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ABSTRACT

We study homological properties and constructions for modules over a complete intersection

ring Q/(f1, . . . , fc) by way of the related generic hypersurface ring Q[T1, . . . , Tc]/(f1T1 +

· · · + fcTc). The advantage of this approach is that over a hypersurface ring, free resolu-

tions are eventually 2-periodic, given by matrix factorizations, and are thus relatively easy

to understand. We approach this relationship in two ways. First, we give a correspondence

between the two rings in the graded setting, where existing results are insufficient for pre-

serving graded structures. As an application, we use this correspondence to move a functor

appearing in a theorem of Orlov to the generic hypersurface setting. Second, we shift out of

the graded setting to discuss the relationship between Tor groups over these rings, inspired

by recent work of Bergh and Jorgensen, and building on cohomological results of Burke and

Walker. This second part takes place in a scheme-theoretic context, so we develop some ma-

chinery that provides a sort of “global Tor” for complexes of sheaves that can be compared

to the usual Tor for modules.
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Chapter 1

Introduction

The work presented in this thesis is centered around exploring relationships between complete

intersection rings and their generic hypersurface rings. Let R be a complete intersection ring,

i.e.,

R =
Q

(f1, . . . , fc)
,

where Q is a regular local ring and f1, . . . , fc a regular sequence on Q. The generic hyper-

surface ring of R is

S

(W )
=

Q[T1, . . . , Tc]

(f1T1 + · · · , fcTc)
,

with S and W defined in the obvious ways.

We aim to develop a framework for moving back and forth between properties of an

R-module M and those of the associated S/(W )-module M ′ := M [T1, . . . , Tc], building on

recent work of Burke and Walker ([6] and [7]). These papers, extending a theorem of Orlov

in [12], establish, in a more general setting, an equivalence of categories

Ψ : [MF (Pc−1
Q ,O(1),W )]→ Db

sg(R)

between the singularity category Db
sg(R), which captures so-called stable homological be-

havior over the complete intersection R, and the matrix factorization category [MF ], which
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does the same for the generic hypersurface S/(W ). We will formally define these categories

in Chapter 2. Burke and Walker also give an explicit description of the inverse of Ψ when

R is a complete intersection.

The thesis is structured as follows: In Chapter 2 we recall most of the background def-

initions and results that are needed. After this, the thesis contains results in two different

directions. The first direction involves a functor defined by Orlov (independent of the equiva-

lence of categories described above), and modified slightly by Burke and Stevenson, typically

referred to as the Orlov embedding, that can be used to understand the homological proper-

ties of graded modules when R is a graded ring; in Section 3.1, we give a result that facilitates

explicit computations of the embedding (Proposition 3.1.1) and Section 3.2 consists of an

example in which we use this proposition to compute the image of the Orlov embedding

for a particular ring. In Chapter 4 we define a modified version of Ψ (Construction 4.3.1)

which admits a compatible version of the Orlov embedding on matrix factorizations. This

compatible version of the Orlov embedding is given as Definition 4.4.3. A more detailed

summary of Chapter 4 can be found in Section 4.1. In Chapter 5, we give some additional

scheme-theoretic background in Section 5.2 before proving a result allowing for Tor groups

to be passed along Ψ and its inverse in the non-graded setting in Section 5.3. The main

result is Theorem 5.3.1, which provides an isomorphism between notions of Tor. Section 5.4

consists of adaptions to Tor groups of results of Burke and Walker for Ext groups and uses

these results to obtain Corollary 5.4.5, which relates vanishing of Tor groups over complete

intersections to vanishing of Tor over the generic hypersurface. A more detailed summary of

Chapter 5 is given in Section 5.1.
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Chapter 2

Background

While all of the original results of this thesis are for commutative rings, some of the machinery

used is valid even for noncommutative rings, so we will present it in that generality. As such,

in Sections 2.1-2.4, unless otherwise specified we do not assume that rings are commutative.

2.1 Categorical constructions

Throughout the thesis we will work with various localizations of categories, so we first recall

the construction of the localization of a category.

2.1.1 Definition. A class W of morphisms in a category C is called a multiplicative system

if it satisfies the following properties:

(1) W contains all identity morphisms.

(2) W is closed under composition, i.e., if A
f−→ B and B

g−→ C are in W , then so is

A
g◦f−−→ C.

(3) Any diagram A′
f←− A

u−→ B in C with f ∈ W can be extended to a commutative

3



diagram

A B

A′ B′

u

f g

u′

in C, with g ∈ W . Additionally, the statement obtained by reversing all arrows holds.

(4) For any two morphisms u, v : A → B in C and a fixed object Z ∈ C, the existence of

f : Z → A in W with uf = vf implies that there exists g : B → C (for some C ∈ C) in

W with gu = gv. Also, given a fixed object C ∈ C, existence of g : B → C in W with

gu = gv implies that there exists f : Z → A (for some Z ∈ C) in W with uf = vf .

Given a category C and a multiplicative system W of morphisms in C, one may construct

the localization C[W−1]. The motivation behind the construction is similar to that of lo-

calizations of commutative rings; by localizing at W one makes all of the morphisms in W

invertible (and thus makes the morphisms in W into isomorphisms).

2.1.2 Definition. The objects of C[W−1] are the same as those of C.

Given any two objects X and Y of C, the morphisms from X to Y in C[W−1] are defined

to be equivalence classes of diagrams

X
f←− X ′ → Y,

with X ′ any object of C, f a morphism in W , and the unlabeled arrow any morphism in C.

Such diagrams are typically referred to as roofs.

Two roofs X
f←− X ′

u−→ Y and X
g←− X ′′

v−→ Y are equivalent if there exists a commutative

diagram

X ′

X X ′′′ Y

X ′′

f u

h w

g v

4



in C, with h ∈ W .

The composition of two roofs X
f←− X ′

u−→ Y and Y
g←− Y ′

v−→ Z is defined as follows:

by property (3) of Definition 2.1.1 of a multiplicative system, there exists a commutative

diagram

X ′′

X ′ Y ′

X Y Z

f ′ v′

f u g v

in C, with f ′ ∈ W . The composition is defined to be the roof

X
f◦f ′←−− X ′′

v◦v′−−−→ Z.

A morphism g : X → Y in C may be represented in C[W−1] by the roof

X
id←− X

g−→ Y,

and if g ∈ W then its inverse in C[W−1] is represented by the roof

Y
g←− X

id−→ X.

2.1.3 Definition. A translation functor (or shift functor) on a category C is an automor-

phism T : C → C; for an object X ∈ C, T nX is typically written as X[n].

A triangle (X, Y, Z, u, v, w) is a collection of three objects X, Y, Z ∈ C and morphisms

X
u−→ Y, Y

v−→ Z, and Z
w−→ X[1]. Such a triangle is usually written as

X
u−→ Y

v−→ Z
w−→ X[1].

A triangulated category is an additive category C equipped with a shift functor and a

class of triangles, called distinguished triangles, satisfying the following properties:

5



(1) For any object X, the triangle

X
id−→ X → 0→ X[1]

is distinguished.

For any morphism u : X → Y , there is an object Z, called a mapping cone of u, fitting

into a distinguished triangle

X
u−→ Y → Z → X[1].

Any triangle isomorphic to a distinguished triangle is distinguished, i.e., for any dis-

tinguished triangle

X
u−→ Y

v−→ Z
w−→ X[1]

and isomorphisms X
f−→ X ′, Y

g−→ Y ′, and Z
h−→ Z ′,

X ′
guf−1

−−−−→ Y ′
hvg−1

−−−−→ Z ′
f [1]wh−1

−−−−−−→ X ′[1]

is a distinguished triangle.

(2) If

X
u−→ Y

v−→ Z
w−→ X[1]

is a distinguished triangle, then so are

Y
v−→ Z

w−→ X[1]
−u[1]−−−→ Y [1]

and

Z[−1]
−w[−1]−−−−−→ X

u−→ Y
v−→ Z.

6



(3) Given two distinguished triangles

X
u−→ Y

v−→ Z
w−→ X[1]

and

X ′
u′−−→ Y ′

v′−→ Z ′
w′−−→ X ′[1]

and morphisms X
f−→ X ′ and Y

g−→ Y ′ such that gu = u′f , there exists a map

h : Z → Z ′ such that the following diagram commutes:

X Y Z X[1]

X ′ Y ′ Z ′ X ′[1].

u

f

v

g

w

h f [1]

u′ v′ w′

(4) Given distinguished triangles

X
u−→ Y

j−→ Z ′
k−→ X[1],

Y
v−→ Z

l−→ X ′
i−→ Y [1],

X
vu−−→ Z

m−−→ Y ′
n−→ X[1],

there exists a distinguished triangle

Z ′
f−→ Y ′

g−→ X ′
h−→ Z ′[1]

such that l = gm, k = nf , h = j[1]i, ig = u[1]n, and fj = mv.

If C is a triangulated category, one has the following important special case of localization.

2.1.4 Definition. Given a triangulated category C and a triangulated subcategory D of C,

the Verdier quotient (or Verdier localization) C/D is defined to be the localization of C at

the class of morphisms whose mapping cones are objects of D.

7



The basic idea of the Verdier quotient is similar to that of a quotient ring; the following

shows that every object of D is isomorphic to 0 in C/D, so in some sense the quotient

operation kills D. For an object D ∈ D, the cones of the zero maps 0→ D → 0 are also in

D (this is an immediate consequence of Definition 2.1.3, (1)); therefore

D ← 0→ 0

and

0← 0→ D

represent inverse isomorphisms between D and 0 in C/D.

We now define two categories that will form the primary framework of the rest of the

thesis: the (bounded) derived category and the (bounded) singularity category of a ring R.

2.1.5 Definition. Given a ring R, the bounded derived category of R, denoted Db(R), is con-

structed as follows. First, one defines the bounded homotopy category Kb(R), whose objects

are complexes of R-modules with bounded, finitely generated cohomology and whose mor-

phisms are chain maps modulo homotopy (in other words, homotopic maps are identified).

Then Db(R) is defined to be the localization of Kb(R) at the class of quasi-isomorphisms.

It typically suffices to think of Db(R) simply as a version of the category of chain com-

plexes of R-modules in which quasi-isomorphic complexes have been made isomorphic; in

particular, complexes are isomorphic to their resolutions in Db(R).

Let X be a complex of R-modules with bounded and finitely generated cohomology,

viewed as an object in Db(R). The differential of X will always be denoted ∂X . We denote

by X[i] the complex with X[i]n = Xi+n for all n and differential ∂X[i] = (−1)i∂X .

Given a map of complexes of R-modules f : X → Y , recall that the (mapping) cone of

f , denoted C(f), is the complex with C(f)n = Xn−1

⊕
Yn for all n, and ∂C(f) given by the

8



matrix

∂C(f) =

−∂X 0

−f ∂Y

 ,
i.e.,

∂C(f)(x, y) = (−∂X(x), ∂Y (y)− f(x)).

These usual shift and cone operations turn out to define a triangulated structure on

Db(R), so we may make the following definition.

2.1.6 Definition. Let Perf R denote the full triangulated subcategory of Db(R) whose ob-

jects are perfect complexes (i.e., complexes that are quasi-isomorphic to bounded complexes

of finitely generated projective modules). The (bounded) singularity category of R, denoted

Db
sg(R), is defined to be the Verdier quotient

Db
sg(R) :=

Db(R)

Perf R
.

The most important feature of Db
sg(R) is that its perfect complexes are isomorphic to

0. This is the motivation behind the terminology; the singularity category ignores objects

of finite projective dimension (i.e., nonsingular behavior). In particular, every R-module is

isomorphic in Db
sg(R) to all of its syzygies (with corresponding homological shifts).

2.2 Complete resolutions

For this section, when we refer to a ring as Gorenstein we mean that it has finite injective

dimension as both a left module and a right module over itself.

Objects of the singularity category Db
sg(R) are represented by complete resolutions, de-

fined as follows:

2.2.1 Definition. An acyclic complex X of R-modules is called totally acyclic if the dual

9



complex HomR(X,R) is also acyclic.

2.2.2 Definition. A complete resolution of a complex X of R-modules is a diagram

T
τ−→ P

π−→ X,

where T is a totally acyclic complex of projective modules, P
π−→ X is a projective resolution,

τ is a chain map, and τi : Ti → Pi is an isomorphism for i � 0. We will often simply refer

to T as a complete resolution of M .

In [4], Buchweitz gives a way of constructing a complete resolution of a given object of

Db(R) when R is Gorenstein, which we reproduce here.

2.2.3 Construction (Buchweitz, [4], §5.6). Given an object X of Db(R), one may

construct a complete resolution CR(X) of X as follows: Choose projective resolutions

P(X)
'−→ X and P(P(X)∗)

ϕX−−→ P(X)∗, where (−)∗ denotes HomR(−, R). Denote by

N(X) the composition

N(X) : P(X)
∼=−→ P(X)∗∗

ϕ∗X−−→ P(P(X)∗)∗,

where the first arrow is the canonical isomorphism. Then

CR(X) := C(N(X))[1]

is a complete resolution of X.

Complete resolutions are unique up to homotopy equivalence.

For the remainder of this section, let R be commutative.

In the case when R is a hypersurface, i.e. R = Q/(f), where Q is a regular local ring

and f is a non-zero divisor, the structure of complete resolutions is fully understood; by [8]

10



they are given by matrix factorizations.

2.2.4 Definition. If Q is any ring, a matrix factorization of an element f ∈ Q is a diagram

F
d1−−→ G

d0−−→ F,

where F and G are finitely generated free Q-modules, and the compositions d0◦d1 and d1◦d0

are both multiplication by f . We will sometimes abbreviate this diagram as (d1, d0) when

the modules F and G are clear from context.

We will denote by MF (Q, f) the category whose objects are matrix factorizations of

f over Q, and for which given two matrix factorizations E = (F
d1−−→ G

d0−−→ F ) and

E ′ = (F ′
d′1−−→ G′

d′0−−→ F ′), the morphisms E → E ′ are pairs (u, v) of homomorphisms

u : F → F ′ and v : G→ G′ making the following diagram commute:

F G F

F ′ G′ F ′.

d1

u

d0

v u

d′1 d′0

It follows from results in [8] that if R = Q/(f) is a hypersurface ring, a minimal complete

resolution of any R-module M has the form

F(d1, d0) : · · · → F
d1−−→ G

d0−−→ F
d1−−→ G

d0−−→ F → · · ·

for some matrix factorization (d1, d0) of f in Q, where (−) represents reduction modulo f .

2.2.5 Definition. The Hom groups in the singularity category are called stable Ext groups

(denoted Êxt); more precisely, for any two objects X and Y of Db
sg(R),

Êxt
q

R(X, Y ) := HomDb
sg(R)(X, Y [q]).

Alternatively, by [7], Lemma B.6, if X admits a complete resolution one may define stable

11



Ext groups (and hence describe the Hom groups of the singularity category) using complete

resolutions: if T is a complete resolution of X, one has

Êxt
q

R(X, Y ) := Hq(HomR(T, Y )).

In particular, one sees from this definition that for q � 0, conventional Ext and stable Ext

coincide, since for q � 0, T coincides with a projective resolution of X. Similarly we may

define stable Tor groups, but there is no tensor analog of the first categorical Hom definition

given above; so we simply have, when X admits a complete resolution,

2.2.6 Definition. For objects X and Y of Db
sg(R), the stable Tor groups are

T̂or
R

q (X, Y ) := Hq(T ⊗R Y ),

with T a complete resolution of X.

2.3 Graded rings and modules

Chapters 3 and 4 concern graded rings, so in this section we establish general conventions

and notations for working in the graded setting.

Whenever we refer to R as a “graded ring” we mean that R =
⊕

i≥0Ri is a positively

graded (left and right) noetherian ring. For the entirety of this section R is assumed to be

graded.

When R is not commutative, “R-module” will mean right R-module. The category of

finitely generated graded R-modules and degree-zero homomorphisms will be denoted gr R.

For each i ∈ Z, we denote by gr≥i R the full subcategory of gr R whose objects are graded

R-modules M for which M = M≥i (equivalently, for which M<i = 0).

If M =
⊕

Mi is a graded R-module, we denote by M(k) the graded R-module with

M(k)i = Mi+k for all i. It is easy to prove ([5], Lemma 3.8, for example) that if P is any

12



finitely generated graded projective R-module, then there exist integers n,m1, . . . ,mn such

that

P ∼=
n⊕
k=1

Pk ⊗R0 R(mk), (2.1)

where each Pk is a projective right R0-module. In other words, every such module is a direct

sum of projective modules that are each generated in a single graded degree. If one insists

that all mk are distinct (which is possible because direct sums of projectives are projective),

then n,m1, . . . ,mn are unique (up to reordering). Given such a graded projective module

P , decomposed in this way, and any integer i, we define

P≺i =
⊕
mk>−i

Pk ⊗R0 R(mk);

in other words, P≺i consists precisely of the summands generated in graded degree less than

i. Similarly, P<i is defined to be the module consisting of the summands generated in graded

degree greater than or equal to i. If P is a free module, one may think of the operation

(−)<i as truncating away all R-summands generated in graded degree less than i.

Given a complex X of finitely generated graded projective R-modules, define X≺i to be

the complex with (X≺i)n = (Xn)≺i and the obvious induced differential, and define X<i

similarly. Given a map f : X → Y of complexes of finitely generated graded projective R-

modules, we will denote by f≺i the composition X
f−→ Y � Y≺i (where the second arrow is

the projection), and we will denote by ≺if the restricted map X≺i → Y (i.e., the composition

X≺i ↪→ X
f−→ Y ). We have analogous definitions for �if , f�i, etc., and we can combine

these notations; for instance, ≺if≺i denotes the composition X≺i ↪→ X
f−→ Y � Y≺i.

We will occasionally need to impose a bit of extra structure on our graded projective

resolutions in this chapter and the next, as follows:

2.3.1 Definition. Given a complex X of graded R-modules, let P(X) denote a graded

projective resolution of X, with the property that for any integer i, there exists a ki such

13



that (P(X)k)≺i = 0 for all k ≥ ki.

By [5], Lemma 3.10, if R0 has finite global dimension then such a resolution always exists.

Informally, this condition requires that given any fixed graded degree i, the modules of

P(X) must all be generated in degrees greater than i when one looks far enough to the left.

The definition of a matrix factorization (Definition 2.2.4) must be modified slightly in

the graded setting, as follows:

2.3.2 Definition. If Q is any graded ring, a (graded) matrix factorization of a homogeneous

element f ∈ Qn is a diagram

F
d1−−→ G

d0−−→ F (n),

where F and G are finitely generated graded free Q-modules, and the compositions d0 ◦ d1

and d1(n) ◦ d0 are both multiplication by f . We will sometimes abbreviate this diagram as

(d1, d0) when the modules F and G are clear from context.

Graded matrix factorizations of f overQ form a categoryMFgr(Q, f), defined analogously

to the category MF (Q, f) (see Definition 2.2.4); a morphism E → E ′ consists of degree zero

homomorphisms F
u−→ F ′ and G

v−→ G′ such that the obvious diagram commutes.

In the graded setting the complete resolution corresponding to a graded matrix factor-

ization (d1, d0) has the following form:

F(d1, d0) : · · · → F
d1−−→ G

d0−−→ F (n)
d1(n)−−−→ G(n)

d0(n)−−−→ F (2n)→ · · · ,

where (−) represents reduction modulo f .

2.3.3 Definition. Given any two complexes X, Y of graded R-modules, we set

Hom∗gr R(X, Y ) :=
⊕
n∈Z

Homgr R(X, Y (n)).

14



In other words, Hom∗gr R(X, Y ) consists of all homogeneous chain maps (which are just ho-

mogeneous homomorphisms if X and Y are modules) of all graded degrees, as opposed to

only those of degree zero. If R is commutative, then Hom∗gr R(X, Y ) is a graded R-module.

2.4 The Orlov embedding

The contents of this section (and of Section 3.1) are valid only for graded rings R for which

R0 has finite global dimension and with the following property:

2.4.1 Definition. A (not necessarily commutative) graded ring R is Artin-Schelter Goren-

stein (or AS-Gorenstein) if it has finite graded injective dimension as both a left and a right

module over itself, and if

RHom∗gr R(R0, R) ∼= R0[n](a)

for some integers n and a, in both Db(gr R) and Db(gr Rop).

The integer a is called the a-invariant of R.

The main result of Chapter 3 concerns the so-called Orlov embedding. Before explaining

this terminology, we first recall its definition; the following formulation is due to Burke and

Stevenson in [5].

2.4.2 Definition. For each i ∈ Z, define the functor bi : Db
sg(gr R)→ Db(gr≥i R) by

bi(X) = (P((P(X)<i)
∗)∗)≺i

for any object X ∈ Db
sg(gr R) (in other words, for any object of Db(gr R), viewed as an

object of Db
sg(gr R)). Here P(X) denotes a projective resolution as in Definition 2.3.1.

The next result concerns semiorthogonal decompositions, which are defined as follows:
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2.4.3 Definition. A semiorthogonal decomposition of a triangulated category T is a pair of

full triangulated subcategories A and B such that the inclusion functor i : A → T has a left

adjoint and HomT (X,A) = 0 for all A in A if and only if X is in B. Such a decomposition

is written as

T = (A,B)

A sequence of full triangulated subcategories (D1, . . . ,Dn) of T is a semiorthogonal de-

composition if for each i = 1, . . . , n− 1, there is a semiorthogonal decomposition

T = (〈D1, . . . ,Di〉, 〈Di+1, . . . ,Dn〉),

where 〈D1, . . . ,Di〉 denotes the thick subcategory generated by D1, . . . ,Di (a thick subcate-

gory is one that is closed under taking direct summands).

These functors are significant for their role in the following famous result, originally due

to Orlov in [13]. We give the version in [5], which is slightly more general than Orlov’s

original formulation. We explain the relevant terminology after giving the statement.

2.4.4 Theorem (Orlov, Burke-Stevenson; [5], 6.4). Let A =
⊕

i≥0Ai be a positively

graded noetherian AS-Gorenstein ring with A0 of finite global dimension, but not necesssarily

commutative. We assume in addition that A satisfies condition χ. Let a be the a-invariant

of A.

(1) If a > 0, then for any i ∈ Z there is a semiorthogonal decomposition

Db(coh X) =
(
O(−i− a+ 1), . . . ,O(−i), B̃i

)
,

where O(j) is the image of A(j) in coh X and Bi is the image of Db
sg(gr A) under the

fully faithful functor bi : Db
sg(gr A)→ Db(gr≥i A).
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(2) If a < 0, then for any i ∈ Z there is a semiorthogonal decomposition

Db
sg(gr A) =

(
pA0(−i), . . . , pA0(−i+ a+ 1), pRΓ≥i−aD

b(coh X)
)
,

where p : Db(gr≥i A)→ Db
sg(gr A) is the canonical quotient.

(3) If a = 0, then for any i ∈ Z the functors (̃−)bi : Db
sg(gr A) → Db(coh X) and

pRΓ≥i : Db(coh X)→ Db
sg(gr A) are inverse equivalences.

We now give definitions of the various categories and functors involved in the statement.

Condition χ is a technical condition which we will not discuss in detail here; [5], Lemma 6.2

shows that it is satisfied by any flat Gorenstein algebra over a commutative ring. In Orlov’s

version of the result, coh X is the category of coherent sheaves on a particular projective

scheme; in this context, one may instead define it to be the Verdier quotient category

coh X :=
gr A

tors A
,

where tors A is the full subcategory of gr A consisting of what Burke and Stevenson refer to

as torsion A-modules, i.e., A-modules which are annihilated by A≥n for some n ≥ 1. Since

gr A consists of finitely generated graded A-modules, each object of gr A resides in gr≥i A

for some i ∈ Z. In light of this, each subcategory gr≥i A contains all of the objects of gr A

up to shift. In particular, for each i ∈ Z one has an equivalence

coh X
∼=−→

gr≥i A

tors≥i A
, (2.2)

where tors≥i A := gr≥i A ∩ tors A. The functor Γ≥i may then be defined as the right

adjoint of the quotient functor gr≥i → coh X (as shown in (2.2); this right adjoint ex-

ists essentially by [5], Proposition 4.5). The functor (̃−) appearing in (3) is the functor

Db(gr A)→ Db(coh X) induced by the localization functor gr A→ coh X.
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2.5 The generic hypersurface and the Orlov correspon-

dence

For the remainder of this chapter, all rings are commutative. Furthermore, Q will be a

local (or graded) ring with maximal ideal (or homogeneous maximal ideal) m, f1, . . . , fc a

(homogeneous) regular sequence on Q contained in m2, and

R :=
Q

(f1, . . . , fc)
.

We set S = Q[T1, . . . , Tc] and W = f1T1 + · · ·+ fcTc ∈ S.

2.5.1 Definition. The generic hypersurface ring of R is the ring

S

(W )
=

Q[T1, . . . , Tc]

(f1T1 + · · ·+ fcTc)
.

2.5.2 Remark. The name “generic hypersurface” is motivated by the fact that substituting

elements of Q for each of the variables T1, . . . , Tc yields a quotient of Q by an element of the

ideal (f1, . . . , fc). Such quotients can be thought of as hypersurfaces that lie between Q and

R.

The primary connection between R and its generic hypersurface is given by work of Orlov

(outside of the graded setting) in [12]. The specific details are not needed for the majority

of the thesis, so we give only a brief overview here and provide more detail in Chapter 5.

Orlov establishes an equivalence of categories

Db
sg(Proj S/(W )) −→ Db

sg(R).

In [6], Burke and Walker extend this equivalence to a homotopy category of graded matrix
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factorizations of W over Pc−1
Q , denoted [MF (Pc−1

Q ,O(1),W ):

Ψ : [MF (Pc−1
Q ,O(1),W )]

∼=−→ Db
sg(R).

The definition of the matrix factorization category [MF (Pc−1
Q ),O(1),W ] is rather technical

and is not needed in the statements or proofs of the results in this thesis; we give the formal

definition, in full generality, in Section 2.7, but really one may simply think of it as the

correct scheme-theoretic analog of the usual homotopy category of matrix factorizations of

W over S.

2.6 The Eisenbud-Shamash construction

In this section, we remain in the setting of Section 2.5.

For a quotient R = Q/(f1, . . . , fc) with Q any local ring and f1, . . . , fc a regular sequence,

Shamash, in [15], gives a construction of a free resolution of an R-module M from a free

resolution G of M over Q, and a system of homotopies for f1, . . . , fc on G, i.e., a collection

of degree 1 endomorphisms si : G→ G for 1 ≤ i ≤ c such that each si is a nulhomotopy for

multiplication by fi. This Shamash construction requires the additional property that s2
i = 0

for all i. In [8, §7], Eisenbud generalizes this construction by removing this extra condition

using so-called higher homotopies, as defined below (Definition 2.6.1). We reproduce the

latter construction here. Additionally, we will not insist that the complex G be a resolution

of a module; we may apply the Eisenbud-Shamash construction to any bounded complex of

finitely generated free Q-modules. This construction will be our main tool for studying the

bounded derived category of a complete intersection ring.

Throughout the rest of this section, we use the following multi-indexing conventions.

For each element J = (a1, . . . , ac) ∈ Nc, set |J | =
∑c

1 ai. To simplify the statement of the

following definition, we abbreviate the tuple (0, . . . , 1, . . . , 0), with 1 in the ith position, as

simply i, and the tuple (0, . . . , 0) as 0.
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2.6.1 Definition. Let G be a complex of Q-modules. A system of higher homotopies for

f1, . . . , fc on G is a family

σ = {σJ |J ∈ Nc}

of endomorphisms of G, where σJ has degree 2|J | − 1, satisfying the following conditions:

(1) σ0 = ∂G

(2) σ0σi + σiσ0 = fi1G

(3)
∑

J ′+J ′′=J

σJ
′
σJ
′′

= 0 for all J ∈ Nc, |J | ≥ 2.

By [8], Theorem 7.1, if G is a Q-free resolution of some module M which is annihilated

by f1, . . . , fc, then such a system of higher homotopies on G always exists.

Let D be the graded Q[T1, . . . , Tc]-module Hom∗gr Q(Q[T1, . . . , Tc], Q), where T1, . . . , Tc

are variables of degree −2. If we denote by τi the dual of Ti in D, note that each τi has

degree 2 and that the Q[T1, . . . , Tc]-module structure on D is given by

Ti(τ
m1
1 · · · τmcc ) =

 τm1
1 · · · τ

mi−1
i · · · τmcc if mi 6= 0

0 if mi = 0
. (2.3)

Armed with this machinery and notation, we now describe the Eisenbud-Shamash con-

struction. Let G be a bounded complex of finitely generated free Q-modules, equipped with

a system of higher homotopies σ for f1, . . . , fc. Consider the graded R-module

(G⊗R D)\

where (−) is −⊗QR and (G⊗D)\ denotes the underlying graded module of G⊗D, ignoring

the differential. There is an endomorphism ∂ : G⊗D → G⊗D given by

∂ =
∑
J∈Nc

σJ ⊗ T J , (2.4)
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where T J = T a11 · · ·T acc for J = (a1, . . . , ac). Note that ∂ is homogeneous of degree −1; for

each J ∈ Nc, σJ has degree 2|J | − 1 and T J has degree −2|J |. Furthermore, one can show

that ∂2 = 0.

2.6.2 Definition. We denote by G{σ} the complex with underlying modules given by the

graded components of (G⊗D)\ and differential ∂. The complex G{σ} is sometimes called

the Eisenbud-Shamash complex of (G,σ).

The following is well known; in the case that G is a resolution of an R-module, it is due

to Eisenbud ([8], Theorem 7.2). In the general case, Eisenbud’s proof still carries through

verbatim as long as one replaces all instances of M with the complex H(G) (which is called

H(F) in his notation), with 0 differential.

2.6.3 Proposition. For any (G,σ) as in the above construction,

H(G) ∼= H(G{σ}).

2.6.4 (Eisenbud-Shamash in the graded case). If Q is a graded ring, f1, . . . , fc ho-

mogeneous, and G a bounded complex of finitely generated graded free Q-modules (i.e., if

∂G is homogeneous of graded degree zero), we may preserve this grading in the Eisenbud-

Shamash complex by assigning the following grading to G{σ}: Assign to elements of R their

pre-existing graded degree in R, and assign to each τi the graded degree deg fi.

One can see that ∂ is homogeneous of graded degree zero as follows: Since σ0 = ∂G has

graded degree zero, by condition (2) of Definition 2.6.1 each σi is a map of graded degree

deg fi. Since each τi has degree deg fi, by (2.3) each Ti is a map of graded degree −deg fi,

so we see that σi ⊗ Ti is a map of graded degree 0. By induction using condition (3) of

Definition 2.6.1, in fact all of the summands in (2.4) have graded degree 0, so ∂ indeed has

graded degree zero.
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2.7 The homotopy category of matrix factorizations

In this section we give the definition, first given in [14], of the homotopy category of matrix

factorizations, following [7]. For the entirety of this section, let X be a Noetherian separated

scheme, L a line bundle on X, and W a global section of L. For any coherent sheaf G on X,

we denote by G(n) the twist G ⊗OX L⊗n, where L⊗−n := HomOX (L⊗n,OX) for all n > 0.

We first require a scheme-theoretic definition of matrix factorization; the following defi-

nition first appeared in [14].

2.7.1 Definition. A matrix factorization E = (E1
e1−−→ E0

e0−−→ E1(1)) of the triple (X,L,W )

consists of a pair of locally free coherent sheaves E1, E0 on X and morphisms e1, e0 such

that e0 ◦ e1 = e1(1) ◦ e0 = W · Id. Such matrix factorizations form a category, denoted

MF (X,L,W ), with morphisms defined in the same way as for matrix factorizations over a

ring; in other words, given matrix factorizations E = (E1
e1−−→ E0

e0−−→ E1(1)) and F = (F1
f1−−→

F0
f0−−→ F1(1)) of (X,L,W ), a morphism E→ F in MF (X,L,W ) consists of a pair of maps

E0 → F0 and E1 → F1 such that the two obvious squares commute.

The morphisms in the homotopy category of matrix factorizations are defined using the

following construction:

2.7.2 Definition. Let E = (E1
e1−−→ E0

e0−−→ E1(1)) and F = (F1
f1−−→ F0

f0−−→ F1(1)) be

objects of MF (X,L,W ). The mapping complex of E and F, denoted HomMF(E,F), is the

following complex of locally free sheaves:

. . .

Hom(E0,F1)

⊕

Hom(E1,F0(−1))

Hom(E0,F0)

⊕

Hom(E1,F1)


Hom(E0,F1)

⊕

Hom(E1,F0(−1))

 (1) · · ·∂0(−1) ∂−1 ∂0 ∂−1(1)

The term Hom(E0,F0) ⊕ Hom(E1,F1) resides in degree 0, and the differentials are
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defined as

∂−1 :=

(f1)∗ −e∗0

−e∗1 (f0)∗

 and ∂0 :=

(f0)∗ e∗0

e∗1 (f1)∗

 .
One can easily see that given objects E and F of MF (X,L,W ),

HomMF (X,L,W )(E,F) = Z0(Γ(X,HomMF(E,F))),

where Γ(X,HomMF(E,F)) denotes the complex obtained by applying the global sections

functor degreewise to HomMF(E,F) and Z0 denotes the cycles in degree zero.

One defines the naive homotopy category of matrix factorizations of (X,L,W ) to have

the same objects as MF (X,L,W ), and, given any two objects E and F, morphisms given by

Hom[MF (X,L,W )]naive(E,F) := H0(Γ(X,HomMF(E,F))).

2.7.3 Definition. An object E = (E1
e1−−→ E0

e0−−→ E1(1)) of [MF (X,L,W )]naive is locally

contractible if, for each x ∈ X, the matrix factorization (of Wx over OX,x)

Ex = ((E1)x
(e1)x−−−→ (E0)x

(e0)x−−−→ (E1(1))x)

is isomorphic to zero in [MF (Spec OX,x,Lx,Wx)]naive.

It is shown in [6] that [MF (X,L,W )]naive is a triangulated category and that the full

subcategory consisting of locally contractible objects is thick, so one may define the homotopy

category of matrix factorizations as follows:

2.7.4 Definition. The homotopy category of matrix factorizations of (X,L,W ), denoted

[MF (X,L,W )], is the Verdier quotient

[MF (X,L,W )] :=
[MF (X,L,W )]naive

locally contractible objects
.
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Chapter 3

Computing the Orlov Embedding

3.1 Computing the Orlov embedding

In this chapter, R is a commutative graded (AS-)Gorenstein ring.

The nature of the definition of the functors bi is somewhat abstract at face value. How-

ever, it turns out that applying bi to a complex of R-modules is the same as constructing

a complete resolution of X and performing an appropriate graded truncation. This is made

explicit by the following result, which we suspect is known to Burke and Stevenson, but to

our knowledge is not acknowledged or proved explicitly in the literature.

3.1.1 Proposition. For any complex X in Db(gr R), viewed as an object of Db
sg(gr R),

bi(X) = CR(X)<i in Db(gr R).

Proof. We proceed by fixing i and carefully working through Definition 2.4.2 of bi(X). First

note that (P(X)<i)
∗ = (P(X)∗)4i.

Denote by Q the cone of the map

(ϕX)�i[1] : (P(P(X)∗)[1]→ ((P(X)∗)�i)[1].
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(Recall that ϕX is a quasi-isomorphism P(P(X)∗)→ P(X)∗.) More explicitly, we have

Qn = (P(P(X)∗))n ⊕ ((P(X)∗)n+1)�i,

∂Q =

−∂P(P(X)∗)[1] 0

−(ϕX)�i �i(∂(P(X)∗)[1])�i

 =

∂P(P(X)∗) 0

−(ϕX)�i −�i(∂P(X)∗)�i

 .
Now we consider the map

φ : Q→ (P(X)∗)4i,

defined by

φ = (ϕX)4i ⊕ −�i(∂P(X)∗)4i.

The cone of φ is as follows:

C(φ)n = (P(P(X)∗))n−1 ⊕ ((P(X)∗)n)�i ⊕ ((P(X)∗)n)4i,

∂C(φ) =


−∂P(P(X)∗) 0 0

−(ϕX)�i �i(∂P(X)∗)�i 0

−(ϕX)4i �i(∂P(X)∗)4i 4i(∂P(X)∗)4i

 .

Notice that all of the direct sum components of ∂P(X)∗ are accounted for in this matrix,

except for those in the truncation 4i(∂P(X)∗)�i. However, note that since graded projective

modules may be decomposed uniquely as in (2.1), we may view ∂P(X)∗ as a collection of

homogeneous maps between the projective R0-modules Pk. Since the differential must have

graded degree zero, there can be no nonzero maps from a given summand to a summand

generated in larger graded degree (because, for example, a homogeneous component of the

boundary map of degree d must send a degree k generator to a degree k element, which then

must reside in a summand generated in degree k − d). Therefore ≺i(∂P(X))<i = 0 because

∂P(X) is represented by a sequence of matrices all of whose entries all have nonnegative

graded degree. Dualizing, we have 4i(∂P(X)∗)�i = 0. So in fact, the entire boundary map of
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∂P(X)∗ is accounted for in ∂C(φ). Therefore, by combining the second and third summands

of each C(φ)n, we see that C(φ) is precisely the cone of the quasi-isomorphism ϕX ; hence φ

is a quasi-isomorphism as well, so we may choose P((P(X)<i)
∗) to be Q.

Next, since Q−n = (P(P(X)∗))−n ⊕ ((P(X)∗)−n+1)�i, we observe that

(Q∗)n = (P(P(X)∗)∗)n ⊕ ((P(X)∗∗)n−1)≺i,

∂Q∗ =

∂P(P(X)∗)∗ −(ϕ∗X)≺i

0 −≺i(∂P(X)∗∗)≺i

 .
By definition, bi(X) = (Q∗)≺i; more precisely,

bi(X)n = ((Q∗)≺i)n = ((P(P(X)∗)∗)n)≺i ⊕ ((P(X)∗∗)n−1)≺i,

∂bi(X) = ∂(Q∗)≺i =

≺i(∂P(P(X)∗)∗)≺i −≺i(ϕ∗X)≺i

0 −≺i(∂P(X)∗∗)≺i

 .
Recall from Construction 2.2.3 that a complete resolution of X is given by the shifted

cone of the map N(X) : P(X) → P(P(X)∗)∗ defined as the composition of the canonical

isomorphism P(X) → P(X)∗∗ with ϕ∗X . So to complete the proof, consider the truncated

complete resolution CR(X)<i = C(N(X))<i[1] ∼= C(ϕ∗X)<i[1]. Explicitly,

(CR(X)<i)n ∼= ((P(X)∗∗)n)<i ⊕ ((P(P(X)∗)∗)n+1)<i,

∂CR(X)<i = −

−<i(∂P(X)∗∗)<i 0

−<i(ϕ∗X)<i <i(∂P(P(X)∗)∗)<i

 =

<i(∂P(X)∗∗)<i 0

<i(ϕ
∗
X)<i −<i(∂P(P(X)∗)∗)<i

 .
Now we define the map

ψ : CR(X)<i → bi(X),
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given by

ψ =

 <i(ϕ
∗
X)≺i <i(∂P(P(X)∗)∗)≺i

<i(∂P(X)∗∗)≺i 0

 .
Then the mapping cone of ψ is given by

C(ψ)n ∼= ((P(X)∗∗)n−1)<i ⊕ ((P(P(X)∗)∗)n)<i ⊕ ((P(P(X)∗)∗)n)≺i ⊕ ((P(X)∗∗)n−1)≺i,

∂C(ψ) =



−<i(∂P(X)∗∗)<i 0 0 0

−<i(ϕ∗X)<i <i(∂P(P(X)∗)∗)<i 0 0

−<i(ϕ∗X)≺i −<i(∂P(P(X)∗)∗)≺i ≺i(∂P(P(X)∗)∗)≺i −≺i(ϕ∗X)≺i

−<i(∂P(X)∗∗)≺i 0 0 −≺i(∂P(X)∗∗)≺i


.

The ≺i(−)<i truncations of ∂P(X)∗∗ , ∂P(P(X)∗)∗ , and ϕ∗X that are missing from this matrix

are all zero, by precisely the same argument as before. So by interchanging the positions of

the second and fourth summands, we now see that C(ψ) = C(ϕ∗X) ∼= CR(X)[−1]. Since

CR(X) is exact, this implies that ψ is a quasi-isomorphism, so we have bi(X) = CR(X)<i

in Db(gr R). Since (−)<i necessarily truncates out all of (−)<i by definition, in fact CR(X)

is in the subcategory Db(gr≥i R), from which the result follows.

3.2 Hypersurface example

In this section we use the result of Proposition 3.1.1 to explicitly compute the images of

the functors bi for a particular graded hypersurface ring. In light of the role these functors

play in describing the structure of the bounded derived category as in Theorem 2.4.4, the

ability to compute them explicitly is potentially a useful tool. By Proposition 3.1.1, this

computation amounts to simply performing appropriate graded truncations on complete

resolutions, which in the hypersurface case correspond precisely to matrix factorizations.
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We consider the hypersurface ring

R = k[x, y]/(x3 + xy3).

This ring is known as the E7 hypersurface singularity, and belongs to an often-studied class

of hypersurface rings (called ADE singularities) that are known to have finite representa-

tion type, i.e., they have, up to isomorphism, only finitely many indecomposable maximal

Cohen-Macaulay (MCM) modules. Such modules can be realized as cokernels of matrix fac-

torizations. In [16], Yoshino gives a list of all the minimal matrix factorizations of x3 + xy3

over Q = k[x, y], and thus of all the indecomposable MCM R-modules.

We assign a grading to Q = k[x, y] (which induces a grading on R) in which x has degree

3 and y has degree 2, in order to make x3 + xy3 into a homogeneous element. Since every

complete resolution of an R-module M has the form F(d1, d0) as in the final paragraph of

Section 2.3, using Yoshino’s list of matrix factorizations, given below, we may essentially

compute the full image of bi in Db(gr≥i R).

The homology computations are easily done by hand for matrices of reasonable small

rank; with Macaulay2, one may quickly compute homologies for larger matrices.

Note that given a matrix factorization (d1, d0), the pair (d0, d1) is also a matrix factor-

ization, and F(d0, d1) is simply a graded and homological shift of F(d1, d0); thus for the

purposes of this example the order of the maps does not matter. Furthermore, to obtain all

minimal graded matrix factorizations of x3 + xy3, one must consider all graded shifts of the

minimal matrix factorizations listed here. Our computation of bi for all i ∈ Z but for a fixed

grading on each matrix factorization is the same (up to graded shift) as computing bi for a

fixed i ∈ Z, but for all possible graded shifts, since (bi(E))(n) = bi−n(E(n)) for any matrix

factorization E and any i, n ∈ Z.

We now list and examine each of the seven minimal matrix factorizations of x3 + xy3,

which we will denote by {Ei}7
i=1. For each matrix factorization, we give one possible graded
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complete resolution it produces (all others are simply graded shifts of this chosen resolution)

and investigate its graded truncations in detail. To simplify and shorten the exposition, all

results given are understood to be valid only up to some possible graded and/or homological

shift.

For brevity, we now assign notation to all of the matrices that make up the matrix

factorizations E1, . . . , E7:

α = [x], β = [x2 + y2],

γ = x

 x y

y2 −x

 , δ =

 x y

y2 −x

 ,
ϕ1 =

 x y

xy2 −x2

 , ψ1 =

 x2 y

xy2 −x

 ,
ϕ2 =

 x y2

xy −x2

 , ψ2 =

x2 y2

xy −x

 ,

ξ1 =


xy2 −x2 −x2y

xy y2 −x2

x2 xy xy2

 , η1 =


y 0 x

−x xy 0

0 −x y

 ,

ξ2 =


x2 −y2 −xy

xy x −y2

xy2 xy x2

 , η2 =


x 0 y

−xy x2 0

0 −xy x

 ,

ξ3 =

γ ε

0 δ

 , and η3 =

δ −ε
0 γ

 ,
where

ε =

y 0

0 y

 .
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We now compute the image of each bi, one matrix factorization at a time.

(1) E1 = (α, β)

A corresponding graded complete resolution F(α, β) is

· · · → R(−9)
α−→ R(−6)

β−→ R
α−→ R(3)

β−→ R(9)→ · · ·

The key observation in directly computing bi is that for any i, n ∈ Z, since R(n) is

generated in degree −n we have

R(n)<i =


R(n) if i ≤ −n

0 otherwise

So for i = 0, we obtain the truncation

F(α, β)<0 : · · · → R(−9)
α−→ R(−6)

β−→ R→ 0.

It is clear that this complex is exact everywhere except the rightmost position because

F(α, β) is exact, so it is isomorphic in the derived category to coker β ∼= R/(x2 + y3).

The result is identical for i = −1 and i = −2, and for i = 9, for example, we get the same

result, but with a graded shift (by 9, which is the degree of x3 + xy3) and a homological

shift (by 2).

Up to shifts there is only one other possible outcome, which occurs, for example, when

i = 6. In this case we see that up to shifts F(α, β)<6 is a free resolution of cokerα =

R/(x).

(2) E2 = (γ, δ)
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A corresponding graded complete resolution F(γ, δ) is

· · · →

R(−10)⊕
R(−9)

γ−→

R(−4)⊕
R(−3)

δ−→

R(−1)⊕
R

γ−→

R(5)⊕
R(6)

→ · · ·

Up to shifts, there are four possible results of taking F(γ, δ)<i; two of the them (for

example, i = 3 and i = 0, respectively) result in taking brutal truncations of the complex

F(γ, δ) in a particular degree and so clearly yield free resolutions of coker γ and coker δ,

respectively.

When i = 1 we have

F(γ, δ)<1 : · · · →

R(−10)⊕
R(−9)


x2 xy

xy2 −x2


−−−−−−−−−→

R(−4)⊕
R(−3)

[
x y

]
−−−−−→ R(−1)→ 0

The cokernel in the rightmost position is clearly nonzero, so we examine the homology

in the next position. It is easily verified that the kernel of

[
x y

]
is generated by (y,−x)

and (x2, xy2), but (y,−x) is clearly not in the image of γ, so there is nonzero homology in

the R(−4)
⊕

R(−3) position (which is in fact isomorphic to (R/(x)) (−6)). Therefore,

F(γ, δ)<1 represents an object in the image of b1 which cannot be represented by a single

module.

When i = −5 we have

F(γ, δ)<−5 : · · · →

R(−4)⊕
R(−3)


x y

y2 −x


−−−−−−−−→

R(−1)⊕
R

[
x2 xy

]
−−−−−−−→ R(5)→ 0
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Again the rightmost cokernel is clearly nonzero. The kernel of

[
x2 xy

]
is generated by

(y,−x) and (x, y2), so this complex is in fact exact in the R(−1)
⊕

R position. Thus

the complex is equal in Db(gr R) to the cokernel of the last map, (which is isomorphic

to (R/(x2, xy))(5)). This is a module whose minimal complete resolution is given by

F(γ, δ).

(3) E3 = (ϕ1, ψ1)

From here on, the computations are very similar to those already described, so we provide

less detail.

A corresponding graded complete resolution F(ϕ1, ψ1) is

· · · →

R(−10)⊕
R(−9)

ϕ1−−→

R(−7)⊕
R(−3)

ψ1−−→

R(−1)⊕
R

ϕ1−−→

R(2)⊕
R(6)

→ · · ·

Up to shifts, there are again four possible results of taking F(ϕ1, ψ1)<i; two of them (for

example, i = 3 and i = 0, respectively) yield free resolutions of cokerϕ1 and cokerψ1,

respectively.

When i = 1 we have

F(ϕ1, ψ1)<1 : · · · →

R(−10)⊕
R(−9)


x y

xy2 −x2


−−−−−−−−−→

R(−7)⊕
R(−3)

[
x2 y

]
−−−−−−→ R(−1)→ 0

It is easily verified that the kernel of

[
x2 y

]
is generated by (y,−x2) and (x, xy2), so

this complex is exact in the R(−7)
⊕

R(−3) position, so in fact is equal in Db(gr R) to

(R/(x2, y))(−1).
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When i = −2 we have

F(ϕ1, ψ1)<−2 : · · · →

R(−7)⊕
R(−3)


x2 y

xy2 −x


−−−−−−−−−→

R(−1)⊕
R

[
x y

]
−−−−−→ R(2)→ 0

As already established, the kernel of

[
x y

]
is generated by (y,−x) and (x, xy3), so this

complex is exact in the R(−1)
⊕

R position, so is equal in Db(gr R) to (R/(x, y))(2) in

Db(gr R).

From E3 we have obtained, up to shifts, just four different modules.

(4) E4 = (ϕ2, ψ2)

A corresponding graded complete resolution F(ϕ2, ψ2) is

· · · →

R(−8)⊕
R(−9)

ϕ2−−→

R(−5)⊕
R(−3)

ψ2−−→

R(1)⊕
R

ϕ2−−→

R(4)⊕
R(6)

→ · · ·

Up to shifts, there are four possible results of taking F(ϕ2, ψ2)<i; two of them (for

example, i = 3 and i = −1, respectively) yield free resolutions of cokerϕ2 and cokerψ2,

respectively. When i = 0 we have

F(ϕ2, ψ2)<0 : · · · →

R(−8)⊕
R(−9)


x y2

xy −x2


−−−−−−−−−→

R(−5)⊕
R(−3)

[
xy −x

]
−−−−−−−−→ R→ 0

It is easy to see that the kernel of

[
xy −x

]
is generated by (1, y) and (y2,−x2), so
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the homology in the R(−5)
⊕

R(−3) position is nonzero (and in fact is isomorphic to

(R/(x)) (−5)).

When i = −4 we have

F(ϕ2, ψ2)<−4 · · · →

R(−5)⊕
R(−3)


x2 y2

xy −x


−−−−−−−−→

R(1)⊕
R

[
x y2

]
−−−−−−→ R(4)→ 0

The kernel of

[
x y2

]
is generated by (y2,−x) and (x2, xy), so this complex is exact in

the R(1)
⊕

R position, so in fact is equal in Db(gr R) to (R/(x, y2))(4).

From E4, as from E2, we have obtained, up to shifts, three modules and one complex

that cannot be represented in Db(gr R) by a module.

(5) E5 = (ξ1, η1)

For the matrix factorizations of rank 3 and rank 4, we simply summarize the results,

rather than give explicit representatives of homology classes.

A corresponding graded complete resolution F(ξ1, η1) is

· · · →

R(−10)⊕
R(−9)⊕
R(−11)

ξ1−−→

R(−3)⊕
R(−5)⊕
R(−4)

η1−−→

R(−1)⊕
R⊕

R(−2)

ξ1−−→

R(6)⊕
R(4)⊕
R(5)

→ · · ·

Up to shifts, there are now six possible results of taking F(ξ1, η1)<i. As usual, two of

them (for example, i = 0 and i = 3, respectively) yield free resolutions of coker η1 and

coker ξ1, respectively.
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Three of the remaining four options turn out to yield cokernels of the appropriate maps.

Up to shifts, we have:

F(ξ1, η1)<1
∼= coker

y 0 x

0 −x y


F(ξ1, η1)<4

∼= coker

xy y2 −x2

x2 xy xy2


F(ξ1, η1)<5

∼= coker

[
xy y2 −x2

]
.

The final option, for example i = 2, results in a complex with nonzero homology in both

of the positions affected by the corresponding truncation.

(6) E6 = (ξ2, η2)

A corresponding graded complete resolution F(ξ2, η2) is

· · · →

R(−11)⊕
R(−9)⊕
R(−10)

ξ2−−→

R(−5)⊕
R(−6)⊕
R(−4)

η2−−→

R(−2)⊕
R⊕

R(−1)

ξ2−−→

R(4)⊕
R(3)⊕
R(5)

→ · · ·

Up to shifts, there are again six possible results of taking F(ξ2, η2)<i. As usual, two of

them (for example, i = 0 and i = 4, respectively) yield free resolutions of coker η2 and

coker ξ2, respectively.

Two of the remaining four options turn out to yield cokernels of the appropriate maps.
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Up to shifts, we have:

F(ξ2, η2)<1
∼= coker

x 0 y

0 −xy x


F(ξ2, η2)<5

∼= coker

x2 −y2 −xy

xy x −y2

 .

The other two options, for example i = 2 and i = 6, both result in complexes with

nonzero homology in both of the positions affected by the corresponding truncations.

(7) E7 = (ξ3, η3)

A corresponding graded complete resolution F(ξ3, η3) is

· · · →

R(−10)⊕
R(−9)⊕
R(−6)⊕
R(−5)

ξ3−−→

R(−4)⊕
R(−3)⊕
R(−3)⊕
R(−2)

η3−−→

R(−1)⊕
R⊕
R(3)⊕
R(4)

ξ3−−→

R(5)⊕
R(6)⊕
R(6)⊕
R(7)

→ · · ·

Up to shifts, there are now seven possible results of taking F(ξ3, η3)<i. As usual, two of

them (for example, i = −4 and i = 2, respectively) yield free resolutions of coker η3 and

coker ξ3, respectively.

Three of the remaining five options turn out to yield cokernels of the appropriate maps.
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Up to shifts, we have:

F(ξ3, η3)<−3
∼= coker


x y −y 0

y2 −x 0 −y

0 0 x2 xy


F(ξ3, η3)<0

∼= coker

 x y −y 0

y2 −x 0 −y



F(ξ3, η3)<3
∼= coker


x2 xy y 0

xy2 −x2 0 y

0 0 x y

 .

The remaining two options (for example, i = 1 and i = 4) both yield complexes with

nonzero homology in both positions affected by the corresponding truncations.
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Chapter 4

The Orlov Correspondence in the

Graded Case

4.1 Motivation and summary of results

The work presented in this chapter was motivated by a desire to find a way to pass the Orlov

embeddings bi back and forth across an equivalence of categories originally defined by Orlov

in [12] and extended by Burke and Walker in [6] to an equivalence

Ψ : [MF (Pc−1
Q ,W )]→ Db

sg(R),

where Db
sg(R) is the singularity category of R and [MF (Pc−1

Q ,W )] is the homotopy category

of matrix factorizations of W over Proj S = Pc−1
Q , for an appropriate notion of homotopy.

We will not give the definition of this homotopy category here; for the purposes of this

chapter one can simply think of it as the homotopy category of matrix factorizations of W

over S. Specifically, the goal was to define a version of bi on matrix factorizations of W that

is compatible with Ψ and its inverse. However, this turns out to require some adjustments,

since Ψ does not preserve graded structures in any way. Thus the majority of this chapter

is dedicated to reformulating the functor Ψ to work in the graded setting.
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The first problem is that for the purposes of this chapter, this geometric formulation

is insufficient. We aim to compute with various graded truncations of graded modules,

and it is well known that over Pc−1
Q , one has an equality of coherent sheaves M̃ ∼= M̃≥i

(where Ñ is the sheaf associated to a graded S-module N as in [10], II.5) for all graded S-

modules M and all i ∈ Z. In other words, categories of coherent sheaves do not distinguish

between a module and its graded truncations. For this reason we give a purely algebraic

correspondence in Construction 4.3.1. This necessitates a new definition of Ψ on the level of

modules, rather than coherent sheaves (and which takes graded structures into account). The

second problem is that objects over the generic hypersurface must be bigraded, i.e. graded

both via the given grading on R and the standard grading on the generic hypersurface (where

elements of Q have degree 0 and each Ti has degree 1). Finally, the category MFbg(S,W )

of (bigraded) matrix factorizations still turns out to be insufficient to encode the necessary

grading information - instead we define a version of Ψ on a certain subcategory D of the

larger category LFbg(S,W ), the category of (bigraded) linear factorizations of W over S (a

linear factorization is essentially a matrix factorization whose modules are not necessarily

free; see Definition 4.2.4).

After making these adjustments, we obtain the following, which combines all the main

results of this chapter:

Theorem. There exist functors Φ : D → Db(gr R) and bgi : D → D such that the square

MFbg(S,W ) Db
sg(gr R)

D Db(gr≥i R)

Φ

bgi bi

Φ

commutes, where Φ is the restriction of Φ to the full subcategory MFbg(S,W ) of D followed

by the localization functor Db(gr R)→ Db
sg(gr R).

The functors bgi are simple graded truncations (see Definition 4.4.3), so they potentially
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allow one to understand the less concretely defined bi functors more easily by instead working

in the matrix factorization category.

4.2 Construction of matrix factorizations

Recall that we denote by Hom∗ the graded module consisting of homomorphisms of all graded

degrees:

Hom∗gr R(X, Y ) :=
⊕
n∈Z

Homgr R(X, Y (n)).

We now discuss the process of building a matrix factorization of W over S whose sheafi-

fication over Pc−1
Q corresponds via the Burke-Walker equivalence Ψ to a given module or

complex over R. In [7], §6, Burke and Walker give a way to construct a graded matrix

factorization E = E(M,G,σ) of W = f1T1 + . . . + fcTc over S = Q[T1, . . . , Tc] from an

R-module M , using the data of a finite free resolution G of M over Q and a system of higher

homotopies σ = {σJ |J ∈ Nc} for f1, . . . , fc. In fact they construct a matrix factorization

of W over S and then sheafify to obtain a sequence of coherent sheaves over the scheme

Pc−1
Q , but as discussed in the previous section, this approach does not allow for the graded

truncations that we will need to perform, so we omit the sheafification step. Furthermore,

with virtually no modification their construction can be applied to the more general situ-

ation where we take as input only an arbitrary bounded complex of finitely generated free

Q-modules G and a system of higher homotopies σ, so we instead present it in that setting.

For simplicity, here we describe the construction using only the standard grading on S,

in which elements of Q have degree 0 and each Ti has degree 1; the adjustments necessary

to preserve a nontrivial grading on Q are detailed immediately after the basic construction.

Given the data (G,σ), we construct the matrix factorization E(G,σ) = (E1
e1−−→ E0

e0−−→

E1(1)) as follows: The S-modules E1 and E0 are

E1 :=
⊕
j∈Z

G2j+1 ⊗Q S(j) and E0 :=
⊕
j∈Z

G2j ⊗Q S(j).
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These direct sums are finite because G is bounded. For each J ∈ Nc, there are maps

G2j+1 ⊗ S(j)
σJ⊗TJ−−−−−→ G2j+2|J | ⊗ S(j + |J |) and

G2j ⊗ S(j)
σJ⊗TJ−−−−−→ G2j+2|J |−1 ⊗ S(j + |J |),

which are used to define the maps e1 : E1 → E0 and e0 : E0 → E1(1), component-wise, as

follows:

(e1)j =
∑
J∈Nc

σJ ⊗ T J : G2j+1 ⊗Q S(j)→
⊕
i

G2i ⊗Q S(i) = E0,

(e0)j =
∑
J∈Nc

σJ ⊗ T J : G2j ⊗Q S(j)→
⊕
i

G2i−1 ⊗Q S(i) = E1(1). (4.1)

If G is known to be a Q-resolution of an R-module M , we will write E(M,G,σ) in place

of E(G,σ) for emphasis. Note that if G is a resolution of a Q-module N , then the presence

of a system of higher homotopies implies that N is annihilated by (f1, . . . , fc) and is hence

an R-module.

4.2.1(Nontrivial gradings on Q). We may modify the construction of E(G,σ) to preserve

a nontrivial grading on Q. To do so, we first introduce a second grading on S = Q[T1, . . . , Tc]:

4.2.2 Definition. We define the following bigraded ring structure on S: we assign to an

element of Q ⊂ S the bidegree (0, q), where q is the element’s graded degree as an element of

the graded ring Q, and we assign to each variable Ti the bidegree (1,−deg fi+
∑c

j=1 deg fj).

For clarity and brevity, we will henceforth refer to the first-component grading as G1 and

the second-component grading as G2.

This choice of grading for the variables Ti is motivated by the fact that W = f1T1 +

· · · + fcTc must be a homogeneous element of S in order for the notion of graded matrix

factorization to make sense. Note that the G2 degree of Ti is the sum of the degrees of
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f1, . . . , fc, but with fi omitted. This degree choice ensures that W is homogeneous of bidegree

(1,
∑c

j=1 deg fj). If Q has only the trivial grading, then grading G2 is also trivial.

If G is a bounded complex of graded free Q-modules (with graded maps), we get a

bigraded matrix factorization E(G,σ) as follows: To each copy of S(0) that appears in

the above construction of E(G,σ), assign the second, or G2, shift to be the one on the

corresponding copy of Q in G. Then the bidegrees of the components of the maps e1 and e0

force a unique second grading on all the copies of S(i) for i 6= 0.

4.2.3. For the remainder of this chapter, R = Q/(f1, . . . , fc) is a graded complete intersection

ring. The goal now is to define two functors: one analogous to bi on matrix factorizations

of W = f1T1 + · · · + fcTc over S = Q[T1, . . . , Tc] and one that associates to each matrix

factorization an object in Db(gr R), in such a way that the obvious square commutes.

However, the notion of matrix factorization turns out to be too restrictive for this purpose.

4.2.4 Definition. Given a graded ring A and a homogeneous element X ∈ Ad, a (graded)

linear factorization of X over A is a sequence E1
e1−−→ E0

e0−−→ E1(d), where E0, E1 are finitely

generated graded A-modules and the compositions e1(d) ◦ e0 and e0 ◦ e1 are both equal to

multiplication by X. We will typically write a linear factorization E1
e1−−→ E0

e0−−→ E1(d)

simply as (e1, e0), when the modules E0 and E1 are clear from context. We define a category

LF (A,X) (or LFgr(A,X)) whose objects are (graded) linear factorizations of X over A, with

morphisms defined analogously to those in MF (A,X) (or MFgr(A,X)).

Note that this definition is precisely that of a graded matrix factorization, except that

E0 and E1 are not required to be free modules. Consequently, the category MF (A,X)

(respectively MFgr(A,X)) is a full subcategory of LF (A,X) (respectively LFgr(A,X)).

In order to work in the graded setting, we must require that all linear factorizations

are bigraded with respect to the bigrading given in Definition 4.2.2, i.e., are graded linear

factorizations in each degree independently. We will denote the category of such bigraded
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linear factorizations of W over S by LFbg(S,W ). Similarly, we denote by MFbg(S,W ) the

full subcategory whose objects are matrix factorizations.

For reasons that will later become evident, it suffices to restrict our attention to a par-

ticular type of linear factorization, as follows.

4.2.5 Definition. We denote by D the full subcategory of LFbg(S,W ) whose objects are

those linear factorizations (e1, e0) for which:

• E0 and E1 are isomorphic to direct sums of bigraded shifts of monomial ideals of S

(i.e., ideals of S generated by monomials in T1, . . . , Tc), each of which contains the

corresponding bigraded shift of S≥n (where the subscript refers to the G1-grading) for

some n ∈ Z. In other words, E0 and E1 are isomorphic to direct sums of bigraded

shifts of (T1, . . . , Tc)-primary monomial ideals.

• In general, the maps e1, e0 in such a linear factorization may be viewed as sums of

homogeneous maps between direct summands (each of which is a monomial ideal); we

require that for e0, e1) to be in D, each of these maps must be multiplication by a

homogeneous element of S (with respect to both gradings).

The reason for this definition is that the objects of D are precisely those linear factor-

izations that arise when one kills a finite collection of initial monomials in each of E1 and

E0, as this will be precisely the operation we wish to perform on matrix factorizations to

obtain our analog of bi; see Definition 4.4.3. In particular, we note that MFbg(S,W ) is a

full subcategory of D.

4.3 Main results

We now define a functor

Φ : D −→ Db(gr R)
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with the property that Φ(E(M,G,σ)) ∼= M , where E(M,G,σ) is the matrix factorization

associated to any finite Q-free resolution of an R-module M via the construction given in

Section 4.2. We prove, among other things, that this property holds (Proposition 4.3.3)

and that Φ is indeed a well-defined functor D → Db(gr R) (Theorem 4.3.4) after giving the

construction.

4.3.1 Construction. Until the last step of the construction, we refer only to the G1 grading

on S, in which elements of Q have degree 0 and each Ti has degree 1 (in particular, in this

grading the element W is homogeneous of degree 1).

Given a linear factorization E = (e1, e0) in D, we first construct the sequence

E∞ : · · · e0(−1)−−−−→ E1(−1)
e1(−1)−−−−→ E0(−1)

e0−−→ E1
e1−−→ E0

e0(1)−−−→ E1(1)
e1(1)−−−→ · · · , (4.2)

with E0 in homological degree 0.

Since E0 and E1 are direct sums of graded shifts of monomial ideals in S, for each i ∈ Z

the S-module E∞i can be expressed as a direct sum

E∞i =
⊕

j∈Z,λ∈Λ

Qri,j,λ ⊗Q Iλ(j), (4.3)

where Λ is some index set, each Iλ is a (T1, . . . , Tc)-primary monomial ideal in S, and each

ri,j,λ is a nonnegative integer. This expression is unique so long as we insist that all Iλ be

distinct. In light of this, each of the maps e0, e1 (and thus each of the maps in the sequence

E∞) can be represented as a matrix where each entry has the form

∑
l∈Nc

gl ⊗ T l, (4.4)

where each gl is a map of free Q-modules and T l is the monomial T l11 · · ·T lcc .
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We next we define graded S-modules {Ei}i∈Z as follows:

Ei :=
⊕
λ∈Λ

Qri,0,λ ⊗Q Iλ. (4.5)

In other words, Ei consists of precisely the direct summands of E∞i for which j = 0 in (4.3).

Now from {Ei} we define new graded S-modules {EΓ
i }i∈Z by dualizing with respect to

Q. For each i ∈ Z let

EΓ
i :=

⊕
λ∈Λ

Qri,0,λ ⊗Q Dλ, (4.6)

where Dλ = Hom∗gr Q(Iλ, Q) and all ri,0,λ and Iλ are as in (4.5). We denote by τi the dual

in D = Hom∗gr Q(S,Q) of Ti, for 1 ≤ i ≤ c, so that τJ is the dual in each Dλ of T J for each

monomial T J ∈ Iλ. Observe that each τi has graded degree -1 in D (so that each τJ ∈ Iλ

has degree −j), and that each Dλ is in fact simply the quotient of the graded S-module

Hom∗gr Q(S,Q) by a submodule generated by monomials in the dual variables τi.

Finally, we define Φ(E) to be the complex F defined as follows. For each i ∈ Z, let Fi

be the graded R-module

Fi =
⊕
l≤0

(
EΓ
i+2l

)
l
⊗Q R, (4.7)

where
(
EΓ
i+2l

)
l

denotes the graded degree l component of the module EΓ
i+2l. The maps of F

are given simply by deleting any necessary rows and/or columns of the matrices representing

those of E∞. Note that the entries of these matrices still have the form given in 4.4, but

now each Ti acts on the dual S∗ = Q[τ1, . . . , τc], so the action is the one described in Section

2.6. It is perhaps not immediately clear that F is necessarily a complex, but the next three

results (Propositions 4.3.2 and 4.3.3 and Theorem 4.3.4) will show that it is.

The graded R-module structure of Φ(E) is defined via the following graded Q-module

structure on the modules {Ei} (which supercedes the existing G1- and G2-gradings): by

construction each summand of each of the modules E1, E0 of the linear factorization E

appears exactly once in exactly one Ei, and no other summands appear; in each of these
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summands we assign to elements of Q their original G2 grading from E, and we set |Ti| =

−deg fi for 1 ≤ i ≤ c (and consequently |τi| = deg fi). That the maps of F are graded

follows from the fact that E∞ is G2-graded.

Contained in the following proposition is the assertion that Φ is, in fact, analogous to

Ψ on matrix factorizations associated to graded R-modules, as in Section 4.2. Proposition

4.3.3 will show that this result is more general than it may appear; every bigraded matrix

factorization of W over S is of the form E(G,σ).

4.3.2 Proposition. If G is a bounded complex of finitely generated free Q-modules with a

system of higher homotopies σ for f1, . . . , fc, we have

Φ(E(G,σ)) ∼= G{σ},

where G{σ} is the Eisenbud-Shamash complex of (G,σ).

In particular, given an R-module M , viewed as an object of Db(gr R), along with a free

resolution G of M over Q and a system of higher homotopies σ, we have

Φ(E(M,G,σ)) ∼= M.

Proof. We proceed by working through Construction 4.3.1 in detail; note that as in the

construction, we use only grading G1 of E(G,σ), wherein elements of Q have degree 0 and

each Ti has degree 1.

We begin by explicitly describing the graded Q-module structure, in each homological

degree, of E(G,σ). First, it is clear that as a graded Q-module, the graded degree n part

of S has the form

Sn ∼=
⊕
J∈Nc,
|J |=n

QT J ,

where QT J is the Q-direct summand of S generated by the monomial T J = T a11 · · ·T acc for
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J = (a1, . . . , ac). Recall from Section 4.2 that the graded S-modules of E(G,σ) are defined

to be

E1 :=
⊕
j∈Z

G2j+1 ⊗Q S(j) and E0 :=
⊕
j∈Z

G2j ⊗Q S(j).

Note that in this situation, the only monomial ideal Iλ that actually appears in Construction

4.3.1, (4.3) is all of S.

From this we see that the graded degree n parts of the corresponding graded Q-modules

are given by

(E1)n ∼=
⊕
j∈Z

⊕
J∈Nc,
|J |=n+j

G2j+1 ⊗Q QT J ,

(E0)n ∼=
⊕
j∈Z

⊕
J∈Nc,
|J |=n+j

G2j ⊗Q QT J .

Now we can explicitly describe all of the modules of the sequence E∞; we have

E∞2k+1 = E1(−k) =
⊕
j∈Z

G2j+1 ⊗Q S(j − k),

E∞2k = E0(−k) =
⊕
j∈Z

G2j ⊗Q S(j − k).

As graded Q-modules, we then have the following expressions for the graded degree n

part of each E∞i :

(E∞2k+1)n ∼=
⊕
j∈Z

⊕
J∈Nc,

|J |=n+j−k

G2j+1 ⊗Q QT J ,

(E∞2k)n
∼=
⊕
j∈Z

⊕
J∈Nc,

|J |=n+j−k

G2j ⊗Q QT J .

Next, to obtain the modules {Ei} we take only the j = k summand (i.e., the zero-shift
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summand) in each degree:

E2k+1 = G2k+1 ⊗Q S and E2k = G2k ⊗Q S.

As graded Q-modules, we have

(E2k+1)n
∼=
⊕
J∈Nc,
|J |=n

G2k+1 ⊗Q QT J ,

(E2k)n
∼=
⊕
J∈Nc,
|J |=n

G2k ⊗Q QT J .

Now we replace S by S∗ := Hom∗gr Q(S,Q) ∼= Q[τ1, . . . , τc] (called Dλ in Construction

4.3.1, (4.6)) to obtain the modules {EΓ
i }:

EΓ
2k+1 = G2k+1 ⊗Q S∗ and EΓ

2k = G2k ⊗Q S∗.

As graded Q-modules, we have

(
EΓ

2k+1

)
n
∼=
⊕
J∈Nc,
|J |=−n

G2k+1 ⊗Q QτJ ,

(
EΓ

2k

)
n
∼=
⊕
J∈Nc,
|J |=−n

G2k ⊗Q QτJ .

Finally, the modules of F are as follows:

F2k+1 =
⊕
l≤0

(
EΓ

2k+1+2l

)
l
⊗Q R ∼=

⊕
l≤0

⊕
J∈Nc,
|J |=−l

G2(k+l)+1 ⊗Q QτJ ⊗Q R,

F2k =
⊕
l≤0

(
EΓ

2k+2l

)
l
⊗Q R ∼=

⊕
l≤0

⊕
J∈Nc,
|J |=−l

G2(k+l) ⊗Q QτJ ⊗Q R.
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But one easily sees that these modules are precisely those of the Eisenbud-Shamash complex

G{σ}. The grading on G is preserved through both the construction of E and the application

of Φ, and Φ assigns graded degree deg fi to each τi, as does our graded Eisenbud-Shamash

complex. Finally, it is clear that the maps of Φ(E) are identical to those of G{σ}, so in fact

we have Φ(E) = G{σ}.

The second statement follows immediately from Proposition 2.6.3; when G is a resolution

of M over Q, G{σ} is a resolution of M over R.

It is not immediately clear that Φ(L) has bounded cohomology for an arbitrary linear

factorization L ∈ D; it follows from the next proposition that it does if L is a matrix

factorization. In other words, the result implies that the restriction of Φ to MFbg(S,W )

maps to Db(gr R). The case of general objects of D is established in Theorem 4.3.4.

4.3.3 Proposition. Every object E inMFbg(S,W ) is of the form E(G,σ) for some bounded

complex G of finitely generated free Q-modules and some system of higher homotopies σ

for f1, . . . , fc on G.

Proof. In this proof we will again consider only the G1 grading on S for simplicity. Let

E = (E1
e1−−→ E0

e0−−→ E1(1)) be an object of MFbg(S,W ).

It is well known (first established in [8]) that the complex E∞ ⊗S S/(W ), with E∞ as

defined at the start of Construction 4.3.1, is a complete resolution of coker e1 over S/(W ).

We first identify the complex G. Let Gi be the degree-zero component of the module Ei

defined in Construction 4.3.1, (4.5), i.e.,

Gi := (Ei)0.

Then each Gi is a direct Q-summand of E∞i , so we may define the differential of G to be

the one induced from the “differential” of E∞ (which does not square to zero). As we have
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already observed in Construction 4.3.1, {Ei} collectively contains each S-summand of E1

and E0 precisely once; since E1 and E0 are finitely generated S-modules, Ei 6= 0 for only

finitely many i ∈ Z, which implies that G is bounded. Since collectively the modules of

G consist of finitely many Q-summands from each of finitely many copies of S, we further

see that each Gi is a finitely generated Q-module. Finally, because the variables T1, . . . , Tc

are not present in degree zero, we see that G is in fact a complex, since its differential is

inherited from the “differential” on E∞, whose square is multiplication by the homogeneous

element W ∈ S1.

Finally, we observe that the maps of E are necessarily formed from a system of higher

homotopies on this choice of G. Recall that the maps of E(G,σ) are precisely sums of maps

of the form σJ ⊗ T J ; in light of this, we must define σ = {σJ}J∈Nc as follows: the chain

map σJ : G → G[2|J | − 1] is the map obtained by replacing the monomial T J by 1 and

replacing all other monomials in the Ti by 0, in both e1 and e0; decomposing e1 and e0 into

sums as in Section 4.2, (4.1) yields a map from each Gn to Gn+2|J |−1. It remains to show

that this choice of σ is indeed a system of higher homotopies on G; in other words, to show

that σ0 = ∂G, that σ0σi + σiσ0 = fi1G for i = 1, . . . , c, and that
∑

J ′+J ′′=J σ
J ′σJ

′′
= 0 for

each J with |J | ≥ 2. But these are all clear from the construction of σ and the fact that

e0 ◦ e1 and e1(1) ◦ e0 are both multiplication by W ; isolating the appropriate variables in W

yields precisely these defining equations.

4.3.4 Theorem. For any object E of D, Φ(E) has bounded cohomology, i.e., Φ is a well-

defined functor D −→ Db(gr R).

Proof. If E is a matrix factorization, i.e., E ∈MFbg(S,W ), then the result follows immedi-

ately from Propositions 2.6.3 and 4.3.3.

For the general case, we note that any object E of D can be enlarged to a matrix fac-

torization Ê ∈MFbg(S,W ) by including more monomials; explicitly, Ê may be constructed

by replacing all of the Iλ (from Construction 4.3.1, (4.3)) in E with copies of S. Since by
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Definition 4.2.5 the maps of E are already given by matrices with entries in S, one may use

the same matrices to extend the maps from the monomial ideals Iλ to all of S. Then, as

already established, Φ(Ê) is an object of Db(gr R), i.e., it has bounded cohomology.

One may now recover E from Ê by iteratively truncating away initial monomials from

copies of S (each such truncation is the same as killing a copy of Q when one views S as

a free Q-module), and this process has finitely many steps. By the definition of Φ, each of

these truncations corresponds to the truncation of a single R-summand of Φ(Ê), in a single

homological degree. Therefore, Φ(E) differs from Φ(Ê) in only finitely many degrees, so its

cohomology must necessarily also be bounded.

4.4 Application: Orlov embeddings

Now that we are equipped with the functor Φ : D → Db(gr R), we may realize our motivating

goal by defining a functor bgi : D → D whose restriction to the full subcategory MFbg(S,W )

(which, by a mild abuse of notation, we will also denote bgi ) makes the diagram

MFbg(S,W ) Db
sg(gr R)

D Db(gr R)

Φ

bgi bi

Φ

(4.8)

commute for i � 0, where Φ is the composition of Φ : MFbg(S,W ) → Db(gr R) with

the localization functor Db(gr R) → Db
sg(gr R). Since bi actually lands in the subcategory

Db(gr≥i R), this is equivalent to commutativity of the diagram

MFbg(S,W ) Db
sg(gr R)

Db(gr≥i R).

Φbgi

Φ

bi (4.9)

To facilitate the statement of the definition of bgi , we introduce a third grading on S,
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which will be referred to as grading G3.

4.4.1 Definition. The G3-degree of each element of Q ⊂ S is simply its G2-degree (i.e., its

degree from the original grading on Q), and the G3-degree of each Ti is deg fi.

4.4.2 Remark. The element W is not necessarily homogeneous in grading G3, so this

grading cannot be applied to a linear factorization as a whole; in other words, when we refer

to the G3-grading of a copy of S appearing in a linear factorization, it is understood to be

independent of G1- or G2-graded shift.

4.4.3 Definition. The functor bgi : D → D is defined as follows. For a linear factorization

E of W over S, we first view E instead as a sequence of maps of graded Q-modules. Note

that by the definition of the category D, each Ej is in fact a graded free Q-module (of infinite

rank). So we may define (bgi (E))j to be the graded S-module (Ej)<i (where Ej is truncated

with respect to grading G3 as a graded free Q-module). The maps of bgi (E) are induced from

those of E (the structure of the maps as described by Construction 4.3.1, (4.4) is unchanged

by the truncations, so one may use precisely the same matrices to describe the new maps).

Note that each of the finitely many copies of Q that are truncated away corresponds to a

single initial monomial in some Iλ, so indeed bgi (E) ∈ D.

4.4.4 Proposition. The diagram (4.8) commutes for all i� 0.

Proof. By Proposition 3.1.1, we have that bi(−) = CR(−)<i, so we may replace the right-

hand vertical arrow by CR(−)<i.

Fix an object E ∈ MFbg(S,W ). By Propositions 4.3.2 and 4.3.3, Φ(E) = G{σ} for

some (G,σ), so is a bounded-below complex of finitely generated free R-modules. Therefore

it agrees with some complete resolution of itself in large homological degrees (one may

simply take P(Φ(E)) to be Φ(E) in Construction 2.2.3. More formally, there is a choice of

CR(Φ(E)) for which CR(Φ(E))j = Φ(E)j for j � 0.
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The grading on G{σ} is induced from the G3-grading on the copies of S appearing

in E(G,σ), so with respect to this grading, the operation bgi (−) = (−)<i on E(G,σ)

corresponds to (−)<i on Φ(E(G,σ)).

Since G is a bounded complex of finitely generated modules, it is clear by the construction

of G{σ} that for each n, there exists an m0 > n such that for all m ≥ m0, the minimum

generator G3-degree of (G{σ})m is strictly greater than the maximum generator G3-degree of

(G{σ})n. Thus for i sufficiently large, (−)<i truncates away all of the modules in homological

degrees where Φ(E) differs from our choice of CR(Φ(E)). This completes the proof.
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Chapter 5

Stable Homology in the Non-Graded

Case

5.1 Summary of results

The aim of this chapter is to compare (non-graded) homology over a complete intersection

to homology over its generic hypersurface. In [7], §2 and §3, Burke and Walker investigate

how their equivalence of categories Ψ : [MF (Pc−1
Q ,O(1),W )]→ Db

sg(R) described in Section

2.5 affects Ext groups. We obtain results on how it affects Tor groups, using the same basic

approach.

We set

Y := Proj (S/(W )).

Then one has the following commutative diagram of schemes; all of the maps are the ones

induced on schemes by the obvious ring maps.

Pc−1
R Y Pc−1

Q

Spec R Spec Q

β

π

γ
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The first step in establishing a connection between Tor groups that translates across

Ψ is to define an appropriate notion of Tor for complexes of coherent sheaves; the usual

Tor sheaf is insufficient because the sheaf Tor functor does not commute with taking global

sections, so it does not adequately produce global information. To solve this, we use the

notion of hypercohomology, denoted by H. Hypercohomology is defined via a bicomplex

that incorporates both conventional homology of a complex and sheaf cohomology. This

construction allows one to compute hypercohomology via two obvious spectral sequences,

both of which involve often well-understood sheaf cohomology computations. The nature of

this construction also makes it a useful tool for producing global versions of sheaf data, as

the construction synthesizes information from an affine open cover, rather than using global

sections.

Burke and Walker define a notion of stable Ext sheaf over Proj Y , denoted Êxt, that is

intended to be analogous to the definition of stable Ext for modules given in Section 2.2.

We define a stable Tor sheaf T̂ or in an obvious way, analogously to the definition of Êxt.

By applying the equivalence Ψ to Hom groups and using all of this technical machinery,

Burke and Walker are able to give a short proof the following:

Proposition (Burke-Walker, [7], 3.8). Let M and N be objects of Db
sg(R), and set M

(resp. N ) to be the image of β∗π
∗M (resp. β∗π

∗N) in Db
sg(Y ). For all q ∈ Z there are maps,

natural in both arguments:

Êxt
q

R(M,N) ∼= Hq(Y,HomOY (γ∗E∞M ,N ))→ Γ(Y, Êxt
q

OY (M,N )).

The second map is an isomorphism for all q � 0.

In this statement EM is a matrix factorization such that Ψ(EM) = M , and E∞M represents

the 2-periodic complex described by EM (see Definition 5.2.4).

Proving analogous results for Tor poses extra difficulties, due to the fact that tensor prod-

ucts are not typically preserved by equivalences of categories. We use a different approach
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to directly compute H and to prove

Theorem. In the setting of Proposition 5.1, we have maps

T̂or
R

q (M,N) ∼= Hq(Y, γ∗E∞M ⊗OY N )[c− 1]→ Γ(Y, T̂ or
OY
q (M,N ))[c− 1].

The second map is an isomorphism for all q � 0.

This formulation is an immediate corollary of Theorem 5.3.1 and Proposition 5.4.3.

In [1] it is shown that in the present setting, vanishing of T̂or
R

q (M,N) for q � 0 is

equivalent to vanishing for all q ∈ Z; in light of this, we obtain as a corollary a partial

generic hypersurface version of a recent theorem of Bergh and Jorgensen relating Tor groups

over R to those over hypersurfaces Q/(f) with f ∈ (f1, . . . , fc); that is, hypersurfaces that

lie between R and Q ([3], Theorem 3.3); it appears as Corollary 5.4.5.

Corollary. Let M and N be finitely generated R-modules, and M ′ and N ′ be the S/(W )-

modules M [T1, . . . , Tc] and N [T1, . . . , Tc], respectively. If TorS/(W )
q (M ′, N ′) = 0 for q � 0,

then TorRq (M,N) = 0 for q � 0.

5.2 Background

We now shift to the original scheme-theoretic setting of [12] and [7]; as such, we no longer

work under that assumption that Q is graded.

For the entirety of this chapter, we work under the following standing assumptions (fol-

lowing [7]): All rings are commutative and noetherian. Q is any local ring (not necessarily

regular) and

R =
Q

(f1, . . . , fc)
,

with f1, . . . , fc a regular sequence on Q contained in the square of the maximal ideal of Q.

As before, set S = Q[T1, . . . , Tc] (with the standard grading), and W = f1T1 + · · ·+fcTc ∈ S.
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Set

Y := Proj (S/(W )).

One has the following commutative diagram of ring maps; the horizontal arrows are the

quotient maps and the vertical arrows are the canonical inclusions.

R[T1, . . . , Tc] S/(W ) S = Q[T1, . . . , Tc]

R Q

This diagram induces the following diagram of schemes:

Pc−1
R Y Pc−1

Q

Spec R Spec Q

β

δ

π

γ

(5.1)

Much of the content of this chapter is valid for more general schemes than those shown

in this diagram, but we are always understood to be in this particular setting unless more

general hypotheses are explicitly stated.

We first recall Definition 2.7.1 of a matrix factorization over a scheme: ifX is a Noetherian

separated scheme, L a line bundle on X, and W a global section of L, a matrix factorization

E = (E1
e1−−→ E0

e0−−→ E1(1)) of the triple (X,L,W ) consists of a pair of locally free coherent

sheaves E1, E0 on X and morphisms e1, e0 such that e0 ◦ e1 = e1(1) ◦ e0 = W · Id.

For the majority of this chapter, we are specifically interested in matrix factorizations of

(Pc−1
Q ,O(1),W ), where O(1) = OPc−1

Q
(1) is the usual Serre twisting sheaf and W = f1T1 +

· · ·+ fcTc.

We next recall the Orlov and Burke-Walker equivalences of categories, described in Sec-

tion 2.5. The Orlov equivalence is valid in more generality than we have addressed thus far,

so we first require the following definition.
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5.2.1 Definition ([7], 2.6). Let i : Z ↪→ X be a closed immersion of finite flat dimension.

An object F in Db(Z) is relatively perfect on Z if i∗F is perfect on X. We write RPerf(Z ↪→

X) for the full subcategory of Db(Z) whose objects are relatively perfect on X.

The relative singularity category of i is defined to be the Verdier quotient

Drel
sg (Z ↪→ X) :=

RPerf(Z ↪→ X)

Perf(Z)
.

Of special interest is the situation that X = Spec Q and Z = Spec R with R = Q/I

(of finite projective dimension over Q); in this case we write Drel
sg (Q � R) in place of

Drel
sg (Spec R ↪→ Spec Q).

Note that a complex X of R-modules (with bounded cohomology) is in RPerf(Q � R)

if and only if it has a finite projective resolution over Q. It follows that if Q is regular, then

Drel
sg (Q� R) is precisely Db

sg(R).

5.2.2 (The Orlov and Burke-Walker equivalences). By [7], Corollary 2.11, for Q any

local ring and W = f1T1 + · · ·+ fcTc, there is an equivalence of categories Ψ which may be

thought of as the following composition:

Ψ : [MF (Pc−1
Q ,O(1),W )]

coker−−−→ Drel
sg (Y ⊂ Pc−1

Q )
∼=−→ Drel

sg (Q� R), (5.2)

where the source category is defined as Definition 2.7.4, coker is the functor sending a

matrix factorization E = (e1, e0) to coker e1, and the second arrow is the Orlov equivalence,

which we will not describe in detail. The inverse of the Orlov equivalence is induced by

β∗π
∗ : RPerf(Q� R)→ RPerf(Y ⊂ Pc−1

Q ), with β and π as defined in diagram (5.1).

In fact, Burke and Walker show that coker is an equivalence in the more general setting

of Definition 2.7.1:

[MF (X,L,W )]
coker−−−→ Drel

sg (Z ↪→ X) (5.3)
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is an equivalence of categories. The precise definition of the source category [MF ] is given

in Section 2.7, but is not needed for the remainder of this chapter; it suffices to know that

we may associate matrix factorizations to objects of Drel
sg (Z ↪→ X) via an inverse of coker.

In the context of the Orlov equivalence (5.2) we will denote by EM any fixed choice of

Ψ−1(M) for M ∈ Drel
sg (Q � R), and in the more general context of (5.3) we will denote by

EM any fixed choice of coker−1(M) for M∈ Drel
sg (Z ↪→ X).

Note that one way to construct such matrix factorizations is by simply sheafifying an

object of MFgr(S,W ), as in the next definition.

To accommodate the shift from free S-modules to locally free coherent sheaves on Y , we

now use Burke and Walker’s original construction of a matrix factorization of W over Pc−1
Q

corresponding to a bounded complex G of finitely generated free Q-modules and a system

of higher homotopies σ, which they obtain by sheafifying E(G,σ) as defined in Section 4.2.

More explicitly, given (G,σ), one constructs E(G,σ) ∈MF (Pc−1
Q ,O(1),W ) as follows:

5.2.3 Definition (Burke-Walker, [7], 6.5). The matrix factorization E(G,σ) is E1
e1−−→

E0
e0−−→ E1(1), where

E1 := Ẽ1 =
⊕
j∈Z

G2j+1 ⊗Q OPc−1
Q

(j) and E0 := Ẽ0 =
⊕
j∈Z

G2j ⊗Q OPc−1
Q

(j),

and e1 = f̃1, e0 = f̃0, with f1, f0 the maps of E(G,σ) (renamed here to avoid abuse of

notation):

(f1)j =
∑
J∈Nc

σJ ⊗ T J : G2j+1 ⊗Q S(j)→
⊕
i

G2i ⊗Q S(i) = E0,

(f0)j =
∑
J∈Nc

σJ ⊗ T J : G2j ⊗Q S(j)→
⊕
i

G2i−1 ⊗Q S(i) = E1(1). (5.4)

As in Section 4.2, when G is known to be a resolution of some R-module M , we will write

E(M,G,σ) in place of E(G,σ) for emphasis. Burke and Walker prove that Ψ(E(M,G,σ)) ∼=
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M in Db
sg(R); we quote this result in full in the next section, as Proposition 5.3.2. Thus one

may take EM = E(M,G,σ) as inverse of the cokernel functor in this setting.

5.2.4 Definition. As in the graded module case, given an object E of MF (Pc−1
Q ,O(1),W ),

we will denote by E∞ the sequence

· · · −→ E0(−1)
e0(−1)−−−−→ E1

e1−−→ E0
e0−−→ E1(1)

e1(1)−−−→ E0(1) −→ · · ·

One problem with attempting to compare Ext (or Tor) groups in the present scheme-

theoretic context is that on the Db
sg(R) side of the Burke-Walker equivalence [MF ]

Ψ−→

Db
sg(R), objects are built out of modules, while on the [MF ] side they are built out of coher-

ent sheaves, and it is not immediately clear how to correctly define Ext and Tor groups on

both sides which are suitably compatible with Ψ. To address this problem for Ext, Burke

and Walker, in both [6] and [7], use the notion of hypercohomology, denoted by H; in [6] they

prove that H0 can be used to describe the Hom-sets of their matrix factorization category

(as an alternative to the description given by the definition of Verdier quotient). Hyperco-

homology is defined via a bicomplex whose total homology incorporates both conventional

homology of a complex and Čech cohomology:

5.2.5 Definition. Given a complex X• of coherent sheaves on a projective scheme X, fix a

finite affine open cover U = {U1, . . . , Un} of X. One may construct a bicomplex by applying

the Čech construction on U to each Xi, as follows:
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...
...

...

0
⊕
i

Γ(Ui,X1)
⊕
i<j

Γ(Uij,X1)
⊕
i<j<k

Γ(Uijk,X1) · · ·

0
⊕
i

Γ(Ui,X0)
⊕
i<j

Γ(Uij,X0)
⊕
i<j<k

Γ(Uijk,X0) · · ·

0
⊕
i

Γ(Ui,X−1)
⊕
i<j

Γ(Uij,X−1)
⊕
i<j<k

Γ(Uijk,X−1) · · ·

...
...

...

(5.5)

Here Uij := Ui ∩ Uj and Uijk := Ui ∩ Uj ∩ Uk and we define indices so that
⊕

i Γ(Ui,X0)

resides in degree 0 of the totalization. The horizontal maps are the usual Čech maps and

the vertical maps are the direct sums of the maps on sections induced from the differential

of C•. Also note that since U is finite, each row is actually a bounded complex.

The qth hypercohomology, Hq(X,C•), of the complex C• is defined to be the −qth ho-

mology of the totalization of this bicomplex. It is known (and easily verified) that hyperco-

homology is independent of the choice of affine open cover U .

5.2.6 Remark. One could also write H−q(X,C•) for Hq(X,C•), but we will index cohomo-

logically, as this seems to make more sense in light of the terminology.

Hypercohomology may be computed via two obvious spectral sequences, both of which

involve often well-understood sheaf cohomology computations and play a central role in the

proofs of the results in this chapter. The nature of this construction also makes it a useful

tool for producing global versions of sheaf data.
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5.3 Main result

The next theorem is the main result of this section; it is analogous to, but less general than,

a result of Burke and Walker for stable Ext groups ([7], 2.16); however, the proof is entirely

different. Hom groups are an intrinsic part of a category, and as such are preserved by

equivalences of categories (particularly by the Burke-Walker equivalence Ψ) by definition,

which allows for a very brief proof. Tensor products do not share this nice behavior, so

we instead resort to direct computations, aided by the use of some technical machinery

developed in later sections of [7]. This theorem will then allow us to imitate several proofs

for Ext groups in [7] to obtain analogous results for Tor groups, in Section 5.4.

For clarity, we first establish notational conventions for the notions of (co)homology that

appear in this section: H denotes hypercohomology, H denotes sheaf cohomology, and H

denotes the usual (co)homology of a complex. For easy reference, we also reproduce diagram

(5.1) here.

Pc−1
R Y Pc−1

Q

Spec R Spec Q

β

δ

π

γ

5.3.1 Theorem. Let R = Q/(f1, . . . , fc), where Q is any local ring and f1, . . . , fc is a regular

sequence on Q. Let S = Q[T1, . . . , Tc] and W the element f1T1 + · · · + fcTc of Q, and let

Y = Proj S/(W ).

For any R-modules M and N such that M has finite projective dimension over Q and

for all q ∈ Z, there is an isomorphism

T̂or
R

q (M,N) ∼= H−q(Y, γ∗E∞M ⊗OY N )[c− 1],

where N = β∗π
∗N and EM = E(M,G,σ) for any choice of finite free resolution G of M

over Q and system of higher homotopies σ on G.
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Proof. We begin by setting some notation. Set U = {Ui}ci=1 to be the usual affine open

cover of Pc−1
R , i.e., Ui = D+(Ti) := {p ∈ Pc−1

R | Ti /∈ p}. Then we have Γ(Ui,OPc−1
R

) =

R[T1, . . . , Tc](Ti), the graded degree 0 component of the localization R[T1, . . . , Tc]Ti (see [10],

II.2.5). By abuse of notation, we will also use U for the open cover {D+(Ti)}ci=1 of Y .

Furthermore, for a sequence X• of coherent sheaves we denote by C•(U ,X•) the degreewise

Čech construction that produces diagram (5.5), and following [7], we define Γ(U ,X•) :=

Tot(C•(U ,X•)) (so that hypercohomology of X• is precisely the homology of the complex

Γ(U ,X•)).

We first show that for any choice of (G,σ), Γ(U , δ∗E∞M) is a complete resolution of

M [−c+ 1] over R. In other words, we show that the complex Γ(U , δ∗E∞M)[c− 1] is exact and

that it agrees with some resolution of M in large degrees.

Since by definition Hq(Pc−1
R , δ∗E∞M) = Hq(Γ(U ,E∞M)), to show exactness we claim that the

spectral sequence

Ep,q
2 = Hp(C•(U ,Hq(δ

∗E∞M))) =⇒ Hp−q(Pc−1
R , δ∗E∞M) (5.6)

which arises from first taking vertical homology of diagram (5.5) collapses to 0. First, note

that a very slight alteration of [7], Remark 4.2, implies that δ∗E∞M ∼= β∗γ∗E∞M is exact; for

completeness we reproduce this argument here. It is known (essentially by [8], Proposition

5.1) that γ∗E∞M is exact. Fix an integer n and consider the truncation (γ∗E∞M)≥n. The

map β is locally complete intersection (because f1, . . . , f̂i, . . . , fc is a regular sequence on

(S/(W ))(Ti) and fi is a linear combination of f1, . . . , f̂i, . . . , fc in (S/(W ))(Ti)), so β has finite

flat dimension. Thus β∗(γ∗E∞M)≥n remains exact in all degrees larger than n plus the flat

dimension of β. Since this is true for all n ∈ Z, we see that β∗γ∗E∞M is exact. Thus the first

page of the spectral sequence (5.6) is 0, so Ep,q
∞ = 0 and H(Γ(U ,E∞M)) = 0 as desired.

Next we show that Γ(U , δ∗E∞M)[c − 1] agrees with a resolution of M in large degrees.

We first give a brief summary of the technical machinery involved. Proposition 4.5 of [7]
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establishes an isomorphism of functors

Ψ(−)
∼=−→ Γ(U , δ](−)),

where Ψ : [MF (Pc−1
Q ,O(1),W )] → Db

sg(R) is, as in Section 5.2, the composition of the

equivalences

[MF (Pc−1
Q ,O(1),W )]

coker−−−→ Db
sg(Y )

Orlov−−−−→ Db
sg(R),

and where

δ](E) := δ∗(E∞)≥0[−c+ 1]

for any E ∈ MF (Pc−1
Q ,O(1),W ). The authors then define a functor F : Cb(Pc−1

R ) → C(R)

such that, by Proposition 4.13 of [7],

Γ(U , δ](E)) ∼= F ((δ](E)≥m)

in Db
sg(R) for any E ∈MF (Pc−1

Q ,O(1),W ) and m sufficiently large. In light of the fact that

X ∼= X≥m in Db
sg(R) for any X ∈ Db

sg(R), for m sufficiently large we have established that

Γ(U , δ∗E∞M)[c− 1]≥m ∼= F ((δ](EM))≥m).

Now we fix a minimal Q-free resolution G of M and a system of higher homotopies σ on

G, and set EM = E(M,G,σ). Using Proposition 5.3.2, quoted from [7] below, we get that

Γ(U , δ∗E∞M) agrees with the Eisenbud-Shamash complex G{σ} in large degrees.

This establishes that Γ(U , δ∗E∞M)[c− 1] is a complete R-resolution of M , so we may use

it to compute stable Tor over R:

T̂or
R

q (M,N) ∼= Hq(Γ(U , δ∗E∞M)[c− 1]⊗R N).
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The theorem now follows from the isomorphisms

Hq(Γ(U , δ∗E∞M)[c− 1]⊗R N)) ∼= Hq(Γ(U , δ∗E∞M ⊗OPc−1
R

π∗N)[c− 1])

∼= Hq(Γ(U , γ∗E∞M ⊗OY N )[c− 1]

∼= H−q(Y, γ∗E∞M ⊗OY N )[c− 1],

which arise as follows:

• For the first isomorphism, we note that (by [11], Proposition 5.1.12(b), for example) tensor

products commute with taking affine sections; formally, for each affine open set Ui ∈ U ,

we have Γ(Ui, δ
∗E∞M ⊗Pc−1

R
π∗N) ∼= Γ(Ui, δ

∗E∞M)⊗R Γ(Ui, π
∗N). The stated isomorphism is

then due to the fact that the coherent sheaves that make up the complex δ∗E∞M are locally

free on Pc−1
R .

• For the second isomorphism, we first note that since δ∗E∞M ∼= β∗γ∗E∞M is a complex of

locally free coherent sheaves, the Projection Formula gives β∗(β
∗γ∗E∞M ⊗Pc−1

R
π∗N) ∼=

γ∗E∞M ⊗OY N . The isomorphism on homology follows from the fact that the sections

of γ∗E∞M ⊗OY N are clearly annihilated by (f1, . . . , fc).

• The final isomorphism is precisely the definition of hypercohomology.

Finally, we reproduce Proposition 6.6 of [7], which is used in the proof above.

5.3.2 Proposition (Burke-Walker). Let M be a finitely generated R-module that has

finite projective dimension over Q. Let G be a finite projective Q-resolution of M , σ a

system of higher homotopies on G, and E = E(M,G,σ). Then the complex F (δ]E) is

exactly the standard resolution G{σ}. In particular, there is an isomorphism in Db
sg(R),

Ψ(E) ∼= M.
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5.4 The stable Tor sheaf

We now work in the general setting described by Definition 5.2.1, as the definitions and

results are no more difficult to state in that context. Unless otherwise stated, in this section

X is any projective scheme over a Noetherian ring A of finite Krull dimension, L = O(1),

and W is any regular global section of L. Finally, γ : Z ↪→ X is the embedding of the zero

subscheme of W .

In [7], Burke and Walker define a notion of stable Ext sheaf analogous to that of the

stable Ext groups:

5.4.1 Definition (Burke-Walker). For M in Drel
sg (Z ↪→ X), N a bounded complex of

coherent sheaves on Z, and any integer q ∈ Z, define

Êxt
q

OZ (M,N ) = HqHomOZ (γ∗E∞M,N ).

(Recall that given an object M of RPerf(Z ↪→ X), EM denotes a choice of object of

MF (X,L,W ) whose cokernel is isomorphic in Drel
sg (Z ↪→ X) to M.)

We modify this definition in a natural way to obtain an analogous notion of stable Tor

sheaf:

5.4.2 Definition. In the setting of Definition 5.4.1,

T̂ or
OZ
q (M,N ) = Hq(γ

∗E∞M ⊗OZ N ).

The following result is a stable Tor analog of a stable Ext result of Burke and Walker

([7], Proposition 3.8), and its proof is nearly identical.

5.4.3 Proposition. Let X,L,W , and Z be as above (so that in particular W is an arbitrary

global section of L). Let M be an object of Drel
sg (Z ↪→ X) and N be an object of Db(Z).
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For all y ∈ Z and q ∈ Z there are isomorphisms

T̂ or
OZ
q (M,N ) ∼= T̂ or

OZ
q+2(M,N )(1),

T̂ or
OZ
q (M,N )y ∼= T̂or

OZ,y
q (My,Ny),

that are natural in M and N . For all q, there is a map

H−q(Z, γ∗EM ⊗OZ N ) −→ Γ(Z, T̂ or
OZ
q (M,N ))

that is natural in M and N . This map is an isomorphism for q � 0.

Proof. The first isomorphism is an obvious consequence of the definition of T̂ or and the fact

that (γ∗EM)k+2 = (γ∗EM(−1))k for all k ∈ Z.

For the second isomorphism, we may apply [7], Example B.5 (with B = OZ,y, A = OX,y,

E = (EM)y, M = My, and T = γ∗(EM)y) to see that γ∗(EM)y is a complete resolution of

My. Using this complete resolution to compute T̂or
OZ,y
q (My,Ny), we get

T̂or
OZ,y
q (My,Ny) ∼= Hq(γ

∗(EM)y ⊗OZ,y Ny)

∼= Hq(γ
∗EM ⊗OZ N )y

∼= T̂ or
OZ
q (M,N )y.

The last map arises from the spectral sequence

Ep,q
2 = Hp(Z, T̂ or

OZ
q (M,N )) =⇒ Hp−q(Z, γ∗EM ⊗OZ N ),

as Γ(Z, T̂ or
OZ
i (M,N )) ∼= H0(Z, T̂ or

OZ
i (M,N )) appears as the p = 0, q = i summand

of H−i(Z, γ∗EM ⊗OZ N ) ∼=
⊕

p−q=−iHp−q(Z, γ∗EM ⊗OZ N ); the map in question is the

projection onto this summand.

It remains to show that the map is an isomorphism for q � 0. Since T̂ or
OZ
q (M,N ) ∼=
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T̂ or
OZ
q+2(M,N )(1), as q decreases, the spectral sequence involves computing cohomologies of

increasing twists of the same two coherent sheaves. Since L = O(1) is very ample, for all

q � 0 Serre vanishing thus gives H i(T̂ or
OZ
q (M,N )) = 0 for all i > 0. The result follows

from the fact that the rows of the hypercohomology diagram (5.5) have finite length.

Applying this result to the setting of Theorem 5.3.1 (specifically X = Pc−1
Q ,W = f1T1 +

· · · + fcTc, Z = Y ), we now have the following isomorphisms for q � 0 (with the first

isomorphism valid for all q ∈ Z):

T̂or
R

q (M,N) ∼= H−q(Y, γ∗E∞M ⊗OY N )[c− 1] ∼= Γ(Y, T̂ or
OY
q (M,N ))[c− 1] (5.7)

(where M = β∗π
∗M). Thus we have established a relationship between the stable Tor in

Db
sg(R) and a notion of stable Tor over Y .

The next proposition shows that stable Tor sheaves agree with the usual Tor sheaves

in high degree. The statement is analogous to part of [7], Proposition 3.11. The proof is

identical to theirs with Exts replaced by Tors, but we provide it here for completeness.

5.4.4 Proposition. In the setting of Proposition 5.4.3, given any objectM of RPerf(Z ↪→

X) and any N ∈ Db(Z), for each q � 0 there is an isomorphism

T orOZq (M,N ) ∼= T̂ or
OZ
q (M′,N ),

where M′ is the image of M in the localization RPerf(Z ↪→ X)/Perf(Z) = Drel
sg (Z ↪→ X).

Proof. By [6], Lemma 5.2(1), (γ∗E∞M)≥0 is a locally free resolution of coker EM (which is

isomorphic toM in Drel
sg (Z ↪→ X)). By the definition of the stable Tor sheaf, it follows that

T̂ or
OZ
n (M,N ) ∼= Hn(γ∗E∞M ⊗OZ N ) ∼= T orOZn (coker EM,N )

for all n ≥ 1.
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By the definition of the Verdier quotient (see Definition 2.1.4), the fact that M ∼=

coker EM in Drel
sg (Z ↪→ X) is the same as the existence of a diagram

M← G → coker EM (5.8)

with G ∈ RPerf(Z ↪→ X) and both arrows having cones that are objects of Perf(Z). Note

that T orOZq (P ,N ) = 0 for q � 0 when P ∈ Perf(Z) since P has a bounded resolution by

definition. Therefore, since T orOZq (−,N ) is a triangulated functor (and hence commutes

with taking cones), for q � 0 the cones of the arrows in the diagram

T orOZq (M,N )← T orOZq (G,N )→ T orOZq (coker EM,N )

obtained by applying T orOZq (−,N ) to (5.8) are 0, so both arrows are isomorphisms in

RPerf(Z ↪→ X), which gives the desired result.

One application of the results of this chapter is the following partial generic hypersurface

version of a recent theorem of Bergh and Jorgensen ([3], 3.3) that relates Tor groups over

R to those over hypersurfaces that lie between R and Q, that is, rings Q/(f) with f an

arbitrary element of the ideal (f1, . . . , fc) that defines R. As explained in Section 2.5, in

a sense the generic hypersurface stands in for all of these intermediate hypersurfaces; each

intermediate hypersurface Q/(a1f1 + · · ·+ acfc) for ai ∈ Q is the result of substituting ai for

Ti in S/(W ).

5.4.5 Corollary. Let R be a complete intersection, M and N be finitely generated R-

modules, and M ′ and N ′ be the S/(W )-modules M [T1, . . . , Tc] and N [T1, . . . , Tc] respectively.

If TorS/(W )
q (M ′, N ′) = 0 for q � 0, then TorRq (M,N) = 0 for q � 0.

Proof. SetM = β∗π
∗M and N = β∗π

∗N . If TorS/(W )
q (M ′, N ′) = 0 for all q � 0, then clearly

T orOYq (M,N ) = 0 for all q � 0. Then Proposition 5.4.4 gives that T̂ or
OY
q (M,N ) = 0 for

all q � 0, and in particular T̂ or
OY
q (M,N )y = 0 for all y ∈ Y and q � 0. Then by the
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second isomorphism in Proposition 5.4.3, we have T̂or
OY,y
q (My,Ny) = 0 for all y ∈ Y and

q � 0.

By [2], Proposition 1.6, localizations of modules of finite complete intersection dimension

again have finite complete intersection dimension. ThereforeMy has finite CI-dimension for

any y ∈ Y and so by [1], Theorem 4.9, T̂or
OY,y
q (My,Ny) = 0 for q � 0 implies that in fact

T̂or
OY,y
q (My,Ny) = 0 for all q ∈ Z, and in particular for all q � 0.

Now again by the second isomorphism in Proposition 5.4.3 we have T̂ or
OY
q (M,N )y = 0

for all y ∈ Y and q � 0, which clearly implies that T̂ or
OY
q (M,N ) = 0 for q � 0, and

particularly that Γ(Y, T̂ or
OY
q (M,N )) = 0 for q � 0. Next we may use the combination of

Theorem 5.3.1 and Proposition 5.4.3 given by equation (5.7) above to get T̂or
R

q (M,N) = 0

for q � 0. One more application of [1], Theorem 4.9 gives that T̂or
R

q (M,N) = 0 for all q,

and in particular for q � 0. Since stable Tor and ordinary Tor are isomorphic for q � 0,

the result follows.
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