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ABSTRACT

In recent years, researchers have increasingly used OSN data to study human behavior.

Before such a study can begin, one must first obtain appropriate data. A platform, e.g,

Facebook or Twitter, may provide an API for accessing data, but such APIs are often rate-

limited, restricting the amount of data that an individual collects in a given amount of time.

In order for the data collector to efficiently collect data, she needs to make intelligent use of

her limited budget. Therefore, when collecting data, efficiency is extremely important. We

consider the problem of network sampling through crawling, in which the data collectors

have no knowledge of the network of interest except the identity of a starting node. The data

collector can expand the observed sample by querying an observed node. While the net-

work science literature has proposed numerous network crawling methods, it is not always

easy for the data collector to select an appropriate method: methods that are successful on

one network may fail on other networks.

Here, we show that the performance of network crawling methods is highly depen-

dent on the network structural properties. We identify three important network properties:

community separation, average community size, and node degree. In addition, we provide

guidelines to data collectors on how to select an appropriate crawling method for a partic-

ular network. Secondly, we propose a novel crawling algorithm, called DE-Crawler, and

demonstrate that it performs the best across different network domains. Lastly, we consider

the scenario in which there is are errors in the data collection process. These errors then

lead to errors in a subsequent analysis task. Therefore, it is important for a data analyst

to know if a collected sample is trustworthy. We introduce a robustness measure called

sampling robustness, which measures how robust a network is under random edge deletion

with respect to sampling. We demonstrate that sampling robustness highly depends on the

network properties and users can estimate sampling robustness from the obtained sample.
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CHAPTER 1

INTRODUCTION

In recent years, data analysts and researchers have become interested in the study

of complex networks. Networks of interest span many domains including biolog-

ical networks, the WWW, communication networks and online/offline social net-

works. For example, by studying social networks, we are able to gain deep insights

into societal-scale human behavior, such as understanding how groups form, in-

formation spreads, target marketing or friendships dissolve. In bioinformatics,

researchers are interested in finding network motifs (e.g., certain small subgraphs

which frequently occur). Reserchers gain various intersting results by analyzing

these motifs, e.g., the protein-protein interactions [4], hierarchical network decom-

position [39] and the analysis of temporal gene expression patterns [40]. Similarly,

finding motifs is also an essential task in linguistics. The linguistic networks can

be constructed from the corpus (e.g., sentences, a set of words), where nodes rep-

resent words and the edges exists between two nodes if words co-occur in the cor-

pus. The linguistic network has many applications. For example, it can be used for

assigning the appropriate sense (e.g., word meaning) to a word in a sentence [27],

dependency parsing [55] and textual entailment [35]. However, before one can

attempt to explore such questions, one must first collect network data.
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Over the past few years, many data analysts and researchers have chosen to

collect network data from online platforms, such as Facebook or Twitter. These

platforms are convenient for data collection, because they typically provide a pub-

lic application programming interface or API to access the data. Web scraping or

web crawling is an alternative way of collecting data from web pages. A data col-

lector can write a computer program, which usually referred to “spider" or “bot",

to access the WWW using Hypertext Transfer Protocol or HTTP. This spider will

extract the links (e.g. urls lead to other webpages) and other information from

HTML tags. The spider can move to other websites by maintaining the obtained

urls.

In other cases, where an API is not valid or not available, the network data

can be collected by traditional approaches such as interrogation, interviews, etc.

For example, the authors proposed a method for finding people of interest in [77].

In this work, they focus on finding the terrorists that hide among other people

on the networks. The network of terrorists can be discovered by capturing and

interrogating the suspects.

As we can imagine, the process of collecting data can be expensive and time-

consuming, which requiring a significant amount of budget (e.g., time, money, or

resources). Therefore, when collecting data, the goal is to collect the data in such

a way that it is worth our budget. Here, we refer to this process as network sam-

pling through crawling. In this scenario, a data collector has no knowledge about

the network of interest except for the identity of a single starting node in the graph.

The only way to obtain more information about the network is to query observed

nodes for their neighbors (e.g., a computer program makes queries through web

API, an interviewer asks participants questions, a police officer interrogates the

suspects), and thus expand the observed network. Throughout this dissertation,

we use network sampling and network crawling interchangeably.
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The process of data collection posses several challenges. First and foremost,

the data collector has no control and knowledge about the network of interest (ex-

cept a single seed nodes which will be the starting point of the data collection

process), but can expand the sample by querying on the nodes that she obtains

so far. Thus, one important question is: how can we make a smart decision or

strategy about what would be the next node to be queried which will give us the

highest efficiency? Secondly, there are many proposed crawling methods which

have been used in the literature, but the research community lacks insight into

how well these methods perform, and why. Existing work sometimes mentions

that one method may work well on some particular networks but fails on other

networks [8]. Thirdly, most of the previous work focus on the undirected net-

works [3, 9, 29, 69], however, many real networks have directional edges (e.g.,

Twitter network and the WWW). So, method which works on undirected network

may not work well on directed networks [44]. Thus, it is quite unclear to the data

collector on which method to use when she wants to collect the network data.

Lastly, when collecting data, a data collector may usually face incompleteness from

the query response in real scenarios (e.g., missing nodes or edges from each query).

This missing information makes the sample incomplete. Then, if one performs an

analysis on this sample, the result will lead to an inaccurate result. Thus, once we

obtain the network sample, it is useful to know the quality of this sample before

performing any further analysis. If the missing data has an effect on the quality of

the sample, a data analyst can modify or fix the sample beforehand.

The purpose of this dissertation is to to address these challenges and fill all

these gaps mentioned above. We believe that our work will help researchers and

others in the field to have more insights about how to collect the network data.
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1.1 Dissertation Outline

During the last two decades, researchers have proposed a large number of network

crawling algorithms. A brief summary of related work on network sampling are

provided in Chapter 2. However, due in part to the large number of choices, it is of-

ten difficult for data collectors to select a single crawling technique, and it is rarely

clear which crawling method is the best to crawl a given network. Existing work

in the literature has typically attempted to determine which crawling method is

the ‘best’ overall; however, there is generally a lack of insight into why these sup-

posed ‘best’ methods perform well on given networks. The need to understand

the behavior of specific crawling algorithms across different network structures

motivates us to investigate the network structural factors that affect crawler per-

formance.

In Chapter 3, we investigate and study the effect of network structural proper-

ties on the performance of important network crawling algorithms. More specif-

ically, we are interested in those network properties that govern the ability of a

crawler being able to move between ‘regions’ of a graph. To evaluate a crawler’s

performance, we select the objective of maximizing the number of observed nodes

(which we refer to as ‘maximizing node coverage’). The objective of this chapter

is to analyze, characterize, and categorize the the performance of various network

crawling algorithms and demonstrate that these features have a strong effect on

the performance of various crawling methods. In addition, we also provide guide-

lines on how a user can select an appropriate crawling method for a network from

a given domain, even before observing specific properties of that network.

In Chapter 4, we propose a novel crawling algorithm, DE-Crawler, which is

based on our observations from Chapter 3. From Chapter 3, we see that no existing

methods work uniformly well across network types, and so we design DE-Crawler
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to incorporate the best aspects of existing techniques. Our proposed algorithm is

capable of seamlessly transitioning to different regions of the network regardless

of network structure. The main ingredient that makes DE-Crawler successful is

the ability of balancing exploration and exploitation when crawling the network.

DE-Crawler consists of two important stages: Densification and Expansion. The

Densification stage aims to discover nodes in the current region, while the Expansion

stage aims to expand the sampled network by moving to another dense region. We

test the performance of DE-Crawler on different network types and compare its

performance against the performance of other crawlers. As a result, DE-Crawler

is able to capture the best aspects of the existing algorithms, and achieves out-

standing performance across domains.

In Chapter 5, we consider the scenario in which there are errors during the

data collection process. These errors may come from a bug in a web crawler, mis-

takes made by respondents during the interview, or an adversary tampering with

and altering the information exchanged between two parties. As one can imagine,

these errors may lead to inaccuracy in a subsequent analysis task. In this chapter,

we introduce a novel robustness measure called sampling robustness. Specifically, it

measures how robust the network is under random edge deletion with respect to

sampling. To the best of our knowledge, there are many works on network sam-

pling, but none of them focus on robustness respect to network sampling. Here,

we demonstrate that sampling robustness is strongly correlated with certain prop-

erties of the original network and of the obtained sample. We present four different

performance measures for calculating the sampling robustness, depending on the

goal of sampling. In addition, we investigate when different crawlers are used to

generate the samples. Our goal is to allow data analysts or anyone who is inter-

ested in the study of the complex networks to measure the quality of the obtained

sample from just a few set of parameters. Therefore, we present a regression model
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for estimating sampling robustness of any network by considering the structural

properties of the obtained sample. The conclusion is presented in Chapter 6.

The main contributions of this dissertation are: 1) We examine the effect of net-

work structure on the performance of existing crawling algorithms, and show that

the ability of a crawler to move between different dense regions of a network is

critical to its success 2) Using these observations, we propose an algorithm that

performs well across different categories of networks, and 3) We consider the sce-

nario in which there is an error during the data collection which may lead to error

or inaccuracy in the further analysis. We define a novel robustness measure called

sampling robustness and introduce a model which can be used to estimate the

robustness of any network by considering only the obtained samples.
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CHAPTER 2

RELATED WORK

Work on network sampling can be separated into two main categories. The first

is work on down-sampling, in which one has full access to or ownership of the net-

work data, but the size of the data makes the network too large to feasibly analyze.

The objective in this case is to scale the network down to some desired size. A good

sample should maintain the relevant properties and characteristics of the original

network so that the results of analysis obtained from the sample should be similar

to the results one would have obtained from the original network.

The second category of work is on the problem of network crawling. In this

case, one has a limited access to the network data, and can retrieve information

about the network by performing queries on observed nodes (e.g., through an API

or web scraping). By repeatedly querying the observed parts of the network, the

sample is expanded from the single initially observed node or set of nodes.

Both cases are often broadly referred to as ‘sampling’; however, they require

fundamentally different approaches. The goal of our work is to analyze and char-

acterize the performance of network crawling algorithms. Due to space constraints

and the vast amount of literature in this area, we cannot provide a complete overview

of the topic, but refer the reader to the survey in [2] for a more detailed discussion.
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2.1 Algorithms for Network Crawling:

Network crawling is frequently used in scientific studies. For example, Mislove,

et al. use a BFS crawler to collect data from large networks, including Orkut,

Youtube, Live Journal, and Flickr, before analyzing the structures of those net-

works [56]. Similarly, Ahn, et al. use a BFS crawler to collect data from CyWorld,

a South Korean social networking site, and MySpace [3]. However, it is known

that the network samples produced by a BFS crawler contain bias: specifically, the

crawler is disproportionately likely to visit hub nodes. Kurant, et al. present a

modification of BFS to correct this issue [43]. The BFS crawler is easy to imple-

ment, thus, it has been applied in a large number of studies [15, 18, 78, 31, 32].

Other graph-traversal methods like Depth-First Search (DFS) and Snowball sam-

pling have been used for analyzing on online social networks are demonstated

in [20] and [3], respectively.

Random Walk crawler is an alternative crawler. It has been used a lot for

crawling peer-to-peer networks [33, 74], the WWW [36, 22] and online social net-

works [64, 41, 30, 66, 60]. However, samples collected by Random Walk crawler

are found to be biased towards high degree nodes in the graph. An unbiased ap-

proach based on Metropolis-Hastings Random Walks for undirected networks [29]

and directed networks [75] are introduced, which they demonstrate that the pro-

posed crawlers can balance the visiting frequencies between low and high degree

nodes. Cheierichetti, et al. propose other variations of Random Walk for collecting

uniform samples in [19]. In addition, they show a near-tight bound expressed of

the algorithms in terms of parameters of the networks., e.g. average degree and

the mixing time.

There has additionally been a great deal of interest on network crawling for spe-

cific applications. Salehi, et al. introduce a method, based on PageRank, for crawl-
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ing networks to preserve community structure [69]. Likewise, Blenn, et al. present

a crawler which nodes belong to the same community are crawled first, thus, the

crawler crawls one community after another [11]. The experimental results show

that this proposed method is capable of preserving community structure of the

networks and its performance is better than BFS and DFS crawler. Bruno, et al.

study the ability of different methods for preserving degree distribution [65]

Avrachenkov, et al. propose a greedy crawling method, called Maximum Ob-

served Degree (MOD), that has the goal of finding as many nodes as possible with

a limited query budget [9, 8]. MOD operates by selecting the node with the high-

est observed degree in each step, with the assumption that nodes that have a high

sample degree are also likely to have a high true degree. The MOD performance

significantly outperforms other algorithms like BFS and RW on the task of node

coverage. The authors acknowledge that MOD sometimes performs poorly, but

leave that discussion for future work. Salamanos, et al. present a Rank Degree

method [68]. The idea is similar to MOD crawler in which the nodes with the

highest degree are selected. Experimental results show the evidence that the pro-

posed crawler is good for node coverage and the samples preserve the node cen-

trality and also k-core of the original network. The OPIC method, presented in [1],

adopts a similar idea as MOD, except that it queries the node with the highest

PageRank in each step. Experimental results in [1] and [8] show that both MOD

and OPIC significantly outperform other methods. A multi-armed bandit crawler

is proposed by Madhawa and Murata [50]. The results show that the proposed

crawler outperforms other baselines. Laishram, et al. show that MOD does not

work well on directed graphs and present PMD crawler [44] that predicts which

k nodes are most likely to have the highest number of unobserved nodes. PMD

works the best on directed networks.
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2.2 Algorithms for Down-Sampling:

Due to the rapid growth of the networks, these networks become larger and larger.

The size of these networks is massive, and it is not feasible to analyze. There are

a large number of work which focus on reducing the size of network. Sampling is

the common technique that has been used.

Network down-sampling method has been used for large network visualiza-

tion. Many works are presented in [28, 62, 25]. The main goal is to reduce the size

of the network such that it is good for visualization. Thus, the samples should cap-

ture the abstract view of the networks. Leskovec and Faloutsos study the charac-

teristics of different state-of-the-art algorithms under the down-sampling scenario

in [48]. They study and evaluate several sampling algorithms based on how well

the sampled graph maintains properties of the original graph, and conclude that a

Random Walk sampling method is best. Maiya and Berger-Wolf present a down-

sampling algorithm that aims to preseve the community structure of the original

network [51, 53]. The main idea behind their proposed algorithm is to select the

node with the most neighbors outside the current sample in each iteration. Their

results show that their sampled network captures the community structure of the

original network when including as few as 15% of the nodes from the complete

graph. However, other structural properties of the sample graph are not taken

into account in this work.

2.3 Analysis of Sampling Algorithms

There has additionally been a great deal of work on comparing sampling methods.

In [47], Lee, et al. study the statistical properties of sampled networks obtained by

node, edge and snowball sampling under down-sampling. Leskovec and Falout-
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sos also present a similar study of the characteristics of different down-sampling

methods, with the goal of determining which method leads to samples with the

least bias with respect to various network properties [48]. They conclude that Ran-

dom Walk sampling is the best at preserving network properties. Similar to the

study in [48] but the main focus is on crawling setting, Ochodkova, et al. compare

the properties of a generated network, real-world network and also properties of

sample that obtained from different sampling techniques [59]. The experiments

show how the distribution of the properties change by using different sampling

methods and also how these properties of sampled network differ from the origi-

nal network.

Likewise, Kurant, et al. analyze BFS crawlers, and demonstrate that such meth-

ods are biased towards high degree nodes [42]. Maiya and Berger-Wolf also study

the biases of different sampling methods [54]. They argue that these biases of cer-

tain sampling method can be advantageous for some specific properties of interest.

As a result, they found that bias towards high expansion is good for push the sam-

pling process towards new undiscovered part of the networks.

Ahmed, et al. study several algorithms for both down-sampling and crawl-

ing [2]. Several methods are studied and evaluated the capabilities of preserving

several properties of the networks. Ye, et al. present an empirical study that fo-

cuses on performance, sensitivity, and bias in [79], and Ahmed, et al. provide a

framework for classifying sampling algorithms with respect to how well they pre-

serve graph statistics [2].

Saroop and Karnik study the performance of different crawlers on the task of

node coverage [70]. They focus on the crawler that is the best to crawl Twitter

network. Other properties like in- and out- degree distributions are also taken

into account when network is crawled. Similarly, Baeza-Yates, et al. focus on the

crawlers for collecting web pages [10]. Several crawlers are studies based on how
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well it find the important pages. The results show that BFS crawler has a bad per-

formance, as compared to other crawlers like PageRank and OPIC crawlers. Hu

and Lau present an excellent survey of several popular sampling methods for both

down-sampling and crawling [38]. Several important network properties, theoret-

ical studies and different types of evaluation criterion are discussed in detail.
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CHAPTER 3

NETWORK STRUCTURAL PROPERTIES

AND THE PERFORMANCE OF

CRAWLING APPROACHES

In this chapter, our goal is to understand the interplay between network structure

and crawler performance. We wish to understand the underlying reasons behind

why certain algorithms are successful on certain types of networks, but may show

weaker performance on other networks. These insights give guidance to those

who are developing new network crawling algorithms, as well as to those who

seek to select a single algorithm for crawling a specific network.

To study the effect of network structure, we are interested in the the proper-

ties that obstructs the crawler when it transitions from one region to other regions

of the network. Three selected network properties are 1) community mixing 2)

average node degree and 3) average size of community. We conduct a series the

controlled experiments on both generated and real networks. A total of eight pop-

ular crawling methods are selected for the study.

Most previous work has assumed that all neighboring nodes are returned in
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response to a query [8]. However, this assumption is not valid in many real-world

scenarios; e.g. Facebook API returns a list of 25 users as a response when request

for a list of friends. Therefore, the crawler may need multiple queries to obtain

all friends of this particular user. In this work, we analyze the performance of

crawlers on network with different query model, which each motivated by a real-

world application. In particular, we define a total of five different responses on

both undirected and directed networks; complete, paginated, partial, in-out and out

response.

Our main contributions in this chapter are as follows:

1. We consider five realistic query models- complete, paginated, partial, in-out, and

out responses- which describe the neighbor data obtained in response to a query

on a node.

2. While most of existing work, considers only undirected networks, we perform

the analysis on both directed and undirected networks.

3. We observe that the performance of crawling algorithms under the complete,

partial, paginated, and in-out query models are similar. In contrast, under the out

query response model, algorithms exhibit different performance. In particular,

under the out query response, we see that the performance of G1 is not sub-

stantially affected as average degree or community size increases. Moreover,

all methods tend to have similar performance on networks with high commu-

nity mixing.

4. We provide guidelines on how a user can select an appropriate crawling method

for a network from a given domain, under a specific query model, even before

observing specific properties of that network.

The rest of this chapter is organized as follows. In Section 3.1, we discuss

the problem, preliminaries, details of the network crawling methods, the network
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structural properties of interest, and the considered query models. We describe

our experiments and discuss their results in Sections 3.3, 3.4 and 3.5, and present

conclusions in Section 3.7.

3.1 Network Crawling Overview

3.1.1 The Network Crawling Problem

Let G = (V,E) be an unobserved network (either directed or undirected). In this

problem, one is given a starting node ns ∈ V and a query budget b. To collect data,

one may perform a query on a previously-observed node. As a query response, a list

of neighboring nodes is returned. Here, we consider five different types of query

responses, as described in Section 3.1.2. In each iteration, the crawler selects one

node whose neighborhood has not yet been fully explored to query (for further

discussion of this step, see Section 3.1.3. The crawler stops once b queries have

been made. The output is a sample graph S = (V ′, E ′), where V ′ ⊆ V and E ′ ⊆ E,

containing all nodes and edges observed.1

We consider the case where the crawling goal is to find nodes as many as pos-

sible. We refer this task as maximizing node coverage2.

Sampling Goal (Node Coverage): Collect a sample graph S = (V ′, E ′), where

V ′ ⊆ V and E ′ ⊆ E so that the number of nodes in V ′ is maximized.

We selected this goal because it has been closely tied to several important ap-

plications; e.g., Maiya, et al. use the node coverage goal for the task of generating

a sample that preserves community structure [53], and in [52], use this goal to

find influential nodes. There are numerous other crawling goals that one could

consider (such as obtaining an unbiased sample), but these goals require funda-

1We generalize the problem definition which covers broad scenarios. For example, web crawling, col-
lecting data from OSNs, constructing a terrorist network for the investigation.

2We also considered the equivalent edge coverage goal, and the results were largely similar.
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mentally different approaches, and so we do not consider them here.

3.1.2 Query Responses

The data that one obtains in response to a query on a node varies depending on

domain. For example, some APIs may return all neighbors of the queried node,

while others may only return a subset, and so the crawler must query that node

repeatedly to obtain all neighbors. If questioning an individual as to the iden-

tities of her friends, one may receive a random sample in response. Our earlier

work considered only the case where all neighbors are returned in response to a

query [6]. Here, we consider five different responses, motivated by these vari-

ous real-world settings. First, for undirected networks, we consider three types of

query responses: complete, paginated and partial. For directed networks, we con-

sider in-out, and out responses. Details are as follows:

Responses on Undirected Networks

Three types of query response model on undirected network are

Complete Response: In this query model, all neighboring nodes are returned

in response to a query on a node. This is motivated by settings such as network

routing; e.g. the ‘netstat‘ command in Linux returns all network connections that

connect from the machine.

Paginated Response: In the paginated response query model, only k neighbor-

ing nodes are returned in response to a query on a node. The neighbors of each

node are divided into distinct chunks, or pages. Each page contains up tof k neigh-

bors (except the last page, which may contain fewer); thus, the crawler may need

to query a node more than once to obtain all of its neighbors. This response is

common in APIs for online social networks, such as querying photos/albums on

Facebook. We assume that the crawler is notified (e.g., by the API) when there are
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no further pages to be returned.

Partial Response: In the partial response query model, like the paginated re-

sponse model, k neighbors of a node are returned in response to a query on that

node. However, in the partial response case, these neighbors are returned in a ran-

dom fashion, and different queries may result in duplicate returned neighbors. To

observe all neighbors of a node v, the crawler must conduct at least dv/k queries on

v, where dv is the degree of node v, but even after performing this many queries,

one cannot be guaranteed that all neighbors have been observed. This model is

motivated by scenarios such as personal interviews, such as surveys or criminal in-

terrogations. In such cases, one may ask a respondent to identify all of her friends,

but her memory is likely to be incomplete, with an element of randomness.

Responses on Directed Networks

In a directed network, there are two types of edges incident to any node v; incoming

edges originate at another node u and terminate at v, while outgoing edges originate

at u and terminate at another node v. Accordingly, we define two query responses:

in-out and out.

In-Out Response: In this query model, the crawler can choose to query for ei-

ther incoming or outgoing edges. To get all of the neighbors of a node, the crawler

must perform two queries on that node. This query model can be found in some

online social networks- e.g., on Twitter, one can separately query for the followers

or friends (followees) of a node.

Out Response: In this query model, the query for incoming edges is not avail-

able, and the crawler can only query for outgoing edges of a node. This response

applies to the web scraping scenario: one can quickly identify which websites a

particular site is linking to, but not which websites it is linked from. Some on-

line social networking sites also provide APIs with similar behavior. For example,
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Flickr provides an API call for obtaining a list of users that user A follows, but not

the users who follow A.

3.1.3 Closed nodes vs. Open nodes

As the crawler proceeds, the nodes seen so far can be grouped into various cate-

gories. First, we refer to all the nodes in a sample as observed nodes. An observed

node may be either closed or open. Closed nodes are the nodes whose entire neigh-

borhood is believed to be known, while open nodes are those nodes that are be-

lieved to still have unobserved neighbors.

Under the complete, paginated, in-out, and out query response models, we know

exactly how many queries are required to observe all neighbors of a node. The

complete, in-out, and out models return all [in/out] edges of a node, and for the

paginated response model, we assume that the crawler is informed when no further

pages can be returned (e.g., the API indicates that no more data is available, or

provides the total degree of a node). Once all of a node’s neighbors are observed,

that node will be changed from open to closed.

The partial response model is somewhat more challenging to deal with, because

each query returns a random subset of the queried node’s neighbors. Informa-

tion about node’s total degree is unavailable, so the crawler must estimate each

node’s degree. Once the observed degree is equal the estimate degree, the node is

switched from open to closed. To perform this estimate, we adopt the “mark and

recapture" technique from ecology, which is used to estimate population size [67].

Using this technique, the degree of node v can be estimated by dv = M ·C/R, where

M is the total number of distinct neighbors that have been discovered prior to the

current query, C is the total number of number of neighbors discovered after the

current query and R is the number of neighbors returned by the current query that

had been previously observed.
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3.1.4 Online Crawling Methods

Based on the literature, we select and consider eight popular crawling methods.

These methods have been recently used for web crawling, collecting data from

technological, online and offline social networks.

Maximum Observed Degree (MOD) The crawler greedily selects the open node with

the highest observed degree [8]. MOD substantially outperforms other methods at

the node coverage task.

Maximum Observed PageRank (PR) The crawler acts similarly to MOD, except that

the PageRank score of every node is used to select the query node. It has been

demonstrated that this technique captures the community structure of the net-

work [69].

Online Page Importance Computation (OPIC) OPIC aims to calculate each node’s

importance score without recalculating it in each step. The crawler updates only

the scores of the most recently queried node and its neighbors. Initially, each ob-

served node is given an equal amount of “cash". The crawler queries the node

with the highest cash, and this cash is spread equally between the node’s neigh-

bors. OPIC can quickly compute the importance of nodes, as demonstrated in [1].

Random Crawling (Rand) The crawler randomly selects one open node for the

next query.

Breadth-First Search (BFS) The crawler maintains a queue of open node in a FIFO

fashion, and queries the first node in the queue. BFS crawling is extremely popular,

due partly to it its simplicity, but also because the obtained sample contains all

nodes and edges on a particular region of the graph. Analysis on network samples

obtained using a BFS crawl is presented in [56].
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Snowball Sampling (SB) The crawler acts similarly to BFS, except only p fraction of

each node’s neighbors are put into the queue (we set p to 0.5). This method can

find hub nodes in a few iterations, as presented in [3].

Depth-first Search (DFS) The crawler acts similarly to BFS, except that a node is se-

lected in LIFO fashion. Analysis on network samples obtained using a DFS crawl

is presented in [20].

Random Walk (RW) In each step, the crawler randomly moves to a neighbor of

the most recently queried node. Nodes may be visited multiple times, are only

queried if they are still an open node. The results of Random Walk crawling came

out on top in [48].

Under the in-out query model, we assume that a crawler will make double

queries on each node. This is because all of the considered algorithms are not

designed for directed graphs. To adapt the above algorithms for the in-out query

model, we assume that a crawler queries each selected node twice- once for the

in-edges and once for the out-edges. Under the paginated and partial query mod-

els, the BFS, SB, DFS and Rand crawlers keep querying until all neighbors are seen.

The MOD, PR and OPIC crawlers select the node with the highest observed centrality

with at least k unobserved neighbors remaining (where k is the size of the query

response).

Note that the methods mentioned above are referred as “link-tracing" methods

in which the crawler follows each link (edges) on the obtained sample in order to

get more nodes and expand the current sample. These methods are suitable for the

scenarios where we have no or very little knowledge about the population. Unlike

surveys, public polls or crowdsourcing approaches where a data collector need

decide who will be her target demongraphic (e.g. target group) before sending our

those questionaires. These approaches have been used in sociology research [7, 46].
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3.1.5 The Effects of Network Structure on Algorithm Performance

The overarching goal of our work is to investigate how the structural properties of

a network can affect the performance of various crawling algorithms. As demon-

strated in [79], the performance of different crawlers may vary by the network.

This variance is surely due to differences in structure; but which properties are im-

portant, and how do they affect crawler performance?

Structural Properties of Interest

We hypothesize that the performance of crawling methods strongly depends on how well

a crawling algorithm can move between different regions of the graph. At a high level, if a

crawler has difficulty in transitioning between regions of the graph, it may become

‘trapped’ in one area, and repeatedly see the same nodes returned in response to

its queries. Because the goal considered in this paper is that of node coverage, this

is effectively a waste of budget. To verify our hypothesis, we select three network

structural properties:3

Community Separation: A community is a subgraph with dense intra-connections

and sparse inter-connections. We find communities using the Louvain method [12],

and then use the modularity Q of the detected partition to measure how well-

separated the communities are [58]. Modularity Q is defined as

Q =
1

2m

∑
vm

[
Avw −

dvdw
2m

]
δ(cv, cw),

where A, m and di are the adjacency matrix, total edges, and degree of node i,

respectively. δ(cv, cw) is a delta function which returns one when node v and w are

in the same community. Otherwise, it returns zero. The higher the modularity, the

better the separation between communities, and so a crawler is more likely to get

3We explored other properties, such as clustering coefficient, but these three emerged as having the
greatest effect on crawler performance.
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trapped in a region. Community separation is an important part of our analysis:

e.g., Leskovec, et al. suggest that communities are well defined and distinct if they

are small, but that large communities tend to mix with one another [49]. The

higher the modularity, the stronger the separation between communities, and so a

crawler may be more likely to get trapped in a region.

Average Degree: We next compute the average degree of all nodes in the net-

work. If average degree is high relative to community size, this indicates that

nodes are likely to have many connections outside their own community, making

it easier for a crawler to move between regions. It is defined as

davg =

∑
v∈V dv

m
,

where dv is a degree of node v and m is a number of total edges.

Average Community Size: Finally, we consider the average community size (in

terms of number of nodes) of the communities found using the Louvain method.

As described earlier, this property is useful when taken together with average de-

gree. It is defined as

CSavg =

∑
ci∈C |ci|
|C|

,

where C is a set of communities, ci is the set of nodes in community i and | · | refers

to a cardinality of a set.

Properties of Real Networks

As we will see, the above three structural properties have a large effect on the

comparative performance of the various crawling methods. However, in a real-

world setting, one would not know these network properties ahead of time; so

how can one use these results in practice?
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As is well-known from the network science literature, networks of the same

type (e.g., social, hyperlink, etc.) tend to have similar properties: e.g., we can

expect to see more dense, near-cliques in social networks than we would expect

to see on citation networks, where we expect to see long chain-like structures [57].

One cannot reasonably expect a single crawling method to be the best on every

network under different query responses. To address this issue, in Section 3.5, we

provide a set of guidelines for users on selecting a suitable crawling method when

network domain is known.

3.2 Experimental Setup

We now evaluate the effect of network properties on crawler performance through

a series of experiments on synthetic and real experiments. First, we perform a set of

experiments on synthetic networks with carefully controlled properties, and inves-

tigate how changes in these structural properties affect performance of the crawl-

ing algorithms. Next, we perform another set of experiments on real networks, and

use the results to validate the observations that we see on synthetic networks. For

each set of experiment, we consider the five different query responses: complete,

paginated, partial, in-out and out responses.

To generate the synthetic networks, we adopt the LFR network model [45]. This

model allows us to generate undirected or directed networks with desired proper-

ties including number of nodes, average degree, power-law exponent, community

size, community mixing and etc. We set each generated network to have 5000

nodes with a maximum degree of 300. Then, we vary the value of three network

properties; davg, CSavg, and community mixing µ. µ has a range between 0 and 1,

and indicates the fraction of edges that link to nodes outside the community.

Community mixing µ and modularity Q are related. Networks with high µ
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will have low modularity and vice versa. Higher values of µ indicate overlapping

community structure. For our experiments, we vary the value of µ (0.1 to 0.9), davg

from 7-200, andCSavg sizes from 100-2500. To reduce the effects of randomness, for

each parameter setting, we generate 10 networks. We consider the query budgets

up to 1000 queries (20% of total nodes).

We categorize the eight crawling methods into three groups. These groups cor-

respond both to how the methods work and, as we will see, their performance on

various networks. The methods in each class are:

G1: Node Importance-based - MOD, OPIC and PR.

G2: Random Walk

G3: Graph Traversal-based - BFS, DFS, SB, Rand.

Throughout the figures in this paper, we use colors to represent the different

methods, and different linetype to represent the different groups. ‘dashed’, ‘dotted’

and ‘solid’ lines represent G1, G2 and G3, respectively.

3.3 Experiments on Synthetic Networks

We first analyze crawler performance on undirected networks, under three query

response models- complete, paginated, and partial- and then consider directed net-

works, under two query response models- in-out and out.

3.3.1 Responses on Undirected Graphs

Complete Response

Recall that in the complete response query model, all neighboring nodes are re-

turned when a node is queried. We plot results for each method in Figures 3.1-3.3.

First, we consider the case where networks have a clear community structure
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Table 3.1: Categorization and summary of the performances of crawling algorithms on
networks under the complete, paginated, partial and in-out response models. Results for
the out model are presented in Table 3.2.

Property G1: Node Importance-Based G2: Random
Walk

G3: Graph
Traversal-Based

Community
Separation

Performance improves when
community overlap is high, i.e.

high µ.

Stable

Stable

Average
community size

Strong performance when
communities are large if µ is low.
Community size does not matter if

µ is high.

Average degree
Strong performance when average

degree is extremely low (<10)
even if µ is low. Otherwise, stable

Performance
improvement
when average

degree increases.

Best Method in Group
Complete MOD

RW

BFS
Paginated OPIC/MOD SB

Partial OPIC SB
In-out PR/MOD BFS

(high modularity, low community mixing µ: sharp community borders with few

edges between communities), and average degree and community size are varied.

Results are shown in Figure 3.1.

The outer axes indicates different values of the test properties. The outer x-axis

represent the increasing in average community sizes (100-2500 nodes). The outer

y-axis represent the increasing in average degree (15-100). The axes of the inner

plots indicate the fraction of nodes queried (x-axis) and fraction of nodes observed

(y-axis).

Next, in Figure 3.2, we demonstrate the case when community mixing is varied,

and average degree and community size are fixed at 15 and 300, respectively. Low

community mixing indicates that networks contain sharp and clear community

structure, while high mixing indicates that networks have overlapping community

structure. Finally, Figure 3.3 depicts the case when networks have overlapping

community structure (many edges crossing between communities), while average
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Figure 3.1: Complete Response: Results on networks with different values of davg and
CSavg when µ=0.1. G2 shows stable performance. G1 and G3 performance improves
when CSavg and davg increases, respectively.

degree is varied and community size is fixed at 300.

For brevity, we cannot show results for all parameter settings, but the depicted

results are representative of the full set of results. We draw several conclusions

from these results, and summarize in Table 3.1:

G1 - Node Importance-based methods: Methods in this group select a node

with high observed centrality (e.g., degree or PageRank). The performance of
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Figure 3.2: Complete Response: Results on networks with different values of µ (davg=15,
CSavg=300). G1 methods improve as µ increases.

Figure 3.3: Complete Response: Results on networks with different values of davg (µ=0.6,
CSavg=300). G1 is the top performer. The performance of G3 methods improve as davg
and CSavg increases.

these methods tends to be similar. As intended by the creators of these algorithms,

querying nodes with high observed centrality is likely to make the crawler dis-

cover many new nodes, since these nodes are hub nodes.
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Indeed, the performance of these methods significantly improves as the size of

the community is increased: in this case, a crawler can stay in one region of the

graph for a long time without exhausting the set of new nodes to observe. How-

ever, G1 methods show reduced performance when µ is low (fewer connections

between communities), and communities are small. This is because the crawlers

tend to get trapped in a single region of the graph, and because there are few edges

crossing between communities, the crawlers cannot easily move across to new

communities. They thus suffer from diminishing marginal returns: even though

they do not query the same node multiple times, they query nodes with similar

neighborhoods, and so observe redundant information.

Interestingly, on the networks with extremely low average degree, we observe

that G1 methods perform worse than both G2 and G3 for low query budgets, but

their performance rapidly increases, and these methods are top performers for

high query budgets. We observed this behavior on generated networks with low

community mixing and with average degree is less than 10.

To conclude, G1 methods are the best performers when µ is high (many edges

between communities). These crawlers can easily move between communities as

demonstrated in Figure 3.2 and 3.3.

G2 - Random Walk: Our results show that this is the most stable method. Its

performance seems to be unaffected by the considered properties. It is able to

freely move between regions, even if community mixing is low. Sample results are

shown in Figure 3.1 and 3.3.

G3 - Graph Traversal-based methods: Our results suggest that methods in G3

are not meaningfully affected by community size. The crawler can move between

regions of the graph by uniformly expanding the sample frontier. As shown in

Figure 3.1, G3 performs better when average degree increases (moving up along

y-axis) and become top performers on networks with large average degree.
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Paginated Response

In this section, we describe the results of each crawler on generated networks with

paginated response. In the paginated query model, only k neighboring nodes are

returned for each query on a node. We observe that results are similar to those

of the complete response query model. A summary of how structural properties

affect each method is shown in Table 3.1.

G1 - Node Importance-based methods: These methods tend to exhibit similar

behavior as in the case of the complete query model. They exhibit excellent per-

formance and are the top performer in two cases; 1) when communities are over-

lapping 2) when average community size is high or average degree is extremely

low, even if communities are not overlapping. Examples are shown in Figures 3.2

and 3.3.

G2 - Random Walk: As before, the Random Walk crawler is very stable, and its

performance appears to be independent of these properties.

G3 - Graph Traversal-based methods: The performance of methods in this

group seems to be unaffected by modularity and average community size, but is

affected by average degree. From the results, these crawlers have an performance

improvement on networks with high average degree. We observe that Snowball

sampling is the best among this group.

Partial Response

Next, we present the results of crawling methods on the generated networks un-

der the partial response model. The partial query model is similar to paginated

response, in that only k neighboring nodes are returned after the each query. How-

ever, nodes are returned randomly, thus, the crawler can see the same neighbor

from different queries. A summary of how the structural properties affect each

method in this scenario is shown in Table 3.1.
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Figure 3.4: Partial Response: Results on networks with different values of µ (davg=15,
CSavg=300). G1 methods improve as µ increases, however, methods in this group generally
perform similarly to methods in G3.

Under this query model, we observe some differences in performance changes

of these methods. Firstly, we observe that average degree has a small effect the

Random Walk performance. Next, the performance of G1 is affected by community

mixing as expected, however, all methods in G1 except OPIC can perform as good

as methods in G3. Lastly, we observe that average degree and community size

have less effect on G1 performance.

G1 - Node Importance-based methods: The performance of methods in this

group slightly improves when community mixing increases (i.e., overlap increases),

as shown in Figure 3.4. Performance also slightly increases as average degree or

average community size is increased. However, their overall performance is worse

than methods in G3, as shown in Figure 3.5. These methods do not perform well

because the correlation between the observed centrality measure and actual cen-

trality measure is very low: e.g., a node with high observed degree in the sample

does not necessarily have high true degree. When a crawler queries the same node

multiple times, it is likely to retrieve duplicate nodes from different queries. We
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Figure 3.5: Partial Response: Results on networks with different values of davg and CSavg
(µ= 0.1). G2 performance is stable. G1 performance improves whenCSavg increases, while
G3 methods improve when davg increases. Overall, methods in G1 seem to be the worst
performers in general.

observe that many of the open nodes tend to have the same observed degree, and

so due to this low correlation, observed degree is not useful for distinguishing

between medium- and high- degree nodes. On one hand, if a crawler happens

to query on a node with (true) medium degree, a crawler needs to spend only a

few queries, but the payoff (i.e. number of nodes returned) is low. On the other
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Table 3.2: Categorization and summary of algorithm performance on directed networks
under the out response model.

Property G1: Node Importance-Based G2: RW G3: Graph
Traversal-Based

Community
Separation

Performance improves when
community mixing is high. Stable Stable

Average
community size

The performance slightly improves
when average degree increases.

Average degree The performance slightly improves
when average degree increases.

Performance improvement when average degree increases.

Best Method MOD/PR RW BFS

hand, if a crawler happens to query a node with extremely high (true) degree, it

will retrieve many neighbors, but extends a large amount of budget because many

duplicates are returned.

G2 - Random Walk: As before, the performance of the G2 Random Walk crawler

is still stable and unaffected by any of the considered properties. On networks

with low community mixing, regardless of the other two properties, this method

exhibits good performance, and is generally the top performer.

G3 - Graph Traversal-based methods: Similar to previous results under other

query models, these methods show improvement as average degree is increased,

but are mostly unaffected by µ and CSavg.

3.3.2 Responses on Directed Networks

Here, we present the results of our experiments on synthetic directed networks

under the in-out and out response models.

In-out Response

Under the in-out query response model, a crawler must query each node twice to

obtain all of its edges: once to obtain its incoming edges and again to obtain its out-

going edges. We observe that results are similar to those on undirected networks
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under the complete response model. A summary is shown in Table 3.1.

Figure 3.6: In-Out Response: Results on networks with different values of davg and CSavg
(µ=0.1). G2 performance is stable. G1 and G3 performance slightly improve as CSavg and
davg increases, respectively.

G1 - Node Importance-based methods: As before, methods in this group show

an improvement in performance as community mixing is increased. This is ex-

pected, because these methods behave similarly to crawls on undirected networks

under the complete response scenario, except that the crawler must query each

node twice. We also observe a slight improvement in performance when either av-



34

erage degree or average community size is increased on networks with low com-

munity mixing, as illustrated in Figure 3.6. Surprisingly, these methods are often

the worst performers on networks with low community mixing.

G2 - Random Walk: As in previous cases, the performance of the G2 crawler is

generally stable, though it slightly improves as average community size increases.

G3 - Graph Traversal-based methods: The performance of the G3 methods is

not meaningfully affected by µ and CSavg; however, they are affected by average

degree, and tend to perform very well on the networks with high average degree.

Surprisingly, G3 performance is as good as or better than G2 performance on net-

works with high average degree (davg = 100 in these experiments).

Out Response

Under the out query response, a crawler is only able to request the edges outgoing

from a node. Results under this model are somewhat different than those observed

earlier, though there is no difference in terms of performance for these methods on

networks with high community mixing, as illustrated in Figure 3.7. The summary

of how structural properties affect algorithms performance is summarized in Ta-

ble 3.2.

G1 - Node Importance-based methods: On networks with low community

mixing (few connections between communities), the performance of methods in

G1 improves when average degree or average community size increases, but meth-

ods in G1 do not perform well compared to other methods. From Figure 3.8, we

see that the PR crawler is the best (by a small amount) performer in this group.

G2 - Random Walk: The G2 Random Walk crawler performance seems to be

stable. We observe a slight improvement when average degree increases on net-

works with low µ (i.e., few edges between communities).

G3 - Graph Traversal-based methods: The performance of methods in G3 im-
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Figure 3.7: Out Response: Results on synthetic networks with different values of µ
(davg=15, CSavg=300). G1 methods improve as µ increases. Surprisingly, there is no
difference in term of performance for these methods on the networks with high community
mixing.

proves when average degree increases. In contrast to previous results, G3 methods

perform very well and seem to be top performers.

3.4 Real World Networks

The previous experiments show that the major factor in the performance of each

method is the ability to transition between different regions of the graph. Here, we

consider the main observations from the previous section, and evaluate the extent

to which they hold on real networks.

3.4.1 Experimental Setup

To validate our observations, we perform three sets of controlled experiments.

Each set contains two pairs of networks (‘P1’ and ‘P2’), and each network pair

consists of networks that are similar with respect to two of the three properties but
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Figure 3.8: Out Response: Results on networks with different values of davg and CSavg
(µ=0.1). G2 and G3 performance slightly increase when davg increases. G1 performance
slightly improves as CSavg increases, but it seems to be the worst performer in most cases.

very different with respect to the third; e.g., Wiki-Vote and Twitter networks have

different modularity values (0.42 vs 0.81) but they have similar average degree

(Wiki-Vote has davg=28.51 and Twitter has davg=33.01) and average community size

(Wiki-Vote has CSavg=1177.67 and Twitter has CSavg=1129.25). Within each pair,

we refer to the network with the higher value of the test property as the ‘High’-

valued network (Hi) and the other one as the ‘Low’-valued network (Lo). Table 3.3
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shows network statistics. The properties on which the networks in the same pair

differ are shown in bold. Datasets can be found at ‡ networkrepository.com (NR)

and † snap.stanford.edu (SNAP).

We find communities using the Louvain method [12] and measure the strength of

the detected communities using the modularity value Q, which we use as a proxy

Table 3.3: Network statistics of real-world networks used in the controlled experiments.

Test
Prop. Pair Network davg CSsvg Q

Undirected Networks (Complete, Page, Partial resp.)

Q

P1
(Lo) Wiki-Vote † 28.51 1,177.67 0.42
(Hi) Ego-Twitter † 33.01 1,129.25 0.81

P2
(Lo) Brightkite ‡ 7.51 274.10 0.68
(Hi) MathSciNet ‡ 4.93 594.09 0.80

CSavg

P1
(Lo) Github ‡ 7.25 83.68 0.43
(Hi) P2P-gnutella ‡ 4.73 1,276.76 0.50

P2
(Lo) Shipsec1 ‡ 24.36 4,117.50 0.89
(Hi) Shipsec5 ‡ 24.61 5,252.15 0.90

davg

P1
(Lo) Amazon † 2.74 272.44 0.99
(Hi) UK-2005 ‡ 181.19 157.13 1.00

P2
(Lo) P2P-gnutella ‡ 4.73 1,276.76 0.50
(Hi) Bingham ‡ 72.57 1,250.13 0.45

Directed Networks (In-out, Out resp.)

Q

P1
(Lo) bitcoinalpha ‡ 7.48 157.29 0.47
(Hi) Indochina-2004 ‡ 8.38 147.50 0.94

P2
(Lo) rt-islam ‡ 2.05 74.95 0.63
(Hi) rt-obama ‡ 2.13 82.36 0.91

CSavg

P1
(Lo) p2p-Gnutella25 † 4.82 552.76 0.49
(Hi) p2p-Gnutella31 † 4.73 1303.35 0.50

P2
(Lo) p2p-Gnutella24 † 4.93 662.45 0.47
(Hi) p2p-Gnutella31 † 4.73 1303.35 0.50

davg

P1
(Lo) bitcoinalpha ‡ 7.48 157.29 0.47
(Hi) web-spam ‡ 15.68 176.56 0.50

P2
(Lo) p2p-Gnutella30 † 4.82 814.36 0.51
(Hi) Cit-HepTh ‡ 25.70 782.86 0.65
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(a) Performance changes ∆P of G1 methods (Left: Pair P1 Right: P2).

(b) Performance changes ∆P of G3 methods (Left: Pair P1 Right: P2).

Figure 3.9: [Best viewed in color] Results of controlled experiment. Each cell shows the
changes in performance (∆P ) of G1 and G3 methods on low-valued and high-valued net-
work. Positive values indicate an improvement in performance and negative values indicate
a performance degradation as controlled property increases. Zeros indicate performance is
unchanged.

for community mixing. Note that the networks with high modularity values have

low community mixing and vice versa (↑ Q ⇔↓ µ). The query budget is set to

be 10% of the total nodes, as opposed to considering a fixed budget, because the

selected networks may have different sizes.

In each experiment, we perform 10 trials and report the average result. We use

the results of the best method in each group as a representative for each group.

According to our earlier experiments, the Random walk crawler is the least affected

by these properties, we use it as a reference point to normalize the results of the

other methods.

The results of these experiments are shown in Figure 3.9. Each row corresponds
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to a controlled property, and contains results on network pairs that differ with

respect to that property. The columns represent different query responses. For

each cell, the value indicates the changes in performance of the method x, ∆Px, on

low- vs. high- valued networks, defined as ∆Px = Phi − Plo, where P is the number

of nodes found by method x divided by the number of nodes found by a Random

Walk crawler. Positive values of ∆Px indicate that the number of nodes found by

method x is greater on the high-valued network than the low-valued network, and

negative values indicate the opposite. The differences in performance of G1 and G3

on both pairs of networks are shown in Figure 3.9a and 3.9b, respectively. We also

report the percentage improvement above (or below) the number of nodes found

by Random Walk, including the summary of all observations. Please see Table A.1

in the Appendix for full details.

3.4.2 Experimental Results

Obs1: The effect of structural properties on crawlers’ performance is similar for all

types of queried responses, with the exception of out response.

Figure 3.9 shows the change in each crawler’s performance across properties, for

the different query models. The value indicates how the performance changes

when there is a change in controlled properties. We can clearly see the changes of

complete, partial, paginated and in-out query responses are similar.

Obs2: Methods in G1 have excellent performance on networks with overlapping

communities.

As expected, G1 methods generally perform well when Q is low. The results of

P1, when modularity is a controlled property indicate that the performance of G1

methods drop when modularity increases, shown in Figure 3.9a (left).

Obs3: Methods in G1 perform well on networks with extremely low average degree
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even if Q is high.

On the other hand, G1 methods also perform very well on networks with ex-

tremely low average degree (davg < 10) even if modularity is high. We can see

the consistent results for every pair P2 when modularity is a test property on all

responses in Figure 3.9a (right).

Obs4: The performance of methods in G1 improves on undirected networks with

larger community size even if modularity is high.

On undirected networks with complete and paginated response, we observed that

community size affects the performance of G1. Networks with larger community

size seems to improve the G1 performance. However, this property does not seem

to affect G1 performance on networks with other responses.

Obs5: Random Walk crawler is the best under partial response.

The Random Walk crawler seems to be the best method on networks with a partial

response, as we observed from synthetic networks. This also holds on real-world

networks. As illustrated in Table A.1, G1 and G3 have negative normalized per-

formance, meaning that these crawlers’ perform worse than Random Walk.

Obs6: Average degree affects the performance of G3.

In Figure 3.9b, G3 methods show a performance improvement on networks with

higher average degree under every query response.

Obs7: G3 methods are generally the weakest.

As we observed on the synthetic networks, the performance of methods in G3

comes in last. This also holds on real-world network, as seen in Table A.1.

3.5 Guidelines for Users

When collecting network data, the structural properties of the network are not

known in advance. How can a data collector decide which crawler to use?
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Here, we demonstrate that we can select a crawling method by using the net-

work domain. Networks in the same domain tend to have similar properties, and

so it is possible to make reasonably accurate generalizations about the relevant

structural properties. Here, we will use network type and network domain inter-

changeably.

In addition, our guidelines cover different query responses from real applica-

tion scenarios; e.g., most of the APIs provided by OSNs return paginated results,

while only outgoing neighbors can be obtained when crawling web pages. For

the sake of completeness, we include all combinations of network type and query

response.

We categorize 21 networks into six network domains: scientific collaboration

networks, recommendation networks, Facebook100 networks, Web (hyperlink) net-

works, and technological networks (router-level network topology). Although the

Facebook100 networks are online social networks, we consider them as a sepa-

rate categories due to the restricted nature of the Facebook100 networks. These

networks represent early versions of the Facebook network, dating to the period

when universities each had separate Facebook networks. All nodes are thus mem-

bers of the same university population, as opposed to modern online social net-

works, which include a much more diverse population. Due to this membership

restriction, the Facebook100 networks exhibit very strong community structure,

in contrast to the fuzzier structure one would expect from an OSN. All networks

statistics are listed in Table 3.4. Datasets are taken from SNAP (†) and NR (‡).

Again, the maximum query budget is set to be 10 percent of the total number

nodes. For standardization, we set the number of returned nodes for paginated

and partial response to be the mean of the average degree across networks in that

group. 10 trials are performed for each method and depict the mean and standard

deviation of the percentage of nodes. A summary is shown in Table 3.5. Full results
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Table 3.4: Categories of the real-world networks and their structural characteristics.

Type Network davg CSavg Q Properties

Undirected Networks (Complete, Page, Partial)

Collab.

Citeseer ‡ 7.16 988.35 0.90
Low degree,
medium-sized and
clear communities

Dblp-2010 ‡ 6.33 739.91 0.86
Dblp-2012‡ 6.62 1248.35 0.82
MathSciNet ‡ 4.93 594.09 0.80

Recmnd.
Amazon ‡ 2.74 272.44 0.99 Low degree, small

clear communities.Github‡ 7.25 83.68 0.43

FB100
OR ‡ 25.77 1074.44 0.63

High degree, large and
clear communitiesPenn ‡ 65.59 2186.11 0.49

WestOhio ‡ 25.77 856.65 0.63

OSNs.
Themarker ‡ 29.87 458.90 0.31 High degree,

small-to-medium-sized
and fuzzy communities

BlogCatalog ‡ 47.15 1455.48 0.32
Catster ‡ 73.22 1294.14 0.38

Directed Networks (In-Out, Out)

Web.

Arabic-2005 ‡ 21.36 115.86 1.00
High degree,
medium-sized and
fuzzy communities

Italycnr-2000 ‡ 17.36 1134.34 0.91
Sk-2005 ‡ 5.51 338.22 0.99
Uk-2005 ‡ 181.19 157.13 1.00

Tech.
P2P-gnutella ‡ 4.73 1276.76 0.50 Low degree, large clear

communitiesRL-caida ‡ 6.37 856.12 0.86

OSNs.
(directed)

Slashdot ‡ 10.24 173.87 0.36 High degree,
small-to-medium-sized
fuzzy communities

Ego-Twitter † 90.93 2038.33 0.51
Wiki-Vote † 28.51 1009.43 0.42

are show in Table A.2 and A.3.

Newman suggests that networks with modularity Q ≥ 0.3 have a strong com-

munity structure [58]. From Table 3.4, OSNs contain overlapping community struc-

ture, indicated by their having the lowest modularity of all considered domains.

This is because people can be part of several groups in real life; e.g., group of

friends, family, co-workers, etc. As shown in the Table 3.4, all Facebook networks

indicate a strong community structure (Q ≥ 0.5). As expected, G1 methods per-
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Table 3.5: Summary of algorithm performance. Algorithms perform similarly within the
same category.

Type
Best Method

Comp. Page Part.

Undirected Networks

Collaboration: Low davg, Medium CSavg, High Q
G1 G1 G2

Recommendation: Low davg, Low CSavg, High Q
FB100: High davg, High CSavg, High Q G2 G2

OSNs: High davg, Lo-med CSavg, Low Q G1 G1 G1

Directed Networks

Type
Best Method

In-Out Out
Technological: Low davg, High CSavg, High Q G1 G3

Web: High davg, Medium CSavg, Low Q G2
G2

OSNs (directed): High davg, High CSavg, High Q G1

form well on these OSNs, because they can freely move between regions. Other

network domains have higher modularity (0.4 - 0.9), so, the performance can be

determined by average degree and community size.

3.5.1 Undirected Networks

We first consider the network categories with high community separation (high

modularity Q). Here, we examine collaboration and recommendation networks.

Both of these categories exhibit a large average community size of at least approx-

imately 50 times larger than their average degrees (davg < 10). These networks

have clear community structure and low average degree, and as expected from

earlier experiments, G1 methods perform very well under the complete and pag-

inated models. In contrast, Facebook networks have communities only 30 times

larger than their average degrees. On networks with smaller communities, the

performance of methods in G2 are the best under all query response models. On

networks with partial response, as suggested by our earlier experiments, the per-
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formance of the G2 method outperforms other methods. It is the best method to

use on these domains.

3.5.2 Directed Networks

On technological networks, the ratio of community size to average degree is ap-

proximately 200, indicating large communities. As expected, the performance of

G1 is the best on networks under the in-out response model. In contrast, web net-

works have small communities- only approximately 35 times larger than average

degree. As predicted by our earlier results, the G2 method works the best in this

case. In addition, the G2 method is also the best on web and online social networks

under the out response model. Finally, methods in G3 seems to perform slightly

better than others on technological networks under the out response model. All

the results are consistent with the results in previous experiments.

3.6 Major Takeaways

We have presented a wide variety of results across different domains of networks

and query models. We make several common observations. First and foremost,

community mixing has a strong effect on the performance of methods in G1, which

query nodes with high observed centrality (degree or other). The G1 methods

are able to quickly discover a large number of nodes, but when µ is low, these

methods risk becoming trapped inside a community. This occurs because even if a

node from another community is observed, it is on the periphery of the observed

sample, and so has low centrality. These methods repeatedly query nodes in the

same region, but if the network has low mixing between communities, the queried

nodes are likely to have similar neighborhoods. This results in the same nodes

being observed over and over again, leading to diminishing marginal returns and
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thus reduced node coverage, and much of the budget is spent before the crawler

moves to a new region. In contrast, if µ is high, then nodes from outside the starting

community can reach high observed centrality, and are then queried. An exception

to this observation generally occurs if the average community size is high relative

to the average degree. This behavior is demonstrated on the real OSNs, which

contain community structure with low modularity values. On these networks, the

G1 methods tend to be best.

Secondly, regardless of the query response model, the considered properties

have little effect on the performance on Random Walk, which is consistently a

good performed. The Random Walk crawler, unlike the G1 methods, is able to

easily escape dense regions of the network, because the crawler selects the next

query node randomly from the neighbors of the current visited node. We see this

behavior on the Facebook networks (Q ≥ 0.5), as well. Finally, average degree

has the most effect on methods in G3. Higher average degree tends to increase the

performance of G3 methods, which do not encounter difficulty in moving between

regions, because the crawler uniformly expands the sample frontier.

Limitations: Our experiments are conducted on networks downloaded from

SNAP and Network Repository. For the most part, these networks themselves

represent samples of larger networks. To the best of our knowledge, the FB100

dataset, which contains all friendships between users from different universities

in 2005, is the only set of ‘complete’ networks. This data was provided directly by

Facebook [61]. However, because these networks are from an early point in Face-

book’s history, they may not be accurate representations of the current Facebook

network.

Other networks are collected by crawling the original networks, where the

crawling method is often not publicly stated. The properties of these collected

network may not accurately reflect the the actual properties of the whole underly-
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ing network, but it has been shown that some network properties are self-similar,

which means it has same statistical properties at many scales [72, 71]. Although,

these samples may not be perfect representations of the underlying network, they

have been used to capture the community structure [53, 69], degree distribution

[63] or clustering coefficient [48, 63] of the original networks.

3.7 Conclusion

We evaluated the performance of crawling algorithms on the goal of maximizing

node coverage with respect to three network properties: community separation,

community size, and average degree. We defined five query responses based on

real data collection scenarios. We performed a set of controlled experiments on

synthetic and real networks. We demonstrated that the performance of crawling

methods highly depends on the network properties. In particular, their perfor-

mance is largely dependent on the ease with which the method is able to transition

between different regions of the graph. Lastly, we showed how a user can select

an appropriate crawling method based on the network type and queried response.
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CHAPTER 4

EXPANSION-DENSIFICATION

ALGORITHM FOR THE DATA

COLLECTION

As mentioned in Chapter 2, the literature contains a large number of proposed

crawling algorithms. Some of these methods perform well, but they are rarely

consistent across network structures. In Chapter 3, we found that network struc-

tural properties have a strong effect on the algorithms performance. More specifi-

cally, strong community structure can obstruct a crawler from being able to move

from one region to another region of the network. As a result, greedy approaches

like Maximum Observed Degree (MOD) [8] works very well when the communi-

ties overlap with one another, but perform poorly when there are clear borders

between regions. Conversely, Random Walk crawler is capable of moving around

different region and works best when communities are disjoint.

To tackle this problem, we propose a novel crawling algorithm, DE-Crawler,

in which the crawler can seamlessly transition to different regions of the network.

It consists of two main stages: Densification and Expansion. The Densification stage
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aims to discover nodes in the current region, while the Expansion stage aims to

expand the sampled network by moving to another dense region. DE-Crawler is

able to capture the best aspects of the existing algorithms, and achieves outstand-

ing performance across domains.

The main contributions of this chapter are:

1. We present DE-Crawler, a novel crawling method, for the task of maximizing

node coverage with a fixed query budget. Our experimental results show that

DE-Crawler outperforms baseline methods by up to 28%.

2. We perform an extensive experimental analysis on networks from diverse cat-

egories, including collaboration, Facebook, OSNs, the WWW and technological

networks. We show that DE-Crawler consistently performs well across different

networks types and structures.

The rest of this chapter is organized as follows. We give an overview of ex-

isting work in this area. We formally state our problem definition is described in

Section 4.1. The details of our proposed algorithm and key ideas are explained in

Section 4.2. Section 4.3 and 4.4 contain our experimental setup and results, and we

present conclusions in Section 5.8.

4.1 Problem Definition

Let G = (V,E) be a static, undirected, unobserved network, where V and E are

the set of nodes and edges, respectively. A starting node ns ∈ V and a budget

b are given. The crawler explores the network by querying one node at a time,

up to a total of b queries. To expand the observed sample, the crawler queries an

observed-but-not-queried node. In response to each query, the algorithm receives all

the neighbors of the queried node. These neighbors have now been observed. The
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Starting node

Densification

Expansion

Expansion
Colored nodes: observed nodes

Uncolored nodes: unobserved nodes

Figure 4.1: The concept of DE-Crawler algorithm. Densification: The crawler focuses on
find as many nodes in a current region. Expansion: it tries to escape the current region and
finds new unexplored dense regions.

output is a sampled graph S = (V ′, E ′), where V ′ ⊆ V and E ′ ⊆ E, containing all

nodes and edges observed. The goal is to discover as many nodes as possible.

4.2 Proposed Method: DE-Crawler

4.2.1 Key Ideas

In Chapter 3, we observed that a major factor in crawler performance is the ability

to fully explore regions of a graph, while still being able to move between regions

of the graph. In particular, we observe that there are two important classes of

crawlers, but their performance depends on network structure. Node Importance-

based methods are those that select the node for query based on a centrality mea-

sure computed from the observed graph. These methods excel when the under-

lying network contains overlapping communities and/or community size is rela-

tively large compared to the query budget, because in such networks, the crawler

is able to transition between regions. Still, a Random Walk crawler is the best when

communities are disjoint.

Node Importance-based methods quickly explore individual regions, but tend

to get ‘stuck’ inside a community when community borders are sharp. As these

methods continue querying nodes within the same community, then even though
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each node is queried at most once, many of the queried nodes’ neighbors will have

already been observed; thus, the total number of observed nodes is small. In con-

trast, the Random Walk crawler is capable of moving freely between regions, but

only partially explores each one. Based on these findings, we propose DE-Crawler,

a novel crawling method that incorporates the best of both worlds.

The basic concept of DE-Crawler is illustrated in Figure 4.1. Given a starting

node, the crawler aims to discover and fill out the nodes in a dense region (e.g.,

a community). We refer to this stage as the Densification stage. After the crawler

discovers most of the nodes in that region, it attempts to expand to another dense

region. We refer to this stage as the Expansion stage.

4.2.2 DE-Crawler algorithm

Pseudocode for DE-Crawler is shown in Algorithms 1, 2 and 3. Users must

specify the budget for sample initialization b′ , total budget b, and the starting node

ns as the input parameters of the algorithm.

Initialization

When it begins, DE-Crawler conducts an Initialize step (line 2 in Algorithm 1).

Here, the crawler collects a small sample so that it can obtain information about

the underlying network structure. It uses this stage to initialize certain necessary

Algorithm 1 DE-Crawler

1: function DE-CRAWLER(ns, b, b
′)

2: S = Initialize(ns, b
′)

3: for t = b
′ to b do

4: vd = Expansion(S)
5: S

′ = Densification(vd)
6: S = Merge(S, S ′)
7: return S
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Algorithm 2 Densification
1: function DENSIFICATION(v)
2: for sdt < set or t < b ; t+ = 1 do
3: V

′ , E ′ = Query(v)
4: sdt = α1 · d

new
v

dexv
+ β1 · sdt−1

5: set = α2 · d
seen
v

dexv
+ β2 · set−1

6: v = argmaxv∈Vo{Φ(v) = d̂ov · (1− ĉv)}
7: S

′ = updateSample(V ′ , E ′)
8: return S ′

Algorithm 3 Expansion
1: function EXPANSION(S)
2: V

′
c = getCandidates(V ′

o )
3: v = random(V ′

c )
4: return v

parameters. A small amount of budget b′ is used, where b′ << b. The initial sample

can be collected by using any crawling method, and we adopt the Random Walk-

based method proposed in [23]. Using this technique, we can estimate the average

degree of the network, which will be used for weight adjustment (discussed in the

later section). The output is a sampled graph S ′ .

Densification

Here, the crawler selects and queries nodes with the goal of exploring the current

region. Pseudocode is shown in Algorithm 2. The intuition here is to quickly find

as many nodes as possible, since real networks are known to contain communities

that are internally densely connected. Therefore, the sooner the crawler finds the

highly-central hub nodes (e.g. high degree nodes), the faster the crawler can ob-

serve the remaining nodes in the region. Building on our earlier work in [6], this

stage is based on the success of the Node Importance-based methods in exploring

individual regions [6]. The basic idea is to pick a node with the highest observed

centrality (i.e. degree/PageRank centrality) since it is likely that these high cen-

trality nodes are hub nodes. In this way, each query observes many new nodes.
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Node Selection: In order to select a node that will give high true degree, DE-Crawler

identifies candidate query nodes κ as those in the top 20% as ranked by observed

degree.1 For each candidate v ∈ κ, a score Φ(v) is calculated. The score is defined

as

Φ(v) = d̂ov · (1− ĉv),

where dov and ĉv are, respectively, the normalized observed degree and observed

clustering coefficient of node v. This formula is motivated by the observation that

hub nodes tend to have high degree and low clustering coefficient [13]. The crawler

then selects and queries the node v with the highest score.

Note that the node selection criteria (Φ) can be changed and improved based

on the knowledge of the a data collector. In this work, our objective is to prove the

idea of the proposed algorithm. We have tried other node selection methods; e.g.,

selecting a node with highest observed degree and a score proposed in [14]. By

several trails, DE-Crawler with the proposed node selection criteria performs the

best in the given settings.

Switching criterion: After each query, a crawler must decide whether to keep

exploring, or escaping from the current region. To do so, two scores are computed

at t-th step: the densification score (sdt ) and the expansion score (set ). These scores are

used to approximate the number of nodes left unexplored.

The switching happens when sdt < set . As the crawler stays in a region, the

number of observed nodes increases while the number of new nodes added will

start to decrease (diminishing marginal returns). The crawler will initially find

many new nodes in the same community, but this amount drops as more and more

nodes in the region are queried.

At each step t, the sdt and set are calculated (line 4 and 5 in Algorithm 2). These

scores have two terms which incorporate the current stage and previous stage of

1This strategy is based on the law of the vital few or the 80/20 rule.
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the sample. The Densification score sdt indicates how many new unseen nodes are

found after node v is queried at step t. It is defined as

sdt = α1 ·
dnewv

dexv
+ β2 · sdt−1,

where dnewv is the number of new edges that connect node v to new discovered

nodes after the query and dexv is the excess degree, which is defined as the difference

between the true degree and the observed degree of the node before the request. α

and β are the weighting parameters that control the influence of the current score

and the previous score.

On the other hand, the Expansion score set measures the amount of nodes that

have been seen so far, which is given by the ratio of dext, the number of new edges

that link to already-observed nodes, to excess degree dex. It is defined as

set = α2 ·
dseenv

dexv
+ β2 · set−1,

where dseenv is the number of new edges that connect node v and nodes that already

be in the sample before a request. β1 and β2 are parameters that weight the densi-

fication and expansion scores of the sample at step t − 1. We have observed that

setting β1 = β2 = 0.5 gives us the best results.

However, the algorithm is sensitive to the values of α1 and α2. As the sampling

process goes on, the number of observed nodes increases while the number of new

nodes drops. We observe that se increases very quickly, because more and more

of the same nodes are observed. So, if α1 and α2 are assigned with equal weight,

the score will be biased towards expansion. To tackle that, we keep the value of α2

lower than α1. With several trials, we found that setting α2 to 1, and varying the

value of α1 according to the network, works best. We initialize α1 as follows:

Generally speaking, if the network is easy to expand, we want the crawler to
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spend more time on densification than on expansion. To set α1, the crawler looks at

the initial sample to estimate the expansion factor. We adopt the idea from work on

dynamic processes, e.g. epidemic spreading or information diffusion, to estimate

the expansion factor. We set α1 to be the ratio between the maximum degree and

average degree of nodes in the initial sample (α1 = dmax/d̂). This ratio is closely

related to “epidemic threshold" τ , which governs how fast an epidemic can spread,

and thus is also related to how quickly the crawler can expand the sample [16].

Expansion

The crawler attempts to move out of the current region and attempts to search for a

new unexplored dense region. In the spirit of an explore-exploit algorithm, we use

the approach of choosing a node uniformly at random from the list of observed-

but-not-queried nodes. In the earlier Densification stage, DE-Crawler selected a

node from the top 20% of candidate nodes as ranked by observed degree; here,

DE-Crawler selects a random node in the bottom 80% of observed degrees, since

these nodes are poorly connected to the sampled network. The pseudocode is

displayed in Algorithm 3.

4.3 Experimental Setup

We compare DE-Crawler to seven baseline crawling methods RW, BFS, MOD, OPIC,

Snowball, DFS, and Random. Due to space constraints, we present results only for

the following four baselines: RW, BFS, MOD and OPIC. We chose these methods be-

cause results in Chapter 3 grouped them into three classes. These four methods

represent the best of each class. The details of these baseline algorithms are de-

scribed as follows:
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1. Maximum Observed Degree (MOD): A crawler selects the observed-but-not-queried

node that has the highest observed degree. This method works well when commu-

nities are overlapping [8].

2. Online Page Importance Computation (OPIC): It is an online algorithm which

aims to estimate each node’s centrality score with only local updates. OPIC be-

longs to the same class as MOD, as shown in Chapter 3, and outperforms MOD in

a some cases. In each step, the algorithm updates the scores of the most recently

queried node and its neighbors. Each node is given an initial score, and the score

is distributed evenly to it neighbors after each query. The node with the highest

score is selected for the next query [1].

3. Random Walk (RW): A crawler transitions to a random neighbor of the latest

queried node. Nodes can be visited multiple times but crawler only queries a

node if it was not queried before. According to [6], RW is the most stable algorithm,

performing consistently across network types.

4. Breadth-first Search (BFS): Due to its simplicity, BFS is one of the most popular

crawling algorithms [56]. Nodes are selected and queried in FIFO fashion.

As we already observed in the previous chapter, networks of the same type tend

to have similar structural properties, and there is no single method that performs

the best across different types of networks. As we show in Chapter 3, MOD and OPIC

perform the best when 1) the underlying network contains overlapping communi-

ties and 2) the size of each community is large compared to the query budget, even

if the communities are disjoint and have sharp borders. On the other hand, the RW

crawler is the best on networks that contain disjoint communities structure. The

results show that its performance is not affected by network properties. The BFS

crawler is generally a weak performer, but we include it here due to its popularity

as a crawling algorithm.
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Table 4.1: The statistics of real-world networks used.

Type Network # Nodes # Edges d̂ ĈS Q

Collaboration

Astro 17903 196973 22.00 436.66 0.63
CondMat 21363 91287 8.55 374.79 0.72
HepPh 11204 117619 21.00 238.38 0.65
Citeseer 227320 814135 71.6 988.34 0.89

Facebook100

Bingham 10001 362893 72.57 1250.13 0.45
JohnsHopkins 5157 186573 72.36 515.70 0.45
WashU 7730 367527 95.09 966.25 0.47
Yale 8561 405441 94.72 856.10 0.43

Online Social Network
Anybeat 21250 66892 6.30 259.15 0.48
Slashdot 70068 358648 10.24 173.86 0.36
Hamsterster 2000 16097 16.10 66.67 0.54

Web
Google 1299 2774 4.27 34.18 0.93
IndoChina 11358 47607 8.38 153.49 0.94
Webbase-2001 16062 25594 3.19 232.78 0.93

Techology

RL-caida 190914 607611 6.36 856.11 0.86
PGP 10680 24316 4.55 106.80 0.88
Router-rf 2113 6633 6.28 88.04 0.69
WhoIs 7476 56944 15.23 276.89 0.56

In our experiments, we use a total of eighteen networks from different cate-

gories. The statistics of each network are provided in Table 4.12. We perform 10

runs on each network and report the average fraction of nodes observed by each

crawler. We set the query budget b to be 10% of the total nodes in the network and

for DE-Crawler, we set the initialization budget b′ to be 15% of the total budget.

To obtain a fair comparison across networks, we compare the performance of

DE-Crawler and the baseline methods against the greedy oracle, Maximum Excess

Degree (MED). MED assumes that each node’s true degree is known, and in each

step, queries the node with the highest excess degree (the difference between true

degree and observed degree). With this oracle, we can compute the regret of each

crawler, as r = (yo − yx)/yo, where yo is the number of nodes discovered by the

oracle, and yx is the number of nodes discovered by crawler x. Lower values of

regret indicate higher performance.

Note that this problem is a NP-hard problem; thus, the true optimal solution is

2All of these networks can be found at www.networkrepository.com.
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unknown. The MED crawler can produce a near-optimal solution, meaning that

the actual regret may be equal or lesser than the regret calculated against MED.

So, the calculated regret which mentioned above indicates the upper bound of the

actual values.

An alternative way of implementing oracle can be done by using Monte Carlo

Tree Search (MCTS), which we assume that this oracle has the full knowledge of

the network. Each node in the search tree represents a possible obtained sample in

each time-step. MCTS is an algorithm which will figure out the best strategy out

of all possible moves (e.g. queries) in order to find the final solution which may

be closer to the optimal solution. However, this method is time-consuming since

MCTS is an iterative method and there are several possible paths that needs to be

considered (e.g., number of nodes for the next query in each time-step is really

extremely large). There can be exponentially many such paths as the sample size

increases.

4.4 Experimental Results

In this section, we present the performance of our proposed algorithm DE-Crawler

against other baseline methods, as described in Section 4.3. We evaluate these

methods with respect to the node coverage task (discover as many nodes as possi-

ble). Note that, we compare our algorithm to many algorithms; RW, BFS, MOD, OPIC,

Snowball, DFS and Random, but these four baselines (RW, BFS, MOD, OPIC) were best.

So, we present the results of these four baselines.

Results are presented in Figure 4.2, 4.3 and Table 4.2. In Figures 4.2 and 4.3,

the x-axis represents the query budgets, and the y-axis represents the fraction of

nodes observed in the sample. Table 4.2 shows the overall regret of each method,

as compared to the oracle. Our results show that DE-Crawler is the best of both
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Figure 4.2: DE-Crawler consistently outperforms or matches the best baseline method on
networks that RW outperforms MOD.
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Figure 4.3: DE-Crawler consistently outperforms or matches the best baseline method on
networks that MOD outperforms RW.

worlds: it performs consistently well across all network types, regardless of com-

munity structure. In all but one of the considered networks, DE-Crawler is the

best performer.

As discussed earlier, RW and MOD are excellent methods, but the choice of which

is best depends on the network structure. E.g., Figure 4.2 demonstrates the case

where RW is better than MOD: these networks contain dense, distinct communities,

and MOD has trouble transitioning between regions. Figure 4.3 illustrates the case

where MOD outperforms RW: these networks have overlapping communities with

fuzzy borders, allowing MOD to move freely between regions.

But in both cases, as we can clearly see, the performance of DE-Crawler sub-

stantially outperforms all the baselines. By switching between expansion (moving

to new regions) and densification (exploring the current region), DE-Crawler is
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Table 4.2: The average regret of DE-Crawler and baseline algorithms (lower value means
better performance).

Type Network DE RW MOD OPIC BFS

Collaboration

AstroPh 0.144 0.159 0.202 0.194 0.185
CondMat 0.292 0.349 0.440 0.396 0.406
HepPh 0.158 0.246 0.350 0.205 0.270
Citeseer 0.359 0.467 0.452 0.458 0.557

Facebook100

Bingham 0.023 0.024 0.130 0.145 0.026
JohnsHopkins 0.034 0.041 0.129 0.148 0.047
WashU 0.012 0.013 0.149 0.163 0.027
Yale 0.007 0.020 0.080 0.107 0.023

Online Social Networks
Anybeat 0.082 0.110 0.079 0.070 0.442
Slashdot 0.045 0.129 0.045 0.046 0.419
Hamsterster 0.119 0.165 0.184 0.218 0.336

Web
Google 0.450 0.676 0.471 0.582 0.612
Indochina 0.522 0.623 0.583 0.631 0.718
Webbase 0.730 0.764 0.730 0.781 0.764

Technology

RL-caida 0.359 0.370 0.372 0.449 0.419
PGP 0.383 0.465 0.416 0.453 0.536
Routers-RF 0.219 0.307 0.304 0.265 0.397
WhoIs 0.130 0.184 0.274 0.270 0.469

Average 0.226 0.284 0.299 0.310 0.370

able to gain an improvement of up to 28% as compared to the best baseline meth-

ods. The results in Table 4.2 also show that DE-Crawler performs achieves a low

regret, indicating that it performs close to the optimal greedy method. DE-Crawler

has the lowest average regret of approximately 0.22, which is dramatically better

than RW, the next best method.

From the results, it is clear that DE-Crawler outperforms all the baselines at the

task of maximizing node coverage. It has a very stable performance across the net-

work categories, suggesting that network structural properties have little effect on

it. By using a mix of the expansion and densification strategies, and transitioning be-

tween phases when densification begins to exhibit diminishing marginal returns,

DE-Crawler is able to achieve outstanding performance.
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4.5 Conclusion

We considered the problem of online network crawling with the goal of maximiz-

ing node coverage. In Chapter 3, we demonstrated that the performance of exist-

ing crawling methods is heavily affected by network properties [6]. Intuitively, a

strong community structure can obstruct a crawler from moving between regions.

Based on that observation, we introduced DE-Crawler, which consists of two main

stages: Densification, which explores the current region, and Expansion, in which

the crawler transitions to a new region. Our results over 18 datasets show that

DE-Crawler outperforms all other baselines, with an improvement of up to 28%

over the next best baseline. Moreover, DE-Crawler is consistently the best over all

considered network types, and the results also show that DE-Crawler performance

is close to the performance of the optimal greedy crawling algorithm.
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CHAPTER 5

SAMPLING ROBUSTNESS

As discussed in Chapter 2, studying the structure of complex networks has be-

come an interesting and important task. Data analysts can gain many insights by

analyzing real-world networks. For example, one can study how fast information

flows through a network, how people form a community, or identify products to

recommend to consumers. However, before performing any graph analysis task,

one must collect appropriate network data.

The method used to collect network data is largely dependent on the network

domain or the preference of the data analysts. For example, one can collect of-

fline social data through pen-and-paper questionnaires or by interviewing subjects.

On the other hand, for online social networks, one can write a computer program

which queries through a provided API. In many scenarios, a data analyst or a data

collector may have no initial knowledge about a network except the identity of a

single seed node (e.g. the first person that she will interview). A network sample

can be expanded by querying already-observed nodes to learn their neighbors.

For simplicity, our work so far has assumed that the data collector gets a com-

plete response when he performs a query (i.e., all neighboring nodes are returned).

However, in real world application scenarios, we may encounter errors during the
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data collection process. When a data collector performs a query, a list of neighbor-

ing nodes is returned in response, but this list may be incomplete. Such errors can

occur for many reasons: for example, a participant who answers a questionnaire

may make a mistake in their answer, a web crawler may have a bug and fail to

extract links from web pages, or an adversary may tamper with the API and alter

the information exchanged between two parties. These errors may then lead to

inaccuracy in a subsequent network analysis. Therefore, it is important for a data

analyst to know if a collected sample is trustworthy. If not, a data analyst will get

some sense of the inaccuracy and fix the sample before performing the analysis

task.

In this chapter, we introduce a new network robustness measure, which we call

sampling robustness. To the best of our knowledge, while there are many ways to

evaluate network robustness in general, there is no existing work that measures a

network’s robustness with respect to sampling. For a crawler of choice C, the sam-

pling robustness of network G, denoted by Rp(G,C), is defined as the expected

similarity between two samples: one produced by crawler C on an error-free ver-

sion of G, and one produced by C on a version of G in which each edge is missing

with probability p. Intuitively, if a network is robust to the error, the performance

of a crawler C will be mostly unaffected by missing edges when it crawls network

G.

In this work, we model the error as random edge deletion, though our definition

could easily be adapted to other types of error. Here, our goal is to investigate

how the sampling robustness of a network with respect to random edge deletion,

and analyze network sampling robustness using the network’s structural proper-

ties, allowing a data analyst to predict whether a network will have high or low

sampling robustness by measuring only a small set of parameters. We observe that

sampling robustness is strongly correlated with the network’s leading eigenvalue,
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average node degree, and global clustering coefficient, and with these simple mea-

surements, one can estimate a network’s robustness.

Our contributions can be summarized as follows:

1. We introduce and define a new robustness measure, sampling robustness, which

measures the robustness of a network with respect to sampling by a crawler

when edges from the original network are dropped at random. Each edge

has probability p that it will be removed from a list of returned edges after

each query.

2. To measure sampling robustness, we demonstrate 4 different types of perfor-

mance measure, which depend on the sampling goal and output type of the

measure.

3. We show that sampling robustness is highly dependent on the network struc-

ture. Networks of different types have different level of sampling robustness.

4. We observe that sampling robustness is highly correlated with the leading

eigenvalue, average degree and average clustering coefficient calculated from

sampled networks.

5. We show that sampling robustness decreases as the error probability p in-

creases.

6. We present regression models for estimating sampling robustness given a

sampled network.

The rest of this chapter is organized as follows. In Section 5.1, we give an

overview of existing work for network robustness. We formally state our prob-

lem definition and definition of sampling robustness in Section 5.2. Experiments

and key observations are explained in Section 5.3 - 5.6. Lastly, we present a regres-
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sion model for estimating sampling robustness of any network given an obtained

sample in Section 5.7. The conclusion is presented in Section 5.8.

5.1 Related Work on Network Robustness

In this section, we explore previous literature that relates to network robustness. To

the best of our knowledge, there is no existing work on network robustness relating

to network crawling or data collection. However, there are numerous studies on

other forms of network robustness.

Work on network robustness has a long history, and has been heavily stud-

ied by researchers from different backgrounds, including computer science, biol-

ogy, physics and mathematics. In general, network robustness is defined as the

ability of a network to keep functioning when there is a random failure or tar-

geted attack [5]. For example, a telecommunications network is considered to have

high robustness if the network continues its functions and services when some de-

vices fail. Intuitively, robustness is all about back-up possibilities or alternatives

paths [24]. Interest in network robustness was sparked by the study of Albert et

al. in [5]. They study the effect of random failures and targeted attacks. They

measure network robustness by the diameter of the network and size of the largest

connected component, and show that scale-free networks have a high degree of tol-

erance against random failure, as opposed to random networks. However, scale-

free networks are very sensitive to targeted attacks. The diameter of the network

drastically increases and the network breaks into several components when the

hub nodes are attacked. Cohen et al. are interested in finding the critical point

(exact fraction of nodes to be removed which causes the networks to break into

isolated fragments) under a targeted attack in [21]. Other measures for capturing

network robustness are proposed, including shortest-path [37], path diversity [73],
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eigengap [26], spectral radius [17].

5.2 Sampling Robustness

In this section, we begin by giving a brief description of the data collection process

and random error. Next, we provide the details of different crawling techniques.

Lastly, we define sampling robustness of a network G.

5.2.1 Network Data Collection

Let G = (V,E) be an undirected, unobserved network, where V is the set of nodes

and E is the set of edges. At the start of the data collection process, only the iden-

tity of a single seed node is available. A data collector collects a network sample

using a crawling algorithm C. Given a seed node and a query budget, the crawler

expands the sample by iteratively querying observed nodes. For each query re-

sponse, all the neighboring nodes and incident edges are returned and added to

the sampled network. The crawler selects another next query node from the list

of observed nodes in the obtained sample and repeats until the query budget is

exhausted. We assume that the data collector queries each observed node at most

once. A crawler C thus generates a sample network S = (V ′, E ′) where V ′ ⊆ V

and E ′ ⊆ E are a list of nodes and edges observed, respectively.

5.2.2 Random Error

Error can originate from many different sources, such as mistakes or missing an-

swers from survey respondents, a misreading of instruments by the data collector,

or a bug in the data collection program. In this work, we consider the case of error

modeled by random edge deletion. With this type of error, each query misses some

fraction of edges. To model this type of error, each returned edge has a probability
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p that it will be removed from a list of returned edges after each query. If there is

an edge between node A and B, this edge may be missed when a crawler queries

on node A, but possibly discovered when B is queried.

5.2.3 Network Crawling Technique

In this section, we describe each crawling method in detail. We consider three

popular crawling algorithms: BFS, Random walk and MOD. These crawlers were

selected as they represent three important categories of crawling algorithms [6] as

we already seen in Chapter 3.

To collect a network sample, each crawler is given the same seed node and the

same total query budget (in our experiments, we set a budget to be 10% of the total

nodes of a network).

Breadth-first search (BFS): The BFS crawler selects the node that has been in

the list of unqueried nodes the longest (First-in, First-out). After each query, all of

the neighboring nodes that have not been queried are added to the queue. The BFS

crawler uniformly expands its frontier and is good at capturing a complete view

of the network.

Random walk (RW): In each iteration, the crawler transitions to a random

neighbor of the node that was just queried. The crawler performs a query if it

lands on an unqueried node. The random walk crawler is capable of finding many

nodes from different regions (e.g. communities). Here, the random walk crawler

cannot teleport.

Maximum observed degree (MOD): This crawler selects the unqueried node

with the highest observed degree. The MOD crawler can quickly finds hub nodes

in a few iterations [8].

For completeness, we also consider our proposed algorithm DE-Crawler, which

we discussed in Chapter 4. The results of DE-Crawler are largely similar to the re-
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sults of Random walk crawler. For full results of DE-Crawler, please see Figure A.1

and A.2 in Appendix.

5.2.4 Measuring Sampling Robustness

We define a novel network measure, sampling robustness, which measures the ex-

tent to which a sample generated by a crawling algorithm in the presence of errors

(either in the original network- e.g., a communications network in which edges

flicker in and out of existence- or in the crawling process itself- e.g., errors in the

crawling process) is representative of a sample generated by the same algorithm

without errors.

Figure 5.1: A toy example of network with high sampling robustness, showing two samples
generated from the same crawler C on network G. The crawler queries node A, B and C,
respectively. (Left) An error-free sample, S. (Right) A sample containing some errors, S ′ .
Edges (A, C), (B, D) and (E, G) are missing. These two samples contain the same set of
observed nodes.

If a network G has high sampling robustness, the performance of a crawler C

on network G will be consistent even if there are errors in the original network or

in the data collection process. Here, we assume such errors take the form of edges

missing uniformly at random, but the definitions and analysis that we present can

easily be generalized to other types of errors.

A toy example is illustrated in Figure 5.1, which illustrates a case of a network

with high sampling robustness. Nodes A, B and C are queried, respectively. The

left figure depicts a sample generated from a crawler C when there is no error
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(error-free sample). The right figure depicts a sample generated from a crawler C

where some of the edges are missing, (namely, (A, C), (B, D) and (E, G)). Assuming

our sampling goal is to find as many nodes, we can clearly see that both samples

contains the same set of observed nodes, V ′
1 = V

′
2 = {A,B,C,D,E, F,G,H}. This

indicates that network G has high sampling robustness since the performance of a

crawler C is consistent even though some edges are missing. A formal definition

of sampling robustness is shown in Definition 5.2.1.

Definition 5.2.1. Sampling Robustness

Rp(G,C) =
sim(M(S),M(S

′
))

R̄0

We denote the sampling robustness of G when p fraction of edges are miss-

ing uniformly at random as Rp(G,C), as shown in Definition 3.1. Here, we let S

represent the error-free sample (i.e., the sample produced by running a crawler C

on network G), and let S ′ represents the sample obtained by the crawler C with

errors (i.e., the sample produced by running a crawler C on network G with miss-

ing edges). The numerator is defined by computing the similarity between two

samples, S and S ′, produced by a crawler C: the first on the original network G

without errors, and the second on a version of G in which p fraction of edges have

been removed at random.

In the denominator, we account for potential randomness in sampling (includ-

ing the choice of seed node from which the crawler begins). We normalize this

value by R̄0, which represents the average similarity between two samples in the

case where there are no missing edges (p = 0). To calculate this, we generate multi-

ple error-free samples and compute the average similarity of these samples against

each others.
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Table 5.1: Examples of different performance measures M(·) and appropriate similarity
measures sim(·, ·).

Performance Measure Output Type Similarity measure

number of nodes or edges found number 1− dcanberra/L1/L2

distinct nodes in the sample a set Jaccard similarity

communities membership a set of set NMI, Partition distance [34]

degree distribution of the sample distribution 1-KS statistic

Performance Measure and Similarity

In Definition 5.2.1,M(S) is an application-specific function which characterizes the

performance of the crawler C when it generates a sample (e.g., if one is interested

in the sampling robustness of a network for the community detection application,

M(S) could represent the set of communities detected on S). Note that M(·) can

be any function, as depends on the sampling goal. This means that different types

of outputs can be returned by M(·). Some examples are as follows:1

• Numbers - e.g. the number of nodes or edges found

• A set - e.g. the distinct nodes in the sample.

• A set of sets - e.g. communities in the sample.

• A distribution - e.g. degree distribution of the sample.

Thus, the appropriate similarity measure depends on the output of M(·). The

examples of different performance and similarity measures are shown in Table 5.1.

For example, if a data collector wants to collect a network sample for a census-type

application, she can use the number of nodes found as a performance measure, since

the goal of sampling is to collect distinct people as many as possible, which the ro-

bustness can be calculated by the distance function. On the other hand, if the data
1Our code and implementation can be found at https://github.com/kareekij/sampling-robustness.
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collector wants to collect the sample such that it contains population from several

groups, the appropriate performance measure would be a community membership

of nodes. Thus, she would use the partition distance as a similarity measure for

calculating the robustness of a network.

5.3 Sampling Robustness and Network Type

Our definition of sampling robustness requires access to the original network G.

Note that this is something of a contradiction: if one has the entire original network

G, one need not concern oneself with sampling, or even with robustness! So in

practice, if one has collected a sample, with errors, from a graph G, how can one

determine whether that sample is likely to be a good representation of the sample

one would have obtained had the sampling process not contained errors?

We hypothesize that the sampling robustness of a network depends on that network’s

properties. We verify our hypothesis by conducting the following experiment. Nat-

urally, networks of the same type tends to have similar properties, as shown in

Chapter 3. For example, the average degree of collaboration network (e.g. number

of names appears on the manuscript) is around 5 while the average degree of the

social network (e.g. number of friends) is around 20.

Therefore, using only the network type, we can roughly classify networks by

their properties. In our experiments, we computed the sampling robustness of 15

networks on 5 different categories. To verify our hypothesis and investigate the

level of robustness, we define the performance measure M(·) as the size of the

sample (node coverage), which is defined as

M(S) = |{v ∈ V ′

s , V
′

s ⊆ V }|

This function measures the performance of a crawler in terms of the number
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Table 5.2: Statistics of a network. |V | is the number of nodes, |E| is the number of edges,
d̄ is the average degree, c̄c is the average clustering coefficient and λ1 is the leading eigen-
value of adjacency matrix A of the network. These networks can be downloaded from
www.networkrepository.com.

Type Network |V | |E| d̄ c̄c λ1

CA
Erdos992 4991 7428 2.977 0.08352 15.13
HepTh 8638 24806 5.743 0.4816 31.03
GrQc 4158 13422 6.456 0.5569 45.62

BIO
CE-GN 2215 53680 48.47 0.1843 96.22
CE-PG 1692 47309 55.92 0.4467 152.6
SC-GT 1708 33982 39.79 0.3491 109.9

SOCFB
Amherst41 2235 90954 81.39 0.3104 137.1
Colgate88 3482 155043 89.05 0.2673 141.9
Bowdoin47 2250 84386 75.01 0.289 124.2

SOC
Hamsterster 2000 16097 16.1 0.54 50.02
Advogato 5054 39374 15.58 0.2526 70.51
Wiki-Elec 7066 100727 28.51 0.1418 138.1

Tech
PGP 10680 24316 4.554 0.2659 42.44
Router-RF 2113 6632 6.277 0.2464 27.67
WhoIS 7476 56943 15.23 0.4889 150.9

of nodes discovered after a crawler performs some specified number of queries.

To compare the similarity of two samples S and S
′ (each produced with the same

number of queries), we use the Canberra Distance, since the output is normalized

between 0 and 1. So, the similarity between S and S
′ is defined as

sim(M(S),M(S
′
) = 1− dcanberra(|V

′

s |, |V
′

s′|)

Statistics of each network are listed in Table 5.2 and the results are illustrated

in Figure 5.2. In this figure, each point represents the sampling robustness of a

network, as computed and aggregated over 10 trials. The x-axis represents the net-

work type and the y-axis represents the sampling robustness. The error probability
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Figure 5.2: Aggregate results of Rp(G,BFS) when p is ranging between 0.1-0.5. Each
point represents a network from various categories (along x-axis). Sampling robustness
highly depends on network type.

p is varied between 0.1 and 0.5. A BFS crawler is used to collect samples from these

networks. Similar results were obtained for other tested crawlers (Random walk

and MOD, specifically).

As we can clearly see in Figure 5.2, networks of different types tend to have

different levels of sampling robustness and networks in the same category have

similar sampling robustness. This supports our hypothesis. As a result, biological

and Facebook networks tend to be the most robust, as opposed to collaboration

networks, which have the lowest sampling robustness.

5.4 Characterizing Sampling Robustness

As noted in the previous sections, computing sampling robustness requires gen-

erating an error-free sample S. In real-world applications, obtaining this sample

is not practical. In the previous section, we showed that one can roughly estimate
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sampling robustness from the network category. In this section, we will demon-

strate thatRp(G,C) highly depends on the structural properties of both the original

network G as well as the obtained network samples S ′ .

In Chapter 3, our work demonstrated that the structural properties of the net-

work play the important role in network sampling [6]. Specifically, certain network

properties enhance (or degrade) the efficiency of a crawler.

When sampling error occurs, certain edges may be invisible to the crawler. The

ability of the crawler to expand the sampled network may thus drop, because the

crawler makes its query decisions based on the nodes and edges in the sampled

network that it has observed so far. What, then, are the properties that make a

network robust to sampling?

In this section, we investigate three properties that we believe support a crawler

in expanding a sample’s boundary; 1) the largest eigenvalue of the adjacency ma-

trix 2) average node degree and 3) average clustering coefficient.

The largest (or leading) eigenvalue λ1 and average node degree are closely re-

lated, since λ1 is bounded by the degree of a network [76]. The key idea is that a

network is robust when a crawler can quickly find hub nodes (here, a node with

degree larger than average). Intuitively, if the average degree of a network is k and

p percent of edges are missing, this means that a crawler will discover a maximum

of around k × (1− p)/100 nodes for each query on average (the number of discov-

ered nodes will be lower if there is a lot of redundancy). If the average degree is

low, the crawler will require more time to get to these hub nodes, since it is less

likely that one (or more) of the neighbors of the current queried node will be a

hub. However, when the average degree is high, the chance that the crawler will

discover these hub nodes will increase. Thus, a network with a high average de-

gree helps a crawler in expanding its sample and tends to be more robust against

the missing edges.
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Similarly, a network with high average clustering coefficient indicates dense

connections between nodes. This indicates that nodes have many redundant edges

(or paths) which connect from other nodes to itself. Thus, even some edges are

missing, a crawler should be able to visit nodes easily because of these alternative

paths, making the network more robust to the missing edges.

In this experiment, we calculate sampling robustness by using four different

performance measures, which are described in subsection 5.2.4. Three crawlers,

i.g. BFS, Random walk and MOD, are used to collected the samples from networks

listed in Table 5.2. Error probabilities are varied between 0.1 to 0.5 and the results

are aggregated over 10 runs.

As we will see, sampling robustness is highly dependent on these network

properties, as computed in both the original network as well as the sample gener-

ated with errors. Figure 5.3, 5.5 and 5.7 illustrate the correlation between sampling

robustness and each property on original network G. While Figure 5.4, 5.6 and 5.8

demonstrate the correlation between sampling robustness and each property on

the obtained sample S ′ .

5.4.1 The largest eigenvalue of the adjacency matrix

The largest or leading eigenvalue of the adjacency matrix A, denoted by λ1, plays

an important role in forecasting epidemic spreading processes.

As shown in [76], the leading eigenvalue λ1 is related to the epidemic threshold

τ , which governs how quickly disease can spread through a network via the SIR

model. It has been shown that τ = 1
λ1

, so, one can predict whether an epidemic

will die out on any given network by considering only a single parameter. In the

SIR model, where β is the birth rate and γ is the curing rate, the epidemic will die

out iff β
γ
< τ .

The epidemic process and network data collection process have similar dynam-
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Figure 5.3: Aggregate results of Rp:0.1→0.5 against leading eigenvalue λ1. Each point rep-
resents a network. Sampling robustness highly depends on λ1.

ics. Both start from a single seed node and gradually expand outwards. In both

cases, we look at the population of interest after t time steps: i.e., how many people

get the diseases or how many distinct users a crawler discovers through crawling.

We can consider network crawling to be a simpler version of epidemic model,

where γ is a constant and β is a crawl rate (e.g., number of requests per second,

number of new nodes added to sample). So, we can use λ1 to indicate how fast the

crawler can expand the sample. Since λ1 is bounded by the average degree, the

larger λ1 means the higher average degree. As we will see in Figure 5.5 and 5.6,
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Figure 5.4: Aggregate results of Rp:0.1→0.5 against leading eigenvalue λ1. Each point repre-
sents a network. The results illustrates that sampling robustness highly depends on leading
eigenvalue λ1.

higher average degree indicates that a crawler can easily expand its sample.

In Figure 5.3, we plot sampling robustness against the leading eigenvalue λ1

of the adjacency matrix A of the network G. The leading eigenvalues of the error-

containing sample S ′ are shown in Figure 5.4. In these figures, each point is the

sampling robustness of a network, computed as an average over 10 experiments.

Each column illustrates a case when different crawling technique is used and each

row represent the the sampling robustness when different performance measure

M(·) is used.
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Figure 5.5: Aggregate results of Rp:0.1→0.5 against average degree. Each point represents a
network. Sampling robustness highly depends on average degree of network G.

Sampling robustness and leading eigenvalue are highly correlated. As expected,

we observe that a network with higher leading eigenvalues (lower epidemic thresh-

old τ ) is more robust. This indicates that a crawler can easily expand its sample

even the edges are missing.

5.4.2 Average node degree

Next, the average degree indicates the average number of neighbors of each node

(e.g. average number of friends of users on social networks, average number of
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Figure 5.6: Aggregate results of Rp:0.1→0.5 against average degree. Each point represents a
network. The results illustrate that sampling robustness highly depends on average degree
of the sample.

co-authors on collaboration networks). Intuitively, a crawler can quickly expand

its sample if the average degree is large, and can continue to do so even if some of

the edges are lost.

Figure 5.5 illustrates the average sampling robustness against average degree

of a network. The average observed degree of samples are shown in Figure 5.6.

The results are aggregated over 10 runs when p is varied from 0.1 to 0.5. Each

column represents results from different types of crawler and each row represent

when different performance measure M(·) is used. As we expected, the sampling
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robustness is also highly correlated with the average degree of the networks as

well as the average observed degree of the obtained samples.

5.4.3 Average clustering coefficient

Figure 5.7: Aggregate results ofRp:0.1→0.5 against average clustering coeficient. Each point
represents a network. Sampling robustness seems not to depends on average clustering
coefficient of the network G.

Lastly, we consider the average clustering coefficient of the original network

G and the obtained samples S ′ . This property measures how well nodes are con-

nected. A higher clustering coefficient indicates that neighboring nodes are densely
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Figure 5.8: Aggregate results of Rp:0.1→0.5 against average clustering coefficient. Each
point represents a network. The results illustrate that sampling robustness highly depends
on average clustering coefficient of the sample.

connected to each others. Intuitively, when nodes are densely connected (near

clique structure), the crawler will discover nodes quickly, and is more robust against

missing edges.

In Figure 5.7, we observe that the clustering coefficient of a network G is not

correlated with its sampling robustness.

However, we do observe that the clustering coefficient of a sample S ′ is corre-

lated with the sampling robustness, as illustrated in Figure 5.8. This may be be-

cause a large portion of the nodes in networkG have degree 1 due to the power-law
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distribution, and these nodes bring down the average clustering coefficient over-

all. On the other hand, our selected crawlers are known to be biased toward hub

nodes [42, 29], thus, the sampled networks contain nodes with high degree con-

necting to each others. The sampled network represents the inner-core structure

of the network rather than the periphery, which is a better indicator for measuring

robustness.

5.5 Sampling Robustness and Error Probability

In this section, we investigate the sampling robustness when error probability p

is varied. In this experiment, we varied the error probability between 0.1 and 0.5.

Again, four performance measuresM(·) are used to calculate the value of sampling

robustness and three crawlers are used to collect the network samples. These re-

sults are shown in Figure 5.9.

In Figure 5.9, each row represents results when different performance measure

is used and each column represents different network type. For each subplot, x-

axis represents the error probability p (ranging from 0.1 to 0.5), while y-axis repre-

sents sampling robustness. The results are aggregated over 10 runs.

We can clearly see that sampling robustness decreases as error probability p in-

creases, which is as expected. However, we observe that some network types tend

to be more robust than others. For example, we can clearly see that sampling ro-

bustness of the collaboration networks drops faster than the value of Facebook100

networks when error probability p increases from 0.1 to 0.5. Similarly, sampling

robustness of technological networks drops faster than sampling robustness of bi-

ological networks.

As a result, we observe that collaboration and technological networks are sen-

sitive to random edge deletion. The robustness of collaboration and technological
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Figure 5.9: Aggregate results of sampling robustness (y-axes) when p is ranging between
0.1 - 0.5 (x-axes). Each row represents when different performance measures M(·) are
used and each column represents the results on networks in different types.

networks drop to around 0.65 and 0.7, respectively, in the worst case. This is be-

cause networks in these categories tend to have low average degree (the average

degree is around 5). Thus, when edges are missing, a crawler has some difficulty

in moving to different parts on the network which degrades the performance of a

crawler.

On the other hand, Facebook100 networks seems to be the most robust as com-

pared to networks in other types. The value of sampling robustness slightly drops

as error probability increases. These networks are very robust to missing edges,
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Figure 5.10: Aggregate results of sampling robustness when p is ranging between 0.1 - 0.5.
Each plot represents the results when calculated by different performance measure M(·).
The results illustrate that sampling robustness does not depend on crawling technique.

its robustness is around 0.9 even 50% of edges are missing. This is because these

networks have very high average degree (d̄ ≈ 80). So, even half of the edges are

missing, the crawler is still capable of moving between various regions on these

networks, which seems not to affect the performance of the crawler.

5.6 Sampling Robustness and Different Crawling Tech-

niques

In this section, we investigate sampling robustness when different crawlers are

used for collecting the samples from networks. Here, we focus on three different

crawlers: BFS, Random walk and MOD crawler. We measure the sampling robust-

ness of networks listed in Table 5.2. The error probability is varied between 0.1 and

0.5. The aggregate results are from 10 runs and are illustrated in Figure 5.10. For

each subplot, it represents results when different performance measure is used.

The x-axis represents different crawlers, while y-axes represent the level of sam-

pling robustness.

As we can see from this figure, the levels of sampling robustness seems to be

similar regardless of the type of the crawler and performance measure. We can ex-
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pect to see more variation on networks with MOD crawler and partition similarity

are used.

5.7 Sampling Robustness Estimation

In this section, we introduce a regression model which we can use to estimate

a sampling robustness of any network given an obtained sample. We describe

how to estimate error probability p and show how we construct our models for

estimating sampling robustness in subsection 5.7.1. Then, we evaluate the models

and report the results in subsection 5.7.2.

5.7.1 Building a Model

Previously, we observed that there is a relationship between sampling robustness

and properties of the collected samples. In addition, we clearly see that sampling

robustness also decreases as error probability p increases. These are the four main

factors which have effect on the sampling robustness. Thus, we can use them as

predictor variables in our model.

To estimate the robustness of the original graph G, we only have a sample S ′

which obtained by a crawler C. We build a linear regression model using an error

probability p and three network properties (as we described in the previous sec-

tion) as the dependent variables. This model represents the relationship between

the response variable (R̂p) and predictor variables (d̄′ , c̄c′ , λ′
1, p). However, before

the estimation, uses need to estimate the error probability p.

Estimating error probability: The probability p can be estimated by perform-

ing multiple queries on the same node and counting the number of times a par-

ticular edge is duplicated. Let k be the number of times a crawler queries node

u, and e be one of the edges incident to node u in G. So, p can be estimated by
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Table 5.3: The summary statistics of the constructed model. This linear model has moderate
value of R-square and the model is statistically significant since the p-value of the model
and the p-value of the individual (including their interaction terms) are less than 0.01.

Coefficient Std. Error t-value p-value

(Intercept) 0.9696104226 1.600e-03 606.036 < 2e-16

p -0.1915773060 2.457e-03 -77.957 < 2e-16

d̄ 0.0061236904 1.016e-04 60.297 < 2e-16

λ1 -0.0004802188 2.823e-05 -17.009 < 2e-16

c̄c 0.0224243976 5.001e-03 4.484 7.43e-06

Residual standard error: 0.02765 on 7495 degrees of freedom

Multiple R-squared: 0.6589, Adjusted R-squared: 0.6587

F-statistic: 3619 on 4 and 7495 DF, p-value: < 2.2e-16

p = 1 − ke
k

, where ke is the number of times edge e is seen after k queries on u.

Users can estimate p with a small k. In our analysis, we assume that these multiple

queries are performed using a small amount of budget, and is done after obtaining

the samples.

Model 1: Multiple Linear Regression

As mentioned earlier, we consider four variables in this model (d̄′ , c̄c′ , λ′
1, p). Thus,

the relationship between sampling robustness and the predicted variables can be

shown as

R̂p = β1 · p+ β2 · d̄
′
+ β3 · λ

′

1 + β4 · c̄c
′
+ b,

where β1...i are the coefficients, p is an error probability, d̄′ , λ′
1 and c̄c

′ are the

average degree, leading eigenvalue and average clustering coefficient of a sample

S
′ , respectively.

In order to build the model, we train our model from the sampled networks

which we obtained in the previous experiment. In total, there are 7,500 data points

in the training set. The statistics of the constructed model are listed in Table 5.3.
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Table 5.3 shows the coefficient of each predictor variable, standard error, and

its significant level. As we can see, this model shows a statistically significant since

the model p-value is less than 0.01. In addition, all the predicting variables are also

significant (p-value < 0.01). However, the R-squared and Adjusted R-squared of

this model are around 0.658, which indicates some room for improvement.

Model 2: Multiple Linear Regression with Interaction

To improve the predicting power of the previous model, we will consider the in-

teraction between variables. We hypothesize that each property affects sampling ro-

bustness differently on different level of error probability. Therefore, we add three inter-

action terms to the model. The model can be described as follows,

R̂p = β1 · p+ β2 · d̄
′
+ β3 · λ

′

1 + β4 · c̄c
′
+ β5 · p · d̄+ β6 · p · c̄c+ β5 · p · λ1 + b

Again, we construct the model from the sampled networks listed in Table 5.2.

The summary statistics of the model are in Table 5.4. This model also shows sta-

tistical significance, since the model p-value is very low (less than 0.01) and all

the predicting variables including the interaction terms are significant (p-value <

0.01). In addition, this model gives R-squared and Adjusted R-squared of 0.8649

and 0.8648, respectively. All of the variables are significant by the t tests. This

indicates that this model can explain the variation in response very well. These

statistical tests give us a strong evidence that this model significantly improves the

model over the previous one by adding the interaction terms.
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Table 5.4: The summary statistics of the constructed model. This linear model has a great
value of R-square and the model is statistically significant since the p-value of the model
and the p-value of the individual (including their interaction terms) are mostly less than
0.05.

Coefficient Std. Error t-value p-value

(Intercept) 1.0470999071 1.680e-03 623.099 < 2e-16

p -0.4744817968 4.915e-03 -96.547 < 2e-16

d̄ -0.0049934093 1.354e-04 -36.867 < 2e-16

λ1 0.0003848386 3.838e-05 10.028 < 2e-16

c̄c -0.0117558437 6.712e-03 -1.752 0.07989

p× d̄ 0.0457005403 4.877e-04 93.705 < 2e-16

p× c̄c 0.0689145597 2.200e-02 3.133 0.00174

p× λ1 -0.0037103293 1.327e-04 -27.953 < 2e-16

Residual standard error: 0.01741 on 7492 degrees of freedom

Multiple R-squared: 0.8649, Adjusted R-squared: 0.8648

F-statistic: 6851 on 7 and 7492 DF, p-value: < 2.2e-16

Figure 5.11: Regression diagnostic plots. (Left) Residuals vs. Fitted values plot. Residuals
are scattered around 0, which indicates a linear pattern. (Right) Q-Q plot of the residuals
of model 2. This shows that the residuals are normally distributed.

Validity of the Model

Although, this model gives a high R-squared (0.8649), we also investigate the

model further by performing a residuals analysis. We analyze the residuals and
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Table 5.5: Statistics of network used for model testing. We generate around 600 samples
networks in total by using BFS, MOD and Random walk crawlers.

Network |V | |E| d̄ c̄c λ1

Hamilton46 2312 96393 83.38 0.2983 135.93

Trinity100 2613 111996 85.72 0.2903 135.83

Epinion 26588 100120 7.53 0.1351 66.206

Caida2007 26475 53381 4.03 0.2082 69.643

illustrate in Figure 5.11.

The left plot in Figure 5.11 shows residuals and fitted values. As we can see,

the residuals are equally scattered around horizontal line (dotted-line at 0). This

indicates the linear relationship between predictor variables and response variable.

It shows a good evidence that this model meets the linearity and homoscedasticity

assumptions for linear regression model.

On the right of Figure 5.11, it illustrates the normal Q-Q plot. This plots demon-

strates that residuals are normally distributed (residuals follows a diagonal straight

line). This gives us a strong evidence that the model satisfies the normality assump-

tion.

5.7.2 Model Evaluation

To test our model, we use samples generated from the networks listed in Table 5.5.

These networks were not used in generating the regression model. We use these

networks as the original networks G, and use the BFS, random walk, and MOD

crawlers to generate samples. The error probability p ranges from 0.1 and 0.5. For

each network, ten network samples are generated using each crawler, for each of

p. In total, we have around 600 sampled networks.

We evaluate our models through min-max accuracy and mean absolute per-

centage error (MAPE). The accuracy is calculated from the correlation between
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the actual and predicted values. Higher accuracy indicates that the actual and

predicted values have similar trend (i.e. predicted values increase as actual values

increase), so, higher is better. While MAPE is a measure of how accurate the model

is (the lower is better).

As a result, the accuracy of this model is 0.9012342, while MAPE is 0.02499224.

The evaluation results show a very high accuracy and low error. This indicates that

our proposed model is capable of estimating sampling robustness of a network G

from a sample S ′ .

Through this method, users can estimate the sampling robustness of any net-

work given an obtained sample. We evaluate the model and the results show that

our model have great R-squared and it estimates sampling robustness with high

accuracy and a small error. This lets the user understand whether the results of an

analysis performed on a particular sample with errors are a good representation of

the results one would have gotten from analyzing a sample without errors.

5.8 Conclusion

In this chapter, we presented a novel network robustness measure called “sam-

pling robustness", which measures how much the performance of a network crawler

changes when the edges are missing during the data collection process. We present

four different performance measures that can be used for calculating sampling ro-

bustness. The performance measure can be varied and it is dependent on the sam-

pling goal. We demonstrated that different network types have different level of

robustness, and that sampling robustness is highly dependent on the structural

properties of the original graph. In addition, it is also correlated with the struc-

tural properties calculated from the obtained network samples. We presented a

linear model for estimating sampling robustness from properties of the obtained
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sample. As a result, our proposed model has high R-squared and it is capable of

predicting sampling robustness with high accuracy with low error.
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CHAPTER 6

CONCLUSION

In this dissertation, we considered the problem of network sampling through crawl-

ing, in which the data collector have no knowledge about the network of interest

except the identity of a seed node (e.g. the first person that the data collector will

start to query). The data collector can obtain more information about the network

by querying observed nodes that obtained so far under a given budget. We be-

gan by presenting and summarizing many important crawling techniques from

the network science literature. However, the existing literature contained no clear

conclusion on which method should be used for the task of data collection. As

observed in this dissertation, a method may work the well on one type of network

but fail on other types of network. Therefore, our first goal was to understand the

behavior of these crawlers when across networks. In particular, we were interested

in examining the factors which can improve (or degrades) the performance of the

crawler.

In the first chapter, we examined the interplay between crawler performance

and the structure of the network on many synthetic and real networks. We stud-

ied the performance of the crawler under the goal of maximizing a number of

nodes observed. We focused on three properties which we hypothesized to have
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an effect on crawler performance: community mixing, average degree and com-

munity size. These properties govern the ability of a crawler to move between

regions of the network. We considered five different types of query responses on

both undirected and directed networks, and chose eight commonly used crawling

techniques from the literature, which we grouped them into three categories as

based on their performance. We found that greedy methods (i.e., MOD, OPIC and

PageRank) perform the best on networks with overlapping communities. These

methods are capable of finding nodes in dense regions in a few iterations, but their

performance is obstructed by sharp community borders. On the other hand, a

random walk crawler performs the best on networks that have disjoint commu-

nity structure. This crawler has the ability to discover many partial regions (e.g.

communities) of the networks. We performed extensive experiments on networks

from different domains. Finally, we provided guidelines on how a data collector

can select an appropriate method for network crawling when type of network of

interest is known even before observing properties of that specific network.

Next, we presented a novel crawling technique called DE-Crawler, which com-

bines methods that can quickly explore nodes in an individual region and those

that can move freely between regions. DE-Crawler consists of two stages: the den-

sification stage aims to find nodes in a particular region with a minimal amount of

budget, and the expansion stage aims to find a new region which has not been

explored yet. The algorithm automatically switches between these two stages

based on the sample observed so far. We compared the performance of our pro-

posed algorithm against baselines on many diverse networks. Experimental re-

sults showed that the performance of DE-Crawler is consistently the best over all

types of networks, with a performance improvement of up to 28% over the next

baseline.

Finally, we focused on the scenario where there is an error during the data
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collection process. Specifically, we examined the scenario when there are some

missing edges on the response after each query, which we modeled as random edge

deletion. These errors may lead to inaccuracy in further network analysis. Thus, it

is important for a data analyst to measure the trustworthiness of the obtained sam-

ples. We presented a novel robustness method called “sampling robustness", which

measures the extent to which a sample generated by a crawling algorithm in the

presence of errors is a representative of a sample generated by the same algorithm

without errors. We illustrate that sampling robustness is strongly correlated with

network properties and some network types tends to be more robust than others

when edges are missing. Specifically, it is highly correlated with leading eigen-

value, average degree, and clustering coefficient of the network and the obtained

samples. By considering a small set of these properties, we presented a regres-

sion model for estimating the robustness of the networks. Our proposed model

has an R-squared of 0.8649, indicating that our model includes only relevant pre-

dictor variables and explains the variation very well. All predictor variables are

statistically significant with p-value of less than 0.01. The experimental results also

show that our model can achieve high prediction accuracy (0.90) with minimal

error (MAPE ≈ 0.024).
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APPENDIX A

Table A.1 shows the percentage improvement above (or below) the number of

nodes found by Random Walk crawler of both pairs ‘P1’ and ‘P2’ from the exper-

iments in Section 3.4. Each row corresponds to a network property, and contains

results on network pairs that differ with respect to that property. The columns rep-

resent different query responses. Each cell shows the performance improvement of

G1 and G3 as compared to the performance of Random Walk. The arrow indicates

how the performance changes (⇑ improves or ⇓ degrades) when the considered

property changes from low value to higher value.

As we expected, the performance of G1 drops when modularity increases as we

can observe in pair P1. However, in pair P2, the performance of G1 improves even

when modularity increases because the selected network pairs have extremely low

average degree (all of them have the average degree less than 10). When average

community size is a controlled property, we see small changes for the complete,

paginated and partial query models. This is because the selected networks have too

large of a community size relative to the given query budget. Thus, we cannot

observe substantial changes in performance here. Lastly, as expected, the perfor-

mance of G3 methods increases as average degree increases.

Next, we show complete results of the experiments from Section 3.5. We pro-

vide the mean and standard deviation of the percentage of node coverage in Ta-
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Table A.1: Results of the controlled experiments. An arrow indicates how the performance
changes when test property changes from Low to High (⇑: improve, ⇓: degrade, ≈: un-
changed). In

[
x
y

]
, x and y indicate the percentage improvement of Low- and High- valued

networks, respectively (‘+’: outperform RW, ‘-’: underperform RW).

Comp Page Part In-Out Out

Improvement of G1 vs. RW

Q
P1 ⇓

[
7.62%
−5.24%

]
⇓
[

7.19%
−6.13%

]
⇓
[ −5.84%
−65.66%

]
⇓
[

34.77%
−15.07%

]
⇓
[
22.53%
12.11%

]
P2 ⇑

[
12.47%
19.81%

]
⇑
[
8.71%
13.41%

]
⇑
[−26.05%
−14.15%

]
⇑
[−1.73%
25.72%

]
⇓
[−0.01%
−2.45%

]
CS

P1 ⇑
[−71.52%
−70.32%

]
⇑
[−66.57%
−66.18%

]
≈
[−78.22%
−80.50%

]
⇓
[
20.76%
12.23%

]
≈
[
12.05%
14.13%

]
P2 ⇑

[
12.04%
13.47%

]
⇑
[
12.33%
16.30%

]
≈
[
0.92%
0.95%

]
≈
[
12.92%
12.23%

]
≈
[
12.53%
13.13%

]
d

P1 ⇑
[−0.40%

6.25%

]
⇑
[
0.20%
3.38%

]
⇑
[−23.20%
510.67%

]
⇓
[
38.66%
14.05%

]
⇓
[
22.53%
−4.14%

]
P2 ⇓

[
10.14%
−14.38%

]
⇓
[

15.58%
−12.32%

]
⇓
[

16.84%
−31.84%

]
⇓
[

4.37%
−15.78%

]
⇓
[

24.45%
−25.11%

]
Improvement of G3 vs. RW

Q
P1 ⇑

[−22.44%
−13.97%

]
⇓
[

17.77%
−11.97%

]
⇑
[−5.77%
−0.56%

]
⇑
[−46.56%
−20.96%

]
⇑
[−44.63%
−9.47%

]
P2 ⇑

[−28.27%
−17.64%

]
⇓
[−17.64%
−20.54%

]
⇓
[

0.20%
−2.42%

]
⇑
[−9.01%

3.48%

]
⇓
[

0.12%
−3.07%

]
CS

P1 ⇓
[−20.53%
−27.68%

]
⇓
[−19.58%
−27.71%

]
≈
[−57.25%
−56.12%

]
≈
[−15.75%
−12.32%

]
≈
[−2.67%
−3.08%

]
P2 ⇑

[−31.64%
−15.91%

]
⇑
[−23.36%
−7.49%

]
≈
[−39.40%
−38.45.%

]
≈
[−14.89%
−12.32%

]
≈
[
1.36%
1.12%

]
d

P1 ⇑
[−15.18%
−0.87%

]
⇑
[−8.25%

0.00%

]
⇑
[−16.45%
−2.16%

]
⇑
[−11.97%
−9.43%

]
⇑
[−2.99%

6.80%

]
P2 ⇑

[
2.09%

334.34%

]
⇑
[−95.20%
133.98%

]
⇑
[−36.62%
−31.44%

]
⇑
[−46.56%
−24.32%

]
⇑
[−44.63%

14.77%

]
bles A.2 and A.3 for undirected and directed networks under five different re-

sponses.

For undirected networks, G1 methods are the best method to crawl these net-

works (except Facebook-typed networks) under complete and paginated responses.

However, Random walk crawler is the best for crawling networks under partial re-

sponses.

For directed networks, G1 methods are appropriate for crawling technological

and online social network under In-Out response, while Random walk crawler is

an appropriate method for networks under out responses.

Figure A.1 and A.2 demonstrates the aggregate results, when DE-Crawler is
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Table A.2: Undirected Networks - Summary of the network characteristics and perfor-
mance of algorithms.

Type Network G1 G2 G3
Complete Response

Collab

Citeseer 39.78 ± 0.85 38.94 ± 0.46 32.29 ± 0.22
Dblp-2010 45.73 ± 0.07 40.8 ± 0.37 28.84 ± 0.11
Dblp-2012 52.39 ± 0.08 46.88 ± 0.2 38.26 ± 0.12
MathSciNet 51.15 ± 0.08 44.94 ± 0.15 36.56 ± 0.13

Rec Amazon 11.35 ± 0.18 11.25 ± 0.09 11.64 ± 0.2
Github 66.15 ± 0.02 58.34 ± 0.16 39.88 ± 0.13

FB
OR 52.89 ± 1.06 67.41 ± 0.30 63.4 ± 0.06
Penn 82.36 ± 0.72 89.35 ± 0.29 88.32 ± 0.04
Wosn-friends 53.04 ± 1.13 67.61 ± 0.36 63.37 ± 0.1

OSNs
BlogCatalog 94.99 ± 0.01 94.21 ± 0.12 57.6 ± 0.53
Themarker 93.61 ± 0.00 91.66 ± 0.14 58.4 ± 0.22
Catster 94.74 ± 0.01 94.25 ± 0.05 69.77 ± 3.24

Paginated Response

Collab

Citeseer 39.71 ± 0.13 38.86 ± 0.33 34.09 ± 0.21
Dblp-2010 43.03 ± 0.17 41.29 ± 0.24 31.99 ± 0.18
Dblp-2012 49.08 ± 0.14 47.27 ± 0.17 40.7 ± 0.15
MathSciNet 43.05 ± 0.33 45.01 ± 0.15 39.83 ± 0.25

Rec Amazon 11.66 ± 0.12 11.39 ± 0.15 1.2 ± 1.21
Github 65.41 ± 0.07 58.97 ± 0.12 45.11 ± 0.13

FB
OR 53.33 ± 3.62 66.78 ± 0.50 63.86 ± 0.21
Penn 80.67 ± 3.26 89.35 ± 0.28 88.5 ± 0.06
Wosn-friends 52.97 ± 4.47 66.60 ± 0.59 63.93 ± 0.18

OSNs
BlogCatalog 96.12 ± 0.03 93.65 ± 0.21 63.58 ± 0.77
Themarker 93.82 ± 0.02 90.86 ± 0.10 63.56 ± 0.61
Catster 94.93 ± 0.01 94.82 ± 0.07 81.54 ± 0.77

Partial Response

Collab

Citeseer 7.06 ± 1.4 12.84 ± 0.23 5.23 ± 0.76
Dblp-2010 9.96 ± 0.68 13.53 ± 0.14 5.44 ± 0.21
Dblp-2012 12.38 ± 0.14 14.18 ± 0.11 7.57 ± 0.20
MathSciNet 12.97 ± 0.70 14.56 ± 0.07 8.59 ± 0.27

Rec Amazon 7.23 ± 0.11 9.32 ± 0.46 4.94 ± 1.91
Github 22.59 ± 0.26 45.50 ± 0.20 26.8 ± 0.11

FB
OR 41.43 ± 5.48 63.29 ± 0.65 48.65 ± 0.17
Penn 59.62 ± 4.62 80.18 ± 0.50 56.67 ± 1.50
Wosn-friends 42.98 ± 4.58 62.99 ± 0.52 48.39 ± 0.31

OSNs
BlogCatalog 29.72 ± 0.10 28.18 ± 0.13 19.18 ± 0.81
Themarker 33.99 ± 0.15 32.83 ± 0.12 21.69 ± 0.31
Catster 48.1 ± 8.81 30.87 ± 0.17 10.92 ± 0.62
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Table A.3: Directed Networks - Summary of the network characteristics and performance
of algorithms.

Type Network G1 G2 G3
In-Out Response

Tech
P2P-gnutella 36.04 ± 0.12 31.97 ± 0.24 27.73 ± 0.23
RL-caida 36.38 ± 0.18 29.45 ± 0.48 26.83 ± 0.11

Web
Arabic-2005 9.33 ± 1.01 9.90 ± 1.45 8.58 ± 1.14
Italycnr-2000 10.07 ± 1.92 19.34 ± 4.5 17.01 ± 3.43
Sk-2005 9.30 ± 0.78 10.01 ± 0.4 8.38 ± 0.42

OSNs
Slashdot 72.85 ± 0.01 60.32 ± 0.21 39.5 ± 0.37
Ego-Twitter 86.84 ± 2.30 86.26 ± 1.07 77.21 ± 1.08
Wiki-Vote 66.22 ± 1.21 60.71 ± 1.00 46.95 ± 0.52

Tech
P2P-gnutella 12.64 ± 1.62 12.48 ± 1.55 13.16 ± 2.28
RL-caida 5.09 ± 0.00 4.72 ± 0.00 5.09 ± 0.00

Out Response

Web
Arabic-2005 0.51 ± 0.00 0.51 ± 0.00 0.51 ± 0.00
Italycnr-2000 15.97 ± 0.11 18.32 ± 1.80 15.35 ± 0.33
Sk-2005 0.39 ± 0.00 0.39 ± 0.00 0.39 ± 0.00

OSNs
Slashdot 79.03 ± 0.03 79.47 ± 0.37 47.97 ± 0.28
Ego-Twitter 53.65 ± 12.83 78.99 ± 7.15 61.37 ± 3.45
Wiki-Vote 29.13 ± 0.77 31.2 ± 0.26 30.61 ± 0.11

used as a crawler and error probability p is varied from 0.1 to 0.5, against net-

work properties of network G and obtained sample S ′, respectively. Three net-

work properties are considered, leading eigenvalue, average average degree and

clustering coefficient. For each plot, x-axis shows the value of the considered prop-

erties and y-axis shows the value of sampling robustness. Each point represents

each network in Table 5.2. We consider four performance measures as mentioned

in Table 5.1.

We can clearly see in Figure A.1, the sampling robustness is highly correlated

with leading eigenvalue and average degree of the original networkG, but it seems

to be uncorrelated with average clustering coefficient of network G.
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(a) Sampling robustness vs. leading Eigenvalue of an original network.

(b) Sampling robustness vs. average degree of an original network.

(c) Sampling robustness vs. average clustering coefficient of an original network.

Figure A.1: Aggregate results of Rp:0.1→0.5 against three properties of the original network
G when DE-Crawler is used as a crawler. Each point represents a network. Sampling
robustness highly depends on λ1 and average degree, but not average clustering coefficient.

However, when we consider the properties of the obtained sample S ′ when

DE-Crawler is used to generate these samples, the sampling robustness is strongly

correlated with all these three properties of sample S ′ . The results are illustrated

in Figure A.2. Thus, the networks with higher leading eigenvalue, average degree

and clustering coefficient are more robust against missing edges.
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(a) Sampling robustness vs. leading Eigenvalue of the sample.

(b) Sampling robustness vs. average degree of the sample.

(c) Sampling robustness vs. average clustering coefficient of the sample.

Figure A.2: Aggregate results of Rp:0.1→0.5 against three properties of the obtained sample
S ′ when DE-Crawler is used as a crawler. Each point represents a network. Sampling
robustness highly depends on all these three properties.
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