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ABSTRACT

By representing relationships between social entities as a network, researchers can an-

alyze them using a variety of powerful techniques. One key problem in social network

analysis literature is identifying certain individuals (key players, most influential nodes)

in a network. We consider the same problem in this dissertation, with the constraint that

the individuals we are interested in identifying (People of Interest) are not necessarily the

most important nodes in terms of the network structure. We propose an algorithm to find

POIs, algorithms to collect data to find POIs, a framework to model POI behavior and an

algorithm to predict POIs with guaranteed error rates.

First, we propose a multi-objective optimization algorithm to find individuals who are

expected to become stars in the future (rising stars), considering dynamic network data and

multiple data types. Our algorithm outperforms the state of the art algorithm to find rising

stars in academic data.

Second, we propose two algorithms to collect data in a network crawling setting to

locate POIs in dark networks. We consider potential errors that adversarial POIs can intro-

duce to data collection process to hinder the analysis. We test and present our results on

several real-world networks, and show that the proposed algorithms achieve up to a 340%

improvement over the next best strategy.

Next, We introduce the Adversarial Social Network Analysis game framework to model

adversarial behavior of POIs towards a data collector in social networks. We run behavior

experiments in Amazon Mechanical Turk and demonstrate the validity of the framework to

study adversarial behavior by showing, 1) Participants understand their role, 2) Participants

understand their objective in a game and, 3) Participants act as members of the adversarial

group.

Last, we show that node classification algorithms can be used to predict POIs in social



networks. We then demonstrate how to utilize conformal prediction framework [103] to

obtain guaranteed error bounds in POI prediction. Experimental results show that the Con-

formal Prediction framework can provide up to a 30% improvement in node classification

algorithm accuracy while maintaining guaranteed error bounds on predictions.
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CHAPTER 1

INTRODUCTION

Complex interactions between social entities create social networks, where nodes

in the network are social entities such as people, animals, organizations, and con-

nections (edges) are interactions among these entities. Some examples of such

social networks are friendship networks, email communication networks, phone

contact networks, co-authorship networks etc. Representing social interactions as

a network provide an ample opportunity to study and analyze social entities. Such

representation helps to identify common patterns of interaction among individu-

als, dense groups who interact with each other more often than others, influential

individuals in among these social entities etc.

Social network analysis has gained attention from researchers in many disci-

plines such as sociology, psychology, criminology, physics and computer science

due to insightful representation a network can provide to social interaction data.

Social scientists utilize social network analysis to provide explanations to social

phenomenas [14]. For example, Granovetter et al. studied types of connections

(ex: weak ties vs strong ties ) social entities can have and implications of these

connections [40]. Klovdahl et al.[55] use social network analysis to study disease

spread. The criminology literature use social network analysis to model criminal
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network hierarchies [57], find vulnerabilities in criminal organizations and disrupt

them [92]. Physicists and computer scientists on the other hand are more interested

in the algorithmic aspects of social network analysis. They generally propose algo-

rithms to analyze [39, 13] and generate [104, 52] social networks. Our work dives

into the multi-disciplinary aspect of social network analysis proposing algorithmic

solutions problems that arise in criminology and sociology literature.

Social network analysis research has gained much attention recently, predomi-

nantly due to the rise of online social networks such as Facebook, Twitter, Reddit

etc. Previously, social network data collection was a challenging task since it in-

volved people participating in surveys or using tracking devices to collect data

about which individuals are in close proximity to each other. Such data collection

usually results in smaller social networks due to the lengthy collection process.

Online social networks provide the opportunity to analyze much larger social net-

works and test social social phenomena on more real world scale social networks.

Social network analysis research can be broadly categorized into 1) Network

data collection / generation (Network crawling, generative models), 2) Finding

nodes / edges of interest (identifying key players, link prediction), 3) Understand-

ing structural properties (social network properties, scale free networks, commu-

nity detection), and 4) Understanding social phenomena (information spread, dis-

ease propagation). This dissertation lies within the first two categories. We pro-

pose algorithms to locate People of Interest in social networks in this dissertation.

These works align more with finding nodes of interest in social network. We also

consider this problem in terms of collecting network data, where we propose algo-

rithms to collect data to maximize POIs in the collected sample.

People of Interest (POI) in social networks are those individuals who have some

common property that make them important to identify apart from the others. POI

attributes on one hand can be solely based on the position of some node in the
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network. There are many network centrality measures in social network analysis

literature to identify key players/ influential nodes in social networks based on

their positions in a social network.

On the other hand, POI attributes may not depend only on the network struc-

ture. Some examples are, people who are members of a criminal group, people

who have similar political views, people who attend the same university etc. In

this problem setting, POIs are not necessarily the most important nodes in the net-

work. Rather, they as a group possess some common trait that distinguish them

from the other nodes. Some applications of algorithms to find such POIs are, un-

covering covert nodes in networks, advertising campaigns that target nodes with

some given attribute (ex: age), finding experts/ future experts in some field, friend

recommendation systems (ex: recommend friends who have similar hobbies) etc.

1.1 Network Centrality Measures

Finding high centrality nodes in a network is a widely studied topic in social net-

work analysis literature. In some cases, these high centrality nodes may corre-

spond to POIs. Following are some classic network centrality measures.

• Degree Centrality: Nodes that are connected to most other nodes in a net-

work. Highest degree nodes in a network have highest degree centrality.

• Eigenvector Centrality [12]: Nodes that are connected to nodes with high

eigenvector centrality scores get a higher centrality score themselves. This

centrality measure considers that connecting to few important people in a

network is more beneficial compared to lots of people with lower importance.

Eigenvector centrality is calculated using the eigenvalue decomposition of a

social network adjacency matrix.
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• PageRank Centrality [79]: This centrality measure is a variation of Eigen-

vector centrality. For some node V , PageRank centrality is calculated using

the probability, a random walk that starts from any node in a network land-

ing node V . Katz centality [53] is a similar centrality measure.

• Betweenness Centrality [33]: This is measure based on shortest paths in a

network. Betweenness centrality ranks nodes that are more in shortest path

between other nodes higher in centrality.

• Closeness Centrality [33]: This measure is also based on shortest paths in a

network. Closeness centrality ranks nodes that are are closest to other nodes

in the network higher in centrality

• K − core Centrality [29]: K-core centrality ranks a high degree node who is

densely connected to other high degree nodes higher in centrality.

Many variations of these centrality measures can be found depending on spe-

cific applications. For example, there are many variations of betweenness and

closeness centrality to find influential people in information spread [15, 31]. These

measures can be used to identify POIs when their POI attributes correlate with the

network structure. In general cases, when POI attributes do not only depend on

the network structure, these measures fail to identify such POIs.

1.2 Identifying a Group of People

Identifying a group of people with some common attribute is closely related to

community detection and node classification problems in social network literature.
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1.2.1 Community Detection

A community in a social network is a group of nodes who are densely connected to

nodes inside the community compared to nodes outside. Community detection is

a widely studied problem since the community structure reveals underlying node

groups in a social network. Community detection problem is similar to clustering

problem in machine learning but with added complexity of connections among

entities.

The modularity maximization [25] algorithm finds communities that maximizes

internal connections in a community compared to a null model in a way that max-

imizes the expected number of connections between a group of nodes. Label prop-

agation based algorithms [41] start with a unique label indicating that each node

belong to a community of its own. These labels are propagated in the network and

a node at each iteration accepts the majority label among neighbors as its label.

Densely connected nodes converge to the same label quickly, indicating they be-

long to the same community. Network flow based algorithms [3, 87] assign PageR-

ank based weight to each node called "flow". Then the algorithms identify network

partitions that maximize intra flow and minimize inter flow. These algorithms only

consider network structure to find these groups of nodes and cannot be used ef-

fectively to identify POIs, when POIs are not densely connected sub groups in a

network.

There are community detection algorithms that consider node attributes along

with network connectivity [48, 62]. These algorithms assume that node attributes

are known and tend to group nodes with similar attributes together. We propose

algorithms to find POIs when we do not know which nodes may be have POI

attributes beforehand.
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1.2.2 Node Classification

Node classification algorithms are semi-supervised prediction algorithms that pre-

dict labels for unlabeled nodes in partially labeled networks. The node classifica-

tion problem is similar to the classification problem in machine learning; however

the classification instances are connected to each other. Node classification algo-

rithms performs better than traditional classification algorithms because they not

only consider node features, but also network connections to predict labels for un-

labeled nodes. Therefore, node classification algorithms can be used to identify

POIs even if POI attributes are not correlated with the network structure. We dis-

cuss details of node classification problem in Chapter 3 and Chapter 5.

1.3 Locating People in Social Networks

Locating people in social networks can refer to 1) Finding POIs in given a complete

social network, 2) Collecting data to maximize the number of POIs in the sample.

Finding POIs in a given social network is similar to key player identification prob-

lem or node classification problem. Social network data collection is of two forms,

network down-sampling and network crawling. Network down-sampling algo-

rithms are designed to obtain an unbiased, representative sample of a larger so-

cial network [59]. Our work aligns more with the second type- network crawling

algorithms- in which the algorithm starts with the knowledge of few nodes in the

network and collect data by querying nodes. Inspiration for most network crawl-

ing algorithms comes from popular web crawling algorithms. Therefore, classic

web crawling algorithms such as Breadth First Search (BFS), Depth First Search

(DFS), Snowball Sampling [9], Random walk sampling [49] can be used to crawl

social network data.

There are network crawlers designed to collect data to maximize some objec-
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tive. For example, Avrachenkov et al. [5], propose an algorithm to maximize the

node coverage in a social network by querying nodes, with the highest observed

degree in the collected sample so far. Target oriented network crawling [93, 11],

crawls networks to locate a set of specified nodes in a social network similar to lo-

cating POIs. Similarly, in Chapter 3, we propose algorithms to collect network data

to maximize the number of POIs identified in the sample. However, we consider

the setting when queries to obtain network data provide purposeful misinforma-

tion.

1.4 Our Contributions

We propose algorithms to identify POIs in social networks, when the POI proper-

ties cannot be easily explained by only using the network structure. In Chapter 2,

we consider the key player identification problem, but predict future key players

in social networks considering their behavior in networks over time. We propose

algorithms to crawl dark social networks to identify as many criminals as possi-

ble in Chapter 3. Even though we consider various errors POIs in dark networks

can introduce to data collection in Chapter 3, we do not have realistic models to

explain what motivates an individual to become adversarial towards a data col-

lector. In Chapter 4, we propose a framework to conduct behavior experiments

to study interactions between a data collector and an adversarial group. Algorith-

mic predictions can have adverse effects on individuals specially in problems such

as identifying criminals in social network. In Chapter 5, we demonstrate how to

predict POIs with guaranteed error bounds using node classification algorithms.

• Finding Rising Stars in Social Networks [106]: POIs in this problem are in-

dividuals who are expected to become stars in a given discipline in the near

future. To predict rising stars (important nodes), we need to identify nodes
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who are improving their importance over time. Further, we need to consider

all possible information channels to find enough evidence to predict a node

as a rising star. Therefore, we formulate this problem as a dynamic social

network analysis problem with heterogeneous information sources to deter-

mine importance of individuals. One application of this problem is finding

rising researchers in academic domain, where the information sources are

co-authorship data, citation data and publication venue data. We propose an

algorithm to combine known centrality measures, dynamic change in node

centrality and heterogeneous information to successfully predict rising stars

in social networks.

• Sampling Social Networks to Locate People of Interest [107, 108]: In dark

networks, POIs are covert entities who try to hide from being detected. Find-

ing POIs in such a setting is a challenging task, since POIs act adversarial

towards those who try to collect their data. Therefore, algorithms to find

POIs in such networks need to be robust against misinformation and should

not be entirely dependent on the network structure. We present RedLearn

and RedLearnRS, two algorithms to crawl dark networks with the goal of

maximizing the identification of people of interest, given a limited sampling

budget.

• Modeling People of Interest in Social Networks [109]: Extending the work

in Chapter 3, we introduce the Adversarial Social Network Analysis game

(ASNA game), an experimental framework to study the adversarial behavior

of covert groups in social networks. We conduct experiments on Amazon

Mechanical Turk using the proposed framework, which models interactions

between a data collector and members of an adversarial group as a network

game. Participants of the experiments play as adversarial nodes in the game.
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Our goal is to understand the factors that motivate an individual to report

network or attribute data dishonestly. We demonstrate the validity of the

ASNA game framework by showing that participants understand and pay at-

tention to key elements of the game, they try to maximize their objective in

the game, and they show loyalty to the adversarial group.

• Predicting People of Interest with Bounded Error Rates [105]: Node classi-

fication algorithms can be used to predict POIs in social networks. In many

problems, a user may wish to associate a confidence level with a prediction

such that the error in the prediction is guaranteed. We propose adopting the

Conformal Prediction framework [103] to obtain guaranteed error bounds in

node classification problem. We show how this framework can be applied

to 1) Obtain predictions with guaranteed error bounds, and 2) improve the

accuracy of the prediction algorithms.
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CHAPTER 2

FINDING RISING STARS IN SOCIAL

NETWORKS

First, we consider the key player identification problem in social networks. When

networks change with time, it is important for decision-makers to identify nodes

that are expected to become most influential in the future (rising stars), not just

the current influential nodes. For example, when hiring someone, it would be

helpful to know whether they have the potential to be a stellar performer. Here,

POIs we identify are rising stars in social networks. We define a rising star as an

individual who has a low expert score (ex: low PageRank score) at the start but

shows a significantly improving expert score in successive time steps compared to

other users, and thus possesses characteristics to become a prominent contributor

in future.

Suppose that we find most the influential nodes in a social network using some

centrality measure. Can we predict rising stars by only looking at the centrality

scores in the current network? Node centrality scores in one social network do not

provide us with enough information to predict who would posses high central-

ity scores in the future. Therefore, we need to identify nodes who show improv-
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ing centrality scores over a period of time. Another important attribute a rising

star should showcase is persistence over time. This confirms that the node will

continue to improve their centrality scores in the future to become an influential

node. We assume that a person shows persistence in some domain if he shows

improving centrality scores across all data sources in the domain considered. This

indicates that POI (rising star) properties are not only correlated with structure

of one network or one type of data. Therefore, we propose to find rising stars in

heterogeneous dynamic social networks.

An example problem is the identification of rising stars among academic re-

searchers. At the beginning of their career they would not have many publications,

citations or might not publish in the most prestigious conferences/journals. But as

time goes on, if they are rising stars, they start to collaborate with other prominent

academics, collect more citations and publish in prestigious conferences. In view

of their improving profiles over time we predict them as rising stars considering

various types of interactions such as coauthor, citation and publication venue rela-

tionships.

We evaluate the proposed algorithms using academic data (Arnetminer)[99]

and question answer (Q&A) forum data [50]. The proposed algorithms obtain

superior results compared with current approaches to find rising stars in the aca-

demic domain. In Q&A forum data, we are able to identify promising future ex-

perts.

2.1 Background

Li et al. [61] have proposed an author ranking scheme based on publications to

find rising stars in a co-authorship network. They have used a directed weighted

network in which the weight assigned to the link between two co-authors is based
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on number of mutual publications and total publications each author has. Further,

each author is given a node-weight considering the prestige of the conferences

and journals where they have published. Weighted PageRank algorithm is used

to measure the expertise of an author and evolution of a profile is measured using

linear regression gradient of expertise scores over time.

Extending the work presented in [61], Daud et al. [22] introduced an author-

contribution based weight assignment to edges in the co-author network. They

argue that the order in which co-authors appear in a publication is an important

attribute to assign link weights between two authors.

Both these methods combine author collaboration information and publication

venue information into one measure to indicate expertise and predict rising stars

using linear regression gradient over time. This approach voids the opportunity

to observe the evolution of a user in different aspects. Further they cannot be

generalized to any other domain as expertise measures are different in each. For

example, citations is an important attribute when looking at the profile of an aca-

demic. But this information cannot be integrated into these approaches proposed

by Li et al. [61] and Daud et al. [22].

Tsatsaronis et al.[101] have proposed an author profile classification based method

to find rising stars. They divide authors into four different categories: (1) Well

established, (2) Rising stars, (3) Authors with stable publication Rate, and (4) De-

clining authors, based on how an author’s profile evolves over time using a clus-

tering algorithm. The feature set for the clustering algorithm is derived from the

co-author network and publication venues.

Daud et al. [23] use a classification approach where the trained classifier pre-

dicts whether a given author is a rising star. They discuss an extensive set of fea-

tures to classify an author as a rising star. But one major requirement for a clas-

sification task is having a labeled dataset. In order to assign the class label, they
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have used author’s citation information. But citation information alone does not

provide a complete representation of an author’s profile. This suggests labeling

rising stars in a data set itself require knowledge of how to find rising stars.

In summary, all the existing approaches to find rising stars focus only on aca-

demic domain and they cannot be generalized into other domains. Even in the

academic domain most methods don’t consider citation information. Integrating

citation information into existing methods requires changing the expert score cal-

culation, which is not an easy task.

By contrast, the algorithm we propose to find rising stars, works well in hetero-

geneous data domains, where multiple types of data is available to define the same

individual. New data sources (for example citations in academic domain) can be

easily integrated to the problem by defining an expert scores in that particular data

source. Then expert scores from all data sources can be combined using one of the

proposed methods in this chapter to derive the final set of rising stars.

Integration and analysis associated with heterogeneous data has been studied

for link prediction [58, 96, 116], community detection [18, 100] and ranking nodes

using centrality measures [60]. In this chapter, we present a solution to identify

rising stars in a heterogeneous environment.

2.2 Multi-Objective Optimization (MOO) Approach

In order to find the rising stars, the training set consists of k heterogeneous data

sources modeled as k weighted networks, N1
t , N

2
t , . . . , N

k
t and for each network,

data is collected over t = 1, . . . , T time points. In each network, individuals are

represented as nodes, and edges represent different characteristics. Using such

data, the goal of our study is to identify rising stars, i.e., individuals who are ex-

pected to perform better than the other individuals in the future.
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We model the rising star problem as a decision level data fusion problem. First,

we find a key player score for each node in each data source, {N j
t : t = 1, . . . , T ; j =

1, . . . , k}. Next, for each individual we calculate an evolution index, which shows

how their key player score improves over time. An example evolution index is

the linear regression gradient. Thus, associated with each node we obtain a k-

dimensional vector of evolution indices representing the performance of a node

over time. To find rising stars with respect to all networks we need to combine all

evolution indices.

We combine these evolution indices using two methods. In the first method,

we model this as a multi-objective optimization problem [27], where we predict

individuals who maximize the considered k-dimensional vectors of evolution in-

dices as rising stars. Let f1, f2, . . . , fk be the objective functions to be maximized.

~X1 dominates ~X2 if fi( ~X1) > fi( ~X2) for some fi, and fj( ~X1) ≥ fj( ~X2) for all fj .

Assume a set of solutions X = { ~X1, ~X2, . . . , ~Xm}, ~Xi is non-dominated if no Xj ∈ X

dominates ~Xi.

In our problem, ~Xi is the vector of k−dimensional evolution indices of key

player scores over k data sources. Hence the non-dominated set consists of a set

of users who possess an evolution score better than everyone else in at least one of

the data sources.

Often, another question of interest is: Rank the first N rising stars. MOO ap-

proach only returns a set of rising stars, without assigning rising star scores. To

answer this question, we have used the rank aggregation method.

2.3 Methodology for Academic Domain

We begin with the academic domain to illustrate the general methodology. Later,

we show how to generalize the algorithm to other domains using Information Se-
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curity StackExchange Q&A forum data.

We have considered co-authorship data, citation data and publication venue

data for the analysis. Brief descriptions of each of these networks are presented

in Sections 2.3.1, 2.3.2 and 2.3.3. Any centrality measure (such as Eigenvector cen-

trality, Closeness centrality, etc.) can be used to assign key player scores. The only

requirement is that the chosen centrality measure represents the importance of a

node in the network. Liu et al. [64] and Ding et al. [28] suggest using the PageRank

algorithm to find key players in coauthor networks and citation networks, respec-

tively. We have also applied the PageRank algorithm to determine key players of

citation and co-authorship networks. For publication venue networks, we have

used the publication venue score proposed by Li et al. [61] to find key players.

For each author, the least squares regression method is applied on key player

scores, and the associated gradient is used as the evolution metric. The MOO

approach uses three criteria to find rising stars:

1. Co-authorship network PageRank gradient

2. Citation network PageRank gradient, and

3. Publication venue score gradient.

2.3.1 Co-authorship Network

coauthori =< Ni, Ei > for i = 1, . . . , T is a weighted directed graph where Ni

represents the set of nodes (authors) and Ei represents the set of edges in the net-

work. An edge from node u to v represents that authors u and v have co-authored

a publication. The weight w(u, v) associated with edge (u, v) is calculated as

w(u, v) =
|pub(u) ∩ pub(v)|
|pub(u)|

(2.1)
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where pub(u) = {p | p is a publication of u} and pub(u)∩pub(v) represents common

publications of u and v. Usually, co-authorship networks are modeled as undi-

rected graphs. In the rising star problem, Li et al. [61] proposed using a directed

graph to represent influence between two researchers. Following this argument,

we have modeled the co-author network as a directed graph, where edge weights

represent proportion of publications co-authored together.

Consider the example given in Table 2.1. Considering coauthor relationships,

the weights assigned to links are: w(A,B) = 1/2, w(A,C) = 1/2, w(B,A) = 1.

Figure 2.1a shows all weight assignments.

Paper
Authors of

the paper
Cited papers

Cited papers

without

self-citation

Authors of

cited papers

(without

self-citation)

1 A,B - - -

2 A,C - - -

3 C,D,E 1,2 1 A,B

4 D,E 1,2 1,2 A,B,C

Table 2.1: Co-author and paper citation network data

2.3.2 Author Citation Network

The author citation network, citationi =< Ni, Ei > for i = 1, . . . T , is a weighted

directed graph whereNi represents the set of nodes (authors) andEi represents the

set of edges in the network. An edge (u, v) ∈ Ei represents a citation of author v by

u, and the weight of edge (u, v) refers to the number of citations of v by u. If two

papers have common authors and if there is a citation of one paper by the other,

we have considered them as self-citations and ignored them when building the
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network. Figure 2.1b shows the corresponding citation network for paper citation

data in Table 2.1.

(a) Directed co-author network weight as-
signment

(b) Directed author citation net-
work structure

Figure 2.1: Co-authorship and author citation network examples

2.3.3 Author Publication Venue Network

The publication venue network is a weighted undirected bipartite network,

venuei =< Ni, Ei > for i = 1, . . . T , where nodes include authors and publication

venues. An edge (u, v) ∈ Ei between u and v indicates that author u has published

in venue v at time ti. The weight of the edge w(u, v) represents the number of

publications of author u in venue v. All publication venues were categorized into

three ranks based on Arnetminer venue impact scores. The top ranked 100 venues,

according to impact score, are assigned rank = 1, the next 200 are assigned rank =
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2 , and all other venues are assigned rank = 3. Since we are interested in publica-

tions in top ranked conferences/journals, we only considered publication venues

ranked 1 and 2 in the network formulation. Hence nodes in the venue network

contain all authors and all publication venues ranked 1 and 2.

Figure 2.2: Publication venue network

The importance of an author in the venue network is quantified using publica-

tion venue scores proposed by Li et al. [61] using equation 2.2. Venue score of an

author u, V S(u) at a given time step is calculated using publication venue network

at time ti.

V S(u) =
∑

v∈Neighbors(u)

w(u, v)[α(rank(v)−1)]
−1

(2.2)

In Equation (2.2), α is the damping factor, with a typical value of α = 2. For

illustration, consider the venue network shown in Figure 2.2, where A1, A2, and

A3 represent three authors and V1, V2, and V3 represent three publication venues

and their ranks are 1, 2, and 1 respectively. The venue scores of the authors are as

follows.

V S(A1) = 2.5, V S(A2) = 1.5, V S(A3) = 2.5.
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2.3.4 PageRank Algorithm

To calculate influence in a network, PageRank algorithm has been widely used.

Even though the original purpose of PageRank algorithm was to rank web pages

based on link relationships, it can be effectively used to rank nodes in a graph,

given that important nodes often tend to interact with other important nodes [28,

64].

PageRank of a node u is obtained using equation 2.3.

PR(u) =
(1− d)
N

+ d
∑

v∈In(u)

PR(v).w(v, u)∑
k∈Out(v)w(v, k)

(2.3)

where In(u) represents set of incoming edges to node u and Out(u) is the set of

outgoing edges from u.

The number of authors in coauthor and citation networks typically increase at

each time step. On the other hand, scores assigned by the PageRank algorithm

depend on the number of nodes in the network. Thus, PageRank scores of authors

tend to decrease over time. In order to account for this effect, when calculating

evolution index of each node, we have considered the rank of PageRank score of

each author instead of the actual PageRank value.

2.4 Proposed Algorithm

The proposed algorithm models academic data in three different networks, con-

sidering three aspects: co-authors, citations and publication venues. All of these

aspects are important for an author to be a rising star. A rising star in academic

domain would collaborate with other important researchers and will also be cited
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Algorithm 1 Find Rising Stars
Input: Bibliography data set including publications, citations and publication venues,

Time period t = 1, 2, . . . , T .
Output: RS: Set of rising stars

1: for u ∈ Authors do
(a) Rank of PageRank score of author u is obtained for each co-authorship network.

Let the PageRank score ranks be P (1)
1 (u), P

(1)
2 (u), . . . , P

(1)
T (u)

(b) Rank of PageRank score of author u is obtained for each citation network. Let
the PageRank score ranks be P (2)

1 (u), P
(2)
2 (u), . . . , P

(2)
T (u)

(c) Venue score of author u is obtained for each publication venue network. Let
venue scores be P (3)

1 (u), P
(3)
2 (u), . . . , P

(3)
T (u)

(d) Perform Linear Regression of the PageRank score ranks and venue scores over
time to determine the slopes. Let the associated slopes be S(1)(u), S(2)(u) and
S(3)(u) respectively.

2: RS = Following MOO approach or rank aggregation method find set of rising stars
considering

(
S(1)(u), S(2)(u), S(3)(u)

)
for all authors

by other important researchers. Using PageRank to rank authors (in co-author and

citation networks) captures this idea. Since the work of a rising star should be

promising, they should publish in good conferences/journals. Considering these

three networks separately allows us to observe an author’s profile in all three as-

pects. Further for someone to become a rising star they should show an improving

profile over time. Taking regression slope accounts for the evolution factor.

2.4.1 Multi-Objective Optimization Approach to Find Rising Stars

Combining Rising Star scores from each data type can be modeled using domi-

nance relation in multi-objective optimization. In our academic network scenario

we have three objectives; co-author network slope, citation network slope and

venue score slope. We want to find a set of users, who outperformed other users in

at least one of the given objectives. In other words, a rising star discovered by the

MOO approach for academic data would have outperformed all others in at least
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one of the objectives.

2.4.2 Rank Aggregation to Find Rising Stars

In the MOO approach all the predicted rising stars will have an equal importance.

However, often we desire to have rankings of the rising stars. This can be accom-

plished by rank-aggregation approach. Algorithm 2 explains how we calculate a

rising star score for each author in bibliography data where Borda’s method was

used for rank aggregation. Rank assignment in Borda’s method is as follows. If

there are N individuals to rank, we assign N points to the one with highest value,

N − 1 to next highest ranked and so on.

In a domain where we can define relative importance of each objective for rising

star calculation, we can effectively use rank aggregation to assign weights to each

objective. Now we can take a weighted sum of the objective scores as the rising star

score of each individual. Given k heterogeneous networks, key player evolution

index S1, S2, . . . , Sk, weight assignment to objectives as w1, w2, . . . , wk, the Rising

star score of an author u can be calculated using equation 2.4. The score(Si(u)) is

the rank score assigned to Si(u) following Borda’s method.

RisingStarScore(u) =

k∑
i=1

[wi × score(Si(u))]

k∑
i=1

wi

(2.4)

Assigning weights to each objective depends on the data set and the key player

criteria we use. Liu et al. [65] propose a supervised learning algorithm to assign

weights to each objective. Their method minimizes the difference between ground

truth ranking and ranking according to each objective.
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Algorithm 2 Rank Aggregation Algorithm
Input: Co-author network PageRank slopes (S(1)), Citation network PageRank

slopes(S(2)) , Venue Score slope (S(3)), Weights for each objective w1, w2, w3 > 0.
Output: Rising star scores for each author

1: for u ∈ Authors do
2: Find Rank Score for co-author PageRank slope S(1)(u). Let S(1)(u) rank score be
Score(S(1)(u)).

3: Find Rank Score for citation PageRank slope S(2)(u).Let S(2)(u) rank score be
Score(S(2)(u)).

4: Find Rank Score for venue score slope S(3)(u). Let S(3)(u) rank score be
Score(S(3)(u)).

5: Rising_Star_Score(u)=

3∑
i=1

wi∗S(i)(u)

3∑
i=1

wi

.

2.5 Experimental Evaluation

Co-authorship networks, author citation networks and publication venue networks

were generated using ArnetMiner bibliography dataset [99] for each year from

1990 to 1995. There were 30,586 unique authors in all 6 networks. When formu-

lating the citation network, self citations were eliminated by removing any paper

citation containing common authors. Top 1000 (≈ 3%) ranked authors in citation

and coauthor networks in 1990 were removed considering they are already stars

in the network. We focus only on authors who have the potential to be considered

as “stars" in near future.

To evaluate the outcome of our algorithm, each predicted rising star is eval-

uated in 2006 and also in 2014 using authors’ H-index, total number of papers,

and total number of citations. We have extracted their performance in each metric

in 2006, using Arnetminer bibliography data. For 2014 we have considered their

profiles in Google Scholar and Arnetminer.



23

2006 2014
Author ID H-index Papers Citations H-index Papers Citations
1 19 141 1267 94 646 60904
2 11 33 550 41 104 14090
3 24 86 2438 109 247 73772
4 23 100 1933 92 249 43833
5 10 93 347 59 269 13261
6 12 47 397 46 204 9616
7 16 76 762 69 208 21685
8 13 166 640 65 475 17231
9 15 42 554 42 83 8558
10 9 44 290 37 136 4285
11 6 65 140 24 152 1923
12 20 53 1288 64 165 55717
13 5 64 79 42 232 10740
14 15 88 1043 60 192 17615
15 13 99 601 59 294 11638
Average 14.06 79.8 821.93 60.2 231.53 24324.53

Table 2.2: Rising stars discovered using Multi-Objective Optimization approach

2.5.1 Multi-Objective Optimization Approach Results

Based on 1990-1995 data, MOO approach predicted fifteen non-dominated authors

as rising stars. Almost all (except one) individuals identified as rising stars by our

MOO algorithm did indeed become successful, as shown by Table 2.2.

In 2006, the average values of H-index, number of papers and citations by our

method were 14.06, 79.8 and 821.93. In 2014 all three metrics increased significantly

to 60.2, 231.53 and 24324.63. In particular the significant increase in the H-index

(in 2014) indicates that the authors continued to rise in academic reputation.

Figure 2.3 shows how average citations change for all authors from 1996 to 2012

using their Google Scholar profiles. According to Figure 2.3, the rising stars have

continued to improve their profiles and have stabilized their profiles as stars in

2007.

We have compared the performance of our algorithm with the algorithm pro-

posed by Li et al. [61] since other solutions are minor variations of Li et al. [61] pro-
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Figure 2.3: Average citations in each year for all MOO approach rising stars with Google
Scholar profiles

posed methodology. Recall that these authors use weighted PageRank algorithm

on a weighted co-authorship networks together with a node weight assigned us-

ing publication venues to predict rising stars. Li et al. [61] predicts any author with

PageRank gradient in top 90th percentile as a rising star. Since our MOO approach

returns 15 unique individuals as rising stars we have compared performance of

MOO approach with top 15 authors with highest PageRank gradients from the

method proposed by Li et al. [61].

Figure 2.4 shows the comparisons of average H-index, average number of pa-

pers and average citations. Average H-index, average total number of papers and

average total citations of the rising stars obtained using their algorithm are much

smaller than those obtained by our approach, clearly implying superiority of our

method. Differences in averages were evaluated using the t-test, and found to be

statistically significant.

Figure 2.5 shows the performance of the MOO approach compared to co-author

PageRank slope, citation PageRank slope and venue score slope separately. Rising

stars identified using MOO approach performs well in all three measures com-

pared to rising stars from each network separately.

Meho et al. [72] states that an “outstanding scientist" will have a H-index of
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Figure 2.4: Comparison of MOO approach and co-author network method proposed by Li
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Figure 2.5: Performance of MOO approach compared to using co-author PageRank slope,
citation PageRank slope, venue score slope separately

40 and a “truly unique" individual will have H-index of 60. As seen in Table 2.2,

all except one predicted rising stars have become outstanding researchers by 2014.

According to the study conducted in [32] on average a well established author will

have 56.79 papers, 347.86 citations and an average H-index of 14.31. The rising

stars predicted by our approach are truly outstanding with an average of 231 pa-

pers and 24324 citations. Performance of the predicted rising stars continued to

grow in all three metrics, as seen by comparing 2006 and 2014 data, supporting

our algorithm further.

2.5.2 Thin Layer of Non-dominated Individuals

Results in section 2.5.1 only consider the non-dominated individuals with respect

to three objectives: co-author PageRank slope, citation PageRank slope and venue
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Figure 2.6: Performance of first three layers of Non-dominated rising stars

score slope. But there can be individuals who are dominated by a small margin and

hence not appearing among rising stars. In order to account for these individuals,

we removed the first set of rising stars and again calculated the non-dominated set.

We continued this for three iterations. Figure 2.6 shows performance of predicted

rising stars. The first layer of non-dominated authors performs significantly better

than second and third layer. The difference between the second and third layers is

minimal.

2.5.3 Rank Aggregation Approach Results

Table 2.3 shows the profiles of top 15 predicted rising stars based on 1990-1995

Arnetminer bibliography data using rank aggregation method. Here we have con-

sidered that all the objectives are equally weighted. Results show that predicted

rising stars have indeed become “Outstanding researchers" by 2014, as measured

in terms of H-index.

We present rank aggregation method as an alternative method to find rising

stars, when we have to assign rank to each rising star. Results in Table 2.3 show

that performance of this method is comparable to the MOO approach, slightly

worse but requiring less computation.
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2006 2014
Author ID H-index Papers Citations H-index Papers Citations
8 13 166 640 65 475 17231
9 15 42 554 42 83 8558
12 20 53 1288 64 165 55717
7 16 76 762 69 208 21685
14 15 88 1043 60 192 17615
16 13 71 521 57 207 12995
17 10 219 360 45 425 9062
18 12 152 689 69 292 19041
19 15 35 825 42 96 13108
20 10 135 456 58 270 12784
21 13 106 801 79 251 23207
5 10 93 347 59 269 13261
22 10 50 511 41 116 12208
23 18 83 839 92 587 44735
24 13 65 751 41 202 7494
Average 13.53 95.6 692.46 58.86 256.87 19246.73

Table 2.3: Profiles of top ten rising stars obtained by using the rank aggregation approach

2.6 Finding Rising Stars in Q&A Forums

To generalize the rising star finding algorithm to another domain, we used In-

formation Security Stack Exchange[50] question answer forum data to find rising

stars in the forum. In this Q&A forum there are three possible types of interactions

that can exist among users, shown in Figure 2.7. A user can answer a question

posted by another user (QA), a user can comment on a question posted by an-

other user (QC) and a user can comment on an answer provided by another user

(AC). We consider the network consisting of these three types of interactions as a

heterogeneous network.
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Figure 2.7: Stack Exchange Q&A forum heterogeneous graph structure

2.6.1 Network Formulation

To represent each type of interaction, we have built three different networks for

Q&A forum. In each network we used PageRank algorithm to assign an impor-

tance score to each node.

Question-Answer Network

Question-Answer network, G(V,E) is weighted, directed graph, where V = users

of the forum and an edge (u, v) ∈ E if v has answered u′s question. We have con-

sidered the reversed direction of the Question-Answer relationship as the direction

of the edge. The intuition behind this comes from PageRank algorithm perspec-

tive. An important individual should have more incoming edges than outgoing

edges. If v has answered u′s question, this implies that v is more important in the

network than u, hence we create an edge from u to v. The weight of edge (u, v)

represents how many of u′s questions were answered by v.



29

Question-Comment Network and Answer-Comment Networks

Question-Comment and Answer-Comment networks,G(V,E) are weighted, undi-

rected graphs, where V = users of the forum and an edge (u, v) ∈ E if v has com-

mented on u′s question or answer. Here also the weight represents the number of

questions/answers the two users have commented on each other. We have formu-

lated these two networks as undirected since a comment does not necessarily say

who influences whom. Further a comment can be positive or negative.

2.6.2 Results and Evaluation

We have collected data for Information Security Stack Exchange forum from 2012-

2014. For each year, we built a network for each interaction type. After calculating

PageRank scores for all nodes in each network for each year, we used the ranks

of the PageRank values to find the evolution index for a node in a given network.

The slope of the regression line fitted to PageRank value ranks is considered as the

evolution index. We removed the top 1000(≈ 10%) users with highest PageRank

scores in 2012 Question-Answer network considering they are already experts in

the network.

The found rising stars are evaluated using the number of answers a rising stars

has given in 2015, the number of answers accepted as the correct answer and the

reputation score of the rising star at the end of 2015. The reputation score is a com-

munity given vote in the Stack Exchange data, which represents the acceptance of

a user in the Q&A forum.

Table 2.4 shows the average number of questions answered by found rising

stars, the average number of answers accepted for a rising stars in 2015 and the

average reputation. Results show that rising stars found using our algorithm 1

are significantly different other users. Note that these users were not among top
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Average number
of answers
given in 2015

Average number
of answers
accepted in 2015

Average
reputation

MOO approach
(3 rising stars) 56.3 20 17456

Rank Aggregation
(Top 10) 56.6 21.5 11187

Average for a
normal user 4.02 1.06 241

Table 2.4: Q&A forum rising stars results compared with a normal user

User name
No. Answers
given in
2015

No. Accept
Answers
2015

Reputation
StackExchange
Given Rank
(2016)

Philipp 103 28 22467 Top 0.27%
Mark 88 29 21923 Top 0.79%
RoraZ 63 29 7978 Top 2%

Table 2.5: Rising stars found using MOO approach for Q&A forum data

10% of the users with highest PageRank values in 2012, but still they manage to

perform well above an average user.

Even though the MOO approach has only identified three users as the rising

stars in Q&A forum, results in table 2.5 shows that all the identified individuals

are truly outstanding, by being ranked among the top 2% of all the information

security Stack Exchnage users in 2016.

Table 2.4 shows that the top 10 ranked rising stars found using unweighted

rank aggregation algorithm gives similar results to the MOO approach in Stack

Exchange data. In addition, the rank aggregation algorithm also finds a set of

users significantly different from most other users.

2.7 Conclusion

In this chapter, we present an algorithm to find rising stars in heterogeneous dy-

namic social networks. Our algorithm first identifies possible rising stars from each
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data source separately and uses a MOO approach and rank aggregation approach

to find rising stars by considering all data sources.

The proposed algorithm was able to identify a set of rising stars in bibliogra-

phy data, who in turn became outstanding researchers in a few years. On bibliog-

raphy networks our technique clearly shows superior performance over existing

methods. Using Information security StackExchange data, we have shown how

the algorithm can be applied to other scenarios. In Q&A answer forum also, our

method performs well to identify a set of users, who outperform most other users.

Even though the proposed rising star prediction algorithms can guide iden-

tifying most influential people, star researchers or experts in the future, crucial

decisions such as hiring an individual should not be solely based on such mea-

sures. For example, when identifying rising stars in academia, we consider the

importance of an individual’s collaborators. If an academic attends a prestigious

university, she may get a better opportunity to work with expert researchers com-

pared to others. The proposed algorithms cannot identify such biases. Therefore,

these measures should be used with human supervision while considering other

factors that would make someone an expert in a given field.
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CHAPTER 3

SAMPLING SOCIAL NETWORKS TO

LOCATE PEOPLE OF INTEREST

In Chapter 2, we proposed the MOO algorithm to find rising stars in social net-

works considering multiple types of networks and dynamic nature of the networks

over time. The purpose of the work in this chapter is to extend this problem to

locate POIs in networks when POIs try to disrupt the identification by providing

misleading information and altering network structure to make POI properties not

correlated with the network structure. One such example is analysis of so-called

“dark networks" representing illegal, covert, or undisclosed activities [84], where

individuals within the network may purposefully conceal their network data with

the goal of misleading the data collector or analyst.

In this Chapter, we develop algorithms for sampling dark networks with the in-

tention of locating as many POIs as possible in the network given a limited query

budget. Here, a POI is a node possessing a certain attribute (e.g., individuals in-

volved in a particular criminal action). As an example, one of the networks we

consider contains data depicting relationships among terrorists in the “Noordin

Top" Network in Indonesia. In this network, edges represent that two nodes be-
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long to the same organization, attended the same school or training, have a kinship

relationship, and so on.1 In such a network, the POIs may be those individuals who

have an attribute of interest to the analyst, such as involvement in a terrorist attack.

We assume that we begin with knowledge of one POI in the network, with the rest

of the network unobserved (both in terms of topology as well as node attributes).

A major complicating factor in this problem is that due to the covert nature

of the networks being studied, one cannot expect the observed information to be

reliable. When exploring a dark network, nodes may deliberately provide misin-

formation about themselves and the network structure (e.g., lie to an investigator),

or the analyst herself may need to draw conclusions from multiple sources of infor-

mation, with possible errors. This is in contrast to traditional sampling algorithms,

which generally assume that the information observed is correct at the time of the

query. There are thus major challenges in designing algorithms to sample dark

networks: first and foremost, in order to select the next query, one must draw

inferences about the network structure from inaccurate data. Even for already-

observed nodes, when predicting whether a node is or is not a POI, one can only

use information observed so far; but because this information may be incorrect,

one may come to a false conclusion, which in turn affects predictions for other

nodes, potentially leading to a cascade of errors.

In this chapter, querying a node refers to collecting data about the node, node’s

neighbors, whether these neighbors are POIs and determining whether the queried

node is a POI itself. For example, querying a node can refer to a data analyst

obtaining information about the node and determining whether it is a POI. The

role of the sampling algorithm is to suggest a query on the node that is most likely

to be a POI.

We consider two sampling settings, corresponding to different types of data

1The data was collected by [86] and compiled into a network by [38].



34

collection processes. In the first setting, when a node is selected for query, then (1)

the data collector accurately discovers whether or not that node is a POI, and (2)

the data collector, possibly inaccurately, determines the identities of node’s neigh-

bors and whether those neighbors are POIs. In the second setting, we remove

the assumption that the data collector can accurately discover a node’s status as a

POI: instead, the query may misreport whether or not the node itself is a POI. In

both settings, there may be errors in determining the queried node’s neighbors and

whether those neighbors are POIs: for example, a POI node may encode communi-

cations with other POI nodes, or try to make these communications look innocent.

The first setting corresponds to cases in which it is easy to determine whether a

queried node is of interest (e.g., comparing fingerprints to those found at a crime

scene). The second setting corresponds to cases in which the determination of

whether a node is a POI is difficult and may be done incorrectly (for example, by

an analyst aggregating several sources of conflicting information).

We present two sampling algorithms, RedLearn and RedLearnRS. RedLearn op-

erates under the assumption that the analyst can accurately determine the queried

node’s status. For the second sampling setting, we introduce RedLearnRS, a re-

sampling algorithm that may repeatedly query the same node in order to update

the accuracy of the information. We show that in cases where the POIs exhibit

homophily (i.e., are likely to be connected to other POIs), a simple algorithm of

choosing the node with the most POI neighbors works well. However, in the more

realistic scenario where POIs hide their connections with other POIs, REDLEARN

and RedLearnRS show outstanding performance, improving over the best baseline

algorithm by up to 340%.
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3.1 Problem Definition

We assume that there is an unobserved, undirected, unweighted graphG = (V,E),

in which each node v ∈ V has a color attribute, cv ∈ {red, blue}. Red nodes repre-

sent the persons of interest (POIs) and blue nodes represent all others.

We begin with the realistic assumption that a red node was identified inG (e.g.,

arrested while committing a crime). We are given a budget b of queries, where

each query is conducted by analyzing data corresponding to a node. We call this

process placing a monitor on a node.2 In each step, we query an observed node v,

regardless of its color, and the monitor reports (1) the suspected color of the node

(sv), (2) the neighbors of the node (N(v)), and (3) the color eu of each of node v’s

reported neighbors u. As monitors represent humans performing data analysis,

some or all of this information may be reported incorrectly by the monitor, due to

analyst error or judgment.

There are four possible types of errors when retrieving node color and network

structure information using monitors: (1) A node color error, where the suspected

color of the node is not the true color (sv 6= cv) (2) an edge existence error, where the

monitor fails to report some neighbors of the node, (3) an edge non existence error,

where the monitor reports false edges between nodes and (4) a neighbor relationship

color error, where the reported colors of the queried node’s neighbors are different

from their true colors (eu 6= cu).

For example, placing a monitor on a suspected criminal node could represent

an analyst conducting an investigation to determine whether this person is a crim-

inal (node color). The investigation process includes looking through his email

and phone contacts to observe his connections (neighbor identities), analyzing his

emails and other messages with these contacts to determine whether these neigh-

2This terminology was motivated by an application in which hardware devices known as monitors are
placed on computers to observe incoming and outgoing traffic.
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bors are themselves criminals (neighbor relationship colors). Naturally, there may

be errors in this process due to nodes trying to hide/fabricate their connections,

criminals using code words in their communications, general noisy communica-

tions among all nodes and analysis errors that can occur. 3

Suppose that after exhausting the monitor budget b, we have a set of monitored

nodes Vm = Vr∪Vb. Here, Vr = {v ∈ Vm : sv = red}, the set of monitored nodes that

are suspected to be red and Vb = {v ∈ Vm : sv = blue}, the set of monitored nodes

that are suspected to be blue. The goal of the analysis is to maximize the true set of

red nodes detected, namely |{v ∈ Vr : cv = red}|.

We consider two problem settings depending on whether the analyst can con-

clusively determine someone is a criminal or not.

3.1.1 Problem Setting 1: Node color reliable

In Problem Setting 1, we assume that a monitor accurately determines the color of

the queried node. Therefore, Vr = {v ∈ Vm : sv = red} = {v ∈ Vm : cv = red}; all

nodes that are suspected to be red are indeed red colored nodes.

For example, suppose that there is an investigation to find a set of computers

that are affected by some virus. The analyst has a hardware device which can de-

tect whether a computer is affected or not. Whenever the analyst finds a potential

affected computer, she can place this device on the machine and determine the

true status of the machine. In this example, placing the hardware equipment is

equivalent to placing a monitor. Because the analyst has limited hardware equip-

ment, she needs to carefully decide which computer to monitor next so that Vr is

maximized.

3We consider realistic types of errors to represent analysis errors; these are described in Section 3.5.5.
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3.1.2 Problem Setting 2: Node color misreported

In Problem Setting 2, we consider the setting where a monitor may misreport the

color of the monitored node. For example, suppose there is an investigation to

find terrorists who were involved in a specific attack. The analyst has to deter-

mine whether someone is a terrorist solely based on his contacts, messages, and

whereabouts. In the absence of conclusive evidence to prove that a person is a

terrorist, the analyst has to make a judgment based on available information. This

can lead to identifying a terrorist as not guilty if there is not enough evidence; and

conversely, may lead to identifying an innocent individual as guilty.

In this problem setting, placing a single monitor on a node may not reveal the

true color of a node. In this case, we allow for repeated monitor placement to

re-query previously-monitored nodes. In the example above, repeated monitor

placement would allow the analyst to gather more information about the criminal

by considering other types of communication channels, spending more time and

resources on the analysis which can lead to better judgment.

3.2 Background

3.2.1 Criminal Network Analysis

A dark network is a social network representing illegal and covert activities, whose

members are actively trying to conceal network information even at the expense of

efficiency [6, 84]. Because dark networks are deceptive by nature, there are many

errors involved in collecting and analyzing data from these networks.

Criminal networks are a common example of dark network [6]. Some researchers

have used social network analysis techniques such as identifying key players,

community detection and network visualization techniques to identify leaders of
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criminal networks, identify subgroups in criminal networks, understand common

properties of criminal networks and visualize criminal networks respectively [20,

67, 56, 112]. Some other researchers have considered using social network analysis

to disrupt criminal networks [92, 89]. These analysis techniques generally assumes

that the complete network structure information is available.

In this work, we introduce a methodology to identify POIs in dark networks,

while examining various error scenarios based on the terrorist actively trying con-

ceal their true status and connections. Uncovering these networks amid concealed

and misinformation require advanced network sampling techniques.

3.2.2 Network Sampling Algorithms

In general, network sampling algorithms can be divided into two categories: down-

sampling algorithms and crawling based sampling algorithms. Downsampling

algorithms begin with knowledge of the entire graph, but due to computational

issues (e.g., time or space), must find an appropriately-sized subgraph that is rep-

resentative of the larger graph [59]. Crawling based algorithms on the other hand,

start with knowledge of few nodes and explore the network through querying ob-

served nodes. In our problem, we use crawling to explore the network structure

by placing monitors.

There are a multitude of sampling techniques for crawling based network ex-

ploration, including random walks [4, 49, 77], biased random walks [35], and

walks combined with reversible Markov Chains [2], Bayesian methods [34], or

standard exhaustive search algorithms like depth-first or breadth-first searches,

such as [1, 9, 10, 24, 59]. However, these methods do not use all discovered in-

formation, such as node attributes of the discovered part of network, and are not

designed for sampling networks in which queries return inaccurate information.

Various researchers have considered the problem of sampling for specific goals.



39

For example, [5] present an algorithm to sample the node with the highest esti-

mated unobserved degree. [43], and [69] examine online sampling for centrality

measures. [68] develop a guilt-by-association method to identify suspicious indi-

viduals in a partially-known network.

Some researchers have considered the problem of sampling to locate targeted

nodes. [11] present a volatile multi-arm bandit based algorithm to crawl for tar-

geted nodes. Their approach tries to find a balance between exploring the network

and exploiting targeted nodes at the time of crawling. However, this work does

not address potential inaccuracies in the sampling process (and additionally, using

an explore-exploit method for sampling dark networks would present significant

ethical problems, as it would require investigating non-suspects for the sake of

exploration). [93] present the TONIC problem for finding targeted nodes, and pro-

pose a method for finding nodes that can lead to the targeted nodes. Unlike our

problem setting, these works do not consider the case where queried nodes can

provide information about their neighbors, and also do not account for possibly

inaccurate information and errors. [38] consider identifying a target community

from partial information, by taking a different approach one what part of the net-

work has been discovered. They assumed that the information of one layer (one

type of relationship) of network was known, and tried to identify a group in the

whole network.

3.2.3 Node Classification Algorithms

A natural approach for the problem posed in this chapter is to use a node classi-

fication algorithm to predict whether observed nodes are red or blue. Traditional

data classification algorithms assume that data instances are independent from

each other. In contrast, node classification algorithms study the problem, how to

conduct a classification in network or relational data. These algorithms work with
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partially labeled network data to predict labels for unlabelled data instances. Node

classification algorithms generally achieve better performance by exploiting rela-

tional information between classification data instances.

There are many applications of node classification algorithms. [111] showed

applications of collective classification in classifying gender, political views, reli-

gious views and relationship status using Facebook data. [115] showed that pri-

vacy in social media sites can be exploited with a few public accounts using collec-

tive classification. [17] used node classification algorithms to improve performance

of sentiment classification in congressional floor debates. [19] showed that collec-

tive classification approach can be successfully used to classify whether an email

has an action request based on sequence of emails in a thread.

There are two main categories of node classification algorithms [8]. The first

category uses a local classifier trained using known labels and network structure

information to predict node labels. Iterative Classification Algorithm (ICA) [76]

and structured logistic regression model are such examples, and both use local in-

formation and links [66]. [37] proposed to use dummy edges to allow information

flow in networks and looking at second neighborhood of a node instead of first

neighbors to improve ICA performance.

The second type of node classification algorithms are the label propagation

based algorithms [117, 63]. These algorithms use random walks to learn a global la-

beling function. Label propagation based algorithms do not require neighborhood

based features to predict labels. They tend to explore the inherent link structure.

Both types of algorithms assumes some type of association between nodes with

same labels.

In our problem setting, we have incorporated node colors, potential colors of

neighbors as well as link structure to identify POIs. Label propagation based al-

gorithms only explore the link structure, and so are not capable of using neighbor
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color information given by monitored nodes. ICA is the most widely used al-

gorithm among local classifier based node classification algorithms. ICA uses a

traditional classification algorithm as the local classifier, which is trained using the

labeled nodes in the network. The unlabeled nodes are labeled according to the

predictions from this local classifier. ICA then iteratively recalculates features for

nodes, using these predicted labels and predicts labels again. This process con-

tinues until the predicted labels converge. In Section 3.6.1, we present how ICA

performs in finding POIs.

3.3 Proposed Method

We propose algorithms RedLearn and RedLearnRS for Problem Settings 1 and 2,

respectively. In Section 3.3.1, we present RedLearn, a novel re-sampling based al-

gorithm to find POIs, where the node colors reported by the queries is accurate. In

Section 3.3.2, we present RedLearnRS, an extension of RedLearn for the more gen-

eral Problem Setting 2, where the node colors returned by queries can be wrong.

These two algorithms use features that include node color information, estimated

neighbor color information, as well as network topology. Both of these algorithms

operate under possible edge existence errors and neighbor color errors.

3.3.1 RedLearn: A Learning Based Monitor Placement Algorithm

We introduce RedLearn, a learning-based sampling algorithm for finding nodes

of interest under Problem Setting 1 (i.e., the reported node color is the true node

color). RedLearn uses nodes’ structural features and stated attributes to predict

labels for unmonitored nodes, as described in Table 3.1.

To understand the use of network structural features in predicting node labels,

consider the following: Intuitively, if the original network displays node color ho-
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mophily, the probability of node v being a red node is higher if it has many red

neighbors. However, if the network displays low or even anti-homophily, using

this measure will naturally result in poor performance.

For example, some monitor placement algorithms, such as selecting the node

that was reported as red by the greatest number of monitors, depend on informa-

tion retrieved from neighbors. The performance of such monitor placement criteria

thus heavily depends on neighbor color errors and edge existence errors.

To overcome these dependencies, the proposed RedLearn algorithm models this

as a two-class classification problem, but rather than predicting whether a node v

is red or blue, we instead predict P (cv = R).

Features: Table 3.1 describes the set of features used by RedLearn. There are

two types of features: (a) Network structure-based features (1, 2, 3, 4, 5), and (b)

Neighbor-reported color-based features (6, 7, 8, 9, 10, 11).

Feature Description
(1) Number of red neighbors |{u ∈ N(v)|su = R}|
(2) Number of blue neighbors |{u ∈ N(v)|su = B}|
(3) Number of red triangles if v is red |{u,w ∈ N(v)|

(u ∈ N(w)) ∧ su = sw = R}|
(4) Number of second hop red neighbors |{w ∈ N(N(u))|sw = R}|
(5) Number of second hop blue neighbors |{w ∈ N(N(u))|sw = B}|
(6) Number of neighbors estimate red |{u ∈ N(v)|(euv = R)}|
(6) Number of neighbors estimate blue |{u ∈ N(v)|(euv = B)}|
(7) Number of red neighbors estimate red |{u ∈ N(v)|(euv = R) ∧ su = R}|
(8) Number of red neighbors estimate blue |{u ∈ N(v)|(euv = B) ∧ su = R}|
(9) Number of blue neighbors estimate red |{u ∈ N(v)|(euv = R) ∧ su = B}|

(10) Number of blue neighbors estimate blue |{u ∈ N(v)|(euv = B) ∧ su = B}|
(11) Inferred probability of being red P I(sv = R)

Table 3.1: Classification features used by RedLearn for a node v with neighbor set N(v).
Here, cv is the true color of v, sv is the suspected color of v and euv is u’s estimate of v’s
color.

Network structure-based features are used to learn the patterns of connections

between red nodes (e.g., homophily vs. anti-homophily), as previous work shows
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that algorithms perform differently based on the network studied [107]. Neighbor

reported color-based features are intended to learn the relationship between what

a monitor reports about its neighbors’ colors and the true colors of those neighbors.

The second hop features (4, 5) are used to better estimate the red nodes that do not

show homophily [37].

Inferred probability of being red:

We formulate four different probabilities to measure how likely it is that an

unmonitored node is red, based on the neighbor color estimates given by differ-

ently colored monitors. We use the observed neighbor color error information to

calculate these probabilities (i.e., once we monitor a node and confirm its color,

we can determine whether monitored neighbors of this node have misreported its

color). These four probabilities provide us information about whether there is a

general pattern of neighbor color misreporting behavior. For example, we may

learn whether monitors placed on red colored nodes tend to misreport neighbor

colors more frequently. In Equation 3.1, we find the proportion of truly red nodes,

when other red nodes have estimated them to be red.

Next we present how we compute the probability of a node v being red/blue

given the choices of that neighbor u is either red or blue.

P (sv = R|(su = R) ∧ (euv = R)) =
|{u, v ∈ Vm|(su = R) ∧ (euv = R) ∧ (sv = R)}|

|{u, v ∈ Vm|(su = R) ∧ (euv = R)}|
,

P (sv = R|(su = R) ∧ (euv = B)) =
|{u, v ∈ Vm|(su = R) ∧ (euv = B) ∧ (sv = R)}|

|{u, v ∈ Vm|(su = R) ∧ (euv = B)}|
,

P (sv = R|(su = B) ∧ (euv = R)) =
|{u, v ∈ Vm|(su = B) ∧ (euv = R) ∧ (sv = R)}|

|{u, v ∈ Vm|(su = B) ∧ (euv = R)}|
,

P (sv = R|(su = B) ∧ (euv = B)) =
|{u, v ∈ Vm|(su = B) ∧ (euv = B) ∧ (sv = R)}|

|{u, v ∈ Vm|(su = R) ∧ (euv = R)}|
.

For each unmonitored node v, we infer the probability that it is red P I(sv = R),

based on colors of its monitored neighbors and color estimates these monitored

neighbors have given about v, using Equation 3.1:
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P I(sv = R) =

∑
u∈N(v) P (sv = R|(su = R/B) ∧ (euv = R/B))

|N(v)|
. (3.1)

Training Data: Suppose that we have placed n monitors so far. The training

set then consists of the (correctly) reported colors of the n monitored nodes along

with their respective feature values. We use each of the n networks obtained after

placing each monitor to train the learning model, to determine where to place the

(n+ 1)st monitor.

Classification Algorithm: RedLearn determines P (cv = R) for each unmoni-

tored node v. Because it predicts a probability rather than a binary label, RedLearn

uses a logistic regression classifier. Furthermore, because the learning model must

be updated frequently, this classifier gives an added advantage of faster training.

Placing the Next Monitor (Prediction): Given the placement of nmonitors and

deciding to place the (n+ 1)st monitor, REDLEARN calculates a feature vectors for

each unmonitored node, and applies the classifier to these feature vectors, giv-

ing the probability that each unmonitored node is red. RedLearn selects the node

with the highest probability for placing the next monitor. Algorithm 3 summarizes

RedLearn.

3.3.2 REDLEARN RE-SAMPLING (RedLearnRS) Algorithm

For the second problem setting, we introduce RedLearnRS by adapting RedLearn.

In this problem setting, we assume that a monitor may be incorrect when reporting

the color of the monitored node. For example, this setting corresponds to criminal

investigations, where an analyst needs to make a judgment as to whether an indi-

vidual is a criminal based on available information. RedLearnRS assumes that such

judgment errors occur primarily on red nodes, who may report to the investigator
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Algorithm 3 Learning based monitor placement
procedure LEARNING(start,budget)

S← Graph
S.add(start), S.add(N(start)) . Starting node and neighbors
while budget>0 do

Vm ← list of monitored nodes in S
TrainingData← feature vectors for u ∈ Vm
Train classifier using TrainingData
Vu ← list of not yet monitored nodes in S
for v ∈ Vu do

Get feature vector for v
P (cv = R)← predict v’s probability of red using learning model

Choose node v with maximum P (cv = R) from Vu
budget← (budget− 1)
Use v as next monitor

that they are actually innocent blue nodes, while blue nodes are unlikely to claim

that they are actually red.

Due to the potential for node color errors, RedLearnRS is a re-sampling algo-

rithm, which may place monitors on already-monitored blue nodes in order to

better identify their true colors. Re-sampling an already monitored node indicates

that the analyst spends more resources looking at other types of communication

channels or obtaining additional evidence, which in turn can provide a different

judgment of the node’s color.

RedLearnRS uses a two step cycle. In the first step, RedLearnRS identifies moni-

tored nodes with likely node color errors, which are considered for re-query. Addi-

tionally, RedLearnRS removes these nodes from the training data to help establish

better ground truth labels for training data. The re-sampling step is viewed as an

outlier detection problem: because only red nodes may report node color errors,

all nodes with node color errors are among the set of suspected blue nodes and

can be viewed as outliers within this set. Identified outliers are added back to pre-

diction set, which now contains all observed unmonitored nodes and re-sampled
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monitored nodes.

The second step of RedLearnRS is similar to RedLearn. Once the outlier blue

nodes are identified and moved to prediction set, the learning algorithm is applied

to predict the probability of each node in the prediction set being red. The node

with the highest probability of being red is selected as the next node to be mon-

itored. This node may be either an observed unmonitored node or a previously-

monitored outlier node. RedLearnRS’s flow is depicted in Figure 3.1.

New Features: Table 3.2 shows the new features introduced to the learning

algorithm to identify node color errors. The first feature is the number of used

monitors. The more times a node has been monitored, while still being reported

as blue, the more likely it is that it is actually blue. The next two features quantify

whether the monitor placed on this node tends to report neighbor color errors

more often as an indication concealing information.
Feature Description

(1) Number of monitors placed mv

(2) Number of blue nodes lied about |{u ∈ N(v)|(evu = R) ∧ su = B}|
(3) Number of red nodes lied about |{u ∈ N(v)|(evu = B) ∧ su = R}|

Table 3.2: Additional features used by RedLearnRS for a node v with neighbor set N(v).
Here, su represents the suspected color of u, and evu represents the node color that a monitor
on node v reports u to be.

Since RedLearnRS selects nodes among the set of reported-blue nodes to re-

monitor, there is a potential risk of monitoring innocent blue nodes repeatedly. Re-

sampling does not necessarily mean that the monitored node will be arrested and

interrogated, but rather indicates that an analyst takes further steps to identify true

color of a node. However, we need to take measures to prevent infringing privacy

of innocent nodes. In this regard, RedLearnRS limits the number of monitors that

can be placed on a single node to prevent excessively monitoring the same node.

Repeated Monitor Threshold: One can view this limit using optimal stopping

criteria, which use prior probability information to calculate success or failure of
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Figure 3.1: RedLearnRS algorithm flow. This is a re-sampling based algorithm to identify
nodes of interest in a network where node colors reported by monitors may contain errors.
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placing another monitor.4 However, in our case, we would need to repeatedly

monitor Blue nodes to estimate the priors required to calculate the optimal stop-

ping point. Instead, RedLearnRS uses a simple numerical method to threshold the

number of monitors placed on the same node as shown in Equation 3.2.

Monitor Threshold = max
u∈Vr

(mu + 1), (3.2)

In Equation 3.2, mu represents the number of monitors placed on node u. Equa-

tion 3.2 increases the monitor threshold by one whenever the algorithm exceeds

the current threshold number of monitors required to notice a node color change.

If node color errors are less likely, we spend fewer monitors on each node, and vice

versa if node errors are more common. We set the initial monitor threshold to 3 to

avoid scenarios when all monitored red nodes may misreport their color in first

round.

3.4 Datasets

3.4.1 Noordin Top Network

The first network studied is the Noordin Top dataset, a real terrorist network with

139 nodes and 1042 edges (‘Noordin Top’ is the name of the leader of this net-

work) [38]. Its edges depict several types of relationships, including familial rela-

tionships, communications, co-attendance at meetings, etc.5 In this network, ev-

ery node is a terrorist, and we are interested in identifying those individuals that

communicate using a certain medium. We consider 5 versions of this network.

4The optimal stopping problem studies when to take an action in order to maximize some reward. The
optimal stopping problem is applicable to many disciplines including stock trading [102], oil drilling [7], and
determining when to stop a random walk [78]. The solutions to the optimal stopping problem generally make
assumptions about prior probability distribution of success and failure. Since we have a limited budget of
monitors, calculating these priors is not feasible.

5Obtained from https://sites.google.com/site/sfeverton18/research/appendix-1.

https://sites.google.com/site/sfeverton18/research/appendix-1
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In NoordinComs1, the POI (red nodes) are those communicating using a general

computer medium; in NoordinComs2, the red nodes are those who communicate

using print media; in NoordinComs3, the red nodes are those who communicate

using support materials; in NoordinComs4, the red nodes are those who com-

municate using unknown media; in NoordinComs5, the red nodes are those who

communicate using video (Table 3.3).

3.4.2 Pokec Network

The Pokec network is part of a Slovakian on-line social network.6 The nodes in

the network are users of the social network and edges depict friendship relations.

Each node has some number of associated user attributes (e.g., age, region, gen-

der, interests, height etc.). We use a sample of this network containing all nodes

in the region “kosicky kraj, michalovce" and edges among them. This sampled

network contains 26, 220 nodes and 241, 600 edges. Although this is not a dark net-

work dataset, we include it for purposes of performing more comprehensive ex-

periments and to evaluate how monitor placement algorithms perform on larger

networks.

We assign node colors based on two different node attributes (Table 3.3): age (a

node with age in the range 28-32 is marked red, and blue otherwise, giving 1736

red nodes) and height (a user of height less than 160 cm is marked red, giving 1668

red nodes).

3.4.3 Facebook100 Networks

Facebook100 is a collection of early Facebook networks, from when Facebook was

only available to college students, and each college had its own network. 7 This

6Obtained from http://snap.stanford.edu/data/.
7Obtained from https://archive.org/download/oxford-2005-facebook-matrix.

http://snap.stanford.edu/data/
https://archive.org/download/oxford-2005-facebook-matrix
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is a collection of attributed social networks, containing node attributes such as

gender, student major, year of matriculation, and dormitory of residence. In our

experiments, we use select Major and Year attributes to assign node colors. Ma-

jor has low attribute assortivity (homophily) whereas Year has high assortivity in

these networks, and so we can evaluate the performance of monitor placement

algorithms in different attribute homophily scenarios.

For each attribute, the top three most frequent (non-null) attribute values are

selected to define red-blue nodes. For example, if we consider the year attribute,

one set of red nodes would be all nodes that joined in year 2008 (while all others

are blue). This results in six different red node and blue node assignments for each

Facebook100 network. We have considered two Facebook100 college networks for

our analysis resulting 6 different red-blue node assignments altogether. Table 3.3

shows selected attribute values and number of red nodes in each network.

Dataset Nodes Edges Attribute Red Nodes
No. of

Red
Nodes

Color
Assort.

NoordinTop 139 1042 Communi.

Type1 9 0.23
Type2 11 0.62
Type3 9 0.11
Type4 18 0.63
Type5 5 0.06

Pokec 26059 241514
Age Age=28-32 1725 0.11

Height Height <160cm 1663 0.06

Amherst46 2235 90954

Year
Year=2008 380 0.58
Year=2009 377 0.85
Year=2007 363 0.34

Major
Major=99 200 0.04

Major=100 174 0.03
Major=114 161 0.03

Table 3.3: Summary of datasets and node attributes we have used to assign node colors.
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3.4.4 Synthetic Terrorist Networks

To simulate dark networks embedded into civilian networks, we generate syn-

thetic terrorist network structures corresponding to the four criminal network ty-

pologies described by [57], which we then embed into larger real social networks.

We label the nodes in the criminal networks as red, and the nodes in the larger

social networks as blue. Through experiments on these networks, we gain a better

understanding of how the various monitor placement algorithms perform when

locating individuals from different structural categories of criminal networks. Le

describes these typologies in informal terms, but they can be directly mapped to

concrete network structures. The network structures that we consider, and the

processes that we used to generate them, are described below:

• Standard: Standard criminal networks follow the chain-of-command, and

can be modeled using a tree structure as shown in Figure 3.2a.

Network Generation: We generate this network as a random power-law tree

with power-law exponent 3 8.

• Regional: Regional criminal networks contain regional cells, each of which

has a clear chain-of-command, with all regional leaders reporting to a central

node. This network structure is similar to a collection of trees, where all

root nodes are connected to the same central node. This network structure is

shown in Figure 3.2b.

Network Generation: We generate this network as a set of four random power

law trees. We create a single central node, and connect that node to a ran-

domly selected root node from each of the regional trees.

8Available at https://networkx.github.io/documentation/networkx-1.10/reference/
generated/networkx.generators.random_graphs.random_powerlaw_tree.html#networkx.
generators.random_graphs.random_powerlaw_tree

https://networkx.github.io/documentation/networkx-1.10/reference/generated/networkx.generators.random_graphs.random_powerlaw_tree.html#networkx.generators.random_graphs.random_powerlaw_tree
https://networkx.github.io/documentation/networkx-1.10/reference/generated/networkx.generators.random_graphs.random_powerlaw_tree.html#networkx.generators.random_graphs.random_powerlaw_tree
https://networkx.github.io/documentation/networkx-1.10/reference/generated/networkx.generators.random_graphs.random_powerlaw_tree.html#networkx.generators.random_graphs.random_powerlaw_tree
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• Clustered: Clustered criminal networks contain multiple tightly knitted groups

of criminals, with a central coordination body. An example clustered net-

work structure is shown in Figure 3.2c.

Network Generation: We generate this network as a set of five clusters of nodes,

where each cluster is generated using a power-law cluster generating algo-

rithm [47] 9. A node is connected to 80% of the same cluster. We create a

triangle with probability 0.8 whenever a new node is added. Nodes from

non-coordinating clusters are connected to the coordinating cluster nodes

randomly with 0.05 probability.

• Core group: Core group networks are unstructured, with a loose, flat hierar-

chy. An example of core group structure is shown in Figure 3.2d.

Network Generation: We use an Erdős–Rényi random network with edge prob-

ability 0.1 to generate this structure [30] 10.

(a) Standard (b) Regional (c) Clustered (d) Core group

Figure 3.2: Criminal network typologies described by [57]. (a) Standard hierarchy with a
chain of commands (b) Regional hierarchy with multiple chains of commands and a central
controlling body (c) Clustered hierarchy with tight knit groups (d) Core group hierarchy,
which doesn’t exhibit clear structure

To simulate a criminal network hidden within a larger social network, we em-

bed these synthetic networks into the Facebook100- Amherst41 network. We set
9Availabe at https://networkx.github.io/documentation/networkx-1.10/reference/

generated/networkx.generators.random_graphs.powerlaw_cluster_graph.html#networkx.
generators.random_graphs.powerlaw_cluster_graph

10Available at https://networkx.github.io/documentation/networkx-1.10/reference/
generated/networkx.generators.random_graphs.erdos_renyi_graph.html#networkx.
generators.random_graphs.erdos_renyi_graph

https://networkx.github.io/documentation/networkx-1.10/reference/generated/networkx.generators.random_graphs.powerlaw_cluster_graph.html#networkx.generators.random_graphs.powerlaw_cluster_graph
https://networkx.github.io/documentation/networkx-1.10/reference/generated/networkx.generators.random_graphs.powerlaw_cluster_graph.html#networkx.generators.random_graphs.powerlaw_cluster_graph
https://networkx.github.io/documentation/networkx-1.10/reference/generated/networkx.generators.random_graphs.powerlaw_cluster_graph.html#networkx.generators.random_graphs.powerlaw_cluster_graph
https://networkx.github.io/documentation/networkx-1.10/reference/generated/networkx.generators.random_graphs.erdos_renyi_graph.html#networkx.generators.random_graphs.erdos_renyi_graph
https://networkx.github.io/documentation/networkx-1.10/reference/generated/networkx.generators.random_graphs.erdos_renyi_graph.html#networkx.generators.random_graphs.erdos_renyi_graph
https://networkx.github.io/documentation/networkx-1.10/reference/generated/networkx.generators.random_graphs.erdos_renyi_graph.html#networkx.generators.random_graphs.erdos_renyi_graph
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the size of the generated criminal network to be equal to 111, which is 5% of the

nodes in the base social network. The number of edges in the synthetic networks

vary based on the network typology, as described above. We use the network em-

bedding process proposed by [113], which randomly connects nodes in the the

criminal network to nodes in the social network. This process first selects a degree

d for each node in criminal network, where d is drawn from the original degree dis-

tribution of the larger network, and then connects this node to d randomly chosen

nodes from the larger social network.

3.5 Experimental Setup

In this section, we describe our experimental setup. To evaluate the performance

of RedLearn and RedLearnRS, we compare them to several meaningful baseline

monitor placement strategies, over a variety of network settings. In Section 3.5.1,

we describe these baseline monitor placement strategies.

To perform a comprehensive evaluation of how the monitor placement algo-

rithms perform across different error settings, we consider three categories of er-

rors: (1) Node color errors: how monitors on red nodes report incorrect node col-

ors, (2) Edge existence errors: how monitors on red nodes fail to report connections

to other red nodes, and (3) Neighbor color errors: How node monitors may mis-

report neighbors’ colors. These error behaviors are modeled by a variety of “error

scenarios", which we describe in, respectively, Sections 3.5.3, 3.5.5, and 3.5.2. Fi-

nally, we describe our experimental setup in Section 3.5.6.

Using these experiments, we answer the following questions:

• How do the various monitor placement algorithms perform when red nodes

conceal some or all of their connections to other red nodes?

• How do the various monitor placement algorithms perform when incorrect
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noisy edges are present?

• How do the various monitor placement algorithms perform when the moni-

tors misreport nodes’ true color or wrongly estimate the colors of their neigh-

bors?

• How do the various monitor placement algorithms perform on different crim-

inal network typologies?

• Do RedLearn and RedLearnRS consistently, across a variety of misreporting

scenarios, outperform the baseline monitor placement algorithms at the task

of locating as many red nodes as possible?

3.5.1 Baseline Monitor Placement Algorithms

We now describe several baseline monitor placement algorithms.

In Problem Setting 1, these baseline algorithms consider all observed but un-

monitored nodes to select the next node to monitor. In Problem Setting 2, when

monitors on red nodes may report wrong node color, baseline algorithms consider

all blue nodes for repeated monitor placement. The node with the highest score

among all blue nodes and unmonitored observed nodes is selected as the next

node to monitor. The same repeated monitor thresholding mechanism is used as

in Section 3.3.2.

Smart Random Sampling (SR): In each step, the Smart Random Placement

algorithm places a monitor on a random node, modeling chance.

Red Score (RS): The Red Score algorithm is guided by the colors reported by

neighbors of a node. If a node v reports its neighbor u as red, the score associated

with node u is increased by one, making it more suspicious. This algorithm selects

the node with highest red score to place the next monitor. For this method, the red

score is highly impacted by the accuracy of information given by the neighboring
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node. Additionally, due to its use of both red and blue node information, this

algorithm uses the most amount of information as compared to the other baseline

algorithms.

Most Red Say Red (MRSR): The MRSR algorithm places a monitor on the

node with the greatest number of red neighbors who estimate it as a red node. It

does not factor in blue node information and is dependent solely on the accuracy of

the information given by neighboring red nodes. Blue nodes are essentially useless

in this algorithm, mimicking the reality when they might not know who the POIs

are. This placement algorithm would result in a red node with no red neighbors

being impossible to discover except by chance.

Most Red Neighbors (MRN): The MRN placement algorithm places a moni-

tor on the node with the most known red neighbors. As such, it is highly depen-

dent on network’s homophily. Similar to the MRSR algorithm, blue neighbors are

unimportant in determining the likelihood of a given node being red.

3.5.2 Node Color Errors

In the case of monitors misreporting the neighbors’ colors (representing, e.g., a

guilty individual shielding himself from detection), we allow a red node to report

itself as blue with some predefined probability, drawn from a normal distribution,

N (0.5, 0.125). We conducted experiments in which blue nodes have a small prob-

ability of reporting themselves as red, and obtained similar results. For the sake of

brevity, we do not include these results.

3.5.3 Edge Existence Errors

In a dark network red nodes actively try to hide their presence as well as the ex-

istence of some or all connections with other red nodes (for example, instead of
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using their normal cell phone to make calls to other red nodes, a red node might

use a burner phone for such calls). To account for this, we consider versions of

the datasets where some connections between red nodes are hidden uniformly at

random. We have evaluated performance of monitor placement strategies consid-

ering how robust an algorithm is to hiding red connections. Note that this type of

network presents a much more challenging setting, as one cannot simply rely on

homophily to find red nodes.

3.5.4 Edge Non-Existence Errors

Any network that has been created using the data collected from node interactions

and connections, is prone to noisy edges that are not necessarily a part of the actual

social network. We test the performance of proposed algorithms against noisy

edges by adding random edges between disconnected node pairs in the original

network.

There is another type of edge non-existence errors, where criminals fabricate

new edges to deceive POI detection algorithms. [73] presents how criminals can

add new edges to attack network centrality measures such that leaders of crimi-

nal organizations are not the highest central nodes while keeping influence in the

network. This work is not in scope for this research work.

3.5.5 Neighbor Color Errors

We assume the existence of a hierarchy among the nodes, and that nodes are more

likely to conceal interactions with those above them in the hierarchy. (In the No-

ordin Top and synthetic terrorist networks, this hierarchy is known; in other net-

works, we infer it using node degree.) We assume that the red nodes are fully

aware of the hierarchy, but blue nodes may or may not be aware of it, depending
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on the error scenario.

Consider nodes u and v, where v ∈ N(u). The probability that a monitor on

node u estimates v’s color incorrectly is given by P (euv 6= cv), which depends on:

• The color of u (cu) and color of v (cv),

• The hierarchical position of u (Lu) relative to the position of v (Lv),

• The inherent investigation error Eu based on available information at node

u.

We simulate the effort that a red node uwould conceal its interactions with another

criminal node v as Lv

Lu
: i.e., criminals are more likely to conceal interactions with

higher-ranking neighbors due to possible consequences of leaking information.

Case 1: Suppose u is a red node. The neighbor color error of a red neighbor

v ∈ N(u), is determined based on Equation 3.3.

P (euv 6= cv|cv = red) = min{Eu ∗
Lv
Lu
, 1}. (3.3)

Equation 3.4 defines the probability u will estimate the wrong color of a blue

node. This depends on inherent estimation error, Eu

P (euv 6= cv|cv = blue) = Eu. (3.4)

Case 2: Suppose that u is a blue node. Whether or not u is even aware of red nodes

depends largely on the domain, and in particular, whether the blue nodes are part

of the same organization as the red nodes (blue and red nodes are all part of the

dark network, and red nodes represent a subset of interest), or if the blue nodes

represent individuals who are not part of the same organization as the red nodes

(e.g., the red nodes represent dark nodes in a sea of blue node civilians).
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• Neighbor color error type 1 (All nodes aware of red nodes).

Here, P (euv 6= cv|cu = blue, cv = red) is determined using Equation 3.3, since

blue nodes know about red nodes and their hierarchy. Additionally, mon-

itors which are placed on blue nodes may misreport colors of blue nodes

depending on inherent analysts’ error as mentioned in Equation 3.4.

• Neighbor color error type 2 (Only red nodes aware of other red nodes).

In this case, it is not possible to distinguish whether a neighbor is red/blue

by looking at their emails, messages, etc., because blue nodes don’t know

that their red neighbors are red. Here, blue nodes will simply report that all

their neighbors are blue. Because of this P (euv 6= cv|cu = blue, cv = blue) = 0

and P (euv 6= cv|u = blue, v = red) = 1.

In all cases, if P (u lie v) is greater than 1, it is rounded down to 1.

3.5.6 Experimental Settings

Because our error types are probabilistic, and the inherent neighbor color error Eu

of each node u may also change, for each network and lying scenario, we perform

25 runs of each monitor placement algorithm. For a fair comparison across differ-

ent monitor placement strategies, we run each monitor placement algorithm with

the same settings (including the same red starting node).

Monitor Budget: In each run, we consider budgets of up to half the number of

nodes in the network. We do this to illustrate the behavior of the algorithm over

both small and large budgets, even though in practice it is unlikely that fully half

of the nodes can be queried.

Training Learning Algorithms: The Noordin Top network is small, and so we

retrain RedLearn and RedLearnRS after each monitor is placed. The Pokec, Face-
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book, and Synthetic networks are larger, so for the sake of efficiency, we train the

learning model once per every 20 monitors placed.

Node color errors: A monitored red node misreports its color with some prob-

ability drawn from a normal distribution, N (0.5, 0.125). We consider this to be

an error in the node color determination mechanism. Therefore, all monitored red

nodes misreport their colors with the same probability as described in Section 3.5.2.

Edge existence errors: In a given network, we consider that only red nodes

try to conceal their connections with other red nodes with a fixed probability. We

present results when red nodes hide their connections with probability 0 (original

network), 0.5 (hiding half of red edges) and 1.0 (hide all red connections).

Edge non-existence errors: We evaluate monitor placement algorithm perfor-

mance in the presence of noise (incorrect edges) by adding edges with a probability

of 0.01, between any two disconnected nodes in the original network.

Neighbor color errors: In these experiments, the inherent neighbor color er-

ror at each node is drawn from a normal distribution, E ∼ N (0.5, 0.125). For the

Noordin Top network, ground truth hierarchy scores are known, as shown in Ta-

ble 3.4. In the Pokec and Facebook 100 networks, we set the hierarchy score to be

the degree of the node.11 For the synthetic networks, hierarchy assignments are

as follows: in the standard and regional typologies, the hierarchy score of a node

is equal to the number of descendant nodes that it has; and in the other typolo-

gies, the hierarchy score of a node is equal to its degree. Given some error type,

a monitored node u, misreports neighbor v’s color with probability P (euv 6= cv) as

mentioned in Section 3.5.5.

11Results were similar for different types of centrality, including eigenvector and betweeneness centrality.
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Role Hierarchy score No. of nodes
Strategist 5 10

Commander; Religious Leader 4 23
Trainer/instructor; Bomb maker; Facilitator;

Propagandist; Recruiter 3 33

Bomber/fighter; Suicide Bomber;
Courier; Recon/Surveillance 2 33

Unknown 1 40

Table 3.4: Noordin Top network hierarchy assignment

3.6 Results and Analysis

This section is organized as follows: Because node classification algorithms appear

to be a natural approach to this problem, we begin by presenting a comparison of

RedLearn against the ICA node classification algorithm in Section 3.6.1. Next, we

consider Problem Setting 1, in which monitors accurately report the color of the

occupied node. We compare RedLearn to the baseline monitor strategies discussed

in Section 3.5.1. We examine how the performances of these monitor placement

algorithms are affected by (1) red nodes concealing their connections with other

red nodes with probability 0, 0.5 and 1.0, (2) the neighbor color error type used by

the nodes, and (3) the monitor placement budget.

We next move to Problem Setting 2, where monitors may misreport the color of

the occupied node. In Section 3.6.3, we evaluate the performance of RedLearnRS as

compared to baseline algorithms.

In Section 3.6.4, we evaluate performance of monitor placement algorithms

when nodes report incorrect edges. We then conduct a feature importance anal-

ysis in Section 3.6.5 to determine the most important features for RedLearn and

RedLearnRS under different neighbor color error types and edge existence errors.

Finally in Section 3.6.6, we evaluate RedLearnRS on the various dark network ty-

pologies discussed in Section 3.4.4
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3.6.1 Node Classification Algorithms
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Figure 3.3: Comparison of average performance of ICA and RedLearn on the NoordinTop
terrorist network and Facebook-100 networks. RedLearn outperforms ICA in all networks
for both neighbor color error types considered.

In this section, we compare performance of the node classification algorithm

(ICA) to RedLearn. Figure 3.3 compares the performance of ICA to RedLearn on
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several networks, under Problem Setting 1, for the two neighbor color error set-

tings. In both algorithms, we used logistic regression as the base classifier with the

same set of features. RedLearn outperforms ICA in both error types in all networks

we have considered. A similar trend is followed even when we introduce edge

existence errors by concealing edges among red nodes.

ICA performs poorly because the training is performed on a sampled network,

and complete information about network topology is necessary to provide accu-

rate predictions. Prediction errors are propagated throughout the predictions in

ICA, because ICA uses predicted labels to calculate features. Even though ICA per-

forms well in node classification problems when complete information is present,

it exhibits poor performance in partial informaiton scenario.

On the other hand, RedLearn uses both node colors that are reported by the

monitors and connections in making accurate predictions about node colors. RedLearn

does not give priority to network’s topology while making the predictions, whereas

ICA heavily depends on topology to calculate neighborhood based features.

3.6.2 Problem Setting 1: Node color reliable

In this section we present results for the monitor placement algorithms for Problem

Setting 1. Figure 3.4 shows the performance of RedLearn on the NoordinComs4

network for (a) when no edge existence errors are present, (b) red edges are con-

cealed with probability 0.5, and (c) all red edges are concealed. When all edges

between red nodes are available, the problem becomes easy, and the simple algo-

rithm of monitoring the node with the most red neighbors (MRN) is best (because

the red nodes exist in a near-clique). However, note that in both lying scenarios,

even when all red edges are revealed, RedLearn is second to MRN.

However, we see that as edges between red nodes are increasingly concealed,

the MRN performance worsens. In such cases, RedLearn performs much better
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NoordinTop Comms 4: NCE1 (All nodes aware of red nodes)
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Figure 3.4: Comparison of monitor placement algorithms on the NoordinComs4 network
when reported node colors are reliable (Problem Setting 1). MostRedNeighbors (MRN)
performs well when there are no edge existence errors. RedLearn performs consistently
well across all edge existence error scenarios.

than all comparison methods: it is able to learn the patterns of reporting and struc-

tural characteristics of red nodes, achieving the highest performance.

We present the average performance of monitor placement algorithms on dif-

ferent attributed social networks in Figures 3.5 and 3.6. Figure 3.5 shows monitor

placement algorithm performances for neighbor color error type 1, and Figure 3.6

shows average performance of neighbor color error type 2.

The NoordinTop and Facebook100-Year networks have very high node color

homophily, and so all monitor placement algorithms perform well compared to

random placement. However, in Facebook100-Major and Pokec networks, node

color homophily is very low, and we observe overall lower performance of the

various strategies. MRN and RedLearn perform equally well when there are no
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edge existence errors, and all red edges are correctly reported, but as before, when

red edges are concealed, RedLearn is generally the best.

We see similar patterns across all networks: edges between red nodes help se-

lect the node with the most red neighbors and MRN outperforms all algorithms

closely followed by RedLearn; but when these edges are concealed, RedLearn is the

clear winner.

3.6.3 Problem Setting 2: Node colors misreported

In this section we evaluate the performance of monitor placement algorithms, in-

cluding RedLearnRS, when node colors are misreported by monitors.

Figure 3.7 shows that the results on the NoordinComs4 network follow a sim-

ilar pattern as in Problem Setting 1: when reported edges are reliable, MRN per-

forms well, with RedLearnRS close behind; as we introduce edge existence errors

by hiding edges among red nodes, RedLearnRS becomes the clear winner.

All monitor placement strategies are affected by node color errors, because they

must expend greater amounts of budget to repeatedly monitor the same node.

Thus, the performance of the baseline algorithms is reduced in this problem set-

ting, since they do not employ a mechanism to find possible node color inaccura-

cies. In placing the next monitor, they have to consider all believed-blue nodes and

unmonitored nodes. In contrast, RedLearnRS identifies possible node color errors

among blue nodes using the outlier detection algorithm, and only considers these

error nodes and unmonitored nodes when placing the next monitor. RedLearnRS

performs similarly across the different neighbor color error types considered.

We summarize the average performance of monitor placement algorithms across

all networks in Figures 3.8 (NCE1) and 3.9 (NCE2). In all networks where attribute

assortivity (homophily) is low (Pokec, Facebook100-Major networks), RedLearnRS

out performs all other monitor placement strategies. When attributes show ho-
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Figure 3.5: Monitor placement algorithm average performance when reported node color
is reliable (Problem Setting 1). Neighbor color error type 1 ( NCE1:All nodes aware of red
nodes) is considered here. MostRedNeighbors (MRN) and RedLearn algorithms perform
similarly when there are no edge existence errors. As we introduce these errors,RedLearn
becomes the clear winner across all monitor placement algorithms.
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Figure 3.6: Monitor placement algorithm average performance when reported node colors
are reliable (Problem Setting 1). Neighbor color error type 2 (NCE2: Only red nodes
aware of other red nodes) is considered here. RedLearn has matched the performance of
MostRedNeighbors (MRN), in most networks when there are no edge existence errors. As
red nodes hide their connctions with other red nodes, RedLearn becomes the clear winner.
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NoordinTop Comms 4: NCE1 (All nodes aware of red nodes)
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Figure 3.7: Comparison of monitor placement algorithms on the NoordinComs4 network
when monitors misreport node colors (Problem Setting 2). Even though MostRedNeigh-
bors (MRN) performs well in the original network, its performance worsens when edge
existence errors are introduced. RedLearn performs consistently well across all neighbor
color error types and edge existence error scenarios.

mophily, RedLearnRS performs quite similar to the best monitor placement algo-

rithm (MRN).

Our conclusion is that as we conceal red edges, RedLearnRS is the best per-

forming monitor placement algorithm. While it comes in second in a few cases in

which all the original edges between red nodes are known, it closely follows the

performance of MRN, and it outperforms it in some cases. Also, the situation of all

the existing edges being known is not realistic, so the performance of RedLearnRS

in the cases when some or all of these edges are missing is most relevant to dark

networks.
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Figure 3.8: Monitor placement algorithm average performance when node colors are mis-
reported by monitors (Problem Setting 2), under neighbor color error type 1 (NCE1: all
nodes are aware of red nodes). MostRedNeighbors (MRN) performs well when there are
no edge existence errors, but worsens as we introduce such errors. RedLearn performs
consistently well across all edge existence error scenarios.
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Figure 3.9: Average performance of monitor placement algorithms when node colors are
misreported (Problem Setting 2), under neighbor color error type 2 (NCE2: Only red nodes
are aware of other red nodes). RedLearn performs consistently well across all edge ex-
istence error scenarios, when other monitor placement algorithms are affected heavily by
concealing red edges.
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3.6.4 Edge non-existence error analysis

In this section we evaluate performance of monitor placement algorithms when

the monitors report incorrect edges. This case is the most realistic one, incorpo-

rating noise that is normally present in real data collection. We included random

edges between disconnected nodes in the original network with probability 0.01 to

evaluate this phenomenon.

Figures 3.10 and 3.11 present average results for NoordinTop networks. The

performance of all monitor placement algorithms is not drastically affected by the

incorrect edges that were added to the network.
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Figure 3.10: Average performance of monitor placement algorithms in NoordinTop net-
works when monitors report incorrect edges. Problem Setting 1: Node colors are reliable
is considered here. Performance of monitor placement algorithms is not heavily affected
by noisy edges.

We observe a similar pattern of results for all networks and all error scenarios
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Figure 3.11: Average performance of monitor placement algorithms in NoordinTop net-
works when monitors report incorrect edge. Problem Setting 2: Node colors are misre-
ported is considered here. Performance of monitor placement algorithms remains quite
similar to when there are no noisy edges.

we have considered in this chapter.

3.6.5 Feature Importance Analysis

In this section, we determine the most important features for good performance for

RedLearn and RedLearnRS. We look at how feature importance changes when red

nodes do or do not show homophily, as well as when node colors are misreported.

We examine the NoordinTop terrorist networks and Facebook100 Amherst-Major

networks for our analysis, since these networks show high and low color assortiv-

ity respectively.

We have divided features in to four different categories to better explain fea-

ture importance: (1) Neighbor based: Number of blue/red neighbors (2) Tight knit
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groups: Number of red triangles, (3) Neighbor estimates based: Number red/blue

neighbors estimate red/blue, red score and inferred probability of red, and (4) Sec-

ond hop neighbors: Second hop red/blue neighbors. When node colors are misre-

ported (Problem Setting 2), we consider an additional repeated monitor category,

the number of monitor placed that blue/red nodes lied about.

We evaluate feature importance using absolute values of the coefficients of each

feature at the logistic regression decision boundary. The average feature impor-

tance of each category is reported.

Problem Setting 1: Node color reliable

Figure 3.12 presents average feature importance scores for NoordinTop terrorist

networks and Facebook100 Amherst-Major networks. Tight knit groups are the

most important feature group for RedLearn in NoordinTop networks. This agrees

with our intuition, as in NoordinTop networks red nodes are mutually adjan-

cent. Neighbor estimates do not have a high importance in NoordinTop networks,

since red nodes can be easily identified using neighborhood features. In Face-

book100 Amherst-Major networks neighbor color estimates, neighbors and tight

knit groups are equally important since red nodes are much difficult to distinguish

from blue nodes.

Feature importance changes as we introduce different types of errors into the

problem. When we introduce edge-existence type of errors (by hiding edges be-

tween red nodes), the neighbor feature category improves importance in both net-

work types. This is primarily due to RedLearn learning that red nodes tend to

have fewer red neighbors, and it obtains outstanding performance when we re-

move edges among red nodes. Other neighborhood based monitor placement al-

gorithms are not capable of learning this phenomenon. Feature importance scores

remain quite similar across different neighbor color error types considered.

Problem Setting 2: Node color misreported
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Figure 3.12: Average feature importance scores of NoordinTop and Facebook100 Amherst-
Major networks when reported node colors are reliable (Problem Setting 1). Tight knit
groups are the most important feature category in NoordinTop networks, since red nodes
tend to be clustered together. The importance of the neighbor feature category increases
when we hide red edges.

Figure 3.13 shows average feature importance scores for RedLearnRS. We add the

Repeated Monitor feature category, which was introduced to determine whether

to place a monitor on an already monitored node. This feature category has high

importance in both networks considered. Other feature categories have similar

importance scores as Problem Setting 1 as seen in Figure 3.12.

3.6.6 Network structure analysis

In this section, we discuss how monitor placement algorithms perform for several

real network structures observed in terrorist networks. Recall that we create these

networks by embedding different synthetically created terrorist network hierar-
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Figure 3.13: Average feature importance scores of NoordinTop and Facebook100 Amherst-
Major networks when node colors may be misreported by monitors. Repeated monitor
feature group has the highest importance in most networks since this feature category de-
termines whether to place a monitor on an already monitored node.

chies into the Facebook100 Amhrest social network, as discussed in Section 3.4.4.

Figure 3.14 depicts the performance of monitor placement algorithms when

node colors reported by monitors are reliable (Problem Setting 1). We see that in

standard and regional hierarchies, RedLearn outperforms the other monitor place-

ment strategies, and the MRN method performs poorly. This occurs because stan-

dard and regional hierarchies have a chain of command and follows a tree struc-

ture, so each node will be connected to very limited number of red nodes. In such

a structure, RedLearn is able learn the neighborhood characteristics of a red node.

In neighbor color error type 2, the performance is affected by only red nodes’

knowing colors of other red nodes. Because each red node is connected to a very
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NCE2: Only red nodes aware of red nodes.

Figure 3.14: Comparison of monitor placement algorithm performance for different crim-
inal network hierarchies when reported node colors are reliable (Problem Setting 1).
RedLearn performs the best in all network hierarchies in NCE 1. When red nodes are
clustered and/or connected to lot of other red nodes (core group), MRN performs well.
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limited number of other red nodes, neighbor color estimates do not reveal much

information.

In clustered and core group hierarchies, most red neighbors (MRN) performs

well because red nodes are connected to many other red nodes. Overall, RedLearn

performs consistently well across all types of terrorist network structures.

Figure 3.15 shows monitor placement algorithm performance when the col-

ors of monitored nodes may be misreported (Problem Setting 2). In this setting,

RedLearnRS outperforms all monitor placement strategies in all network hierar-

chies and neighbor color error types. In the clustered hierarchy and core group

hierarchy, MRN performs quite well, but it is not able to beat RedLearn. Overall,

the baseline algorithms perform worse than random monitor placement in most

network hierarchies, because they cannot identify blue nodes with color errors.

3.7 Discussion and Conclusion

Members of dark networks conceal information by nature, and while these net-

works are deceptive and sparse, they are still structured. Based on these properties,

we created and analyzed the results of several methods of sampling the networks

to identify People of Interest (POI, or ‘red nodes’). We tested these methods on

a small real terrorist network, larger social networks, and synthetic terrorist net-

works embedded into real social networks. As our monitors represent analysts

that may misreport findings, we used several error scenario models, including

node color errors, neighbor color errors, neighbor existence error and neighbor

non-existence errors.

We created RedLearn, a learning-based method for locating POI in dark net-

works when reported node colors are reliable (Problem Setting 1). REDLEARN

uses features from the simpler baseline algorithms and learns how to identify red



77

Standard hierarchy criminal network

0

25

50

75

100

0 300 600 900 1200
Number of monitors placed

P
er

ce
nt

ag
e 

of
 r

ed
 n

od
es

 fo
un

d

0

25

50

75

100

0 300 600 900 1200
Number of monitors placed

P
er

ce
nt

ag
e 

of
 r

ed
 n

od
es

 fo
un

d

Regional hierarchy criminal network

0

25

50

75

100

0 300 600 900 1200
Number of monitors placed

P
er

ce
nt

ag
e 

of
 r

ed
 n

od
es

 fo
un

d

0

25

50

75

100

0 300 600 900 1200
Number of monitors placed

P
er

ce
nt

ag
e 

of
 r

ed
 n

od
es

 fo
un

d

Clustered hierarchy criminal network

0

25

50

75

100

0 300 600 900 1200
Number of monitors placed

P
er

ce
nt

ag
e 

of
 r

ed
 n

od
es

 fo
un

d

0

25

50

75

100

0 300 600 900 1200
Number of monitors placed

P
er

ce
nt

ag
e 

of
 r

ed
 n

od
es

 fo
un

d

Core group hierarchy criminal network

0

25

50

75

100

0 300 600 900 1200
Number of monitors placed

P
er

ce
nt

ag
e 

of
 r

ed
 n

od
es

 fo
un

d

NCE1: All nodes aware of red nodes.

0

25

50

75

100

0 300 600 900 1200
Number of monitors placed

P
er

ce
nt

ag
e 

of
 r

ed
 n

od
es

 fo
un

d

NCE2: Only red nodes aware of red nodes.

Figure 3.15: Comparison of monitor placement algorithm performance for different crimi-
nal network hierarchies when node colors may be misrported by monitors (Problem Setting
2). RedLearnRS outperforms all other monitor placement strategies.
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nodes in networks. Results show that RedLearn outperforms the other methods

in cases where one cannot rely on nodes to reveal all their connections (edge ex-

istence errors). RedLearn performed well across the different neighbor color error

types we considered.

We then introduced Problem Setting 2, where node colors may be reported with

errors. In this setting, we used RedLearnRS, a re-sampling algorihtm that extends

RedLearn to identify POIs. All monitor placement algorithm performance were af-

fected in this case since multiple monitors needed to be placed on a single node to

uncover the true color, however RedLearnRS outperformed other baseline monitor

placement algorithms by successfully identifying POIs that were initially misre-

ported.

RedLearnRS assumes that only red nodes will misreport their color. Therefore

it is necessary to re-monitor nodes that are reported to be blue to identify potential

node color errors. This might lead to the risk of repeatedly monitoring innocent

blue nodes. We introduced repeated monitor threshold in RedLearnRS to mini-

mize number of times a blue node will be monitored. Our analysis shows that

the RedLearnRS algorithm re-samples a blue node 1.61 times on average with a

standard deviation of 1.2 compared to 1.68 average and 1.03 standard deviation of

re-sampling a red node. This shows that RedLearnRS does not excessively monitor

the same blue node. Another important fact is that when we refer to "monitoring"

some node, it doesn’t necessarily mean that the node will be arrested and ques-

tioned. It is rather an analyst will spend more time and resources determining the

true color of a node.

In general, all monitor placement algorithms performed well in networks where

red nodes tend to have direct connections with other red nodes (high color as-

sortivity present in Noordin Top, Facebook100-Year attribute); and vice versa when

red node assortivity is low (Facebook100-Major attribute and Pokec networks).
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The MostRedNeighbors (MRN) monitor placement algorithm performed the best

in highly color assortative networks since red nodes tend to have many red neigh-

bors. The performance of MRN was drastically affected by edge existence errors

. On the other hand, RedLearn performed well across all network types and er-

ror types. All monitor placement algorithms are not affected by small edge non-

existence errors

RedLearn and RedLearnRS use several network structure based features and

neighbor color estimate based features to identify nodes of interest in social net-

works. We conducted a feature importance analysis to determine most important

features in different network structures and problem settings. Tight knit groups

were seen to be most important feature group when red node assortivity is high

(NoordinTop networks). For other networks, Neighbors, Neighbor color estimates

and Tight knit groups showed to be equally important. Repeated monitors feature

category was the most important feature category in Problem Setting 2, when node

colors are reported with errors.

We generated several criminal network hierarchies in accordance with the crim-

inology literature, and embedded these synthetic criminal network structures into

Facebook100-Amherst network to determine which algorithms perform well across

different criminal hierarchies. Our results showed that MRN monitor placement

works well when criminals are clustered together in groups. In all other hier-

archies RedLearn and RedLearnRS outperform baseline monitor placement algo-

rithms across two problem settings and error types we have considered.

The proposed algorithms only consider limited information to predict which

individual should be monitored next. Monitoring an individual can lead to violat-

ing someone’s privacy or can have an adverse effect on the individual. Therefore,

when using the proposed algorithms, careful attention should be made to avoid al-

gorithmic biases (such as targeting some specific race since an identified individual
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belongs to that race). Further, human intervention is essential to further evaluate

the predictions made by the algorithms to limit unnecessary monitoring of civil-

ians. Using the proposed algorithms as a guide to limit the search space would be

the best way to incorporate the algorithm in an actual criminal investigation.

One interesting future direction would be to consider this problem from a crim-

inal’s perspective to analyze how criminals can deceive these learning algorithms.

This analysis can then be used to develop algorithms that are robust to deceptive

criminal behavior.
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CHAPTER 4

MODELING PEOPLE OF INTEREST IN

SOCIAL NETWORKS

Social network analysis is often used to gain fundamental insights into human so-

cial interactions. For example, one can identify the most influential individuals in

a network, understand how information spreads through groups, and character-

ize the community structure of a population. Typically, when one performs such

analysis, one assumes the availability of accurate information about the network

structure and people who are part of it.

However, in certain applications, such assumptions about data accuracy may

not hold. For example, in Chapter 3, we proposed algorithms to sample POIs

in dark networks where there is a covert group (such as a criminal gang or ter-

rorist cell) hiding among civilians in a social network. The nodes representing

these people are adversarial against those who seek to collect or analyze their

data. Thus, the covert nodes may misreport data about their network structure

or attributes (their own or others’) to a data collector in order to hinder such anal-

ysis and hide the identities of themselves and their compatriots. While most data

analysis tasks must deal with noisy data, this type of adversarial behavior seeks to



82

deliberately deceive an analyst, and may present different challenges than simply

random noise.

In Chapter 3, we discussed various types of errors covert entities can introduce

to hinder the adversarial network data collection. To better understand adversar-

ial network structure, one should be able to characterize how individuals in these

networks may attempt to deceive a data collector. Such information can be used to

design network analysis algorithms that are more robust against purposeful misin-

formation, characterize the network structures that promote adversarial behaviors,

identify regions of the network for which more accurate data should be collected

(by, e.g., recruiting informants from the group), predict the evolution of criminal

groups, and so on.

In this work, we propose the Adversarial Social Network Analysis Game (ASNA

game) framework to study the deceptive behaviors of adversarial nodes in social

networks. We formulate the framework as a network game, where a data collector

is attempting to reveal true information about nodes in the network while individ-

uals in an adversarial group are attempting to disrupt the process. The ASNA game

framework can be used to experimentally examine a wide variety of questions,

including: 1) To what extent, and how, does the network structure influence the

deceptive behavior of adversarial nodes?, 2) What level of incentive should a data

collector provide to an adversarial node in order to obtain more useful, accurate

data? 3) Does loyalty of individuals to the adversarial group or respect for the

hierarchy of the organization play a role in deceptive behavior?

We use the ASNA game framework to conduct behavioral experiments using par-

ticipants recruited from Amazon Mechanical Turk (mTurk). These participants

play as members of an adversarial group. Our ultimate goal is to use ASNA game

framework to propose a model that can predict a node’s reporting behavior for a

specific network setting.
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In this work, we introduce the ASNA game framework and then discuss its im-

plementation on mTurk. We then confirm the validity of ASNA game framework to

study adversarial behavior of people by showing 1) Participants understand their

role and aspects of the framework, 2) Participants understand their objective in a

game and, 3) Participants act as members of the adversarial group.

4.1 Background

Many studies on adversarial behavior come from the criminology, psychology, and

sociology literature, and are conducted on criminals under interrogation. Hartwig

et al. [44] conducted an analysis to compare strategies used by guilty suspects

vs innocent suspects used in a police interrogation. This analysis revealed that

guilty suspects used various strategies to appear truthful while innocent suspects

revealed the truth showing their innocence. Separately, Hartwig et al. [45] iden-

tified the stage at which interrogation evidence should be displayed to detect de-

ception. This analysis showed that revealing evidence later in the interrogation

triggered inconsistencies in the stories provided by the criminals revealing their

status. Stromwall et al. [94] studied lie-telling strategies by people with criminal

experience. Participants showed a great variation of preferred lying but belong-

ing to three main categories: close to the truth, not giving away information, and

no strategy. Although such studies are plentiful, they generally do not consider

network structure. However, as shown by Galeotti [36] and Wong et al. [110],

criminals usually form networks to be able to operate and adjust their networks to

hide information.

Recent research on covert network analysis has looked specifically at applying

social network analysis to analyze dark networks [67, 20, 56]. Others have con-

sidered using social network analysis techniques to disrupt criminal networks [89,
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92]. These works mainly consider standalone criminal networks which are not

embedded into regular social network, and work under the assumption of correct

information. Wijegunawardna et al. [108] propose algorithms to identify criminals

in a dark network under the deceptive behavior of individuals. Even though they

consider possible inaccuracies in data, they use synthetic models to simulate these

inaccuracies. The goal of the present work is to provide such algorithms realistic

models of adversarial behavior.

We conduct our experiments using participants hired from Amazon Mechan-

ical Turk (AMT). Recently, AMT has become popular among researchers running

human experiments due to the low cost of and easy access to large subject pool [71].

Paolacci et al. [80] show that results obtained from running experiments on AMT

are comparable to that of running lab experiments. However, AMT experiments

can suffer from bots acting to be human subjects. Mason et al. [71] suggest using fil-

tering checks to ensure that mTurkers understand and pay attention to experiment

details. There have not been many works on conducting network experiments on

AMT. Suri et al. [97] conducted a networked public goods game experiment on

AMT to evaluate the effect of network structure in human cooperation. Our work

focuses on studying adversarial behavior of nodes in a network using AMT par-

ticipants.

4.2 Adversarial Social Network Analysis Game

We model the ASNA game as a variation of the popular Werewolf/ Mafia party

games [16], in which a minority of players collude against the majority. In the

ASNA game, a pack of werewolves (Red nodes), representing members of an adver-

sarial group, is hiding among innocent civilian villagers (Blue nodes) in a village

social network, as shown in Figure 4.1. (For ease of reading, in this chapter, we use



85

Black nodes to represent Red nodes and White nodes to represent Blue nodes in

the figures. In our actual experiments, their true colors are red and blue.) A sheriff

(data collector) begins an investigation to identify the werewolves, who attempt to

evade detection. In the current implementation, participants play as werewolves

only.

Figure 4.1: An example game network. Red nodes are werewolves and Blue nodes are
villagers. Dark colored nodes have already been investigated. The numbers by the in-
vestigated nodes show the order of investigator past choices. mTurk participant plays as
the “YOU" node in the network. Participants need to report colors of the green circled
neighbors of the “YOU" node in the network.

Overview of Gameplay: Currently, the game is a single player game, though

future versions will allow for multiple players. Each participant (mTurkers) plays

as a “YOU" node, a member of the adversarial group, as shown in Figure 4.1. The

“You" node has just been investigated by the data collector, and the participant

must thus decide whether to report each of her uninvestigated neighbors as Red or

Blue nodes. Each choice is associated with potential rewards and penalties. She

may choose to protect some members of the werewolf pack by claiming that they

are villagers, and in doing so receive a reward from the pack; but if the data analyst

subsequently investigates that neighbor and realizes her lie, she will be penalized.

In contrast, if she betrays another werewolf, the pack will penalize her but the

data analyst may reward her. To maximize her overall payoff, she must attempt to
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predict whether a node will subsequently be investigated by the data analyst.

UI: In this version of the game, the player sees the full network structure,

including the village’s social network, the order of data collector’s past choices,

shown as numbers beside nodes that are already investigated, and the budget the

investigator is left with, which we refer to as potions, in the game UI, as shown

in Figure 4.2. At the beginning of each game, players see an animation showing

which other individuals have been investigated before the player. This helps the

player to determine the data collector’s strategy.

Using this information, the player must decide whether to report each neighbor

as a werewolf or a villager. Players report each neighbor as a Red or Blue node by

clicking the Werewolf or Villager button in the rewards table.

Figure 4.2: User interface the participants would interact with to report their answers about
neighbors. The rewards table opens when a participant clicks on a neighbor and shows
possible rewards she can earn for each possible answer. Potions left indicates how many
other nodes, the data collector can investigate after the participant.

Rewards and Penalties: To see the rewards and penalties associated with the

possible responses about a neighbor, the player clicks on that node. This action

shows a matrix similar to that shown in Table 4.1. Rewards and penalties are de-

pendent on 1) the true colors of the neighbors, 2) Whether a participant decide to

report the truth or lie about neighbor’s color and, 3) whether the data collector ul-
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timately investigates the neighbor. This last factor is not known to the player- he

or she must attempt to predict it.

Participants earn a reward from the werewolf pack for reporting false informa-

tion about a Red node- i.e., if they lie to protect a fellow werewolf. Similarly, they

get a penalty if they report the truth- i.e., betray a fellow werewolf. On the other

hand, participants earn a reward from the data collector if they report the true

colors of a werewolf, but get a penalty for lying. Importantly, the data collector

awards rewards and penalties only if he subsequently investigates neighbors and

confirm whether the participant has lied or told the truth. Thus, the player must

attempt to predict the data collector’s future actions when deciding her responses.

The total reward a participant earns in a game converts to the bonus payment

she gets for participating in the experiment. The specific values of rewards and

penalties vary depending on the conditions being tested, and correspond to total

payouts of roughly $0.10 - $0.70.

Participant
Red Neighbor Blue Neighbor

Truth Lie Truth Lie

Investigator Investigates + reward - penalty + reward - penalty
Doesn’t investigate 0

Adversarial Group - penalty + reward 0

Table 4.1: Possible rewards and penalties participants can earn from the data collector and
the adversarial group.

Data Collector: In our current experiments, we assume that the goal of the

data collector is to investigate, and thus identify, as many Red nodes as possible.

The data collector follows some strategy when selecting individuals to investigate

(e.g., selecting those who are connected to to the most known adversarial nodes,

randomly selecting nodes, etc.). The data collector has some limit b on the number

of nodes that she can investigate. Following the Werewolf game, we refer to each

investigation as a “potion". As described above, to incentivize correct responses,
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the data collector provides penalties or rewards in response to false or true query

responses. In our experiments, the data collector is controlled by a bot, and varying

the strategy and incentives is part of our experimental conditions that we control.

Goals: The player’s task is to decide what to report about each neighbor’s color.

Presumably, players will generally be motivated by the goal of maximizing their

payoff, which corresponds to actual money. However, in some cases, players may

show behaviors that are not optimal for this goal. For example, participants may

decide to lie about civilian neighbors in order to mislead the investigation and

protect more red neighbors, even if this does not lead to the greatest payoff.

In the tutorial preceding game play, to help participants make decisions, they

see the following guidelines: 1) They should consider the number of potions left,

because this plays a role in the likelihood that the data collector will investigate

a particular neighbor, 2) They should attempt to identify any pattern in the data

collector’s past strategy, because this can help predict which nodes the data collec-

tor will investigate next, and 3) They should evaluate the rewards and penalties

associated with each choice. The players need to pay attention to how likely it is

that she will get caught lying to the investigator when deciding what to report.

Current Rules: The framework allows for many different rule sets. In the cur-

rent version, the data collector iteratively selects individuals from the network (in

accordance with some query strategy) for investigation, and (1) In each query, the

data collector determines whether the node is Red or Blue with perfect accuracy, (2)

When the data collector queries the selected node as to the colors of its neighbors

(i.e., asks the individual under investigation whether her friends are werewolves

or civilians), the queried node may lie.

MTURK Implementation: We implement the ASNA game on Amazon Mechan-

ical Turk. In our current experiments, only one member of the adversarial group

is played by a human mTurker; the other players are controlled by bots. These



89

bots are placeholders for rest of the nodes in the village social network and do not

add any information to the game play in the current version of the game. mTurk-

ers first participate in a tutorial which explains the game interface, gameplay, the

stakeholders in the game, and the player’s role, as well as giving example games.

After completing the tutorial, players take part in three filtering games, and must

pass at least two in order to continue to validate that they understand their role.

4.3 Experiments and Results

In this section, we demonstrate the validity of the ASNA game by showing that play-

ers 1) Pay attention to key elements of the ASNA game, 2) Understand the objectives

of the game and, 3) Show loyalty to the Red group. We set up the game so that

at least 20 people participated as the “YOU" (Red) node in each experiment. Par-

ticipants are able to take part in any number of experiments after completing the

tutorial and passing the filtering exams.

4.3.1 Participants pay attention to key elements of the ASNA game

There are three key elements to the ASNA game that participants need to pay atten-

tion to in order for results to be valid: 1) The data collector’s past choices 2) How

many other individuals the data collector can investigate after the current par-

ticipant and, 3) The rewards and penalties that the participant would get for each

answer choice. We use three filtering games to ensure that participants understand

and pay attention to these factors.

In the first filtering game, we test if participants pay attention to whether there

is a pattern to data collector choices. We use a path network with the data collector

investigating one node at the time, in the order listed on the path. Given this

setting, the data collector’s next choice is likely to be the participant’s neighbor. If
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Passed Passed
only one

Passed
only two

Passed all
three

Filtering 1: Data collector choices
The player must accurately predict that the data
collector will investigate his/her neighbor next
based on data collector’s pattern of choices

63%
25% 36% 29%

Filtering 2: Budget left
Enough budget to investigate all nodes in the network 55%

Filtering 3: Reward table
Rewards and penalties are such that the player will
get a higher reward by reporting the true colors.

69%

Table 4.2: Percentage of participants who passed each filtering game.

the participants are paying attention to the details of the game, they should always

report the true color of the neighbor.

In the second filtering game, the data collector has enough query budget to in-

vestigate every node in the network. Therefore, participants should always report

correct colors of the neighbors.

In the third filtering game, we check whether participants consider rewards

and penalties when providing their answers. We allocate rewards and penalties

to neighbors such that they would always get a higher reward by reporting true

colors regardless of whether the data collector investigates them or not.

Table 4.2 shows statistics about how many participants passed each filtering

game. If participants were to guess answers fully at random, there would be a 50%

chance, 25% chance and 25% of passing filtering game 1, 2, and 3, respectively,

and the probability of passing at least two filtering exams is 0.25. However, 211

mTurkers completed all three filtering games, and 139 (66%) passed at least two

filtering games, and moved on to the next stage of the experiment. These filtering

games help ensure that participants understand the game.
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4.3.2 Participants understand objectives of the game

To further assess whether participants understand the game, we performed three

experiments to evaluate whether the participants try to maximize their reward in

the game. We designed experiments corresponding to this hypotheses, as follows:

Hypothesis 1: People are more likely to report false information if they think that the

data collector will not discover the truth.

The ASNA game framework can convey information about the risk of the data

collector uncovering the truth through the animation showing the data collector’s

past investigations. For example, if the data collector past choices seem to be ran-

dom, she poses a little threat to the participant as compared to the case where the

data collector is making choices near participant’s neighbors. We use three differ-

ent settings to test this hypothesis.

Setting 1: The data collector follows a clear pattern of investigation vs. a ran-

dom selection of nodes

If the number of potions remaining is small compared to the number of un-investigated

nodes, we expect to see people misreport colors of their neighbors more often

when the data collector has made random choices in the past as compared to when

the data collector has followed a clear pattern of investigation that is likely to lead

to the participant’s neighbors. We use two networks to test this hypothesis. In one

network, the data collector investigates nodes selected at random, and in the other

network, the data collector investigates nodes row by row in the network. Rewards

and penalties are the same for respective nodes in both networks. We randomly

assign participants to one of the two networks to evaluate whether there is a dif-

ference in likelihood of misreporting colors between the two networks.

Participants reported false information about Red nodes twice as often in the

random choice network as compared to when the data collector is following the
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row-by-row pattern. We confirm using a one tailed t-test at p = 0.05 significance

that the participants on average reported false information about Red nodes in the

random choice network significantly more compared to when the data collector

follows some pattern.
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(c) Protecting neighbors leading to
more red nodes

#
participants A B C A, B B, C A, C A, B, C

% of nbrs
investigated 24 54%∗,† 67%∗,‡ 38%†,‡ 46% 29% 33% 29%

Bridge between
Red and Blue groups 20 50%∗ 15%∗ 5%

Protect nbrs leading
to more Red nodes 36 39%† 42%‡ 31%†,‡ 31% 25% 25% 31%

Figure 4.3 & Table 4.3: Network a) tests whether the likelihood of adversarial nodes misre-
porting data changes (based on how participants perceive the likelihood of the data collector
discovering the truth) and, networks b) and c) test whether participants show loyalty to the
Red group. Table shows the percentage of participants, who have misreported information
about their neighbors in the networks shown. Statistically significant differences from a
one tailed t-test at 0.05 significance are marked with ∗, †, ‡ symbols. Cells with the same
symbol represent that the larger value is significantly larger than the smaller value.

Setting 2: Data collector investigates some parts of the network more com-

pared to others

In this setting, we test Hypothesis 1 by using the network shown in Figure 4.3a.

The data collector has investigated each neighbor’s neighborhood to a varying de-

gree. We expect participants to identify those neighbors whose neighborhoods

have been investigated less thoroughly, and thus provide false information about
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those neighbors more often. We keep rewards and penalties the same for all three

neighbors.

Participants reported that C is not a Red node more often compared toA andB,

even though all of them are indeed Red nodes. The only difference between these

three neighbors is in the fraction of their neighborhoods that have been investi-

gated. Using a t-test we confirm that likelihood of misreporting B is significantly

lager than the likelihood of misreporting A and C at the p = 0.05 significance level.

Setting 3: All neighbors have similar anticipated rewards

We created another network to evaluate how participants balance between risk

and reward. In this network, participant has there neighbors A,B, and C who are

at high, medium, and low risk of being investigated, respectively. Moreover, they

have rewards and penalties of ±5,±3, and ±1, respectively. In other words, the

higher the risk, the better the potential reward and the worse the potential penalty.

The ultimate payoffs would be similar for all three neighbors when we consider

the risk vs reward. Therefore, if participants are trying to maximize the reward

they would earn, they should lie equally about all three neighbors. Experiments

conducted using this network confirm this hypothesis since participants have not

lied about any of the three neighbors significantly more than any other neighbor.

These three experiments confirm our hypothesis that participants understand

their objectives in the game. Therefore, the experiments validate that the ASNA

game framework can be used to understand deceptive behavior of adversarial nodes.

4.3.3 Participants are loyal to the Red group

Even though we want to study behavior of adversarial nodes, our experiment sub-

jects consists of workers from AMT, who may not be people with an inherent ad-

versarial mindset. However, even though the participants may not themselves be

criminals, the framework allows us to study aspects of general human behavior.
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One trait of interest is that of members of some group is being loyal to that group.

Hypothesis 2: If nodes show loyalty to their group, they would take risks and report

false information about neighbors to protect members of their own group

We test this hypothesis in two different settings. In the first setting, we position

the player as a bridge between a Red group and a Blue group, to see if she tries to

direct the data collector towards the Blue group and protect the Red group. In the

second setting, we test whether the size of the Red group matters to the participant

in the decision process, with players preferring to protect larger Red groups.

Setting 1: Bridge node between neighbors leading to a Red group and a Blue

group

Figure 4.3b shows the experiment we designed to test Hypothesis 2. A and B

both have same rewards and penalties, and the investigator order of past choices

doesn’t provide any useful information about which of them would be investi-

gated next. Participants reported false information about A three times more of-

ten. According to the network structure, reporting the truth about A would lead

the investigation towards a large Red compared to B. A t-test with p = 0.05 signifi-

cance level confirms that participants are likely to provide false information about

A significantly more often compared to B. This shows that participants are loyal

to the Red group even if this does not affect their reward.

Setting 2: Protect larger Red group

We formulate the network in Figure 4.3c. The “YOU" node is adjacent to nodes

A, B, and C, which lead to six, three, and one Red nodes, respectively. Rewards

and penalties are the same for all neighbors. Table 4.3 shows that participants

lied about nodes A and B significantly more compared to node C (significant at

p = 0.05). However, we do not see a significant difference between the likelihood
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of lying about A, compared to B. This may be due to participants perceiving that

bothA andB would lead to similar Red groups. Since participants have lied signif-

icantly more about A and B compared to C, we can still conclude that participants

try to protect neighbors that lead to a larger Red group. However, we cannot quan-

tify the how large the Red group should be to observe such behavior.

These two experiments show that participants try to protect the Red groups

even if that doesn’t necessarily maximize their objective. We can conclude that

participants are loyal to the Red group and try to protect the members since they

act as members of the group.

4.4 Discussion and Conclusion

We propose the ASNA game framework to study adversarial behavior of nodes in a

social network. The ASNA game framework is modeled as a network game played

between a data collector and members of an adversarial group. By varying as-

pects of the game, we evaluate how the network structure, rewards and penalties,

and data collection behavior influence adversarial behavior. Initial analysis using

Amazon Mechanical Turk shows that 1) Participants understand their role in the

game, and 2) Participants show loyalty to the group. Findings from this type of

analysis may be helpful in designing network analysis algorithms that are robust

to targeted misinformation, or in understanding the behavior of covert groups in

general.

One drawback of our current work is that we recruit general workers from

AMT to participate, rather than criminals. Thus, their mindset is different, creating

different behaviors. However, we show that even with these workers, participants

are loyal to the Red group and provide misinformation to the data collector to pro-

tect Red nodes showing that they in fact act adversarial towards the data collector
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without any necessary gain in rewards.

We intend to extend the present work by exploring other factors, such as the

stated hierarchical ranks of other nodes, the existence of herding behavior, tit-for-

tat behavior, more variations on network structure, how rewards and penalties can

affect node behavior and so on. Additionally, we will extend the current work to a

multi-player setting, allowing us to better understand group dynamics.

Even though the ASNA game framework is designed to understand behavior of

adversarial groups towards a data collector, findings from such a behavior analysis

can be used target minority groups who are trying to hide from an authoritative

figure such as a government. Therefore, when using this framework to study ad-

versarial behavior, careful attention should be made to only test hypothesis that

are relevant to criminal groups or covert entities. For example, best use of this

framework would be to study what criminal network hierarchies are more adver-

sarial, how various network structures and criminal network hierarchies can affect

adversarial behavior.



97

CHAPTER 5

PREDICTING PEOPLE OF INTEREST

WITH BOUNDED ERROR RATES

Locating POIs in social networks is closely related to the node classification prob-

lem in social networks. Node classification algorithms predict labels for unlabeled

nodes in a partially labeled graph by using known node labels and connections

between nodes. For example, consider a criminal group hidden inside a general

social network. If some criminals and non-criminals are identified, can an algo-

rithm predict whether the unlabeled nodes are criminals? If a company wants to

target an advertisement to students at a particular university in an online social

network, and the universities of some nodes are known, can the university of the

other nodes be inferred? Properties of such POIs are not necessarily correlated

with the network structure. In such cases, node classification algorithms play an

important role: By taking advantage of connections as well as node attributes,

algorithms specifically designed for node classification generally perform better

on semi-supervised graph classification tasks as compared to traditional machine

learning algorithms [117, 76].

In many problems, the user of a node classification algorithm may wish to as-
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Figure 5.1: Comparison of using conformal prediction framework vs class probability as
expected error for Cora citation dataset classification using Iterative Classification Algo-
rithm. Conformal prediction actual error is always no greater than the expected error where
as the actual error for class probability does not follow the expected error.

sociate a confidence with each prediction. For example, consider the dark network

data collection problem in Chapter 3, where we intend to sample a dark network to

maximize the number of identified covert entities in the sample. Here, we predict

whether a node in a social network is a criminal or not. A prediction in this prob-

lem may lead to a real-world criminal investigation. It is thus useful to know how

likely is a prediction is to be wrong. In such applications, prediction algorithms

that can provide guaranteed error rates on unseen data are essential.

The performance of a node classification algorithm is generally measured with

metrics such as accuracy, precision, and recall. Such measures describe the algo-

rithm performance in aggregate, but do not measure certainty of individual pre-

dictions. While node classification algorithms can generally output a vector indi-

cating the probability that a node belongs to each class, as Figure 5.1 shows, these

values should not be interpreted as confidence values. In this figure, when using

these probabilities as expected errors, we see that the actual errors are larger than

the expected errors. In contrast, the conformal prediction framework actual errors

are always lower than the expected error.

In this work, we demonstrate how the conformal prediction framework can be
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used to obtain error bounds for the node classification task. Conformal predic-

tion (CP) is a framework to provide guaranteed error bounds for prediction algo-

rithms [91]. This framework works on top of a prediction algorithm (e.g. SVM,

Neural Network) and for a specified error bound, considers how unusual a data

instance is in consideration to training data. The CP framework has been applied

to provide guaranteed error bounds for machine learning algorithms [70, 51, 81].

However, to our knowledge, conformal prediction has not been applied to the net-

work setting. Figure 5.1 shows an example application of the CP framework to

node classification problem. The prediction error rate is always lower then the

expected error the CP framework suggests.

We consider node classification algorithms from different categories and show

how the CP framework can be applied to obtain guaranteed error rates for these

algorithms. Further, we conduct an experimental analysis over various types of

node attributes and graphs and show that the CP framework can improve node

classification algorithm accuracy.

5.1 Background

We first provide relevant background on node classification algorithms, and then

explain the Conformal Prediction Framework and related work.

5.1.1 Node Classification Algorithms

Node classification algorithms consider both node attributes and node connectiv-

ity patterns when making predictions. There are three main categories of node

classification algorithms. The first category contains local classifier based algo-

rithms, where a local classifier is iteratively trained using node attributes and net-

work information to predict labels for unlabeled nodes, such as logistic regression
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local classifier. Iterative Classification Algorithm (ICA) [76] and Link Based Clas-

sification algorithm [66] are examples of such algorithms. These algorithms itera-

tively predict labels for the unlabeled nodes in the graph using predicted labels in

the round of predictions.

The second category of algorithms are label propagation based algorithms,

where the algorithms use random walks to learn a global labeling function across

the network [117]. These algorithms predict labels for nodes in the graph by con-

sidering hitting probability of each label in a random walk.

The third, and newest, category of node classification algorithms learn a deep

representation of the network and labeling function. There are two approaches to

learning this representation. The first approach uses network embedding-based al-

gorithms, which generate feature vectors for nodes in a graph in an unsupervised

manner. These algorithms use multiple random walks starting at each node, and

trains a prediction model based on these features [98, 83, 42]. The second approach

is learning a labeling function using deep neural networks based on graph repre-

sentation. Graph Convolutional Neural Networks (Graph CNN) are widely used

to conduct node classification under this category [54].

In the current work, we consider node classification algorithms from each cate-

gory mentioned above and show how the CP framework can be applied to obtain

predictions with guaranteed error bounds.

5.1.2 Conformal Prediction Framework

The CP framework outputs a set of predictions for a given sample with a bounded

error rate by comparing “how typical" the sample is as contrasted to other sam-

ples [91]. Suppose that we are given a data set Z = {z1, z2, . . . , zn} where zi =

(xi, yi); xi ∈ Rd is the feature vector of the sample i, and yi ∈ Y is the class label for

i. Here, Y is the set of class labels, i.e. Y = {y1, y2, . . . , y`}.
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Given a new sample with feature vector xn+1, the CP framework measures how

typical the following sequence is: (z1, z2, . . . , zn, (xn+1, y
k)), where yk ∈ Y . Since we

already know the labels for z1, z2, . . . , zn, we are in effect measuring how typical

the sequence is when label yk is assigned to the new sample, and how likely is that

n+ 1’s true label is yk [81].

The CP framework uses a test for randomness to measure how likely a se-

quence is, where the p value for a given sequence is calculated using Equation (5.1).

A given conformity measure calculates the “typicalness" of a data instance (α val-

ues). The αi is the conformity score for ith data instance [81].1

p(z1, z2, . . . , (xn+1, y
k)) =

|{i = 1, . . . , n : αi ≤ αn+1}|
n

(5.1)

The CP framework calculates the p-values for all sequences considering all pos-

sible class labels. Given some significance value ε, prediction set of n + 1 instance

at ε significance is then calculated using Equation (5.2).

P (n+ 1, ε) = {yk : yk ∈ Y & p(z1, z2, . . . , (xn+1, y
k)) > ε} (5.2)

For example, if we set significance to 0.05 and some label has a p-value less than

0.05 meaning that the chance of generating the sequence including the label in

consideration is less than 5%. This implies that the label we are considering is

highly unlikely.

Note that in Equation (5.2), the CP framework outputs the set of labels that sat-

isfy the specified significance rather than a single prediction. Therefore, CP frame-

work predictions can have one prediction, multiple predictions, or zero predic-

tions, in case none of the labels satisfy the significance requirement. The prob-

ability of not including true labels in the prediction set is less than the specified

1Note that the “≤" sign in Equation 5.1 changes to “≥" if we are using a non-conformity function instead
of conformity.
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threshold, providing an error rate bounded by the significance level. If we are to

predict labels at significance ε, the probability of not including the correct label in

the prediction set is ε and the confidence in the prediction is 1− ε.

The CP framework provides guaranteed error bounds for predictions under

the assumption that the data is exchangeable, meaning any permutation of the

sequence (z1, z2, . . . , zn, (xn+1, y
k)) should result in the same p-value. This assump-

tion is necessary to obtain the p-value using Equation (5.1).

The CP framework was originally introduced in the transductive setting, where

the true label of the current sample is revealed before the arrival of the next sam-

ple [91]. In this setting, the given model is trained considering each possible label

for new data instance and the framework measures how typical the model is. Since

this setting requires training the model for each new data instance and each possi-

ble label, applying this in a real world setting would be very inefficient.

The Inductive Conformal Prediction (ICP) is an alternative approach which splits

the training data into actual training set and a calibration set, and uses the calibra-

tion set to conduct CP [81]. The ICP framework uses the training set to train the

underlying prediction model, and the calibration set to calculate the p-value. In

the ICP setting, we only consider the calibration set when calculating the p-value

of Equation (5.1).

5.1.3 Related Work

Bayesian Framework and Probably Approximately Correct Learning theory (PAC

theory) [46] are two other frameworks that provide bounded error rates in machine

learning applications. Bayesian Framework error rates are dependent on the priors

that are used in the estimation. Hence, the error bounds are not guaranteed in case

priors are wrong. PAC theory provides upper bounds on prediction algorithms

rather than individual samples. Furthermore, the error bounds provided by PAC
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theory are heavily dependent on the quality of the data [81]. The only assumption

that the CP framework makes is that the data is exchangeable, which is valid for

most machine learning data. Dashevskiy et al. [21] show that even in cases where

exchangeability assumption is violated (e.g., time series data), the CP framework

still provides reasonable error bounds. The CP framework, unlike PAC theory, can

provide error bounds for individual samples rather than the algorithm.

Cross Conformal Prediction (CCP) is another variation of CP framework. The

CCP is very similar to ICP, with the difference that rather than selecting a part of

the training data as calibration data, CCP follows a cross-validation-like approach

to provide error bounds. Similar to cross validation, CCP leaves out one part of

training data as calibration data, and other parts are used to train the model. This

process continues for all folds of the training data, and outputs the average error

bound for a sample. In this work we show how ICP can be applied to obtain error

bounds for node classification problems. The CCP can similarly be applied to node

classification problem.

Initial work on the CP framework was primarily theoretical, and focused on

proving the error bounds. Applying the CP framework to machine learning algo-

rithms required defining conformity measures specific to algorithms, showing that

the data is in fact exchangeable. Research in this area shows how the CP frame-

work can be applied to various algorithms including decision trees [51], neural

networks [81], SVM [70], time series prediction [21], random forest [26], and re-

gression [82] etc.

To best our knowledge, this is the first work that considers providing guaran-

teed error bounds for node classification algorithms, and shows how the CP frame-

work can be applied to obtain those error bounds
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5.2 Methodology

We now introduce the details of how the ICP framework can be applied to node

classification algorithms. In the zn = (xn, yn) a node classification problem, we

have that xn ∈ Rd is the d-dimensional feature vector for node n, and yn is the label

of node n.

To show that the ICP framework applies, we must demonstrate that the data is

exchangeable. Note that this does not require that the data is i.i.d., simply that all

permutations of each sequence are equally likely. Since we are drawing training

and calibration samples uniformly at random from the set of nodes, exchange-

ability holds. We also considered sampling training and calibration data using a

network crawling algorithm such as random walk or snowball sampling. Result-

ing error bounds are not valid in these cases since any training node ordering is

not equally likely (not exchangeable) for random walk or snowball sampling.

For example, consider we start a random walk from node A in Figure 5.2 and

sample nodes to assign initial label for a node classification task. A possible ran-

dom walk sample is S = {A,B,C,D,E}. In order for ICP predictions to provide

bounded error rates, any ordering of S should be equally likely. But, the ordering

S ′ = {D,B,A,C,E} is not possible in a random walk, since a walk cannot move

directly from D to B. However, if we sample S uniformly at random, any node

ordering is equally likely.

In many real world applications, we begin with an unlabeled graph and ob-

tain labels for some of the nodes, in order to label rest of the nodes using a semi-

supervised node classification algorithm. In such cases, we can select a random

node sample to label to facilitate using ICP to get bounded error rates. In cases

where we have to use a network crawling algorithm, Metropolis Hasting random

walk [95] and Re-weighted random walk [85] are two example algorithms that

provide approximately uniform node samples.
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Figure 5.2: Sampling algorithm exchangeability example.

The conformity function is an integral part of the ICP framework, measuring

how different the data instance in consideration from the calibration set. Any real

valued conformity function that measures how different a sample is can be used

to produce valid nested prediction regions [103], but the efficiency (smaller predic-

tion regions) of the algorithm depends on how well the nonconformity function

measures differences between data instances. Consider a prediction algorithm that

outputs a vector σn ∈ R|Y | for some unlabeled node n, indicating the probability

that n would belong to each class in Y . One possible conformity measure for such

an algorithm is the probability margin, which is the difference between the label in

consideration and the highest probability of any other label [88]. We can calculate

the probability margin conformity score for some label yk ∈ Y using Equation 5.3.

C(n, yk) = σn(y
k)− max

yi∈Y :yi 6=yk
(σn(y

i)). (5.3)

Given a node classification algorithm M , a graph G, set L of labeled nodes,

set U of unlabeled nodes, a significance level ε, and a conformity function C, we

introduce Algorithm 4 to show how the ICP framework can be applied to node

classification problem.
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Algorithm 4 ICP for Node Classification
Input: G= Graph, L = labeled_nodes, U = unlabeled_nodes,M = prediction

algorithm, C= Conformity function, ε = significance
Output: Prediction set for each node in U at significance ε

1: procedure ICP
2: Divide L into T = training_set and S = calibration_set
3: Train M using G and T . Train prediction model M
4: for s ∈ S do
5: σs =M(s) . Get prediction probability vector σs for s
6: αs = C(σs, ys) . Calculate conformity score for s and s’s label ys
7: for u ∈ U do
8: Pu = {} . u’s prediction set at significance ε
9: for yk ∈ Y do

10: σu =M(u)
11: αu = C(σu, yk)
12: p = |{s∈S:αs≤αu}|

|S| . Calculate p-value for label yk

13: if p > ε then
14: Pu.add(y

k) . Add yk to u’s prediction set

5.3 Experiments

We conduct experiments to evaluate whether the ICP framework predictions meet

the specified error bounds. We consider node classification algorithms from differ-

ent categories: Iterative Classification Algorithm (ICA), Label Propagation (LP),

Graph Convolutional Network (GCN), and DeepWalk (DW). We now introduce

the perfromance metrics and data sets used in our research.

5.3.1 Performance Metrics

Our evaluation closely follows the evaluation criteria in [51]. We use several mea-

sures to evaluate the quality of predictions made by ICP framework for the node

classification problem:

1. We check whether the ICP framework predictions meet the specified maxi-

mum error bounds. Since node classification graph data meets the exchange-



107

ability assumption, the specified error bounds should be met.

2. We evaluate the ICP framework predictions based on their efficiency. Since

the ICP framework outputs a set of predictions for a node based on its con-

formity score, an efficient prediction would have only a single class in the

prediction set. We consider the fraction of predictions with only one class

(OneC), multiple classes (MultiC) and zero classes (ZeroC) to evaluate the

efficiency of the ICP framework.

3. We compare the accuracy of the baseline prediction model (BaselineAcc) with

the accuracy of one class predictions (OneAcc) from the ICP framework to

show that the ICP framework enhances performance of the baseline predic-

tion model.

5.3.2 Datasets

Node classification algorithms generally perform well on assortative networks,

but less well on nodes are not assortative. Accordingly, we have selected graph

datasets with varying levels of assortativity. For each network, we use the largest

connected component. Cora [74, 90] and PubMed [75] are citation networks, show-

ing citation relationships between papers. Facebook100 2 is the Amhrest college

Facebook friendship network. BlogCatalog [114] is a blogger friendship network.

The Protein-Protein Interaction network [42] is a subgraph of the PPI Homo Sapi-

ens network. Networks are described in Table 5.1.

5.3.3 Experimental Setup

We run experiments as a multi-class prediction problem where we vary the per-

centage of labeled nodes in the network from 10% up to 50%. We randomly sam-

2Obtained from https://archive.org/download/oxford-2005-facebook-matrix.
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Dataset Type Nodes Edges Label Classes Label
Assortavity

Cora Citation 2708 5278 Research area 7 0.771
PubMed Citation 19717 44327 Research area 3 0.686

Blogcatalog Social 10312 333983 Blogger group 39 0.05
Facebook100 Social 2235 90954 Year 9 0.409

PPI Biological 3890 38739 Biological state 50 0.05

Table 5.1: Network dataset statistics

ple the labeled data from each class proportional to the size of the class and report

average performance over 10 runs. We used 25% of the training data as the cali-

bration set to conduct conformal prediction.

For ICA and Deepwalk, we use a multi-class logistic regression classifier as the

base classifier. We set Deepwalk hyper parameters for all data sets as follows: 80

walks, 128 dimension representation, window size 10, and walk length 40 accord-

ing to [83]. GCN hyper parameters are set at 0.5 dropout rate, 5.10−4 L2 regular-

ization and 16 hidden units, according to [54].

5.4 Results

Figure 5.3 shows results of ICP using ICA on the Cora citation network with 10%, 30%

and 50% of the nodes labeled, using the performance metrics discussed in Sec-

tion 5.3.1. First, we see that the actual errors in all algorithms are very close to the

given significance level, demonstrating that the ICP framework in fact provides

accurate error bounds for node classification algorithms.

Second, as expected, the percentages of OneC (one-class predictions) and Mul-

tiC (multiple-class predictions) increase and decrease as we increase the signifi-

cance level, respectively. At lower significance, there can be many classes that

satisfy the given error bounds according to Equation 5.1. ZeroC (zero class pre-

dictions) slightly increases at higher significance values causing OneC to reduce
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Figure 5.3: Accuracy and efficiency for Cora citation data set using ICA as the baseline
algorithm when 10%, 30% and 50% of the nodes are labeled. The actual error is always no
greater than the specified significance level.

slightly, because some nodes do not meet significance for any single class label.

Finally, we see that the accuracy of the ICP framework is higher than the ac-

curacy of the baseline node classification algorithm, showing that the predictions

from ICP are more reliable than those from the baseline prediction algorithm. Re-

sults are consistent across different algorithms and labeled node percentages.

Tables 5.2 and 5.3 summarize the performance of the ICP framework applied

to ICA and Label Propagation, respectively. Both algorithms closely maintain the

given error bounds. ICP framework can cause the prediction errors to be slightly

higher than the given error bound since the predictions are based on the calibration

set rather than the whole training set.

Further, applying ICP improves baseline accuracy of both algorithms in all

data sets. The ICP improves ICA accuracy in FB100 data from 0.82 to 0.94, while
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Dataset Significance Error OneC MultiC ZeroC OneAcc BaseAcc

Fb100
Amherst

0.05 0.045 ± 0.01 0.58 0.42 0 0.94
0.820.15 0.133 ± 0.02 0.88 0.12 0 0.87

0.25 0.25 ± 0.02 0.85 0 0.15 0.88

BlogCatalog
0.05 0.05 ± 0.01 0.05 0.95 0 0.52

0.230.15 0.15 ± 0.01 0.11 0.89 0 0.48
0.25 0.25 ± 0.01 0.15 0.85 0 0.44

PubMed
0.05 0.046 ± 0.01 0.52 0.48 0 0.92

0.830.15 0.154 ± 0.01 0.97 0.03 0 0.85
0.25 0.257 ± 0.01 0.84 0 0.16 0.89

PPI
0.05 0.051 ± 0.01 0.03 0.97 0 0.21

0.100.15 0.147 ± 0.01 0.08 0.92 0 0.18
0.25 0.248 ± 0.02 0.14 0.86 0 0.17

Table 5.2: Conformal prediction framework performance using ICA as the baseline algo-
rithm. Average performance over 10 runs where randomly selected 30% of the nodes are
labeled in each run.

Dataset Significance Error OneC MultiC ZeroC OneAcc BaseAcc

Cora
0.05 0.043 ± 0.01 0.60 0.40 0 0.94

0.830.15 0.141 ± 0.03 0.89 0.09 0.01 0.87
0.25 0.252 ± 0.04 0.85 0 0.15 0.89

PubMed
0.05 0.052 ± 0.01 0.54 0.46 0 0.91

0.820.15 0.149 ± 0.01 0.92 0.08 0 0.85
0.25 0.253 ± 0.01 0.87 0 0.13 0.86

Fb100
Amherst

0.05 0.052 ± 0.01 0.38 0.62 0 0.93
0.780.15 0.144 ± 0.01 0.71 0.29 0 0.88

0.25 0.252 ± 0.03 0.92 0.01 0.07 0.81

BlogCatalog
0.05 0.049 ± 0.01 0.04 0.96 0 0.36

0.220.15 0.149 ± 0.01 0.10 0.90 0 0.38
0.25 0.253 ± 0.01 0.15 0.85 0 0.39

PPI
0.05 0.048 ± 0.01 0.04 0.96 0 0.12

0.100.15 0.146 ± 0.01 0.10 0.90 0 0.11
0.25 0.239 ± 0.03 0.15 0.85 0 0.11

Table 5.3: Conformal prediction framework performance using Label Propagation as the
baseline algorithm. Average performance over 10 runs where randomly selected 30% of
the nodes are labeled in each run.

predicting singleton labels for 58% of the nodes with a guaranteed error rate of

5%. In the Label Propagation algorithm, ICP improves accuracy for Facebook100

data from 0.78 to 0.93, while predicting singleton labels for 38% of the nodes with

a guaranteed error rate of 5%. When the baseline predictor accuracy is reasonable,

ICP provides efficient predictions (more singleton predictions). When the base-
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Dataset Significance Error OneC MultiC ZeroC OneAcc BaseAcc

Cora
0.05 0.045 ± 0.01 0.70 0.30 0 0.95

0.830.15 0.141 ± 0.02 0.93 0.07 0 0.86
0.25 0.248 ± 0.03 0.83 0 0.17 0.91

PubMed
0.05 0.047 ± 0.01 0.72 0.28 0 0.94

0.850.15 0.151 ± 0.01 0.98 0.01 0.01 0.86
0.25 0.249 ± 0.01 0.82 0 0.18 0.92

Fb100
Amherst

0.05 0.048 ± 0.01 0.43 0.57 0 0.96
0.720.15 0.139 ± 0.02 0.59 0.41 0 0.9

0.25 0.251 ± 0.02 0.90 0.10 0 0.77

BlogCatalog
0.05 0.049 ± 0.01 0.001 0.999 0.05 0

0.120.15 0.139 ± 0.01 0.005 0.995 0 0.05
0.25 0.238 ± 0.01 0.01 0.99 0 0.11

PPI
0.05 0.049 ± 0.01 0.0002 0.9998 0 0.03

0.050.15 0.143 ± 0.02 0.002 0.998 0 0.18
0.25 0.239 ± 0.02 0.005 0.995 0 0.11

Table 5.4: Conformal prediction framework performance using GCN as the baseline algo-
rithm. Average performance over 10 runs where randomly selected 30% of the nodes are
labeled in each run.

Dataset Significance Error OneC MultiC ZeroC OneAcc BaseAcc

Cora
0.05 0.048 ± 0.01 0.59 0.41 0 0.94

0.820.15 0.150 ± 0.02 0.90 0.09 0.01 0.86
0.25 0.239 ± 0.03 0.88 0 0.12 0.87

PubMed
0.05 0.048 ± 0.01 0.53 0.47 0 0.92

0.800.15 0.149 ± 0.01 0.89 0.11 0 0.84
0.25 0.245 ± 0.01 0.90 0 0.10 0.84

Fb100
Amherst

0.05 0.047 ± 0.02 0.001 0.999 0 0.14
0.150.15 0.155 ± 0.02 0.005 0.995 0 0.12

0.25 0.268 ± 0.04 0.01 0.99 0 0.13

BlogCatalog
0.05 0.057 ± 0.01 0.012 0.988 0 0.82

0.280.15 0.153 ± 0.01 0.02 0.98 0 0.79
0.25 0.255 ± 0.01 0.03 0.97 0 0.76

PPI
0.05 0.051 ± 0.01 0.0002 0.9998 0 0.43

0.110.15 0.151 ± 0.02 0.005 0.995 0 0.32
0.25 0.250 ± 0.02 0.007 0.993 0 0.31

Table 5.5: Conformal prediction framework performance using DeepWalk as the baseline
algorithm. Average performance over 10 runs where randomly selected 30% of the nodes
are labeled in each run.

line predictor does not perform well, conformity scores also become less meaning-

ful leading ICP to make more multiple predictions. In blogcatalog, at significance

level 0.15, only 11% of the predictions are singletons.
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Figure 5.4: Performance of ICP applied to CORA citation data with 30% of nodes initially
labeled. ICA is used as the baseline. Note that 10%, 30% and 50% of training data misla-
beled. ICP maintains the error bounds even when 50% of the training data is mislabeled.
But the efficiency decrease as there are more errors.

Tables 5.4 and 5.5 summarize results for GCN and DeepWalk respectively. GCN

algorithm works well when node labels show homophily (Cora, FB100 and PubMed).

In the Blogcatalog and PPI data sets, GCN algorithm baseline accuracy is 0.12 and

0.05, making it impractical to get meaningful predictions. The Deepwalk algorithm

only considers network structure when predicting labels. If node labels are not cor-

related with the structure, even if data shows high homophily, Deepwalk baseline

accuracy is low. In general, both these algorithms maintain the error bounds but

provide inefficient predictions in some cases.
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5.4.1 Perturbation Analysis

Real world network data collection can be prone to errors. In Figure 5.4, we

show the effect of mislabeled data on ICP framework predictions. We consider

the CORA data set with 30% of the nodes initially labeled and change labels ran-

domly for 10%, 30% and 50% of the nodes in the training data. Figure 5.4 shows

that mislabeled training data does not affect ICP error bounds. As we increase

the percentage of mislabeled data, the efficiency of predictions decreases, since the

percentage of singleton predictions decreases.

5.4.2 Running Time Analysis

The running time of the ICP framework is governed by the running time of the

baseline prediction algorithm. Given a trained model to predict labels, the running

time of the ICP framework for a given significance level is O(|U | · |Y |), where U

here is the set of unlabeled nodes, and Y is the set of labels. For each node in the

unlabeled node set, we calculate the p-value for each label in Y .

5.5 Discussion and Conclusion

In this work we consider the problem of providing guaranteed error bounds for

predictions in node classification algorithms. We use the CP framework, which

works with a given prediction model to provide bounded error rates. We use ICP

a more efficient variant of the CP framework and show how this can be applied

to ICA, Label Propagation, GCN and DeepWalk algorithms to improve prediction

accuracy and provide more reliable predictions. We evaluate performance of this

framework using citation, social and biological networks and show that 1) Spec-

ified significance levels are maintained across all data sets and Algorithms, and

2) ICP can in fact improve accuracy of baseline algorithms. We conduct a pertur-
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bation analysis to show that ICP framework error bounds are not affected by the

perturbations, rather the efficiency is affected.

The efficiency of ICP predictions are affected by the conformity function we

use. In this work, we consider the probability margin nonconformity measure. It

would be interesting to explore other conformity measures specific to graph data

in the future. Another future direction would be to adopt ICP framework to other

network prediction problems such as link prediction.
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CHAPTER 6

CONCLUSION

Social network analysis provides a convenient platform to analyze and understand

interactions among social entities. Social networks are widely studied to find key

players/influential nodes in a network. These works find people of interest (POIs),

who are important in terms of the network structure. There are many applica-

tions such as security (finding criminals in networks), marketing (targeted adver-

tising), friend recommendation that would benefit from identifying POIs with cer-

tain properties that do not necessarily correlate with the network structure. We

propose algorithms to identify such POIs in this dissertation.

First, in Chapter 2, we discuss the key player identification problem but in a

heterogeneous, dynamic network setting to predict future key players (rising stars)

in social networks. We propose MOO algorithm to find rising stars, which first cre-

ate homogeneous networks from heterogeneous data to find potential rising from

each network. We propose multi-objective optimization and rank aggregation ap-

proaches to combine potential rising stars from various networks to predict the

final set of rising stars. We apply MOO algorithm to academic data and question

answer forum data to show that, MOO algorithm predict rising stars who truly be-

come key players in the future. Further, we show that the predicted rising stars
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out perform state of the art rising star prediction algorithms in academic data.

The second problem we consider is collecting network data to identify as many

POIs possible in a social network. We specifically consider a dark network set-

ting, where POIs are adversarial towards a data collector to hide their identity. In

Chapter 3, we propose RedLearn and RedLearnRS algorithms to locate POIs in dark

networks. RedLearn algorithm assumes that POIs report their true status when

queried while RedLearnRS algorithm dispenses that assumption. We use real world

terrorist networks, social networks and synthetic terrorist networks to show that

RedLearn and RedLearnRS perform well to identify POIs through network crawl-

ing while being robust to various types of errors dark network data collection can

incur.

Even though we discuss various errors network data collection can face in an

adversarial setting in Chapter 3, there are no realistic models to explain such be-

havior. In Chapter 4, we propose Adversarial Social Network Analysis game (ASNA

game) framework to study interactions between a data collector and members of an

adversarial group. ASNA game is a single player network game, where a participant

plays as a member of the adversarial group and report to a data collector whether

their neighbors in the network are adversarial or not. We conduct experiments

with recruited participants from Amazon mechanical Turk to show that players

understand key aspects of the game and act as part of the adversarial group. We

intend to extend the game to a multi player setting where we would allow partic-

ipants to communicate with each other. We also intend to use the existing game

framework to understand other types of adversarial data collection problems.

In Chapter 5, we consider POI identification problem as a semi-supervised

learning problem, where POIs are partially labeled in a network. We seek to iden-

tify rest of the POIs by modeling this problem as a classification problem. There

are a multitude of node classification algorithms which are specifically designed



117

to conduct classification in network data. In applications where POI prediction is

a sensitive matter, such as predicting an individual as a criminal or not a crimi-

nal, a user may want to associate a confidence measure with predictions to obtain

guaranteed error bounds. In this chapter, we show how to apply conformal pre-

diction framework to obtain bounded error rates for node classification problem.

Experimental analysis shows that, 1) The error rates are close to expected errors,

2) Conformal prediction framework provides higher prediction accuracy than the

original predictions, showing that we are in fact correcting some of the errors made

by the original node classification algorithms.

We investigate locating POIs in social networks through multiple facets in this

dissertation. We propose algorithms to find, collect data to identify, model and

predict POIs in social networks.
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