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Abstract 

 

 The intestinal epithelial barrier contributes to the absorption of nutrients and in 

maintaining homeostasis. Several intestinal disorders such as Crohn’s disease and Ulcerative 

Colitis show common pathological features corresponding to a decreased intestinal epithelial 

barrier function, which makes it imperative to investigate the functional units of the intestinal 

barriers formed by complex protein interfaces called the tight junctions. Among the diverse set 

of transmembrane proteins involved in the formation of tight junctions, the mal-distribution of 

claudin family of proteins show direct correlation to compromised barrier functioning. 

Interestingly, claudin-3 expression reduces drastically in compromised barriers, while an 

increased expression of claudin-23 is suggested to improve the barrier functions. Experimental 

study of membrane proteins can be time consuming and tedious. In this work, we used a 

computational modeling approach to investigate the nature of interfaces formed by the 

combination of claudin-3 and 23 to achieve a fundamental understanding of the role of claudin 

interfaces in intestinal barrier functions. 
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Executive Summary 

 The gastrointestinal tract that comprises of the small and large intestines are vital to 

digestion, metabolic homeostasis, and overall health. Digestive enzymes act in the small intestine 

to breakdown ingested food into smaller fragments that are of suitable size for absorption. 

Several enzymes perform the chemical process of metabolizing the ingested food; for example, 

enzymes such as—lipases, proteases, and amylases—breakdown fats, proteins, and 

carbohydrates, respectively. The absorption of digested food takes place through the layer of 

epithelial cells that separate the intestinal lumen from underlying mucosal tissue. The intestinal 

lumen has finger-like projections called villi that increase the surface area available for 

absorption of digested food into the bloodstream.  

 Beside absorption, the intestinal epithelial layer plays a quintessential role in preventing 

permeation of toxins and pathogens from the intestine into the bloodstream, referred to as the—

epithelial barrier. The uptake of nutrients across the epithelial barrier occurs via two 

mechanisms: active and passive transport. The main difference between these mechanisms is that 

one requires energy (active) and other the does not (passive). The passive transport mainly 

occurs through the paracellular space between adjoining or adjacent epithelial cells. The 

paracellular space, however, is guarded by physical barriers known as tight junctions formed by 

integral membrane proteins of the adjoining cells. The tight junctions consist of a variety of 

membrane proteins such as—claudins, occludins, and junction adhesion molecules among 

others. The size and charge selectivity of the epithelial barrier in the intestinal tight junction is 

attributed to claudin proteins.  

 Claudin proteins form tight junctions in epithelial an endothelial tissues all over the body. 

There are 24 known claudins in humans. Each member of the claudin family is classified as 
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pore-forming or barrier-forming based on their individual ability to increase or decrease 

permeability, or the ability to allow specific substance across the barrier. In the gastrointestinal 

tract, claudins are expressed throughout, and some claudins are more prevalent in certain 

sections than others. The claudins of interest in this study are 3 and 23, and they are both readily 

prevalent in the duodenum or the beginning of the small intestine. claudin-3 is classified as 

barrier-forming tight junction protein whereas claudin-23 is known to play a role in barrier 

properties of the tight junction with other claudins.  

 The study of tight junction architecture and the role of claudins in the intestinal epithelial 

barrier function is vital because recent research has linked tight junction defects to the 

manifestation of intestinal diseases. For instance, the overexpression of claudin-23 is linked to 

intestinal tumors. The change in expression of claudin-3 is linked to decreasing epithelial barrier 

function present in celiac disease or the abnormal mucosal immune response that occurs when 

gluten is ingested. Moreover, inflammatory bowel diseases like Crohn’s disease and Ulcerative 

Colitis increase the permeability thereby decreasing the efficiency of the barrier. Although 

inflammatory bowel diseases are characterized by inflammation, the specific cause of these 

diseases remains elusive. To understand the mechanism of these maladies, it is essential to 

understand the interaction of claudins in healthy intestinal tight junctions.  

 Claudin proteins that are secreted in a cell oligomerize in a cell membrane to form a 

strand; these are cis interactions. When these structures interact head-on with the claudin strand 

of a neighboring cell (trans interactions), these form the tight junction. There are four distinct 

interacting patterns in tight junctions, and they go as follow: (a) same type of claudin in cis 

(homomeric) and trans (homotypic); (b) same type of claudin in cis (homomeric) and different in 

trans (heterotypic); (c) different types of claudin in cis (heteromeric) and same in trans 
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(homotypic); and (d) different types of claudin in cis (heteromeric) and in trans (heterotypic). 

Claudin-3 and Claudin-23 both are expressed in epithelial cells, and they form heteromeric and 

heterotypic tight junctions.  

 We adopted coarse grain molecular modeling approach to study claudin-3 and -23 

heteromeric interactions. The recently developed, Protein Association Energy Landscape 

(PANEL) method was used to generate exhaustive set of pair interactions followed by 

equilibration. Using multiple simulations (3000) in parallel, we sampled 94% of the 360°×360° 

rotational space formed by angles θ  and θ′ , where θ = {x|0 ≤ x ≤360°} and θ′ = {x|0 ≤ x ≤ 360°} 

. The potential energy landscape profile of heteromeric claudin-3 and -23 yielded dimer 

conformations B and C as the low energy, stable structures. Given that dimer C is a barrier-

forming, and dimer B is a pore-forming conformation, more work needs to be performed to 

develop the heterotypic tight junction architecture.  

 The results of this study lay the foundation of the molecular-level understanding of 

claudin-3 and -23 in the intestinal tight junctions. No work prior has focused on the fundamental 

interactions of claudins in the intestine using advances in computational research. The work 

presented here will inspire both computational and experimental study in exploring primary 

causes of intestinal diseases. 
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INTRODUCTION 
 

Gastrointestinal tract: A Macroscopic Perspective. The intestines are an integral part of 

digestion, metabolic homeostasis, and overall health. The purpose of digestion is to break down 

ingested food into substances small enough to participate in absorption. By the time food reaches 

the duodenum, the beginning of the small intestine, (Figure 1), it is partially digested. Intestinal 

enzymes, such as lipases, proteases and amylases, break down fats, proteins, and carbohydrate 

even further into fatty acids, amino acids, and monosaccharides with molecular sizes that are 

ideal for facilitating absorption. The absorption of digested food occurs through the layer of 

epithelial cells that separate the lumen from the underlying a mucosal tissue. The wall of the 

lumen is lined with finger-like projections known as villi (Figure 1) that increase the surface area 

available for absorption. Upon absorption the nutrients are passed to the blood stream for 

circulation. 

  

Figure 1. Gastrointestinal tract. The lumen of the small intestine shows villi and the layer of epithelial 
cells that form tight junctions.  

Epithelial barrier.  Besides absorption of nutrients, the intestinal epithelium plays a critical role 

in acting as a barrier for permeation of toxins and pathogen from the lumen into the mucosal 

tissues. Each section of the intestine absorbs digested nutrients based on the permeability of the 

epithelial barrier. The absorption of nutrients and water occurs via active and passive mechanism 
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with and without expenditure of energy, respectively (Boundless 2018). The passive transport 

occurs mainly through the paracellular space between adjoining epithelial cells. Lining the 

paracellular space, however, there are physical barriers called tight junctions constituted by a 

network of integral membrane proteins, such as claudins, occludins, and junction adhesion 

molecules. The claudins are the quintessential tight junction proteins that are responsible for the 

charge and size selectivity of the epithelial barrier in the intestine.  

Claudin proteins. The claudin family of tight junction proteins is present in various tissues 

throughout the body. There are 24 known claudins in humans. Claudins are membrane proteins 

with four transmembrane helices (TM1−4), two extracellular loops (ECL1−2), one intracellular 

loop (IC) as well as N-terminal and C-terminal cytoplasmic domains (Figure 2). Each member of 

the claudin family is classified as pore-forming or barrier-forming based upon their individual 

ability to increase or decrease the permeability in a tight junction. Claudins are differentiated into 

Figure 2. Claudin-5 protein structure from  X-ray crystallographic data. (A) and (B) show the ribbon 
structure of the TM domains, ECL loops, IC loops, N-term (blue) and C-term ( red) of claudin-5 
embedded in the membrane (grey). Panel C is the cartoon structure showing the β-sheet folds of the 
ECL2 loops. (Adapted from Science. 2014 344, 304-7) 
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two groupsbased on their degree of sequence similarity: classic claudins (-1 to -10, -14, -15, -17, 

and -9) and non-classic claudins (-11 to -13, -16, -18, and -20 to -24). The expression of claudin 

proteins in a tissue determines the permeability or conversely—the transepithelial resistance 

(TER); high permeability means low transepithelial resistance, and vice-versa.  

Intestinal tight junctions. Claudin family of 

proteins is expressed throughout the 

gastrointestinal tract (Table 1).  Certain 

claudin, like claudin-12 occur throughout, 

while claudin-2 and -15 are predominantly 

expressed in the proximal parts of the 

gastrointestinal tract. Claudin-3, -4, -7 and -8 expression is higher in the large intestine. Claudin-

3 is classified as a barrier-forming tight junction proteins.Claudin-23 plays a role in the barrier 

properties of the tight junction along with other claudins.   

Intestinal pathologies. Tight junction defects are linked to the manifestation of intestinal 

Table1. Claudin expression in intestinal 

segments. 

Intestinal segments Claudin expression 

Duodenum 1,2,3,4,5,7,12,15, 23 

Ileum 2,7,8,12,15 

Large intestine 1,3,4,7,8,12,15 

  

Figure 3. Normal and inflamed epithelial cell layer of the small intestine showing normal and 
ruptured tight junctions. 
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diseases, such as inflammatory bowel disease, celiac disease and more, that affect thousands of 

people. For instance, change in claudin-3 expression results in a decrease in the absorption 

efficiency in celiac disease and an abnormal mucosal immune response occurs when gluten is 

ingested. On the contrary, overexpression of claudin-3 increases paracellular resistance and 

thereby results in an increase in TER. In addition, inflammatory bowel diseases like Crohn’s 

disease and ulcerative colitis have the ability to increase permeability and decrease in the TER. 

Inflammatory bowel disease presents as abdominal pain that is caused by inflammation of the 

intestinal walls (Figure 3). Inflammation may progress into stenosis, which may result in 

complete obstruction of the gut. Although both Crohn’s disease and ulcerative colitis are 

characterized by chronic inflammation, the specific cause has remained elusive. (Vilela et al. 

2012). Overexpression of claudin-23 has been tied to intestinal tumors. To understand how 

certain maladies manifest in the body, it is important to understand the claudin-claudin 

interactions in healthy intestinal tight junctions. 

Tight junction architecture. The claudin proteins secreted in a cell oligomerize in a cell 

membrane (cis interactions) to form a strand, which then interacts head-on with the claudin 

Figure 4. Four possible models of claudin-3 and claudin-23 interactions in the tight junctions. 
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strand of the neighboring cell (trans) interactions to form the tight junctions. There are often 

multiple claudin types expressed in the cells of a given tissue. Therefore, the tight junction 

architecture can have claudin that interact with each other in four distinct ways (Figure 3): (a) 

same type of claudin in cis (homomeric) and trans (homotypic); (b) same type of claudin in cis 

(homomeric) and different in trans (heterotypic); (c) different types of claudin in cis 

(heteromeric) and same in trans (homotypic); and (d) different types of claudin in cis 

(heteromeric) and in trans (heterotypic). For example in the intestine, both claudin-3 and 

claudin-23 are expressed in epithelial cells and they form heteromeric and heterotypic tight 

junctions. 

The need for computational modeling. Fundamental understanding of inflammatory bowel 

diseases has generated avid interest among researchers; but the complexity of the tight junction 

strands has been a major challenge to therapeutic advances. Published experimental data on the 

structure of tight junctions and associated transport properties across the gut epithelial layer are 

sparse and inadequate for elucidating the mechanisms underlying the absorption of nutrients. As 

an alternative to experimental methods, we utilized advanced computational methods to provide 

a molecular-level description of the three-dimensional tight junction architecture and its 

dynamical nature as well as interfacial properties of the paracellular pathway, which collectively 

allow us to 

Figure 5. Orientations of A-D dimeric interfaces. (Adapted from JPCB 2018, 122, 7463–7474). 
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characterize transport across the gut barrier. As a first step to understanding the role of claudin-3 

and claudin-23 proteins in the intestinal tight junctions, we investigated their heteromeric 

interactions. 

BACKGROUND 

The homomeric and heteromeric association of claudin family of proteins has been reported in 

our previous work (Rajagopal et. al 2019). In all those studies, we use standard molecular 

dynamics techniques to observe self-assembly of claudins. Both homomeric (1-1, 2-2, 3-3, 4-4, 

5-5, and 19-19) and heteromeric (3-5) claudin interactions, revealed four ubiquitous dimeric 

interfaces, labeled A−D (Figure 4).  

To classify the relative orientation of each monomer with respect to each other in the A−D 

conformation, we developed a set of dihedral like angles θ = {x|0 ≤ x ≤360°} and θ′ = {x|0 ≤ x ≤ 

360°} between dimeric claudin (Figure 6).    
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METHODS 

We developed coarse grain (CG) models of equilibrated claudin-3 and -23 structures using the 

Martini v2.2 force field. To preserve the conformations of the proteins the ElNeDyn approach 

was adopted. Using the panel.py script developed in our group, the proteins were embedded in a 

10×10 nm2 membrane patch composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) 

lipids.  The systems were solvated with standard Martini CG water with 0.15 M NaCl salt 

concentration. The simulations were performed using GROMACS v2018.1 and molecular 

visualization was done using the VMD software. Each system was energy minimized followed 

by 25 ns of isothermal-isochoric (NVT) and 50 ns of isothermal-isobaric equilibration sets, 

Figure 6. Rotational space of two claudin monomers relative to 
each other and the dimer A-D definitions. (Adapted from JPCB 
2018, 122, 7463–7474). 
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followed by 0.4 µs of NPT production MD. A temperature of 300 K was maintained using the v-

rescale thermostat with a coupling constant of 1.0 ps. Pressure of 1 bar was maintained under 

semiisotropic pressure conditions using Parinello-Rahman barostat with a compressibility of 

4.5×10−5 bar−1 and a coupling time of 12 ps. A cutoff of 1.1 nm was used of the van der Waals 

and electrostatic interactions.  

 

RESULTS AND DISCUSSION 

Claudin-3 and -23 interaction energy landscape. The heteromeric claudin-3 and -23 assembly 

was evaluated using the PANEL approach. Using 3000 starting conformations, we successfully 

sampled 94% of the θ = {x|0 ≤ x ≤360°} and θ′ = {x|0 ≤ x ≤ 360°} rotational space (Figure 7). 

The potential energy landscape profile of the rotational space yields the relative stability of the 

conformations. We identified low energy conformation within in the −1100 and −1200 kJmol−1 

range. The results show that among the four established A−D dimer types, only dimer B and C 

are stable in claudin-3 and -23 cis assembly. Dimer conformations A and D have non-bonded 

potential energies in −400 and −200 kJmol−1 range, which is much higher than the B and C 
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dimers. 

 

Figure 7. PANEL plots for claudin-3 and -23 homomeric interaction. (A) Grid coverage of the 360° × 360° 
space (yellow-sampled; brown-not sampled). (B) Contour plot of the minimum potential energy. 
Conformations of dimer A−D are marked.   

The relative orientation of claudin-3 and -23 is also represented in the polar plots with claudin-3 

in the center showing the lowest energy structure is formed via TM3/TM3 or TM3/TM4 of 

clauin-3/cladin-23 interactions (Figure 8).  

 

Figure 8. Radial contour plots of (a) claudin-3 (center) and claudin-23 (radially outward); (b) claudin-3 
(center) and claudin-23 (radially outward). The energy scale is the same as in figure 7. 
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The results provide a molecular level basis for claudin-3 and claudin-23 heteromeric interactions. 

The lowest energy conformations of both dimers C and dimer B will be used to construct the 

heterotypic tight junction barrier/pore studies in the future. 

FUTURE DIRECTIONS 

The claudin-3 and -23 heteromeric interaction is a component of the extensive ongoing study of 

all intestinal claudins in Nangia’s lab. Currently, analysis of homomeric claudin 2, 3, 4, 23 and 

the remaining heteromeric claudin pairs (2-3, 2-4, 2-23, 3-4, and 4-23) is being performed. The 

results of this are being incorporated into a manuscript that will be submitted for peer-review 

next month. 
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