0.9

and σw3 = 0.8) and is assumed to be temporally independent conditioned on either hypothesis

but can be spatially dependent. Furthermore, we assume that the measurement noise, the fading

gains, and the target signal are mutually independent. Also, we assume that we do not have any

prior knowledge of the marginals and dependence structure. Unless specified otherwise, the

number of sensor observations is assumed to be N = 100, the local probability of false alarm

is constrained by ql ≤ 0.1, l = 1, 2, 3 and AIC is used for optimal bivariate copula selection.

To demonstrate the superiority of R-Vine copula, we apply different multivariate copulas

and seven different R-Vine copulas given by

1. Mixed R-Vine: R-Vine with pair-copula terms chosen individually from 15 bivariate

copula types (Gauss, Student-t, Gumbel, Clayton, Frank and Joe etc.).

2. all Gaussian R-Vine: R-Vine with each pair-copula term chosen as bivariate Gaussian

copula.
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3. all Student t R-Vine: R-Vine with each pair-copula term chosen as bivariate Student t

copula.

4. all Gumbel R-Vine: R-Vine with each pair-copula term chosen as bivariate Gumbel cop-

ula.

5. all Clayton R-Vine: R-Vine with each pair-copula term chosen as bivariate Clayton cop-

ula.

6. all Frank R-Vine: R-Vine with each pair-copula term chosen as bivariate Frank copula.

7. all Joe R-Vine: R-Vine with each pair-copula term chosen as bivariate Joe copula.

MLE AIC BIC p-value
R-Vine mixed 6300.72 -12595.44 -12575.88 0.92

R-Vine all Gaussian 4572.36 -9138.72 -9119.16 0.48
R-Vine all Student t 4868.76 -9725.52 -9686.42 0.38
R-Vine all Gumbel 5799.94 -11593.87 -11574.32 0.57
R-Vine all Clayton 6161.90 -12317.8 -12298.25 0.82
R-Vine all Frank 4553.14 -9100.29 -9080.74 0.57
R-Vine all Joe 6130.61 -12255.22 -12235.67 0.74

Multi-Clayton copula 0.0005
Multi-Gaussian copula 0.0005

Multi-Frank copula 0.0005

Table 2.1: The performance of R-Vine classes and standard multivariate copulas.

Performing a parametric bootstrap with repetition rate B = 1000 and sample size N =

5000, the goodness-of-fit test results are shown in Table 2.1, where the global MLE, AIC and

BIC values are obtained by adding all the bivariate copula information scores calculated using

Equation (2.18). As we can see, the p-value confirms that the R-Vine mixed model (the optimal

fusion methodology) can not be rejected at a 5% significance level, i.e., that the R-Vine mixed

model fits the data quite well. The R-Vine models with a single type of bivariate copulas have

a smaller significance than the R-Vine mixed model. The standard multivariate copulas, e.g.,

multivariate Clayton, Gaussian and Frank copulas, are rejected at a 5% significance level. This
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indicates that the standard multivariate copulas are quite limited in their ability to characterize

complex dependence.

To exhibit the performance improvement by applying R-Vine copula based fusion of de-

pendent sensor decisions, we also evaluate the detection performance obtained by using the

Chair-Varshney fusion rule that assumes independence of sensor decisions. Here, the R-Vine

copula based fusion rule is obtained by choosing from 40 bivariate copula types. We use re-

ceiver operating characteristics (ROCs) to characterize the detection performance. For clarity,

we summarize the empirically studied cases as follows.

• Case 1: We assume that the fading channel gains are spatially dependent. The measure-

ment noises and the target signals received at the local sensors are assumed to be spatially

and temporally independent.

• Case 2: We assume that the target signals received at the local sensors are spatially de-

pendent but are assumed to be temporally independent conditioned on either hypothesis.

The measurement noises are assumed to be spatially and temporally independent. To

characterize the performance of this case, we further assume that the channels are ideal.

• Case 3: We assume that the measurement noises are spatially dependent. The target sig-

nals received at the local sensors are assumed to be spatially and temporally independent

and the channels are ideal .

In Fig. 2.1, we present the ROCs comparing the two fusion rules: the Chair-Varshney fusion

rule and the proposed R-Vine copula based fusion rule for case 1 with different fading param-

eters, ξ. The intensity of the signal at the local sensors is assumed to be si = 4, i = 1, 2, 3. As

we can see, the detection performance of the R-Vine copula based fusion rule is significantly

better than that of the Chair-Varshney fusion rule. Moreover, with stronger fading (ξ = 0.9),

we can see that the detection performance is degraded compared to the fading with parameter

ξ = 1.
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Fig. 2.1: ROCs comparing the Chair-Varshney fusion rule and the R-Vine copula based fusion
rule with dependent fading channels.
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Fig. 2.2: ROCs comparing the Chair-Varshney fusion rule and the R-Vine copula based fusion
rule with dependent signals.

In Fig. 2.2 and Fig. 2.3, we give the ROCs comparing the Chair-Varshney fusion rule and

the proposed R-Vine copula based fusion rule for Case 2 under different dependence structures.

The intensity of the signal received at the local sensors is assumed to be si = 2.4, i = 1, 2, 3.

Fig. 2.2 shows the detection performance under a strong dependence structure and Fig. 2.3

gives the detection performance under a weaker dependence structure. As we can see, for both
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Fig. 2.3: ROCs comparing the Chair-Varshney fusion rule and the R-Vine copula based fusion
rule with dependent signals for weaker dependence.
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Fig. 2.4: ROCs comparing the Chair-Varshney fusion rule and the R-Vine copula based fusion
rule with dependent signals for ql ≤ 0.05.

scenarios, the detection performance of the R-Vine copula based fusion rule is significantly

better than that of the Chair-Varshney fusion rule. We further show the ROCs with the local

probability of false alarm constrained by ql ≤ 0.05, l = 1, 2, 3 in Fig. 2.4. We can see that

it is very difficult to detect the presence of the target signal for both the fusion rules as we

have more tight false alarm constraints. By increasing the intensity of the signal to be si =
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Fig. 2.5: ROCs for R-Vine copula based fusion rule with dependent signals for three model
selection criteria.

3, i = 1, 2, 3, namely with high signal to noise ratio (SNR) in terms of stronger signal power

(denoted by SNR-S) or decreasing the standard deviation of the measurement noise to be σwi =

0.7, i = 1, 2, 3, namely with high SNR in terms of weaker measurement noise power (denoted

by SNR-M), we can see that the detection performance is much better compared to weaker

signal intensity or stronger measurement noise cases.

In Fig. 2.5, we show the ROCs comparing the different model selection criteria discussed in

Section 2.3.3, namely, AIC, BIC and MLE for the proposed R-Vine copula based fusion rule.

As we observe, all the three criteria perform very well. The AIC criterion performs slightly

better than the BIC and MLE criteria.

In Fig. 2.6, we present the ROCs comparing the Chair-Varshney fusion rule and the pro-

posed R-Vine copula based fusion rule for Case 3. As expected, the detection performance of

the R-Vine copula based fusion rule is much superior to that of the Chair-Varshney fusion rule.
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Fig. 2.6: ROCs comparing the Chair-Varshney fusion rule and the R-Vine copula based fusion
rule with dependent measurement noise.

2.6 Summary

In this chapter, we studied the problem of distributed detection with dependent sensor deci-

sions. We proposed a novel and powerful methodology to fuse dependent decisions obtained by

binary quantization of statistically dependent sensor observations under the Neyman-Pearson

framework. To derive the optimal fusion rule, we used the R-Vine copula model to characterize

the complex dependence among multiple sensors. The proposed R-Vine copula based fusion

methodology was employed to overcome the limitation of the existing standard multivariate

copulas, and since this methodology is extremely flexible to model complex dependence struc-

tures. The optimal log likelihood test statistics at the FC involves multi-dimensional integration

at each time, leading to very high computational complexity. We proposed an efficient R-Vine

copula based optimal fusion algorithm. Numerical results have illustrated the efficiency of our

approach.
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CHAPTER 3

COPULA BASED DISTRIBUTED PARALLEL

COMPUTING PLATFORM

3.1 Motivation

Fusion and inference from heterogeneous data streams have to deal with the challenge of

achieving efficiency both in terms of accuracy and processing time. In terms of inference

accuracy, the underlying dependence of observations needs to be taken into account. Also, in

terms of inference processing time, the learning process from data streams often leads to long

response time, especially when more accurate and complex dependence modeling approaches

(such as copula theory) are used. There is a severe lack of approaches that can provide fast and

accurate solutions to inference problems based on fusion of heterogenous streaming data due

to the fact that it is quite challenging.

To overcome this challenge, we propose a novel parallel platform, C-Storm (Copula-based

Storm), for heterogeneous stream data fusion based on Storm (see Section 3.2 for details of

Storm) and the copula-based dependence modeling approach. The novel marriage of copula

theory and Storm’s parallel architecture addresses the lack of approaches for efficiently tak-
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ing both inference accuracy and processing time into consideration for heterogeneous data

stream fusion. C-Storm has the following desirable features: 1) C-Storm offers fast inference

responses. 2) C-Storm provides high inference accuracies. 3) C-Storm is a general-purpose

inference platform that can support data fusion applications. 4) C-Storm is easy to use and its

users do not need to know deep knowledge of Storm or copula theory.

Fig. 3.1: The architecture of Storm.

3.2 Storm

Apache Storm [91] is a reliable and efficient computing platform for distributed/parallel stream

data processing. The architecture of Storm is illustrated in Fig. 3.1. Storm uses two levels

of abstractions, logical and physical, to express parallelism. In the physical layer (usually a

cluster), there is a master node (known as Nimbus) and multiple worker nodes. The master

node works as a central control unit to manage data processing that is actually done on worker

nodes (i.e., physical or virtual machines). Each worker node runs a daemon called superviser
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that listens to all the work assigned to it, on which workers process data tuples. In the logical

layer, a directed graph known as topology is used to model an application, which includes two

kinds of components: spouts and bolts. A spout is the source of a data stream, where data

usually from external sources are read and emitted into the topology in the form of tuples.

A bolt consumes tuples from any spout(s) or other bolt(s) and processes them based on user-

defined functions. A bolt may emit new tuples and transmit them to the other bolts. The links

in the topology graph indicate how tuples are routed. A spout or bolt can be executed as many

tasks in parallel at runtime on one or multiple workers, which can be hosted by one or multiple

worker nodes. A user can specify parallelism by configuring the number of workers for each

component on a topology.

3.3 Design of C-Storm

In this section, we present the architecture and design details of C-Storm.

3.3.1 Architecture of C-Storm

As mentioned above, we develop C-Storm based on copula theory and Storm to embrace their

power of dependance modeling and parallel data processing. The fusion rule for multi-sensor

data requires complete knowledge of the form and structure of the joint distribution of sen-

sor observations. The dependence structure of heterogeneous sources can be quite complex

and nonlinear. Therefore, given arbitrary marginal distributions, their joint distribution cannot

be simply written as the product of the marginals distributions. A major advantage of using

copula-based dependence modeling approach (besides high inference accuracy for data with

complex dependence) on Storm is that it allows separation of learning marginals (PDFs and

CDFs) and learning the dependence structure (copula), i.e., they can be learned in parallel.

Suppose that a phenomenon or a target is continuously monitored by sensors S1, S2, . . . , SL.
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Observations of sensor Sl are denoted by zl = [zl1, zl2, . . . , zlN ]T (l = 1, 2, . . . , L). By fusing

observations from all the sensors, we aim to achieve an inference (detection, classification, or

estimation) goal. Using copula theory, a multivariate joint PDF is modeled as the product of

marginal PDFs and the copula density (see Equation (1.2)).

Typically in many applications, we do not have any prior information related to the phe-

nomenon of interest. Before designing the fusion rule, we need to determine the joint distri-

bution of multivariate sensor observations, namely the marginal PDFs and the optimal copula

density function. To obtain the optimal copula density function, we need to first have the

knowledge of marginal CDFs (see Sklar’s theorem in Section 1.1.1).

C-Storm enables the estimation of marginals (PDFs and CDFs) in a parallel way. Upon

obtaining the estimated marginal CDFs, the best copula is selected in the following way: by

estimating the copula parameters in parallel for each copula function in the library C = {cm :

m = 1, . . . ,M} and obtaining the likelihoods for each copula function, the best copula is

selected to be the copula with maximum likelihood. Using the joint PDF we learn, fusion rules

can be designed according to the problems we are interested in.

Marginal CDF 
Estimation 

Bolt

Marginal PDF 
Estimation 

Bolt

Best Copula 
Selection 

Bolt

�𝒖𝒖𝒍𝒍
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Copula Parameters 
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C-Storm

Fig. 3.2: The architecture of C-Storm.

The architecture for C-Storm is shown in Fig. 3.2, which can be considered as a combina-

tion of the original Storm and an additional software layer that runs as a Storm topology and

implements the copula-based dependance modeling approach. C-Storm consists of a spout and

5 bolts as shown in the figure, whose functions are explained in the following:
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• Spout: It keeps reading observations from the L sensors and emits tuples to marginal

(PDF and CDF) estimation bolts.

• Marginal PDF Estimation bolt: Based on sensor observations, it provides a nonparamet-

ric and smoothed estimation of true density.

• Marginal CDF Estimation bolt: Based on sensor observations, it provides marginal CDFs

needed to estimate the optimal copula (see Equation (1.1)).

• Copula Parameter Estimation bolt: Based on the marginal CDFs, it provides parameters

of all the copula functions in the copula library.

• Best Copula Selection bolt: Based on all the copula functions and their parameters,

it selects the best dependence structure to characterize the joint distributions of sensor

observations.

• Fusion bolt: Based on the joint distributions of sensor observations, it uses a fusion rule

(specified by the user), such as a log likelihood ratio test (for a detection problem), for

inference according to the inference goal.

Our design has the following benefits:

• Fast Inference Responses: C-Storm offers fast inference responses since it leverages

Storm’s power of parallelism for fusing heterogeneous data streams by learning required

marginals and dependence structure and performing fusion in parallel.

• High Inference Accuracies: C-Storm provides high inference accuracies since it uses the

copula-based dependence modeling approach that can significantly improve inference

accuracy compared to the commonly used independence modeling method.

• General-Purpose Inference Platform: C-Storm is a general-purpose inference platform

that can support various data fusion applications since users can specify different fusion

rules based on their application needs.
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• Easy to Use: C-Storm is easy to use since a user only needs to provide data and specify

the fusion rule without knowing the details of Storm or copula theory.

We explain the copula-based dependence modeling approach in some detail and summarize

workflow of the proposed approach in the next subsection.

3.3.2 Copula-based Dependence Modeling

First, we explain how to estimate marginal PDFs and CDFs. The joint PDF of zl, l =

1, 2, . . . , L is given by

f(z1, . . . , zL) =
N∏
n=1

( L∏
l=1

f(zln)
)
c(u1n, . . . , uLn|φ), (3.1)

where f(zln) is the marginal PDF, uln is the marginal CDF for sensor l at time instant n (l =

1, 2, . . . , L, n = 1, 2, . . . , N ), and φ is the parameter of copula c.

Without any prior knowledge of the phenomenon of interest, the marginal PDFs fl(·) for

sensor l (l = 1, 2, . . . , L) can be estimated non-parametrically, and the marginal CDFs ul =

[ul1, ul2, . . . , ulN ] (l = 1, 2, . . . , L) can be determined by the EPIT in [45]. The estimate of

uniform random variables uln is obtained by using EPIT:

F̂ (·) =
1

N

N+1∑
n=1

1zln<{·}, (3.2)

ûln = F̂ (zln), (3.3)

where 1{·} is the indicator function.

Kernel density estimators [108] provide a smoothed estimate of true density by choosing

the optimal bandwidth so that an accurate estimate is achieved. Leave-one-out cross-validation

method is applied to choose the kernel bandwidth. For a kernel K, the optimal bandwidth h∗

is obtained by minimizing the cross-validation estimator of risk Ĵ . The risk estimator can be
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easily acquired using the approximation in [108, p. 136]:

Ĵ(h) =
1

hN2

∑
p

∑
q

K∗
(
Xp −Xq

h

)
+

2

Nh
K(0) +O

(
1

N2

)
,

(3.4)

where K∗(x) = K(2)(x)− 2K(x) and K(2)(z) =
∫
K(z − y)K(y)dy.

Next, we discuss the estimation of copula parameters and the selection of the best copula.

Before selecting the optimal copula, the copula parameter set φ is obtained using MLE, which

is given by

φ̂ = arg max
φ

N∑
n=1

log c(û1n, . . . , ûLn|φ), (3.5)

where ûln is the empirical estimate of uln.

The best copula c∗ (maximum likelihood) is selected from a predefined library of copulas,

C = {cm : m = 1, . . . ,M}. It is given as

c∗ = arg max
cm∈C

N∑
n=1

log cm(û1n, . . . , ûLn|φ̂m). (3.6)

In summary, C-Storm works as follows: first, the spout keeps reading observations from

multiple sources and emits the corresponding tuples to the marginals estimation bolts, which

estimate marginal CDFs and PDFs using Equation (3.3) and the kernel density estimators re-

spectively. Second, the copula parameter estimation bolt estimates parameters of all the copula

functions in the library C based on estimated marginal CDFs using Equation (3.5). Third, the

best copula selection bolt outputs the optimal copula and its parameters based on all the copula

functions and their parameters using Equation (3.6). In the last step, the fusion bolt uses the

estimated marginal PDFs, the best copula and its parameters to achieve the given inference

goal.
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3.4 Simulation Results

For validation and performance evaluation, we implemented C-Storm based on Apache Storm

1.0.2 [91]. We conducted extensive experiments on a Storm cluster of 6 Ubuntu 14.04 VMs,

each of which is equipped with a 2-core virtual CPU running at 2.30GHz and 2GB of RAM.

3.4.1 Fusion Application and Experimental Setup

In our experiments, we considered a detection problem, where a random phenomenon is mon-

itored continuously by L sensors. A binary hypothesis testing problem is studied, where H0

denotes the absence of the phenomenon (null hypothesis) and H1 denotes the presence of the

random phenomenon (alternative hypothesis). The lth sensor (l = 1, 2, . . . , L) makes a set of

N observations, zl = [zl1, zl2, . . . , zlN ]T . We assume that sensor observations are continuous

random variables and i.i.d. over time. The collective raw observations, z = [z1, z2, . . . , zL],

are transmitted to C-Storm. By estimating the joint distributions of z, C-Storm determines

whether a phenomenon is present or not. Since sensor observations are independent over time,

the likelihood ratio test statistic is given as

Λ(z) =

∏N
n=1 f1(z1n, z2n, . . . , zLn|H1)∏N
n=1 f0(z1n, z2n, . . . , zLn|H0)

, (3.7)

where f1 and f0 denote the joint PDFs under alternative and null hypotheses, respectively.

Using the copula-based dependence modeling approach and taking log on both sides of

Equation (3.7), the log test statistic can be expressed in terms of the optimal copula densities,

c∗1 and c∗0, respectively under H1 and H0, as

log Λ(z) =
N∑
n=1

L∑
l=1

log
f̂1(zln)

f̂0(zln)

+
N∑
n=1

log
c∗1(û1

1n, . . . , û
1
Ln|φ̂

∗
1)

c∗0(û0
1n, . . . , û

0
Ln|φ̂

∗
0)
,

(3.8)
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where f̂k(zln) is the estimated marginal PDF, ûkln = F (zln|Hk) denotes the estimated CDF, for

sensor l at time instant n and φ̂
∗
k is the parameter of the optimal copula c∗k, under hypothesis

Hk (k = 0, 1). The optimal fusion rule is given by

log Λ(z)
H1

≷
H0

η, (3.9)

where η is the threshold for the test.

With unknown marginals and dependence structure, the test statistic is given by Equation

(3.8), where the marginal CDFs ûkln, marginal PDFs f̂k(zln) and optimal copulas c∗k (k = 0, 1,

l = 1, 2, . . . , L, n = 1, 2, . . . , N ) need to be learned from the measurements z1, z2, . . . , zL

within a short time. Since sensor observations arrive continuously at a high rate, the learning

process should be fast enough so that incoming data can be processed in a timely manner.

For training, the spout and the bolts work as described in Section 3.3, i.e., C-Storm com-

putes the marginal PDFs, the optimal copulas and its parameters under hypotheses H1 and H0

for hypothesis testing. After training, hypothesis testing starts. For hypothesis testing, we im-

plemented a fusion bolt, which performs the fusion rule given by Equation (3.9) based on the

training results.

We tested the detection topology with 6 worker nodes, each of which hosts only one worker.

Our experimental results are presented for a 2-sensor case (L = 2). Note that the copula-based

dependence modeling approach described above can be easily extended to the general case

where L > 2 since one can construct a multivariate copula using bivariate components [92].

The input data were generated with normal and beta distributed marginals and Student t copula

dependence [75]. Note that we did not include Student t copula in the copula library of the

proposed approach for fair comparison.
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Fig. 3.3: C-Storm versus sequential baseline in terms of average total processing time.

3.4.2 Experimental Results and Analysis

To show the superiority of C-Storm, we compared it with a sequential baseline (labeled as "Se-

quential") using the same dependence modeling approach. For fair comparison, we implement

and run the baseline on Storm using one worker. To reduce the effect of randomness, every

number presented in the following figures is an average over 5 Monte Carlo runs. Fig. 3.3

shows the average total processing times achieved by C-Storm with W ∈ {2, 3, 4, 5, 6} work-

ers and the sequential baseline respectively for different training data sizes. From the results,

we can see that C-Storm significantly accelerates data fusion and reduces processing time. For

example, when the number of training data samples is 5000 and 4 workers are used, C-Storm

achieves an average total processing time of 379s, while the average processing time given by

the sequential baseline is 955.3s. C-Storm offers an average of 2.6x speedup for the case with

4 workers. When the number of workers becomes 6 and the number of training samples is

5000, C-Storm reduces the average total processing time from 955.3s (sequential) to 207.1s,

which represents a speedup of 4.6x. On an average, C-Storm offers a 4.7x speedup with 6

workers. As expected, more workers, i.e., higher degree of parallelism, leads to more speedup

and less processing time. The speedup when using 2 workers is not as impressive as that when
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using more (3 − 6) workers. This is because before workers start to work, Storm needs some

time to distribute tasks to each worker and such overhead counteracts the expected speedup. In

addition, it can also be seen that the average total processing time increases with the number

of training data samples. In the fusion bolt described above, the marginal probability densi-

ties under both hypotheses are obtained first on testing data based on the estimated marginal

PDFs, and the copula densities under both hypotheses are obtained on testing data. Then, the

test statistic starts to work. Fig. 3.4 shows the average total processing time of C-Storm with

different number of workers used for obtaining the marginal probability densities on the testing

data in the fusion bolt. As we can see, within 300s, C-Storm can process 5000 training data

samples using 4 workers and 7000 training data samples using 6 workers. On an average, by

using 6 workers, C-Storm can process 40% more data samples than using 4 workers.
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Fig. 3.4: Average total processing times of C-Storm with different number of workers used
for obtaining the marginal probability densities in the fusion bolt.

Fig. 3.5 shows the average total processing time of C-Storm with different number of work-

ers used for performing the test given by Equation (3.8) in the fusion bolt. Here, we can make

similar observations that more workers can process more data samples. The results from these

two experiments are consistent with those in the first experiment, which again validate our

claim that higher degree parallelism leads to less processing time for stream data fusion.
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Fig. 3.5: Average total processing times of C-Storm with different number of workers used
for performing the test in the fusion bolt.
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Fig. 3.6: ROCs for the detection problem.

As mentioned above, we are concerned about both processing time and detection accuracy

for data fusion applications. Fig. 3.6 presents the detection accuracy using the Receiver Operat-

ing Characteristics (ROC) for copula-based dependence modeling and independence modeling

with different training data sizes. We can observe that copula-based dependence modeling sig-

nificantly improves detection accuracy compared to the independence modeling approach that

assumes that sensor observations are independent.
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3.5 Summary

In this chapter, we presented the design and evaluation of C-Storm, which is a novel parallel

platform that is built based on Apache Storm and uses the copula-based dependence modeling

approach for the fusion of heterogeneous data streams. C-Storm offers fast inference responses

and high inference accuracies. Moreover, it is a general and easy-to-use platform that can

support various data fusion applications. Its users do not need to know the details of Storm

or copula theory. We demonstrated the superiority of C-Storm via a detection application.

Experimental results have shown that C-Storm achieves 4.7x speedup over a sequential baseline

on average, and higher degree of parallelism leads to better performance.
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CHAPTER 4

DISTRIBUTED CLASSIFICATION WITH

DEPENDENT FEATURES

4.1 Motivation

Human activity recognition (HAR) is quite important as it can be used for health care, personal

fitness, and border surveillance, etc. [49,110,111]. The task of HAR is to detect and recognize

human actions from the data provided by multiple sensors. HAR is naturally a classification

task. Combining multiple sensing modalities can boost the classification performance. How-

ever, since each sensor carries a unique physical trait, sensor heterogeneity or incommensu-

rability is the first critical challenge for multi-modal fusion. Also, multiple sensor modalities

tend to be dependent due to non-linear cross-modal interactions.

Most of the current multi-classifier fusion solutions for HAR rely on shallow classifiers,

such as Support Vector Machines (SVMs), Random Forests and Decision Trees, which employ

handcrafted statistical features extracted from each modality. The typical strategy for the fu-

sion of these features is to combine the outputs obtained from multiple classifiers, where each

classifier only takes the features of one modality [9,37,64,79,89,116]. Note that designing and
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selecting robust features heavily relies on human experience and is time consuming. Also, only

shallow features, such as mean, variance and amplitude, can be learned according to human

expertise, which can be insufficient for more complex activities [114].

Very recently, multimodal deep learning methodologies for HAR have attracted some at-

tention [74, 84]. Compared to the shallow classifiers, deep classifiers can learn many more

high-level features directly from raw data (or lightly processed data) and avoid the need for

the design of handcrafted features. Three fusion strategies can be applied to deep neural net-

works, based on the level where the fusion is performed: intermediate fusion with higher-level

representations, referred to as high-level features, late fusion with decisions or late fusion with

probability scores. In [74, 84], intermediate fusion strategies using Deep Neural Networks

(DNNs) and Convolutional Neural Networks (CNNs) were studied, where a fully connected

fusion layer was used to combine multiple DNNs or CNNs. As mentioned earlier, the data

from multiple sensing modalities are non-linearly dependent. The fully connected fusion layer

can learn this dependence in some manner. However, understanding and analyzing this non-

linear dependence using the fully connected layer or another deep neural network is still an

open question.

In this chapter, we leverage the DNNs and the R-Vine copula based dependence modeling

for sensor-based recognition of human actions. More specifically, we use multiple DNNs to

extract high-level features from multiple sensing modalities, where each DNN only processes

the data from a single sensor. Thus, the data compatibility issues among multiple modalities

can be avoided [62,76]. Different from the fusion strategy (using a fully connected fusion layer)

in [74, 84], we propose a probabilistic fusion methodology, R-Vine copula based fusion rule,

that combines the extracted high-level features and characterizes the cross-modal dependence.

Moreover, our proposed model is designed to improve the classification performance compared

to the neural network based fusion method and adds interpretability in the sense that it explicitly

explains the dependence structure of the extracted features from different modalities.
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4.2 Problem Formulation

Consider a supervised classification problem with G classes. Let Ω = {w1, w2, . . . , wG} be

the set of class labels. L sensors make a set of observations regarding the object/event at time

instant n, {x1n,x2n, . . . ,xLn, yn}, where n = 1, 2, . . . and xln ∈ Rd1l×d
2
l , d1

l , d
2
l ∈ N,N =

[1, 2, . . .] is the observation of sensor l at time n. yn ∈ Ω is the class label. We assume that

the sensor observations are continuous random variables that are conditionally i.i.d. over time.

L independent pre-trained DNN classifiers are used to extract high-level features from each

sensing modality. A typical DNN is shown in Fig. 4.1. Compared to the traditional artificial

neural networks, DNN is more capable of learning informative features from large amounts of

data. We use hln ∈ R1×rl , rl ∈ N to represent the nth high-level feature vector extracted from

sensor l. These high-level features are then combined using the R-Vine copula based fusion

rule. We show the classification system studied here in Fig. 4.2.

Fig. 4.1: A typical Deep Neural Network structure [84].
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Sensor 𝒍𝒍 R-Vine Copula 
Based Fusion
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DecisionDNN
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⋮
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High-level 𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅 𝒉𝒉𝟏𝟏

High−level 𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅 𝒉𝒉𝒍𝒍

High−level 𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅 𝒉𝒉𝑳𝑳

Fig. 4.2: R-Vine copula based multi-modal DNN.
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Remark 4.1. Note that for the sensor-based HAR, we use the feed-forward DNNs shown in

Fig. 4.1 to extract high-level features instead of CNNs. There are two main reasons. The first

one is that compared to DNNs, CNNs are computationally more intensive. The second one is

that the high-level features extracted from CNNs are generally high dimensional. Also, among

these high dimensional features, a large number of features are irrelevant and redundant. Fus-

ing all the features based on R-Vine copula models is computationally inefficient.

Our aim is to determine the class label by combining the extracted high-level features.

Assume that we have a training set with a total of N feature vectors and the joint feature vector

is

hn = [h1
n h2

n . . . hLn ] ∈ R1×(r1+r2+...+rL), n = [N ], (4.1)

where [N ] = [1, 2, . . . , N ]. In the following, for notational simplicity, we omit the superscripts

of the feature vectors in Equation (4.1) and let hn = [h1n, h2n, . . . , hKn], K = r1+r2+. . .+rL.

Using Bayes’ theorem, the posterior probability of classwi given the joint high-level feature

vectors is given as:

P (wi|h) =
f(h|wi)P (wi)

f(h)
∝ f(h|wi)P (wi), (4.2)

where h = [h1, . . . ,hN ], f(h|wi) is the joint likelihood function and P (wi) is the prior prob-

ability for class wi. If the class prior probabilities are not known, it is commonly assumed

that the classes are equally likely. The class label w0 is determined by choosing the label with

highest posterior probability, which is given by

w0 = arg max
wi∈Ω

P (wi|h). (4.3)

Since f(h) is a constant for all the classes, the main problem is how to model and maximize

f(h|wi) under unknown multivariate dependence. In the following section, we will use R-Vine

copulas to model the joint likelihood function.
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4.3 R-Vine Copula Based Fusion of Multiple Deep Neu-

ral Networks

In this section, we present the R-Vine copula based fusion rule. Our goal now is to find the

joint PDFs of feature vectors h under each class. According to Sklar’s theorem (Section 1.1.1),

the joint PDF can be separated into its marginals and the dependence structure that is fully

characterized by the copula (see Equation (1.2)). Therefore, we have

f(h|wi) =
N∏
n=1

( K∏
k=1

fk(hkn|wi)
)
ci

(
Fi(hn)|φi

)
, (4.4)

where fk(hkn|wi), k = 1, . . . , K are the marginal PDFs and Fi(hn) = [F i
1(h1n), . . . , F i

K(hKn)]

denotes all the marginal CDFs at time instant n under class wi, wi ∈ Ω. Moreover, ci is the

copula density function for class wi and φi is the corresponding parameter set.

Since we have no knowledge of the joint distributions of the extracted high-level features,

the marginal PDFs, marginal CDFs, copula density functions and their corresponding parame-

ters need to be estimated using the training dataset. The estimation of the marginal distributions

and optimal copula density functions for all the classes is similar. Therefore, the class index i

is omitted in the rest of the chapter.

The marginal PDFs can be estimated non-parametrically using kernel density estimators

[108] that provide a smoothed estimate of true density by choosing the optimal bandwidth so

that an accurate estimate is achieved. Further, the marginal CDFs can be determined by the

EPIT. The estimate of Fk(·) is given as

F̂k(·) =
1

N

N∑
n=1

1hkn<{·}, (4.5)

where 1{·} is the indicator function.

Next, we discuss how to construct and find the optimal multivariate copula c∗ using R-Vine
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copula models, which was introduced by Bedford and Cooke in [11, 12].

4.3.1 R-Vine copula Models

Using the R-Vine copula model and Sklar’s theorem, the joint PDF of the feature vector h =

[h1, . . . ,hN ] is given by

f(h|wi) =
N∏
n=1

K∏
k=1

fk(hkn|wi)
K−1∏
m=1

∏
e∈Em

× (4.6)

cCe,a,Ce,b|De(FCe,a|De(hCe,an|hDe), FCe,b|De(hCe,bn|hDen);φ),

where e = {a, b} and hDen = {hjn|j ∈ De}, fk(·|wi) is the marginal PDF for kth feature,

k = 1, . . . , K.

4.3.2 Estimation of Optimal R-Vine copula

The estimation of optimal R-Vine copula model for the joint feature vector h requires the se-

lection of the R-Vine tree structure V , the choice of copula families for the bivariate copula set

B and the estimation of their corresponding parameters φ. To select the optimal R-Vine tree

structure, we adopt the sequential maximum spanning tree algorithm in [27]. This sequential

method is based on Kendall’s τ . The sequential method starts with the selection of the first tree

T1 and continues tree by tree up to the last tree TK−1. The trees are selected in a way that the

chosen bivariate copula models the strongest pair-wise dependencies present which are char-

acterized by Kendall’s τ . After the optimal R-Vine tree structure is selected, we need to define

a bivariate copula family and estimate the optimal bivariate copulas that best characterizes the

pair-wise dependencies.

Consider a library of copula, C = {cm : m = 1, 2, . . . ,M}. Before estimating the optimal
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bivariate copula, the copula parameter set φ is first obtained using MLE, which is given by

φ̂=arg max
φ

N∑
n=1

log c(F̂k1(hk1n), F̂k2(hk2n)|φ), (4.7)

where (k1, k2), k1, k2 ∈ [1, 2, . . . , K] is a connected pair in the selected R-Vine tree V and for

simplification of notation, we omit the conditioning elements for conditional marginal CDFs.

Note that the conditional marginal CDFs can be obtained recursively using Equation (1.12).

The best copula c∗ is selected from the copula library C using the Akaike Information

Criterion (AIC) [3] as the criterion, which is given as

AICm = −
N∑
n=1

log cm(F̂k1(hk1n), F̂k2(hk2n)|φ̂m) + 2q(K), (4.8)

where q(K) is the number of parameters in the mth copula model. Also, the conditioning

elements for conditional marginal CDFs are omitted.

The best copula c∗ is

c∗ = arg min
cm∈C

AICm. (4.9)

4.4 Simulation Results

In this section, we demonstrate the efficacy of our proposed R-Vine copula based methodology

for the fusion of multiple DNNs. To show the superiority of our proposed fusion scheme, we

also compare our result with the classification performance obtained by using the following

schemes:

• Single modality without fusion: Feed the raw data into a DNN classifier.

• Data-level fusion: Concatenate all the raw data from different modalities into one input

vector and feed it into a DNN classifier.



63

• Fully connected layer fusion: Concatenate the extracted features into one feature vector

and use a fully connected fusion layer to achieve a final classification decision.

4.4.1 Datasets

We select two publicly available datasets that contain multi-modality sensor readings for the

recognition of human activities.

STISEN Heterogeneity Activity Recognition Dataset, collected by Stisen et al. [90], con-

tains the sensor readings from two modalities: smartphone and smart watch. Each modality is

equipped with two motion sensors, accelerometer and gyroscope. There are 6 classes (‘Sit’,

‘Stand’, ‘Walk’, ‘Stairsup’, ‘Stairsdown’, ‘Bike’) to be classified. We focus on the fusion of

phone and watch modalities. Each of the two motion sensors produces a three-dimensional

data vector, making each data sample contain 6 attributes in total. We select the data captured

by Samsung Galaxy S3 mini phone and Samsung Galaxy Gear watch, where the data samples

were sampled at a rate of 100 Hz. 9000 samples from each modality are used to train and

test DNN models for feature selection, and another 9000 samples are used to train and test the

R-Vine copula based fusion methodology.

ANGUITA Human Activity Recognition Using Smartphone Dataset, collected by An-

guita et al. [5], contains accelerometer and gyroscope three-dimensional sensor data. It was

collected from 30 volunteers who performed six different activities (‘Walking’, ‘Walking-

upstairs’, ‘Walking-downstairs’, ‘Siting’, ‘Standing’, ‘Laying’). We focus on the fusion of

accelerometer and gyroscope modalities. These sensor data were sampled at a rate of 50 Hz,

and were separated into windows of 128 values. Each window has 50% overlap with the previ-

ous window. The 128-real value vector in each window stands for one sample for each activity.
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4.4.2 Classification Accuracy

We use F1 score as the classification performance metric, which is given by

F1 =
2

|Ω|
∑
w

precisionw × recallw
precisionw + recallw

, (4.10)

where precision = TP
TP+FP

and recall = TP
TP+FN

. Here, TP, FP and FN denote true positive,

false positive and false negative, respectively. F1 score is robust to unbalanced distributions of

data samples across classes.

Model F1 score
Watch-DNN 71.4%
Phone-DNN 70.2%

Fully-connected layer fusion 78.0%
Data-level fusion 79.3%

R-Vine copula fusion 88.6%

Table 4.1: STISEN: F1 scores for Watch-DNN, Phone-DNN, Fully-connected layer fusion,
Data-level fusion, R-Vine copula fusion.

Model F1 score
Accelerometer-DNN 87.8%

Gyroscope-DNN 72.9%
Fully-connected layer fusion 91.9%

Data-level fusion 88.3%
R-Vine copula fusion 92.8%

Table 4.2: ANGUITA: F1 scores for Accelerometer-DNN, Gyroscope-DNN, Fully-connected
layer fusion, Data-level fusion, R-Vine copula fusion.

Table 4.1 and Table 4.2 show the F1 scores comparing the five classification schemes: two

single modality based DNN classifiers and three multi-modal fusion based DNN classifiers

for the STISEN and ANGUITA datasets, respectively. As we can see, fusion based schemes

perform better than single modality based schemes. Also, our proposed R-Vine copula based

fusion methodology performs better than using the data-level fusion scheme and fully con-

nected fusion layer scheme. Our proposed methodology achieves an overall 88.6% and 92.8%
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F1 scores for the STISEN and ANGUITA datasets, respectively. Moreover, we can see that

for phone and watch modalities, the R-Vine copula based fusion scheme achieves higher per-

formance improvement compared to accelerometer and gyroscope modalities. This is because

of the fact that the accelerometer and gyroscope are less dependent while the phone and watch

are highly dependent.

It should be noted that the training of R-Vine copula models requires less number of training

samples compared to the training of a fully connected fusion layer or another DNN used for

fusion. In Table 4.1 and Table 4.2, the performance of our R-Vine copula scheme is obtained

by using a total of N = 1200 feature samples. However, the fully connected fusion layer based

scheme requires a total of N = 6000 feature samples.

In Fig. 4.3, we show the first level dependence structure (first tree of the R-Vine copula

model; see Fig. 1.1 as an example) of the extracted features using our proposed R-Vine cop-

ula based fusion method for activity ‘Walking-upstairs’ in ANGUITA dataset. Here, features

h1,h2,h3,h4 are from the accelerometer while the features h5,h6,h7 are from the gyroscope.

As we can see that, features h3 and h6 are highly dependent and the two modalities accelerom-

eter and gyroscope are dependent mainly via these two features. Using the knowledge of

intra-modal and cross-modal feature dependencies, we can trace back and find where these

dependent features originated from, which would yield the reduction of training data needed in

DNNs. Furthermore, we are able to understand the correlation among the raw data from dif-

ferent modalities. The R-Vine copula based fusion method adds interpretability of the model

which explicitly provides the dependence structure for features from different modalities, com-

pared to the neural network based fusion which is totally a ‘black-box’ model.

𝒉𝒉𝟏𝟏

𝒉𝒉𝟐𝟐

𝒉𝒉𝟔𝟔 𝒉𝒉𝟓𝟓𝒉𝒉𝟑𝟑𝒉𝒉𝟒𝟒 𝒉𝒉𝟕𝟕

Fig. 4.3: First level dependence structure for activity ‘Walking-upstairs’.



66

Sit Stand Walk Stairsup Stairsdown Bike Recall
Sit 498 0 0 0 2 0 99.6%

Stand 0 454 0 0 46 0 90.8%
Walk 0 0 402 43 17 38 80.4%

Stairsup 0 0 24 408 50 0 81.6%
Stairsdown 0 0 39 53 408 0 81.6%

Bike 0 0 8 4 2 486 97.2%
Precision 100.0% 100.0% 85.0% 80.3% 77.7% 89.7% 88.6%

Table 4.3: STISEN: Confusion matrix for R-Vine copula based fusion.

W WU WD Si St L Recall
Walking 276 0 17 3 0 0 93.2%

Walking-upstairs 6 259 0 3 3 0 95.6%.
Waking-downstairs 8 0 211 0 1 0 95.9%

Sitting 3 6 1 248 33 0 85.2%
Standing 3 3 2 26 298 0 87.4%
Laying 2 0 0 0 6 329 97.63%

Precision 92.6% 96.6% 91.3% 88.6% 87.4% 100.0% 92.8%

Table 4.4: ANGUITA: Confusion matrix for R-Vine copula based fusion.

Table 4.3 and Table 4.4 show the confusion matrices using the R-Vine copula based fusion

scheme for the STISEN and ANGUITA datasets, respectively. As we observe, the fusion

of phone and watch modalities achieves perfect classification for static activities (‘Sit’ and

‘Stand’). Also, the fusion of the accelerometer and gyroscope from the smartphone achieves

significantly accurate classification for moving activities (e.g., ‘Walking’, ‘Laying’).

4.5 Summary

In this chapter, an R-Vine copula based feature fusion approach was presented to perform

activity recognition using multi-modal sensor observations. The features of each modality were

extracted via a DNN and afterwards, an R-Vine copula model was constructed to capture the

dependencies of intra-modal and cross-modal features. The procedures of model construction

involve selecting the optimal R-Vine tree structure, obtaining the copula parameter set φ, and
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choosing the best copula c∗. Experiments on two human activity datasets demonstrated the

efficiency of our proposed method compared to neural network based data/feature fusion, in

terms of high prediction accuracy, less number of training samples required and dependence

interpretability.
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CHAPTER 5

DISTRIBUTED SEQUENTIAL DETECTION

WITH DEPENDENT OBSERVATIONS

5.1 Motivation

Distributed detection problems in sensor networks with fixed-sample-size (FSS) have been

studied extensively [17, 28, 33, 54, 57, 58, 100, 105, 109], where the goal often is to minimize

the probability of detection error at the FC based on a fixed number of observations collected

by the sensors. For distributed detection problems in sensor networks, the challenge is to

achieve high performance in terms of accuracy efficiency and time efficiency while satisfy-

ing energy and bandwidth constraints. In terms of detection performance, one critical issue

for distributed detection problems in sensor networks is that the observations at the spatially

distributed sensors may be highly dependent. Also, in terms of the detection time, sequential

(random-sample-size) methods have shown their ability to improve time efficiency compared

to FSS methods.

Wald’s sequential probability ratio test (SPRT) [107] has been shown to be the optimal se-

quential test that arrives at a decision as soon as possible for binary hypothesis testing problems
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by ignoring overshoots. However, the average detection time for SPRT can be larger than that

of FSS tests under the same error probabilities for some cases [10, 97]. A truncated SPRT was

proposed in [98], where the truncation time was chosen based on the corresponding FSS test

and the average detection time always stayed below that of the FSS test at the expense of a

small increase in error probabilities.

The problem of distributed sequential detection based on SPRT has attracted a lot of atten-

tion [34, 47, 65, 69, 77, 106]. In [34, 77, 106], likelihood-ratio-based quantizers were employed

at the local sensors and a generalized SPRT (GSPRT) was used at the FC based on the quan-

tized messages sent by the local sensors. In [47,69], local tests and the test at the FC were both

chosen to be GSPRT. In [65], a distributed sequential binary hypothesis testing scheme was

proposed, where a GSPRT was performed at the FC and a level-triggered sampling scheme was

proposed at the local sensors. However, in the aforementioned literature [34,47,65,69,77,106],

observations at the sensors were assumed to be independent and their spatial dependence was

not considered.

In this chapter, we consider a distributed sequential detection problem with spatially de-

pendent sensor observations. We assume that the channels from the sensors to the FC are

corrupted by additive noise, including possibly non-Gaussian noise. We propose a distributed

copula-based sequential scheme, where sequential tests are conducted at both the local sen-

sors and the FC. More specifically, we perform a R-Vine copula based SPRT at the FC and

memory-less grouped-data truncated SPRTs at the local sensors.

5.2 Problem Formulation

Consider a sequential binary hypothesis testing problem for the sensor network shown in

Fig. 5.1. The two hypotheses, denoted by H1 and H0, are associated with the random phe-

nomenon of interest that is monitored continuously by L sensors. Here, H1 denotes the pres-

ence of the phenomenon and H0 denotes the absence of the phenomenon. Suppose that the
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Random 
Phenomenon 
𝐻𝐻1 or 𝐻𝐻0

Sensor 1 Sensor 2 Sensor 𝐿𝐿⋯

Fusion Center

Global Decision

𝑧𝑧1𝑖𝑖 𝑧𝑧2𝑖𝑖 𝑧𝑧𝐿𝐿𝐿𝐿

message message message

Fig. 5.1: Parallel distributed detection system.

lth sensor acquires the observation zli, l = 1, 2, . . . , L at each time instant i = {1, 2, . . .}, and

forwards its raw or compressed version of the data over a noisy channel to the FC that runs a

sequential test and produces a global decision based on the received messages from the sen-

sors. At the FC, the sequential procedure has three possible outcomes: it may either 1) accept

H0 and stop the test, or 2) accept H1 and stop the test or 3) make no decision and acquire a

new observation. The FC repeats this process until a decision is reached, in which case the

test stops. Let T denote the stopping time. The goal is to minimize the expected stopping

time Ek[T ] under hypothesis k = 0, 1 given that PF ≤ α, PM ≤ β, where PF is the global

probability of false alarm with constraint α ∈ (0, 1/2) and PM is the global probability of miss

detection with constraint β ∈ (0, 1/2). We first make the following assumptions.

• Sensor observations zli, l = 1, 2, . . . , L, i = 1, 2, . . . are continuous random variables

and i.i.d. over time.

• The PDFs of sensor observations zli, l = 1, 2, . . . , L, namely the marginal PDFs, are

known under both hypotheses and given by gk,l(zli), k = 0, 1.
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• The channel links between the sensors and the FC are corrupted by additive noisewlj, l =

1, 2, . . . , L and j is the receiving time instant at the FC. Also, wlj, l = 1, 2, . . . , L are

assumed to be i.i.d. over time and independent of the messages sent by the local sensors.

• The signal received at the FC corresponding to sensor l at time j, after being corrupted

by the imperfect channel, is denoted by ylj .

• The marginal PDFs fk,l(ylj) and CDFs F k
l (ylj) with k = 0, 1 under both hypotheses are

assumed to be known.

• The received observations y1j, . . . , yLj at the FC and time instant j are assumed to be

spatially dependent, namely, fk(yj) 6=
∏L

l=1 fk,l(ylj), k = 0, 1, where fk(·) and fk,l(·)

denote the joint PDF and marginal PDF for sensor l, conditioned on Hk, respectively.

yj = [y1j, . . . , yLj] is the observation vector for all the sensors at time instant j. We use

the copula density function ck(·|φk) to characterize the underlying dependence under

hypothesis Hk, k = 0, 1 (see Equation (1.2)), which is typically not available a priori.

Note that this dependence may result from the dependent messages sent by the local

sensors, the dependent additive noise or both.

Remark 5.1. In some applications, we may not have any prior information related to the

phenomenon of interest, namely, the marginal PDFs and marginal CDFs may not be known.

However, the marginal PDFs can be estimated non-parametrically using kernel density esti-

mators [108] that provide a smoothed estimate of the true PDF by choosing the optimal band-

width so that an accurate estimate is obtained. Moreover, the marginal CDF F k
l (·) for sensor

l, l = 1, . . . , L under hypothesis k, k = 0, 1 can be obtained by using Empirical Probability

Integral Transforms in [45].

Before we proceed, we recall the definition of Kullback-Leibler (KL) divergence between
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two PDFs f(x) and g(x), denoted by D(f(x)||g(x)), given as

D(f(x)||g(x)) =

∫
f(x)log

(
f(x)

g(x)

)
dx.

Moreover, for any PDFs f(x) and g(x), D (f(x)||g(x)) ≥ 0 with equality if and only if

f(x) = g(x). Throughout this chapter, we assume that

A1 There exists at least one sensor l, for which D (f0,l(·)||f1,l(·)) and D (f1,l(·)||f0,l(·)) are

finite and positive. Moreover,

0 < D (c0(·|φ0)||c1(·|φ1)) <∞,

0 < D (c1(·|φ1)||c0(·|φ0)) <∞.

Remark 5.2. Note that the condition A1 guarantees that the two hypotheses are distinguish-

able, i.e., f1(·) is not equal to f0(·) almost everywhere, where fk(·) denotes the joint PDF

under hypothesis Hk, k = 0, 1.

In the following sections, we start by designing a centralized copula-based SPRT; then pro-

pose a distributed copula-based SPRT with memory-less grouped-data SPRT tests performed

at the local sensors.

Remark 5.3. In this work, we ignore the overshoot effects while designing the sequential

SPRTs in the following sections.

5.3 Centralized Copula-based Sequential Probability Ra-

tio Test

In this section, we consider the centralized sequential test. In this case, corrupted raw obser-

vations yli = zli + wli, l = 1, 2, . . . , L, i = 1, 2, . . . are received at the FC sequentially. The
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FC performs a copula-based SPRT to obtain the final decision. More specifically, we solve the

following binary hypothesis testing problem at the FC:

H0 : yi ∼ f cen
0 (yi), i = 1, 2, . . . ,

H1 : yi ∼ f cen
1 (yi), i = 1, 2, . . . ,

(5.1)

where yi = [y1i, . . . , yLi], f cen
1 and f cen

0 denote the joint PDFs for the centralized case under

alternative and null hypotheses, respectively. We take the existing dependence into account

and design a copula-based SPRT at the FC.

Using Sklar’s theorem, i.e., Theorem 1.1 in Section 1.1.1, the joint PDFs in Equation (5.1)

for i = 1, 2, . . . , n can be expressed in terms of the marginal distributions and the copula

densities, ccen
1 and ccen

0 , respectively, under H1 and H0, as

f cen
0 (y) =

n∏
i=1

L∏
l=1

f cen
0,l (yli)× ccen

0 (F0,cen(yi)|φcen
0 ), (5.2)

f cen
1 (y) =

n∏
i=1

L∏
l=1

f cen
1,l (yli)× ccen

1 (F1,cen(yi)|φcen
1 ),

where f cen
k,l (yli) are the marginal PDFs and Fk,cen(yi) = [F k,cen

1 (y1i), . . . , F
k,cen
L (yLi)] are the

marginal CDFs for all the sensors at time instant i under hypothesis k, k = 0, 1. Moreover,

φcen
0 and φcen

1 are the parameters of copula ccen
0 and ccen

1 , respectively.

For known ccen
0 (·|φcen

0 ) and ccen
1 (·|φcen

1 ), the centralized copula-based SPRT at the FC fol-

lows the following procedure: for n = 1, 2, . . .,


Λn,cen(y) ≥ A, decide H1,

Λn,cen(y) ≤ −B, decide H0,

−B < Λn,cen(y) < A, take another observation,

(5.3)

where A and −B are the upper and lower thresholds, respectively, which are predetermined
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constants such that PF ≤ α and PM ≤ β. Also, Λn,cen(y) is given as

Λn,cen(y) =
n∑
i=1

L∑
l=1

log
f cen

1,l (yli)

f cen
0,l (yli)

+
n∑
i=1

log
ccen

1 (F1,cen(yi)|φcen
1 )

ccen
0 (F0,cen(yi)|φcen

0 )
.

(5.4)

In general, for given α and β, exact analytical expressions of the optimal thresholds A and

−B are intractable. One may use the approximated thresholds obtained from Wald’s SPRT

[107], which are given by

A ≈ log
1− β
α

, −B ≈ log
β

1− α
, (5.5)

where if α, β ∈ (0, 1
2
), we have −B < A.

Let N be the stopping time for the centralized scheme. Since the messages received at the

FC are i.i.d., we have P (N < ∞|Hk) = 1, k = 0, 1 under condition A1 [99, Lemma 3.1.1].

The goal for the above centralized copula-based SPRT is to minimize the average stopping

time Ek[N ], k = 0, 1 such that PF ≤ α, PM ≤ β. In Theorem 5.1, we show the asymptotic

optimality of the centralized copula-based SPRT as A,B → ∞. Note that in this work, we

assume that when the test stops, we have Λn,cen(y) = A or Λn,cen(y) = −B by ignoring the

overshoots. Therefore, we use ≈ while evaluating PF , PM and the expected stopping time

EHk [N ], k = 0, 1 in Theorems 5.1 and 5.3.

Theorem 5.1. For the centralized copula-based SPRT in Equation (5.3), as A → ∞ and

B →∞, we have PF ≈ e−A and PM ≈ e−B. Moreover, the average stopping times under the

two hypotheses admit the following asymptotic expressions:

EH0 [N ] ≈ B

Dcen
0

, EH1 [N ] ≈ A

Dcen
1

, (5.6)
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as A,B →∞, and where

Dcen
0 =

L∑
l=1

D
(
f cen

0,l (·)||f cen
1,l (·)

)
+D (ccen

0 (·|φcen
0 )||ccen

1 (·|φcen
1 )) ,

Dcen
1 =

L∑
l=1

D
(
f cen

1,l (·)||f cen
0,l (·)

)
+D (ccen

1 (·|φcen
1 )||ccen

0 (·|φcen
0 )) .

Proof: See Appendix C. �

Remark 5.4. The asymptotic performance obtained in Equation (5.6) shows that the average

detection time depends on the KL distance provided by each sensor as well as the KL distance

due to the spatial dependence among L sensors. By including the spatial dependence in our

analysis, we can reduce the detection time on an average.

Typically, the copula density function ccen
k (·|φcen

k ) and its corresponding parameter set φcen
k

under hypothesis Hk, k = 0, 1 are not known and need to be estimated. Using maximum

likelihood estimates in place of the true copula density functions and the true parameters, the

centralized copula-based SPRT in Equation (5.3) becomes a generalized copula-based SPRT.

In the following, we present the estimation of the best copula model.

Since the FC has no knowledge of the dependence structure of the received messages, we

assume that the FC waits for N0 messages before starting the copula-based SPRT. Note that N0

can determined by the goodness-of-fit tests for copula models [36]. Hence, the copula density

functions and their corresponding parameters can be estimated. The estimation of optimal

copula density functions under the two hypotheses is similar. Therefore, the hypothesis index

k will be omitted for now to simplify notations. Also, the superscript “cen" for the centralized

sequential test is omitted for now. Note that the marginal CDFs at each time instant i are needed

to evaluate the copula log likelihood ratios as shown in Equation (5.4).

We apply R-Vine copula to estimate the multivariate copula function ccen
k (·|φcen

k ) under hy-

pothesis Hk, k = 0, 1. The estimation of R-Vine copula model requires the determination of
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the R-Vine tree structure, the choice of bivariate copulas and the estimation of their correspond-

ing parameters. To select the optimal R-Vine tree structure, we adopt the sequential maximum

spanning tree algorithm in [27]. This sequential method is based on Kendall’s τ . The sample

estimate of Kendall’s τ , for N0 observations, can be calculated using Equation (1.10).

The estimation of the R-Vine copula model is presented in Algorithm 2.1 with m = L and

data sequence (y1j, . . . , yLj), j = 1, 2, . . . , N0. The main computational complexity of this

algorithm is from the fit of the bivariate copulas. For a d-dimensional system, the number of

bivariate copulas needed to fit in the tree is d(d−1)/2. Therefore, the computational complexity

is O(d2). In the following, we describe the sequential estimation in detail. The sequential

method starts with the selection of the first tree T1 and continues tree by tree up to the last tree

TL−1. The trees are selected in a way that the chosen bivariate copula models the strongest

pair-wise dependencies present which are characterized by Kendall’s τ .

After the R-Vine tree structure is obtained, we need to define a bivariate copula set and

estimate the optimal bivariate copulas that best characterize the pair-wise dependencies. Con-

sider a library of copulas, C = {cm : m = 1, . . . ,M}. Before estimating the optimal bivariate

copula, the copula parameter set φ is first obtained using MLE as

φ̂=arg max
φ

N0∑
i=1

log c
(
F̂l1(yl1i), F̂l2(yl2i)|φ

)
, (5.7)

where (l1, l2), l1, l2 ∈ [L] is a connected pair in the selected R-Vine trees and for simplification

of notation, we omit the conditioning elements for conditional marginal CDFs. Note that the

conditional marginal CDFs can be obtained recursively using Equation (1.12).

Once the copula parameter set is obtained, the best copula c∗ is selected from the copula

library C using the Akaike Information Criterion (AIC) [3] as the criterion, given as

AICm = −
N0∑
i=1

log cm

(
F̂l1(yl1i), F̂l2(yl2i)|φ̂m

)
+ 2q(m), (5.8)
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where q(m) is the number of parameters in the mth copula model. Also, the conditioning

elements for conditional marginal CDFs are omitted.

The best copula c∗ is

c∗ = arg min
cm∈C

AICm. (5.9)

Now, we have the optimal copula density functions ccen,∗
1 (·|φ̂

cen,∗
1 ) and ccen,∗

0 (·|φ̂
cen,∗
0 ) un-

der the alternative and null hypotheses, respectively. The log-likelihood ratio test statistics

Λn,cen(y) in Equation (5.4) now becomes

Λn,cen(y) =
n∑
i=1

L∑
l=1

log
f cen

1,l (yli)

f cen
0,l (yli)

+
n∑
i=1

log
ccen,∗

1 (F1,cen(yi)|φ̂
cen,∗
1 )

ccen,∗
0 (F0,cen(yi)|φ̂

cen,∗
0 )

.

(5.10)

Note that the centralized copula-based SPRT incurs substantial data transmission overhead

between the sensors and the FC. In the following section, we proceed to develop the distributed

copula-based SPRT.

5.4 Distributed Copula-based Sequential Probability Ra-

tio Test

In this section, we propose a distributed copula-based SPRT, where the FC receives noise

corrupted binary messages instead of the raw measurements. In particular, the local sensors

perform truncated SPRT tests and send binary decisions to the FC. In the following, we first

present the local sensor detection rule and then obtain the FC fusion rule.
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5.4.1 Local Sensor Detection Rule

To design the local sensor detection rule, we need to determine the communication protocol

and binary messages to be sent to the FC at each sensor. Here, we propose a memory-less

grouped-data sequential test to be carried out at each sensor. Consider the following sequential

procedure: at each stage, each sensor sequentially acquires at most W0 observations over the

observation window, makes a binary decision by performing a local SPRT, and transmits the

decision to the FC. After transmission, each sensor moves to the next stage of the test, refreshes

its memory and runs another SPRT based on newly arriving measurements. Therefore, the FC

receives i.i.d. messages over time. Note that there are two cases for the local SPRTs: Case 1)

sensors make the decision before or at the time that they take the W th
0 measurement, Case 2)

sensors do not make any decision after taking the W th
0 measurement. In Case 1), we let the

sensors go to sleep mode after each transmission. After the FC receives the messages from all

the sensors, it sends a wakeup signal to the local sensors, and sensors wake up and start the

next stage of the test. In Case 2), since a decision has not been made, we truncate the test after

taking the W th
0 measurement. The group size W0 is also referred to as the truncation window

at all the sensors [60]. Thus, all the local sensors transmit their decisions at tl, l = 1, . . . , L,

where tl is the stopping time for sensor l and tl ≤ W0,∀l. Let tmax = max{t1, . . . , tL} be

the maximum stopping time among all the sensors. The next stage of the proposed local tests

started at tmax, the time that the FC sends the wakeup signal.

The memory-less grouped-data local SPRT is defined as follows. At stage i, sensors

perform the local SPRTs based on (i− 1)W0 + 1th to iW0
th measurements. The local log-

likelihood ratio test statistics λl,i(W ), l = 1, . . . , L, are given as follows. For (i− 1)W0 + 1 ≤

W ≤ iW0,

λl,i(W ) =
W∑

j=(i−1)W0+1

log
g1,l(zlj)

g0,l(zlj)
. (5.11)
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The binary messages UW
li are given as:



for (i− 1)W0 + 1 ≤ W ≤ iW0,

UW
li =


1, if λl,i(W ) ≥ al,

0, if λl,i(W ) ≤ −bl,

∞, if − bl < λl,i(W ) < al,

for W = iW0 and UW
li =∞,

UW
li =

1, if λl,i(W ) ≥ νl,

0, if λl,i(W ) < νl,

(5.12)

where al, −bl and νl are the thresholds with −bl ≤ νl ≤ al. By moving the thresholds al

and −bl away from each other, we can decrease P local
F and P local

M with an increased average

stopping time. There is a tradeoff between the choice of the thresholds and the truncation

time. Therefore, our goal here is to design the thresholds jointly so that the local probability

of false alarm P local
F and the local probability of miss detection P local

M stay below pre-specified

constraints on error probabilities. In the following, we first design the thresholds al and −bl

based on the untruncated SPRT, and then design the threshold νl and the truncation window

W0 using the corresponding FSS test so that in the worst case, the number of samples at local

detectors is equal that of the FSS test.

Now, we design the thresholds al and −bl based on the untruncated SPRT, where the con-

straints of the probabilities of false alarm and miss detection are α̃ and β̃, respectively. Let

Qk(x) = P (λl,i(W ) ≤ x|Hk). We require that Q0(al) = 1 − α̃/∆l,a and Q1(−bl) = β̃/∆l,b,

where ∆l,a,∆l,b ≥ 1 are the scale parameters. Note that we may not have closed forms ofQ1(·)

and Q0(·). By choosing appropriate scale parameters ∆l,a and ∆l,b, similar to the thresholds

of centralized copula-based sequential test in Equation (5.5), we can obtain the approximated

thresholds as

al ≈ log
1− β̃/∆l,b

α̃/∆l,a

, −bl ≈ log
β̃/∆l,b

1− α̃/∆l,a

. (5.13)
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Before we design the threshold νl and the truncation window W0, we first present the cor-

responding FSS test for sensor l, l = 1, . . . , L, which has the same constraints of error proba-

bilities as the untruncated SPRT.

UFSS
li =

1, if λFSSl,i ≥ νFSSl ,

0, if λFSSl,i < νFSSl ,
(5.14)

where λFSSl,i =
∑iNFSS

j=(i−1)NFSS+1 logg1,l(zlj)
g0,l(zlj)

and NFSS is the number of observations needed

for the FSS test. νFSSl is the threshold. Also, NFSS and νFSSl are designed so that the local

probabilities of false alarm and miss detection stay below levels α̃/∆l,Ta and β̃/∆l,T b, where

∆l,Ta,∆l,T b ≥ 1 are the scale parameters to be designed.

Remark 5.5. The scale parameters ∆l,a,∆l,b,∆l,Ta and ∆l,T b are introduced to adjust the

levels of the local probability of false alarm and the local probability of miss detection so that

P local
F and P local

M are upper bounded by certain pre-specified error probabilities.

In the following Theorem, we show that by setting W0 equal to NFSS and νl equal to νFSSl ,

we can obtain the upper bounds of P local
F and P local

M .

Theorem 5.2. The upper bounds of P local
F and P local

M are given as:

P local
F <

(
1

∆l,a

+
1

∆l,Ta

)
α̃, (5.15)

P local
M <

(
1

∆l,b

+
1

∆l,T b

)
β̃. (5.16)

Proof: See Appendix D. �

Remark 5.6. According to Theorem 5.2, P local
F and P local

M can be determined by choosing ap-

propriate ∆l,a, ∆l,b, ∆l,Ta and ∆l,T b. Since P (UT
li = ∞|Hk) < 1, k = 0, 1, (i − 1)W0 + 1 ≤

W ≤ iW0, we have E[tl] < W0. Compared to the FSS test, the local sensors need fewer

observations on average.
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5.4.2 Derivation of the Fusion Rule

We omit the indexW from the binary decisionUW
li and assume that the FC receivesU1i, . . . , ULi

sequentially from all the sensors. After receiving the noise corrupted local sensor decisions

yln = Uln + wln, l = 1, . . . , L, where n is the receiving time, the FC combines all received

local sensor messages based on copula theory. Therefore, the FC performs the following global

copula-based SPRT,


Λn(y) ≥ A, decide H1,

Λn(y) ≤ −B, decide H0,

−B < Λn(y) < A, take another observation,

(5.17)

where A and −B are the upper and lower thresholds, respectively, which are determined by

the global probability of false alarm α and global probability of miss detection β. Also, Λn(y)

is given as

Λn(y) =
Nn∑
j=1

L∑
l=1

log
f1,l(ylj)

f0,l(ylj)
+

Nn∑
j=1

log
c1(F1(yj)|φ1)

c0(F0(yj)|φ0)
, (5.18)

where Fk(yj) = [F k
1 (y1j), . . . , F

k
L(yLj)], Nn is the number of messages received by the FC at

time n and ck(·|φk) is the copula density function with its corresponding parameter φk under

hypothesis k, k = 0, 1. Let Tp denote the stopping time at the FC.

Remark 5.7. Note that the marginal PDFs of ylj under H1 and H0 are given as

f1,l(ylj) = (1− P local
M )f 1

w(1 + wlj) + P local
M f 1

w(wlj),

f0,l(ylj) = (1− P local
F )f 0

w(wlj) + P local
F f 0

w(1 + wlj),

where fkw(·) is the marginal PDF of the channel noise from local sensors to the FC under

Hk, k = 0, 1. Also, by assuming the λl,i(W ), (i − 1)W0 + 1 ≤ W ≤ iW0 to be Gaussian

distributed, the P local
M and P local

F can be computed analytically [112]. Without the Gaussian
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assumption, the P local
M and P local

F can be obtained empirically.

Assuming that the condition A1 is satisfied, the asymptotic performance of the distributed

copula-based SPRT is given by the following Theorem.

Theorem 5.3. In the asymptotic regime where A,B →∞, we have

PF ≈ e−A, PM ≈ e−B, (5.19)

and in the worst case, the minimum average stopping times of the distributed copula-based

SPRT in Equation (5.17) under the two hypotheses have the following asymptotic performance:

EH0 [Tp] ≈
B ∗W0

D0

, (5.20)

and

EH1 [Tp] ≈
A ∗W0

D1

, (5.21)

whereD0 =
∑L

l=1D (f0,l(·)||f1,l(·))+D (c0(·|φ0)||c1(·|φ1)) andD1 =
∑L

l=1 D (f1,l(·)||f0,l(·))+

D (c1(·|φ1)||c0(·|φ0)).

Proof: See Appendix E. �

Remark 5.8. Compared to the distributed SPRT that ignores the underlying dependence, our

proposed distributed copula-based SPRT is more efficient on an average in terms of the detec-

tion time. Moreover, since the FC may not have any knowledge of the underlying dependence,

the copula density function ck and its corresponding parameter φk need to be estimated first.

Similar to the centralized copula-based SPRT, the FC can estimate the unknown dependence

using the R-Vine copula based methods using a methodology similar to the centralized copula-

based SPRT.

Since quantization cannot increase the value of KL divergence [103], we have Dk/W0 ≤

Dcen
k under hypothesis k, k = 0, 1. The performance of the distributed copula-based SPRT
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degrades compared to the centralized copula-based SPRT. Moreover, the performance also

depends on the local thresholds al, −bl and νl for l = 1, 2, . . . , L. These thresholds need to be

chosen such that D0 and D1 are maximized. However, in general, it is not feasible to find the

optimal local thresholds due to the existing complex dependence and the channel noise.

5.5 Simulation Results

In this section, we demonstrate the efficacy of our proposed copula-based SPRTs through nu-

merical examples. We assume that there are two hypotheses, where H1 denotes the presence

of a signal s and H0 indicates the absence of s. Also, s is assumed to be a deterministic signal.

We model the signals received at the sensors as:

H1 : zli = s+ vli, l = 1, . . . L; i = 1, 2, . . . , (5.22)

H0 : zli = vli, l = 1, . . . , L; i = 1, 2, . . . ,

where vli denotes the measurement noise at sensor l and time instant i. We assume that vli fol-

lows a zero-mean Gaussian distribution with standard deviation σlv, l = 1, . . . L. The received

signal zli is assumed to be temporally independent conditioned on either hypothesis but can be

spatially dependent.

The FC receives yln = xln + wln, where n is the receiving time instant at the FC and xln

is the message sent by the lth sensor. For distributed detection, we have xln = Uln. Similarly,

xln = zln for centralized detection. Moreover, wln is the channel noise from the sensors to the

FC and drawn from a zero-mean Gaussian distribution with standard deviation σlw, l = 1, . . . L.

Moreover, the channel noise is assumed to be temporally independent conditioned on either

hypothesis but can be spatially dependent. Also, the channel noise and the signals at the local

sensors are assumed to be mutually independent.

Unless specified otherwise, we assume that σlw =
√

3 and σlv = 1. We use N0 = 100
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observations to estimate the R-Vine copulas. For each sensor, the local probability of false

alarm and miss detection constraints are α̃ = 0.01 and β̃ = 0.01, respectively. Also, the scale

parameters are set as ∆l,a = ∆l,b = ∆l,Ta = ∆l,T b = 1 for l = 1, 2, . . . , L. Hence, the upper

bounds of local probability false alarm and miss detection for each sensor are P local
F ≤ 2α̃

and P local
M ≤ 2β̃, respectively. Moreover, the global probability of false alarm and global miss

detection constraints for all the sensors are α = 0.01 and β = 0.01, respectively. Without loss

of generality, the spatial dependence of sensor observations is generated using multivariate

Gaussian copula except for Table 5.3. To exhibit the performance improvement by applying

our proposed copula-based SPRTs, we also evaluate the performance of product-based SPRT

that ignores dependence of sensor observations. For clarity, we summarize the empirically

studied cases as follows.

• Case 1: We assume that the spatial dependence is resulting from target signals. The

channel noises are assumed to be spatially and temporally independent.

• Case 2: We assume that spatial dependence is resulting from both the target signals and

the channel noises.

Remark 5.9. Without loss of generality, if the spatial dependence is resulting from target sig-

nals, we assume that under H1, the observations z1i, . . . , zLi are dependent while under H0,

they are independent.

Before we proceed to the results, we note that the expected stopping time E[T ] in the fol-

lowing is defined as the average expected stopping time under hypothesis H1 and H0, namely,

E[T ] = 1
2
(EH1 [T ] + EH0 [T ]). Also, E[T ] is measured using a system-wide clock that is em-

ployed both at the local sensors and the FC.

In Table 5.1 and Table 5.2, we present the average PF and PM values as a function of α and

β, respectively, where we compare the centralized product-based scheme and the centralized

copula-based scheme for Case 1 with L = 3 for different signal-to-noise ratios (SNRs). The
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SNR = −6 dB SNR = −9 dB
Centralized product

based SPRT
Centralized copula

based SPRT
Centralized product

based SPRT
Centralized copula

based SPRT
β PF PM PF PM PF PM PF PM

0.4 0.0059 0.4812 0.0065 0.0433 0.0083 0.5693 0.0061 0.0408
0.3 0.0078 0.4341 0.0052 0.0321 0.0089 0.5106 0.0052 0.0299
0.2 0.0075 0.3786 0.0039 0.0186 0.0080 0.4366 0.0046 0.0205
0.1 0.0056 0.2849 0.0036 0.0101 0.0079 0.3362 0.0039 0.0099

0.01 0.0061 0.1245 0.0030 0.0010 0.0077 0.1416 0.0037 8.8000e-4
0.001 0.0060 0.0548 0.0032 1.1500e-04 0.0076 0.0617 0.0037 8.4000e-5
0.0001 0.0061 0.0240 0.0033 1.300e-05 0.0077 0.0270 0.0037 7.000e-6

Table 5.1: Known copula: Estimated PF and PM with α = 0.01, L = 3 for centralized
sequential scheme and Case 1.

SNR = −6 dB SNR = −9 dB
Centralized product

based SPRT
Centralized copula

based SPRT
Centralized product

based SPRT
Centralized copula

based SPRT
α PF PM PF PM PF PM PF PM

0.4 0.2400 0.0903 0.1358 0.0013 0.3105 0.0842 0.1493 0.0016
0.3 0.1803 0.0918 0.1093 0.0018 0.2337 0.0914 0.1207 0.0010
0.2 0.1178 0.0968 0.0702 6.000e-4 0.1568 0.1027 0.0825 0.0011
0.1 0.0573 0.1019 0.0366 0.0010 0.0771 0.1151 0.0368 0.0012

0.01 0.0061 0.1245 0.0030 0.0010 0.0077 0.1416 0.0037 8.8000e-4
0.001 5.5100e-04 0.1352 3.1100e-4 9.7100e-04 8.2200e-4 0.1563 3.6900e-4 8.3000e-3
0.0001 4.7000e-5 0.1400 2.3000e-5 9.800e-04 7.400e-5 0.1617 3.3000e-5 9.8500e-4

Table 5.2: Known copula: Estimated PF and PM with β = 0.01, L = 3 for centralized
sequential scheme and Case 1.

signal spatial dependence is assumed to be known. Since the underlying dependence is result-

ing from target signals, it implies that the sensor observations are independent underH0. As we

can see, the average PM values obtained for the centralized copula-based SPRT satisfy the con-

straint β while those for the centralized product-based SPRT do not. The average PF values are

below α for both the centralized copula-based SPRT and the centralized product-based SPRT.

This is because, sensor observations are independent under H0. Also, in Fig. 5.2 and Fig. 5.3,

we show the corresponding average expected stopping time E[T ] varying α and β, respec-

tively. As we observe, on average, the centralized copula-based SPRT makes decisions faster
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Fig. 5.2: Average expected stopping time
as a function of α for centralized sequential
scheme.
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Fig. 5.3: Average expected stopping time
as a function of β for centralized sequential
scheme.

than the centralized product-based SPRT. Moreover, for lower SNRs, the centralized product-

based SPRT requires more time to complete the detection while the centralized copula-based

SPRT is less sensitive to low SNRs, i.e., does not change much for different values of SNR.

Dependence generated using
Gaussian copula

Dependence generated using
R-Vine copula

N0 L = 3 L = 5 L = 3 L = 5
40 0.938 0.999 0.923 0.994
50 0.953 0.998 0.918 0.992
60 0.926 0.999 0.907 0.991
70 0.939 0.999 0.907 0.968
80 0.939 0.998 0.938 0.980
90 0.945 0.999 0.915 0.956

100 0.941 0.998 0.919 0.965
120 0.937 0.996 0.923 0.957
150 0.938 0.994 0.928 0.933
200 0.934 0.998 0.915 0.926

Table 5.3: Average p values for the estimation of underlying dependence using R-Vine copula
model with different number of sensors.

Typically, we have no knowledge of the dependence information, especially for the dis-

tributed detection scheme. If the signals at the local sensors are dependent, then after local
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Dependence generated using R-Vine copula
N0 Clayton copula Gaussian copula
40 0.037 0.143
50 0.016 0.026
60 0.020 0.019
70 0.022 0.029
80 0.001 0.030
90 0.002 0.015

100 0.002 0.049
120 0.000 0.003
150 0.000 0.002
200 0.000 0.001

Table 5.4: Average p values for the estimation of underlying dependence using different multi-
variate copula models with L = 3.

quantization this dependence structure may change. Therefore, we need to estimate the de-

pendence structure, namely, the R-Vine copula. In Table 5.3, we present the average p values

corresponding to the estimation of the underlying dependence using R-Vine copula models

with different N0s and number of sensors. We generated two types of dependence: linear de-

pendence using multivariate Gaussian copula and non-linear dependence using R-Vine copula.

Similar results can be obtained for the dependence generated by other multivariate copulas or

even more complex dependence. As we can see, the R-Vine copula model performs very well

and can not be rejected a 5% significance level. Note that the number of samples N0 needed

also depends on the complexity of the underlying dependence as well as the number of sensors.

To show that the R-Vine copula model is more capable of characterizing complex depen-

dence compared to multivariate copula models, in Table 5.4, we show average p values for the

estimation of the underlying dependence using Gaussian copula and Clayton copula models

for L = 3. Here, the underlying dependence is generated using the R-Vine copula model. As

we can see, for most of the cases, the Gaussian and Clayton copula models are rejected at a 5%

significance level except when N0 = 40, i. e., the p value is larger than .05 for the Gaussian
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copula for N0 = 40. However, the R-Vine copula model in Table 5.3 cannot be rejected at a

5% significance level, i. e., the p values are always greater than 0.05.

Remark 5.10. Note that the p value is defined as the probability of the null hypothesis being

true. In this case, we assume that the copula model C is unknown but belongs to a class

C0 = {CΦ : Φ ∈ Rm}. We define the null hypothesis as H0 : Ĉ ∈ C0 and the alternative

hypothesis as H1 : Ĉ /∈ C0, where Ĉ is an estimate of C. More specifically, the hypothesis H0

means Ĉ represents the distribution of C quite well. If the p value is in [0, 0.05], the evidence

is strong that one should reject the null hypothesis.

In Fig. 5.4, we show the truncation window W0 as a function of α̃ and β̃ with L = 3. We

can see that as α̃ and β̃ decrease, the W0 increases. Also, for lower SNR, more detection time

is needed to achieve the same probabilities of error.
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Fig. 5.4: Truncation window W0 as a function of α̃ and β̃, where α̃ = β̃.

In Table 5.5 and Table 5.6, we present the average PF , PM values and the average expected

stopping time E[T ] with unknown copulas by comparing the product-based SPRTs and the

copula-based SPRTs (including the centralized and the distributed schemes) for the both cases

with L = 3 under SNR = −6 dB and SNR = −9 dB, respectively. As we can see, for Case 1
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Case 1 Case 2

PF PM E[T ] PF PM E[T ]

Centralized product
based SPRT

0.0061 0.1254 12.518 0.0246 0.1254 12.317

Centralized copula
based SPRT

0.0063 0.0038 2.625 0.0093 0.0012 2.847

Distributed product
based SPRT

0.0048 0.0051 165.908 0.0215 0.1179 151.004

Distributed copula
based SPRT

0.0053 0.0050 166.793 0.0072 0.0036 43.432

Table 5.5: Unknown copula: Estimated PF , PM and E[T ] with α = β = 0.01 and SNR = −6
dB.

Case 1 Case 2

PF PM E[T ] PF PM E[T ]

Centralized product
based SPRT

0.0074 0.1427 44.802 0.0303 0.1421 43.937

Centralized copula
based SPRT

0.0045 0.0007 2.645 0.0070 0.0010 3.100

Distributed product
based SPRT

0.0050 0.0051 625.244 0.0215 0.1200 569.273

Distributed copula
based SPRT

0.0054 0.0050 624.869 0.0093 0.0045 152.713

Table 5.6: Unknown copula: Estimated PF , PM and E[T ] with α = β = 0.01 and SNR = −9
dB.

and Case 2, the average PF and PM values satisfy the specified α and β values, respectively, for

the copula-based SPRTs, while for the product-based SPRTs, the average PF and PM values

do not satisfy the PF and PM constraints, except for the distributed product-based SPRT of

Case 1. This is because, by setting the scale parameters as ∆l,a = ∆l,b = ∆l,Ta = ∆l,T b =

1, l = 1, . . . , L, the P local
F s and P local

M s for all the sensors are upper bounded by 2α̃ and 2β̃,

respectively. The underlying dependence or uncertainty resulting from the signals at the local

sensors is decreased, and the signals received at the FC are near-independent. Compared to
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the product-based SPRTs, our proposed copula-based SPRTs significantly improve the average

expected stopping time, except for the distributed product-based SPRT of Case 1. This is also

due to the near-independence (after local processing) among the received observations at the

FC. Also, compared to the centralized cases, the distributed case requires more time to make

a global decision. It seems that the expected average detection time of the distributed copula-

based SPRT is much larger than that of the centralized copula-based SPRT. This is because we

evaluate the performance at extremely low SNRs.

Case 2 PF PM E[T ]

Centralized product
based SPRT

0.0067 0.0524 1.490

Centralized copula
based SPRT

0.0054 0.0090 1.302

Distributed product
based SPRT

0.0218 0.1184 14.843

Distributed copula
based SPRT

0.0051 0.0100 4.020

Table 5.7: Unknown copula: Estimated PF , PM and E[T ] with α = β = 0.01 and SNR = 0
dB for Case 2.

To justify the efficiency of the distributed copula-based SPRT, in Table 5.7, we present the

average PF , PM and E[T ] for Case 2 at SNR = 0 dB. As we can see, the E[T ] for the proposed

distributed copula-based SPRT is quite comparable to the centralized copula-based SPRT and

much faster than the distributed product-based SPRT.

5.6 Summary

In this chapter, we proposed a copula-based sequential scheme for the problem of distributed

detection with imperfect communication channels from the sensors to the fusion center, where

the sensor observations are assumed to be spatially dependent. This dependence may result

from the dependent sensor signals, dependent channel noises or both. We used the regular
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vine copula model to represent the underlying dependence. We first proposed a centralized

copula-based SPRT, and showed its asymptotic optimality and time efficiency. We then pro-

posed a distributed copula-based sequential scheme, where the memory-less truncated SPRTs

were performed at the local sensors and the copula-based SPRT was conducted at the FC. We

have shown that by suitably designing the local thresholds and the truncation window, the local

probability of false alarm and the local probability of miss detection of the proposed memory-

less truncated local sequential tests are upper bounded by the pre-specified error probabilities.

Moreover, we have shown the asymptotic optimality and time efficiency of the distributed

copula-based SPRT. Via simulations, we have shown that our proposed copula-based SPRTs

can efficiently capture the unknown dependence, and outperform the product-based SPRTs

which ignore the underlying dependence.



92

CHAPTER 6

DISTRIBUTED ESTIMATION IN LARGE

SCALE WIRELESS SENSOR NETWORKS

VIA A TWO-STEP CLUSTER-BASED

APPROACH

6.1 Motivation

In large scale sensor networks, sensors observations are often assumed to be independent for

analytical tractability. However, observations are often dependent in practical scenarios. Dis-

tributed estimation problems with independent sensor observations have been studied exten-

sively (see e.g. [16, 20, 30, 31, 55, 56, 67, 68, 87]). However, the distributed estimation problem

with dependent sensor observations has not received much attention. The underlying depen-

dence can be both good and bad [44, 46, 115]. On the one hand, dependent sensors provide

different viewpoints and aspects regarding the target parameter to be estimated. However, on

the other hand, they may collect redundant observations. Therefore, spatial dependence needs



93

to be exploited properly to enhance the overall estimation efficiency. In [44, 46], the concepts

of diversity gain and redundancy loss were introduced to characterize the influence of spatial

dependence among sensor observations on estimation performance.

In this chapter, to achieve greater sensor transmission and estimation efficiencies, we pro-

pose a two-step cluster-based collaborative distributed estimation scheme. In the first step, sen-

sors form dependence driven clusters such that the observations of sensors in the same cluster

are dependent while the observations of sensors from different clusters are independent, and

perform copula-based maximum a posteriori probability (MAP) estimation via intra-cluster

collaboration. In the second step, the estimates generated in the first step are shared via inter-

cluster collaboration to reach an average consensus. A merge based K-medoid dependence

driven clustering algorithm is proposed. We further propose a cluster-based sensor selection

scheme using mutual information prior to estimation. The aim is to select sensors with max-

imum relevance and minimum redundancy regarding the parameter of interest under certain

pre-specified energy constraints.

6.2 Problem Formulation

Consider a phenomenon being observed by L sensors. Each sensor’s observation is zl =

θ + wl,∀l = 1, . . . , L, where θ is the random parameter to be estimated corresponding to

the phenomenon of interest and wl is the observation noise which is spatially and temporally

independent of θ. We assume that the prior distribution of θ is given as f(θ). Also, we assume

that the observation noise can be dependent across some sensors. Moreover, we further assume

that the sensor observations are continuous random variables that are conditionally indepen-

dent and identically distributed (i.i.d.) over time. Let fl(·|θ) be the PDF of the observations at

the lth sensor conditioned on θ. Note that the marginal conditional sensor PDFs can be distinct

from each other. Throughout the chapter, we assume that given θ, the marginal distribution

fl(·|θ), l = 1, . . . , L is known.
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Fig. 6.1: Two-step cluster-based collaborative distributed estimation system, where the orange
dash lines represent the inter-cluster communication links and the black dash lines denote the
intra-cluster communication links.

In a non-collaborative setting, each sensor senses the phenomenon of interest and estimates

the random parameter θ solely based on its own observations. In this work, we consider a two-

step cluster-based collaborative scheme shown in Fig. 6.1, where in the first step, sensors form

dependence driven clusters and extract information relevant for estimation by collaborating

with other sensors in the same cluster. In the second step, local information obtained by each

cluster in the first step is shared among clusters to yield a global estimate. The participating

sensors are required to adhere to the following rules:

1. Sensors first form clusters, where each sensor is allowed to join only one cluster. The

sensors that are most “similar", i.e., most statistically dependent, tend to stay in the same

cluster.

2. Once the clusters are formed, a sensor can request observations from all the other sen-

sors that are in the same cluster to perform estimation; it is also required to transmit its

observations to the other collaborating sensors in the cluster based on their request.

3. A cluster can request the estimate of the parameter or observations from all the other

clusters; it is also required to transmit its estimate of the parameter or observations to the
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other collaborating clusters based on their request.

We denote the set of all the sensors in the network as S, where the corresponding sensor

observation set is zS = [z1, . . . , z|S|] ∈ RN×|S|, |S| = L, where | · | denotes the cardinality of

a set and N is the number of observations for each sensor. Suppose there are K independent

non-overlapping sensor clusters and denote the kth cluster by Gk, k ∈ [K], where for ease of

notation, [K] denotes {1, 2, . . . , K}. Thus, S = G1 ∪ · · · ∪ GK .

In the estimation problem, Fisher Information (FI) is often used to characterize the amount

of information that data carry about the parameter. It is given as

FI(θ) = −Ex

[
∂2logfx(x; θ)

∂θ2

]
, (6.1)

where fx represents the joint PDF of the data sequence vector x. For the entire sensor set S,

the FI it can achieve is given as

FI(S) = −EzS

[
∂2logfzS (zS ; θ)

∂θ2

]
, (6.2)

where fzS is the joint distribution of zS .

Proposition 6.1. FI(S) can be decomposed into cluster-based Fisher Information and prior

Fisher Information.
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Proof:

FI(S) = −E

∂2log
(∏L

l=1 fl(zl|θ)× cS(F(z|θ);φ)× f(θ)
)

∂θ2

 ,
=
∑
l∈S

FIl + FIp − E
[
∂2log cS(F(z|θ);φ)

∂θ2

]
,

(a)
=
∑
l∈S

FIl + FIp − E

[
∂2log

∏K
k=1 cGk(F(zGk |θ);φk)

∂θ2

]
,

=
∑
l∈S

FIl +
K∑
k=1

FIc(Gk) + FIp,

=
K∑
k=1

(∑
l∈Gk

FIl + FIc(Gk)

)
+ FIp,

where FIp is the Fisher information with respect to the prior distribution on θ, (a) is obtained

by using the assumption that sensor clusters are independent of each other. Also, we define

FIc(Gk) as −E
[
∂2log cGk (F(zGk |θ);φk)

∂θ2

]
.

Therefore, FI(S) can be decomposed into cluster-based Fisher Information and prior Fisher

Information. �

Remark 6.1. Based on Proposition 6.1, if the sensors in the network can be perfectly clustered

into independent non-overlapping clusters, we can process each cluster independently and then

combine each cluster’s information to obtain the global estimate.

In the first step, an intuitive solution would be that each cluster learns its dependence struc-

ture, and shares the estimated conditional joint PDFs with all the other clusters in the second

step. Then, the estimation problem becomes

θ̂ = arg max
θ

N∑
i=1

K∑
k=1

(log f(zGk,i|θ)) + log f(θ), (6.3)

where zGk,i is the observation set for cluster Gk at time instant i and f(zGk |θ) is the conditional
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joint PDF of the sensor observations (which is not known a priori) in cluster Gk, k ∈ [K]. f(θ)

is the prior distribution of θ.

Remark 6.2. The estimation methodology given in Equation (6.3) is referred to as cluster-

based MAP scheme. Note that the conditional joint PDF f(zGk |θ) in Equation (6.3) can be

estimated using copula based methods that take dependent observations into consideration

(see Equation (1.2)). The cluster-based MAP scheme using copula incorporated approach is

optimal.

However, transmitting the estimated conditional joint PDFs and the raw observations among

clusters can be expensive. Therefore, we propose to share estimates obtained by each cluster

until a consensus is achieved.

In the following section, we present the details of our two-step cluster-based distributed

estimation scheme, including the clustering of the sensors, the intra-cluster collaborative esti-

mation approach using copula based methods and the inter-cluster collaboration strategy.

6.3 Two-Step Dependence Driven Collaborative Distributed

Estimation

In this section, we present our two-step cluster-based collaborative distributed estimation scheme.

In the first step, sensors form clusters based on their similarity/dissimilarity with the other sen-

sors. We propose a merge based K-medoid dependence driven clustering algorithm. After the

clusters are formed, each sensor then estimates θ using copula based MAP via intra-cluster col-

laboration. In the second step, the estimated θs are shared among clusters to yield a consensus.

Here, we assume that the sensors and the sensor clusters communicate via error-free, orthogo-

nal channels. Before we proceed, we first make some assumptions and define the dissimilarity

measures.
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6.3.1 Assumptions and Dissimilarity Measure Definitions

We define the inter-cluster dissimilarity between Gk and Gk′ as well as the intra-cluster dissim-

ilarity of Gk, respectively as

d(Gk,Gk′) = inf
si∈Gk,sj∈Gk′

d(si, sj),

d(Gk) = sup
si,sj∈Gk

d(si, sj),

where d(·, ·) is a dissimilarity metric between two variables/data sequences, e.g., the rank based

dissimilarity measure defined later in Equation (6.4). Here, d(Gk,Gk′) represents the dissimi-

larity between cluster Gk and Gk′ . We further define

dH = min
k,k′=1,...,K,k 6=k′

d(Gk,Gk′),

dL = max
k=1,...,K

d(Gk).

We make the following assumptions:

A1 dL < dH ,

A2 P
(
d(zki , z

k′
j ) ≤ d0

)
< ε1, d0 ∈ (dL, dH),

A3 P
(
d(zki , z

k
j ) > d0

)
< ε2, d0 ∈ (dL, dH),

A4 P
(
d(zki , z

k
j ) ≥ d(zki , z

k′

j′ )
)
< ε3,

where zki , z
k
j ∈ zGk and zk

′
j , z

k′

j′ ∈ zGk′ . εi > 0, i = 1, 2, 3 are small constants and N is the

number of observations.

Assumption A2 implies that the probability that the dissimilarity between sensor obser-

vations obtained from two different clusters is smaller than dH is small. Also, assumption

A3 guarantees that the probability that the dissimilarity between sensor observations obtained
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from the same cluster is greater than dL is small. Assumption A4 states that given two sensor

observation sequences generated from the same cluster and a third observation sequence gen-

erated from another cluster, the probability that the first sequence is closer to the third sequence

is small. Due to the use of measure noisy data, the assumptions A1 to A4 imply that sensors

that are from the same cluster are dependent, while the ones that are from different clusters are

nearly independent.

The dissimilarity between two sensors can be characterized using different dependence

measures, such as the Pearson’s correlation coefficient , a rank based correlation measure

(Spearman’s ρ and Kendall’s τ ) and the copula based measure. Note that the Pearson’s cor-

relation coefficient that characterizes linear relationship is inadequate to capture nonlinear de-

pendence among the involved sensors. Also, the copula based measure is not a symmetric

dependence measure. In the following, we propose a dissimilarity metric based on rank based

correlation.

Let κ ∈ [−1, 1] be a rank based measure (Spearman’s ρ or Kendall’s τ ). We introduce a

dissimilarity function d(x,y) between the random variables X and Y , where x = [x1, . . . , xN ]

and y = [y1, . . . , yN ] are the i.i.d. data sequences corresponding to the variables X and Y ,

respectively, given as

d(x,y) =
√

1− κ(x,y)2, (6.4)

where N is the number of samples for variables X and Y and κ(x,y) is Spearman’s ρ or

Kendall’s τ between sequences x and y. Note that if κ(x,y) = 1 or κ(x,y) = −1, we have

d(x,y) = 0.

6.3.2 Dependence Driven Clustering Process

We propose a dependence driven clustering scheme. Let d(zi, zj) denote the dissimilarity

between the ith and jth sensors, where i, j ∈ [L]. Therefore, d(zi, zj) is small when sensor

i and sensor j are strongly dependent and is large when sensor i and sensor j are weakly
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dependent.

The goal of the clustering process is to cluster the sensors in the network based on the

underlying dependence among sensors. The number of clusters K is unknown. Therefore, we

need to estimate it. Here, we apply a merge based K-medoid clustering scheme [6,44,46,113]

to perform the clustering and find K̂. The merging criterion is that if the dissimilarity/distance

of any two clusters is greater than dth ∈ (dL, dH), these two clusters should be separated;

otherwise, they merge together.

In the following, we present the initialization of the cluster centers and clusters. Before,

we initialize the clusters, the centers need to be initialized first. We denote the cluster centers

as µ1, . . . ,µK̂ and the cluster center set as µ. We first arbitrarily choose zi, i ∈ [L] as µ1 and

µ = {µ1}. Then, for max
zi∈zS\µ

(
min
µk∈µ

d (zi,µk)

)
> dth, we do

µ̃ = arg max
zi∈zS\µ

(
min
µk∈µ

d (zi,µk)

)
, (6.5)

µ = µ ∪ µ̃.

After we obtain the cluster centers, the clusters, which are originally defined as empty sets,

are initialized as: for i = 1, 2, . . . , L

µj = arg min
µj∈µ

d
(
zi,µj

)
, (6.6)

Gj ← Gj ∪ {zi}.

The proposed dependence driven clustering scheme is shown in Algorithm 6.1.

6.3.3 Copula Based MAP

After the clusters are formed, each sensor performs estimation by collaborating with the sen-

sors in the same cluster. We assume a fully connected network for intra-cluster collaboration.
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Algorithm 6.1 Dependence Driven Clustering.
Input: Sensor observations {z1, . . . , zL} and threshold dth.
Output: Clusters {Gk}K̂k=1.

1. Initialize clusters {Gk}K̂k=1

2. while not converge do

3. Center update:

4. for k = 1 to K̂ do
µk ← arg min

zl∈Gk

∑
zl′∈Gk

d (zl, zl′)

5. end for

6. Merge step:

7. for k1, k2 ∈ [1, 2, . . . , K̂] and k1 6= k2 do

8. if d(µk1 ,µk2) ≤ dth then

9. if
∑

zl∈Gk1
d(µk2 , zl) <

∑
zl∈Gk2

d(µk1 , zl)

10. then Gk2 ← Gk1 ∪ {Gk2} and delete µk1 and Gk1
11. else Gk1 ← Gk1 ∪ {Gk2} and delete µk2 and Gk2
12. end if

13. K̂ ← K̂ − 1

14. end if

15. end for

16. Cluster update:

17. for l = 1 to L do

18. if zl ∈ Gk′ and d (zl,µk) < d (zl,µk′) then

Gk ← Gk ∪ {zl} and Gk′ ← Gk′ \ {zl}

19. end if

20. end for

21. end while

22. Return {Gk}K̂k=1
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In each cluster, each sensor estimates θ using MAP based on its own observations and observa-

tions from all the other collaborating sensors in the same cluster. Note that for a fully connected

network, all the sensors in the cluster have the same set of observations available to them.

We denote the corresponding sensor observations for cluster Gk as zGk = {zk1, zk2, . . . , zk|Gk|}.

Therefore, the estimate θ̂k at each sensor for the kth cluster is given by

θ̂k = arg max
θ

N∑
i=1

log
(
f(zk1i, z

k
2i, . . . , z

k
|Gk|i|θ)× f(θ)

)
, (6.7)

where N is the number of observations and f(zk1i, z
k
2i, . . . , z

k
|Gk|i; θ) is the joint PDF of all the

sensors in cluster Gk, k ∈ [K] at time instant i, i ∈ [N ].

We use the copula based approach to characterize the underlying dependence in each cluster

and according to Equation (1.2), θ̂k can be obtained by

θ̂k = arg max
θ

N∑
i=1

|Gk|∑
l=1

log fl(zkli|θ) +
N∑
i=1

log ck(F(zki |θ);φk) (6.8)

+ log f(θ),

where F(zki |θ) = [F (zk1i|θ), F (zk2i|θ), . . . , F (zk|Gk|i|θ)] is the set of marginal CDFs, and ck(·;φk)

is the multivariate copula density function andφk is the corresponding parameter set for cluster

k, k ∈ [K].

Typically, the multivariate dependence ck(·;φk) in Equation (6.8) is unknown a priori and

needs to be estimated. Since the learning of the copula models is similar for all the clusters, in

the following, we omit the cluster index k for simplification of notation.

To estimate the multivariate copula c(·;φ), we first define a library of copula models, C =

{cj : j = 1, . . . ,M} [75]. The optimal copula model is then determined by the Akaike

Information Criterion (AIC) [3] in Equation (6.12), namely, the best copula is the copula model

with minimum AIC value. Before evaluating the AIC values for each copula model, we need



103

to estimate the marginal CDFs and the associated copula parameter(s) φj, j = 1, . . . ,M . The

marginal CDFs can be estimated using EPIT [45]:

F̂l(x) =
1

N

N∑
i=1

I(zli < x), (6.9)

where I is the indicator function and N is the number of observations for estimation. The

copula parameter(s) φj can then be estimated using MLE, which is given by

φ̂j = arg max
φj

N∑
i=1

log cj(F̂1i, . . . , F̂|smk |i|φj). (6.10)

With the estimated parameter(s), the best copula c∗ is given as

c∗ = arg min
cj∈C

AICj. (6.11)

The AIC value is given as

AICi = −
N∑
n=1

log ci(F̂1n, . . . , F̂|smk |n|φ̂i) + q(ci), (6.12)

where q(ci) is the number of parameters in the ith copula model.

6.3.4 Cluster Based Consensus Scheme

After all the clusters obtain their initial estimates, these estimates are shared via linear inter-

cluster collaboration to reach a consensus. We employ the average consensus algorithm [80].

Assume that the collaboration among clusters is represented by a fixed topology matrix A

with binary entries, namely, Aij ∈ {0, 1}, i, j ∈ [K]. Here, Aij = 1 means that there is a

communication link from the ith cluster to the jth cluster; otherwise, Aij = 0. At iteration
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n+ 1, each cluster Gi, i ∈ [K] updates its estimate θ̂Gi(n+ 1) as follows [80]:

θ̂Gi(n+ 1) = θ̂Gi(n)− β
∑
j∈NGi

Aij

(
θ̂Gj(n)− θ̂Gi(n)

)
, (6.13)

where 0 < β < 1/∆, ∆ is the maximum degree of the network and NGi is the neighborhood

cluster set of Gi.

It has been shown in [80, Theorem 2] that if the graph is strongly connected and balanced,

θ̂ =
∑
i θ̂Gi (0)

K
asymptotically.

Theorem 6.1. The standard deviation of the parameter estimate obtained by the average con-

sensus scheme is upper bounded by the average standard deviation of all the clusters’ esti-

mates, i.e., √
var(θ̂) ≤ 1

K

K∑
k=1

√
var(θ̂k) (6.14)

where k, k ∈ [K] denotes the cluster index and var(·) represent the variance of a random

variable.

Proof: See Appendix F. �

Remark 6.3. The average consensus based inter-cluster collaboration helps in mitigating the

effect of estimation bias resulting from the individual cluster estimates.

Since the sensor network is large, the number of sensors in each cluster is also potentially

large. As mentioned in Section 6.1, some sensors may provide redundant information. Allow-

ing all the sensors in the cluster to exchange their information may result in a large transmission

cost. Therefore, selecting sensors with maximum information and minimum redundancy is cru-

cial. In the following section, we propose a mutual information based sensor selection scheme,

and only the selected sensors need to exchange their information within a cluster.

Remark 6.4. In practice, to extend the network lifetime, one may design sleep scheduling

schemes for sensors which provide redundant data [25, 26]. Also, to balance battery usage
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for inter-cluster communication, one may rotate sensors that are responsible for inter-cluster

collaboration in a small region near the edge of the cluster.

6.4 Sensor Selection Based Two-Step Dependence Driven

Collaborative Distributed Estimation

In this section, we present the details of the sensor selection scheme for our two-step collab-

orative estimation scheme. For each cluster Gk, k ∈ [K], prior to estimation via intra-cluster

collaboration, a mutual information based methodology is employed to select sensors with

maximum information and minimum redundancy.

Before we proceed, we recall that the mutual information of two random variables x and y,

denoted by I(x; y), is given as

I(x; y) =

∫
f(x, y)log

(
f(x, y)

f(x)f(y)

)
dxdy, (6.15)

where f(x, y) is the joint PDF of variables x and y. f(x) and f(y) are the marginal PDFs.

The optimal sensor selection strategy is often based on maximal relevance and minimal

redundancy with respect to the target parameter θ on the entire sensor set [83], and this strategy

is referred as maximal-relevancy-minimal-redundancy (mRMR) in [83]. Suppose that we aim

to select m sensors from the set of all the sensors in the network S with the corresponding

observation set zS = {z1, . . . , z|S|}. In terms of mutual information, the mRMR solution is

obtained by solving the following problem

max
sm∈S

 1

|sm|
∑

zi∈zsm

I(zi; θ)−
1

|sm|2
∑

zi,zj∈zsm

I(zi; zj)

 , (6.16)

where sm is the set of the selected sensors with cardinality |sm| = m and zsm = {z1, . . . , z|sm|}
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is the sensor observation set of sm, where zsm ∈ zS .

Note that the computational complexity of the mRMR problem is O(|S|m). A more effi-

cient first-order incremental search method was proposed to find the near-optimal solutions of

problem in Equation (6.16) in [83]. It is given as:

max
zj∈zS\zsm−1

I(zj; θ)−
1

m− 1

∑
zi∈zsm−1

I(zj; zi)

 , (6.17)

where sm−1 is the selected sensor set withm−1 sensors, and zS\zsm−1 denotes that we exclude

the sensor observations from the sensors in set sm−1 from zS .

The computational complexity of the incremental search method in Equation (6.17) is

O(m ∗ |S|). To further reduce the computational complexity, in the following, we propose a

cluster-based incremental search methodology, where the sensor selection is performed cluster-

by-cluster independently.

Note that S = {G1 ∪G2 . . .∪GK}, where Gi ∩Gj = ∅, i, j ∈ [K]. Instead of searching over

the entire sensor set, we select mk sensors from cluster Gk, k ∈ [K]. Note that
∑K

k=1mk = m.

For each cluster Gk, suppose that we already have smk−1, the sensor set withmk−1 sensors.

The incremental selection scheme solves the following problem:

max
zj∈zGk\zsmk−1

I(zj; θ)−
1

mk − 1

∑
zi∈zsmk−1

I(zj; zi)

 , (6.18)

where zGk \ zsmk−1 denotes that we exclude the sensor observations in set smk−1 from zGk .

Remark 6.5. The selection scheme given in Equation (6.17) is referred to as the global sensor

selection scheme. Also, the selection scheme given in Equation (6.18) is referred to as the

cluster-based sensor selection scheme.

Theorem 6.2. Using a suitably designed threshold dth that makes inter-cluster sensors nearly

independent, the cluster-based sensor selection method is equivalent to the global sensor se-
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lection method with probability at least 1− ε, where ε is a small constant.

Proof: See Appendix G. �

A natural question is how to determine the optimal number of sensorsmk for cluster Gk, k ∈

[K]. In an energy constrained network with battery-limited sensors, each sensor’s energy is

finite and a communication cost is incurred when it transmits observations to collaborating

sensors. Therefore, the number of sensors that can be selected in each cluster is limited due

to finite energy budgets. Let r be the average number of requests initiated by each sensor in

the network per unit time interval. Then, for the selected sensors in cluster Gk, the number of

requests that have to be responded to within a unit time interval is r(mk − 1). Moreover, we

assume that the energy cost for a single transmission is Et. The average energy consumption

per unit time interval for each selected sensor in cluster Gk is E[s] = r(mk − 1)Et, s ∈ smk ,

which increases as the size of the selected sensor set smk increases. Let the energy consumption

of cluster Gk be the average energy consumption per sensor in smk , denoted by E[smk ]. Thus,

in terms of energy efficiency, a smaller sensor set is preferred. In order to guarantee adequate

sensors lifetimes, we enforce the energy consumption constraint as follows:

E[smk ] = r(mk − 1)Et ≤ αk, k ∈ [K], (6.19)

where αk > 0 is the pre-specified constraint for cluster k. Therefore, the energy constrained

selection scheme for each cluster Gk, k ∈ [K] is stated as

max
smk∈Gk

1

mk

∑
zi∈zsmk

I(zi; θ)−
1

m2
k

∑
zi,zj∈zsmk

I(zi, zj), (6.20)

subject to E[smk ] ≤ αk.

The problem in Equation (6.20) can be solved using the incremental search method in

Equation (6.18) while satisfying the energy constraint.
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6.5 Simulation Results

In this section, we demonstrate the efficacy of our proposed two-step cluster-based collabora-

tive distributed estimation methodologies through numerical examples. We consider a wireless

sensor network with L = 13 sensors deployed in a [0, 1.5] × [0, 1.5] square area of interest.

Let (x0, y0) be the target location coordinates and θ be the intensity of the target signal to be

estimated. We assume a Gaussian prior N (θp, σ
2
p) on θ. Sensor l, l = 1, . . . , L is located at

(xl, yl). The received measurements at the lth sensor are modeled as

zli = θ + wli, i = 1, . . . , N, (6.21)

where wli is the measurement noise which is assumed to be Gaussian distributed with mean 0

and variance σ2
l and N is the number of observations. Here, we assume that the variance of the

measurement noise at each sensor is inversely scaled by the distance between the sensor and

the signal source, i.e., σ2
l =

σ2
0√

(xl−x0)2+(yl−y0)2
. Note that σ2

0 is introduced here for the ease of

characterizing signal to noise ratio (SNR) at different sensors. We define our SNR as

SNR =
E[θ2]

σ2
0

. (6.22)

We assume that the measurement noise wli and θ are independent of each other. Moreover,

we assume that the measurement noises are i.i.d. across time and can be spatially dependent

at some sensors. Without loss of generality, we assume that we have three clusters and the

underlying spatial dependence among sensors is generated cluster by cluster using multivariate

Clayton copula functions. The pair-wise sensor dissimilarities are estimated based on Kendall’s

τ . We set rEt = 1. Therefore, according to Equation (6.19), the maximum number of sensors

that can be selected in cluster k, k ∈ [K] is mk = αk. Also, without loss of generality, we

assume that α1 = α2 = . . . , αK . Therefore, m1 = m2 = . . . ,mK . The total number of sensors

that are selected is m =
∑K

k=1mk.
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We use average mean squared error (MSE) to characterize the estimation performance.

For the clustering process, we use the average clustering accuracy to measure the clustering

performance. The clustering accuracy is defined as Number of correctly clustered sensors
Total number of sensors . All the results

are obtained using 500 Monte Carlo trials.

To exhibit the performance improvement by applying our proposed two-step cluster-based

collaborative distributed estimation methodologies, we also evaluate the corresponding esti-

mation performance under independence assumption that ignores dependence among sensor

observations. Moreover, we compare our proposed estimation methodologies with the cluster-

based MAP method given in Equation (6.3), where the copula-based approach as well as the

product-based approach (under independence assumption) can be used to model the conditional

joint PDFs. For clarity, we summarize the eight empirically studied cases as follows.

• Cluster-based consensus with sensor selection using copula based method as well as

under independence assumption

• Cluster-based consensus without sensor selection using copula based method as well as

under independence assumption

• Cluster-based MAP with sensor selection using copula based method as well as under

independence assumption

• Cluster-based MAP without sensor selection using copula based method as well as under

independence assumption

In Fig. 6.2, we present the average clustering accuracy as a function of the threshold dth at

SNR = 2.0 dB and N = 70. We can see that the choice of dth has a significant impact on the

performance of Algorithm 6.1. The optimal value of dth depends on the given data, namely, dL

and dH . Moreover, as we can see, a larger dth results in a better clustering performance.

In Fig. 6.3, we present the the average clustering accuracy as a function of the number of

observations N with dth = 0.83 at SNR = 2.0 dB. As we can see, by choosing appropriate dth
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Fig. 6.2: Average clustering accuracy as a function of threshold dth.
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Fig. 6.3: Average clustering accuracy as a function of number of observations N with dth =
0.83.

and N , we can achieve perfect clustering performance. In the following, our estimation results

are obtained with dth = 0.83 and N = 70 unless otherwise specified.

In Fig. 6.4 and Fig. 6.5, we present the average MSE as a function of SNR and the number

of observations N , respectively, and compare the performance of schemes without sensor se-

lection. The schemes that are evaluated are: Cluster-based consensus without sensor selection
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Fig. 6.4: Average MSE as a function of SNR without sensor selection.
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Fig. 6.5: Average MSE as a function of the number of observationsN without sensor selection.

using copula based scheme, Cluster-based MAP without sensor selection using copula based

scheme, Cluster-based consensus without sensor selection under independence assumption and

Cluster-based MAP without sensor selection under independence assumption. We can see that

as N as well as SNR increases, the average MSE decreases. Also, the schemes using copula

based estimation methodologies perform significantly better than the schemes that assume in-

dependence among sensor observations. Moreover, as we can see, for the independent cases,

the cluster-based consensus scheme performs pretty close to the cluster-based MAP scheme
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while for the copula cases, the cluster-based consensus scheme performs close to the corre-

sponding cluster-based MAP scheme at the SNR values greater than 0 dB in Fig. 6.4 and the

number of observations larger than 50 in Fig. 6.5. Note that with extremely low SNR values or

very small number of observations, the estimation performance difference between the copula

incorporated cluster-based consensus scheme and the copula incorporated cluster-based MAP

scheme is large. This is because for the cluster-based consensus scheme, the estimate obtained

from each cluster is relatively poor for extremely low SNR values or with very small number

of observations while for the cluster-based MAP scheme, it models the conditional joint PDF

and captures more information.
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Fig. 6.6: Average MSE as a function of SNR with cluster-based sensor selection and mk = 3.

In Fig. 6.6 and Fig. 6.7, we present the average MSE as a function of SNR and the number

of observations N , respectively, by comparing schemes with cluster-based sensor selection.

The schemes that are evaluated are: Cluster-based consensus with mk = 3 using copula based

scheme, Cluster-based MAP with mk = 3 using copula based scheme, Cluster-based consen-

sus with mk = 3 under independence assumption and Cluster-based MAP with mk = 3 under

independence assumption. As we can see, the schemes using copula based estimation method-

ologies perform significantly better than the schemes assuming independence among sensor
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Fig. 6.7: Average MSE as a function of the number of observations N with cluster-based
sensor selection and mk = 3.

observations. Note that with sensor selection, the cluster-based consensus scheme using cop-

ula incorporated estimation methodology performs better than the corresponding cluster-based

MAP scheme. This is because our proposed sensor selection scheme aims to select sensors with

maximum relevance and minimum redundancy (namely, most independent sensors) regarding

the parameter of interest. With most independent selected sensors, part of the dependence in-

formation for each cluster is lost. For the cluster-based MAP scheme, the product approach

is used to combine the conditional joint PDFs corresponding to each cluster whereas for the

cluster-based consensus scheme, consensus is used and the estimates obtained from each clus-

ter are linearly combined where the linear dependence is imposed inherently resulting in better

performance.

In Fig. 6.8 and Fig. 6.9, we present the average MSE as a function of SNR and the num-

ber of observations N , respectively, for copula incorporated schemes with cluster-based sensor

selection and the copula incorporated schemes without sensor selection. The schemes that are

evaluated are: Cluster-based consensus without sensor selection using copula based scheme,

Cluster-based MAP without sensor selection using copula based scheme, Cluster-based con-
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Fig. 6.8: Average MSE as a function of SNR for different schemes without sensor selection.
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Fig. 6.9: Average MSE as a function of the number of observations N for different schemes
without sensor selection.

sensus with mk = 2 using copula based scheme and Cluster-based consensus with mk = 3

using copula based scheme. As we can see that, selecting mk = 3 sensors in each cluster

results in better estimation performance compared to selecting mk = 2 sensors in each cluster.

Moreover, in Fig. 6.8, our proposed cluster-based consensus approach by selecting mk = 3

sensors in each cluster performs very close to the corresponding scheme without sensor se-

lection for SNR from 1 dB to 4 dB. Also, we have similar performance in Fig. 6.9 when the
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number of observations is larger than or equal to 60. For the SNR value smaller than 1 dB and

the number of observations smaller than 60, the performance difference between the cluster-

based consensus scheme by selecting mk = 3 sensors and the cluster-based consensus scheme

without sensor selection is large. This is due to the fact that with low SNR values or small

number of observations, the estimate obtained from each cluster is relatively poor. However,

for the corresponding scheme without sensor selection, it includes more sensors and contains

more information.
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Fig. 6.10: Average MSE as a function of SNR for the cluster-based sensor selection scheme
and the global sensor selection scheme.

In Fig. 6.10 and Fig. 6.11, we present the average MSE as a function of SNR and the number

of observations N , respectively, for the cluster-based sensor selection scheme and the global

sensor selection scheme (see Equation (6.17)). We evaluate the following schemes: Cluster-

based consensus scheme using global sensor selection with m = 9 and copula based approach,

Cluster-based consensus scheme using cluster-based selection scheme with mk = 3 and cop-

ula based approach, Cluster-based consensus scheme using global sensor selection with m = 9

under independence assumption and Cluster-based consensus scheme using cluster-based se-

lection scheme with mk = 3 under independence assumption. Note that for fair comparison

of the cluster-based sensor selection scheme and the global sensor selection scheme, we set
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Fig. 6.11: Average MSE as a function of the number of observations N for the cluster-based
sensor selection scheme and the global sensor selection scheme.

m = 9 as the total number of sensors that are selected since mk = 3 sensors are selected from

each cluster and the estimated number of clusters is K̂ = 3. As we can see, the cluster-based

sensor selection scheme and global sensor selection scheme perform equally well.

6.6 Summary

In this chapter, a two-step cluster-based collaborative distributed estimation scheme was pre-

sented, where in the first step, sensors first form dependence driven clusters, and then perform

copula-based MAP estimation via intra-cluster collaboration; in the second step, the estimates

generated in the first step are shared via inter-cluster collaboration until an average consensus is

reached. We proposed a merge based K-medoid dependence driven clustering algorithm. We

further proposed a cluster-based sensor selection incorporated collaborative distributed estima-

tion scheme. More specifically, prior to estimation, each cluster employs a mutual information

based sensor selection scheme and selects sensors with maximum relevance and minimum

redundancy with respect to the target parameter. Also, the proposed cluster-based sensor selec-

tion scheme was shown to be equivalent to the global/non-cluster based selection scheme with
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high probability, and was computationally more efficient. Numerical results demonstrated the

efficiency of our proposed methods compared to the estimation schemes under independence

assumption.
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CHAPTER 7

SUMMARY AND FUTURE DIRECTIONS

7.1 Summary

In this thesis, we investigated several inference problems with heterogeneous sources whose

observations are statistically dependent. Both centralized and distributed inference problems

were considered. By characterizing the statistical dependence among multimodal data, we pro-

posed several methodologies that take such dependence into account to improve the inference

performance. Also, we addressed the computational complexity issue resulting from modeling

the underlying statistical dependence.

The problem of distributed detection with dependent sensor decisions was studied. We

proposed a novel and powerful methodology to fuse dependent decisions obtained by binary

quantization of statistically dependent sensor observations under the Neyman-Pearson frame-

work. To derive the optimal fusion rule, we used the R-Vine copula model to characterize

the complex dependence among multiple sensors. The proposed R-Vine copula based fusion

methodology was employed to overcome the limitation of the existing standard multivariate

copulas, and since this methodology is extremely flexible to model complex dependence struc-

tures. The optimal log likelihood test statistics at the FC involves multi-dimensional integration
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at each time, leading to very high computational complexity. We proposed an efficient R-Vine

copula based optimal fusion algorithm. Numerical results have illustrated the efficiency of our

approach.

To tackle inference accuracy and response time issues for fusion of heterogeneous stream

data, we proposed C-Storm, which is a novel parallel platform that is built based on Apache

Storm and uses the copula-based dependence modeling approach for fusion of heterogeneous

data streams. C-Storm offers fast inference responses and high inference accuracies. Moreover,

it is a general and easy-to-use platform that can support various data fusion applications. Its

users do not need to know details of Storm or copula theory. We demonstrated the superiority

of C-Storm via a detection application. Experimental results have shown that C-Storm achieves

4.7x speedup over a sequential baseline on average, and higher degree of parallelism leads to

better performance.

The problem of distributed classification for activity recognition with dependent high-level

features was investigated. An R-Vine copula based feature fusion approach was presented

to perform activity recognition using multi-modal sensor observations. The features of each

modality were extracted via a DNN and afterwards, an R-Vine copula model was constructed

to capture the dependencies of intra-modal and cross-modal features. The procedures of model

construction involve selecting the optimal R-Vine tree structure, obtaining the copula parameter

set, and choosing the best copula. Experiments on two human activity datasets demonstrated

the efficiency of our proposed method compared to neural network based data/feature fusion,

in terms of high prediction accuracy, less number of training samples required and dependence

interpretability.

A distributed sequential detection problem was considered in a sensor network with spa-

tially dependent observations. In this work, we proposed a copula-based sequential scheme

for the problem of distributed detection with imperfect communication channels from the sen-

sors to the fusion center. The underlying spatial dependence may result from the dependent
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sensor signals, dependent channel noises or both. We used the regular vine copula model to

represent the underlying dependence. We first proposed a centralized copula-based SPRT, and

showed its asymptotic optimality and time efficiency. We then proposed a distributed copula-

based sequential scheme, where the memory-less truncated SPRTs were performed at the local

sensors and the copula-based SPRT was conducted at the FC. We have shown that by suit-

ably designing the local thresholds and the truncation window, the local probability of false

alarm and the local probability of miss detection of the proposed memoryless truncated local

sequential tests are upper bounded by the pre-specified error probabilities. Moreover, we have

shown the asymptotic optimality and time efficiency of the distributed copula-based SPRT. Via

simulations, we have shown that our proposed copula-based SPRTs can efficiently capture the

unknown dependence, and outperform the product-based SPRTs which ignore the underlying

dependence.

Finally, we investigated a two-step cluster-based collaborative distributed estimation prob-

lem in a large scale wireless sensor network with dependent observations. In the first step,

sensors first form dependence driven non-overlapping clusters, and then estimate the target

parameter using copula based MAP via intra-cluster collaboration. In the second step, the

estimates generated in the first step were shared via inter-cluster collaboration until an aver-

age consensus is reached. We proposed a merge basedK-medoid dependence driven clustering

algorithm. Moreover, we further proposed a cluster-based sensor selection incorporated collab-

orative distributed estimation scheme. More specifically, prior to the estimation, each cluster

performs a mutual information based selection scheme by selecting sensors with maximum

relevance and minimum redundancy with respect to the target parameter. Also, the proposed

cluster-based sensor selection scheme is shown to be equivalent to the global/non-cluster based

selection scheme with high probability, which at the same time is computationally more effi-

cient. Numerical results demonstrated the efficiency of our proposed methods compared to

independence assumed estimation schemes.
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7.2 Future Directions

Some promising directions for future work are listed in the following:

1. In Chapter 2, we have proposed the regular vine copula model for the fusion of binary

local decisions with two underlying hypotheses. It is optimal in terms of the fusion

scheme at the FC. At the local sensors, suboptimal binary thresholding detectors are

used. Although it may not be feasible to design optimal local decision rules, as a future

work, one can investigate multi-bit quantizers at the local sensors to further improve

the detection performance. Also, it is of interest to study multiple hypotheses testing

problem under dependent observations. Copula selection approaches for the specific

task of multiple hypotheses testing is worth pursuing as a future work.

2. In Chapter 3, we have designed a parallel computing platform based on multivariate cop-

ula dependence modeling approach. Typically, multivariate copula functions are limited

to two sensor case. It is of great necessity to design parallel processing inference plat-

form using regular vine copula based approach which is more powerful in characterizing

high dimensional dependence structures.

3. In Chapter 4, we designed the feature-level fusion rule using regular vine copula based

approach for multi-sensor data. For more complex data, such as video or audio data,

the extracted features using deep networks are of potentially very high dimension. The

regular vine copula may not be capable of characterizing very high dimensional data.

Note that these extracted high-dimensional features are not necessarily all dependent in

practice. Motivated by this, sparsity constrained regular vine copula can be pursued as

a future work to extend the capability of regular vine copula based approach. Also, this

idea can be applied to the large scale distributed estimation problem in Chapter 6.

4. In Chapter 5, we proposed a synchronized copula based distributed sequential test. The

FC needs to wait until all sensor decisions are received before performing the sequential
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test which can be time consuming. As a future work, one can investigate asynchronized

local sequential tests to further improve the detection time.



APPENDICES

A Aut in Log Test Statictics (2.6)

First, we define Ĩ = {ln|uln = 1, l = 1, 2, . . . , L, n = 1, 2, . . . , N} as the index set with

decisions 1. Note that Ĩ ∪ Ĩc = I . Moreover, let Ĩj be the subset of Ĩ and the cardinality of

the set Ĩj is j. We further define Ĩjt = {i1n, i2n, . . . , itn, 0 ≤ t ≤ j} as the subset of Ĩj where

t =
∣∣∣Ĩjt∣∣∣. If t is a even number, Ĩjt = Ĩejt, otherwise, Ĩjt = Ĩojt. Under hypothesis H1, let

PĨjt(i1n,i2n,...,itn) denote the PMFs that only the decisions of (i1n, i2n, . . . , itn)th sensors are 1’s

and that of the rest of sensors are 0’s. Note t = 0 implies that no sensor makes a decision 1 and

PĨj0 is used to denote all 0 sensor decisions. Similarly, let QĨjt(i1n,i2n,...,itn) denote the PMFs

under H0.

In the following, we illustrate the process of obtaining Aut = log
∏

0≤k≤t P
(−1)t

Ĩe
tk

∏
0≤k≤tQ

(−1)t

Ĩo
tk∏

0≤k≤tQ
(−1)t

Ĩe
tk

∏
0≤k≤t P

(−1)t

Ĩo
tk

,

where PĨtk =
∏

{i1n,i2n,...,ikn}∈Ĩt
PĨtk(i1n,i2n,...,ikn) and QĨtk =

∏
{i1n,i2n,...,ikn}∈Ĩt

QĨtk(i1n,i2n,...,ikn).

First, for t = 1, we have k = 0, 1. Au1 is given as Au1 = log
QĨ10

PĨ11(i1n)
PĨ10

QĨ11(i1n)
, 1 ≤ i1 ≤ L which

satisfies the Aut with t = 1.

For t = 2, we have k = 0, 1, 2. Au2 is given asAu2 = log
PĨ20

PĨ22(i1n,i2n)
QĨ21(i1n)

QĨ21(i2n)
QĨ20

QĨ22(i1n,i2n)
PĨ21(i1n)

PĨ21(i2n)
, 1 ≤

i1, i2 ≤ L which satisfies Aut with t = 2.

For t = 3, we have k = 0, 1, 2, 3. Au3 is given asAu3 = log
QĨe30

QĨe32
PĨo31

PĨo33
PĨe30

PĨe32
QĨo31

QĨo33
, 1 ≤ i1, i2, i3 ≤

L, where for the numerator, QĨe30 = QĨ30
, QĨe32 = QĨ32(i1n,i2n)QĨ32(i1n,i3n)QĨ32(i2n,i3n), PĨo31 =

PĨ31(i1n)PĨ31(i2n)PĨ31(i3n) and PĨo33 = PĨ33(i1n,i2n,i3n). We can verify that Au3 satisfies Aut with

t = 3.

For t = 4, we have k = 0, 1, 2, 3, 4. Au4 is given as Au4 = log
PĨe40

PĨe42
PĨe44

QĨo41
QĨo43

QĨe40
QĨe42

QĨe44
PĨo41

PĨo43
, 1 ≤

123
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i1, i2, i3, i4 ≤ L which satisfies Aut with t = 4.

For t = 5, 6, . . . , L, Aut can be easily verified. �

B Proof of Theorem 2.1

Note that Equation (2.6) can be written as

logΛ(u) =
N∑
n=1

Un, (8.1)

where Un =
∑
{i1n}∈I1 Au1u1 +

∑
{i1n,i2n}∈I2 Au2u2 + . . . +

∑
{i1n,i2n,...,itn}∈It Autu

t + . . . +∑
{i1n,i2n,...,iLn}∈IL AuLuL.

Due to the assumption of temporal independence of sensor decisions, Un for all 1 ≤ n ≤ N

are i.i.d. random variables. Hence, by applying the central limit theorem (CLT) [82], logΛ(u)

is asymptotically Gaussian.

Note that uln, l = 1, 2, . . . , L are Bernoulli distributed under both hypotheses and can take

a value of either 0 or 1 with certain probabilities. For the simplification of notation, we omit

the time index n here. For sensor decisions s ∈ S, we define E = {j1, j2, . . . , jd, 1 ≤ d ≤ L}

as the index set when the sensor decisions of s are 1. Under H1 hypothesis, the random

variable Us =
∑
{jm1}⊂E

Au1 +
∑
{jm1 ,jm2}⊂E

Au2 + . . . +
∑
{jm1 ,jm2 ,...,jmd−1

}⊂E Aud−1 +∑
{jm1 ,jm2 ,...,jmd}⊂E

Aud with probability Ps for 1 ≤ d ≤ L, otherwise, U = 0 for d = 0. Sim-

ilarly, we can obtain the values of U under H0 hypothesis. Since we can obtain the joint PMF

of sensor decisions by integrating the joint PDF of their observations under both hypotheses,

we now can evaluate the mean and variance of the Gaussian distributed fusion statistic under

either hypothesis. The mean and variance of the fusion rule statistic under both hypotheses are
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given as follows

µ0 = N

[∑
s∈S

UsQs

]
,

σ2
0 = N

[∑
s∈S

U2
sQs − (µ0/N)2

]
,

µ1 = N

[∑
s∈S

UsPs

]
,

σ2
1 = N

[∑
s∈S

U2
sPs − (µ1/N)2

]
.

�

C Proof of Theorem 5.1

For notational simplicity, we remove the superscript “cen" in the proof. Before deriving the

expected stopping time, we first present Wald’s Identity [99] which is given by the following

Proposition.

Proposition 8.1 (Wald’s Identity). Let Y1, Y2, . . . be independent and identically distributed

random variables with mean µ. LetK be any integer-valued random variable such that E[K] <

∞ and K = k is an event determined by Y1, Y2, . . . , Yk and independent of Yi, i > k. Then

E[
∑K

i=1 Yi] = µE[K].

Let `(i) denote the log-likelihood ratio at time instant i, which is given as

`(i) = log
f1(yi)

f0(yi)
, (8.2)

where fk(yi), k = 0, 1 are the joint distributions of observations [y1i, . . . , yLi] under the two

hypotheses. Moreover, the log-likelihood ratio test statistic Λn(y) is given as

Λn(y) =
n∑
i=1

`(i), (8.3)
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where n = 1, 2, . . . and we assume that Λ0(y) = 0.

Firstly, we show that as A → ∞ and B → ∞, PF ≈ e−A and PM ≈ e−B. Under H0

hypothesis, based on Equation (8.2) and Equation (8.3), we consider

EH0

[
eΛn+1(y)|eΛ1(y), . . . , eΛn(y)

]
= EH0

[
f1(yn+1)

f0(yn+1)
eΛn(y)|eΛ1(y), . . . , eΛn(y)

]
,

= eΛn(y)EH0

[
f1(yn+1)

f0(yn+1)
|eΛ1(y), . . . , eΛn(y)

]
,

= eΛn(y)EH0

[
f1(yn+1)

f0(yn+1)

]
,

(a)
= eΛn(y),

where (a) is obtained since y1,y2, . . . are independent, we have

EH0

{
e`(i)
}

=EH0

[
f1(yi)

f0(yi)

]
=

∫
R

f1(yi)

f0(yi)
f0(yi)dyi = 1. (8.4)

Therefore, the eΛn(y) forms a martingale under H0 hypothesis. When the test stops, we

have

ΛN(y) = A or ΛN(y) = −B. (8.5)

According to Wald’s likelihood ratio identity [99, Theorem 2.3.3], we have

EH0 [e
ΛN (y)] = 1. (8.6)

Combining Equation (8.5) and Equation (8.6), we have

1 = EH0 [e
ΛN (y)] ≈ PF e

A + (1− PF )e−B. (8.7)
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Therefore, we have

PF ≈
1− e−B

eA − e−B
. (8.8)

Similarly, we can show that e−Λn(y) forms a martingale under H1 hypothesis and obtain

PM ≈
e−A − 1

e−A − eB
. (8.9)

As A,B → ∞, the PF and PM in Equation (8.8) and Equation (8.9), respectively, are

reduced to

PF ≈ e−A, PM ≈ e−B. (8.10)

Secondly, we derive the asymptotic expected stopping time Ek [N ] under hypothesisHk, k =

0, 1. Under hypothesis H0, by Wald’s Identity,

EH0

[
ΛN(y)

]
(8.11)

= EH0

[
N∑
i=1

L∑
l=1

log
f1,l(yli)

f0,l(yli)
+

N∑
i=1

log
c1(·|φ1)

c0(·|φ0)

]
,

= EH0 [N ] ∗ EH0

[
L∑
l=1

log
f1,l(yli)

f0,l(yli)
+ log

c1(·|φ1)

c0(·|φ0)

]
,

(b)
= EH0 [N ] ∗[
−

L∑
l=1

D (f0,l(·)||f1,l(·))−D (c0(·|φ0)||c1(·|φ1))

]
,

where (b) is obtained based on the fact that copula-based dependence measure is independent

of the marginal distributions.

Moreover, we have

EH0

[
ΛN(y)

]
≈ PF ∗ A+ (1− PF ) ∗ (−B), (8.12)
(c)
≈ −B,
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where (c) is obtained by using Equation (8.10).

By combining Equation (8.11) and Equation (8.12), we obtain EH0 [N ] in Equation (5.6).

Similarly, we can get EH1 [N ]. �

D Proof of Theorem 5.2

Before we proceed, we define the CDF of λl,i(iW0) under hypothesis Hk, k = 0, 1 as Q̃k(x) =

P (λl,i(iW0) ≤ x|Hk).

We first derive the upper bound of P local
F = P (Uli = 1|H0). Here, we define V as P (νl ≤

λl,i(iW0) < al,−bl < λl,i(W ) < al, (i− 1)W0 + 1 ≤ W ≤ iW0). Therefore, P local
F is given by

P local
F <

iW0∑
W=(i−1)W0+1

P (UW
li = 1|H0) + V ,

< 1−Q0(al) + V , (8.13)

(a)
<

α̃

∆l,a

+ 1− Q̃0(νl),

where (a) is obtained by using the upper bound derived in Appendix [98, A.4].

If we set W0 equal to NFSS and νl equal to νFSS , we have 1 − Q0(νl) = α̃
∆l,Ta

, and the

inequality in Equation (8.13) can be written as

P local
F <

(
1

∆l,a

+
1

∆l,Ta

)
α̃. (8.14)

Then, we derive the upper bound of P local
M = P (Uli = 0|H1). Similarly, we define U =

P (−bl < λl,i(iW0) < νl,−bl < λl,i(W ) < al, (i − 1)W0 + 1 ≤ W ≤ iW0|H1). P local
M can be
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written as

P local
M <

iW0∑
W=(i−1)W0+1

P (UW
li = 0|H1) + U ,

<
β̃

∆l,b

+ U , (8.15)

(b)
<

β̃

∆l,b

+ Q̃1(νl),

where (b) is obtained by using the upper bound derived in Appendix [98, A.3]. By setting W0

equal to NFSS and νl equal to νFSS , we can show that P local
M <

(
1

∆l,b
+ 1

∆l,Tb

)
β̃. �

E Proof of Theorem 5.3

Noting that Tp = NTp ∗min{E[tmax],W0} and by invoking Wald’s Identity, we have

Ek[Tp] = Ek[ΛTp ] ∗min{E[tmax],W0} (8.16)

/

(
L∑
l=1

Ek
[
log

f1,l(·)
f0,l(·)

]
+ Ek

[
log

c1(·|φ1)

c0(·|φ0)

])
.

Similar to the proof of Theorem 5.1, we have PF ≈ e−A and PM ≈ e−B. As B → ∞, we

have

E1[Tp] =
A ∗min{E[tmax],W0}

D1

, (8.17)

where D1 =
∑L

l=1 D(f1,l(·)||f0,l(·)) +D(c1(·|φ1)||c0(·|φ0)).

Since E[tmax] < W0, in the worse case, we obtain Equation (5.21). Similarly, under hypoth-

esis H0, we can obtain Equation (5.20). �
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F Proof of Theorem 6.1

var
(
θ̂
)

= var

(
1

K

K∑
k=1

θ̂k

)
,

=
1

K2

 K∑
k=1

var
(
θ̂k

)
+

K∑
k=1

K∑
k̃ 6=k=1

cov
(
θ̂k, θ̂k̃

) ,
(b)

≤ 1

K2

 K∑
k=1

var
(
θ̂k

)
+

K∑
k=1

K∑
k̃ 6=k=1

√
var
(
θ̂k

)
var
(
θ̂k̃

) ,
=

(
1

K

K∑
k=1

√
var
(
θ̂k

))2

,

where (b) is obtained using cov
(
θ̂k, θ̂k̃

)
/

√
var
(
θ̂k

)
var
(
θ̂k̃

)
≤ 1. Thus, we obtain that

√
var
(
θ̂
)
≤ 1

K

K∑
k=1

√
var
(
θ̂k

)
.

�

G Proof of Theorem 6.2

Suppose that we already have the set s which consists of selected sensors using the global

incremental sensor selection scheme in (6.17). We can trace back these selected sensors in the

set s to clusters. Without loss of generality, we assume that the sensors in the set s belong to

clusters G1, . . . ,Gi, i < K, and we decompose the set s into s1, . . . , si with sr, r = 1, . . . , i

denoting the subset of sensors that belongs to cluster Gr.

Assume that we have a candidate data sequence zj̃ ∈ zS \ zs, where zS is the set of data

sequences obtained from all the sensors in the network. Therefore, the global incremental
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selection problem becomes:

max
zj̃∈zS\zs

I(zj̃; θ)−
1

|s|
∑
zt∈zs

I(zj̃; zt). (8.18)

Note that there are two cases for the assignment of the sequence zj̃ . The first case is that

zj̃ belongs to one of the clusters in set [G1, . . . ,Gi]. The second case is that zj̃ belongs to one

of the clusters in set [Gi+1, . . . ,GK ].

For the first case, without loss of generality, we assume that zj̃ belongs to cluster Gj . Also,

we further suppose that set sj ∈ s contains the selected sensors from cluster Gj, j ≤ i. Thus,

the problem in Equation (8.18) can be further decomposed into the following problem:

max
zj̃∈zGj \zsj

I(zj̃; θ)−
1

|s|
∑
zt̃∈zs

I(zj̃; zt̃) (8.19)

− 1

|s|
∑

zt∈zs\zsj

I(zj̃; zt).

For the second case, the problem in Equation (8.18) becomes

max
zj̃∈∪Kĩ=i+1

zG
ĩ

I(zj̃; θ)−
1

|s|
∑
zt∈zs

I(zj̃; zt) (8.20)

Note that for the problems in Equation (8.19) and Equation (8.20), we have zt and zj̃ that are

generated from different clusters. Using Assumption A2, we have P
(
d(zj̃, zt) > dth

)
≥ 1− ε,

where dth, dL < dth < dH is the threshold we used to cluster sensors. If the dissimilarity of

two data sequences is greater than dth, we put these sequences into two into different clusters;

Otherwise, we put them into the same cluster. ε > 0 is a small allowed tolerance. Furthermore,

we assume that I(zj̃; zt) is a non-increasing function of the dissimilarity d(zj̃, zt). Based on

Assumption A2, we have

P (I(zj̃; zt) < ζ) ≥ 1− ε, (8.21)
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where ζ is the obtained mutual information with dissimilarity dth. Note that the empirical

mutual information I(zj̃; zt) also depends on the number of data samples that are available.

In this proof, we assume that we have enough data samples to estimate the empirical mutual

information accurately.

Note that the closed form expression for ζ is difficult to obtain due to the complicated

relationship between the mutual information and rank-based dependence measure. The mutual

information and the rank-based dependence measure (Spearman’s ρ or Kendall’s τ ) can be

connected using the copula based dependence measure. For random variables x and y, the

connection between mutual information and copula-based dependence measure is given as

I(x; y) =

∫
[0,1]2

c(u, v) log c(u, v)dudv, (8.22)

where c is the copula density function between variables x and y. Also, u = F (x) and v =

F (y), where F (·) is the CDF.

The connections between the rank-based dependence measures (Kendall’s τ and Spear-

man’s ρ) and the copula-based dependence measure are given as

τ(x, y) = 4

∫
[0,1]2

C(u, v)dC(u, v)− 1,

ρ(x, y) = 12

∫
u

∫
v

C(u, v)dudv − 3.

The computation of ζ can be carried our using numerical differentiation and integration.

However, if x and y follow Gaussian distributions and are linearly dependent, we have

I(x; y) = −1

2
log(1− r2), (8.23)

where r = corr(x, y) is the Pearson correlation coefficient. If we define our dissimilarity as

d(·, ·) =
√

1− r2, we have r2
th = 1 − d2

th given dth. Therefore, ζ = − log dth. As we can see
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that, ζ is a decreasing function of dth.

In the following, our goal is to show that for the first case P

(
1
|s|

∑
zt∈zs\zsj

I(zj̃; zt) > ζ

)
<

n1ε, where 1 ≤ n1 < L, and for the second case, P
(

1
|s|
∑

zt∈zs

I(zj̃; zt) > ζ

)
< n2ε, where

1 ≤ n2 < L.

We first prove for the first case.

P

 1

|s|
∑

zt∈zs\zsj

I(zj̃; zt) > ζ


< P

 1

|s \ sj|
∑

zt∈zs\zsj

I(zj̃; zt) > ζ

 ,

< P

(
max

zt∈zs\zsj
I(zj̃; zt) > ζ

)
,

<
∑

zt∈zs\zsj

P
(
I(zj̃; zt) > ζ

)
,

< |s \ sj|ε,

where 1 ≤ |s \ sj| < L.

Therefore, we have P

(
1
|s|

∑
zt∈zs\zsj

I(zj̃; zt) > ζ

)
< n1ε, where 1 ≤ n1 < L. Similarly, we

can show that P
(

1
|s|
∑

zt∈zs

I(zj̃; zt) > ζ

)
< n2ε, where 1 ≤ n2 < L.

By suitably designing dth, we can make ζ sufficiently small. Therefore, with probability at

least 1− ε, the term 1
|s|

∑
zt∈zs\zsj

I(zj̃; zt) and the term 1
|s|
∑

zt∈zs

I(zj̃; zt) are upper bounded by ζ .

For the first case, by ignoring the term 1
|s|

∑
zt∈zs\zsj

I(zj̃; zt), the problem in Equation (8.19)

reduces to

max
zj̃∈zGj \zsj

I(zj̃; θ)−
1

|s|
∑

zt̃∈zsj

I(zj̃; zt̃). (8.24)

Since 1
|s| is a scale parameter, which will not affect the solution of the problem in Equation
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(8.24), the above optimization problem can be further written as

max
zj̃∈zGj \zsj

I(zj̃; θ)−
1

|sj|
∑

zt̃∈zsj

I(zj̃; zt̃), (8.25)

which is equivalent to the cluster-based incremental search problem in Equation (6.18).

For the second case, by ignoring the term 1
|s|
∑

zt∈zs

I(zj̃; zt), the problem in Equation (8.20)

reduces to cluster-based incremental search problem in Equation (6.18) while selecting the first

sensor in the cluster.

Remark 8.1. Since we don’t consider weakly dependent sensors (nearly independent sensors)

within a cluster in this work, for the first case in Equation (8.19), the term 1
|s|
∑

zt̃∈zs

I(zj̃; zt̃) is

significantly larger than the term 1
|s|

∑
zt∈zs\zsj

I(zj̃; zt). The extreme scenario is that the term

1
|s|
∑

zt̃∈zs

I(zj̃; zt̃) is a small number due to a large scale parameter |s|. For this scenario, the

dominant term would be I(zj̃; θ) which can be covered by the second case in Equation (8.20).

Therefore, by designing dth, with at least probability 1 − ε, the global incremental search

method in Equation (6.17) reduces to cluster-based incremental search. �
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