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Abstract

Since its inception with the pioneering work of Ken Wilson, lattice field

theory has come a long way. Lattice formulations have enabled us to

probe the non-perturbative structure of theories such as QCD and have

also helped in exploring the phase structure and classification of phase

transitions in a variety of other strongly coupled theories of interest to

both high energy and condensed matter theorists. The lattice approach

to QCD has led to an understanding of quark confinement, chiral sym-

metry breaking and hadronic physics. Correlation functions of hadronic

operators and scattering matrix of hadronic states can be calculated in

terms of fundamental quark and gluon degrees of freedom. Since lat-

tice QCD is the only well-understood method for studying the low-energy

regime of QCD, it can provide a solid foundation for the understanding

of nucleonic structure and interaction directly from QCD. Despite these

successes problems remain.

In particular, the study of chiral gauge theories on the lattice is an out-

standing problem of great importance owing to its theoretical implications

and for its relevance to the electroweak sector of the Standard Model.

However the construction of these theories is plagued by the emergence

of massless chiral modes in the lattice theory which have no counterpart

in the continuum theory. This is a topological obstruction known as the

Nielsen-Nimonoya theorem and can be proven to hold under assumptions

of translation invariance, chiral invariance and hermiticity of the lattice

Hamiltonian. One strategy that was advocated by Eichten and Preskill

(EP) early on in the field was to generate large masses for these additional

chiral states by coupling them to additional composite fermions. These

composite fermions would arise as bound states via an auxiliary Yukawa

interaction. Hence in the continuum limit mirror modes will be forced to



decouple from the spectrum without breaking chiral symmetry.

This proposal led to many numerical studies of different models. Golter-

man et.al critiqued this proposal by showing that in specific realizations

of the EP model the required phase containing a four fermion condensate

was separated from the massless phase needed for a chiral theory by an in-

termediate phase in which the gauge symmetry was spontaneously broken.

This was proven in the large N limit where the model contains N flavors

of fermion. It led to the idea that the four-fermion phase was a lattice

artifact and further work on these models stopped. However in recent few

years this picture has changed. In three dimensions several studies of an

SU(4) invariant four-fermion model have provided evidence in favor of a

direct transition between massless(PMW) phase and four-fermion(PMS)

phase. The generation of a mass without breaking symmetries via a sym-

metric four fermion condensate has received a lot of interest within the

condensed matter community. Indeed this mechanism has been employed

to gap out edge modes of topological insulators without breaking any sym-

metries. Of course the question for high energy physics is whether these

new four fermion models exhibit this same structure in four dimensions

and, if so, can it be used in the context of the original EP proposal to

create a lattice theory whose low energy excitations are chiral. In this

thesis I discuss the progress towards this goal.
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Throughout this dissertation, we have adopted the following conventions:

• Greek indices µ, ν, λ, ... label the components of lattice vectors with respect to

the coordinate basis and take values 0, 1, 2, 3.

• Latin indices a, b, c, ... run over the spatial coordinates and take the values 1, 2, 3.

• Repeated indices are summed over.

• We work in units such that ~ = c = 1. This results in units where

[Mass] = [Energy] = [Momentum] = [Length−1] = [Time−1].

Throughout this dissertation, we have used the following abbreviations:

– EFT: Effective Field Theory

– QED: Quantum Electrodynamics

– QCD: Quantum Chromodynamics

– QFT: Quantum field theory

– SM: Standard Model

– PMS: Paramagnetic Strong

– PMW: Paramagnetic Weak

– AFM: Anti-Ferromagnetic

– FM: Ferromagnetic
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– EP: Eitchen-Preskill
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Chapter 1

Lattice Fermions

1.1 Introduction

The standard model of particle physics has successfully explained to great ex-

tent the plethora of particles discovered so far. Basic constituents of the SM

include families of leptons and quarks with diverse gauge couplings to various

force-carriers. In particular, quark confinement in QCD leads to break down of

conventional perturbation theory and makes non-perturbative dynamics of SM

fermions inaccessible. The application of lattice methods to fermion theories

with gauge fields has increased our understanding of non-perturbative sector by

making use of numerical simulations. However putting fermions on the lattice

gives rise to fermion doubling which transforms a continuum chiral theory into

vector-like on the lattice. Moreover in lattice formalism we need to have a well-

defined continuum limit which is imperative for the validity of physics extracted

from lattice dynamics. In this context it is important to overcome this obsta-

cle to ensure existence of continuum chiral gauge theories and to study their

non-perturbative dynamics using lattice methods. This requires construction

of lattice fermions in a framework devoid of any doubling and with the right
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continuum limit. In the next few sections we review lattice fermions, species

doubling and proposed solutions. We emphasize more on staggered fermions

since we are going to use staggered construction and it’s reduced formalism for

the rest of this dissertation. Briefly, we also discuss gauge fields on the lattice.

1.2 Naive fermions

In this section we review the discretization of the fermion action. Starting with

the euclidean Dirac action given by

SF =

∫
d4xψ̄(γµ∂µ +m)ψ(x) (1.1)

we discretize the action by introducing a lattice where continuous positions are

replaced by discrete points and integrals by discrete sums over the lattice. The

discretized action takes the following form

SlatticeF =
∑
x

a4
( 1

2a

∑
µ

ψ̄(x)γµδµψ(x) + ψ̄(x)ψ(x)
)

(1.2)

where δµ is symmetric difference operator with the action

δµψ(x) =
1

2a
[ψ(x+ µ)− ψ(x− µ)] (1.3)

and γµ are euclidean gamma matrices satisfying a Clifford algebra. Transform-

ing to momentum space the naive fermion propagator obtained is

〈ψαψ̄β〉 =

∫ π
a

−π
a

d4p

(2π)4

[−i
∑

µ γµp̃µ +m]αβ∑
µ p̃µ

2 +M2
(1.4)

2



where α, β are spinor indices and p̃µ is defined as

p̃µ =
1

a
sin(pµa) (1.5)

In the limit a → 0 this propagator will reduce to the continuum Dirac propa-

gator but with sixteen poles rather than a single one. The emergence of these

extra poles of the fermion propagator is called species doubling or more com-

monly known as fermion doubling. These poles can be interpreted as additional

flavors in the continuum limit. In real space this doubling is associated with a

set of fifteen invariances of the lattice action given by

ψ(x)→ (−1)xµγµγ5ψ(x), ψ(x)→ (−1)xµ(−1)xνγµγ5γνγ5ψ(x)

ψ(x)→ iε(x)(−1)xµγµψ(x), ψ(x)→ iε(x)γ5ψ(x)
(1.6)

These 15 symmetry generators generate an SU(4) flavor symmetry. In gen-

eral the doubling symmetry relates sixteen corners of Brillouin zone, up to a

reshuffling of spinor indices. Since the propagator is invariant under these trans-

formations there are sixteen energetically degenerate species (modes) having the

same mass m in the continuum limit. Each of these modes contribute to the

axial anomaly in a specific pattern leading to a vanishing of the anomaly in the

lattice theory. In general in d space-time dimensions we will have 2d additional

species (modes) for each fermion. Wilson proposed a solution for this problem

with the addition of a second-order derivative term which only couples to the

doubler modes with momentum dependent masses for each doubler mode. In

the continuum limit all the doubler modes become infinitely massive, thus de-

coupling from the spectrum, leaving behind a single primary fermion. However

the Wilson term explicitly breaks chiral symmetry as it becomes a Dirac type

mass term in the continuum. We will discuss in chapter 3 how a generalized Wil-

son term can be used in our formulation to gap out doublers without explicitly

3



breaking chiral symmetry. Another resolution was proposed by Kogut-Susskind

which goes by the name of staggered fermions in the lattice literature. Next we

will describe the staggered fermion formulation.

1.3 Staggered Fermions

The naive fermions describe sixteen continuum fermions. The staggered fermion

reduces this to four using a trick called spin diagonalization which can be

achieved by the following transformations

ψ(x)→ U(x)χ(x), ψ̄(x)→ χ̄(x)U †(x) (1.7)

where U(x) are 2
d
2 × 2

d
2 unitary matrices with the property

U †(x)γµU(x+ µ) = ηµ(x)I (1.8)

The following unitary matrix U(x) satisfies the equation above

U(x) = γx11 γ
x2
2 ...γ

xd
d (1.9)

with phases ηµ(x) defined as

ηµ(x) = (−1)
∑d−1
i=1 xi (1.10)

Using single component staggered field χ(x) we can write action (Eq. 1.1) as

SF =
∑
x,µ,α

ηµ(x)χ̄α(x)∆µχα(x) +m
∑
x

χ̄α(x)χα(x) (1.11)

There are no gamma matrices left in the action. The staggered action with

4



index α = 1, 2, .... has 2
d
2 redundant copies. Thus we can choose a single copy

and write an action with no spinor indices as

SstagF =
∑
x,µ

ηµ(x)χ̄(x)[χ(x+ µ)− χ(x− µ)] +m
∑
x

χ̄(x)χ(x) (1.12)

Now we have only one d.o.f per lattice site with the ηµ(x) phases remnants of

the Dirac gamma matrices. They satisfy an anti-commutation relation given by

ηµ(x)ην(x+ µ) + ην(x)ηµ(x+ ν) = 2δµν (1.13)

Using appropriate linear combination of staggered fields in the hypercube we

can write single component staggered action as 2
d
2 flavored Dirac field ψa where

a = 1, 2, ...2
d
2 with components given by ψaα where α is spinor index. This

restructured action can be used to take continuum limit which produces 2
d
2

flavors of Dirac fermions in the continuum.

We have thus reduced the number of doubler modes by a factor of four with spin

diagonalization and transforming to single component staggered fields. Without

removing redundant copies of staggered action from eqn 1.11 we would still have

full SU(4) doubling symmetry with no space-time dependence. This projection

to a single component staggered field makes all symmetries except color and

flavor x dependent. The translation to naive fermions now takes the following

form

ψ(x)→ ψ(x+ µ) =⇒ Φ(x)→ ξµ(x)γµΦ(x+ µ) (1.14)

where Φ is four-component spinor and ξµ(x) = (−1)
∑d
i=µ+1 xi We can’t sim-

ply project it down to single component staggered field since the projection

doesn’t commute with lattice translational symmetry. However a combination

of the doubling transformation with single link translations called shifts realize

5



a pseudo-translation on staggered fields.

ψ(x)→ iε(x)(−1)xµγµψ(x+ µ) =⇒ χ(x)→ ξµ(x)χ(x+ µ) (1.15)

A normal lattice translation can be realized using ξµ(x)ξµ(x+ µ) = 1. However

this is translation by twice the lattice spacing.

With shift symmetry realized as pseudo-translation, other lattice symmetries

satisfied by staggered fermions are

1. Space-time rotation

χ(x)→MΛ(Λ−1x)χ(Λ−1x) (1.16)

where Λµν is a rotation on lattice co-ordinates and

MΛ = 1
2
(1±ηµ(x)ην(x)∓ξµ(x)ξν(x)+ηµ(x)ην(x)ξµ(x)ξν(x)) is a pure phase

with sign convention ± if µ > ν and ∓ if µ < ν

2. Axis Reversal

χ(x)→ (−1)µχ(Iµx) (1.17)

where Iµ(x) is axis reversal operation such that xµ → −xµ and xν → xν

where ν 6= µ.

The symmetries above have a well-defined continuum limit for staggered fermions.

For example the hypercubic rotation Λµν → SO(4) in the continuum. How-

ever the doubling symmetry of naive fermions now takes the form of a discrete

subgroup of SU(4) namely Γ4 generated by shifts Sµ = ξµ(x) satisfying anti-

commutation relation

SµSν + SνSµ = 2δµν (1.18)

6



Γ4 is smallest subgroup contained in SU(4) doubling group with 32 elements. In

momentum space Sµ furnishes a 4-dimensional fermionic representation which

is more commonly known as the taste-basis. Taste (flavor) SU(4) symmetry of

naive fermions have been explicitly broken down to Γ4 by staggered fermions

whilst the 2d doubler modes associated with naive fermions have been reduced

to 2
d
2 modes. Staggered fermions have no Dirac structure of course so there is

no notion of left and right-handed fields 1. Axial symmetry after spin diagonal-

isation then takes the following form

ψ(x)→ γ5ψ(x) =⇒ Φ(x)→ γ5ε(x)Φ(x) (1.19)

where Φ is a spinor in spin-diagonal basis. From this transformation it’s easy

to see that this symmetry won’t survive projection onto single component stag-

gered fields. We can define a more generic transformation which maps γ5 to

unity under staggering, but it won’t be an axial transformation exactly. An-

other important feature of the transformation in (1.19) is the appearance of

ε(x) which behaves like γ5 for staggered fields. An important symmetry of

continuum Dirac operator as well as lattice fermion operator is γ5−hermiticity

(γ5D)† = γ5D ⇐⇒ γ5Dγ5 = D† (1.20)

This γ5 − hermiticity takes a unique form in the staggered formalism with γ5

replaced by ε(x) satisfying

D(x, y)† = ε(x)D(x, y)ε(y) (1.21)

where D(x, y) is the staggered fermion operator. This property implies anti-

1In analogy with left and right-handed fields we can define even(odd) projectors Pe,o = 1±ε(x)
2

on fermion field components living on even and odd sites
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hermiticity of the staggered operator

D† = −D (1.22)

which arises from the following property

ε(x)ε(x+ µ) = −1 (1.23)

From this we deduce that the staggered action has a residual chiral symmetry

emerging from peculiar properties associated with ε(x).In chiral limit we have

U(1)ε symmetry

χ→ eiαε(x)χ χ̄(x)→ χ̄(x)eiαε(x) (1.24)

which is an axial-like transformation however it is a taste non-singlet and is

spontaneously broken with ε(x)χ̄(x)χ(x) as interpolating field. It’s obvious

from (1.24) that fields on even and odd sites transform differently. Using this

fact we can realize the flavor symmetry in the following way

χ(x)→ eiT
aθaε(x)χ(x) χ̄(x)→ χ̄(x)eiT

aθaε(x) (1.25)

where T a are flavor generators of U(N). Another way of representing this

transformation by realizing independent transformations on even and odd sites

is given by

χe → Ueχe , χ̄o → χ̄U †e , Ue ∈ Ue(N)

χ̄e → χ̄eU
†
o , χo → Uoχo, Uo ∈ Uo(N)

(1.26)

where χe represents χ(x) on even sites while χo represents χ(x) on odd sites.

Staggered kinetic term is invariant under these transformations which form
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Ue(Nf ) ⊗ Uo(Nf ) chiral-flavor symmetry2. Similarly we have a vector-flavor

symmetry satisfied by kinetic term.

χ(x)→ eiT
aθaχ(x) χ̄(x)→ χ̄(x)e−iT

aθa (1.27)

Gauge fields can be introduced for the staggered fermion with a slight modifi-

cation to shift symmetry transformation which now includes transformation for

the gauge links as well. The staggered action with gauge fields reads

SstagF =
∑
x,µ

ηµ(x)[χ̄(x)Uµ(x)χ(x+µ)− χ̄(x)U †µ(x−µ)χ(x−µ)]+m
∑
x

χ̄(x)χ(x)

(1.28)

and shift symmetry Sµ is given by

χ(x)→ ξµ(x)χ(x+ µ)

χ̄(x)→ ξµ(x)χ̄(x+ µ)

Uν(x)→ Uν(x+ µ) ∀ν

(1.29)

1.4 Reduced Staggered Fermions

Staggered fermion reduces doubling from 2d species to 2
d
2 through spin diago-

nalisation. This can be further improved by using the reduced staggered for-

malism. We simply restrict the fields χ to odd sites and χ̄(x) to even sites using

even(odd) projectors.

χ(x)→ 1− ε(x)

2
χ(x)

χ̄(x)→ χ̄(x)
1 + ε(x)

2

(1.30)

2For gauge group SU(3) this symmetry possess the right continuum limit however for SU(2)
symmetry breaking pattern doesn’t give the right continuum limit.
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By restricting χ̄ to even sites we can identify it as an independent field by

dropping the bar and re-labeling it as χ. This produces a "real" or Majorana-

like staggered fermion with action given by

S = −1

2

∑
x,µ

ηµ(x)χ(x)χ(x+ µ) (1.31)

Here we emphasize that the reduced staggered action is invariant under the full-

staggered symmetry group. It is easy to verify that [(1.15)-(1.17)] is satisfied

along with global U(1) transformation of the form χ(x) → eiαε(x)χ(x). An im-

portant consequence of this formalism is the non-existence of a single site mass

term since χ(x)χ(x) vanishes due to Grassmann nature. However a disadvan-

tage arises when you want to write an action with flavor symmetry. We can only

use groups with real or pseudo-real representations as flavor groups for reduced

staggered formalism. Gauge fields can be introduced in a straight-forward man-

ner starting will the full staggered action in (1.28). Restricting fields χ̄(x) to

even sites and χ(x) to odd sites we get reduced gauged action

S = −1

2

∑
x,µ

ηµ(x)χT (x)Uµ(x)χ(x+ µ) (1.32)

where Uµ(x) is defined as:

Uµ(x) =
1 + ε(x)

2
Uµ(x) +

1− ε(x)

2
U∗µ(x) (1.33)

The action in (1.32) has a global U(1) invariance and is also shift symmetric.

The U(1) invariance is

χ(x)→ eiαε(x)χ(x) (1.34)
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and shift symmetry is given by

χ(x)→ ±ξµ(x)ψ(x+ µ), Uν(x)→ U∗ν (x+ µ) (1.35)

Other symmetries in [(1.16)-(1.17)] also hold true in the gauged construction

of reduced formalism. Shift symmetries can be interpreted as discrete remnant

of continuum chiral symmetries [26]. A gauge invariant operator which breaks

shift symmetry is given by

O =
∑
xµ

ε(x)ξµ(x)χ(x)[Uµ(x)χ(x+ µ) + U †µ(x− µ)χ(x− µ)] (1.36)

This operator in the continuum will take form of a mass term which breaks

chiral symmetry. We can set gauge links Uµ(x) = ∞ to get the non-gauged

version of this operator. Many other link bilinear operators can be constructed

in reduced staggered formalism using fields in hypercube but each of them have

a different continuum interpretation. The spectrum of such possible operators

have been discussed in detail in Ref. [4]. At this point we have developed enough

machinery for full staggered and reduced staggered formalisms to explore more

generic models with flavor(gauge) symmetries.
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Chapter 2

Dynamical mass generation from

four-fermion interactions

2.1 Fermion mass without symmetry breaking

We introduce four dimensional lattice model with four-fermion interactions in-

variant under an SO(4) symmetry. This model is motivated by work of [1, 2]

who constructed SU(4) invariant theory in three dimensions and provided nu-

merical evidence that system can dynamically generate mass for fermions with-

out breaking any symmetry. Mechanism of symmetric mass generation is novel

in the sense that there exist no local order parameter that differentiates be-

tween massless and massive phases of the system. We choose SO(4) over SU(4)

because latter would cause a sign problem for rational hybrid Monte Carlo algo-

rithm. We use reduced staggered formalism for constructing this model which

ensures absence of single-site SO(4) invariant mass term. Infact without the

mass term our model also satisfies SU(4) symmetry. In order to construct SO(4)

invariant mass term we can use one-link mass term using fields in the hypercube.

SO(4) and shift symmetries can spontaneously break through condensation of
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bilinear and one-link mass terms induced via quantum corrections. We develop

analytic arguments that for large four-fermi coupling only four-fermion conden-

sate survives. Moreover using strong-coupling expansion we show that fermion

propagator is massive at critical value of four-fermi coupling.

2.2 Lattice model and symmetries

Consider a theory four reduced staggered fermions in four dimensions with action

containing on-site SU(4) invariant four-fermion interaction. Action is given by

S =
1

2

∑
x,µ

ηµ(x)ψa∆ab
µ ψ

b − G2

4

∑
x

εabcdψ
aψbψcψd (2.1)

where ∆ab
µ ψ

b = δab[ψb(x + µ) − ψa(x − µ)] and ηµ(x) are staggered phases

described in (1.10). ψa is in fundamental representation of SU(4) and transform

as following

ψ → eiαε(x)ψ (2.2)

with α an element in SU(4) algebra. Kinetic part of action also satisfies global

U(1) symmetry given by

ψ → eiθε(x)ψ (2.3)

however with addition of four-fermion interaction this symmetry is explicitly

broken to Z4 whose action is given by ψ → Γψ where Γ = [1,−1, iε(x),−iε(x)].

All other staggered symmetries involving shifts, axis reversal , 90◦ rotations

are satisfied by action above. Z4 and SU(4) symmetries constrain spectrum

of possible bilinear terms that can emerge in quantum effective action through

quantum corrections. A single site mass-term of the form ψa(x)ψa(x), which
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is only SO(4) symmetric, is not allowed by Grassman nature of fermion fields.

Another mass term of the form ψa(x)ψb(x) breaks not only SU(4) invariance

but also breaks Z4 → Z2. Other SO(4) invariant possible link bilinear operator

we can add to our action is

O =
∑
x,µ

mε(x)ξµ(x)ψaSµψ
a (2.4)

where symmetric translation operator Sµ acts as following Sµψ(x) = ψ(x+µ)+

ψ(x − µ). This operator explicitly breaks lattice shift symmetry. Numerical

evidence suggests that link-bilinear doesn’t survive V →∞,m→ 0 limit.

2.3 Strong coupling expansion

In weak coupling limit G→ 0 we have massless fermions. Four-fermi coupling is

an irrelevant operator by dimensional analysis hence we expect no spontaneous

symmetry breaking through fermion bilinear condensation.At strong coupling

we can understand system behavior by taking the static limit G→∞ in which

we can drop kinetic term. Partition function is completely saturated by four-

fermion terms at each site of the form

Z ∼ [6G2

∫
dψ4dψ3dψ2dψ1ψ1ψ2ψ3ψ4]V (2.5)

In similar fashion it can argued that no bilinear operator can pick up vev for

large G since that would require only two Grassmann variables to saturate the

measure rather than having only four Grassmann variables at each site leading

to vanishing vev. To establish that fermions dynamically acquire mass through

four-fermion interaction we compute fermion propagator at strong coupling.

For convenience we rescale fermions ψ →
√
α where α = 1√

6G
� 1 which makes
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kinetic term pre-factor α and interaction-term pre-factor unity. Strong coupling

expansion now means an expansion in α. Following the method developed in [22]

we consider following fermion two-point function 〈ψ1(x)ψ1(y)〉 given by

〈ψ1(x)ψ1(y)〉 =
1

Z

∫
DΨ ψ1(x)ψ1(y) e−S (2.6)

where
∫
DΨ =

∫ ∏
x dψ

4dψ3dψ2dψ1. To saturate Grassman measure at site

x we need to bring down ψ2ψ3ψ4 by expanding e−S. This leads to following

relation

〈ψ1(x)ψ1(y)〉 =
(α

2

)3
∫
x

DΨ
∑
µ

ηµ[Ψ1(x+ µ)−Ψ1(x− µ)]ψ1(y) e−S (2.7)

where Ψ1 = ε1234ψ
2ψ3ψ4 and

∫
x
implies that integration on site x can’t be done

again. Repeating this procedure at site x± µ we get

〈ψ1(x)ψ1(y)〉 =
(α

2

)3
∑
µ

(δx+µ,y−δx−µ,y)+
(α

2

)4
∫
x,x+µ

Dψ
∑
µ

[ψ1(x+2µ)+ψ1(x−2µ)]ψ1(y) e−S

(2.8)

It is easy to see that second term on right hand of (2.8) is 〈ψ1(x± 2µ)ψ1(y)〉1.

We can express above recurrence relation (2.8) between propagators at displaced

sites in a closed form by transforming to momentum space where fermion prop-

agator takes the form

〈ψ1ψ1(p)〉 =

(
i
α

)∑
µ sin pµ∑

µ sin p2
µ +m2

F

(2.9)

with mF = −2 + 4
α2 . An important point here is that mass we get from propa-

gator is a leading order result and doesn’t indicate critical G for which mF → 0.

An analogous expansion can be performed for bosonic propagator corresponding
1This expansion with propagator at x±2µ is leading order in α. We can also include contributions

from x± ν which will lead to an expansion with higher order in α
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to SO(4) non-symmetric site bilinear B(x) = ψ1(x)ψ2(x) + ψ3(x)ψ4(x)

〈B(x)B(y)〉 = 2δx,y +
(α

2

)2
∑
µ,±

〈B(x± µ)B(y)〉 (2.10)

and in momentum space

〈BB(p)〉 =
8
α2

4
∑

µ sin p2
µ +m2

B

(2.11)

In light of these analytic results we can expect that both fermionic and bosonic

spectrum is gapped at strong coupling. Fermionic gap can be understood

through condensation of bilinear formed by an elementary fermion ψa and three-

fermion composite state Ψa = εabcdψ
bψcψd. Formation of three-fermion com-

posite state is definitely non-perturbative phenomenon only accessible through

lattice simulations. Massless phase and massive phases should be separated by

a phase transition.Earlier studies of lattice Higgs-Yukawa model using Wilson

or staggered fermions revealed PMS(massive) phase at strong coupling however

this phase was separated from PMW(massless) phase by an intermediate phase

where fermion bilinear condensation spontaneously breaks global symmetries of

model under consideration. In these previous models intermediate phase was

large enough to make PMS(massive) phase a lattice artifact. Our work will

establish that indeed an intermediate phase exists but it’s very narrow and can

be removed by expanding the phase diagram with an additional parameter.

2.4 Auxiliary field representation

Before introducing our generalized Higgs-Yukawa model in next chapter here

we present alternative auxiliary field representation of action in( Eq. (2.1)).

We employ standard Hubbard-Stratonovich transformation to rewrite action
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quadratic in Grassmann variables. For this purpose we introduce auxiliary field

σab+ which is anti-symmetric in internal indices a, b and possess important self-

dual property.

σ+
ab = P+

abcdσcd =
1

2

(
σab +

1

2
εabcdσcd

)
(2.12)

where the projecter P±abcd is given by

P±abcd =
1

2

(
δacδbd ±

1

2
εabcd

)
(2.13)

With these definitions we can write (Eq. (2.1)) as

S =
1

2

∑
x,µ

ψa(x)[η.∆ +Gσ+
ab]ψ

b(x) +
1

4

∑
x

(
σ+
ab

)2 (2.14)

Fermions can be integrated out to generate Pffafian of fermion operator given

by

M = η.∆ +Gσ+ (2.15)

It can shown using local isomorphism SO(4) ∼ SU+(2)×SU−(2) that Pf(M) is

positive definite. Since the operator is real and anti-symmetric it’s eigenvalues

are pure imaginary and exist in pairs. As σ+
ab is a dynamical field eigenvalues

keep changing and for a given σ+
ab configuration having an odd numbers of

negative eigenvalues would result in sign problem. Fermions transform as a

doublet of SU+(2) × SU−(2) whereas σ+
ab transforms under SU+(2) but it is

a singlet under SU−(2). This singlet nature leads to double degeneracy in

spectrum of fermion operator as it is invariant under SU−(2). Numerically we

can see double degeneracy of eigenvalue spectrum which ensures positivity of

Pffafian. This is important for hybrid Monte Carlo algorithm since it eliminates

potential sign problem.
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2.5 Analytic arguments for phase structure

We will examine square of auxiliary field 1
4
σ2

+ = 1
4

∑
a<b

(
σab+

)2 as a probe for un-

derstanding different phases in our numerical work. 〈1
4
σ2

+〉 has been analytically

computed in [3] in G→ 0 and G→∞ limit. Consider following action

S =
1

2

∑
x,µ

ψa(x)[η.∆ +Gσ+
ab]ψ

b(x) +
β

4

∑
x

(
σ+
ab

)2 (2.16)

It’s easy to see that

〈1
4
σ2

+〉 = − 1

V

∂ lnZ(G, β)

∂β
(2.17)

By rescaling σ+ with 1√
β
we can write partition function Z(G, β) as

Z(G, β) =

∫
Dσ+

∫
Dψ e−S = β−

3V
2 Z(

G√
β
, 1) (2.18)

where self-dual character of σ+ has been used to allow only three independent

integrations at each lattice site. Hence

〈1
4
σ2

+〉 =
3

2β
− 1

V

∂ lnZ( G√
β
, 1)

∂β
(2.19)

Integrating fermion we have

Z(
G√
β
, 1) =

∫
Dσ+Pf(η.∆ +

G√
β
σ+) e−

1
4
σ2
+ (2.20)

For G = 0 partition function is independent of β and second term in (Eq. (2.19))

vanishes. In G→∞ limit Z( G√
β
, 1) has simple dependence on β which is β−V .

This can be extracted from strong-coupling limit in (Eq. (2.5)). Now setting

β = 1 after taking the derivative in (Eq. (2.19)) we have
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〈1
4
σ2

+〉 =

 3
2

G→ 0

5
2

G→∞
(2.21)

In numerical work we have both σ+ and σ− fields appearing in term quadratic

in auxiliary field. Since σ− doesn’t couple with fermions it has no dynamics.

Repeating the analysis above for σ− we can show that 〈1
4
σ2
−〉 = 3

2
completely

independent of G. We will use 〈1
4
σ2

+〉 − 3
2
as an observable rather than 〈1

4
σ2

+〉.

We will discuss in next chapter expansion of this model with a kinetic term for

auxiliary field and resulting phase diagram.
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Chapter 3

SO(4) invariant Higgs-Yukawa

model on lattice

3.1 Introduction

The model presented in this chapter is a generalization of four fermion system

with the same symmetries discussed in last chapter. It has received recent at-

tention because of its unusual phase structure comprising massless and massive

symmetric phases separated by a very narrow phase in which a small bilinear

condensate breaking SO(4) symmetry is present. The generalization described

here simply consists of the addition of a scalar kinetic term. The motivation

for this work comes from recent numerical studies [1–8] of a particular lattice

four fermion theory constructed using reduced staggered fermions [9]. In three

dimensions this theory appears to exist in two phases - a free massless phase and

a phase in which the fermions acquire a mass [1, 2, 4, 5]. What is unusual about

this is that no local order parameter has been identified which distinguishes be-

tween these two phases - the massive phase does not correspond to a phase of

broken symmetry as would be expected in a conventional Nambu–Jona-Lasinio
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scenario. Furthermore, the transition between these two phases is continuous

but is not characterized by Heisenberg critical exponents.

When this theory is lifted to four dimensions, however, a very narrow symmetry

broken phase reappears characterized by a small bilinear condensate [3, 6–8].

In Ref. [10] we constructed a continuum realization of this lattice theory and

argued that topological defects may play an important role in determining the

phase structure. This calculation suggests that the addition of a kinetic term

for the auxiliary scalar field σ+ used to generate the four fermion interaction

may allow access to a single phase transition between massless (paramagnetic

weak-coupling, PMW) and massive (paramagnetic strong-coupling, PMS) sym-

metric phases. In this paper we provide evidence in favor of this from direct

numerical investigation of the lattice Higgs-Yukawa model. This development

presents the possibility of new critical behavior in a four-dimensional lattice

theory of strongly interacting fermions, which would be very interesting from

both theoretical and phenomenological viewpoints, and also connects to recent

activity within the condensed matter community [11, 12]. In the next section

we describe the action and symmetries of the lattice theory, followed by a dis-

cussion of analytical results in certain limits in Sec. 3.3. We present numerical

results for the phase structure of the theory in Sec. 3.4, and extend this inves-

tigation in Sec. 3.5 by adding symmetry-breaking source terms to the action in

order to search for spontaneous symmetry breaking in the thermodynamic limit.

These investigations reveal significant sensitivity to the hopping parameter κ in

the scalar kinetic term, with an antiferromagnetic (AFM) phase separating the

PMW and PMS phases for κ ≤ 0 but an apparently direct and continuous tran-

sition between the PMW and PMS phases for a range of positive κ1 < κ < κ2.

Our current work constrains 0 < κ1 < 0.05 and 0.085 < κ2 < 0.125. We collect

these results to present our overall picture for the phase diagram of the theory

in Sec. 3.6. We conclude in Sec. 3.7 by summarizing our findings and outlining
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future work.

3.2 Action and Symmetries

The action we consider takes the form

S =
∑
x

ψa[η.∆ab +Gσ+
ab]ψ

b +
1

4

∑
x

(σ+
ab)

2

−κ
4

∑
x,µ

[
σ+
ab(x)σ+

ab(x+ µ) + σ+
ab(x)σ+

ab(x− µ)
] (3.1)

where repeated indices are to be contracted and ηµ(x) = (−1)
∑µ−1
i=1 xi are the

usual staggered fermion phases. The second line in eqn. 3.1 is essentially a

kinetic operator for the σ+ field. With κ set equal to zero we can integrate out

the auxiliary field and recover the pure four fermion model studied in Ref. [3].

The rationale for including such a bare kinetic term for the auxiliary field is

provided by arguments set out for a related continuum model in Ref. [10].

More concretely, it should be clear that κ > 0 favors ferromagnetic ordering of

the scalar field and associated fermion bilinear. This is to be contrasted with

the preferred antiferromagnetic ordering observed in Refs. [6, 8] for the κ = 0

theory.1 The competition between these two effects raises the possibility that

the κ = 0 antiferromagnetic fermion bilinear condensate may be suppressed as

κ is increased.

In contrast to similar models studied by Refs. [13–21] we fix the coefficient of

the ((σ+)2 − 1)2 term in the action to be λ = 0. Without this term to provide

a constraint on the magnitude of the scalar field, we will encounter instabilities

when the magnitude of κ is too large. We discuss these instabilities in more
1Although Ref. [3] observed a strong response to an antiferromagnetic external source, evidence

of spontaneous ordering in the zero-source thermodynamic limit was not found until the follow-up
Ref. [8].
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detail in the next section.

In addition to the manifest SO(4) symmetry the action is also invariant under

a shift symmetry

ψ(x)→ ξρψ(x+ ρ) (3.2)

with ξµ(x) = (−1)
∑d
i=µ xi and a discrete Z2 symmetry:

σ+ → −σ+ (3.3)

ψa → iε(x)ψa. (3.4)

Both the Z2 and SO(4) symmetries prohibit local bilinear fermion mass terms

from appearing as a result of quantum corrections. Non-local SO(4)-symmetric

bilinear terms can be constructed by coupling fields at different sites in the

unit hypercube but such terms break the shift symmetry. Further discussion of

possible bilinear mass terms is presented in detail in Ref. [3].

3.3 Analytical results

Before we present numerical results we can analyze the model in certain limits.

For example, since the action is quadratic in σ+ we can consider the effective

action obtained by integrating over σ+. The scalar part of the action may be

rewritten
1

4
σ+
(
−κ2 +m2

)
σ+ (3.5)

where m2 = (1− 2dκ) is an effective mass squared for the σ+ field in d dimen-

sions and 2 is the usual discrete scalar laplacian. Integrating out σ+ yields an

effective action for the fermions

S =
∑

ψ (η.∆)ψ −G2
∑

Σ+
[
−κ2 +m2

]−1
Σ+ (3.6)
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where Σ+
ab = [ψaψb]+ is the self-dual fermion bilinear. For κ small we can expand

the inverse operator in powers of κ/m2 and find

S =
∑

ψ (η.∆)ψ − G2

m2
Σ+
(
I +

κ

m2
2 + . . .

)
Σ+. (3.7)

To leading order the effect of non-zero κ is to renormalize the Yukawa coupling

G→ G
m

= G√
1−2κd

. At next to leading order we obtain the term

G2

m4

∑
Σ+ [−κ2] Σ+. (3.8)

For κ > 0 and sufficiently large G this term favors a ferromagnetic ordering

of the fermion bilinear 〈Σ+〉 6= 0. Conversely it suggests an antiferromagnetic

ordering with 〈ε(x)Σ+(x)〉 6= 0 for κ < 0. This can be seen more clearly if one

rewrites the action in the alternative form

S =
∑

ψ (η.∆)ψ −G2
∑

Σ+ [−κB + I]−1 Σ+ (3.9)

where BΣ =
∑

µ [Σ(x+ µ) + Σ(x− µ)]. Clearly changing the sign of κ can be

compensated by transforming Σ+ → ε(x)Σ+ since ε(x) anticommutes with B.

Two of us investigated the case κ = 0 in Ref. [8] and observed a narrow phase

with antiferromagnetic ordering. Since κ > 0 produces ferromagnetic terms we

expect the tendency toward antiferromagnetic ordering to be reduced as κ is

increased. The numerical results described in the following section confirm this.

For κ > 1
2d

= 1
8
the squared mass changes sign and one expects an instability to

set in with the model only being well defined for κ < 1
8
. Actually there is also

a lower bound on the allowed values of κ. To see this return to eqn. 3.5 and
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perform the change of variables

σ+
ab(x)→ ε(x)σ+

ab(x) (3.10)

κ→ −κ.

This implies that the partition function Z (κ) is an even function of κ at G = 0.

We can show that this is also true in the strong coupling limit G → ∞. In

this limit we can drop the fermion kinetic term from the action in eqn. 3.1 and

expand the Yukawa term in powers of the fermion field

Z =

∫
DψDσ+

(
1−Gψσ+ψ +

1

2
(Gψσ+ψ)2

)
eS(σ+). (3.11)

The only terms that survive the Grassmann integrations contain even powers

of σ+. Using the same transformation eqn. 3.10 allows us to show that the

partition function is once again an even function of κ. Thus we expect that at

least for weak and strong coupling the partition function is only well defined in

the strip −1
8
< κ < 1

8
.

It is also instructive to compute the effective action for the scalar fields having

integrated out the fermions. This takes the form2

Seff = −1

4
Tr ln

(
−∆2

µ +M2 +Gηµ(x)ε(x)∆µσ
+
)

(3.12)

where M2 = −G2(σ+)2. To zeroth order in derivatives the resultant effective

potential is clearly of symmetry breaking form. The first non-trivial term in the
2To facilitate the computation we have traded the original ferromagnetic Yukawa coupling ψσ+ψ

in eqn. 3.1 for an antiferromagnetic coupling ε(x)ψσ+ψ while simultaneously trading κ→ −κ as in
eqn. 3.10. This allows us to simplify the expression for the effective action by using the fact that
ε(x) anticommutes with ∆µ.
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derivative or large mass M expansion of this action is

− G2

8M4

∑(
∆µσ

+
)2
. (3.13)

Thus even the pure four fermion model will produce kinetic terms for the scalar

field through loop effects confirming the need to include such terms in the

classical action.3 In Ref. [10] it was argued that an additional term should also

be generated which is quartic in derivatives in the continuum limit. This term

only arises for a self-dual scalar field and leads to the possibility that topological

field configurations called Hopf defects may play a role in understanding the

massive symmetric phase.

3.4 Phase Structure

One useful observable we can use to probe the phase structure in the (κ,G) plane

is
〈
σ2

+

〉
. This is shown for three different values of κ on a 84 lattice in Fig. 3.1.

At κ = 0 this observable served as a proxy for the four fermion condensate and

we observe this to be the case also when κ 6= 0. Thus we see that a four fermion

phase survives at strong Yukawa coupling G even for non-zero values of κ.

Of course the key issue is what happens for intermediate values of G. At

κ = 0 a narrow intermediate phase was observed for 0.95 . G . 1.15 in

two different ways: from the volume scaling of a certain susceptibility [6] and

by examining fermion bilinear condensates as functions of external symmetry
3A similar argument suggests that a quartic term λ((σ+)2 − 1)2 will also be produced. As

mentioned in the previous section we fix λ = 0 in the calculations reported here. In addition to
simplifying the parameter space to be considered, this step is also motivated by observations [20, 21]
that λ seems to have little effect on the large-scale features of the phase diagram in similar Higgs-
Yukawa models.
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Figure 3.1:
〈
σ2

+

〉
vs G for L = 8, comparing κ = ±0.05 and 0.

breaking sources [8]. This susceptibility is defined as

χstag =
1

V

∑
x,y,a,b

〈
ε(x)ψa(x)ψb(x)ε(y)ψa(y)ψb(y)

〉
(3.14)

where V = L4 and the subscript “stag” refers to the presence of the parity

factors ε(x) associated with antiferromagnetic ordering. It is shown in Fig. 3.2

for three different lattice volumes at κ = 0. The linear dependence of the peak

height on the lattice volume is consistent with the presence of a condensate〈
ε(x)ψa(x)ψb(x)

〉
6= 0.

Since κ < 0 generates additional antiferromagnetic terms in the effective fermion

action we expect this bilinear phase to survive in the κ < 0 region of the phase

diagram. This is confirmed in our calculations. Figure 3.3 shows a similar sus-

ceptibility plot for κ = −0.05, in which the width of the broken phase increases

while the peak height continues to scale linearly with the volume indicating the
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Figure 3.2: χstag vs G at κ = 0 for L = 4, 8 and 12.

presence of an antiferromagetic bilinear condensate.

The situation changes for κ > 0. Fig. 3.4 shows the susceptibility χstag for

κ = 0.05. While a peak is still observed for essentially the same value of G

the height of this peak no longer scales with the volume. Since κ > 0 induces

ferromagnetic terms in the action we also examine the associated ferromagnetic

susceptibility

χf =
1

V

∑
x,y,a,b

〈
ψa(x)ψb(x)ψa(y)ψb(y)

〉
. (3.15)

This is plotted in Fig. 3.5 for κ = 0.05, which shows no evidence of ferromagnetic

ordering at this value of κ. In the appendix we show that κ = 0.1 is sufficiently

large to produce a ferromagnetic phase.

The lack of scaling of the χstag peak with volume at κ = 0.05 might suggest that

the system is no longer critical at this point. This is not the case. Figure 3.6

shows the number of conjugate gradient (CG) iterations needed for Dirac op-
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Unlike the other susceptibility plots, the y-axis scale is not logarithmic.

erator inversions at κ = 0 and κ = 0.05 as a function of G for L = 8. This

quantity is a proxy for the fermion correlation length in the system. The peak

at κ = 0.05 is significantly greater than at κ = 0. Furthermore we have ob-

served that it increases strongly with lattice size rendering it very difficult to

run computations for L ≥ 16. Our conclusion is that there is still a phase tran-

sition around G ≈ 1.05 for small positive κ but no sign of a bilinear condensate.

We will reinforce this conclusion in the next section where we will perform an

analysis of bilinear vevs versus external symmetry breaking sources.

It is interesting to investigate the phase diagram away from the critical region.

Figure 3.7 shows the four fermion condensate vs κ at G = 2, which vanishes

at |κ| = 1
8
as expected by stability arguments. The structure of the curve

suggests that there may be a phase transition at κ ≈ 0.085 from a four fermion

condensate to a ferromagnetic condensate. This is illustrated by Fig. 3.8 where
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for κ > 0 we show the magnetization

M =
1

V

〈∣∣∣∣∣∑
x

∑
a<b

σ+
ab(x)

∣∣∣∣∣
〉
. (3.16)

The behavior near κ ≈ −0.085 in Fig. 3.8 shows a similar transition from four

fermion condensate to antiferromagnetic phase. For κ < 0 we add the usual

parity factor ε(x) to define the staggered magnetization Ms.

3.5 Fermion Bilinears

In this section we add source terms to the action that explicitly break both the

SO(4) and Z2 symmetries and, by examining the volume dependence of various

bilinear vevs as the sources are sent to zero, address the question of whether
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spontaneous symmetry breaking occurs in the system. The source terms take

the form

δS =
∑
x,a,b

(m1 +m2ε(x))[ψa(x)ψb(x)]Σab
+ (3.17)

where the SO(4) symmetry breaking source Σab
+ is

Σab
+ =

 iσ2 0

0 iσ2

 . (3.18)

For κ = 0 we find evidence in favor of antiferromagnetic ordering consistent with

the volume scaling of the susceptibility χstag. The antiferromagnetic bilinear vev〈
ε(x)ψa(x)ψb(x)

〉
plotted in Fig. 3.9 (with m1 = 0) picks up a non-zero value in

the limit m2 → 0, L→∞ signaling spontaneous symmetry breaking. The data

correspond to runs at the peak in the susceptibility G = 1.05, and similar results

are found throughout the region 0.95 . G . 1.15. This confirms the presence
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Figure 3.10: Antiferromagnetic bilinear condensate vs m2 = m1 at (κ,G) =
(−0.05, 1.05) for L = 6, 8 and 12.

of the condensate inferred from the linear volume scaling of the susceptibility

reported in the previous section.

For κ < 0 the picture is similar with Fig. 3.10 showing the same vev vs m2 = m1

for κ = −0.05 at the same G = 1.05. (Recall from Figs. 3.2–3.4 that the center

of the peak in χstag moves only very slowly for |κ| ≤ 0.05.) The increase in

vev with larger volumes at small m2 is again very consistent with the presence

of a non-zero condensate in the thermodynamic limit. The magnitude of this

condensate at κ = −0.05 is clearly larger than at κ = 0.

The situation for κ > 0 is quite different. Figure 3.11 shows plots of both

antiferromagnetic and ferromagnetic bilinear vevs at (κ,G) = (0.05, 1.05) for

several lattice volumes. These plots show no sign of a condensate as the source

terms are removed in the thermodynamic limit. Broken phases thus seem to be

evaded for small κ > 0. In the appendix we include results for larger κ ≥ 0.085.
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Figure 3.12: Sketch of the phase diagram in the (κ,G) plane.

While we observe a similar absence of bilinear condensates at κ = 0.085, the

expected ferromagnetic phase does clearly appear for κ ≈ 0.1 and we are able to

set loose bounds on the range κ1 < κ < κ2 within which there appears to be a

direct PMW–PMS transition, namely 0 < κ1 < 0.05 while 0.085 < κ2 < 0.125.

3.6 Resulting phase diagram

Putting this all together we sketch the phase diagram in Fig. 3.12. For small

G the system is disordered and the fermions massless. For large G and small

κ we see a four fermion condensate as before. As κ increases in magnitude

one expects a transition to either a ferromagnetic (κ > 0) or antiferromagnetic

(κ < 0) phase for sufficiently large G. However, for small positive κ close to

G = 1.05, while we observe no sign of a bilinear condensate there are strong

indications of critical slowing down and a large fermion correlation length. Since
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the weak and strong coupling phases cannot be analytically connected (one is

massless while in the other the fermions acquire a mass) there must be at

least one phase transition between them. Unlike the situation for κ ≤ 0 we

see no evidence for an intermediate broken-symmetry phase in this region and

hence the simplest conclusion is that a single phase transition separates the two

symmetric phases. Thus far we have seen no sign of first order behavior so this

transition appears to be continuous.

3.7 Summary and Conclusions

In this chapter we have expanded on our investigations of the phase diagram of a

four-dimensional lattice Higgs-Yukawa model comprising four reduced staggered

fermions interacting with a scalar field transforming in the self-dual represen-

tation of a global SO(4) symmetry. This extends recent work on a related four

fermion model in which a massless symmetric phase is separated from a massive

symmetric phase by a narrow broken symmetry phase characterized by a small

antiferromagnetic bilinear fermion condensate [3, 6–8].

Our main result is evidence that this broken phase may be eliminated in the

generalized phase diagram by tuning the hopping parameter in the scalar kinetic

term. This should not be too surprising since the ferromagnetic ordering favored

by κ > 0 counteracts the antiferromagnetic ordering observed for κ ≤ 0. There

is then a range of positive κ1 < κ < κ2 throughout which the massless and

massive symmetric phases appear to be separated by a single phase transition.

Since no order parameter distinguishes the two phases this transition is not of

a conventional Landau-Ginzburg type. Ref. [10] argues in a related continuum

model that the transition may be driven instead by topological defects. It would

be fascinating to investigate whether these topological defects could be seen in

numerical calculations.
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Future work will also focus on better constraining the values of κ1 and κ2

between which we observe the direct PMW–PMS transition. Our current results

suffice to establish that these two points are well separated, 0 < κ1 < 0.05 while

0.085 < κ2 < 0.125, but neither is very precisely determined yet. It is also

important to measure more observables in order to search for non-trivial scaling

behavior associated with this transition. The lack of scaling that we observe

for the susceptibility χstag at the phase boundary in Fig. 3.4 currently suggests

that the scaling dimension of the bilinear fermion operator would be greater

than two at any putative new critical point.

Clearly the possibility of realizing new fixed points in strongly interacting fermionic

systems in four dimensions is of great interest and we hope our results stimulate

further work in this area. Another important direction is constructing EP-like

model with addition of generalized Wilson term of Yukawa type with auxiliary

field σ+
ab and explore the region of phase diagram where we see a continuous

transition from massless to massive fermions. This is discussed in detail in Ap-

pendix B of this chapter. Moreover we construct continuum realization of our

model which is going to be subject of next chapter.
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3.8 Appendix A

In this appendix we collect some additional results for larger κ > 0.05, both

to strengthen our conclusions that there is no bilinear phase for a range of

positive κ and to confirm that a ferromagnetic phase does appear once κ and

G are sufficiently large. First, in Fig. 3.13 we consider κ = 0.085, around

the potential transition identified in Figs. 3.7 and 3.8. Whereas those earlier

figures considered G = 2, here we use the same G = 1.05 as Fig. 3.11 for

κ = 0.05. We again observe an absence of spontaneous symmetry breaking, with

the antiferromagnetic and ferromagnetic bilinear condensates both vanishing as

the symmetry-breaking source terms are removed, with no visible dependence

on the lattice volume.

The situation is qualitatively different in Fig. 3.14, which considers κ = 0.1 (at

G = 1.1) and shows clear signs of a non-zero ferromagnetic condensate in the

L → ∞ limit. In Fig. 3.15 we compare the ferromagnetic susceptibility χf for

three different κ = 0, 0.05 and 0.1. While this susceptibility is uniformly small

for κ = 0 and 0.05, the larger κ = 0.1 produces a strong jump to a large value

for G & 1.1, suggesting a first-order transition into the ferromagnetic phase.

Finally, Fig. 3.16 compares the four-fermion condensate vs G for κ = 0.05

and 0.1. Although the larger value of κ significantly reduces the four-fermion

condensate for large G & 1.2 (as previously shown in Fig. 3.7), there is a

very narrow peak around G ≈ 1.05. This may suggest that the system still

transitions directly from the PMW phase into the PMS phase before undergoing

a second transition into the ferromagnetic phase. We are therefore not yet able

to set tighter constraints than 0.085 < κ2 < 0.125 on the upper boundary

of the direct PMW–PMS transition. This region of the phase diagram appears

rather complicated, though Fig. 3.15 makes it clear that the ferromagnetic phase

persists to large G rather than being a narrow intermediate phase of the sort
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we see for κ ≤ 0. This is reflected in our sketch of the phase diagram, Fig. 3.12.

3.9 Appendix B

In this appendix we discuss Eitchen-Preskill proposal of gapping out mirror

fermions using auxiliary interactions which are irrelevant in the continuum limit.

We use reduced staggered formalism and show that the propagator with gen-

eralized Wilson term has the right pole structure which in the continuum only

realizes a single specie of fermion and all doubler modes become infinitely mas-

sive. We start with the action studied in [3] and add generalized Wilson term

to this action.
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S =
∑
x

ψa(x)[η.∆]δabψb(x)+
∑
x

G

2
σab+ Σab

+ +
r

2

∑
x

σab+ (x)[ψa(x)2ψb(x)]++
1

4

∑
x

(σab+ )2

(3.19)

We integrate out the auxiliary field to generate action containing only Grass-

mann variables.

S =
∑
x

ψa(x)[η.∆]δabψb(x) +
G2

4

∑
x

εabcdψ
a(x)ψb(x)ψc(x)ψd(x) +

r2

4

∑
x

[ψa(x)2ψb(x)]2+

+
∑
x

rG

2
Σab

+ (x)[ψa(x)2ψb(x)]+

(3.20)

We start with simplifying last two terms in action

Σab
+ (x)[ψa(x)2ψb(x)]+ =

∑
µ,±

2εabcd[ψ
a(x)ψb(x)ψc(x)ψd(x±µ)−ψa(x)ψb(x)ψc(x)ψd(x)]

(3.21)

[ψa(x)2ψb(x)]2+ =
(
[ψa(x)ψb(x+ µ)]+ + [ψa(x)ψb(x− µ)]+ − 2Σab

+

)2 (3.22)

By expanding and simplifying using Grassmann nature of these fields we have

S =
∑
x

ψa(x)[η.∆]δabψb(x) + α
∑
x

εabcdψ
a(x)ψb(x)ψc(x)ψd(x)

+β
∑
x,µ,±

εabcdψ
a(x)ψb(x)ψc(x)ψd(x± µ) +

r2

2

∑
x,µ,±

εabcdψ
a(x)ψb(x± µ)ψc(x)ψd(x± µ)

+
r2

2

∑
x,µ

εabcdψ
a(x)ψb(x± µ)ψc(x)ψd(x∓ µ)

(3.23)

where α = G2

4
− rGD − 2Dr2

4
and β = rG − 2r2. Since we have evidence for

continuous transition in (κ,G) plane we can keep r large enough and tune G

such that we gap out all the doubler modes leaving behind a single massless
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fermion. We expect that for strong coupling expansion in 1
r
with G � r one

can analytically show that fermion propagator has the right pole structure and

in the continuum limit we recover only a single massless fermion.
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Chapter 4

Topology defects from four-fermion

interactions

4.1 Introduction

In this chapter we construct a continuum theory of strongly interacting fermions

in four dimensions in which exact symmetries prohibit the appearance of mass

terms. We argue that the fermions nevertheless acquire masses at strong cou-

pling by virtue of their interactions with a non-trivial vacuum corresponding to

a symmetric four fermion condensate. Our work points out the existence of new

classes of theories of strongly interacting fermions which may be important in

the search for candidate theories of BSM physics.

Furthermore, we show that the theory when discretized yields a staggered

fermion lattice theory which has been the focus of several recent studies both

in the particle physics and condensed matter communities [1–6, 8] in both three

and four dimensions. The numerical work in three dimensions is consistent

with the absence of symmetry breaking bilinear condensates for all values of

the four fermi coupling. The model nevertheless has a two phase structure
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with a continuous phase transition with non-Heisenberg exponents separating

a massless phase from a phase with a symmetric four fermion condensate and

massive fermions. Progress in understanding the nature of this phase diagram

was given recently in [23]. In four dimensions it appears that a very narrow

symmetry broken phase emerges between the massless and massive phases.

The ingredients of the theory are somewhat unusual; the fermions appear as

components of a (reduced) Kähler-Dirac field and as a consequence the theory is

invariant only under a diagonal subgroup of the Lorentz and flavor symmetries

together with an additional SO(4) symmetry. It is this reduced symmetry,

which is enforced by the structure of the four fermion term, that plays a key

role in prohibiting conventional Dirac mass terms.

Our work offers a way to understand the structure of the four dimensional

models from a continuum perspective where we will see that that topological

features of the continuum theory can play an important role.

4.2 Four fermion theory

To start consider a theory comprising 4 flavors of free massless Dirac fermion

with (Euclidean) action

S =

∫
d4xψ

a
γµ∂µψ

a(x) (4.1)

This is invariant under the global symmetry SOLorentz(4)×SUflavor(4). To build

the model of interest let us focus on the diagonal subgroup of the Lorentz

symmetry and an SO(4) subgroup of the original SU(4) flavor symmetry which

we call T .

T = SO′(4) = diag [SOLorentz(4)× SOflavor(4)] (4.2)
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Under this symmetry we may rewrite the action as

S =

∫
d4xTr

(
Ψγµ∂µΨ

)
(4.3)

where we now treat the fermions as 4 × 4 matrices and the trace operation

Tr occurring here and throughout the chapter acts only on the matrix indices

associated with the T symmetry. Actually, since the theory is massless we can

decompose these matrices into two independent components using the twisted

chiral projectors:

Ψ± =
1

2
(Ψ± γ5Ψγ5) (4.4)

and the fermion action can be reduced to two Dirac flavors with action

S =

∫
d4xTr

(
Ψ+γµ∂µΨ−

)
(4.5)

Notice that this projection only commutes with the SO(4) subgroup of the

original SU(4) flavor symmetry. In the appendix we show that this reduction

is equivalent to imposing the reality condition Ψ = Ψ with action

S =

∫
d4xTr (Ψγµ∂µΨ) (4.6)

The equation of motion that follows from this action can be interpreted as

the (reduced) Kähler-Dirac equation if one expands the fermion matrices on

products of Dirac gamma matrices [24]. For the model we want to discuss

we will consider four copies of this system by taking these matrix fermions

to additionally transform in the fundamental representation of an independent

SO(4) symmetry S i.e Ψα → RαβΨβ with R an element of SO(4).

Up to this point everything we have done merely corresponds to a change of

variables that serves to highlight a particular subgroup of the global symmetries

- the diagonal subgroup of the Lorentz and flavor symmetries. The field content
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of the model still corresponds to 8 flavors of massless Dirac fermions. However

this situation changes when I add four fermion interactions of the following form

δS =
G2

4

∫
d4x εαβγδTr

(
ΨαΨβ

)
Tr
(
ΨγΨδ

)
(4.7)

This interaction locks the Lorentz and flavor symmetries together and ensures

that the global symmetries G of the theory are

G = T × S = SO′(4)× SO(4) (4.8)

It is of crucial importance to notice that the resultant theory does not admit

any bilinear mass terms since Tr ΨαΨα = 0 and any terms of the form Tr ΨαΨβ

break the symmetry S.

4.3 Aside: connection to (reduced) staggered fermions

The motivation for this work derives in part from recent numerical investigations

of lattice models involving four reduced staggered fermions interacting through

the corresponding unique four fermion interaction. In this section we will show

that the continuum model described earlier when discretized naturally leads to

those lattice models. One way to discretize the continuum theory is to expand

the fermion matrices on position dependent products of Dirac gamma matrices

[9]. Consider the original Ψ

Ψ(x) =
∑
b

γx+bχ(x+ b) (4.9)
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where the components of the vector bi = 0, 1 label points in the unit hypercube

attached to site x in a four dimensional hypercubic lattice and

γb =
∏
i

(γi)
bi (4.10)

Plugging this expansion into eqn.(6) and doing the trace over the gamma ma-

trices yields the free reduced staggered fermion action comprising one single

component lattice fermion at each lattice site:

∑
x,µ

χ(x)ηµ(x)∆µχ(x) (4.11)

with ∆µ the symmetric difference operator and ηµ(x) = (−1)
∑µ−1
i=0 xi the usual

staggered fermion phase [25, 26]. Equipping each of these fields with an index

under the S symmetry and adding the four fermion terms one arrives at

Sstag =
∑
x,µ

χa(x)ηµ(x)∆µχ
a(x) +

G2

4

∑
x

εabcdχ
aχbχcχd (4.12)

which is precisely the action studied in [3, 6]. Thus we expect that the con-

tinuum arguments described in this chapter can be applied to understand the

numerical results reported for this staggered fermion system.

4.4 Auxiliary field action

As usual our subsequent analysis requires replacing the four fermion term given

in eqn.(7) by a Yukawa coupling to an auxiliary scalar field

S0 =

∫
d4x

[
iGφαβ+ (x)Tr

(
ΨαΨβ

)
+

1

4

(
φαβ+

)2
]

(4.13)
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The auxiliary field is a antisymmetric matrix and satisfies a self-dual condition

φ+ = P+φ where the projector P+ is defined as

P+
αβγδ =

1

2

(
δαγδβδ +

1

2
εαβγδ

)
(4.14)

Notice that the original four fermion interaction can be written as

[
Tr ΨαΨβ

]2
+

=
1

4G2

(
φαβ+

)2

(4.15)

This structure ensures that φ+ transforms in the adjoint representation under

a SU+(2) subgroup of the S symmetry SO(4) = SU+(2) × SU−(2). It is a

singlet under both SU−(2) and the internal T symmetries (see the appendix

for more details). Furthermore, it is easy to see that the eigenvalues of the

resultant fermion operator come in complex conjugate pairs. In addition each

eigenvalue is doubly degenerate since the fermion operator also commutes with

SU−(2). These facts ensure that the Pfaffian that results from integration over

the fermions is in fact real, positive definite.

4.5 Effective Action

Returning to eqn. 4.13 we now integrate out the fermions using positivity of the

Pfaffian and consider the form of the one loop effective action.

Seff = −1

4
Tr ln

(
−2 +G2µ2 +Gγµ∂µφ+

)
(4.16)

where φ2
+ = µ2 I and we have absorbed the explicit factor of i into the auxil-

iary field to render φ+ hermitan. Let us first consider the Coleman-Weinberg
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effective potential obtained by assuming a constant auxiliary field

Veff(µ) = −1

4
Tr ln

(
−2 +G2µ2

−2

)
+ µ2 (4.17)

where we have subtracted off the value of Veff at G = 0 and added in the classical

action for φ+. If we expand the remainder in powers of G it should be clear

that Veff develops a minimum away from the origin for sufficiently large G > Gc.

Thus naively one expects the system to enter a symmetry broken state for some

value of the four fermi coupling. This is the usual NJL scenario and in this

case will correspond to a breaking pattern SU+(2) → U(1) corresponding to a

vacuum manifold with the topology of S2.

Of course to understand the dynamics of the theory in more detail we need to

compute the leading terms in the effective action for φ+ for non constant fields.

Expanding the latter on a suitable 4 × 4 basis T (see the appendix for more

details) we find

φ+(x) =
3∑

a=1

φa+(x)Ta =
3∑

a=1

na(x)σa ⊗ I (4.18)

In this basis the fermion operator has a trivial dependence on SU−(2) and we

will suppress it in our subsequent analysis. For G > Gc the field na(x) obeys

the O(3) constraint nana = 1. The effective action governing the fluctuations

in na(x) is now given by a derivative expansion of

− 1

4
Tr ln

(
I +m

γµ∂µn
aσa

−2 +m2

)
(4.19)

where m = Gµ. At leading order one encounters an O(3) symmetric term

quadratic in the derivatives of na(x) (see the appendix)

a(G)

∫
d4x (∂µn

a)2 (4.20)
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However at higher orders in 1/m one also encounters an additional quartic term

which can play an important role in understanding the possible phases of the

theory.

b(G)

∫
d4x

(
εabc∂µn

a∂νn
b
)2 (4.21)

The combination of these two terms defines the Fadeev-Skyrme model which is

known to possess topologically stable field configurations which we will argue

can play a role in the current theory.

The analysis of the dynamics is facilitated by a further change of variables in

which the O(3) vector na is replaced by a SU(2) matrix field which rotates naσa

to a fixed matrix - say σ3.

na(x)σa = U †(x)σ3U(x) (4.22)

This has the immediate advantage that the nonlinear constraint nana = 1 is

simply replaced by the unitarity property of U = eiθ
aσa with the angular vari-

ables θ’s unconstrained. Of course this mapping cannot be the whole story since

the manifold of SU(2) is S3 not S2 and indeed it is easy to see that na is is

invariant under local left multiplication of U(x) by an element of U(1):

U(x)→ eiσ3β(x)U(x) (4.23)

The action is also manifestly invariant under right multiplication by a global

SU(2) rotation U → UG. Thus the final effective action for U should respect

both this global SU(2) symmetry and the local U(1) gauge symmetry. We can

make the local invariance explicit if we replace ordinary derivatives by covariant

derivatives with the leading term now being

Seff = a(G)

∫
d4x tr

[
(DµU)† (DµU)

]
+ . . . (4.24)
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where Dµ = ∂µ + iAµσ3 and Aµ is an abelian gauge field needed to enforce the

U(1) symmetry given in eqn. 4.23. This action is classically equivalent to the

original one. However in this case one would also expect to find a Maxwell term

corresponding to this exact local U(1) invariance

δSeff = b(G)

∫
d4xFµνFµν (4.25)

Indeed, classically, the field strength can be expressed in terms of O(3) vector

n [27] as

Fµν = n. (∂µn× ∂νn) (4.26)

and we see that the Maxwell term just represents the higher order term in

eqn. 4.21.

In this picture a conventional broken phase for the sigma model eg na = δa3

leads to U = I up to gauge transformations and corresponds to a Higgs phase

with photon mass
√
a(G). Close to Gc the photon mass is large and the gauge

field decouples from long distance physics so that this regime is governed by the

usual O(3) sigma model action.

4.6 Topological defects

While the uniform phase is always a possible vacuum solution additional possi-

bilities arise at strong coupling where the quartic term plays a role. Let us search

for non-trivial field configurations. To try to keep the action finite forces us to

look for solutions where DµU → 0 as r → ∞ and corresponding to vanishing

photon mass. This implies

∂µU = −iAµσ3U (4.27)
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or

Aµ =
i

2
tr
(
∂µUU

†σ3

)
(4.28)

The long distance contribution to the action of such a configuration is then

determined by the Maxwell term

b(G)

∫
d4x

1

4

(
tr ∂µU∂νU †σ3

)2 (4.29)

A topological defect must then correspond to a U(x) configuration that maps

non-trivially at infinity into the S2 target space. Such a mapping exists, is

termed the Hopf map, and corresponds to Π3(S2) = Z. If we parametrize a

general U matrix as

U =

 α1 + iα2 −α3 + iα4

α3 + iα4 α1 − iα2

 (4.30)

with
∑

i α
2
i = 1 then the simplest topological defect corresponds to setting αi =

xi
r
where xi are the four dimensional coordinates. This parametrization yields a

S3 → S3 map but this is reduced to the Hopf map when U fields which are gauge

equivalent are identified. A similar topological defect solution was constructed

in a four dimensional Yang-Mills-Higgs system in [28]. The αi correspond to

trigonometric functions of angles in four dimensional polar coordinates and it

can easily seen that the action given in eqn. 4.29 corresponding to such a defect

diverges logarithmically with system size1. Furthermore the topological charge

of this object can be obtained from the theta term corresponding to the U(1)

field.
1

32π2

∫
d4x εµνρλtr

(
∂µU∂νU

†σ3

)
tr
(
∂ρU∂λU

†σ3

)
(4.31)

1For a Hopf defect the gauge field corresponds to a large gauge transformation
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Unlike the action this term does not diverge logarithmically since it may be

recast as a Chern-Simons term which can be computed on the boundary sphere

at infinity.

While such a background corresponds asymptotically to a point on the vacuum

manifold it clearly does not break the S symmetry since <
∑

x φ+(x) >= 0. Of

course the key question is whether such defects can play a role in determining

the phase structure of the model. At first glance they should not - the logarith-

mically divergent action corresponding to such defects will ensure that a single

defect is completely suppressed in the infinite volume limit. This situation is

analogous to the behavior of vortices in the two dimensional XY model which

also possess a log divergent action. In the latter case a configuration of finite

action can be constructed consisting of a vortex and anti-vortex. The action

for such a configuration depends logarithmically on the separation of the two

vortices which hence bind tightly together at low temperatures. However since

the entropy associated with a vortex also increases logarithmically with system

size a BKT phase transition develops as the temperature is raised and vortices

unbind and populate the ground state.

We propose that a similar phenomena may occur in this four dimensional model

- that is the ground state for G ∼ Gc consists of tightly bound Hopf-antiHopf

defects. In such a scenario the disordering effects of the defects are suppressed

and one expects a conventional symmetry broken (Higgs) phase to appear as has

been observed in the numerical simulations [6, 8]. However as the coupling is

increased still further the defects may unbind via another transition to populate

and disorder the ground state. This condensate of Hopf defects with < φ2
+ >6= 0

would then correspond to the four fermion condensate in the original four fermi

model consistent with eqn. 4.15. An estimate for the critical coupling can be

arrived at by comparing the entropy associated to the location of a single defect

S ∼ lnV with its action E ∼ b(G) lnV yielding b(G)crit ∼ 1.
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It is interesting to compute the fermion propagator in the background of such

a defect. Consider the S-symmetric correlator

GF (x, y) = tr 〈Ψ(x)Ψ(y)〉

= tr

[
−γµ∂µ +mnaσa(
−∂2

µ +m2 +mP
)] (4.32)

where

P = γµ
(
∂µU

†(x)σ3U(x) + U †(x)σ3∂µU(x)
)

(4.33)

and the trace is to be carried out over the S-indices. Using the fact that the

covariant derivative vanishes far from the core of the defect allows us to show

that P = 0 and the propagator in that region simplifies to

GF (x, y) =
−2γµ∂µ
−2 +m2

(4.34)

Thus the fermion acquires a mass m = µG in the background of such a defect.

This gives a concrete realization of the mechanism discussed in [29] and is

consistent with strong coupling expansions for staggered fermions [3].

4.7 BKT transition

We have argued that the model possesses a conventional broken phase (or Higgs

phase) which gives way to a symmetric phase at stronger coupling due to un-

binding of topological defects. Since mechanisms for giving fermions a mass

are quite different in the two regimes one might expect a discontinuous phase

transition separates the broken phase and the defect phase. To obtain a true

BKT-like transition requires one to pass directly between the massless and mas-

sive symmetric phases. To effect such a scenario one can generalize the original

four fermion model to a true Higgs-Yukawa model by the addition of a kinetic
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term for the auxiilary field φ+. One can then imagine tuning the coupling of

this kinetic operator so as to cancel out the effects of the leading gradient term

eqn. 4.24. This sets the photon mass to zero and eliminates the Higgs phase

of the model. We conjecture that in this limit a true single BKT transition

separates the massless and massive phases.

4.8 Summary

We have argued that a particular four dimensional continuum theory possesses

an interesting phase structure as a function of the coupling to a particular

four fermion interaction. For sufficiently weak four fermi coupling we expect

the theory to describe massless non-interacting fermions. As the coupling is

increased the system should undergo a NJL-like phase transition to a phase

in which the SO(4) symmetry is spontaneously broken via a bilinear fermion

condensate. In the auxiliary field picture this phase is characterized by tightly

bound pairs of Hopf defects and a non-zero expectation value for the scalar field.

As the coupling is increased further we argue that these defects may unbind at

a transition to populate and disorder the vacuum restoring the symmetry. In

the background of such defects the fermions acquire a mass without breaking

symmetries. This phase is interpreted as a four fermion condensate in the

original fields. We also argue that by an additional tuning of the kinetic energy

the broken phase can be eliminated and a single BKT transition would separate

the massless from massive phases.

The continuum theory we describe possesses an unusual Lorentz symmetry

which is locked via the four fermion interaction with an internal flavor sym-

metry. At weak coupling we expect the four fermi term to be irrelevant and the

IR description of the theory will correspond to sixteen flavors of free Majorana

fermion with the symmetry enhancing to the usual Lorentz and flavor symme-
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tries. Correspondingly the beta function for the four fermi coupling has an IR

attractive fixed point at G = 0. The transition to a phase of broken symmetry

is likely of the NJL type and hence the corresponding (IR unstable) fixed point

would lie in the universality class of the usual Higgs-Yukawa theory. However

if an additional continuous transition were to separate this phase from the four

fermion condensate phase this would correspond to a new strongly coupled IR

fixed point. This would be a fascinating prospect. The BKT limit would cor-

respond to a situation where the two fixed fixed points bounding the broken

phase merge into a single continuous transition.

We have also argued that this continuum theory naturally discretizes to yield

a theory of strongly interacting reduced staggered fermions. This lattice model

has received some recent attention and the numerical phase diagram that has

been uncovered matches quite closely with the gross features described in this

chapter. Indeed, in the condensed matter literature there has recently been a

great deal of interest in models which are able to gap fermions without break-

ing symmetries using carefully chosen quartic interactions [11]. This work has

even been used to revive an old approach to lattice chiral gauge theories due

to Eichten and Preskill [30] in which mirror states of a definite chirality can

be gapped out of an underlying vector like lattice theory using four fermion

interactions [31]. It will be interesting to see whether the current model can

be generalized to implement such constructions. Independent of this potential

connection, the possibility of new phases and critical points in strongly inter-

acting fermion systems in four dimensions is very interesting in its own right

and we hope the current work stimulates further work in this area.
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4.9 Appendix

Obtaining the twisted Majorana form

Setting Ψ+ = C−1ΨT
+C where C is the charge conjugation operator the action

can be rewritten

S =

∫
d4xTr

(
C−1ΨT

+C γµ∂µΨ−
)

(4.35)

Taking the transpose of this equation yields

S =

∫
d4xTr

(
C−1ΨT

−C γµ∂µΨ+

)
(4.36)

Adding these two expressions the action can be expressed entirely in terms of

the field Ψ = Ψ+ + Ψ−.

S =

∫
d4xTr

(
C−1ΨTC γµ∂µΨ

)
(4.37)

But C−1ΨTC = Ψ if one expresses the matrix Ψ as a sum over the Clifford

algebra formed from the product of Dirac gamma matrices so that the action

in (twisted) Majorana form is simply

S =

∫
d4xTr (Ψ γµ∂µΨ) (4.38)

Changing basis to SU(2)× SU(2)

We can verify the mapping into the O(3) non-linear sigma model by starting

from an explicit 4× 4 basis for the hermitian self-dual field φ+ =
∑3

a=1 φ
a
+Ta

T1 =

 0 −iσ1

iσ1 0

 T2 =

 0 iσ3

−iσ3 0

 T3 =

 σ2 0

0 σ2
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These matrices clearly obey an SU(2) algebra which is part of the original SO(4)

S algebra and the self-dual condition is clearly equivalent to the statement

that φ+ transforms in the adjoint representation of that SU(2). The other

independent SU(2) contained in S is given the generators

U1 =

 0 −σ2

−σ2 0

 U2 =

 0 iσ1

−iσ1 0

 U3 =

 σ2 0

0 −σ2



Using the similarity transformation P given by

P =
1√
2


1 0 0 −1

i 0 0 i

0 −1 −1 0

0 −i i 0

 (4.39)

one can verify that the generators T and U take the form

T a = σa ⊗ I and Ua = I ⊗ σa (4.40)

This makes it clear that T a (and hence φ+) are singlets under SU−(2).

Coleman-Weinberg potential

The path integral over the Kahler-Dirac fermions yield the Pfaffian

∫
dΨdφ+e

−
∫
d4x[Tr (Ψγµ∂µΨ)+iGφαβ+ Tr (ΨαΨβ)+ 1

4
(φαβ+ )2] (4.41)

Pf [γµ∂µ +Gφ+] = exp[
1

2
Tr ln(γµ∂µ +Gφ+] (4.42)
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Since we are interested in the effective potential we can treat φ = µ as a constant

over space-time.In four dimensions

Tr ln(γµ∂µ +m) =

∫
d4xd4p

(2π)4
ln(p2 +m2) (4.43)

where m = µG.The effective potential is

Veff (µ
2) =

1

4
µ2G2 +

µ4G4

2(4π)2
(ln(

µ2G2

Λ2
) +

3

2
) (4.44)

where Λ is momentum cut-off.The minimum of the potential with respect to µ

varies as G changes with a fixed Λ.When G >> Λ the only minimum of the

effective potential occurs for µ = 0 which implies that there is no symmetry

breaking in the system.For G comparable to Λ the potential develops unstable

minimas close to the true minimum µ = 0.

Bosonic propagator

If the effective potential develops a minimum away from the origin then we can

assume that there is symmetry breaking in the system.Hence in the broken phase

can assume that φ = µ.In this limit we can compute the two-point function using

standard perturbation theory

Γ(p2) =

∫
d4k

(2π)4
tr[

1

γµkµ +m

1

γµ(kµ + pµ) +m
] (4.45)

The total two-point function is

Γ(p2) = −α− 1

2π

∫ 1

0

dx ln
−x(1− x)p2 +m2

m2
(4.46)
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An important thing to notice here is that at lowest order in p2

Γ(p2) =
1

2π

∫ 1

0

dxx(1− x)
p2

m2
=

1

2π

p2

m2
(4.47)

In real space this term corresponds to

∫
d4x

1

2π

1

m2
(∂µn

a)2 (4.48)

Large m expansion

The effective action is generated by integrating fermions which results in the

determinant of fermion operator which is

D = γµ∂µ +mnaσa (4.49)

The effective action

Seff = −1

8
Tr ln(−2 +m2 +mγµ∂µn

aσa) (4.50)

Defining Go = (−2 +m2)−1

We can write the effective action as

Seff = −1

8
Tr ln(1 +Gomγ

µ∂µn
aσa) (4.51)

Expanding in 1/m we have

Seff = −1

8
Tr
∑
k≥0

(−1)k(γµ∂µn
aσa)k+1

(k + 1)mk+1
(4.52)

where the Tr denotes trace over internal indices and a functional trace.The

functional traces can be easily computed by going to momentum space.We use
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Tr (X̂) =
∫
d4x < x|X̂|x > for functional traces.The first non-vanishing term

is at k = 1

S
(1)
eff =

∫
d4x

Λ4

2m2
(∂µn

a)2 (4.53)

where Λ is the UV(IR) cut-off in the theory.It’s essential to render the effective

dimensionless. The next interesting term emerges for k = 3

S
(3)
eff =

1

4m4
Tr (γµγνγργσ)tr(εabe∂µn

a∂νn
bεcde∂ρn

c∂σn
d) (4.54)

where tr implies a functional trace. We have used the standard relation σaσb =

δab + iεabcσc in simplifying the expression. Defining F e
µν = εabe∂µn

a∂νn
b and

going to momentum space one can compute the final expression after a little

bit of algebra. Moreover the definition Fµν = εabcna∂µn
b∂νn

c in the literature is

more useful is in the background of topological current.Here this Maxwell type

term naturally arises from the derivative expansion. Putting it all together the

effective action takes the form

Seff =
1

2

∫
d4x

Λ4

m2
(∂µn

a)2 +

∫
d4x

Λ4

m4
(Fµν)

2 (4.55)

The pre-factors for the quadratic term and quartic term both depend on m but

we will treat them as independent couplings as they will flow differently in RG

analysis.
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Chapter 5

SU(2) lattice gauge theory with

reduced staggered fermions

5.1 Introduction

Simulations of gauge theories using staggered fermions have a long history going

back to the early days of lattice gauge theory. In recent years they have allowed

for precision studies of hadronic quantities of crucial importance to experimental

efforts to test and constrain the Standard Model [32].

As is well known the four dimensional naive staggered fermion action yields not

one but four Dirac fermions in the continuum limit. It is less well appreciated

that this replication can be halved by an additional thinning of lattice degrees

of freedom to create what are called reduced staggered fermions. At first glance

this fact seems to imply that the reduced fermion would be a better choice than

the usual staggered fermion for simulations. It was realized early on that this

was not the case; for QCD the resulting fermion determinant is not real, positive

definite and furthermore it is not possible to write gauge invariant single site

mass terms in such a theory [26].
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In this chapter we point out that these problems can be evaded for gauge groups

with pseudoreal representations. As an example we consider the case of fermions

transforming in the fundamental representation of SU(2). Quenched simula-

tions of this model have been studied in [33] but the only work we are aware of

with dynamical fermions was carried out in the context of a four fermion model

with off-site Yukawa couplings [34]. In this paper we study the case of the

SU(2) gauge theory with both single site and one-link mass terms. We show

that the corresponding single site fermion condensate dominates at strong cou-

pling in the thermodynamic limit as the fermion masses are sent to zero. The

appearance of a single site condensate breaks the one remaining global U(1)

symmetry in the reduced fermion action and leads to a light pion which is also

measured in our simulations.This U(1) symmetry breaking is consistent with

the RMT analysis of [35].

Consider a continuum non-abelian gauge theory with N flavors of Dirac fermion

coupled vectorially.The fermions transform in an irreducible representation of

the gauge group. With N flavors we have the chiral-flavor symmetry SU(N)×

SU(N).If this symmetry spontaneously breaks the symmetry breaking pattern

will depend on the nature of the color representation carried by fermions. The

term which breaks the chiral symmetry is Ψ̄Ψ and surviving flavor symmetry

falls into three classes discussed in [35].Previous studies used the distribution

of smallest eigenvalues of Dirac operator to show spontaneous chiral symmetry

breaking.This approach comes from Banks-Casher relation

Σ = πρ(0) (5.1)

which states that non-zero density of Dirac operator eigenvalues close to origin is

a signal for spontaneous chiral symmetry breaking. To explore the spectral den-

sities around the origin Random Matrix theory methods are used. However for
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staggered fermions in real or pseudo-real representation the symmetry breaking

pattern doesn’t follow the continuum analogs and we get the wrong Goldstone

spectrum.This has been long known in the lattice literature.The studies we know

of used quenched approximations for spectral measurements and no full-scale

dynamical Monte-Carlo simulation have been done so far.In this study we will

compute the chiral condensate by numerical means on a lattice.The approach

we will take is based on the definition of chiral condensate.

Σ = lim
m→0

lim
V→∞

< Ψ̄Ψ > (5.2)

The infinite volume limit needs to be taken before the massless limit m→ 0. In

order to understand how staggered fermions in pseudo-real representation have

the wrong chiral symmetry breaking compared to continuum Dirac fermions let’s

take a look at the term which breaks the chiral symmetry and simultaneously

preserves maximal flavor symmetry. The continuum term is

εαβψ
ia
α ψ

jb
β U

−1
ab Vij (5.3)

where α, i, a are the spinor,flavor and color indices respectively.Since the fermions

are in a pseudo-real representation the right-handed fermion χ transforms as Uψ

where U is a antisymmetric unitary matrix with the property UU∗ = −1.The

original SU(N)×SU(N) is enlarged to SU(2N) due to the pseudo-real nature of

color representation however the Grassmann nature of fermion fields forces the

surviving flavor symmetry to be symplectic hence breaking SU(2N)→ Sp(2N).

Using N flavors of staggered fermions we have usual Ue(N)×Uo(N) symmetry

which is enhanced to U(2N) with pseudo-real color representation [35]. How-

ever for staggered fermions we loose the spinor indices as the fermions are single

66



component objects. Hence for staggered fermion χ bilinear term is

χiaχjbU−1
ab Vij (5.4)

If V = −V T then this term is trivially zero. If V = V T then this term is

non-vanishing however now U(2N) breaks to O(2N).This discussion is valid for

staggered fermions but we are using reduced staggered fermions. An obvious

question to ask here is the equivalence of reduced staggered and full staggered

formalism. It is straightforward to see that staggered Dirac operator is anti-

Hermitian with pure imaginary spectrum. The reduced staggered Dirac operator

is anti-symmetric but not anti-Hermitian. Reduced staggered operator satisfies

the simple property

(∆µ)† = −σ2∆µσ2 (5.5)

The spectrum carries complex eigenvalues paired as λ, λ̄ due to pseudo-real

nature of the gauge group and λ,−λ due to anti-symmetry. Combining them

the spectrum is (λ,−λ, λ̄,−λ̄). For reduced staggered field ψ with N flavors the

bilinear term is

ψiaψjbUabVij (5.6)

where both U, V are anti-symmetric which has the same exact form as full

staggered bilinear. Despite the spectral difference from full staggered case the

bilinear term for reduced case has an O(2N) symmetry. In other words both

formalisms have the same symmetry breaking pattern.

This chapter is divided into two sections.In the second section we will intro-

duce the lattice action and discuss how the bilinear term for staggered fermions

differs from continuum Dirac mass term. In the third section we will present

numerical results which validates the conjectured symmetry breaking pattern.

One of our motivations for this work comes from four fermion model studied
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in previous two chapters. In four dimensions a very narrow broken symmetry

phase reappears between the weak and strong coupling phases [3, 6] but there is

evidence that this broken symmetry phase may be evaded in an expanded phase

diagram corresponding to a Higgs-Yukawa generalization of the model [10, 36].

This latter model possesses a global SO(4) = SU(2) × SU(2) symmetry with

the Yukawa interaction coupling the staggered fermions to a scalar field living

in the adjoint representation of one of these SU(2)s. A natural extension of this

model then replaces the scalar field with an SU(2) gauge field which we conjec-

ture is capable of generating the same four fermion condensate now via strong

gauge interactions. As a first step in this direction we need to understand the

phase structure and symmetry breaking patterns of reduced staggered fermions

interacting via a SU(2) gauge field - the study reported here.

5.2 Action and symmetries

For completeness we repeat here the derivation of the reduced staggered fermion

action [26]. Starting with the full massless staggered action

SF =
∑
x,µ

1

2
ηµ(x)ψ(x)

[
Uµ(x)ψ(x+ µ)− U †µ(x− µ)ψ(x− µ)

]
(5.7)

where the staggered fermion phases are given by

ηµ(x) = (−1)
∑µ−1
i=1 xi (5.8)

we project down to reduced staggered variables.

ψ(x)→ 1 + ε(x)

2
ψ(x)

ψ(x)→ 1− ε(x)

2
ψ(x)

(5.9)
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where the parity factor ε(x) = (−1)
∑4
i=1 xi . Since ψ is only defined on even sites

we can relabel it as ψT . Furthermore, we can introduce a new gauge field Uµ(x)

defined by

Uµ(x) =
1 + ε(x)

2
Uµ(x) +

1− ε(x)

2
U∗µ(x) (5.10)

and rewrite the resultant reduced staggered action in the form

SF =
∑
x,µ

1

2
ηµ(x)ψT (x)Uµ(x)ψ(x+ µ) (5.11)

By taking the transpose of this equation it can be written equivalently as

SF =
∑
x,µ

1

2
ψT (x)ηµ(x)∆µ(x)ψ(x) (5.12)

where

∆µψ(x) =
1

2

(
Uµ(x)ψ(x+ µ)− UTµ (x− µ)ψ(x− µ)

)
(5.13)

which reveals explicitly the antisymmetric character of the reduced fermion

operator. This reduced action is invariant under two symmetries in addition to

gauge invariance, a continuous U(1) symmetry which acts on the fermions

ψ(x)→ eiαε(x)ψ(x) (5.14)

and discrete shift symmetry

ψ → ξρψ(x+ ρ) (5.15)

where ξµ = (−1)
∑d−1
i=µ+1 xi . Since for reduced fermions one keeps only ψ or ψ

at each site the usual staggered fermion mass term does not exist. However

ψaψbεab is clearly a gauge invariant fermion bilinear for fermions transforming

in the fundamental representation of SU(2) and can hence be added to the
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fermion action1.

δS = OS = m
∑
x

ε(x)ψa(x)ψb(x)εab (5.16)

To understand why the parity factor ε(x) appears in the mass term consider

the full fermion operator

D = ηµ(x)∆ab
µ +mε(x)εab (5.17)

The poles of the associated propagator are determined by the zeroes of D2.

Using the fact that the parity operator ε(x) anticommutes with the symmetric

difference operator ∆µ allows one to write

−D2 = −∆µ∆µ +m2 (5.18)

which exhibits the correct pole structure for a massive fermion (in Euclidean

space). Notice that this mass operator induces the breaking U(1)→ Z2.Alternatively,

we can retain the U(1) symmetry by adding a gauge invariant one link mass

term which then breaks the shift symmetry.

OL = m1

∑
x,µ

1

2
ξµ(x)ε(x)ψT (x)Mµψ(x) (5.19)

where

Mµψ(x) =
1

2

[
Uµ(x)ψb(x+ µ) + UTµ (x− µ)ψ(x− µ)

]
(5.20)

Notice the addition of OS and OL to the action preserves the antisymmetry of

the fermion operator. In our numerical work we have investigated the effects

of both of these mass terms. For a full staggered field the symmetry break-

ing patterns are a little different. For such a staggered field in a pseudoreal
1Notice the analog of this term vanishes for two continuumWeyl fermions because of an additional

contraction over Lorentz indices unless the fermions carry additional flavor indices.
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representation we can pair the ψ and ψ at each site into a doublet with the

kinetic operator now being invariant under a U(2) symmetry. In this case a

site mass term now breaks U(2) → O(2). Such a symmetry breaking pattern

could also be obtained by using two reduced staggered fields. Once we integrate

the fermions we generate a Pfaffian.Since the fermion operator is antisymmetric

its eigenvalues come in pairs (λ,−λ). Additionally the pseudo-real nature of

the representation implies that U∗µ(x) = σ2Uµ(x)σ2 which ensures that every

eigenvalue λn (generically complex) and corresponding eigenvector vn is paired

with another with eigenvalue λ∗n and eigenvector σ2v
∗
n. This quartic structure

of the spectrum ensures that the Pfaffian is positive definite and can hence be

written Pf(D) = det(D†D)
1
4 which is suitable for use in a Monte Carlo al-

gorithm [37]2.For the gauge part of the SU(2) action we employ the standard

Wilson action

SG =
∑
x

∑
µ<ν

− β

2N
Tr[Uµν(x) + U †µν(x)] (5.21)

The full action used for lattice simulation is given by

S = SF + SG +OS +OL (5.22)

5.3 Numerical Results

We implemented the RHMC algorithm to simulate the model exploring lattice

volumes up to 164 with gauge couplings spanning β = 00.85−4.0 and for a wide

range of site and link masses. Fig. 5.1 and fig. 5.2 show plots of the expectation

values of the site and link bilinears for m = m1 = 0.1 as a function of the

gauge coupling β for several lattice volumes. Both vevs are driven to small

values for large β as expected since the model enters s deconfined phase in that
2An exception to this can occur if the fermion operator develops a purely real eigenvalue which

is then unpaired. We have seen no sign of such eigenvalues in our simulations.
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regime which can be seen clearly in fig. 5.3 which shows the Polyakov line as a

function of gauge coupling for m = m1 = 0.1 on a 64 site lattice. The Polyakov

line functions as a quasi-order parameter for the breaking of center symmetry

and runs from small to large values as the system deconfines. However in a

dynamical setup Polyakov line susceptibility doesn’t show anything interesting

for characterizing the order of transition.Of course the key question is whether

one or more of these bilinears vev remains nonzero in the thermodynamic limit

as the bare fermion mass is sent to zero. We focus on the largest values of

the (inverse) gauge coupling (smallest lattice spacing) which clearly lie within

the confining regime of the theory on the lattice volumes we have simulated.

In fig. 5.4 and fig. 5.5 we show plots of the expectation values of the two

blinears versus the bare fermion mass m = m1 for gauge coupling β = 1.8

for a range of lattice volumes. Clearly the link vev shows no strong volume

dependence and smoothly goes to zero as the external mass is sent to zero.

73



 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

1 2 3 4 5 6 7 8 9 10

ε
(
x
)

ε
a
b
ψ
a
(
x
)

ψ
b
(
x
)

m x 10
-3

β=1.8

L=6

L=8

L=12

L=16

Figure 5.4: 〈OS〉 vs m at β = 1.8 for L = 6, 8, 12, 16

-0.002

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

1 2 3 4 5 6 7 8 9 10

ψ
a
(
x
)
 
U
a
b

µ
(
x
)

ψ
b
(
x
 
+
 

µ
)

m
1
 x 10

-3

β=1.8

L=6

L=8

L=12

L=16

Figure 5.5: 〈OL〉 vs m1 at β = 1.8 for L = 6, 8, 12, 16

74



This is consistent with work by Follana et al [33] for full staggered fermions

in quenched approximation.The site bilinear shows a very different behavior

with the measured vev growing with volume at small mass.This is the behavior

needed for a non-zero condensate to survive the zero mass limit and indeed the

data is quite consistent with the presence of a non-zero site condensate in that

limit. To gain confidence in this result we repeated the analysis for β = 1.7

(fig. 5.6 and fig. 5.7) corresponding to a larger value of the lattice spacing. The

overall conclusion remains the same and we infer that the preferred breaking

channel for the simple reduced staggered fermions studied here corresponds to

U(1)→ Z2
3 We can confirm these conclusions by looking for the corresponding

Goldstone boson - the pion - whose correlator is given by

〈φ(x)φ(y)〉 = 〈εabψa(x)ψb(x)εcdψc(y)ψd(y)〉 (5.23)

A typical correlator is shown at m = 0.1 and β = 1.8 on a 83 × 32 lattice in

Fig.5.8. We use the standard fit Cπ(t) ∼ A [exp(−amπ(t) + exp(−amπ(T − t))]

to extract the pion mass. In Fig.5.9 we plot the pion mass as a function of

the bare quark mass m.For this calculation the smallest quark mass we use is

m = 0.01 which ensures safe distance from epsilon regime where finite volume

effects drive the condensate to zero in m→ 0 limit.The solid line is a fit to the

expected square root form and corresponds to the standard GMOR prediction

confirming that this state is indeed a pion resulting from spontaneous breaking

of the U(1) symmetry.
3Similar results were observed by Follana [33] in the quenched approximation although the nature

of the condensate changed when a smeared action was employed.
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5.4 Summary

We performed first studies of SU(2) lattice gauge theory with dynamical reduced

staggered fermions.The pseudo-real nature of the fundamental representation of

SU(2) allows us to employ the standard RHMC algorithm without encounter-

ing a sign problem. Unlike SU(N) for N > 2 a gauge invariant site mass term

is allowed and we investigate the model including both this term and a gauge

invariant one-link mass operator. We find strong evidence that a site bilinear

fermion condensate is formed at strong coupling spontaneously breaking an ex-

act U(1) symmetry down to Z2. We find good evidence for the corresponding

Goldstone boson - the pion. These results are consistent with previous studies

that used the spectrum of low-lying eigenmodes of the quenched Dirac opera-

tor to find evidence for chiral symmetry breaking in this theory. Our results

strengthen these conclusions and support the analysis given in [35]. This work

is motivated by an attempt to understand some of the novel phase structure in

a related Higgs-Yukawa model involving reduced staggered fermions interacting

with SU(2) gauge fields.Current work establishes the bedrock for understanding

the results of related Higgs-Yukawa model in a gauge-theoretic setup. In gauged

model fermion bilinear condensation through spontaneous symmetry breaking is

strictly prohibited by enhancing the protecting symmetry from global to gauge

symmetry.
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Chapter 6

Four-fermion condensates in SU(2)

Yang-Mills-Higgs theory on lattice

6.1 Introduction

In expanded phase diagram discussed in chapter 3 there is evidence for a direct

transition between massless and massive phase is possible. Since there is no

symmetry breaking this novel transition eludes a Landau-Ginzburg description

in terms of a local order parameter. Instead the transition is argued to result

from a proliferation of topological defects in the scalar field [10].

This phenomenon of symmetric mass generation has also received a great deal

of interest in condensed matter physics [5, 12] and in three dimensions this

phenomenon was conjectured to be described by a gauge theory [23].

The Higgs-Yukawa models that have been used to generate this novel struc-

ture are invariant under an SO(4) symmetry and utilize a scalar field which

transforms in the adjoint representation of one of the SU(2) factors making up

SO(4) = SU(2) × SU(2). In the rest of this paper we call this SU+(2). This

scalar is a singlet under the other factor which we call SU−(2). It is then rather
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natural to imagine replacing the adjoint scalar field with a corresponding gauge

field and ask whether the resulting gauge theory is capable of generating a four

fermion condensate even in the absence of a Yukawa coupling. In practice we

have considered a model containing both scalars and gauge fields and tried to

map out the resulting phase diagram.

We expect for small Yukawa coupling that the theory is in a confined phase

while for weak gauge coupling and large Yukawa coupling one might expect to

see the four fermion condensate which can be interpreted as a Higgs phase of

the theory. it is plausible that one might expect to see a line of phase transitions

separating these two phases the two dimensional phase diagram spanned by the

Yukawa and gauge couplings.

6.2 Fermion kinetic term

Consider staggered fermions in the bifundamental representation of an SU(2)×

SU(2) symmetry. The fermions transform under a general gauge transformation

as

ψ → GψH† (6.1)

where G ∈ SU+(2) and H ∈ SU−(2). The above transformation with left and

right action of the group is equivalent to the standard tensor transformation

ψAa = GABH∗abψBb (6.2)

To construct the model we start with the full staggered action given in (6.3)

gauged under both SU(2) factors:

SF =
∑
x,µ

1

2
ηµ(x)Tr[ψ†(x)Uµ(x)ψ(x+µ)V †µ (x)−ψ†(x)U †µ(x−µ)ψ(x−µ)Vµ(x−µ)]

(6.3)
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This action is invariant under the following gauge transformations

ψ(x)→ G(x)ψ(x)H†(x)

Uµ(x)→ G(x)Uµ(x)G†(x+ µ)

Vµ(x)→ H(x+ µ)Vµ(x)H†(x)

(6.4)

The only single site gauge invariant mass term for fields in the bifundamental

representation is Tr(ψ†ψ) which vanishes on account of the Grassmann nature

of the fields. We can, however, construct a gauge invariant four-fermion term

given in (6.5)

Tr(ψ†ψψ†ψ) (6.5)

which is non-zero and yields the usual four fermion term.

6.3 Imposing the reality condition

The equivalence between this model and the original four fermi models requires

the imposition of two further constraints. First we need to impose a reality

condition on the fermions to reduce to four real degrees of freedom and second

we will eventually set the gauge coupling for SU−(2) to zero and set Vµ(x) = I.

For the moment tet us focus the first of these which is equivalent to imposing

the constraint

ψ† = σ2ψ
Tσ2 (6.6)

This implies that the fermion field can be written in terms of four real compo-

nents χµ, µ = 1 . . . 4

ψ =
∑
µ

χµσµ (6.7)
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where σµ = (I, iσi) and the original SO(4) fields can be recovered using the

relation

χµ =
1

2
Tr (σµψ) (6.8)

Notice that the previous four fermion term Tr
(
ψ†ψψ†ψ

)
reduces to the simple

form χ1χ2χ3χ4 after this. Making use of this condition we can write the action

as

SF =
∑
x,µ

1

2
ηµ(x)Tr[ψT (x)Uµ(x)ψ(x+µ)VTµ (x)−ψT (x)UTµ (x−µ)ψ(x−µ)Vµ(x−µ)]

(6.9)

where

Uµ(x) = σ2Uµ(x)

Vµ(x) = −Vµ(x)σ2

(6.10)

This fermion operator is manifestly anti-symmetric

M =
∑
µ

Uµ(x)δ(x+ µ, x)VTµ (x)− UTµ (x− µ)δ(x− µ, x)Vµ(x− µ) (6.11)

where V acts from the right. This form of the action leads to a Pfaffian rather

than a determinant after the fermion integration. Moreover this fermion oper-

ator inherits the reality condition

M∗ = σ2Mσ2 (6.12)

Combining anti-symmetry and pseudo-reality we expect M to exhibit a quartet

of complex eigenvalues
(
λ, λ̄,−λ,−λ̄

)
. This guarantees that the fermion opera-

tor will have generically possess a real, positive definite Pfaffian. The exception

to this will be if the operator develops a purely real eigenvalue. We have not

observed this to be the case in our work.
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In fact the situation is even better than this. Let us now return to the second

constraint on the model. The model we are finally interested has only one set

of gauge fields corresponding to SU+(2). If the gauge links corresponding to

SU−(2) ( Vµ(x) =∞ ) are set to unity all the eigenvalues of M are doubled and

positivity is then completely guaranteed.

6.4 Adding Yukawa interactions

To facilitate the formation of a gauge invariant four fermion interaction we add

the term given in (6.5) after which the action is

SF =
1

2

∑
x,µ

ηµ(x)Tr[ψT (x)Uµ(x)ψ(x+ µ)σ2]− 1

2

∑
x,µ

ηµ(x)Tr[ψT (x)UTµ (x− µ)ψ(x− µ)σ2]

+
G2

4

∑
x

Tr(ψTσ2ψσ2ψ
Tσ2ψσ2)

(6.13)

As usual an action quadratic in fermionic variables can be achieved if we in-

troduce an auxiliary field. In this case there are two fermion bilinears defined

in (6.14) each of which transforms in the adjoint representation under one of

the SU(2)’s and is a singlet under the other. Here we have used ψ† rather than

ψT to exhibit more clearly the transformation properties of each bilinear.

ψ†ψ → Hψ†ψH†

ψψ† → Gψψ†G†
(6.14)

The two possible auxiliary fields φ(x) and σ(x) must transform as

HσH†

GφG†
(6.15)
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Since in the end we will choose to gauge only SU+(2) we choose to include only

the φ auxiliary field in our work.

SF =
1

2

∑
x,µ

ηµ(x)Tr[ψT (x)Uµ(x)ψ(x+ µ)σ2]

−1

2

∑
x,µ

ηµ(x)Tr[ψT (x)UTµ (x− µ)ψ(x− µ)σ2]

+
G

2

∑
x

Tr[ψT (x)σ2φ(x)ψ(x)σ2] +
1

2

∑
x

Tr[φ2]

(6.16)

Notice that the field φ is strictly forbidden from picking up a vev as that would

imply spontaneous breaking of gauge symmetry which is forbidden in a lattice

gauge theory1. To test for spontaneous breaking of the global SU−(2) symmetry

we can also add a gauge invariant mass term given in (6.17) to the action

m
∑
x

Tr[σ3ψ
†ψ] (6.17)

This term explicitly breaks SU−(2) → U(1). Finally, for the gauge part of

action we have employed the standard Wilson action

SG =
∑
x

∑
µ<ν

− β

2N
Tr[Uµν(x) + U †µν(x)] (6.18)

6.5 Reduction to SO(4) model

To connect this model to the original SO(4) model studied in [3] we consider

the limit β →∞ which allows us to set Uµ(x) = 1. The fermion operator then
1Unfortunately while φ is a singlet Under SU−(2) it does not obey the reality condition so that

octct structure of eigenvalues of the fermion operator is reduced once again to quartets.
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reduces to a symmetric difference operator and the action becomes

S =
∑
x,µ

1

2
Tr[ψTσ2(η.∆)ψσ2] +

G

2

∑
x

Tr[ψT (x)σ2φ(x)ψ(x)σ2] +
1

2

∑
x

Tr[φ2(x)]

(6.19)

Transforming in the fundamental of SO(4) one finds

S =
∑
x,µ

1

2
χa(η.∆)δabχb +

G

2

∑
x

[φ1(χ1χ2 + χ3χ4)

+φ2(χ1χ3 + χ2χ4) + φ3(χ1χ4 + χ2χ3)] +
1

2

∑
x

(φi)
2

(6.20)

Notice that the fermion bilinears appear in the self-dual representation of SO(4)

in these variables. This projection on self-dual fields can then be transferred to

the auxiliary field and after performing the trace over SU(2) indices we recover

the SO(4) invariant action studied in [3]

S =
∑
x,µ

1

2
χa[(η.∆)δab +

G

2
φab+ ]χb +

1

2

∑
x

(φab+ )2 (6.21)

6.6 Numerical Results

Now we come to some preliminary results obtained by using the RHMC algo-

rithm to simulate the model in (6.16). Our code utilizes the MILC libraries to

allow for efficient parallelization to allow for studies on large lattice. However,

our results so far have been confined to a small volume 44 lattice suitable for

testing and validation of the code.

One important test of our code is whether we recover the known behavior of the

SO(4) model in the weak gauge coupling limit. For this purpose we switch off

the gauge fields and scan the four fermion condensate as a function of G.This is

plotted in Fig. 6.1(left). Another proxy observable for the four fermion (massive)

phase is Tr(φ2) which is plotted in Fig. 6.1(right). This plots are consistent with

85



-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  0.5  1  1.5  2  2.5  3

G
2
 T

r(
ψ

T
σ

2
ψ

σ
2
ψ

T
σ

2
ψ

σ
2
)

G

L=4,β=∞

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.5  1  1.5  2  2.5  3

T
r(

φ
2
)

G

L=4,β=∞

Figure 6.1: Four-fermion condensate(left) and Tr(φ2) (right) vs G with β = ∞ for
L = 4

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

G
2
 T

r(
ψ

T
σ

2
ψ

σ
2
ψ

T
σ

2
ψ

σ
2
)

1/β

L=4,G=0.5

 1.75

 1.8

 1.85

 1.9

 1.95

 2

 2.05

 2.1

 2.15

 2.2

 2.25

 2.3

 0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

T
r(

φ
2
)

1/β

L=4,G=0.5

Figure 6.2: Four-fermion condensate(left) and Tr(φ2) (right) vs 1/β with G = 0.5 for
L = 4

those reported in [3]. Of course our main goal is to try to realize a four fermion

phase through gauge interactions. As a first step in this direction we plot in

Fig. 6.2 the four fermion condensate and 〈Tr(φ2)〉 vs 1/β at G = 0.5. At strong

gauge coupling the four fermion condensate rises rapidly to a non-zero constant

value. Notice that this value of G would not be sufficient to realize a four

fermion phase in the absence of gauge interactions. It remains to map out this

transition line for a range of G (using much larger lattice volumes).
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6.7 Summary

In this chapter we have embedded an SO(4) invariant four-fermion model into

a gauge model by gauging one the two SU(2) subgroups of SO(4). We have

described in some detail the construction of the model in terms of a staggered

fermion field transforming in the bi-fundamental representation of SU(2) ×

SU(2) and how this representation can be related to the original fundamental

representation of SO(4) by imposing a suitable reality condition on the fermions.

Our numerical work is only just beginning but confirms that the model does

indeed reduce to the original four fermion model in the limit the gauge coupling

is sent to zero. Once the gauge coupling is turned on we have so far only run

with a single value of the Yukawa coupling on a small lattice but our results are

compatible with the appearance of a four fermion phase driven in part by strong

gauge interactions. We interpret the four fermion phase as the (gauge invariant)

signal of a Higgs phase in the gauge theory. Future work will aim to map out

the phase diagram of the model using much larger lattices and understand the

nature of any critical lines encountered. It will be particularly interesting to see

whether the four fermion phase survives the limit in which the Yukawa coupling

is sent to zero.
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