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Abstract

Quantum field theories have been incredibly successful at describing many fundamental

aspects of reality with great precision, sometimes relying on the powerful computational tool

of lattice methods. Gravity has so far eluded a quantum field theory description, leading

many to consider more exotic theories like String Theory. However, recent results in lattice

quantum gravity have brought some renewed interest in the subject. After reviewing the

progress made so far in Euclidean Dynamical Triangulations (EDT), a lattice theory of

gravity, we examine how the couplings of the theory run with scale, and discover that their

runnings are consistent with the asymptotic safety scenario for gravity with a 1-dimensional

UV critical surface, making it maximally predictive. We also study two-point curvature

correlation functions for gravity, and upon removing the disconnected contributions, we find

universal behavior in these correlators, including a power-law drop-off with distance. We

also explore a means of extracting the coefficient of the R2 term in the low energy effective

action, and find that this coefficient may be very large in magnitude, though a calculation

in the low energy effective theory is still needed to test this possibility. This result implies

that Starobinsky Gravity emerges naturally in the theory, which would have important

implications for observational cosmology.
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1 Introduction

1.1 Quantum Field Theory

In the early to mid 20th century, two separate, fundamental theories emerged in physics;

quantum mechanics and special relativity. The former established the probabilistic nature of

mechanics, wherein particles have indefinite position and momentum. The latter describes

how objects at high speeds behave, and how matter and energy are interchangeable.

It became clear from experiments that particles could be created in sufficiently high en-

ergy collisions. Nonrelativistic quantum mechanics has no mechanism for new particles to

appear, and so a new means of examining the Universe that combined quantum mechanics

and special relativity was called for. The result was quantum field theory.

In quantum field theory, or QFT, one particularly useful formulation is the path integral

formulation. The fundamental object of consideration is the path integral

Z =

∫
Dϕe−iS(ϕ) (1)

where ϕ is a field, which is thought of as existing at every point in space, and quantized

excitations of this field are what we refer to as “particles”. S(ϕ) is a functional of ϕ known

as the action, which includes the various ways the field(s) interact with one another, and

is directly related to the Lagrangian density S(ϕ) =
∫
d4xL(ϕ). The measure Dϕ calls for

there to be contributions from every possible field configuration.

The Boltzmann weight e−iS(ϕ), can be Wick-rotated from Minkowski space to Euclidean

space, which amounts to replacing t → −iτ , so that e−iSMinkowski(ϕ) → e−SEuclidean(ϕ). Cer-

tain problems are easier to solve in Euclidean space, and solutions can be Wick rotated
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back to Minkowski space. The Boltzmann weight gives the probability weight for the field

configuration ϕ, and expectation values of observables can be calculated using

〈O〉 =
1

Z

∫
Dϕ O(ϕ)e−S(ϕ) (2)

In practice, the integral itself can seldom be done directly; some approximation is required.

For example, the free field theory

L(ϕ) =
1

2
(∂ϕ)2 − m

2
ϕ2 (3)

can be solved exactly. However, if an additional term like λ
4!
ϕ4 is included, the theory

becomes interacting and cannot be solved exactly. If the coupling λ is small, then it can be

solved perturbatively. This is done by separating the interacting part of the action from the

free field theory part

S(ϕ) = Sfree(ϕ) + Sint(ϕ) (4)

and then expanding e−Sint in a power series in λ. This procedure makes it possible to cal-

culate the partition function Z to any order in λ and ϕ. One can represent terms in this

expansion using a set of rules, called the “Feynman Rules”, where each term in the expansion

can be represented by a Feynman diagram.

In this perturbative expansion, one often encounters integrals such as
∫∞

d4k 1
k4

that de-

scribe physical observables and yet diverge. This is resolved by asserting that any quantum

field theory has a domain of validity beyond which some higher theory takes over. This

is captured in the integral by introducing a cutoff µ to the integral,
∫ µ

d4k 1
k4

so that the

infinities become controlled. Introducing a cutoff is a form of ”regulating” the infinities of

quantum field theory.
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However, physical results should not depend on the choice of the cutoff scale, and so any

dependence on µ should vanish. Indeed, for renormalizable theories, this is the case; one

relates the quantities in the theoretical prediction to those in actual experiments so that µ no

longer appears. Alternatively, one can view renormalizable theories as those that need only a

finite number of counter terms to be introduced to the Lagrangian to cancel any divergences.

One can write down theories for which µ cannot be removed from physical quantities. For

such theories, there are an infinite number of counter terms that are needed to remove the

µ dependence. These theories are called non-renormalizable.

An alternative description of the above is that the coupling λ is a function of the cutoff µ,

so that each cutoff has its own coupling value such that the observable stays fixed. Coupling

constants then are not true constants, but change with energy scale. Quantum electrody-

namics (QED), the study of the electromagnetic interaction, features a coupling constant

whose value is around 1
137

, though the actual value ois be slightly smaller. However, it turns

out that this value isn’t the same at all energy scales; it varies with energy scale, increasing

as the probed energy scale increases.

For quantum chromodynamics (QCD), which describes the strong interaction, the run-

ning of the coupling proves to be of great importance. For low energies, the coupling constant

g is large, and a perturbative expansion in g is impossible. However, the coupling constant

g runs towards zero for large energies, and becomes non-interacting. This allows QCD to be

solved perturbatively at high energies. Because the theory becomes non-interacting in the

ultra-violet (UV), QCD is said to be asymptotically free.

In the infrared (IR) where QCD is strongly coupled, perturbative methods cannot be

used. To study the theory in this regime, non-perturbative methods are required. The most
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successful non-perturbative approach to QCD and indeed any quantum field theory, is the

lattice, where continuous space is discretized and different field configurations are sampled

by randomly exploring the configuration space using numerical Monte Carlo methods. Lat-

tice methods have been used to make many high precision predictions for QCD.

The running of coupling is studied using what is called the renormalization group. Gener-

ically, a coupling’s running is described by a “beta function”, which is related to the slope of

the running with renormalization scale. For theories like QED where the coupling increases

in the UV, this function is positive. However, for theories like QCD that become weakly

interacting at high energies, the beta function is negative.

1.2 A Quantum Field Theory of Gravity and Asymptotic Safety

It has long been the goal of physics to describe gravity as a quantum field theory, putting

it on the same footing as electromagnetism, the weak force, and the strong force. However, at-

tempts to do so encounter substantial difficulties, most prominently the non-renormalizablility

of gravity. In natural units, Newton’s Constant G carries mass dimension of -2, and so in

the perturbative expansion there appear terms of the form µ/MPlank with ever increasing

powers, where µ is the cutoff scale. As this cutoff is taken to infinity, the successive terms

would diverge, and physical quantities would become infinite. This can be corrected by the

introduction of counterterms, but an infinite number of them would be required, each ac-

companied by an unknown coupling. An infinite number of experiments would be needed to

determine all of the couplings, and the theory would lose predictive power. The appearance

of counter-terms has been verified explicitly at 2-loops for pure gravity [1] and 1-loop for

gravity with matter fields [2].

A second problem that quantum gravity faces is explaining the smallness of the cosmo-

4



logical constant. Quantum fluctuations contribute to the vacuum energy of a system, and

gravity should see these contributions. Specifically, in effective field theory the gravitational

fluctuations should contribute to the cosmological constant at all energies up to the Planck

scale. This results in a cosmological constant that is roughly 120 orders of magnitude larger

than what has been observed [3].

Weinberg proposed a solution to the first problem called asymptotic safety [4]. If the

relevant couplings of a perturbatively non-renormalizable theory approach fixed point values

in the UV, the theory would be effectively renormalizable. Should the fixed point value be 0,

the theory is asymptotically free, and could be solved perturbatively in the UV by expanding

in the small coupling. QCD is the classic example of an asymptotically free theory, and it

has enjoyed great experimental success. Asymptotic freedom is just a special case of the

more general asymptotic safety.

However, it’s possible that the fixed point would occur for some large non-zero value of

one or more of the couplings. In this case, a perturbative expansion would become impossi-

ble. That gravity cannot be perturbatively renormalized means that it is not asymptotically

free, but it might be asymptotically safe. The fixed point values would then be non-zero.

There are three bare parameters in the lattice theory; β, G, and Λ. G is Newton’s con-

stant, Λ is the cosmological constant, and β is a free parameter associated with a measure

term to be discussed later. In what follows, evidence will be presented that β must be fine

tuned. In a lattice theory, symmetries can protect terms from large corrections. If this

symmetry is broken by the lattice discretization, that protection is gone, and results cannot

be trusted until the symmetry is restored. Usually, this requires the fine-tuning of one or

more parameters. We argue that β plays this role in our calculations.
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The remaining two parameters, G and Λ, will be shown to not be separately relevant in

the renormalization group sense, i.e. their running with energy scale does not contribute to

observables. Instead, the combination GΛ is relevant. Hence, we argue that the UV critical

surface in the vicinity of the fixed point is 1-dimensional, and there is only one relevant,

physical coupling. To make predictions, only a single dimensionful parameter is needed

to set the scale, and then all other parameters become predictions. The smallness of the

cosmological constant might emerge naturally from the theory, even though the mechanism

is not apparent.

1.3 Euclidean Dynamical Triangulations

If gravity is asymptotically safe, but is strongly coupled in the UV, then one must evalu-

ate the theory non-perturbatively. Lattice methods are the best for calculations, since they

are the best known means for giving controlled answers. For any asymptotically safe the-

ory on the lattice, the fixed point would manifest as a continuous phase transition with a

finite-dimensional UV critical surface. A continuous phase transition ensures a divergent

correlation length, allowing one to take a continuum limit. This limit would be defined by

the approach toward the critical point.

To implement gravity on the lattice, one must evaluate the path integral by summing over

all possible geometries. To do this, continuous, curved space-time must be discretized into

discrete, piece-wise linear simplices. The earliest attempt at this was called Regge Calculus.

This approach breaks up continuous space in d-dimensions into d-dimensional simplices, the

analogue of triangles in d-dimensions (The 2-simplex is a triangle, the 3-simplex a tetrahe-

dron, etc.) with varying edge lengths. In Regge Calculus, the triangulation is fixed and the

dynamics is encoded in the varying edge lengths [5].

Euclidean Dynamical Triangulations (EDT) was developed from Regge calculus [7][6].
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Rather than allowing the edge lengths to vary, all simplices have fixed, equal edge lengths,

so that all of the dynamics is in the connectivity of the simplices. The advantage of this

approach is that it is argued to correctly count each physical geometry, which should in turn

maintain continuum diffeomorphism invariance. This has been confirmed in 2 dimensions,

where EDT reproduces continuum results with high precision [8].

EDT has been studied for several decades, and even explored in 4d. However, there it

met less success than in 2d. It was found that although a phase transition did exist, the tran-

sition was first-order rather than second-order [13] [14]. Of these two phases, one consisted

of geometries with a few highly connected vertices and seemingly infinite fractal dimen-

sion and has been dubbed the collapsed phase, while the other’s geometries have branched

polymer-like minimal necks and fractal dimensions below 4. Neither of these phases resemble

semi-classical gravity. [9]-[12]

An attempt was made to salvage the theory by including a non-uniform weighting term

to the path integral measure with an accompanying free parameter β [15] [16]. This led to an

expanded phase diagram with a phase transition line, and a seemingly new phase, dubbed

the crinkled region. However, the phase transition line proved to be first order, and the new

phase appeared to be an extension of the collapsed phase rather than a genuinely separate

phase, and was likely nothing more than the familiar phase with large finite-size effects [17]

[18].

A variant of EDT, called Causal Dynamical Triangulations (CDT), was developed. In

CDT, time-like links are distinguished from space-like links, allowing a foliation into space-

like hypersurfaces to be introduced. The spatial topology is then fixed, so branching into

baby universes is prohibited. This preserves unitarity, and an explicit time coordinate allows

a well-defined Wick rotation. This approach has had many positive results, most notably
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the appearance of a de Sitter like space of dimension four [19] [20]. However, this approach

explicitly breaks space-time symmetry, and therefore it is unclear if the continuum limit of

CDT is indeed general relativity. It may be that CDT amounts to a partial gauge-fixing, in

which case some variant of EDT should also be viable. This warrants another exploration

of EDT, where space-time symmetry is maintained. If the two approaches can be shown to

be in the same universality class, then the attractive features of CDT (Unitarity) and EDT

(space-time symmetry) would be common to both.

In this new look at EDT, the non-trivial measure term is reinterpreted. It is argued that

the lattice regularizataion breaks general coordinate invariance. As symmetry breaking by

the lattice must be restored by the fine tuning of a parameter, it’s argued that the mea-

sure term must be fine-tuned to restore this broken symmetry. Once this is done, evidence

is found that the correct physics emerges upon taking the lattice spacing to zero, and the

lattice volume to infinity.

In this work, we begin by reviewing the implementation of EDT in four dimensions, and

the principle features of the model in section 2. In section 3, we examine the running of the

couplings of the theory to provide evidence that asymptotic safety is realized, and identify

which parameters are relevant to the theory. In section 4, we study the curvature two-

point correlation functions using two different discretizations of curvature. Both approachs

are compatible with a power law fall-off, thus giving the same universal behavior for this

function. We argue that the continuum extrapolated function could be used to constrain

the couplings of the continuum low energy effective theory of gravity. If the study done here

holds up to further scrutiny, it may have important implications for inflation. We conclude

in section 5.
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2 The Lattice Formulation

2.1 The Discretized Action

The action for General Relativity in four dimensions is the Einstein-Hilbert action

SEH = − 1

16πG

∫
d4x
√
g(R− 2Λ) (5)

with G Newton’s Constant, Λ the Cosmological Constant, R the Ricci Scalar Curvature, and

metric g. We have Wick rotated to a Euclidean metric. The Euclidean path integral is

ZE =

∫
Dg√gβe−SEH (6)

where the sum is over metrics, or equivalently over universe geometries. The
√
gβ is the

measure term with free parameter β.

The lattice implementation discretizes space-time into regular, piece-wise linear simplices.

In four dimensions, these pieces are pentachorons or 4-simplices, the 4d equilateral triangle.

The discretized action, the Einstein-Regge action, is [5]

SER = −κ
∑
j∈N2

Vjδj + λ
∑
i∈N4

V4 (7)

where the first sum is over the triangles and the second is over 4-simplices. κ = 1
8πG

and

λ = κΛ. Performing the sums with the aid of some topological identities gives

SER = −
√

3

2
πκN2 +

(
κ

5
√

3

2
arccos(1/4) +

√
5

96
λ

)
N4, (8)

where N2 and N4 are the number of triangles and 4-simplices, respectively. We define

κ2 =
√
3
2
πκ and κ4 = κ5

√
3

2
arccos(1/4) +

√
5

96
λ, so that the action can be written succinctly
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as

SER = −κ2N2 + κ4N4 (9)

The parameters κ2 and κ4 are the inputs to the lattice simulations. These definitions can be

inverted to get G and Λ in terms of κ2 and κ4.

As for the measure term, it becomes

√
gβ →

N2∏
j

Oβj (10)

where Oj is the order of triangle j, or the number of simplices triangle j is a sub-simplex of.

In practice, this term is exponentiated and included within the action.

2.2 Constructing Geometries

Each geometry is made by gluing together 4-simplices in different arrangements along their

tetrahedral faces. To compute the path integral, the space of all geometries is explored

by a random walk. To achieve this, new geometries are generated by modifying existing

geometries. The new geometry must remain valid triangulations, must maintain the same

topology as the original configuration, and it must be possible for any valid geometries to be

accessible to the random walk, i.e. the process of generating new geometries must be ergodic.

The alterations that satisfy these requirements are the Pachner Moves, a set of ergodic

triangulation altering moves [6] [21]. In a d-dimensional triangulation, the d+1 moves work

by selecting an i-dimensional simplex, where i can be any integer from 0 to d, and replacing

it with a (d − i)-dimensional simplex, provided this results in a valid triangulation. In 2

dimensions, the three moves are deleting a node, flipping a link (A move which is its own

10



inverse), and inserting a node. In 4 dimensions, the five moves are deleting a node, replac-

ing a link with a tetrahedron, flipping a triangle, replacing a tetrahedron with a link, and

inserting a node. In two dimensions, node insertion and link flipping are both guaranteed to

be possible for any given i-simplex, but in four dimensions, only the node insertion move is

guaranteed to be possible.

The starting point for the random walk is the minimal 4-sphere, the triangulation with

the topology of a sphere in 4-dimensions and the smallest number of simplices. This consists

of six 4-simplices interconnected. From this starting configuration, the Pachner Moves are

applied to build up the full geometry. Note that the Pachner moves preserve topology, but

not volume.

The geometry updates are accepted or rejected via a metropolis algorithm. A random

move is selected, and the change to the action of the proposed move is calculated. Then

a random number between 0 and 1 is generated. If the random number is less than the

Boltzmaan weight corresponding to the change in the action, the move is accepted and the

geometry is updated. If not, the move is rejected. In this way, detailed balance is preserved.

In order to take the infinite volume limit, one must generate lattices of different volumes

but with the same lattice spacing. Large volumes are exponentially suppressed, and so it is

computationally difficult to obtain geometries with the needed volume while simulating with

fixed cosmological constant and variable volume. Instead, we simulate at fixed volume. To

achieve a fixed volume, κ4, which corresponds to the bare cosmological constant, is adjusted

dynamically as the geometries are updated. However, in order for the Pachner moves to be

truly ergodic, the volume must be allowed to fluctuate away from its designated value. One

extra term is added to the action, δλ|N4f −N4|, which allows the volume to wander about

its designated value. This restriction introduces a systematic error proportional to δλ, so for
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small δλ, the error is negligible. δλ = 0.04 is used throughout this work.

2.3 Degenerate Triangulations

The original implementations of EDT employed combinatorial triangulations, in which all

structures are uniquely defined by their vertices. This means that no two simplices share all

of their vertices, nor do any two tetrahedra, triangles, or links. Using combinatorial trian-

gulations it was originally thought that the transition was second order because tunneling

effects did not emerge until volumes of 32k 4-simplices or larger.

It was later realized the the combinatorial constraints could be relaxed to a wider set

of triangulations, called degenerate triangulations [22]. Nodes remain unique, but links,

triangles, tetrahedra, and simplices are no longer uniquely defined by their nodes. It was

found that degenerate triangulations reduced finite size effects by approximately an order

of magnitude, observed first in two dimensions and later in four dimensions. As a result, it

became possible to identify the phase transition for lattices with around 4k simplices [18].

Following this success, and since the choice of discretization is unlikely to affect continuum

physics, geometries in this work are degenerate.

2.4 Phase Diagram

To study the resultant geometries, it is useful to define their fractal dimensions. One def-

inition is the Hausdorff dimension, DH , determined from how a sphere scales in the given

space as its radius goes to zero

DH = lim
r→0

log(V )

log(r)
(11)
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Another fractal dimension is the spectral dimension, related to the return probability, Pr(σ)

for a random walk beginning at a given point in the geometry to return to its starting point:

Ds(σ) = −2
d log 〈Pr(σ)〉

d log σ
(12)

In general, the Hausdorff and spectral dimensions are not the same for a fractal geometry.

Agreement only emerges for sufficiently smooth geometries.

The inclusion of the non-trivial measure term,
√
gβ, expands the phase diagram to become

two dimensional. Two distinct phases have been observed, separated by a first order phase

transition line. The crinkled region is separated from the collapsed phase by a crossover. A

schematic phase diagram is shown in figure 1.

For small κ2 and small β, the geometries are in the collapsed phase. This phase is char-

acterized by a small number of nodes shared by many simplices, and a low number of steps

needed to traverse the entire lattice. The Hausdorff and spectral dimensions in this phase

are both large, perhaps even infinite in the infinite volume limit. The curvature of this phase

is large in magnitude, but is negative [23]. This phase is inconsistent with what one needs

for a theory of gravity.

Within the collapsed phase is the“crinkled region”, which shares features from both

phases, but is separated from the collapsed phase by a crossover rather than a transition, so

that it is not distinct from the collapsed phase. It is likely just the collapsed phase with large

finite-size effects. Study of the fractal dimensions in this region showed that the Hausdorff

dimension was much greater than four, which is consistent with the collapsed phase, and the

spectral dimension for large distances was also greater than four and increased with volume

[17] [18]. These features of crinkeled region make it inconsistent with semi-classical gravity
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Figure 1: A schematic view of the phase diagram for EDT as a function in the κ2−β plane.

as well.

For large κ2 and β & −1, the geometries are in the branched polymer phase. This phase

is characterized by so-called “baby universe” tails, elongated extensions off the ”mother uni-

verse” with minimal necks. The Hausdorff dimension in this phase is 2, whereas the spectral

dimension is 4
3

[17] [18]. This phase is also inconsistent with our world.

A similar phase diagram is found when using the Wilson Fermion discretization in QCD.

For Wilson Fermions, the lattice regulator breaks chiral symmetry, which is approximately

restored upon tuning the bare fermion mass to its critical value. The critical value is dif-

ferent for each lattice spacing, and higher values of β (the inverse of the strong coupling,

αs) correspond to finer lattices. Hence, to get the correct, continuum behavior, one must

take β to infinity while tuning the inverse bare mass to keep β at its critical value. In other

words, one must follow the first-order line to infinity to find a higher-order critical point. A
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Figure 2: The phase diagram for QCD with Wilson fermions in the β − κ plane. β is the
inverse strong coupling constant, 1/αs, and κ is the inverse bare fermion mass.

schematic diagram of the phase diagram for QCD with Wilson Fermions is given in figure

2. Given the similarity between the two phase diagrams, we follow the same approach for

EDT as one would in lattice QCD to attempt to extract useful physics. Early studies of

EDT found that the Hausdorff dimension was close to four near the transition, providing

some further motivation to investigate this part of the phase diagram.

This is the procedure we implement for EDT. For each lattice volume and value of β,

several values of κ2 are tested. If the geometries are near the transition, there will be a

tunneling between the two phases, which can be observed in the Monte Carlo history of

N0. The κ2 value which results in a histogram with two peaks of roughly even height is the

tuned value for the given β value. However, this procedure requires several tunneling events

to reduce the systematic effects associated with determining this value, and the tunneling
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Figure 3: This histogram of N0 for the 4k β = 0 ensemble, with a clear double guassian
structure. That the two peaks are the same height indicates that the ensemble is correctly
tuned to the phase transition

probability is exponentially suppressed with volume. Hence, for large volumes, a different

procedure that uses a global, rather than local, observable is used. In the next subsection, a

definition is given for the volume-volume correlator cN4 , the peak of which acts as our global

observable. The phase transition occurs at the value of κ2 that has the largest slope in the

plot of the peak of cN4 vs κ2. A plot showing the N0 histogram for the 4k β = 0 ensemble

that demonstrates the transition is found in figure 3 and the correlator peak method for both

the 16k and 32k ensembles at β = 0 are shown in figure 4.

In lattice QCD with Wilson Fermions, only one of the phases is physical. Likewise, in

lattice quantum gravity it’s found that semiclassical behavior only manifests if the phase

transition line is approached from the left, in the collapsed phase. It turns out that near the

transition, the collapsed phase is qualitatively different from that deep within the collapsed

phase, with fractal dimensions that may be consistent with 4 [9] [12]. Evidence for this

is presented in sections 2.5.1 and 2.6.2. When tuned to the transition line, the tunneling
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Figure 4: A plot of the peak of the volume correlator, cN4(0), for both the 32k and 16k β = 0
ensembles. The value of κ2 that maximizes the slope is the critical value of κ2. The red line
shows the critical value for the 4k β = 0 ensemble, which should agree with the 16k and
32k ensembles if the correct Hausdorff dimension is chosen. That there is good agreement
suggests that the chosen value of 4 is correct.

discussed above means that some of the geometries will be in the correct, collapsed phase,

while others will be in the unphysical branched polymer phase. Whether the run is in the

correct phase can be determined by looking at the history of N0/N4, which will be smaller in

the more highly connected collapsed phase. A plot showing three such histories for ensembles

with β = 0 and three different volumes is given in figure 5. Only those configurations in the

correct phase are used for calculations.
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Figure 5: The history of the quantity N0/N4 in Monte Carlo time at β = 0 for three different
volumes. From top to bottom, the volumes are 4k, 8k, and 16k.

2.5 Evidence for Classical Behavior

2.5.1 Global Hausdorff Dimension

The global Hausdorff Dimension can be studied using finite-size scaling of correlation func-

tions. There are two correlators we consider in this section. The first is

CN4(δ) =
t∑

τ=1

〈N shell
4 (τ)N shell

4 (τ + δ)〉
N2

4

(13)
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defined in [18] to be similar to one defined in CDT [20]. N shell
4 (τ) is the number of four

simplices in a spherical shell one 4-simplex thick a geodesic distance τ from a randomly

selected simplex. The geodesic distance is obtained by determining how many “hops” it takes

to traverse from one simplex to another by going to its nearest neighbors. The parameter t

is the maximum number of shells. The correlator is normalized according to

t∑
δ=−t

CN4(δ) = 1 (14)

This correlator gives a measure of the shape of the lattice geometry. The correlator can be

rescaled by defining x = δ/N
1/DH

4 to obtain the universal distribution

cN4(x) = N
1/DH

4 CN4(N
1/DH

4 x) (15)

If the correct value of DH is chosen, then this universal distribution is independent of volume.

This rescaled distribuion is plotted for three volumes at β = 0 in figure 6 with DH = 4. That

the curves lie on top of one another suggests that the correct value of DH is close to 4. A fit

designed to maximize the overlap treating DH as a free parameter found that DH = 4.1±0.3

where the error is only the statistical.

We also consider the function N shell
4 (τ) directly. This quantity can be interpreted as the

three-volume as a function of Euclidean time τ . Performing a similar rescaling and defining

ρ = τ/N
1/DH

4 , we have

n4(ρ) = 1/N
1−1/DH

4 N shell
4 (N

1/DH

4 ρ) (16)

Like the volume correlator above, this function should be invariant if the correct DH is cho-

sen. Once again, the value DH = 4 appears to be correct. A plot of this function for the

same three volumes at β = 0 appears in figure 7. Again, the overlap confirms that the global
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Figure 6: The volume distributions, cN4(x), for three different volumes at β = 0, after
rescaling assuming a Hausdorff dimension of 4.

Hausdorff dimension is close to 4.

2.5.2 The de Sitter Solution

The second function, n4(ρ), gives the three-volume as a function of Euclidean time, and

thus has a straight-forward classical prediction. Euclidean de Sitter space in four dimensions

is a 4-sphere, which is the same topology as the generated geometries, though there is no

guarantee that the geometries will be a symmetric 4-sphere; the un-physical phases are quite

distinct from the 4-sphere despite having the same topology. The classical prediction for
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Figure 7: The volume distributions, n4(ρ), for three different volumes at β = 0, after rescaling
assuming a Hausdorff dimension of 4.

Euclidean de Sitter space is

N shell
4 (i) =

3

4
N4

1

s0N
1/4
4

sin3

(
i

s0N
1/4
4

)
(17)

where i is the Euclidean time in lattice units, and s0 is a free parameter.

A plot of the function n4(ρ) for several values of β, as well as this classical prediction, is

shown in figure 8. The lattice data has been rescaled to show the qualitatively good agree-

ment with the classical solution before the classical turning point. Beyond this point, the

lattices have a long tail that the classical solution does not.
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Figure 8: The rescale n4(ρ) distribution for several different β values, and therefore several
different lattice spacings, as well as the de Sitter solution in black. As the continuum limit
is taken, the lattice data gets closer to the de Sitter solution.

In the next section, a procedure for determining the relative lattice spacing between con-

figurations will be established. In anticipation of this procedure, the ensembles are ordered

in the plot in figure 8 by their relative lattice spacing. As the lattice spacing is taken to

smaller values, the un-physical tails decrease and become closer to the classical prediction. It
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is presumed that this is caused by the baby universe tails, which diminish with finer lattice

spacings. This can be visualized using a network visualization tool, as in figure 9 [26]. For

coarse lattices, there is a very clear dense ball with distinct branches shooting off from it

which can be interpreted as baby universes. As the lattice spacing is reduced, the amount of

the lattice in the bulk core increases, until for the finest lattices it becomes difficult to even

distinguish the core from the branched structure.

Thus, it is likely that the asymptotic tail in the volume distribution is a cutoff effect.

One might find it odd that a cut-off effect leads to a distortion of long distance physics,

but this is known to happen when the lattice regulator breaks a symmetry that matters at

long distances. As an example, when chiral symmetry is broken for Wilson fermions, this

leads to cutoff effects impacting long distance behavior. In the continuum limit, these cut-off

effects vanish [24]. This suggests that the lattice regulator for EDT also breaks some impor-

tant symmetry. We conjecture that this is the diffeomorphism invariance of general relativity.

In CDT, 4-dimensional Euclidean de Sitter space has also emerged as a solution. In that

approach, good agreement with the classical prediction is found in what has been dubbed

the “extended” phase of CDT [25]. If EDT and CDT are in the same universality class, they

must agree on continuum results, even if they disagree at finite lattice spacing. That the

volume distribution approaches the classical prediction in the continuum for EDT, which

also agrees with the results from CDT, is evidence that the two approaches may indeed be

in the same universality class.

2.6 Towards the Continuum Limit

As discussed above, semi-classical behavior emerges for lattice quantum gravity if the ge-

ometries are tuned to be to the left of but sufficiently close to the phase transition line. As

β is decreased, the κ2 value needed to be on the critical line grows to larger values. As κ2 is
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Figure 9: A visualization of the geometries using a network visualization tool. The top left
geometry is the coarsest at β = 1.5, the top right is the second coarsest at β = 0. The
bottem left is the second finest at β = −0.6, and the bottom right is the finest at β = −0.8.
For the coarser lattice, the baby universe branchings are easily identified as separate from
the bulk, but this distinction diminishes for finer lattices.

taken to be larger while still close to the critical line, the latent heat of the phase transition,

as measured by the separation between the peaks in the N0/N4 histogram, decreases. That

the phase transition softens with large κ2 provides hope that the first order phase transition

line does indeed end at a continuous phase transition point. However, exploring this region

of the phase diagram proves difficult, as large κ2 values lead to long autocorrelation times
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and large finite-size effects.

Whether or not the fixed point, if it exists, occurs at finite or infinite κ2 makes no dif-

ference as to whether or not gravity is asymptotically safe, but has important implications

for the interpretation provided here. If the critical point exists for a finite (κ2, β) pair,

then many different trajectories can reach this fixed point, and no fine-tuning of the lattice

parameters would be necessary [27]. On the other hand, if the critical point is at infinite κ2

with finite β, then only one possible trajectory can lead to the critical point, i.e. a fine-tuning

of the parameters. Neither scenario can be ruled out at present, but the arguments herein

pertaining to the need for a fine-tuning suggest that the critical point is at infinite κ2.

Some previous EDT studies provide evidence on this account. In three dimensions with

a non-trivial measure term of the kind considered here, a phase diagram similar to the one

in four dimensions is found [28]. If that model’s analogue of κ2 is taken to be large, the

strong coupling expansion can be used. However, the expansion breaks down due to large

finite-size effects around the phase transition at β = −1 [29], which is around the value of β

that appears to be consistent with what the tuning in four dimensions requires.

Further evidence comes from a study that considers a color-tensor model [30]. This model

is argued to be equivalent to EDT in the infinite κ2 limit. The model finds that there are two

phases separated by a continuous, third-order transition. If the equivalence of this model

and infinite κ2 EDT is maintained, this strengthens the idea that the critical line ends in a

higher-order critical point. If correct, this would ensure that a continuum limit can be taken

in our model.

In this section, further evidence of a continuum limit being possible for EDT is provided.

A method of determining the relative lattice spacing is put forward, and is shown to be
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consistent with the procedure of reducing the latent heat and lattice artifacts. The spectral

dimension is shown to be consistent with 4 in the infinite volume, continuum limit, and for

short scales Ds ≈ 3/2, which may provide a resolution for an apparent contradiction between

renormalizable gravity and black hole entropy scaling.

2.6.1 Setting the relative lattice spacing

To obtain the lattice spacing, one would use a dimensionful quantity with small discretization

errors that is not influenced by finite-size effects. This amounts to determining the renor-

malized Plank mass. The natural choice of a dimensionful parameter is G. This presents

difficulties, since it requires making contact with the semiclassical physics while maintaining

the requirement that the lattice spacing is much smaller than the Plank length, which is

itself smaller than the extent of the lattice. That the geometries that emerge are de Sitter

like is insufficient to determine the lattice spacing, since G does not appear in the classical de

Sitter solution. An alternative strategy would be to examine the semiclassical fluctuations

about de Sitter space, since that does include G [25] [31], but the lattice geometries studied

here are too small and too coarse for this to be done with precision. Even so, calculations

using this approach suggest that the finest lattice spacing is a factor of 3 to 5 smaller than

the Plank length.

In light of this, the absolute lattice spacing will be left for future work. We still need

to determine the relative lattice spacing, which can be found using an unphysical quantity

that is not necessarily related to the classical limit. One such parameter is the return prob-

ability, calculated to determine the spectral dimension in Eq.(12). If the diffusion time is

a universal physical quantity, it can be used to set the relative lattice spacing. Since the

physical volumes are small, it is convenient that the return probability is fairly insensitive

to volume. A plot of the return probability vs diffusion time for several lattice volumes at
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Figure 10: The return probability as a function of diffusion time σ for three different volumes
at β = 0. This appears to be insensitive to volume.

β = 0 confirms that the variation with volume is small. This is shown in figure 10.

For configurations at different values of β, all of which are tuned to be close to the

transition line, there is much greater variation between the curves, as shown in figure 11.

The diffusion time has dimension of length squared, and so should scale with lattice spacing

squared as the continuum limit is taken, based on the d-dimensional diffusion equation [32].

The diffusion time σ for each curve can be rescaled to σr = σa2rel, so that the curves lie on a

universal curve. This is demonstrated in figure 12. The best agreement is demanded to be

at σr ≈ 100, since smaller values suffer from discretization errors, and larger from finite-size

effects.
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Figure 11: The return probability as a function of diffusion time σ for many different β
values.

The factor by which σ must be rescaled to obtain the universal curve is used to determine

the relative lattice spacing. For this procedure to work, the variation of parameters in the

bare action must follow a line of constant physics, which is the case for this model if the

arguments that the broken symmetry necessitates a fine-tuning and the number of relevant

couplings found in the next section is correct. The difference in rescalings for different

volumes is used to estimate a systematic error. The results for the relative lattice spacings

are given in Table 1. We see that taking κ2 to larger values corresponds to decreasing the

lattice spacing.
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Figure 12: The return probability Ps as a function of rescaled diffusion time σr for many
different β values, where the rescaling is such that the different curves lie on top of one
another. The amount by which σ must be rescaled gives the relative lattice spacing.

2.6.2 The Spectral Dimension

Another quantity of interest to study is the spectral dimension. Other studies of the spectral

dimension have shown that it varies as a function of the distance scale that you are probing,

and that it tends to a value of close to 2 for small distances, and around 4 for large distances

[20] [33] [34] [35]. This is crucial, as the Hausdorff and spectral dimensions do not agree in

general, but must both be 4 at long distances to recover the correct classical limit. CDT has

also obtained this result, providing additional evidence that the two approaches are in the

same universality class. There is also an argument against the asymptotic safety of gravity
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Volume β κ2 Number of configurations arel
16k 0 1.7325 1387 1
8k 0 1.7024 2500 1
4k 0 1.669 920 1
4k 1.5 0.5886 523 1.47(10)
8k -0.8 3.0 1975 0.72(5)

Table 1: Test The relative lattice spacing of each ensemble in relation to the β = 0 ensembles.

that can be resolved if the spectral dimension takes on the value of 3/2 for small distance

scales. This was found to be the case in CDT [36], and the current analysis suggests this is

the case for EDT as well.

The spectral dimension is defined in Eq.(12) from the return probability of a random

walk on the dual lattice, i.e. the likelihood of returning to the randomly selected starting

point of your walk after a given number of steps σ. The baby universe tails present an issue

here, since they are an unphysical discretization error, and so their contributions to mea-

surements should be minimized. To accomplish this, the starting simplex for the random

walk is selected to be in the bulk universe rather than in the baby universe tails. These

simplices are those that are found in the largest shell around a randomly selected simplex.

An analgous method is used in CDT, where the random walk is started in the time slice

with the greatest three volume, to avoid sampling the cutoff size stalk in the time direction.

Figure 13 shows a plot of the spectral dimension as a function of σ for the 8k β = 0

ensemble, as well as a fit to the distance dependence of the spectral dimension suggested by

Ambjorn et al. in their analysis of the spectral dimension in CDT [20],

Ds(σ) = a− b

c+ σ
(18)
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Figure 13: The spectral dimension as a function of distance scale probed in black, as well as
the fit suggested by Ambjorn et al. in cyan.

where a, b, and c are free parameters. Table 2 gives the results for the fits to every available

ensemble of this quantity. All errors are purely statistical.

Care must be taken in selecting the range, σmin to σmax, in which to compute the fit. If

σmin is taken to be too small, discretization effects will contaminate the fit, but we’d like

σmin to be as low as possible to include the maximum amount of data. In practice, a value

of σmin ≈ 60 − 100 is sufficient to reduce this contamination to acceptable levels, and is

supported by a study of the spectral dimension in the branched polymer phase where the

answer is known. [18]. If σmax is taken to be too large the fit will include finite size effects
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Volume β σmin − σmax DS(0) DS(∞) χ2/d.o.f.
16k 0 61-611 1.484(37) 3.30(12) 0.92
8k 0 61-611 1.484(21) 3.090(41) 1.25
4k 0 61-556 1.464(49) 2.809(15) 1.12
4k 1.5 61-138 1.64(26) 2.655(93) 1.60
8k -0.8 105-831 1.445(16) 2.75(11) 1.14

Table 2: The results for the spectral dimension at 0 and infinity from the fits to Eq.(19)

which cause the lattice data to stop its monotonic increase and turn over. It would then be

impossible for the ansatz in Eq.(18) to describe the data.

The plot of the β = 0, 8k ensemble suggests that DS(∞) = 2.7-3.3 with errors of a

few percent, clearly inconsistent with 4. However, each of the ensembles is of finite volume

and non-zero lattice spacing, so there is the possibility that the deviation from 4 is due to

finite-volume and discretization effects. This suggests that to obtain the value of DS(∞),

we must take the infinite-volume and continuum limit. We do this by determining DS(∞)

for each ensemble, and then fitting to the function

DS∞(V, a) = c0 + c1
1

V
+ c2a

2 (19)

where V is the physical volume of the ensemble, the number of 4-simplices multipled by the

lattice spacing to the fourth power, a is the lattice spacing, and the ci are fit parameters. The

lattice spacing scaling is assumed to be dependent on a2 because diffeomorphism invariance

forbids an odd power term, and that some lattice spacing dependence seems to be present

means that the power cannot be 0. Note that in doing this procedure, we tacitly assume

that the general coordinate invariance symmetry broken by the lattice regulator has been

restored by correctly tuning β, on which more below.

Figure 14 shows the extrapolation of DS(∞) for all but the finest ensembles. Note that
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Figure 14: The spectral dimension at large distances DS(∞) for many different ensembles,
and the extrapolation to infinite volume and zero lattice spacing in cyan. Especially fine
ensembles are excluded

each value of β is associated with a particular lattice spacing. Specifically, the lattice spacing

shrinks as β is taken to smaller values. The blue bar represents the range of possible extrap-

olations, and gives a value in the infinite volume, continuum limit of DS(∞) = 3.94± 0.16,

where the error is purely statistical. The quality of the fit is quite good, with a χ2/d.o.f. of

0.52.

The finer ensembles can be added to the data, but this requires an alteration to the

ansatz. These fine ensembles have very small physical volumes which appear to favor the

inclusion of a 1
V 2 term to the fit function in Eq.(19). This extrapolation is shown in Figure
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Figure 15: The spectral dimension at large distances DS(∞) for many different ensembles,
and the extrapolation to infinite volume and zero lattice spacing in cyan. The especially fine
ensembles are included, and so a 1

V 2 term is included in the fit function.

15. The fit gives a value of DS(∞) = 4.08± 0.19 and the quality of the fit is again excellent;

χ2/d.o.f. = 0.32. If the 1
V 2 term is not included, the fit is considerably worse.

The systematic error associated with this extrapolation is difficult to measure. An es-

timate can be gleaned from the scatter of the results for DS(∞) by the different fits, but

this does not fully account for the dependence of the extrapolation on the choice of the fit

ansatz. To really get a handle on the systematics, more data, specifically from lattices with

larger volumes and finer lattice spacing, is needed. However, the work done here suggests
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that it is possible to recover the value of 4 for the long distance spectral dimension for EDT.

2.6.3 Entropy Scaling of Black Holes

An argument was made by Banks [37] against the notion of gravity being asymptotically

safe, since the resultant entropy scaling of black holes would be inconsistent with the scaling

determined in holography.

A renormalizable quantum field theory is a perturbation of a conformal field theory by

relevant operators, and so the density of states for the renormalizable theory must be the

same as that of a conformal theory. For the conformal theory, the scaling of energy and

entropy must be extensive in the lattice volume, and since no other dimensionful scales

other than temperature exist for a finite temperature conformal field theory, it must be that

S ∼ (RT )d−1. E ∼ Rd−1T d (20)

with R the radius of the spatial volume, T the temperature, and d the dimension of space-

time. It follows that, for a renormalizable theory, entropy must scale with energy according

to

S ∼ E
d−1
d (21)

For gravity, it is argued that black holes dominate for high energies. The Bekenstein-

Hawking entropy formula tell us that in a d-dimensional space-time, the entropy scaling of a

black hole with energy in the Schwarzschild solution on an asymptotically flat space-time is

S ∼ E
d−2
d−3 (22)

35



Comparing with Eq.(21), we see that for d=4, these results do not agree. However, since

the theory is formulated on a fractal space-time, the spectral dimension is what is needed in

equations of state [38] and for a black hole [39]. Hence, the value of DS(0) is what should

be used to compare the entropy scaling.

Table 2 includes a column for DS(0). We must perform the same extrapolation to infi-

nite volume and the continuum as was done for DS(∞). With the finest lattices excluded

and no 1
V 2 term in the extrapolation, DS(0) = 1.44 ± 0.19 with χ2/d.o.f. = 0.17, plotted

in figure 16. With the finest lattices included and the 1
V 2 term restored to the fit function,

DS(0) = 1.48± 0.11 with χ2/d.o.f. = 0.11, plotted in figure 17. The same caveat about the

lack of control for systematic errors remains, but the data suggests that DS(0) ∼ 1.5, and

disfavor 2, which previous studies suggested.

The value of 1.5 is the unique value such that the entropy scaling in Eq.(21) and Eq.(22)

agree. The tension between holography and renormalized field theory is resolved, provided

this result holds up. The fact that the field theory gives exactly the right dimension needed

for this scaling to match turns Banks argument from one against asymptotic safety into an

argument for it.

3 Running of the Couplings

The lattice implementation has three parameters, β, κ2, and κ4. If asymptotic safety is

realized for gravity, then as the continuum limit is approached, the relevant couplings should

approach fixed point values with a UV critical surface of some finite dimensionality. Veri-

fying that this is the case is essential, and so the parameters of the lattice implementation

must be analyzed for the fixed point behavior, if it exists. The dimensionality of the UV

critical surfaces tells one how many dimensionful parameters the model requires as inputs
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Figure 16: The spectral dimension at short distances DS(0) for many different ensembles,
and the extrapolation to infinite volume and zero lattice spacing in cyan. The especially fine
ensembles are excluded.

from experiments to make predictions, and so is of great importance.

We argue that of the three parameters, only two combinations of them are relevant, i.e.

contribute to on-shell observables. However, one of them is needed to restore a continuum

symmetry that is broken by the regulator and must be fine-tuned. In the case that the

symmetry is an exact one of the quantum theory, we would expect only one more parameter

in the lattice action compared to the continuum theory. The correct continuum physics

is recovered and the UV critical surface of the symmetry-restored theory appears to be

1-dimensional.
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Figure 17: The spectral dimension at short distances DS(0) for many different ensembles,
and the extrapolation to infinite volume and zero lattice spacing in cyan. The especially fine
ensembles are included, necessitating the inclusion of a 1

V 2 term in the fit function.

3.1 Redundant Operators

We can invert the defintions of κ2 and κ4 to find G and Λ in terms of lattice parameters:

G =

√
3

16

1

κ2
Λ = 48π

√
3

5

κ4
κ2
− 48 arccos(1/4)

√
15 (23)

where κ2 is an input to the simulations, while κ4 is determined from the tuning of the vol-

ume. As such, we know explicitly how G runs as a function of κ2, and it asymptotes to 0

for large values of κ2. On the other hand, Λ must be measured from the simulations. As κ2
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(a) 10Ĝ in lattice units as a function of κ2 (b) Λ̂/10 in lattice units as a function of κ2

increases, the lattice spacing decreases. It is then interesting to examine how the couplings

run for large κ2 in order to investigate the UV fixed point.

It is convenient to define the dimensionless Newton’s Constant and cosmological constant,

Ĝ and Λ̂:

Ĝ = G/a2, Λ̂ = Λa2 (24)

since it is the dimensionless couplings that must approach a UV fixed point for an asymp-

totically safe theory. Plots of Ĝ and Λ̂ are given in Figure 18a and Figure 18b respectively,

where a rescaling by a factor of 10 has been done for later convenience. We point out again

that κ2 is used as a proxy for lattice spacing. For large κ2, Λ̂ does not appear to approach a

fixed point value, unlike Ĝ. If this result held, it would spell disaster for the idea of gravity

being asymptotically safe. However, this can be avoided if Λ̂ is redundant (or if this coupling

has a redundant multiplicative factor), i.e. that on-shell reaction rates do not depend on it,

as it can be treated as a field redefinition. A redundant coupling is not required to approach

a UV fixed point, even in an asymptotically safe theory

There is a standard test for the redundancy of a coupling [4]. If, for a coupling γ, the
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partial derivative of the Lagrangian with respect to that parameter ∂L
∂γ

vanishes or is a total

derivative under the Euler-Lagrange equations of motion, then γ is redundant. The associ-

ated operator must also be an eigenoperator of the theory. Since this depends on the running

of the couplings near the fixed point, and thus on the dynamics of the theory, this is harder

to test.

To examine this for the Einstein-Hilbert action, we rewrite the action as

L =
1

16πG
(R− 2Λ)→ L =

ω

16π
(R− 2ωΛ′) (25)

where ω = 1
G

and Λ′ = GΛ. Performing the test on the parameter ω we find that

∂L
∂ω

=
1

16π
(R− 4ωΛ′) (26)

Under the equations of motion, R = 4Λ, so the term in parenthesis, R− 4ωΛ′ is equal to 0,

and so

∂L
∂ω

= 0 (27)

Hence, ω = 1/G could be redundant. The remaining coupling, Λ′ = GΛ could be relevant,

as well as β. That Λ̂ does not converge to a fixed point is no longer a concern, as it is the

combination ĜΛ̂ = GΛ that might be relevant.

3.2 Restoring General Coordinate Invariance

The above argument that only GΛ is relevant holds only if general coordinate invariance is

respected, so that the field redefinition that leads to the redundancy of the couplings can

be performed. However, the lattice regulator appears to break this symmetry. Before the
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above argument can be followed through, this broken symmetry must be restored by the

fine-tuning of a free parameter. This is the justification for the introduction of the measure

term β; it is the coefficient of the needed term to restore the symmetry.

The introduction of β however has a side effect. The renormaliziation of β also renor-

malizes the cosmoglogical constant. Since the running of β is unphysical, so too is the

renormalization of Λ by β. This unphysical contribution to Λ, and thereby GΛ, must be

subtracted to obtain the correct running, or more practically, β must be tuned to the correct

value so that the symmetry is restored and the unphysical contribution is not present.

In this situation, one expects that the running of the bare couplings is modified when

the regulator breaks a symmetry. To recover the running in the symmetry preserving the-

ory generically requires a subtraction. This type of subtraction is familiar in other lattice

theories, such as the running of quark masses in QCD with Wilson fermions. However, it

remains to specify what the subtraction criterion is in our case.

Previous results suggest that, at long distances, the geometries are de Sitter like, and

as in classical general relativity with a positive cosmological constant, the cosmological con-

stant should set the size of the Universe. On the lattice, the lattice volume sets the IR cutoff

for Λ, Λ ∝ 1√
Vr

, and so as we take the large volume limit, Λ goes to very small values. In

order that there be a wide range of scales behaving like de Sitter space, this running must

be a power law that is quadratic or greater in the renormalization scale so that the effective

cosmological constant vanishes fast enough. This leads to the prediction for GΛ that both

its value and its derivative should be simultaneously 0 in the IR.

A plot of GΛ for several values of β is shown in figure 19. For β = −0.8 or greater,

GΛ diverges monotonically to ∞ in the IR. For values of β = −1 and lower, GΛ diverges
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Figure 19: GΛ as a function of κ2 for many different values of β.

monotonically to −∞. However, between β = −0.8 and β ≈ −1, GΛ drops down to a local

minimum before diverging. By selecting the right value of β, this minimum can be made to

coincide with GΛ = 0. Working under the assumption that in the symmetry-restored theory,

β shouldn’t run, we try to find a fixed value of β for which this condition on the running of

GΛ is satisfied.

This is our subtraction criterion. β shall be tuned so that the minimum of GΛ has a

local minimum that coincides with 0. It’s a strong consistency check that not only does this

happen at all, but does so far into the IR. There is a volume dependence, but β ≈ −0.97

appears to be around the correct value.

Another consistency check is to confirm that the subtracted value of β is consistent with

the continuum value of β one gets by following the phase transition line to what appears to

be a horizontal asymptote. The phase diagram in figure 1 suggests that the continuum value
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Figure 20: GΛsub, Λ̂sub/10, and 10Ĝ plotted together as a function of κ2.

for β, though the precise value cannot be obtained as of yet, is approximately -1, which is

consistent with the tuned β needed to restore the symmetry.

Figure 20 shows GΛ, Ĝ, and Λ̂ plotted as functions of κ2 together. GΛ appears to be

leveling off to an asymptote at some constant value. This is the expected behavior for a

relevant coupling as it approaches a UV fixed point.

3.3 Dimension of the UV critical surface

Asymptotic safety posits that in the UV, relevant couplings should approach fixed point

values. The preceding arguments lead us to conclude that only GΛ is relevant, rather than

G and Λ separately. β is a non-physical coupling put in place to be fine tuned to restore

general coordinate invariance symmetry, which the lattice regulator breaks. A subtraction

is generally necessary when the regulator breaks a symmetry. After introducing a plausi-

ble subtraction condition, we find that GΛ runs exactly the way that one would expect for

asymptotic safety, though Λ̂ does not.
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This provides evidence that in the target continuum theory theory, there is only a single

relevant coupling, and the UV critical surface is 1-dimensional. In that case the theory is

maximally predictive; only a single dimensionful quantity needs to be determined in order

to set the scale, and then all other quantities become predictions. If this continues to hold

with matter fields included, many interesting quantities, including the cosmological constant,

could potentially be predicted from first principles.
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4 Curvature Correlators

The simplest type of object to calculate in a quantum field theory is the two point correlation

function 〈AB〉 (r), where A and B are observables and r is the geodesic distance between

them. This tells us about how the fields of the theory propagate. For gravity, a natural

choice for an observable is the scalar curvature R, the correlation function of which tells us

how gravity acts at a distance and can potentially be used to extract couplings in the low

energy effective theory.

In EDT, curvature is defined on the (d−2)-dimensional objects, so in 4d this is the trian-

gles. Using parallel transport of vectors, it is found to depend on two geometric properties.

The first is the deficit angle δ(T ) = 2π − arccos(1/d)O(T ), which is the amount of angle

around triangle T that is missing or added from flat space. The second is the 4-volume asso-

ciated with triangle T, V (T ). Since all structures are regular, each triangle should receive an

equal amount of volume in each simplex. As there are 10 triangle to a simplex, each triangle

should receive 1
10

of a single simplex volume for each simplex it is a subsimplex of, so that

V (T ) = 1
10

√
5

96
O(T ). Written explicitly, the curvature of triangle T is

R(T ) = 480

√
3

5

(
2π

O(T )
− arccos(1/4)

)
(28)

Since the EDT formulation does not utilize a coordinate system, thought must be given

to how the distance between a pair of triangles is to be defined. The most straightforward

would be to declare neighboring triangles as being one geodesic distance apart, and those

that require an intermediate triangle as two distances apart, and so on. There are at least

two definitions of neighboring triangle that may be used [40]; triangles may be defined to be

neighbors if they share a side, or if they both share a side and are subsimplices of at least one

common simplex. In the continuum, the choice of discretization should not matter, and so

which definition one uses is a matter of convenience. However the less restrictive definition
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of requiring only a common side results in a very short number of hops to traverse the entire

lattice, and so it is difficult to probe distance dependence. The latter definition requiring a

common side and common 4-simplex will be used in the rest of this work. This follows the

definition of distance adopted by de Bakker and Smit [40].

While curvature is defined for triangles, it can also be defined for 4-simplices in a simple

way. Define the curvature of a simplex S to be the average of the curvatures of each of its

triangles

R(S) =
1

10

∑
T∈S

R(T ) (29)

Neighboring simplices are defined simply as those that share a common tetrahedron.

In what follows, an analysis will be done for both the triangle and 4-simplex implementa-

tions of the two-point function 〈RR〉 (r). If the same results are found for both approaches,

it will provide evidence that the behavior is universal, rather than a quirk of the particular

choice of discretization of curvature.

The correlators are computed for the ensembles that were tuned to the phase transition

line according to the prescription in Section 2. In principle, one could draw only a single

triangle pair from each configuration, but even for long running ensembles this will result in

very low statistics. Instead, we take many pairs from each configuration and average them,

and then we take the ensemble average [40].

The distortion of our geometries at long distances for coarse couplings presents an added

complication. In the continuum this effect appears to vanish, it is likely non-physical, and

correlators sourced from this region likely contaminate the results. To avoid this, source
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triangles are biased to come from within the bulk universe. This is accomplished as in the

analysis of the spectral dimension. We pick a single source triangle at random to be the

origin and make a list of all triangles a distance r from this source triangle. A distance

we call rmax will have the largest number of triangles at that distance, and these triangles

are more likely to be in the bulk universe. We use these triangles as the sources for our

correlators. This procedure is also being used in an investigation of matter fields [45] [46].

4.1 Unsubtracted Correlation Functions

The above discussion necessitates that, for each configuration in an ensemble, the following

be calculated [40]

〈RR〉 (r)conf =
1

Nx

∑
x∈source

1

Nyx

∑
y

R(x)R(y)δd(x,y),r (30)

The sum in x is over triangles in the list of source triangles in the bulk universe, and d(x, y)

gives the geodesic distance between the triangles at x and y. Nx is the number of source

triangles, and Nyx is the number of triangles a distance r away from source triangle x. The

delta function δd(x,y),r ensures that the triangles are a distance r apart. This is calculated for

each configuration, and then the ensemble average over configurations is taken.

The correlator for triangles for the 16k, β = 0 ensemble is plotted in Figure 21. The

unphysical behavior is apparent: the correlator does not asymptote to a constant at long

distance. The cause of this unphysical behavior is an over counting of geometry [41]. In

Eq.(30), curvature is obviously a function of geometry. However, the separator δd(x,y),r, is

also a function of geometry, since the probability of two points being separated by a distance

r depends on the geometry. This over counting can be readily seen by plotting the correlator

with 1 at the origin
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Figure 21: The correlator as defined in Eq.(30) for the 16k β = 0 ensemble.

〈1R〉 (r)conf =
1

Nx

∑
x∈source

1

Nyx

∑
y

1R(y)δd(x,y),r (31)

There should be no correlation, yet the plot in figure 22 shows a clear, non-vanishing correla-

tion. This disconnected correlation must be removed to obtain the correct physics. Sugges-

tively, the two correlators appear to have a very similar form, but with different magnitudes.

4.2 Connected Correlators

A simple approach to subtract the disconnected contributions to the correlator was proposed

by de Baker and Smit [40], where one simply squares the disconnected correlator in Eq. (31)

and subtracts it from the correlator in Eq.(30). An example of this is plotted in figure 23.

The results seem quite good; it appears that there is an asymptote for large distances, even

though it’s not at 0.

However, a further refinement was proposed by Ambjorn et al. [42] Start by defining the
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Figure 22: The correlator defined in (31), which should have no measured correlation.

Figure 23: The modified correlator proposed by de Baker and Smit.

unnormalized correlation function

GAB =
∑
x,y

A(x)B(y)δr,d(x,y) (32)

where A and B can be any operators. Specifically, there are three unnormalized correlators

that we need, G11, G1R, and GRR.
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Ambjorn’s refinement was to assume the ansatz

G1R(r) = A G11(r + δ) (33)

for constants A and δ, which are obtained by fitting G1R(r) to G11(r) measured from the

ensemble, with a cubic spline used to evaluate G11(r) for non-integer r. This ansatz was

determined by studying how correlations can be factorized for large r and all r for many

different systems, including 2d gravity where analytic results can be compared against. Then,

the connected correlator is

〈RR〉c (r) =
GRR(r)− A2G11(r + 2δ)

G11(r)
(34)

The connected correlators for the triangle approach are shown in Figures 24-29, and for

simplices in Figures 30-35.

A few features are immediately striking. First is the very large errors for large values of

r. The proposed explanation is that this is caused by contamination by the baby universe

tails, which should become dominant at large distances. Since the source triangles and sim-

plices are biased to be in the bulk universe, distant triangles and simplices are more likely

to be in the baby universe tails, which are unphysical. We thus focus on the behavior of the

subtracted correlators at shorter distances.

50



Figure 24: The connected correlator for the 32k β = 0 ensemble in the triangle approach.

Figure 25: The connected correlator for the 16k β = 0 ensemble in the triangle approach.
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Figure 26: The connected correlator for the 8k β = 0 ensemble in the triangle approach.

Figure 27: The connected correlator for the 4k β = 0 ensemble in the triangle approach.
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Figure 28: The connected correlator for the 4k β = 1.5 ensemble in the triangle approach.

Figure 29: The connected correlator for the 8k β = −0.8 ensemble in the triangle approach.
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Figure 30: The connected correlator for the 32k β = 0 ensemble in the simplex approach.

Figure 31: The connected correlator for the 16k β = 0 ensemble in the simplex approach.
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Figure 32: The connected correlator for the 8k β = 0 ensemble in the simplex approach.

Figure 33: The connected correlator for the 4k β = 0 ensemble in the simplex approach.
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Figure 34: The connected correlator for the 4k β = 1.5 ensemble in the simplex approach.

Figure 35: The connected correlator for the 8k β = −0.8 ensemble in the simplex approach.
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Next is the asymptotic behavior. For large r, we observe an asymptote that continues

until the effects of the baby universe tails become dominant, but the asymptotes are at neg-

ative values, presenting issues for unitarity. We conjecture that this is a discretization effect.

For the β = 0 ensembles in figures 24-27 and 30-33, we see that as the volume increases,

the asymptote increases to a smaller negative value at infinite volume. This raises the hope

that if the continuum limit were also taken, the asymptote would vanish. However, the

asymptotes are dimensionful quantities with units of inverse mass to the fourth power. To

compare the asymptotes, these must be made dimensionless by dividing by a4 where a is

the relative lattice spacing. This would drop the finest lattice spacing asymptote to larger

negative numbers and the coarsest lattice spacing asymptotes to smaller negative numbers,

the opposite of the expected trend. It could be that the asymptotes at the finer lattice spac-

ing decreases faster with decreasing volume than the coarser ones, but verifying this would

require ensembles at the same fine lattice spacing but additional physical volumes. We do

not at present have such ensembles available, but the volume trend at fixed lattice spacing

suggests that this may be possible. We assume from this point that this is the case, but

admit that this must be verified in a future work.

The simplex correlator for the β = 1.5 ensemble appears to be an outlier. There is a

weird “bump” prior to the asymptote that is not present in any other ensemble, which can

be seen in the zoomed in view in Figure 36. That this is the coarsest lattice would suggest

that a deviation could be a discretization error, but this bump does not appear to be present

in the triangle correlator from the same ensemble. This could be explained by the fact that

the simplex curvature is more smeared than the triangle curvature, which leads to larger

discretization effects. This leads us to exclude this ensemble from the subsequent analysis

for the simplex definition of curvature.
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Figure 36: The correlator for the 4k β = 1.5 ensemble with the simplex discretization,
zoomed in to highlight the “bump” that is absent for other ensembles.

4.3 Power Law

For small values of r where the distance scales are close to the lattice spacing, lattice arti-

facts should wash out the physics, and give non-universal results [43]. On the other hand,

for very large values of r so that we approach the edge of the lattice, the baby universe tails

should dominate, leading again to non-physical results. Only in the range such that r is

large enough to not be contaminated by the short scale artifacts, but not so large as to be

sensitive to the baby universe tails, should the correct behavior emerge. In the continuum

limit, the long distance artifacts should vanish.

In the plots of the correlators, the physical regime appears to be the fall off towards a

constant. This behavior is seen for all ensembles and curvature definitions except for the

simplex curvature with the coarest lattice spacing. At shorter distances, the correlators do

not exhibit universal behavior, and can be negative or positive, and have a dip or no dip,

depending on the discretization choice for the curvature and on the lattice spacing.
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Volume β rmin rmax a P b χ2/d.o.f.
32k 0 9 13 4.13(961)× 1015 −12.6(11) −7.04(27)× 103 1.28× 10−3

16k 0 8 12 5.0(72)× 1012 −9.7(7) −8.18(42)× 103 1.02× 10−1

8k 0 8 18 7.7(293)× 1013 −11.3(18) −9.69(39)× 103 3.16× 10−1

4k 0 7 11 7.3(136)× 1011 −9.30(98) −1.10(55)× 104 1.09× 10−2

4k 1.5 7 18 2.4(50)× 1013 −11.1(11) −1.44(05)× 104 1.23× 100

8k -0.8 7 12 1.5(55)× 1012 −10.4(19) −8.23(27)× 103 2.95× 10−2

Table 3: The fit results in the universal regime to a power law for the triangle discretization.

Volume β rmin rmax a P b χ2/d.o.f.
32k 0 22 44 4.05(773)× 1014 −8.39(63) −4.87(11)× 103 2.13× 10−1

16k 0 20 38 1.26(339)× 1015 −9.01(89) −5.074(121)× 103 4.38× 10−1

8k 0 19 32 3.3(204)× 1014 −8.8(19) −5.06(15)× 103 1.80× 10−1

4k 0 16 29 1.30(500)× 1014 −8.9(14) −5.92(20)× 103 5.81× 10−1

8k -0.8 43 58 1.0(217)× 1028 −15.3(47) −1.780(93)× 103 7.30× 10−1

Table 4: The fit results in the universal regime to a power law for the simplex discretization.

Following de Baker and Smit [40], we explore a power law fit,

f(x) = axP + b (35)

to our data in the “universal” regime. The fits for all ensembles except the 4k β = 1.5 en-

semble in the simplex discretization are given in the Tables (3) and (4) below. Plots showing

the fits to the correlators are shown in Figures 37-47.
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Figure 37: The fit in the universal regime to the 32k β = 0 ensemble in the triangle dis-
cretization. The fit is done in the range [9,13]

Figure 38: The fit in the universal regime to the 16k β = 0 ensemble in the triangle dis-
cretization. The fit is done in the range [8,12]
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Figure 39: The fit in the universal regime to the 8k β = 0 ensemble in the triangle discretiza-
tion. The fit is done in the range [8,18]

Figure 40: The fit in the universal regime to the 4k β = 0 ensemble in the triangle discretiza-
tion. The fit is done in the range [7,11]
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Figure 41: The fit in the universal regime to the 4k β = 1.5 ensemble in the triangle
discretization. The fit is done in the range [7,18]

Figure 42: The fit in the universal regime to the 8k β = −0.8 ensemble in the triangle
discretization. The fit is done in the range [7,12]
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Figure 43: The fit in the universal regime to the 32k β = 0 ensemble in the simplex dis-
cretization. The fit is done in the range [22,44]

Figure 44: The fit in the universal regime to the 16k β = 0 ensemble in the simplex dis-
cretization. The fit is done in the range [20,38]
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Figure 45: The fit in the universal regime to the 8k β = 0 ensemble in the simplex discretiza-
tion. The fit is done in the range [19,32]

Figure 46: The fit in the universal regime to the 4k β = 0 ensemble in the simplex discretiza-
tion. The fit is done in the range [16,29]
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Figure 47: The fit in the universal regime to the 8k β = −0.8 ensemble in the simplex
discretization. The fit is done in the range [43,58]

The smallest value of r in the fit range, rmin, is chosen to maximize the number of points

that are clearly not a part of the asymptote, while still maintaing a good quality of fit. rmax

was chosen to include the smallest number of points from the asymptote, while still ensuring

that the fit settled on the correct asymptotic value. Fits were tested for many possible fit

ranges that satisfied this criteria, until an acceptable fit was found for each ensemble. In

general, the fits are excellent, with χ2/d.o.f. less than one. One exception is the 4k β = 1.5

ensemble in the triangle discretization, where the χ2/d.o.f. was slightly greater than one.

The 8k β = −0.8 ensemble in the simplex discretization also appears anomalous. Al-

though the χ2/d.o.f. indicates the fit is a good one, the plot in figure 47 shows that this may

be misleading. That ensemble’s asymptote has a great deal more variance than the others,

and it is difficult to identify where the asymptotic behavior begins. Many fits were done

across numerous ranges, and a number of candidates were viable for fits to this region. It is

difficult to say that this is the best possible fit that correctly accounts for errors in the fit

and systematic errors, and this may be the cause of the discrepancy.
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Figure 48: The power of the power law for both the simplex and triangle discretizations.

It remains to determine the power of the power law decay in the infinite volume, contin-

uum limit. The results for the two approaches are plotted together in Figure 48. The two

approaches agree, within errors, except for the 32k β = 0 ensemble. This might be explained

by the presence of long distance discretization effects coming from diffeomorphism breaking.

When the regulator breaks a symmetry, it is necessary to take the continuum limit before the

long distance light modes are properly described. The 32k β = 0 ensemble has the largest

physical volume, but a relatively coarse lattice spacing, and so would be the most likely to

be susceptible to such effects.

With the 32k β = 0 ensemble excluded, the remaining points are best described by a

constant fit. The triangle discretization gives a constant of −10.03(35), and the simplex

discretization gives −9.09(54). The two approaches are within about 1 σ of each other. The

power in the infinite volume, continuum limit appears to be consistent with -10. We discuss

in the next section a possible motivation for expecting this value for the power law.
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4.4 Coefficient of the Power Law Decay

We have determined that the correlator in the universal regime is compatible with the form

〈RR〉c (r) ∼ A

r10
+B (36)

where B is the asymptote, and A is a dimensionful constant. As curvature has a mass

dimension of 2, the correlator has mass dimension of 4, and so A must have dimension -6.

The only available quantity in flat space, pure gravity with this dimensionality is G3, and so

A = αc1 G
3 (37)

where αc1 parameterizes the loop factors and other low energy constants in the effective

theory of gravity at low energies. In principle, we could get this constant from the fits in the

previous section, but the coefficient has very large errors. Instead, we do a volume integral

to extract it. We assume that the shift is unphysical, and we will neglect it by adding a

constant to the correlator so that the asymptote is set to zero. Thus we have

∫
d4x

αc1G
3

r10
= αc1G

3

∫ ∞
`min

2π2r3dr

r10
=
π2

3

αc1G
3

`6min
(38)

To find this value from the lattice calculation, we need to discretize the volume integration

∫
d4x 〈RR〉c (r)→

∑
r

〈RR〉c (r)V (r) (39)

where V(r) is the volume at a distance r from the origin. This will be different depending

on whether we are dealing with triangles or simplices. For triangles, we have

V (r) =
1

10

√
5

96
Ō(r)G11(r) (40)
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with Ō(r) the average order of the triangles at a distance r. For simplices, the definition is

simpler

V (r) =

√
5

96
G11(r) (41)

The value of `min is chosen to be the lowest value of r in the universal regime, as determined

by the quality of the fits to a power law.

In order to compare the triangle and simplex values for this constant directly, attention

must be paid to the different definitions of length. The distance between the centers of two

triangles is not the same as the distance between the centers of two simplices. Most of our

prior results have been done using simplex distances, so we shall convert the triangle distance

to simplex distance.

To get the conversion factor, we compare the location of the peak of the G11 distribution

of each ensemble for both definitions of distance. The needed factors, listed by β value, are

found in Table 45. Note that, contrary to expectation, the factor is different for different β

values. Simplices are only required to share a (d−1)-subsimplex to be considered neighbors,

but triangles have the additional constraint of needing to be members of the same simplex.

This added constraint alters how long it takes to traverse the lattice, and therefore how long

it takes to reach the peak of the distribution.

With the conversion factor S(β) and the relative lattice spacing arel included, we can

find the coefficient αc1 by equating the two integrated correlators in Eq.(39) and Eq.(40)

and isolating αc1G
3

αc1G
3 =

3

π2
(`minarelS(β))6

∑
r=`min

〈RR〉c (r)V (r) (42)
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Volume β rpeak simplex rpeak triangle S(β)
32k 0 20.3-20.8 7.5-8.0 2.71-2.77
16k 0 18.3-18.9 6.7-7.4 2.47-2.82
8k 0 16.3-16.8 6.3-6.9 2.36-2.67
4k 0 14.2-14.7 5.6-6.4 2.22-2.63
4k 1.5 11.6-12.3 5.6-6.5 1.78-2.20
8k -0.8 30.5-31.5 4.7-5.7 5.35-6.70

Table 5: The fit results in the universal regime to a power law for the simplex discretization.

Note that S(β) is just 1 when dealing with the simplex curvature. G is determined by

using a dimensionful quantity to set the scale of the lattice, and requires making contact

with (semi)classical gravity. Two analyses are currently underway, one involving fluctuations

about de Sitter space, and another from studying gravitational interactions between particles

via Newton’s law. Preliminary results suggest the two approaches roughly agree, but work

is still on going.

A plot of αc1G
3 in the triangle discretization is shown in Figure 49 and in the simplex

discretization in Figure 50. The two curvature discretizations are close in magnitude, and

appear to trend towards the same answer in the infinite volume, continuum limit. The tri-

angle discretization appears to be non-linear in inverse physical volume 1/Vphys, but not in

a simple quadratic way, while still retaining a dependence on lattice spacing. With no the-

oretical guidance as to what the dependence on volume should be, we adopt the pragmatic

approach that we only care about what happens in the infinite volume, continuum limit, and

for β = 0, the approach to large volume becomes linear for the 8k, 16k, and 32k ensembles.

We therefore drop both of the ensembles with the smallest physical volume, 4k β = 0 and

8k β = −0.8. Though we are left with only two different lattice spacings, we are still able to

fit to the function in Eq.(19). This extrapolation is shown in figure 51. The infinite volume,

continuum limit of αc1G
3 for the triangle discretization is 3.8(20)× 1013
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Figure 49: The coefficient αc1G
3 for the triangle discretization.

Figure 50: The coefficient αc1G
3 for the simplex discretization.
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Figure 51: The infinite volume, continuum extrapolation of αc1G
3 in the triangle discretiza-

tion. The 4k β = 0 and 8k β = −0.8 ensembles were dropped.

The simplex discretization also exhibits a non-quadratic dependence on physical volume,

as well as a dependence on lattice spacing. However, if we are forced to omit the 8k β = −0.8

ensemble, we will be unable to take a continuum limit, since the 4k β = 1.5 ensemble has

already been excluded. We thus retain the 8k β = −0.8 ensemble, and attempt to fit to a

fit function exponential in the inverse physical volume,

f(Vphys, a) = c0 + c1 exp

(
c2
Vphys

)
+ c3a

2, (43)

where ci are fit parameters. The extrapolation is shown in Figure 52. The infinite volume,

continuum limit of αc1G
3 in the simplex discretization is 2.61(11)× 1013.

Though the fits are poorly constrained due to each only including two different lattice

spacings, we find that the two discretization are very close, 3.8(20)×1013 in the triangle dis-

cretization, and 2.61(11)× 1013 in the simplex discretization. The two results are separated

by less than 1 σ, and so we find there to be good agreement. We submit that this value is
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Figure 52: The infinite volume, continuum limit extrapolation of αc1G
3 in the simplex

discretization.

universal regardless of the choice of discretization.

It is clear that αc1G
3 is a very large coefficient. The simplest explanation for this large co-

efficient that maintains a connection with the low energy effective theory is that the
√
gR2 in

the effective actiont has a large coefficient. Intriguingly, there exists a theory of inflation, the

Starobinsky Model [44], that explains inflation with an R2 term with a very large coefficient.

Since our approach to gravity has no free parameters in the gravity sector, the Starobinsky

model cannot be added “by hand” to our approach. The coefficient of the R2 term is a

prediction in our model, allowing us to potentially determine the inflationary potential from

first principles with no adjustable parameters. If the predicted coefficient was compatible

with observations, it would have serious implications for observational cosmology, allowing

us to predict all of the properties of the anisotropies in the cosmic microwave background.

That the coefficient is very large supports our result that the power of the decay in the

previous section is -10. The tree-level classical contributions to this correlator begin at G
r6

.

This term, however, vanishes at tree-level [47]. The next contribution should then begin
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at one loop and be proportional to G2

r8
. The preliminary calculations for G that we have

conducted suggest that G is O(1), and so in order to obtain a large coefficient, one of the

R2 terms must come with a large coefficient. These terms first contribute at G3

r10
. There are

two O(R2) terms, R2 and C2 (The Weyl Squared term). If the C2 term comes with a large

coefficient, Newton’s law would be modified to become repulsive. Repulsive gravity does not

appear in our analysis in another on-going study, so the large coefficient must be due to the

R2 term if we are to make contact with the low energy effective theory.
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5 Conclusions

The implementation of gravity on the lattice, EDT, has received renewed interest. The

introduction and reinterpretation of a non-trivial measure term has lead to a recovery of

semi-classical gravity in the appropriate limit, once the free parameter in the measure term

is fine-tuned to restore diffeomorphism invariance. We have shown that, in addition to hints

that we recover the correct 4-dimensional space-time, that there is evidence for a continuum

limit at a non-trivial UV fixed point.

In this work, we’ve seen that of the dimensionless physical couplings, Ĝ and Λ̂ separately

are not relevant couplings. Rather, the product GΛ is the relevant coupling that is expected

to approach a fixed point in the UV. We argue that the running of β is unphysical, and

that β is the free parameter in the action that must be tuned to restore diffeomorphism

invariance. This unphysical running of β introduces an unphysical running into Λ̂ that must

be subtracted. To achieve this, we determine a subtracted β as follows: we calculate GΛ

along lines of fixed β with varied κ2, and look for a curve where GΛ has a zero and a zero

derivative at the same point. We find no barrier to finding this value of β for any lattice

volume. If GΛ is the only relevant coupling after accounting for symmetry breaking by the

lattice regulator, then we need only input a single dimensionful parameter to set the scale,

and then all other quantities become predictions.

We examined the two point curvature correlation function using two different curvature

discretizations. The simplest attempt to find the correlation function for curvature suffers

from an overcounting of geometry, since the distance between two points is a geometric ob-

ject. The disconnected part of the correlator must be subtracted out so that the correct

correlators are obtained. We find that there is a universal power law decay with an infinite

volume, continuum limit, and find it to be consistent between two different discretizations

of the curvature.
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Upon integrating the curvature correlation functions over volume, we also obtain the

coefficient of the power law, which again appears to be independent of whether triangle cur-

vature or simplex curvature is used. The coefficient is found to be much larger than what

one would expect from naive power counting arguments in low energy effective theory. It

is in principle possible to translate this coefficient into the coupling of the
√
gR2 term in

the low energy effective Lagrangian for gravity in the infinte volume flat-space limit. If this

result holds up, it would provide a quantum gravitational origin for inflation vis a vie the

Starobinsky model, but with no free parameters. This would be a highly predictive, and

thereby falsifiable, theory of quantum gravity.

Much work remains. To better control the infinite volume and continuum extrapolations,

lattices at finer lattice spacings and larger lattice volumes are needed. Matter fields also

need to be added to examine what effect they have on the phase diagram and the quantities

studied here. Quenched scalar fields have already been implemented, but back reactions

on the geometry must still be included. Work on this is in progress. An approach to

implementing fermions on dynamical triangulations has recently been introduced. Work is

on going to include the back reaction of fermions on the geometry as well. These matter

effects must ultimately be included if we are to compare our predictions with observational

cosmology. We also need the one loop coefficient from the low energy effective theory to

match our calculations to experiment, and this is also in progress.
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