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Abstract

Motivated by the minimax concave penalty based variable selection in high-dimensional lin-

ear regression, we introduce a simple scheme to construct structured semiconvex sparsity

promoting functions from convex sparsity promoting functions and their Moreau envelopes.

Properties of these functions are developed by leveraging their structure. In particular, we

show that the behavior of the constructed function can be easily controlled by assumptions on

the original convex function. We provide sparsity guarantees for the general family of func-

tions via the proximity operator. Results related to the Fenchel Conjugate and  Lojasiewicz

exponent of these functions are also provided. We further study the behavior of the proxim-

ity operators of several special functions including indicator functions of closed convex sets,

piecewise quadratic functions, and linear combinations of the two. To demonstrate these

properties, several concrete examples are presented and existing instances are featured as

special cases. We explore the effect of these functions on the penalized least squares problem

and discuss several algorithms for solving this problem which rely on the particular structure

of our functions. We then apply these methods to the total variation denoising problem from

signal processing.
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Chapter 1

Introduction

This dissertation concerns the study and application of sparsity promoting functions. Infor-

mally, a vector or matrix is sparse if it has few nonzero entries, and a function is sparsity

promoting if it penalizes nonzero entries. Including such functions in an optimization prob-

lem, either as a constraint or as a penalty term, encourages sparse solutions. Interest in

sparsity spans applications from image processing to machine learning and statistics for

two primary reasons: sparsity describes structure, and sparse data is easier to manipulate

and interpret. Natural signals and data are often sparse in an appropriate basis (see, e.g.

[12, 35, 50]). For example, pixel values in an image are constant in blocks corresponding

to objects or pieces of objects, so the image matrix is sparse in the basis defined by pixel

differences. The feature selection problem in machine learning concerns identifying the most

relevant components of the data and discarding the rest. Assuming there is such a sparse

representation, it allows us to greatly decrease the dimension of the problem (e.g., [22]). We

can also consider finding sparse representations as a method of compressing data, whether

that be for computational efficiency or for security.
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CHAPTER 1. INTRODUCTION

The natural mathematical measure of sparsity is the so-called “`0-norm”, which simply

returns the number of nonzero entries. That is, for x ∈ Rn,

‖x‖0 =
∣∣{i : xi 6= 0, i ∈ {1, . . . , n}}

∣∣.
This function is not truly a norm; it is nonconvex, discontinuous, and homogeneous of degree

zero. Moreover, solving the `0-penalized least squares problem is combinatorial in nature

and known to be NP hard.

To overcome these issues, regularization methods replacing the `0-penalty with the `1-

penalty such as LASSO [51] and Dantzig selectors [12] have been proposed. This relaxation

makes the problem numerically tractable and allows application of the many tools of convex

optimization. However the convexity of the `1-norm introduces bias in the solution by heavily

penalizing entries with large magnitude. To address this, nonconvex penalties including the

`q-penalty with 0 < q < 1 [23], the smoothly clipped absolute deviation penalty (SCAD)

[22], the Continuous Exact `0 penalty (CEL0) [48], and the minimax concave penalty (MCP)

[53] have been proposed to replace the `1-norm penalty.

We introduce a family of semiconvex sparsity promoting functions of which each is the

difference of a convex sparsity promoting function with its Moreau envelope. We show that,

as long as a convex function is a sparsity promoting function, so is this difference. This

result makes the construction of nonconvex sparsity promoting functions effortless. Some

interesting properties of such functions are: (i) they are always non-negative and semiconvex

and (ii) they are a special type of difference of convex (DC) functions with one having

a Lipschitz continuous gradient. Due to these properties, we refer to these functions as

structured semiconvex sparsity promoting functions. These properties enable us to make use

2



CHAPTER 1. INTRODUCTION

of the fruitful results, for example, in DC programming [38], to develop efficient algorithms

for the associated regularized optimization problems. What’s more, these functions provide

a bridge between convex and nonconvex sparsity promoting penalties. As a specific example,

we recover the MCP from the difference of the `1-norm and its envelope. It has been shown

(e.g. in [49]) that this closely approximates the `0-norm while preserving the continuity and

subdifferentiability of `1.

The proximity operator, which was first introduced by Moreau in [36] as a generaliza-

tion of the notion of projection onto a convex set, has been used extensively in nonlinear

optimization (see, e.g., [4, 5, 16]). The desired features of the aforementioned regularization

methods can be explained in terms of the proximity operators of the corresponding penalties.

Therefore, to determine the effectiveness of our proposed functions, we must examine the

behavior of their proximity operators. The proximity operator of the `0-norm is the hard

thresholding operator, which annihilates all entries below a certain threshold and keeps all

entries above the threshold. In fact, we see that hard thresholding rules are characteristic of

penalties which are concave near the origin and constant elsewhere. More generally, we pro-

vide sparsity guarantees in terms of thresholding behavior for the entire family of structured

semiconvex sparsity promoting functions, with further details for certain special functions.

Working with nonconvex functions provides greater model flexibility and accuracy, but

there is no general theory of nonconvex optimization, a dilemma which mirrors the earlier

transition from linear to nonlinear programming. The following quote attributed to Stanislaw

Ulam describes the situation:

Using a term like nonlinear science is like referring to the bulk of zoology as the

study of non-elephant animals.

Identifying functions as nonlinear or nonconvex describes them only by the structure that

3



CHAPTER 1. INTRODUCTION

they lack and does not take advantage of any structure that they have. In the case of non-

linear programming, convexity was the key property that allowed us to move forward, and

many years later convex analysis is considered a fundamental part of the study of optimiza-

tion (see e.g. [27, 26, 6, 10]). In the same vein, we can take steps into the nonconvex world

through functions with some nice structure. One approach is to consider generalizations of

convexity like quasiconvexity and semiconvexity. There has been quite a lot of work done

generalizing results from convex analysis to these classes (see, e.g., [25]). Another approach

considers properties like subanalyticity and Kurdyka- Lojasiewicz inequalities (see, e.g., [8]).

These are not mutually exclusive categories, and we will discuss both types of structure for

our sparsity promoting functions.

Motivation

Our construction of semiconvex sparsity promoting functions was motivated mainly by the

minimax concave penalty (MCP) based variable selection in high-dimensional linear regres-

sion [53]. Variable selection is fundamental in statistical analysis of high-dimensional data.

It is also easily interpretable in terms of sparse signal recovery. We consider a linear re-

gression model with n-dimensional response vector y, n× p model matrix X, p-dimensional

regression vector γ, and n-dimensional error vector ε:

y = Xγ + ε.

The goal of variable selection is to recover the true underlying sparse model of the pattern

{j : γj 6= 0} and to estimate the non-zero regression coefficients γj, where γj is the j-th

component of γ. For small p, subset selection methods can be used to find a good guess of

4



CHAPTER 1. INTRODUCTION

the pattern (see, e.g., [45]). However, subset selection becomes computationally infeasible

for large p.

To overcome the computational difficulties of subset selection method, the method of pe-

nalized least squares is widely used in variable selection to produce meaningful interpretable

models:

min
γ∈Rp

[
1

2n
‖y −Xγ‖2 +

p∑
j=1

ρ(|γj|, λ)

]
, (1.1)

where ρ(·, λ) is a penalty function indexed by λ ≥ 0. The penalty function ρ(t, λ), defined on

[0,+∞), is assumed to be nondecreasing in t with ρ(0, λ) = 0 and continuously differentiable

for t ∈ (0,+∞). The formulation in (1.1) includes many popular variable selection methods.

For example, the best subset selection amounts to using the `0 penalty ρ(|t|, λ) = λ2

2
1{|t|6=0}

while LASSO [51] and basis pursuit [15] use the `1 penalty ρ(|t|, λ) = λ|t|. Here 1{u∈E}

denotes the characteristic function and 1{u∈E} equals 1 if u ∈ E and 0 otherwise. The

estimator (the hard thresholding operator) with the `0 penalty suffers from instability in

model prediction while the estimator (the soft thresholding operator) with the `1 penalty

suffers from the bias issue, severely interfering with variable selection for large p [22]. To

remedy this issue, the SCAD penalty was introduced in [22]. The estimator with the SCAD

penalty is continuous and leaves large components not excessively penalized. In [53], the

MCP penalty was introduced and is defined as follows

ρ(|t|, λ) = λ

∫ |t|
0

max
{

0, 1− x

aλ

}
dx, (1.2)

where the parameter a > 0. This penalty function (see [53]) minimizes the maximum

concavity

κ(ρ, λ) := sup
0<t1<t2<∞

−ρ(t2, λ)− ρ(t1, λ)

t2 − t1

5



CHAPTER 1. INTRODUCTION

subject to the unbiasedness ∂
∂t
ρ(t, λ) = 0 for all t > aλ and selection features ∂

∂t
ρ(0+, λ) = λ.

The number κ(ρ, λ) is related to the computational complexity of regularization method

for solving (1.1). The simulations in [22, 53] gave a strong statistical evidence that the

estimators from the non-convex penalty functions SCAD and MCP are useful in variable

selection. Recently, an application of MCP to signal processing was reported in [46].

Due to its success in applications, we take a closer look at MCP. The MCP function in

(1.2) can be rewritten as

ρ(|t|, λ) = λ(|t| − envaλ | · |(t)),

where envaλ | · | is the Moreau envelope of | · | with index aλ (see next section). Clearly,

the MCP penalty can be considered as a variation of the `1 penalty function, that is, the

absolution function | · | is replaced by | · | − envaλ | · |. From this simple observation, we are

drawn to consider a family of penalty functions defined by

f − envα f

with f satisfying some proper properties and α > 0.

Contributions

The theoretical contributions of this thesis include

• providing an easily verifiable definition of sparsity promotion;

• introducing a simple construction of nonconvex sparsity promoting functions;

• characterizing sparse thresholding behavior of proximity operator of the proposed spar-

6



CHAPTER 1. INTRODUCTION

sity promoting functions;

• providing information about the conjugate and dual problems of the proposed sparsity

promoting functions; and

• studying the  Lojasiewicz property and providing the  Lojasiewicz exponent for the

proposed sparsity promoting functions.

The contributions of this thesis in applications include

• studying special classes of sparsity promoting functions and providing examples;

• demonstrating algorithmic performance;

• demonstrating applicability the proposed sparsity promoting functions to denoising

signals and images corrupted by noise.

Content

Chapter 2 introduces notation and reviews the essential tools from convex analysis, nons-

mooth optimization, and real analytic geometry. Where there is no standard notation or

name in the literature we choose one that is at least widely recognized and make a note

of other possible conventions. Sections 2.1-2.3 reviews the basic objects of convex analysis.

Section 2.4 provides a deeper examination of two fundamental concepts: the Moreau enve-

lope and the proximity operator. We make an effort to give insight and intuition about these

operators as they figure into every aspect of our research. Section 2.5 briefly reviews sets

and functions definable on o-minimal structures.

Chapter 3 contains the theoretical aspects of our work. We define sparsity promoting

functions, introduce a construction of nonconvex sparsity promoting functions from convex

7



CHAPTER 1. INTRODUCTION

sparsity promoting functions, and study the properties of both. Section 3.1 contains this

definition and a characterization of convex sparsity promoting functions. Section 3.2 deals

with our construction of families of nonconvex sparsity promoting functions and details

what can be considered their core properties: sparsity promotion and semiconvexity. Many

of these results are included in our paper of the same title [47]. Section 3.3 explores further

properties of both convex and nonconvex sparsity promoting functions. Specifically, we look

at the Kurdyka- Lojasiewicz property and the Fenchel conjugate.

In Chapter 4, we refine our results for certain classes of functions. Section 4.2 deals with

quadratic functions, Section 4.1 with indicator functions, and Section 4.3 with sums of the

two. We close the chapter with several examples drawn from a variety of applications in

Section 4.4.

We highlight the benefits of our construction by studying its algorithmic performance

in Chapter 5. In particular, we consider a penalized least squares problem and apply three

widely used algorithms: Primal-Dual Splitting, Difference of Convex, and Alternating Di-

rections Method of Multipliers. Each algorithm corresponds to a different view of the model

through the lens of our proposed penalty function. Convergence analysis is provided for each

and improved when possible.

In Chapter 6, we apply the model and algorithms to the problem of signal and image

denoising. Numerical results are provided for each algorithm, as well as a comparison to the

standard Rudin-Osher-Fatemi total variation denoising model for each case. We also offer

insight into parameter choices for tuning the model.

Finally, we conclude with a summary of our results and describe their context in current

optimization research. We discuss remaining questions as well as future directions and

possible applications.

8



Chapter 2

Preliminaries

All functions and sets are defined on Rn equipped with the inner product 〈·, ·〉 and norm

‖ · ‖. We denote the boundary, interior, and closure of a set A by bd(A), int(A), and A

respectively. The relative interior ri(A) is the interior of A when viewed as a subset of the

affine space that it spans.

We consider functions from Rn to the extended real line f : Rn → (−∞,+∞]. The

domain of f is

dom(f) = {x ∈ Rn : f(x) < +∞}.

We say that f is proper if dom(f) 6= ∅. The graph of f is gr(f) = {(x, y) ∈ dom(f) × R :

f(x) = y} and the epigraph epi(f) = {(x, ξ) ∈ Rn × R : f(x) ≤ ξ}. Recall that f is lower

semicontinuous if lim infy→x f(y) ≥ f(x) for every x. We denote

Γ(Rn) = { proper, lower semicontinuous functions f : Rn → (−∞,+∞]}.

If f : Rn → (−∞,+∞] is Lipschitz continuous with constant L, i.e. |f(x)−f(y)| ≤ L‖x−y‖

9



CHAPTER 2. PRELIMINARIES

for all x, y ∈ Rn, we say f is L-Lipschitz.

The results included in this chapter are classical and can be found in essentially any text

on convex analysis (see, e.g. [5, 27, 6]).

2.1 Convexity and Semiconvexity

We briefly review the definitions, provide some examples, and cover some of the essential

properties which make convex sets and functions so useful for optimization.

A set C ⊆ Rn is convex if for all x, y ∈ C and any λ ∈ [0, 1], the point λx+ (1−λ)y ∈ C

as well. That is, C contains the line segment joining any two of its points. Some familiar

examples are intervals in R and balls Br(x) = {y : ‖x−y‖ < r} in Rn. For nonempty convex

sets C, the relative interior can be written as follows [44]:

ri(C) = {z ∈ C : ∀x ∈ C ∃λ > 1 ((1− λ)x+ λz ∈ C)}.

In particular, if 0 ∈ C, then for any x ∈ ri(C), there exists λ > 1 such that λx ∈ C. Recall

that if C is closed as well as convex then for any x ∈ Rn, the projection of x onto C, denoted

ΠC(x), exists and is unique.

A function f is convex if for any x, y ∈ dom(f) and any λ ∈ [0, 1],

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

If the inequality above is strict for all x 6= y, then we say f is strictly convex. Equivalently,

a function is convex if its epigraph is a convex set. We denote by Γ0(Rn) the set of proper,

lower semicontinuous, convex functions f : Rn → (−∞,+∞].

10



CHAPTER 2. PRELIMINARIES

For σ > 0, f is σ-strongly convex if f − σ
2
‖ · ‖2 is convex. Similarly, for ρ > 0, f is

ρ-semiconvex if f + ρ
2
‖ · ‖2 is convex. Of course, a strongly convex function is also convex,

and a convex function is also semiconvex. Semiconvex functions can be further generalized

to prox-regular [43] and primal lower nice functions [42]. For a more thorough study of

semiconvex functions with applications to variational analysis see [13].

For example, any norm ‖ · ‖ is convex, and the quadratic function 1
2
‖ · ‖2 is 1-strongly

convex. Both examples are proper and continuous. Any function which is convex is trivially

semiconvex, and if f is convex, the function f − ρ
2
‖ ·‖2 is ρ-semiconvex. A particularly useful

example is the indicator function of a set C defined as

ιC(x) =


0, if x ∈ C,

+∞, if x 6∈ C.

The function ιC is convex (as a function) if and only if C is convex (as a set). This is also

sometimes called the characteristic function of C.

2.2 Derivatives and Subdifferentials

Perhaps the most fundamental theorem in optimization is also the most familiar; Fermat’s

rule states that if x̄ is a maximizer or minimizer of a differentiable function f , then x̄ is a

critical point of f . The field can be largely summarized as tools and methods for finding

critical points and verifying that they are optimal. To provide context, we review some im-

portant results for differentiable functions. We then introduce a generalized derivative called

the Fréchet subdifferential which naturally extends these results to nonsmooth functions.

Recall that a function f is differentiable at x if there exists a bounded linear operator

11
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B : Rn → R such that

lim
u→x

|f(u)− f(x)−B(u− x)|
‖u− x‖

= 0.

If this operator exists, we denote it by ∇f(x). If f ∈ Γ0(Rn) is differentiable with gradient

∇f , then it satisfies the following inequality for all x, y ∈ Rn:

f(y) ≥ f(x) + 〈∇f(x), y − x〉.

In other words, the graph of f is supported by its tangent hyperplanes. An immediate

consequence is that any critical point x̄, i.e. any point such that ∇f(x̄) = 0, must be a

global minimizer. Thus for convex functions, finding a global minimum is equivalent to

finding a critical point. We note that while the minimum value is unique, convex functions

may have more than one minimizer. In fact, they may have a continuum of minimizers. If

f is strongly convex, however, the minimizer is unique. We denote by Argmin f the set of

minimizers of f .

The Fréchet subdifferential of a function f at x is

∂f(x) :=
{
η ∈ Rn : lim inf

u→x

f(u)− f(x)− 〈η, u− x〉
‖u− x‖

≥ 0
}
.

An element η ∈ ∂f(x) is called a subgradient of f at x. If ∂f(x) 6= ∅ we say that f is

Fréchet subdifferentiable at x. Viewed as a set-valued operator from Rn to itself, we define

the domain dom(∂f) as the set of all points x at which ∂f(x) is nonempty. Note that

dom(∂f) ⊆ dom(f).

The subdifferential generalizes the usual Fréchet derivative: if f is differentiable at x,

then ∂f(x) = {∇f(x)}. The subdifferential obeys a generalization of Fermat’s rule: if f

12
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attains a local minimum at x, then 0 ∈ ∂f(x) and the point x is called a (generalized)

critical point of f . The set of critical points of f is denoted crit f .

For example, f(x) = |x| is differentiable for all nonzero x and subdifferentiable at the

origin with ∂‖ · ‖1(0) = B1(0). The function q(x) = 1
2
‖x‖2 is differentiable everywhere, thus

for all x ∈ Rn, we have ∂q(x) = {x}. The subdifferential of the indicator function ιC at a

point x ∈ C is the normal cone of C at x:

NC(x) = {η ∈ Rn : 〈η, y − x〉 ≤ 0, ∀y ∈ C}.

For x 6∈ C, ∂ιC(x) = ∅.

We briefly review the calculus of subdifferentials. For any α > 0, ∂(αf)(x) = α∂f(x). For

any functions f1, f2 : Rn → (−∞,∞] which are Fréchet subdifferentiable, the sum f1 + f2

is Fréchet subdifferentiable with subdifferential ∂(f1 + f2)(x) ⊆ ∂f1(x) + ∂f2(x). If f1 is

differentiable, then ∂(f1 + f2)(x) = ∇f1(x) + ∂f2(x).

If f ∈ Γ0(Rn), then ∂f(x) = {η ∈ Rn : f(u) − f(x) − 〈η, u − x〉 ≥ 0, u ∈ Rn}. In this

case, the subdifferential operator ∂f is monotone, i.e. for any u, v ∈ Rn

〈η − ξ, u− v〉 ≥ 0

for every η ∈ ∂f(u) and ξ ∈ ∂f(v). For differentiable functions of a single variable, this is

the familiar property that the derivative of a convex function is increasing. The gradient

inequality for convex functions then becomes a subgradient inequality: for all x, y ∈ Rn and

any η ∈ ∂f(x)

f(y) ≥ f(x) + 〈η, y − x〉.

13
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Similarly, f is σ-strongly convex if and only if

f(y) ≥ f(x) + 〈η, y − x〉+
σ

2
‖y − x‖2,

and f is ρ-semiconvex if and only if

f(y) ≥ f(x) + 〈η, y − x〉 − ρ

2
‖y − x‖2.

From these expressions, we can derive corresponding monotonicity properties.

2.3 The Fenchel Conjugate

Duality plays a role in many areas of mathematics, allowing us to approach problems from

a new perspective. In convex analysis, this duality is given by conjugation. The Fenchel

conjugate of a function f : Rn → (−∞,+∞] is defined by

f ∗(u) = sup
x∈Rn
〈x, u〉 − f(x).

If we view f as a collection of points (x, f(x)), then the conjugate f ∗ describes the epigraph

of f through its supporting hyperplanes. This is closely related to the classical Legendre

transform, though here we allow nonconvex f , and it is often referred to as simply the convex

conjugate. For example, if f = ‖ · ‖, then f ∗ = ιB1(0), and if f = 1
2
‖ · ‖2, then f ∗ = 1

2
‖ · ‖2.

In fact, f = f ∗ if and only if f = 1
2
‖ · ‖2.

An immediate consequence of the definition is the Fenchel-Young Inequality:

f(x) + f ∗(u) ≥ 〈x, u〉. (2.1)

14
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If f ∈ Γ0(Rn), the subdifferentials of f ∗ and f are related by

u ∈ ∂f(x) ⇐⇒ x ∈ ∂f ∗(u).

That is, if f is differentiable, we see that ∇f ∗ inverts ∇f . We note here that equality is

achieved in (2.1) if and only if u ∈ ∂f(x) or equivalently x ∈ ∂f(u).

We note that if f ∈ Γ0(Rn), then f ∗ ∈ Γ0(Rn) as well. If f ≥ f(0) = 0, then f ∗ ≥

f ∗(0) = 0 as well. If we define the biconjugate f ∗∗(u) = (f ∗)∗(u), then we generally have

that f ∗∗ ≤ f . The Fenchel-Moreau Theorem states that if f : Rn → (−∞,+∞] is proper,

then f ∗∗ = f if and only if f is lower semicontinuous and convex.

If we consider the primal problem

min{f1(x) + f2(x) : x ∈ Rn}

where f1, f2 ∈ Γ0(Rn), then the Fenchel dual problem is given by

min{f ∗1 (y) + f ∗2 (−y) : y ∈ Rn}.

Similarly, if we consider the primal problem

min{f1(x) + f2(Bx) : x ∈ Rn}

where B ∈ Rm×n, then the Fenchel Rockafellar dual problem is

min{f ∗1 (B>y) + f ∗2 (−y) : y ∈ Rm}.
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The sum of the optimal values of a primal-dual pair is called the duality gap. While we will

not discuss it here, the duality theorems due to Fenchel and others provide conditions under

which the duality gap is zero (see, e.g., [5]).

2.4 The Moreau Envelope

Due to the fundamental roles the Moreau Envelope and the proximity operator play in this

work, we devote this section to reviewing their definitions and properties, as well as providing

some discussion and history. For a more thorough discussion centered around proximal point

algorithms, we recommend [37].

First defined by J. J. Moreau in [36] , the Moreau envelope of f ∈ Γ(Rn) with parameter

α > 0 is defined by the infimal convolution of f with ‖ · ‖2:

envα f(x) := inf

{
f(u) +

1

2α
‖u− x‖2 : u ∈ dom(f)

}
.

We hereafter refer to the envα f as simply the envelope of f . The closely related proximity

operator of f with parameter α > 0 is defined by

proxαf (x) := Argmin
{
f(u) +

1

2α
‖u− x‖2 : u ∈ dom(f)

}
.

This is also sometimes referred to as the proximal operator or proximal mapping of f . While

these definitions do not require f to be convex, they are much more nicely behaved when it

is. We therefore restrict our attention to f ∈ Γ0(Rn) for the remainder of this section.

These two definitions have roots in monotone operator theory. The proximity operator is

the resolvent of the subdifferential of f : proxαf (x) = (I+α∂f)−1. The envelope is sometimes
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called the Moreau-Yosida envelope or Moreau-Yosida regularization of f based on the fact

that ∇ envα f is the Yosida approximation to ∂f with parameter α.

The proximity operator was originally defined as a generalization of projection onto

convex sets. In fact, if f = ιC for some closed convex set C, then proxαf (x) = ΠC(x) for all

α > 0. In general, we view proxαf (x) as projecting x to a lower sublevel set of the function.

Like projection, the proximity operator is firmly nonexpansive: for any x, y ∈ Rn,

‖p− q‖2 ≤ 〈p− q, x− y〉

for all p ∈ proxαf (x) and q ∈ proxαf (y). It is easy to see that for x̄ ∈ Argmin f , proxαf (x̄) =

f(x̄). In fact, the fixed points of the proximity operator are precisely the minimizers of f .

Another interpretation is that proxαf computes an implicit gradient descent step. As

above, p = proxαf (x) if and only if 0 ∈ ∂f(p) + 1
α

(p− x). That is,

p ∈ x− α∂f(p).

As an example, the proximity operator of the absolute value function is the soft-thresholding

operator from signal processing: proxα|·|(x) = max{0, sgn(x)(|x| − α)}. Note that for any

nonzero x, f(x) = |x| is differentiable and f ′(x) = sgn(x). If proxαf (x) 6= 0 as well, then it

is precisely a gradient descent step with step size α: p = x− αf ′(p) = x− αf ′(x).

It follows from the definition that envα f(x) ≤ f(x) for every x and envα f approaches f

as α→ 0. For f ∈ Γ0(Rn), the proximity operator is single-valued, and we see that

envα f(x) = f(proxαf (x)) +
1

2α
‖ proxαf (x)− x‖2.
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By our previous discussion, we see that Argmin envα f = Argmin f . A less obvious fact is

that the gradient of envα f is 1
α

-Lipschitz and is given by

∇ envα f =
1

α
(Id− proxαf ).

Thus, we view envα f as a smoothed approximation of f which preserves its minimizers.

We finish this section with some useful properties connecting the envelope and the con-

jugate. The conjugate of the envelope is given by (envα f)∗ = f ∗ + α
2
‖ · ‖2. The Moreau

Identity is

1

2α
‖x‖2 = envα f(x) + envα−1 f ∗(x/α).

Differentiating gives us

x = proxαf (x) + α proxα−1f∗(x/α).

This is often also referred to as the Moreau Identity. Note that this allows us to write

∇ envα f(x) = proxα−1f∗(x/α).

2.5 Semialgebraic and Subanalytic Functions

We now include some definitions from real analytic geometry which are becoming more

prevalent in optimization research. These results are drawn largely from [18] and [7]. A set

A ⊆ Rn is called semialgebraic if it can be defined by a Boolean combination of polynomial

equalities and inequalities. That is, we can write

A =
m⋂
j=1

n⋃
i=1

{x ∈ Rn : fi(x) = 0, gij(x) > 0}.
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If fi and gij are replaced by real analytic functions for all i, j above, the set A is called

semianalytic. A set A is subanalytic if every x ∈ A admits a neighborhood V such that

V ∩ A is the projection of a bounded semianalytic subset in Rn+1.

It is easy to verify that each definition is a strict generalization of the one before, giving

us the following relationship:

Subanalytic ⊃ Semianalytic ⊃ Semialgebraic.

These are all special cases of sets definable on o-minimal structures (see [18] for an overview),

which provides us with a useful way to determine whether a given set belongs to any of these

classes. In the following discussion, we use the term definable as a catch-all, but the reader

may substitute in semialgebraic, semianalytic, or subanalytic.

A first-order formula of the language of the o-minimal structure can be constructed by

the following rules [18].

1. If P (x1, . . . , xn) is a polynomial, then P (x1, . . . , xn) = 0 and P (x1, . . . , xn) > 0 are

first-order formulas.

2. If A ⊆ Rn is definable, then x ∈ A is a first-order formula.

3. If Φ and Ψ are first-order formulas, then “Φ and Ψ”, “Φ or Ψ”, “not Φ, and Φ ⇒ Ψ

are all first-order formulas.

4. If Φ(y, x) is a first-order formula and A is a definable subset, then ∃x ∈ AΦ(y, x) and

∀x ∈ AΦ(y, x) are first-order formulas.

If Φ(x) is a first order formula, the set A = {x ∈ Rn : Φ(x)} is definable. For example, any

algebraic set is definable.
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A function f : Rn → R ∪ {+∞} is definable if graph(f) = {(x, y) ∈ Rn+1 : y = f(x)} is

definable. We note that set of definable functions f : Rn → R form a R-algebra. This allows

us to create new definable functions from old ones through algebraic operations.

Following our previous discussion, the standard way to show that a function belongs to

one of these categories is to show that its graph is definable in the appropriate language.

For example, if A is a definable set, then distA(x) = inf{‖x − a‖ : a ∈ A} is definable. Its

graph is given by all (x, r) ∈ Rn+1 satisfying the following first order formula:

r ≥ 0 and ∀a ∈ A(r2 ≤ ‖x− a‖2) and ∀ε ∈ R, ε > 0⇒ ∃a ∈ A(t2 + ε > ‖x− a‖2).

By the same argument, if A is a semialgebraic or subanalytic set, then distA is a semialgebraic

or subanalytic function respectively.

20



Chapter 3

Sparsity Promoting Functions

In this chapter, we define the class of sparsity promoting functions and introduce a simple

method for constructing new structured sparsity promoting functions from convex sparsity

promoting functions. A comprehensive study of their thresholding behavior is given in Sec-

tion 3.2. We explore other properties which may be of interest in Section 3.3. In particular,

we show that our functions satisfy the nonsmooth  Lojasiewicz inequality near the origin and

that the Fenchel conjugate can be partially or wholly computed based on knowledge of f .

Results which appear in our paper [47] include this citation.

3.1 Definition

Roughly speaking, a function is sparsity promoting if it penalizes nonzero entries. The

most natural sparsity promoting function is the `0-norm, which simply counts the number

of nonzero entries, though this is often relaxed to the `1-norm. The construction of sparsity

promoting penalty functions is an active area of research which spans many applications.

Some of the proposed functions include the convex elastic net [54], the nonconvex SCAD
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[22], and of course the semiconvex MCP [53]. What all of these functions have in common

is that they send zero to zero and are, in some sense, sharp at the origin. Based on this

observation, we propose the following definition.

Definition 3.1.1 ([47]). Let f ∈ Γ(Rn). Then f is said to be a sparsity promoting function

provided that (i) f(0) = 0 and f achieves its global minimum at the origin; and (ii) the set

∂f(0) contains at least one nonzero element.

Item (i) ensures that any sparsity already present is preserved, and Item (ii) captures

the notion of “sharpness” at the origin. While we are hardly the first to make note of these

properties, to the best of our knowledge, this formalization is novel. Our definition has the

added benefits of being easy to verify, and, as we will see, immediately implies many other

properties.

It is perhaps more intuitive to describe sparsity promoting behavior in terms of the

proximity operator. The subdifferential and proximity operator of a function f ∈ Γ0(Rn)

satisfy the following relationship (see, e.g., [5]): for any α > 0

x ∈ α∂f(y) ⇐⇒ y = proxαf (x+ y). (3.1)

From this relationship, we get the following characterization of convex sparsity promoting

functions.

Lemma 3.1.1 ([47]). Let f ∈ Γ0(Rn) be a sparsity promoting function and let α > 0. Then

the following statements hold.

(i) If x ∈ ∂αf(0), then proxαf (x) = 0.

(ii) For all x ∈ dom(f), ‖ proxαf (x)‖ ≤ ‖x‖.
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Proof. (i): This is a direction consequence of (3.1).

(ii): By Item (i), 0 ∈ α∂f(0) implies proxαf (0) = 0. Because proxαf is a nonexpansive

operator, we have ‖ proxαf (x)‖ = ‖ proxαf (x)− proxαf (0)‖ ≤ ‖x‖ for all x ∈ dom(f).

The proximity operator of a convex sparsity promoting function therefore shrinks all

entries towards zero and sends all entries below a certain threshold to zero. This behavior

was described by Tibshirani for the `1 penalty: Least Absolute Shrinkage and Selection

Operator (LASSO).

3.2 Structured Sparsity Promoting Functions

We now introduce a simple construction of new sparsity promoting penalties. For any

f ∈ Γ0(Rn) and any positive number α > 0, we define

fα(x) := f(x)− envα f(x). (Fα)

Recall that when f is the absolute value function, fα is the MCP function. Several other

examples are provided in Chapter 4.

Sparsity promotion depends entirely on the behavior of a function and its subdifferential

at the origin. Since the Moreau envelope of any function in Γ0(Rn) is differentiable (see

Section 2.4), the subdifferentials of fα and f are related as follows (see [44]):

∂fα(x) = ∂f(x)−∇ envα f(x). (3.2)

Due to this inherent relationship between ∂fα and ∂f we see immediately that fα must be

sparsity promoting if f is.
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Theorem 3.2.1 ([47]). Let f ∈ Γ0(Rn) be a sparsity promoting function. For any α > 0,

the function fα defined by (Fα) is a sparsity promoting function. Moreover, ∂fα(0) = ∂f(0).

Proof. As a direct consequence of the definition of the Moreau envelope, 0 ≤ envα f(x) ≤

f(x) for all x ∈ Rn, hence fα(x) ≥ 0 for all x ∈ dom(f). Since f is a sparsity promoting

function, we have fα(0) = f(0) − envα f(0) = 0. Therefore minx∈Rn fα(x) = fα(0) = 0.

On the other hand, from (3.2) and the relation ∇ envα f(x) = 1
α

(x − proxαf (x)), we get

∂fα(0) = ∂f(0), which contains at least one nonzero element by assumption. Therefore, fα

is sparsity promoting.

Remark 3.2.1. We note that fα does not approximate the function f but does inherit proper-

ties from it. Because sparsity promotion is a property centered around behavior at the origin,

it only provides information about fα near the origin. However, given global information

about f , we are able to determine global properties of fα. For example, if f is L-Lipschitz,

it is straightforward to show that 0 ≤ fα(x) ≤ L2α for all x ∈ Rn.

As an immediate consequence, we see that the sparsity promoting property is preserved

under reflection. This fact can be used to expedite proofs for functions which are symmetric

in some sense (see Chapter 4).

Lemma 3.2.1. Let f ∈ Γ0(Rn) be a sparsity promoting function, and let g : x 7→ f(−x).

Then both g and gα are sparsity promoting. Moreover, gα = fα(−·) and ∂gα(0) = −∂f(0).

Proof. Since g(0) = f(0) = minx∈Rn f(x) = minx∈Rn g(x) and ∂g(0) = −∂f(0), so g is

sparsity promoting. By Theorem 3.2.1, gα is sparsity promoting and ∂gα(0) = −∂f(0). By

the definition of the Moreau Envelope, envα g(x) = envα f(−x), which gives us gα(x) =

fα(−x).
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Theorem 3.2.1 tells us not only that fα is sparsity promoting but that it preserves the

structure of f around the origin. As we will see, the inherent relationship between f and

fα allows us to impose structure on fα through assumptions on f . The first of these is that

the convexity of f controls the nonconvexity of fα. We remind the reader of two definitions.

For σ > 0 a function g ∈ Γ(Rn) is σ-strongly convex if and only if the function g− σ
2
‖ · ‖2 is

convex. For ρ > 0, a function g ∈ Γ(Rn) is ρ-semiconvex if g + ρ
2
‖ · ‖2 is convex.

Proposition 3.2.1 ([47]). Let f ∈ Γ0(Rn). Then fα, defined by (Fα), is 1
α

-semiconvex. If

f is µ-strongly convex, then fα is (µ − 1
α

)-strongly convex if µ > 1
α

, convex if µ = α, and

( 1
α
− µ)-semiconvex if µ < 1

α
.

Proof. Write

fα = f − envα f = f + (− envα f +
1

2α
‖ · ‖2)− 1

2α
‖ · ‖2.

For all x ∈ Rn we have that

fα(x) = f(x) +
(
f +

1

2α
‖ · ‖2

)∗
(α−1x)− 1

2α
‖x‖2,

which implies that fα is 1
α

-semiconvex (See Section 2.4).

In addition, if f is µ-strongly convex, then there exists a convex function g such that

f = g + µ
2
‖ · ‖2. Replacing f(x) in the previous equation, we get

fα(x) = g(x) +
(
f +

1

2α
‖ · ‖2

)∗
(α−1x) +

1

2
(µ− 1

α
)‖x‖2.

The result follows.

As an easy corollary, we can specify the convexity (or semiconvexity) of the sum of fα

and a quadratic term.
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Corollary 3.2.1. Let f ∈ Γ0(Rn), and let fα be defined by (Fα). For any given x ∈ Rn and

positive parameters α and β, we define

F (u) = fα(u) +
1

2β
‖u− x‖2, (3.3)

where u ∈ Rn. Then, F is (β−1−α−1)-strongly convex if β < α, convex if β = α, and (α−1−

β−1)-semiconvex if β > α. If, in addition, f is µ-strongly convex, then F is (µ− α−1 + β)-

strongly convex, if µ > α−1−β−1, convex if µ = α−1−β−1, and (α−1−β−1−µ)-semiconvex

if µ < α−1 − β−1.

The next two results extend these properties to compositions with linear operators.

Proposition 3.2.2. If f ∈ Γ0(Rn) and D ∈ Rn×m such that imD∩dom(f) 6= ∅, then fα ◦D

is ‖D‖
2

α
-semiconvex.

Proof. We first show that ∇(envα f ◦D) is ‖D‖
2

α
-Lipschitz:

‖∇(envα f ◦D)(x)−∇(envα f ◦D)(y)‖ = ‖D>(∇ envα f(Dx)−∇ envα f(Dy))‖

≤ 1

α
‖D>D(x− y)‖ ≤ ‖D‖

2

α
‖x− y‖,

where the second line follows from the fact that ∇ envα f is 1
α

-Lipschitz. Now by the mono-

tonicity of ∂(f ◦D),

〈∂(fα ◦D)(x)− ∂(fα ◦D)(y), x− y〉 ≥ −‖D‖
2

α
‖x− y‖2
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Corollary 3.2.2. Given x ∈ Rn, then the function fα(D·) + 1
2λ
‖ · −x‖2 is strictly convex if

λ < α
‖D‖2 , convex if λ = α

‖D‖2 , and semiconvex if λ > α
‖D‖2 .

With these first results, we are able to generalize our characterization Lemma 3.1.1 to

the functions fα. Roughly, we see that proxβfα sends entries in x ∈ min{α, β} ·∂f(0) to zero.

Theorem 3.2.2 refines this result and specifies the thresholding behavior of the proximity

operator. Recall that for convex functions proxαf forces all entries towards zero, which is

actually undesirable in applications. Item (i) below tells us that proxβfα(x) will be relatively

close to x, thus reducing the bias of solutions.

Lemma 3.2.2 ([47]). Let f ∈ Γ0(Rn) be sparsity promoting and fα as defined in (Fα). For

any α, β > 0, the following statements hold.

(i) For any x ∈ dom(f), proxβfα(x) ⊆ B‖x‖(x).

(ii) If x ∈ min{α, β} · ∂f(0), then 0 ∈ proxβfα(x).

Proof. For a fixed x ∈ Rn, define F as in (3.3), so that proxβfα(x) = argminu∈Rn F (u).

(i): Since F (0) = 1
2β
‖x‖2 and 0 ∈ B‖x‖(x), to show proxβfα(x) ⊆ B‖x‖(x), we only need

to show that for all u ∈ Rn\B‖x‖(x), F (u) > F (0). Actually, if u ∈ Rn\B‖x‖(x), then

‖u−x‖2 > ‖x‖2. Since fα is non-negative, it follows from (3.3) that F (u) > 1
2β
‖x‖2 = F (0).

Thus the conclusion of Item (i) holds.

(ii): To prove Item (ii), from Item (i) and F (0) = 1
2β
‖x‖2, it suffices to show F (u) ≥

1
2β
‖x‖2 for all u ∈ B‖x‖(x). From the assumption of x ∈ min{α, β} · ∂f(0), we have that for

all u ∈ Rn, f(u) ≥ 1
min{α,β}〈x, u〉. Since f(0) = 0, we have envα f(u) ≤ 1

2α
‖u‖2 for all u ∈ Rn.

Hence

fα(u) ≥ 1

min{α, β}
〈x, u〉 − 1

2α
‖u‖2.

27



CHAPTER 3. SPARSITY PROMOTING FUNCTIONS

Therefore,

F (u) ≥ 1

min{α, β}
〈x, u〉 − 1

2α
‖u‖2 +

1

2β
‖u− x‖2

=


(

1
2β
− 1

2α

)
‖u‖2 + 1

2β
‖x‖2, if β ≤ α,(

1
2α
− 1

2β

)
(‖x‖2 − ‖u− x‖2) + 1

2β
‖x‖2, if α < β.

So, F (u) ≥ 1
2β
‖x‖2 = F (0) holds for all u ∈ B‖x‖(x). This completes the proof of the

lemma.

Remark 3.2.2. From item (i) of Lemma 3.2.2 we see for x ∈ R, sgn(x) = sgn(p) if p ∈

proxβfα(x) and both x and p are simultaneously nonzero. We note that this is also true for

proxαf (x).

Before we can prove our main thresholding result, we need the following technical lemma.

Recall that for convex sets containing the origin, x ∈ A implies that for some λ > 1, λx ∈ A

(see 2.1). While the statement of the lemma may appear strange at first glance, the conditions

therein arise naturally when computing the proximity operator.

Lemma 3.2.3 ([47]). Let f ∈ Γ0(Rn) be a sparsity promoting function and w ∈ dom(∂f).

If w ∈ ∂f(0) and there exists a nonzero ξ ∈ ri(∂f(0)) ∩ ∂f(w), then w = 0.

Proof. Assume that w 6= 0. First, since w ∈ ∂f(0) and f(0) = 0, we have f(w) ≥ ‖w‖2 > 0.

Second, since ξ ∈ ∂f(0)) ∩ ∂f(w), then ξ ∈ ∂f(0) implies f(0) + f ∗(ξ) = 〈0, ξ〉 while

ξ ∈ ∂f(w) implies f(w) + f ∗(ξ) = 〈ξ, w〉. Hence,

f(w) = 〈ξ, w〉. (3.4)
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By the monotonicity of ∂f , for any η ∈ ∂f(0), 〈ξ − η, w〉 ≥ 0. Together with (3.4) we get

f(w) ≥ 〈η, w〉. (3.5)

Finally, since ξ ∈ ri(∂f(0)) and ∂f(0) is convex, there exists λ > 1 such that λξ ∈ ∂f(0).

By (3.4) and (3.5), we get

f(w) ≥ 〈λξ, w〉 = λf(w),

which implies f(w) ≤ 0. This is a contradiction, so w = 0.

The following theorem provides a more exact guarantee of thresholding behavior. Be-

cause, in general, the function fα may be quite different from f , we can only describe the

proximity operator for x sufficiently close to the origin.

Theorem 3.2.2 ([47]). Let f ∈ Γ0(Rn) be a sparsity promoting function. For any x ∈

dom(f), the following statements hold:

(i) If β < α, then proxβfα(x) = 0 for x ∈ β∂f(0);

(ii) If β = α, then proxβfα(x) = 0 for x ∈ ri(α∂f(0));

(iii) If β > α, then proxβfα(x) = 0 for x ∈ α∂f(0).

Proof. Given x ∈ Rn, define F as in (3.3).

(i) We first consider the situation β < α. From Corollary 3.2.1, we know that F is(
1
β
− 1

α

)
-strongly convex and therefore has a unique minimizer. By Lemma 3.2.3, x ∈ β∂f(0)

implies that 0 = argminu∈Rn F (u). Together these imply that proxβfα(x) = 0.
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(ii) Next we consider α = β. From Corollary 3.2.1, F (u) is convex but not strongly, and

the minimizer may no longer be unique. By Lemma 3.2.3, 0 ∈ proxβfα(x) for x ∈ α∂f(0).

Now suppose x ∈ ri(α∂f(0)) and let w∗ be an element of proxβfα(x). To show that

w∗ = 0, by identifying αf , x, and w∗, respectively, as f , ξ, and w in Lemma 3.2.2, it suffices

to show that x ∈ ∂(αf)(w∗) and w∗ ∈ ∂(αf)(0). By Fermat’s rule, w∗ ∈ proxβfα(x) implies

that 0 ∈ ∂fα(w∗) + 1
β
(w∗−x). As we saw earlier that ∂fα(w∗) = ∂f(w∗)−∇ envα f(w∗) and

∇ envα f(w∗) = 1
α

(w∗ − proxαf (w
∗)), this can be rewritten as

1

β
x+

(
1

α
− 1

β

)
w∗ − 1

α
proxαf (w

∗) ∈ ∂f(w∗). (3.6)

From (3.6), we get x − proxαf (w
∗) ∈ ∂(αf)(w∗). Therefore, the conditions x ∈ ∂(αf)(w∗)

and w∗ ∈ ∂(αf)(0) hold if and only if proxαf (w
∗) = 0.

Since x ∈ ∂(αf)(0), by the monotonicity of ∂f we have

〈x− proxαf (w
∗)− x,w∗〉 ≥ 0.

That is, 〈proxαf (w
∗), w∗〉 ≤ 0. But due to the nonexpansiveness of proxαf and the fact that

proxαf (0) = 0,

〈proxαf (w
∗), w∗〉 ≥ ‖ proxαf (w

∗)‖2.

This implies that proxαf (w
∗) = 0. Thus by Lemma 3.2.3, w∗ = 0.

(iii) Finally, we consider the situation of β > α. In this case, we assume that 0 6= x ∈

α∂f(0). From Lemma 3.2.3, we know that 0 ∈ proxβfα(x). We further show that the point

0 is the only element in proxβfα(x).
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Recall from the proof of Lemma 3.2.3 that when β > α,

F (u) ≥
(

1

2α
− 1

2β

)
(‖x‖2 − ‖u− x‖2) +

1

2β
‖x‖2 ≥ 1

2β
‖x‖2.

Actually, if w∗ ∈ proxβfα(x), then w∗ must be on the boundary of B‖x‖(x) and F (w∗) =

fα(w∗) + 1
2β
‖w∗ − x‖2 = 1

2β
‖x‖2. Thus, fα(w∗) = 0, that is, f(w∗) = envα f(w∗). We also

know that f(w∗) ≥ 1
α
〈x,w∗〉 and envα f(w∗) ≤ 1

2α
‖w∗‖2. Therefore, because 2〈x,w∗〉 =

‖w∗‖2, we get

envα f(w∗) =
1

2α
‖w∗‖2,

which implies that 0 = proxαf (w
∗). On the other hand, the identity f(w∗) = envα f(w∗)

indicates w∗ = proxαf (w
∗). Therefore, w∗ = 0. This completes the proof.

Remark 3.2.3. Item (iii) of the theorem is not tight. In fact in every example, when β > α,

proxβfα(x) = 0 for all x in a set strictly larger than α∂f(0). However, the exact form of this

set depends entirely on the function in question.

3.3 Further Properties

We have seen that the convexity or semiconvexity of a sparsity promoting function provides

information about the convexity of a particular problem model as well as the thresholding

behavior of the proximity operator. We now turn our attention to other structural properties

of practical interest to optimizers. First, we describe the conjugate behavior of sparsity

promoting functions and show when the Fenchel dual problem will be differentiable. Then

we discuss the relationship between sparsity promotion and other notions of sharpness and

determine the  Lojasiewicz exponent of our functions fα.
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3.3.1 Conjugation Results

Without further ado, we consider conjugates of sparsity promoting functions. For further

discussion of the conjugate and its role in optimization, we refer to Section 2.3. Recall that

for any f : Rn → (−∞,+∞], the Fenchel conjugate is defined by

f ∗(u) = sup{〈x, u〉 − f(x) : x ∈ Rn}.

An immediate consequence of this definition is that if g : Rn → (−∞,+∞] such that g ≤ f ,

then f ∗ ≤ g∗. Another consequence is the Fenchel Young inequality: for all x ∈ dom(f) and

x∗ ∈ dom(f ∗),

f(x) + f ∗(x∗) ≥ 〈x∗, x〉. (3.7)

It follows that if f ∈ Γ(Rn) is sparsity promoting, then for all x, f ∗(x) ≥ f ∗(0) = 0. Recall

also that for f ∈ Γ0(Rn), x∗ ∈ ∂f(x) if and only if x ∈ ∂f ∗(x∗), and equality is achieved in

(3.7) if and only if x∗ ∈ ∂f(x).

Theorem 3.3.1. Suppose f ∈ Γ0(Rn) is sparsity promoting. Then

(i) x∗ ∈ ∂f(0) if and only if f ∗(x∗) = 0, and

(ii) f ∗ is sparsity promoting if and only if there exists nonzero x̄ ∈ argmin f .

Proof. (i) Set x = 0 in (3.7). The result follows immediately from the fact that f(0) = 0.

(ii) Because f(0) = 0 is the global minimum of f , we have f ∗(0) = 0 as well. From the

convexity of f , we have

x̄ ∈ argmin f ⇐⇒ 0 ∈ ∂f(x̄) ⇐⇒ x̄ ∈ ∂f ∗(0).
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Thus, f ∗ is sparsity promoting if and only if there is a nonzero element x̄ ∈ argmin f .

While we cannot directly extend this result to fα, we once again see that fα preserves

the behavior of f near the origin. First, we collect some relevant properties.

Lemma 3.3.1 ([5, Chapter 13]). Let f : Rn → (−∞,+∞] and let α > 0. Then the following

hold.

(i) (envα f)∗ = f ∗ + α
2
‖ · ‖2.

(ii) (αf)∗ = αf ∗(·/α).

(iii) For all v, y ∈ Rn, (f(· − y) + 〈·, v〉α)∗ = f ∗(· − v) + 〈y, ·〉 − 〈y, v〉 − α.

(iv) Let q = 1
2
‖ · ‖2. If f is proper, then (αf − q)∗ = α(αq − f ∗)∗ − q.

Lemma 3.3.2. Suppose f ∈ Γ0(Rn) is sparsity promoting, and fα is defined by (Fα). If we

consider the restriction of fα to ∂f(0), f̃α := fα + ι∂f(0), then (f̃α)∗(x) = 0 for all x ∈ ∂f(0).

Proof. Theorem 3.2.2 implies that for x ∈ α∂f(0), envα f(x) = 1
2α
‖x‖2. Therefore f̃α =

f − 1
2α
‖ · ‖2 and αf̃α = αf − 1

2
‖ · ‖2. By Lemma 3.3.1 (ii) and (iv), we have that

αf ∗(x/α) = (
1

2
‖ · ‖2 − αf ∗(·/α))∗(x)− 1

2
‖x‖2,

for x ∈ α∂f(0). Now by Theorem 3.3.1, we see that (f̃α)∗(x) = 0 for all x ∈ ∂f(0).

Remark 3.3.1. Note that f ∗α(x) ≥ f̃ ∗α(x) for all x ∈ Rn. In fact, if the supremum is achieved

outside of ∂f(0), we see that f ∗α(x) may be infinite. Proposition 3.3.1 is an example of this.

The following theorem shows how the conjugates of fα, its parent function f , and the

convex function f + 1
2α
‖ · ‖2 relate to each other. We also extend Item (ii) of Theorem 3.3.1.
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Theorem 3.3.2. Suppose f ∈ Γ0(Rn) is sparsity promoting, and fα is defined by (Fα).

Then the following statements hold.

(i) For all x ∈ dom(f),

(fα +
1

2α
‖ · ‖2)∗(x) ≤ f ∗(x) ≤ f ∗α(x). (3.8)

(ii) If f ∗ is sparsity promoting, then f ∗α is as well. Equivalently, if f(x̄) = 0 for some x̄ 6= 0,

then f ∗α is sparsity promoting.

Proof. (i) Because envα f(x) ≤ 1
2α
‖x‖2 for all x ∈ Rn and by the definition of fα, we have

fα(x) ≤ f(x) ≤ (fα + 1
2α
‖ · ‖2)(x). Conjugation reverses the inequalities.

(ii) We have already seen that f ∗α(x) ≥ f ∗α(0) = 0 for all x. It remains to show that there

is a nonzero element x∗ ∈ ∂f ∗α(0). By item (i), we see that η ∈ ∂f ∗(0) implies η ∈ ∂f ∗α(0):

lim inf
y→0

f ∗α(y)− 〈η, y〉
‖y‖

≥ lim inf
y→0

f ∗(y)− 〈η, y〉
‖y‖

≥ 0.

Therefore, f ∗α is sparsity promoting if f ∗ is.

Proposition 3.3.1. Suppose f ∈ Γ0(Rn) with dom(f) = Rn and fα is defined as in (Fα).

If f is L-Lipschitz, then

f ∗α(x) =


0, if x = 0,

+∞, otherwise.

(3.9)

Proof. If f is L-Lipschitz, then 0 ≤ f(x)− envα f(x) ≤ L2α for all x, so it follows that f ∗α ≥

(L2α)∗. By direct computation, we see that (L2α)∗ is −L2α if x = 0 and +∞ otherwise.

For example, the absolute value function f(x) = |x| is 1-Lipschitz. Recall that the

function fα(x) = |x| − 1
2α
x2 for |x| ≤ α and α

2
otherwise. We can compute the conjugate
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f ∗α directly by taking the maximum of the s1(x) = sup{ux − |u| + 1
2α
u2 : |u| ≤ α} and

s2(x) = sup{ux − α
2

: |u| > α}. If x 6= 0, then s2(x) = +∞, so we see that f ∗α(x) = +∞.

If x = 0, we see that −|u| + 1
2α
u2 < 0 for all |u| ≤ α, so s1(0) = 0. Clearly, s2(0) = −α

2
.

Therefore f ∗α(0) = 0.

Finally, we provide conjugation results for the f -penalized least squares model. As we will

see when considering the difference of convex model (Section 5.2), this provides smoothness

guarantees for the corresponding dual problem.

Proposition 3.3.2. Let D ∈ Rn×m and define G(x) = f(Dx) + 1
2λ
‖x − z‖2. Then the

following hold.

(i) G∗(x) = envλ(f ◦D)∗(x− 1
λ
z)− 1

2λ
‖z‖2, and

(ii) G∗ is differentiable with derivative ∇G∗(x) = proxλ−1(f◦D)(λx− z).

Proof. (i) We expand G as follows

G(x) = f(Dx) +
1

2λ
‖x‖2 − 1

λ
〈x, z〉+

1

2λ
‖z‖2.

Applying Lemma 3.3.1 (i) and (iii),

G∗(x) = (f(D ·) +
1

2λ
‖ · ‖2)∗(x− 1

λ
z)− 1

2λ
‖z‖2

= envλ(f ◦D)∗(x− 1

λ
z)− 1

2λ
‖z‖2.

(ii) We simply differentiate the result from part (i) and apply the Moreau Identity.
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3.3.2 Sharpness and the  Lojasiewicz Inequality

Most optimization methods are based on some variation of gradient descent, but even con-

vexity is not enough to guarantee fast convergence. If the objective is too “flat”, gradient

curves may have infinite length [9]. The  Lojasiewicz inequality for real analytic functions

f : Rn → R states that if x̄ ∈ crit f , then there exists θ ∈ [0, 1) such that

|f − f(x̄)|θ

‖∇f‖
(3.10)

is bounded around x̄. The boundedness of this function tells us that f approaches f(x̄)

faster than ‖∇f‖ approaches zero, or, in other words, f is sufficiently steep near x̄. For

such functions, every bounded gradient trajectory converges to a critical point [34], and this

allows us to estimate convergence rates for many common descent methods [1].

To extend this to nonsmooth functions, we must generalize the norm of the gradient. For

f ∈ Γ(Rn), we define the nonsmooth slope of f at x as

mf (x) := inf{‖η‖ : η ∈ ∂f(x)}.

Then (3.10) becomes

|f − f(x̄)|θ

mf

(3.11)

and we say f satisfies the nonsmooth  Lojasiewicz inequality at x̄ if this function remains

bounded near x̄. Naturally, if a function is “sharp” enough around the minimizer, (3.11) will

be bounded. This is made rigorous by the following definition.

Definition 3.3.1 ([8]). A function f : Rn → (−∞,+∞] is sharp on S ⊆ Rn if there exists

c > 0 such that for all x ∈ S, mf (x) ≥ c.
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The “sharpness” of sparsity promoting functions is measured by the existence of a nonzero

element x∗ ∈ ∂f(0). We show that, at least for convex functions, this is a slightly weaker

property than being sharp around the origin. We first recall an important continuity property

of the subdifferential of a convex function.

Proposition 3.3.3 ([44, Theorem 24.4]). Let f : Rn → R be a convex function. If a sequence

{xk} converges to x ∈ Rn and dk ∈ ∂f(xk) for all k then the sequence {dk} is bounded and

each of its limit points is a subgradient of f at x.

Theorem 3.3.3. Suppose f ∈ Γ0(Rn) and let S be a convex set containing the origin such

that dom ∂f ∩ S 6= ∅. If f achieves a global minimum of zero at zero and f is sharp on

S\{0}, then f is sparsity promoting.

Proof. Take xk → 0 and let dk ∈ ∂f(xk) for each k. Then by above, each of the limit points

of dk is a subgradient of f at 0. Since ‖dk‖ ≥ c > 0 for each k, any limit point d∗ also has

‖d∗‖ ≥ c. Therefore there is a nonzero element in ∂f(0).

While sharpness is enough to imply a nonzero subgradient, the converse is not true in

general. Essentially, the definition of sparsity promotion ensures that the function f is

relatively steep in the direction x∗ ∈ ∂f(0), but there may still be other directions in which

f is flat. However, we can say that f is sharp on line segments starting at the origin.

Proposition 3.3.4. Assume f ∈ Γ0(Rn) is sparsity promoting. For any x ∈ ∂f(0), let

Λ = {λx : λ ≥ 0} be the positive ray extending through x. Then

mf (x) ≥ c(x) > 0,

where c(x) = max{‖x∗‖ : x∗ ∈ ∂f(0) ∩ Λ}. That is, the nonsmooth slope at x is bounded

away from zero by a constant which depends on x.
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Proof. Fix a nonzero x ∈ ∂f(0). Since ∂f(0) is a compact set, Λ ∩ ∂f(0) is also compact –

it is simply a line segment in ∂f(0). The continuous function ‖ · ‖ is maximized on this set,

say at x∗ 6= 0. By the monotonicity of ∂f , for any η ∈ ∂f(x), 〈η − x∗, x〉 ≥ 0. Of course,

then 〈η, x〉 ≥ 〈x∗, x〉. By the Cauchy Schwarz inequality and the fact that x and x∗ are

colinear, we see that ‖η‖ ≥ ‖x∗‖. Since η was any element of ∂f(x), this must also hold for

the infimum.

Things are less complicated on the real line, where there are only two possible directions

of increase. In this case, our definition does imply sharp near the origin.

Lemma 3.3.3. If f ∈ Γ0(R), sparsity promoting implies sharp on ∂f(0)\{0}.

Proof. Since ∂f(0) is compact and convex, it must be a closed interval containing origin,

say [−λ1, λ2], where at least one of the nonnegative numbers λ1, λ2 is nonzero. Then for any

nonzero x ∈ ∂f(0), either x ∈ [−λ1, 0) or x ∈ (0, λ2]. By the previous lemma, all positive x

have mf (x) ≥ λ2 and all negative x have mf (x) ≥ λ1. The result follows.

Functions which are not sharp in the sense of Definition 3.3.1 may still satisfy the

 Lojasiewicz inequality. For instance, C1 functions which are defined on an o-minimal struc-

ture, and in particular subanalytic functions, satisfy (3.10) (see [29]). Recent work extends

this to nonsmooth subanalytic functions [8] and characterizes subgradient trajectories of

semiconvex functions [9]. See Section 2.5 for details about subanalytic functions.

Theorem 3.3.4 ([8, Theorem 3.3]). Let f ∈ Γ0(Rn) be subanalytic with crit f 6= ∅. For any

bounded set K, there exists θ ∈ [0, 1) such that the function

|f −min f |θ

mf

is bounded on K.
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In order to extend this result to our semiconvex functions fα, we first show that the

subanalyticity of fα depends on that of f . We note that the fact that envα f is subanalytic if

f is subanalytic is known (see, e.g. [8]), but we include the proof here as it was independently

derived.

Proposition 3.3.5. If f is subanalytic, then envα f and fα are subanalytic as well.

Proof. Recall that real subanalytic functions define an R-algebra (see 2.5), so if f and envα f

are subanalytic, then fα must be as well. It suffices to show that f subanalytic implies envα f

subanalytic.

Since envαf (x) = inf{f(u)+ 1
2α
‖u−x‖2 : u ∈ Rn}, we can write the graph of the envelope

as follows:

gr(envαf ) = {(x, t) ∈ Rn+1 : t ≥ 0 and ∀y ∈ Rn
(
t ≤ f(y) +

1

2α
‖y − x‖2

and ∀ε ∈ R (ε > 0⇒ t+ ε > f(y) +
1

2α
‖y − x‖2)

)
}. (3.12)

We rewrite (3.12) using the fact that gr(f) is subanalytic:

gr(envαf ) =
{

(x, t) ∈ Rn+1 : t ≥ 0 and ∀(y, s) ∈ gr(f)
(
t ≤ s+

1

2α
‖y − x‖2

and ∀ε ∈ R (ε > 0⇒ t+ ε > s+
1

2α
‖y − x‖2)

)}
. (3.13)

Thus envα f is subanalytic, and because subanalytic functions form an R-algebra, fα is

subanalytic as well (see Section 2.5). The result follows.

We show that fα satisfies the  Lojasiewicz property and determine the exponent θ. While

we do not go into further detail here, knowledge of this exponent can be used to determine
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convergence rates of subgradient methods [33].

Theorem 3.3.5. If f ∈ Γ0(Rn) is sparsity promoting and subanalytic, then for all α > 1
2

the function

(fα)1/2

mf

is bounded on α∂f(0)\{0}.

Proof. We first note that for x ∈ α∂f(0), envα f(x) = 1
2α
‖x‖2 and f(x) ≥ ‖x‖2. Therefore

fα(x) ≥ (1 − 1
2α

)‖x‖2 ≥ γ envα f(x), for some constant γ > 0. We now essentially follow

the proof of Theorem 3.3.4. By the above, we get ‖x‖ ≤ (2α/γ)1/2(fα(x))1/2. Using the

semiconvexity of fα(x), we see that

0 ≥ fα(x)− 〈x∗, x〉 − 1

2α
‖x‖2 =⇒ fα(x) ≤ ‖x∗‖‖x‖+

1

2α
‖x‖2,

for any x∗ ∈ ∂fα(x). Applying the bound on ‖x‖, we get

fα(x) ≤ ‖x∗‖(2α/γ)1/2(fα(x))1/2(1 +
1

2α
‖x‖) ≤ C‖x∗‖(fα(x))1/2.

40



Chapter 4

Some Special Functions

In this chapter, we take a closer look at some special functions of particular interest in

applications: indicator functions, piecewise quadratic functions, and sums of the two. The

additional structure assumed here allows us to exactly determine fα and its proximity oper-

ator on the entire space. In particular, we show that these functions determine thresholding

rules similar to the `0 and `1 norms. We collect these results in Table 1.

4.1 Indicator Functions

Indicator functions are widely used to incorporate a constraint set into the objective function

of a minimization problem by restricting the domain of the objective to the set C. Recall

that the indicator function of a set C is defined by

ιC(x) :=


0, if x ∈ C,

+∞, otherwise.

(4.1)
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The function ιC is convex if and only if C is a convex set (see, e.g. [5]). Throughout we

assume that C is a closed convex set with boundary bd(C).

We show in this section that indicator functions are not only fixed by the mapping

f 7→ fα, but they are in fact the only functions that are fixed. As a first result, we determine

when ιC will be sparsity promoting.

Lemma 4.1.1. The indicator function ιC is sparsity promoting if and only if 0 ∈ bd(C) and

{0} ( C.

Proof. As long as 0 ∈ C, ιC(0) = 0, but to be sparsity promoting, there must be a nonzero

element in ∂ιC(0). Recall that for any x, ∂ιC(x) is the normal cone to C at x. That is,

∂ιC(x) = NC(x) :=


{u : sup〈C − x, u〉 ≤ 0}, if x ∈ C,

∅, otherwise.

Note that for x ∈ C, the normal cone is nonempty because{0} ⊆ NC(x). We further recall

the following result from [5]:

x ∈ int(C) ⇐⇒ NC(x) = {0}.

If 0 ∈ bd(C), it follows that NC(x) is nonempty and contains a nonzero element. Conversely,

if we assume NC(0) is nonempty, we must have 0 ∈ C. If we further assume that NC(0)

contains a nonzero element, then 0 6∈ int(C). So we see that 0 ∈ bd(C) is equivalent to the

sparsity promoting definition given in Section 3.1.

It is well known (see, e.g. [5]) that proxαιC (x) = PC(x) and that p = PC(x) if and only

if x− p ∈ NC(p). Here PC(x) is the unique operator such that ‖x− PC(x)‖ is the distance
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from x to C. In terms of the proximity operator, this becomes 0 = proxαιC (x) if and only if

x ∈ NC(0). Moreover envα ιC(x) = 1
2α
‖PC(x)− x‖2 and

(ιC)α(x) := ιC(x)− envα ιC(x) = ιC(x). (Iα)

This immediately implies that proxβ(ιC)α(x) = PC(x) as well. The converse of the above is

also true.

Theorem 4.1.1. Let f ∈ Γ0(Rn) be sparsity promoting. If f = fα as defined by (Fα), then

f = ιdom(f).

Proof. Notice that dom(envα f) = Rn so dom(fα) = dom(f). Hence f = fα implies that

envα f(x) = 0 for all x ∈ dom(f). Because f is sparsity promoting, f(x) ≥ 0 for all x. Hence,

0 = envα f(x) = minu∈Rn{f(u) + 1
2α
‖u − x‖2} for all x ∈ dom(f) implies that f(x) = 0 for

all x ∈ dom(f).

Remark 4.1.1. The proposition is true more generally if f ∈ Γ0(Rn) is simply nonnegative.

Proposition 4.1.1. Let f ∈ Γ0(Rn) be a sparsity promoting function. Suppose that C ⊆ Rn

is a closed convex set such that {0} ( ∂f(0) ∩ C. Then the sum f̃ := f + ιC is sparsity

promoting and f̃α = fα + ιC.

Proof. Since f is sparsity promoting, minx∈Rn f(x) = f(0) = 0. Because {0} ( ∂f(0) ∩ C,

we know that f̃(0) = minx∈C f(x) = 0. That is, f̃ achieves its minimum at the origin. We

can further say that ∂f̃(0) = ∂f(0) + ∂ιC(0) = ∂f(0) + NC(0). If 0 ∈ riC, then NC(0) = 0

and ∂f̃(0) = ∂f(0). If 0 ∈ bdC, we know that {0} ⊂ NC(0), so ∂f(0) ⊆ ∂f̃(0). In either

case ∂f̃(0) must contain a nonzero element. Therefore, it is sparsity promoting.
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By Lemma 3.1.1, proxαf (x) ∈ C if x ∈ C. This indicates that for x ∈ C,

envα f(x) = min
u∈R

{
f(u) +

1

2α
‖u− x‖2

}
= min

u∈C

{
f(u) +

1

2α
‖u− x‖2

}
= envα f̃(x).

It follows that f̃α = fα + ιC . This completes the proof of the result.

4.2 Piecewise Quadratic Functions

Piecewise quadratic functions include a variety of important examples: absolute value, rec-

tified linear unit (ReLU), and elastic net. We generalize the proximity-related properties of

these functions and provide a framework for generating customized penalty functions. For

simplicity and based on the separability of these examples, we only consider functions of a

single variable.

The piecewise quadratic functions we consider here have the following form

f(x) =


1
2
a1x

2 + b1x, if x ≤ 0;

1
2
a2x

2 + b2x, if x ≥ 0,

(Q)

where the coefficients a1, a2, b1, and b2 are real numbers. This is a special case of the

functions considered in [40] and [39].

The characterization of sparsity promoting functions having a form given (Q) is estab-

lished in the following lemma.

Lemma 4.2.1. Let f be a piecewise quadratic function defined by (Q). Then f is sparsity
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promoting if and only if

a1 ≥ 0, a2 ≥ 0, b1 ≤ 0 ≤ b2, and b2 − b1 > 0. (4.2)

Proof. “⇒”: Since f is sparsity promoting, then the assumption that f attains its minimum

at 0 implies that a1 ≥ 0, a2 ≥ 0, b1 ≤ 0, and b2 ≥ 0. One can directly verify that

∂f(0) = [b1, b2]. This must contain at least one nonzero element, hence, b2 − b1 > 0.

“⇐”: One can see that f is nonincreasing on (−∞, 0] from a1 ≥ 0 and b1 ≤ 0 and that

f is nondecreasing on [0,∞) from a2 ≥ 0 and b2 ≥ 0. So f achieves its global minimum

at 0. The condition b2 − b1 > 0 implies that the set ∂f(0) = [b1, b2] has nonzero elements.

Therefore, f is a sparsity promoting function.

Remark 4.2.1. As a by-product of the above lemma, if f given by (Q) is a sparsity promoting

function, then f must be convex, hence f ∈ Γ0(R).

In the rest of this section, we assume that the coefficients in (Q) satisfy the conditions

listed in (4.2). The proximity operator and Moreau envelope of f with index α at x ∈ R are

proxαf (x) =


min

{
0, 1

αa1+1
(x− αb1)

}
, if x ≤ 0;

max
{

0, 1
αa2+1

(x− αb2)
}
, if x ≥ 0;

and

envα f(x) =



1
αa1+1

(f(x)− αb21
2

), if x ≤ αb1;

1
2α
x2, if αb1 ≤ x ≤ αb2;

1
αa2+1

(f(x)− αb22
2

), if x ≥ αb2.
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respectively. From the above two equations, we get

fα(x) =



αa1
αa1+1

f(x) +
αb21

2(αa1+1)
, if x ≤ αb1;

f(x)− 1
2α
x2, if αb1 ≤ x ≤ αb2;

αa2
αa2+1

f(x) +
αb22

2(αa2+1)
, if x ≥ αb2,

(Qα)

which is a piecewise quadratic polynomial with possible breakpoints at αb1, 0, and αb2. We

know this fα is sparsity promoting by Theorem 3.2.1. Some other properties of this function

which follow immediately from (Qα) are collected in the following lemma.

Lemma 4.2.2. Let f ∈ Γ0(R) be a sparsity promoting function defined by (Q). Then the

following hold:

(i) fα is nonincreasing on (−∞, 0] and is nondecreasing on [0,∞);

(ii) fα on (−∞, αb1] is convex and is a degree 2 polynomial if a1 > 0 or constant if a1 = 0;

(iii) fα on [αb2,∞) is convex and is a degree 2 polynomial if a2 > 0 or a constant if a2 = 0;

(iv) fα on [αb1, αb2] is convex if min{a1, a2} ≥ 1
α

.

Just as the sparsity promoting property corresponds to certain behavior in the proximity

operator near the origin, this result in Lemma 4.2.2 guarantees special properties of the

proximity operator away from the origin. To illustrate, we return to f(x) = |x|. This

satisfies (Q) with a1 = a2 = 0, b1 = −1, and b2 = 1. We saw in Section 3.2 that fα(x) =

min{|x| − 1
2α
x2, α

2
}. Because this function is constant away from the origin, proxβfα(x) must

be the identity for large values of x. For example, if β > α, proxβfα(x) = x when |x|
√
αβ.

Some other details can be found in Example 1 of Section 4.4.
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In the rest of this subsection, we will give a general discussion on the proximity operator

proxβfα for fα defined by (Qα). We assume that x ≥ 0 for a moment. By Lemma 3.2.3, we

know that proxβfα(x) ⊆ [0,∞), therefore by the definition of the proximity operator,

proxβfα(x) = Argmin{E(x, u) : x ∈ [0,+∞)} := Argmin{fα(u) +
1

2β
(u− x)2 : u ∈ [0,+∞)}.

In view of (Qα), the objective function E(x, u) with (x, u) ∈ [0,∞)× [0,∞) is

E(x, u) =

 E1(x, u), if u ∈ [0, αb2];

E2(x, u), if u ∈ [αb2,∞),
(4.3)

where

E1(x, u) =
1

2

(
a2 −

1

α
+

1

β

)
u2 +

(
b2 −

1

β
x

)
u+

1

2β
x2, (4.4)

E2(x, u) =
1

2

(
αa22

αa2 + 1
+

1

β

)
u2 +

(
αa2b2
αa2 + 1

− 1

β
x

)
u+

αb22
2(αa2 + 1)

+
1

2β
x2. (4.5)

These two functions match at the line u = αb2, that is, for all x ≥ 0,

E1(x, αb2) = E2(x, αb2), (4.6)

which will facilitate the proofs of technical lemmas given later.

Define

s1(x) = argminu∈[0,αb2]E1(x, u) and s2(x) = argminu∈[αb2,∞)E2(x, u).
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Obviously,

proxβfα(x) ⊂ s1(x) ∪ s2(x). (4.7)

Therefore, to figure out the expression of proxβfα(x), there is a need to know the structures

of the sets s1(x) and s2(x).

Since the quadratic polynomial E2(x, ·) is strictly convex, then we have for each x ≥ 0,

s2(x) is a singleton set as follows:

s2(x) = max

{
αb2,

αa2 + 1

αa2(a2β + 1) + 1

(
x− αa2βb2

αa2 + 1

)}

=


αb2, if 0 ≤ x ≤ αb2(a2β + 1);

αa2+1
αa2(a2β+1)+1

(
x− αa2βb2

αa2+1

)
, if x ≥ αb2(a2β + 1),

(4.8)

which clearly is a piecewise linear function of x.

Lemma 4.2.3. Let f be a piecewise quadratic sparsity promoting function as defined by (Q).

If b2 = 0, then proxβfα(x) = s2(x) for all x ≥ 0, where s2 is given by (4.8).

Proof. This follows from (4.3) and (4.5) that E(x, u) = E2(x, u) for (x, u) ∈ [0,∞) ×

[0,∞).

Next, we assume that b2 > 0 by Lemma 4.2.1. In view of the form of E1(x, ·) in (4.4),

we consider three cases: a2 − 1
α

+ 1
β
> 0, a2 − 1

α
+ 1

β
= 0, and a2 − 1

α
+ 1

β
< 0, which are

equivalent to (i) αb2(a2β + 1) > βb2, (ii) αb2(a2β + 1) = βb2, and (iii) αb2(a2β + 1) < βb2,

respectively. Accordingly, E1(x, ·) is strongly convex, convex, or concave on [0, αb2]. The

result for case (i) is stated in the following lemma.

Lemma 4.2.4. Let f be a piecewise quadratic sparsity promoting function as defined by (Q).
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If b2 > 0 and αb2(a2β + 1) > βb2, then

proxβfα(x) =


0, if 0 ≤ x < βb2;

α
(a2β+1)α−β (x− βb2), if βb2 ≤ x ≤ αb2(a2β + 1);

αa2+1
αa2(a2β+1)+1

(
x− αa2βb2

αa2+1

)
, if x > αb2(a2β + 1).

(4.9)

Proof. From (4.7), we first find the set s1(x) since the set s2(x) is already given in (4.8).

By the assumption of this lemma, for each x ≥ 0, s1(x) contains only one element and is

given as follows:

s1(x) =


0, if 0 ≤ x < βb2;

α
(a2β+1)α−β (x− βb2), if βb2 ≤ x ≤ αb2(a2β + 1);

αb2, if x > αb2(a2β + 1).

To determine the expression of proxβfα(x) from the sets s1(x) and s2(x), we look at the

behaviours of the functions E1 and E2 in the first quadrant of the (x, u)-plane.

We use Figure 1 to visualize the minimizers of E1 and E2. Three vertical lines x = 0,

x = βb2, and x = αb2(a2β + 1), and two horizontal lines u = 0 and u = αb2 partition the

first quadrant into six rectangular regions (I to VI). The solid red line is the graph of s1(x)

while the dashed blue line is the graph of s2(x).

We know E1(x, 0) ≤ E1(x, u) in region I and E2(x, αb2) ≤ E2(x, u) in region II, so

E1(x, 0) < E2(x, αb2) by Equation (4.6) for 0 ≤ x ≤ βb2. We observe E1(x, s1(x)) ≤ E1(x, u)

in region III and E2(x, αb2) ≤ E2(x, u) in region IV, so E1(x, s1(x)) < E2(x, αb2) by Equation

(4.6) for βb2 ≤ x ≤ αb2(a2β + 1); Finally, we know E1(x, αb2) ≤ E1(x, u) in region V and

E2(x, s2(x)) ≤ E2(x, u) in region VI, so E2(x, s2(x)) < E1(x, αb2) by Equation (4.6) for

x > αb2(a2β + 1). Thus proxβfα is given by (4.9).
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Figure 1: An illustration of case (i): b2 > 0 and αb2(a2β+ 1) > βb2. The graphs of (a) s1(x)
(solid) and s2(x) (dashed) and (b) the resulting proximity operator proxβfα(x).

Next result is for case (ii).

Lemma 4.2.5. Let f be a piecewise quadratic sparsity promoting function as defined by (Q).

If b2 > 0 and αb2(a2β + 1) = βb2, then

proxβfα(x) =


0, if 0 ≤ x < βb2;

[0, αb2], if x = βb2;

αa2+1
αa2(a2β+1)+1

(
x− αa2βb2

αa2+1

)
, if x > βb2.

(4.10)

Proof. Similar to the proof of Lemma 4.2.4, we first give the explicit form of the set s1(x):

s1(x) =


0, if 0 ≤ x < βb2;

[0, αb2], if x = βb2;

αb2, if x > βb2.

We note that proxβfα can be set-valued only at βb2.

In Figure 2, two vertical lines x = 0 and x = βb2, and two horizontal lines u = 0 and

u = αb2 partition the first quadrant into four rectangular regions (I to IV). The solid red
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line is the graph of s1(x) while the dashed blue line is the graph of s2(x). It is identical

to Figure 1 with the middle regions collapsed to a line. Following the same reasoning as in

Lemma 4.2.4, we see that (4.10) holds.

x

u

b
2

b
2
= b

2
(a

2
+1)

I

II

III

IV

x

u

b
2

b
2
= b

2
(a

2
+1)

(a) (b)

Figure 2: An illustration of case (ii): b2 > 0 and αb2(a2β+1) = βb2. The graphs of (a) s1(x)
(solid) and s2(x) (dashed) and (b) the resulting proximity operator proxβfα(x).

Finally, we consider case (iii). Because βb2 and αb2(a2β+1) have now switched positions,

we see that we must take care when dealing with the intermediate x values.

Lemma 4.2.6. Let f be a piecewise quadratic sparsity promoting function as defined by (Q).

Define

τ+ =
αa2βb2
αa2 + 1

+

√
αβ(αa22β + αa2 + 1)b2

αa2 + 1
.

If b2 > 0 and αb2(a2β + 1) < βb2,

proxβfα(x) =


0, if 0 ≤ x < τ+;{

0, αa2+1
αa2(a2β+1)+1

(
τ+ − αa2βb2

αa2+1

)}
, if x = τ+;

αa2+1
αa2(a2β+1)+1

(
x− αa2βb2

αa2+1

)
, if x > τ+.

(4.11)

Proof. Again, we first give the explicit form of the set s1(x). Note that E1(x, ·) is concave

in this case, so the minimum occurs at the endpoints according to the position of the vertex.
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Thus,

s1(x) =


0, if 0 ≤ x < 1

2
(αb2(a2β + 1) + βb2);

{0, αb2}, if x = 1
2
(αb2(a2β + 1) + βb2);

αb2, if x > 1
2
(αb2(a2β + 1) + βb2).

This is set-valued at 1
2
(αb2(a2β + 1) + βb2).

As before, we plot s1(x) and s2(x) in Figure 3. Three vertical lines x = 0, x = αb2(a2β+1),

and x = 1
2
(αb2(a2β+1)+βb2), and two horizontal lines u = 0 and u = αb2 partition the first

quadrant into six rectangular regions as shown in Figure 3(a).The solid red line is the graph of

s1(x) while the dashed blue line is the graph of s2(x). From this figure and (4.6), it is easy to

see that regions I, II, V, and VI behave as in the previous cases. That is, proxβfα(x) = s1(x)

for 0 ≤ x ≤ αb2(a2β + 1) and proxβfα(x) = s2(x) for x ≥ 1
2
(αb2(a2β + 1) + βb2).

To find the expression of proxβfα(x) for αb2(a2β + 1) < x < 1
2
(αb2(a2β + 1) + βb2), from

the solid red line and the dashed blue in regions III and IV, we need to compare the value

of E1(x, 0) with E2(x, s2(x)). Using (4.8), a direct computation gives

E2(x, s2(x))− E1(x, 0) = − αa2 + 1

2β(αa2(a2β + 1) + 1)

(
x− αa2βb2

αa2 + 1

)2

+
αb22

2(αa2 + 1)
.

Notice that E2(x, s2(x))− E1(x, 0) > 0 at x = αb2(a2β + 1) and E2(x, s2(x))− E1(x, 0) < 0

at x = 1
2
(αb2(a2β + 1) + βb2). Hence, the quadratic polynomial E2(x, s2(x)) − E1(x, 0) has

only one root at τ+ that is between αb2(a2β + 1) and 1
2
(αb2(a2β + 1) + βb2). So, the result

of this lemma holds and is illustrated in Figure 3(c).

With the above results, we know proxβfα(x) for x ≥ 0. The following lemma extends

these results to x ≤ 0.

Lemma 4.2.7. Let f be a piecewise quadratic sparsity promoting function as defined by
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Figure 3: An illustration of case (iii): b2 > 0 and αb2(a2β + 1) < βb2. The graphs of (a), (b)
s1(x) (solid) and s2(x) (dashed) and (c) the resulting proximity operator proxβfα(x).

(Q). Define g : x 7→ f(−x). Then for x ≤ 0 and any positive numbers α and β, we

have proxβfα(x) = − proxβgα(−x) where proxβgα(−x) can be evaluated using the results in

Lemmas 4.2.3-4.2.6.

Proof. Since f is sparsity promoting, so is g by Lemma 3.2.1. Moreover, fα = gα(−·) which

leads to proxβfα(x) = − proxβgα(−x) for all x. Note that

g(x) =


1
2
a2x

2 − b2x, if x ≤ 0;

1
2
a1x

2 − b1x, if x ≥ 0,

which is a piecewise quadratic sparsity promoting function. All results developed in Lem-

mas 4.2.3-4.2.6 can be applied for g. Therefore, the results of this lemma follow immedi-

ately.

In summary, we have the following result.

Theorem 4.2.1. If f ∈ Γ0(R) is a quadratic sparsity promoting function as defined by (Q),

then the following statements hold.
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(i) proxβfα is set-valued for at most one point on each side of the origin. Moreover, proxβfα

is piecewise linear on any interval not containing these possible set-valued points.

(ii) For any p ∈ proxβfα(x), |p| ≤ |x|. Furthermore, sgn(p) = sgn(x) if both p and x are

nonzero.

Proof. All results follows directly from the expressions of proxβfα(x) given in Lemma 4.2.3-

Lemma 4.2.7.

Remark 4.2.2. Theorem 4.2.1 guarantees that proxβfα will be a thresholding operator for any

fα given by (Qα). Furthermore, Lemmas 4.2.3-4.2.6 provide detailed and easily customizable

forms which can be tailored to applications.

4.3 Piecewise Quadratic on Intervals

Let C be a closed interval containing the origin and f a piecewise quadratic function defined

by (Q). We consider a function f̃ that is the restriction of f on the interval C as follows:

f̃ = f + ιC . (Q̃)

Let f be a piecewise quadratic sparsity promoting function defined by (Q) and let C be a

closed interval on R such that {0} ( ∂f(0) ∩ C. By Proposition 4.1.1, f̃ defined above is a

sparsity promoting function, and

(f̃)α = fα + ιC . (Q̃α)

For f̃ defined in (Q̃) we always assume that the coefficients in f satisfy (4.2) and that

C = [λ1, λ2] with λ1 ≤ 0 ≤ λ2 and λ2 − λ1 > 0.
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Theorem 4.3.1. Let f̃ be defined in (Q̃), let x ∈ R and let α and β be two positive numbers.

Then the following statements hold.

(i) If the set proxβfα(x) ∩ C is not empty, then proxβfα(x) ∩ C ⊆ proxβf̃α(x);

(ii) If λ2 ∈ proxβf̃α(x), then λ2 ∈ proxβf̃α(y) for all y > x;

(iii) If λ1 ∈ proxβf̃α(x), then λ1 ∈ proxβf̃α(y) for all y < x;

Proof. (i): Assume p is an element in proxβfα(x) ∩ C. We have

fα(p) +
1

2β
(p− x)2 = min

u∈R

{
fα(u) +

1

2β
(u− x)2

}
= min

u∈C

{
fα(u) +

1

2β
(u− x)2

}
= min

u∈R

{
f̃α(u) +

1

2β
(u− x)2

}
,

where the first equation is due to p ∈ proxβfα(x), the second equation is due to p ∈ C, the

last one is due to Theorem 4.3.1, hence, p ∈ proxβf̃α(x).

(ii): Since λ2 ≥ 0, the inclusion λ2 ∈ proxβf̃α(x) together with Lemma 3.2.2 implies that

x ≥ 0 and for all u ∈ [λ1, λ2],

f̃α(u) +
1

2β
(u− x)2 ≥ f̃α(λ2) +

1

2β
(λ2 − x)2.
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With the above inequality, when y > x, we have that

f̃α(λ2) +
1

2β
(λ2 − y)2 = f̃α(λ2) +

1

2β
(λ2 − x)2 +

1

2β
(y − x)(y + x− 2λ2)

≤ f̃α(u) +
1

2β
(u− x)2 +

1

2β
(y − x)(y + x− 2u)

= f̃α(u) +
1

2β
(u− y)2

hold for all u ∈ [λ1, λ2]. This yields λ2 ∈ proxβf̃α(y).

(iii): The proof is similar to (ii).

Theorem 4.3.1 tells us if f̃ is defined by (Q̃), proxβf̃α will resemble the proximity operator

of fα around the origin and the proximity operator of ιC elsewhere. Due to the number of

parameters, there are a huge number of possible combinations. Rather than list all of the

combinations here, we provide the details for a specific function in Example 4 of Section 4.4.

We have shown that sparsity promoting quadratic and indicator functions have thresh-

olding proximity operators. The results essentially rely on the fact that envα f is quadratic

for these functions. In fact, quadratic and indicator functions are the only ones with this

property [41], so our discussion is a comprehensive method for obtaining thresholding rules.

4.4 Examples

In this section, we illustrate our theory by presenting several examples that are of practical

interest.

For the first example, we collect and expand upon the previous discussion of f(x) =

‖x‖1 =
∑n

i=1 |xi| for x ∈ Rn. The `1-norm has been extensively used in myriad applications

for promoting sparsity.
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The second example is the ReLU (Rectified Linear Unit) function. It is the most com-

monly used activation function in convolutional neural networks or deep learning. The ReLU

function on Rn is defined as follows: f(x) =
∑n

i=1 max{0, xi}, where x ∈ Rn.

The third example is the elastic net penalty function, which is widely used in statistics

(see [54]). The general form of the elastic net is the linear combination of the `1 and `2

norms as follows: f(x) = λ1
2
‖x‖2 +λ2‖x‖1, where λ1 and λ2 are two nonnegative parameters.

In our discussion, we will simply choose λ1 = λ2 = 1. This is known as the naive elastic net.

The last example is similar to the first one, but restricted to a cube centered at the origin.

The function f is given as follows: f(x) = ‖x‖1 + ιC(x), where C = [−λ, λ]n. Generally

speaking, this function promotes the sparsity on C.

We notice that the function f in the above four examples can be written as

f(x) =
n∑
i=1

g(xi)

for x ∈ Rn and some specific function g. For example, g is | · |, max{0, ·}, 1
2
| · |2 + | · |, or

|·|+ι[−λ,λ], in examples 1, 2, 3, or 4, an analogue of f when Rn reduces to R. We further have

that proxαf (x) = proxαg(x1) × proxαg(x2) × · · · × proxαg(xn), envα f(x) =
∑n

i=1 envα g(xi),

proxβfα(x) = proxβgα(x1)×proxβgα(x2)×· · ·×proxβgα(xn), and envβfα(x) =
∑n

i=1 envβgα(xi).

Therefore, in the following discussion we will restrict ourself on n = 1.

4.4.1 Example 1: The Absolute Value Function

The first example is the absolute value function f : R → R : x 7−→ |x|, which is a special

case of the piecewise quadratic function in (Q) with a1 = a2 = 0, b1 = −1, and b2 = 1. This

function is nondifferentiable at the origin with argminx∈Rf(x) = {0} and ∂f(0) = ∂| · |(0) =
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[−1, 1].

-

/2

-

/2

(a) (b)

Figure 4: Example 1. (a) The graphs of f (solid), envα f (dotted), and (b) the graph of
fα = f(x)− envα f(x). Near the origin fα retains the structure of f , which is emphasized in
black (solid-dotted).

The proximity operator and the Moreau envelope of f with parameter α > 0 are

proxα|·|(x) = sgn(x) max{0, |x| − α} and envα | · |(x) =


1
2α
x2, if |x| ≤ α;

|x| − 1
2
α, otherwise,

respectively. It is well know that proxα|·| is called the soft thresholding in literature of wavelet

[19] and envα | · | is Huber’s function in robust statistics [28]. Figure 5 shows the typical

shape of the proximity operator of f .

-

Figure 5: Example 1. The typical shape of proxαf .
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As defined in (Fα), for the absolute value function f ,

fα(x) := |x| − envα | · |(x) =

 |x| −
1
2α
x2, if |x| ≤ α;

1
2
α, otherwise.

(4.12)

This function fα (see Figure 4(b)) is identical to the minimax convex penalty (MCP) function

given in [53], but motivated from statistics perspective.

The expression of proxβfα depends on the relative values of α and β. If β < α, Lemma 4.2.4

gives

proxβfα(x) =


0, if |x| ≤ β;

α
α−β (|x| − β) sgn(x), if β < |x| ≤ α;

x, if |x| ≥ α.

(4.13)

This is the firm thresholding operator [11]. If β = α, Lemma 4.2.5 gives

proxβfα(x) =


0, if |x| < α;

[0, α], if |x| = α;

x, if |x| > α,

(4.14)

Finally, if β > α, Lemma 4.2.6 gives

proxβfα(x) =


0, if |x| <

√
αβ;

{0, x}, if |x| =
√
αβ;

x, if |x| >
√
αβ;

(4.15)

The proximity operator proxβfα for different values of α and β is plotted in Figure 6.

To end this example, we give several remarks on the proximity operators of proxαf and
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-

- -

-

-
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(a) (b) (c)

Figure 6: Typical shapes of the proximity operator of | · |α for (a) β < α, (b) β = α, (c)
β > α. The sparsity threshold and the thresholding behavior depend on the relationship
between α and β.

proxβfα as follows:

• Note that ∂f(0) = [−1, 1]. The results given in (4.13) (for β < α) and (4.14) (for

β = α) exactly match the first two statements of Theorem 3.2.2. For β > α, the

proxβfα(x) = 0 for all x ∈ [−
√
αβ,
√
αβ], which includes the interval [−α, α] = α∂f(0)

as indicated in the third statement of Theorem 3.2.2.

• The operator proxαf forces its variable to zero when the absolute value is less than a

given threshold, and otherwise reduces the variable, in absolute value, by the amount

of the threshold. Like proxαf , proxβfα forces its variable to zero when the absolute

value is less than a given threshold, but it fixes variables whose absolute value exceeds

a certain threshold.

• For β ≥ α the proximity operator proxβfα is almost identical to the hard threshold

operator. Let |·|0 be the `0-norm on R, that is, |x|0 equals 1 if x is nonzero, 0 otherwise.
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The proximity operator of | · |0 with parameter γ at x is

proxγ|·|0(x) =


{0}, if |x| <

√
2γ;

{0, x}, if |x| =
√

2γ;

{x}, if |x| >
√

2γ,

which is called the hard thresholding operator with threshold
√

2γ. We can see that

proxγ|·|0 = proxβfα as long as 2γ = αβ and β > α. It is interesting that although | · |0 is

discontinuous and fα is continuous, they have the same proximity operator. Moreover,

by fixing α and varying the parameter β, the proximity operator proxβfα changes from

the firm thresholding operator to the hard thresholding operator.

4.4.2 Example 2: ReLU Function

The ReLU (Rectified Linear Unit) function on R is

f(x) := max{0, x},

which is a special case of the piecewise quadratic function in (Q) with a1 = b1 = a2 = 0 and

b2 = 1. The proximity operator and the Moreau envelope of f with parameter α > 0 are

proxαf (x) = min{x,max{0, x− α}},

envα f(x) =


0 if x ≤ 0;

1
2α
x2, if 0 ≤ x ≤ α;

x− 1
2
α, if x ≥ α,
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respectively. By (Fα), fα(x) = f(x)− envα f(x) is

fα(x) =


0, if x < 0;

x− 1
2α
x2, if 0 ≤ x ≤ α;

α
2
, if x > α.

(4.16)

Figure 7(a) depicts the graphs of f and envα f while Figure 7(b) presents the function fα.

The graph of proxαf is given in Figure 8.

/2 /2

(a) (b)

Figure 7: Example 2. (a) The graphs of f (solid), envα f (dotted), and (b) their difference
fα = f − envα f . The singularity of fα at zero is emphasized in black (solid-dotted).

Figure 8: Example 2. The typical shape of proxαf . The parameter α is the sparsity threshold.

As in example 1, the expression of proxβfα depends on the relative values of α and β. If
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β < α,

proxβfα(x) =


x, if x ≤ 0 or x ≥ α;

0, if 0 ≤ x ≤ β;

α(x−β)
α−β ; if β ≤ x ≤ α.

(4.17)

If β = α,

proxβfα(x) =


x, if x ≤ 0 or x > α;

0, if 0 ≤ x < α;

[0, α] if x = α.

(4.18)

Finally, if β > α,

proxβfα(x) =


x, if x ≤ 0 or x >

√
αβ;

0, if 0 ≤ x <
√
αβ;

{0,
√
αβ}, if x =

√
αβ.

(4.19)

( )

1/2

( )

1/2

(a) (b) (c)

Figure 9: Example 2. Typical shapes of the proximity operator of fα for (a) β < α; (b)
β = α; and (c) β > α.

Note that ∂f(0) = [0, 1]. The results given in (4.17) (for β < α) and (4.18) (for β = α)
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exactly match the first two statements of Theorem 3.2.2. For β > α, equation (4.19) shows

that proxβfα(x) = 0 for all x ∈ [0,
√
αβ], which includes the interval [0, α] = α∂f(0) as

indicated in the third statement of Theorem 3.2.2.

4.4.3 Example 3: Elastic Net

The elastic net is a regularized regression method in data analysis that linearly combines the

`1 and `2 penalties of the LASSO and ridge methods. In this example, we consider a special

case of the elastic net in R:

f(x) =
1

2
x2 + |x|.

This is an instance of the piecewise quadratic function given in (Q) with a1 = a2 = 1,

b1 = −1 and b2 = 1. Clearly, f is nondifferentiable at the origin with argminx∈Rf(x) = {0}.

Moreover, ∂f(0) = ∂| · |(0) = [−1, 1].

The proximity operator and the Moreau envelope of f with parameter α > 0 are

proxαf (x) = max

{
0,

1

α + 1
(|x| − α)

}
sgn(x),

envα f(x) =


1
2α
x2, if |x| ≤ α;

1
α+1

(1
2
x2 + |x| − α

2
), if |x| ≥ α,

respectively.

The graphs of f and envα f are plotted in Figure 10 (a). The graph of proxαf is plotted

in Figure 10 (b). As in the case of the absolute value function, proxαf sends all values

between α and −α to zero. Unlike the absolute value, it also contracts elements outside of

this interval toward the origin.
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-

/2

-

(a) (b)

Figure 10: Example 3. (a) The graphs of f (solid) and envα f (dotted); and (b) the graph
of proxαf .

Now fα, the difference between f and its Moreau envelope envα f , is

fα(x) =


α−1
2α
x2 + |x|, if |x| ≤ α;

α
2(α+1)

x2 + α
α+1
|x|+ α

2(α+1)
, if |x| ≥ α.

(4.20)

We remark that fα is convex when α ≥ 1 and nonconvex when α < 1. The graph of fα for

α ≥ 1 and α < 1 are shown in Figure 11(a) and (b), respectively.

-
-

(a) (b)

Figure 11: Example 3. The graph of fα when (a) α ≥ 1 and (b) α < 1. The singularity of
fα at zero is emphasized in black (solid-dotted).

According to the discussion given in subsection 4.2, we consider three cases: β(α−1)+α >

0, β(α − 1) + α = 0, and β(α − 1) + α < 0. These cases are equivalent to α(β + 1) > β,
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α(β + 1) = β, and α(β + 1) < β respectively. Recall that these cases correspond to the

convexity (or lack thereof) of fα(u) + 1
2β

(u− x)2 for u close to zero.

Case 1: α(β + 1) > β. In this case, by Lemma 4.2.4 we have

proxβfα(x) =


0 if |x| ≤ β;

α
αβ−β+α(x− β sgn(x)) if β ≤ |x| ≤ α(β + 1);

α+1
αβ+α+1

(x− αβ
α+1

sgn(x)) if α(β + 1) ≤ |x|.

(4.21)

Case 2: α(β + 1) = β. By Lemma 4.2.5 we have

proxβfα(x) =


0 if |x| ≤ β;

[0, α] sgn(x) if |x| = β;

α+1
αβ+α+1

(x− αβ
α+1

sgn(x)) if β ≤ |x|.

(4.22)

Case 3: α(β + 1) < β. Define

τ =
αβ

α + 1
+

√
αβ(αβ + α + 1)

α + 1
. (4.23)

as in Lemma 4.2.6. Then we have

proxβfα(x) =


0 if |x| ≤ τ ;

{0, ω} if |x| = τ ;

(α+1)x−αβ sgn(x)
αβ+α+1

, if |x| > τ,

(4.24)

where ω = (α+1)τ−αβ
αβ+α+1

. The graphs of proxβfα in the above three cases are plotted in Fig-
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ure 4.4.3.

-

-

- ( +1)

( +1)
-

- -

-

(a) (b) (c)

Figure 12: Example 3. Typical shapes of proxβfα when (a) α(β + 1) > β, (b) α(β + 1) = β,
and (c) α(β + 1) < β.

Below are some comments on this example.

• The function fα in the first two examples is nonconvex for any α > 0, however, by

Proposition 3.2.1 it is convex if α ≥ 1 due to our elastic net function f being 1-strongly

convex.

• The computation of the proximity operator proxβfα is discussed under three different

situations, namely, α(β+1) > β, α(β+1) = β, and α(β+1) < β. These situations are

quite natural from Proposition 3.2.1. Since f is 1-strongly convex, hence, the function

fα+ 1
2β

(·−x)2 is (1+β−1−α−1)-strongly convex if α(β+1) > β, convex if α(β+1) = β,

and (α−1 − 1− β−1)-semiconvex if α(β + 1) < β.

• For the case of β ≤ α, we know that α(1 + β) > β, so the proximity operator given

(4.21) covers both statements 1 and 2 in Theorem 3.2.2.

• For the case of β > α, there are three possible related cases. If α < β < α(β + 1)

(resp. α < β = α(β + 1)), the proximity operator given (4.21) (resp. (4.22)) shows

that this operator vanishes at all elements in β∂f(0) = [−β, β] ⊃ α∂f(0), fulfilling the
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third statement of Theorem 3.2.2. If β > α(β + 1), we know that α < 1, β > α
1−α , and

τ defined in (4.23) satisfying

τ =
αβ

α + 1
+

√
αβ(αβ + α + 1)

α + 1
>

α2

1− α2
+

α

1− α2
> α.

Hence, the proximity operator given (4.24) annihilates all elements in τ∂f(0) ⊃ α∂f(0),

once again fulfilling the third statement of Theorem 3.2.2.

4.4.4 Example 4: Absolute Value on an Interval Centered at the

Origin

Let λ be a positive parameter. The absolute function on the interval [−λ, λ] centered at the

origin is

f(x) := |x|+ ι[−λ,λ](x),

which is a special case given in (Q̃) with a1 = a2 = 0, b1 = −1, b2 = 1, and C = [−λ, λ]. Its

proximity operator and Moreau envelope with parameter α at point x, respectively, are

proxαf (x) =


0, if |x| ≤ α;

sgn(x)(|x| − α), if α < |x| ≤ α + λ;

λ sgn(x), if α + λ < |x|;
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and

envα f(x) =


|x| − α

2
+ 1

2α
(|x| − α)2, if |x| ≤ α;

|x| − α
2
, if α < |x| ≤ α + λ;

|x| − α
2

+ 1
2α

(|x| − (λ+ α))2, if α + λ < |x|.

--( + ) +- --( + ) +-

-

-

-( + )

+

(a) (b) (c)

Figure 13: Example 4. The graphs of f (solid, dashed) and envα f (dotted) when (a) α < λ
and (b) α > λ. The graph of proxαf is shown in (c). Between −(α + λ) and α + λ, proxαf
is the soft thresholding operator with sparsity parameter α; otherwise it projects onto this
interval.

Figure 4.4.4 depicts the graphs of f , envα f , and proxαf . We observe that on the in-

terval [−λ, λ] (the domain of fα) the envelope envα f is a piecewise quadratic polynomial

(Figure 4.4.4(a)) if α < λ and is simply a quadratic polynomial (Figure 4.4.4(b)) if α ≥ λ.

It turns out that the expression of proxβfα for α < λ is much more complicated than that

for α ≥ λ as we will see below.

As both f and envα f depend on α and λ, the explicit expression for fα will depend on

the values of these parameters. To compute the proximity operator proxβfα , we consider

separately two main cases: α < λ and α ≥ λ.
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Case 1: α < λ. In this case, we get (see Figure 4.4.4)

fα(x) = f(x)− envα f(x) =



α
2
− 1

2α
(|x| − α)2, if |x| ≤ α;

α
2
, if a ≤ |x| ≤ λ;

+∞, if λ < |x|.

(4.25)

-

/2

-

Figure 14: Example 4. The graph of fα when α < λ with the singularity of fα at zero
emphasized in black (solid-dotted). Further, we see that fα agrees with Example 1 on
[−λ, λ].

Depending on the values of α, β, and λ, we consider four possible cases: β < α < λ,

β = α < λ, α < β ≤ λ, and λ < β.

Case 1.1: β < α < λ. In this case, we have

proxβfα(x) =


max{0, α(|x|−β)

α−β } sgn(x), if |x| ≤ α;

min{|x|, λ} sgn(x), if |x| > α.

(4.26)

Case 1.2: β = α < λ. In this case, we have

proxβfα(x) =


0, if |x| < α;

sgn(x)[0, α], if |x| = α;

sgn(x) min{|x|, λ}, if α < |x|,

(4.27)
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Case 1.3: α < β ≤ λ. In this case, we have

proxβfα(x) =


0, if |x| <

√
αβ;

{0, sgn(x)
√
αβ}, if |x| =

√
αβ;

min{|x|, λ} sgn(x), if
√
αβ < |x|,

(4.28)

Case 1.4: α < λ < β. We have

proxβfα(x) =


{0}, if |x| < αβ+λ2

2λ
;

{0, λ sgn(x)}, if |x| = αβ+λ2

2λ
;

{λ sgn(x)}, if αβ+λ2

2λ
< |x|,

(4.29)

We now move on to the second main case.

Case 2: λ ≤ α. In this case, we get (see Figure 4.4.4)

fα(x) =


α
2
− 1

2α
(|x| − α)2, if |x| ≤ λ;

+∞, otherwise.

(4.30)

-

-

2

/2

Figure 15: Example 4. The graph of fα when λ ≤ α with the singularity of fα at zero
emphasized in black (solid-dotted). As before, fα agrees with Example 1 on [−λ, λ], but is
cut off before it plateaus.
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To compute proxβfα , we consider three situations: β < α, β = α, and β > α.

Case 2.1: β < α. In this case, we have that

proxβfα(x) =


0, if |x| ≤ β;

α(|x|−β)
α−β sgn(x), if β ≤ |x| ≤ β + α−β

α
λ;

λ sgn(x), if β + α−β
α
λ ≤ |x|,

(4.31)

Case 2.2: β = α. In this case, we have

proxβfα(x) =


0, if |x| < α;

sgn(x)[0, λ], if |x| = α;

λ sgn(x), if α < |x|,

(4.32)

Case 2.3: β > α. Similar to Case 1.4, we get

proxβfα(x) =


0, if |x| ≤ β − β−α

2α
λ;

sgn(x){0, λ}, if |x| = β − β−α
2α
λ;

λ sgn(x), if β − β−α
2α
λ < |x|,

(4.33)
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Table of Functions and Proximity Operators

To close this chapter, we provide a reference table collecting our results.

Table 1: Functions and proximity operators for all examples

f(x) fα(x) β < α β = α β > α

|x| (4.12) (4.13) (4.14) (4.15)

max{0, x} (4.16) (4.17) (4.18) (4.19)

α < λ α ≥ λ α < λ α ≥ λ α < λ α ≥ λ β ≤ λ β > λ α ≥ λ

|x|+ ι[−λ,λ] (4.25) (4.30) (4.26) (4.31) (4.27) (4.32) (4.28) (4.29) (4.33)

β < α(β + 1) β = α(β + 1) β > α(β + 1)

1
2x

2 + |x| (4.20) (4.21) (4.22) (4.24)
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Algorithms

We explore several methods for solving the fα-penalized least squares problem

min
x∈X

fα(Dx) +
1

2λ
‖x− z‖2, (P)

where X is Euclidean space with its usual norm and fα is one of our sparsity promoting

functions. As discussed in Chapter 3, this model may be convex or nonconvex depending

on the parameters α and λ, and it can be decomposed as a difference of convex functions.

We consider three algorithms which highlight each of these cases: Primal-Dual Splitting,

Difference of Convex, and the Alternating Directions Method of Multipliers. We connect

properties of our functions with known convergence analysis and provide improvements where

possible.
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5.1 Primal-Dual Splitting

The Primal-Dual Splitting Algorithm (PDA) was introduced by Chambolle and Pock to

minimize the sum of two convex functions, one of which is composed with a bounded linear

operator [14]. Condat later extended this to include a third term with a Lipschitz gradient

[17], and it is this framework that we discuss. PDA is an example of a proximal splitting

algorithm: the problem is split into simpler subproblems which can be solved using the

proximity (or proximal) operators of individual functions in the objective. The term primal-

dual comes from the fact that it outputs both a primal and a dual solution.

The generic model considered here is

argmin{F (x) +G(x) +H(Bx) : x ∈ X} (5.1)

such that

• F is convex and differentiable with L-Lipschitz gradient,

• G and H are prox-friendly: that is, their proximity operators have an explicit form or

can be easily computed,

• and B is a bounded linear operator with adjoint B∗ and induced norm

‖B‖ = sup{‖Bx‖ : ‖x‖ ≤ 1},

• The set of minimizers is nonempty.

The dual problem is then

argmin{(F +G)∗(−B∗y) +H∗(y) : y ∈ Y }. (5.2)
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Generalized Karush-Kuhn-Tucker conditions provide necessary first order conditions for

primal-dual solution pairs (x∗, y∗). If x∗ ∈ X and y∗ ∈ Y satisfy the variational inclusion

 0

0

 ∈
∂G(x∗) +B∗(y∗) +∇F (x∗)

−Bx∗ + ∂H∗(y∗)

 , (5.3)

then x∗ solves (5.1) and y∗ solves (5.2). To find such a pair, PDA iteratively solves the above

inclusions. Given initial points (x0, y0), positive parameters σ and τ , and a sequence of a

positive averaging weights {ρn}, the iterates are computed by:

x+n+1 := proxτG(xn − τ∇F (xn)− τB∗yn) (5.4)

y+n+1 := proxσH∗(yn + σB(2x+n+1 − xn)) (5.5)

(xn+1, yn+1) := ρk(x
+
n+1, y

+
n+1) + (1− ρn)(xn, yn). (5.6)

The following theorem guarantees weak convergence to a solution pair (x∗, y∗) ∈ X × Y .

Proposition 5.1.1 (Condat [17]). Let τ , σ, and the sequence {ρn} be the parameters in

(5.4)–(5.6). Suppose that the functions F , G, and H in (5.1) are convex, the gradient of F

is L-Lipschitz with L > 0, and the following hold:

(i) 1
τ
− σ‖B‖2 > L

2
;

(ii) ∀n ∈ N, ρn ∈ (0, δ), where we set δ := 2− L
2
( 1
τ
− σ‖B‖2)−1 ∈ [1, 2);

(iii)
∑

i∈N ρn(δ − ρn) = +∞.

Then there exists a solution (x∗, y∗) ∈ X × Y to (5.3) such that {xn} and {yn} converge

weakly to x∗ and y∗ respectively.
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Note that fα(D·) + 1
2λ
‖ · −z‖2 can be expressed as (5.1) by making the following identi-

fications:

F (x) =
1

2λ
‖x− z‖2 − envα f(Dx), G(x) = 0, and H(Bx) = f(Dx). (5.7)

It is straightforward to see F is convex if λ < α
‖D‖2 . As the difference of differentiable

functions, F is differentiable with gradient

∇F (x) =
1

λ
(x− z) +D>∇ envα f(Dx).

To reduce the number of operations, we use the Moreau identity to write ∇ envα f(Dx) =

proxα−1f∗(α−1Dx) (see Section 2.4). We summarize the ADMM for (P) in Algorithm 1. To

apply Proposition 5.1.1 to Algorithm 1, we first determine the Lipschitz constant of ∇F .

Algorithm 1: Primal-Dual Splitting Algorithm for (P)

Input: Initialization: Choose the positive parameters τ , σ, the sequence of pos- itive
relaxation parameters (ρn)n∈N and the initial estimates x0 ∈ X, y0 ∈ Y .

for n = 0, 1, . . . do

x+n+1 := xn − τ
(

1

λ
(xn − z)−D> proxα−1f∗(α−1Dxn)

)
− τD>yn

y+n+1 := proxσf∗
(
yn + σD(2x+n+1 − xn)

)
(xn+1, yn+1) := ρn(x+n+1, y

+
n+1) + (1− ρn)(xn, yn)

Lemma 5.1.1. Let F be defined as in (5.7) and suppose that λ < α
‖D‖2 , then F is 1

λ
-smooth.

Proof. We know that

∇F =
1

λ
(· − z)−D>proxα−1(‖·‖1)∗(α−1D·).
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For any x and y in Rn, let us denote p = proxα−1(‖·‖1)∗(α−1Dx) and q = proxα−1(‖·‖1)∗(α−1Dy).

Then, one has

‖∇F (x)−∇F (y)‖2 =
1

λ2
‖x− y‖2 − 2α

λ
〈α−1D(x− y), p− q〉+ ‖D>(p− q)‖2

≤ 1

λ2
‖x− y‖2 − 2α

λ
‖p− q‖2 + ‖D>(p− q)‖2

=
1

λ2
‖x− y‖2 + (p− q)>(DD> − 2α

λ
Id)(p− q).

The inequality above follows from the nonexpansiveness of the proximity operator. By

assumption, ‖D‖2 < α
λ
, so DD> − 2α

λ
Id is semi-negative. Thus,

‖∇F (x)−∇F (y)‖ ≤ 1

λ
‖x− y‖.

Corollary 5.1.1. Let λ, α, and z be as in problem (P), and let τ , σ, and the sequence

{ρn}n∈N be the parameters in Algorithm 1. Suppose that λ < α
‖D‖2 and the following hold:

(i) 1
τ
− σ‖D‖2 > 1

2λ
;

(ii) ∀n ∈ N, ρn ∈ (0, δ), where we set δ := 2− 1
2λ

( 1
τ
− σ‖D‖2)−1 ∈ [1, 2);

(iii)
∑

n∈N ρn(δ − ρn) = +∞.

Let {xn} and {yn} be the sequences produced by Algorithm 1. Then {xn} and {yn} converge

weakly to a primal solution x∗ and a dual solution y∗ respectively.

We remark here that Primal-Dual Splitting as in (5.4)–(5.6) extends the Douglas-Rachford

Splitting method [24] of which the Alternating Directions Method of Multipliers is a special
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case [21]. However ADMM may converge even when the model is nonconvex, as we discuss

in Section 5.3.

5.2 Difference of Convex

The general difference of convex (DC) problem and difference of convex algorithm (DCA)

was introduced and extensively developed by Le Thi et al [31, 38, 30]. Many applications

involve nonconvex functions which can be decomposed as a difference of convex functions.

A generic DC problem has the form

argmin{G(x)−H(x) : x ∈ X} (5.8)

where G,H ∈ Γ0(X). The DC dual problem is

argmin{H∗(y)−G∗(y) : y ∈ Y }, (5.9)

where H∗ and G∗ are the conjugates of H and G respectively.

Of course, any decomposition of a DC function F := G−H is not unique; for example, we

can force strong convexity in each term by writing F (x) =
(
G(x) + ρ

2
‖x‖2

)
−
(
H(x) + ρ

2
‖x‖2

)
.

Following the convention in [30], we define the modulus of strong convexity of a function

G as the largest ρ > 0 such that G − ρ
2
‖ · ‖2 is strongly convex and denote this by ρ(G).

Similarly, we denote by ρ(G,C) the modulus of strong convexity of G on the set C.

Given an initial point x0 ∈ X, DCA iterates by solving the following first order approxi-
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mations of (5.8) and (5.9):

yn ∈ argmin{H∗(y)− (G∗(yn−1) + 〈xn, y − yn−1〉) : y ∈ Y } (5.10)

xn+1 ∈ argmin{G(x)− (H(xn) + 〈x− xn, yn〉) : x ∈ X}. (5.11)

Now because yn minimizes (5.10), we must have 0 ∈ ∂H∗(yn)−xn, i.e. xn ∈ ∂H∗(yn). Recall

from Section 2.3 that this is equivalent to yn ∈ ∂H(xn). Similar computations can be applied

to (5.11), simplifying the above to:

yn ∈ ∂H(xn)

xn+1 ∈ ∂G∗(yn).

We summarize the convergence analysis for (5.10)–(5.11).

Proposition 5.2.1 ([30, Theorem 3.3]). Let C and D be two convex sets containing the

sequences {xn} and {yn} respectively.

(i) The sequences {G(xn)−H(xn)} and {H∗(yn)−G∗(yn)} are decreasing and converge to

the same limit. If G or H is strictly convex on C, then {xn} converges in finite steps.

Similarly, if H∗ or G∗ is strictly convex on D, then {yn} converges in finite steps.

(ii) If ρ(G,C) + ρ(H,C) > 0 (resp. ρ(G∗, D) + ρ(H∗, D) > 0)), then the series {‖xn+1 −

xn‖2} (resp. {‖yn+1 − yn‖2}) is convergent.

(iii) If the optimal value of (5.8) is finite and the sequences {xn} and {yn} are bounded,

then every limit point x̃ (resp. ỹ) of the sequence {xn} (resp. {yn}) is a critical point

of G−H (resp. H∗ −G∗).
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Proposition 5.2.2 ([30, Theorem 3.4]). Let {xn} and {yn} be the sequences generated by

DCA. Then the following properties hold:

(i) Suppose that the DC function F := G − H is subanalytic; dom(F ) is closed; f |dom(F )

is continuous; and around every critical point of (5.8), either G or H is differentiable

with locally Lipschitz derivative. Assume that ρ := ρ(G) + ρ(H) > 0. If either the

sequence {xn} or {yn} is bounded, then {xn} and {yn} are convergent to critical points

of (5.8) and (5.9) respectively.

(ii) Similarly, if H∗ −G∗ is subanalytic; dom(H∗ −G∗) is closed; (H∗ −G∗)|dom(H∗−G∗) is

continuous; and around critical points of (5.9), either G∗ or H∗ is differentiable with

locally Lipschitz derivative. If ρ(G∗) + ρ(H∗) > 0 and either sequence {xn} or {yn}

is bounded, then {xn} and {yn} are convergent to critical points of (5.8) and (5.9)

respectively.

We decompose (P) as a DC problem by identifying G = 1
2λ
‖ · −z‖2 + f(D·) and H =

envα f(D·). In this case, the primal DC problem (5.8) becomes

argmin
{

(f ◦D +
1

2λ
‖ · −z‖2)(x)− envα f(Dx) : x ∈ X

}
(5.12)

and the dual problem becomes

argmin
{

(envα f ◦D)∗(y)− (f ◦D +
1

2λ
‖ · −z‖2)∗(y) : y ∈ Y

}
. (5.13)

In this case, DCA can be computed by Algorithm 2. Note that the first inclusion becomes

equality because envα f is differentiable. As in the previous section, we write∇ envα f(Dx) =

proxα−1f∗ (α−1Dxn) .
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Algorithm 2: Difference of Convex Algorithm (DCA) for (P)

Input: Choose initial estimate x0 ∈ X
for i = 0, 1, . . . do

yn = D> proxα−1f∗

(
α−1Dxn

)
(5.14)

xn+1 ∈ argmin
{ 1

2λ
‖x− z‖2 + f(Dx)− 〈x, yk〉 : x ∈ X

}
(5.15)

Applying results from Chapter 3, Proposition 5.2.1, and Proposition 5.2.2, the conver-

gence analysis for Algorithm 2 is given by the following theorem.

Theorem 5.2.1. Let {xn} and {yn} be the sequences generated by Algorithm 2, and let

G = 1
2λ
‖·−z‖2+f(D·) and H = envα f(D·). The sequences {G(xn)−H(xn)} and {H∗(yn)−

G∗(yn)} decrease to the same limit, and the sequence {xn} converges in finite steps.

Furthermore, if f is subanalytic with closed domain such that f |dom(f) is continuous, then

if either sequence {xn} or {yn} is bounded, then they converge to critical points of (5.8) and

(5.13) respectively.

Recent work shows that DCA can be boosted by taking advantage of the differentiabil-

ity of the entire objective G − H [2] or of the first term G [3]. Both methods accelerate

convergence by introducing a backtracking line search in the direction yn − xn at each step.

Based on results in Section 3.3, we have hope that while the original problem is certainly

not differentiable, the dual problem may be. We give two necessary conditions for the dual

problem to be differentiable below. Both rely on the fact that the conjugate of a function is

essentially smooth if and only if the function is essentially strictly convex [44].
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Lemma 5.2.1. (i) If envα f ◦D is strictly convex, then the dual objective

(envα f ◦D)∗(y)− (f ◦D +
1

2λ
‖ · −z‖2)∗(y)

is differentiable.

(ii) If we decompose the primal problem as G+ ρ
2
‖ · ‖2 −H − ρ

2
‖ · ‖2, then the dual problem

(H + σ
2
‖ · ‖2)∗ − (G+ σ

2
‖ · ‖2)∗ is differentiable.

Theoretically, we can apply boosted DCA to our problem (5.13) to find both primal and

dual solutions. However, it may be very difficult to compute the terms H∗ and G∗ in this

case, especially if D is not invertible. We discuss future plans to explore this topic in the

Conclusion.

5.3 Alternating Direction Method of Multipliers

The Alternating Direction Method of Multipliers (ADMM), as introduced by Gabay and

Mercier in [24], is a proximal splitting algorithm for finding zeros of monotone operators and,

like Primal-Dual splitting, is a special case of the Douglas-Rachford splitting method [20].

In the context of optimization, the monotone operators in question are the subdifferentials

of convex functions. To illustrate the method, we first consider the generic constrained

optimization problem

min
(x,y)∈X×Y

F (x) +G(y)

subject to y = Bx.
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Recall that the augmented Lagrangian with parameter η > 0 is

Lη(x, y, d) := F (x) +G(y)− 〈d,Bx− y〉+
η

2
‖Bx− y‖2.

Given some starting point (x0, d0), the ADMM algorithm iterates as follows:

yn+1 ∈ argmin{Lη(xn, y, dn) : y ∈ Y }, (5.16)

xn+1 = argmin{Lη(x, yn+1, dn) : x ∈ X}, (5.17)

dn+1 =dn − η(Bxn+1 − yn+1). (5.18)

Here we assume that F and G are continuous and subdifferentiable, but we do not require

any convexity.

To apply this method to (P), we first reformulate the problem as

min
(x,y)∈Rn×Rm

1

2λ
‖x− z‖2 + fα(y)

subject to y = Dx.

(5.19)

The augmented Lagrangian with parameter η > 0 for the constrained problem (5.19) is

Lη(x, y, d) :=
1

2λ
‖x− z‖2 + fα(y)− 〈d,Dx− y〉+

η

2
‖Dx− y‖2. (5.20)

As above, we assume that the parent function f (and therefore fα) is continuous. Moreover,

for technical reasons, we assume that the smallest eigenvalue of DD>, denoted λmin(DD>),

is nonzero. Now the algorithm (5.16)–(5.18) can be written as follows.

84



CHAPTER 5. ALGORITHMS

Algorithm 3: Proximal ADMM for (5.19) (i.e., (P))

Input: Initialization: Input (x(0), d(0)) ∈ Rn × Rm and η > 0.
for n = 0, 1, . . . do

yn+1 ∈ prox 1
η
fα

(Dxn −
1

η
dn), (5.21)

xn+1 =

(
1

λ
Id +ηD>D

)−1(
1

λ
z +D>(dn + ηyn+1)

)
, (5.22)

dn+1 = dn − η(Dxn+1 − yn+1). (5.23)

Lemma 5.3.1. Let {xk, yk, dk} be generated by Algorithm 3. Then we have

xk+1 = z + λD>dk+1,

yk+1 = Dxk+1 +
1

η
(dk+1 − dk).

Proof. The expression for yk+1 follows immediately from (5.23).

Now since xk+1 = arg minx Lη(xk, yk, dk), we must have

0 =
1

λ
(xk+1 − z)−D>dk + ηD>(Dxk+1 − yk).

Again by (5.23), this is equivalent to

0 =
1

λ
(xk+1 − z)−D>dk+1.

The result follows.

We will show that the sequence {xn} converges to a stationary point of the (P), but first

we require several technical lemmas.
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Lemma 5.3.2. Let {xk, yk, dk} be the sequence generated by Algorithm 3. If

lim
k→∞
‖xk+1 − xk‖2 + ‖yk+1 − yk‖2 + ‖dk+1 − dk‖2 = 0 (5.24)

and the sequence has a cluster point (x∗, y∗, d∗), then x∗ is a stationary point of (P).

Proof. Because (x∗, y∗, d∗) is a cluster point of {xk, yk, dk}, there is a subsequence {xkj , ykj , dkj}

such that

lim
j→∞
‖xkj − x∗‖2 = 0, lim

j→∞
‖ykj − y∗‖2 = 0, lim

j→∞
‖dkj − dkj‖2 = 0.

Now since ykj is a solution of arg miny Lη(xkj−1, y, dkj−1), we get

0 ∈ ∂fα(ykj) + dkj−1 + η(ykj −Dxkj−1).

Using (5.23), the above inclusion becomes

0 ∈ ∂fα(ykj) + dkj + ηD(xkj − xkj−1).

By taking j → ∞, this becomes 0 ∈ ∂fα(y∗) + d∗.Applying Lemma 5.3.1 and letting j

approach infinity, we see that

D>d∗ =
1

λ
(x∗ − z) and y∗ = Dx∗.

Therefore 0 ∈ 1
λ
(x∗ − z) +D>∂fα(Dx∗), i.e. x∗ is a stationary point of the problem.
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The convergence analysis for Algorithm 3 is standard and closely follows both [32] and

[52]. In particular, (P) is a special case of the problem considered in [52], which allows us to

greatly simplify the analysis. As a result of Lemma 5.3.1, we can bound the dual updates

using the primal updates.

Lemma 5.3.3. Let {xk} and {dk} be the sequences defined by Algorithm 3. Assume that

σ := λmin(DD>) > 0. Then for every k ∈ N, ‖dk+1 − dk‖2 ≤ 1
σλ2
‖xk+1 − xk‖2.

Proof. By Lemma 5.3.1, we see that D>(dk+1 − dk) = 1
λ
(xk+1 − xk), so we can control the

convergence of {dk} through {xk}. Because σ > 0, we get

σ‖dk+1 − dk‖2 ≤ ‖D>(dk+1 − dk)‖2 ≤
1

λ2
‖xk+1 − xk‖2. (5.25)

In order to show that the sequence {Lη(xk, yk, dk)} is decreasing, we provide descent

guarantees for the y update step in Lemma 5.3.4 and the x and d updates in Lemma 5.3.5.

Lemma 5.3.4. Let {xk, yk, dk} be the sequence generated by Algorithm 3. Then for every

k ∈ N we have

Lη(xk, yk+1, dk)− Lη(xk, yk, dk) ≤ −
(η − 1

α
)

2
‖yk+1 − yk‖2.

Proof. For ease of notation, we set Lŷ(y) = Lη(xk, y, dk). From (5.20), we have

Lŷ(yk)−Lŷ(yk+1) = fα(yk) +
η

2
‖Dxk − yk‖2 − fα(yk+1)−

η

2
‖Dxk − yk+1‖2 − 〈dk, yk+1 − yk〉.

(5.26)
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Because fα is 1
α

-semiconvex, we have the following subgradient inequality

fα(yk) +
η

2
‖Dxk − yk‖2 ≥ fα(yk+1) +

η

2
‖Dxk − yk+1‖2 + 〈ξ, yk − yk+1〉+

(η − 1
α

)

2
‖yk+1− yk‖2

where ξ ∈ ∂fα(yk+1)− η(Dxk − yk+1). Then (5.26) becomes

Lŷ(yk)− Lŷ(yk+1) ≥ 〈ξ, yk+1 − yk〉 −
(η − 1

α
)

2
‖yk+1 − yk‖2.

Because yk+1 ∈ arg minLη(xk, y, dk), we know that 0 ∈ ∂fα(yk+1)−η(Dxk−yk+1)+dk. That

is, −dk ∈ ∂fα(yk+1)− η(Dxk − yk+1). Combining this with (5.26) we see that

Lŷ(yk)− Lŷ(yk+1) ≥
(η − 1

α
)

2
‖yk+1 − yk‖2. (5.27)

Lemma 5.3.5. Let {xk, yk, dk} be the sequence generated by Algorithm 3. Then for every

k ∈ N we have

Lη(xk, yk+1, dk)− Lη(xk+1, yk+1, dk+1) ≥
(

1

2λ
+
η

2
λmin(D>D)− 1

ησλ2

)
‖xk − xk+1‖2.

Proof. For ease of notation, we let h(x) = 1
2λ
‖x − z‖2 and denote (xk+1, yk+1, dk+1) =

(x+, y+, d+).

The difference Lη(xk, yk, dk)− Lη(x+, y+, d+) is

h(xk)− h(x+) + 〈−dk, Dxk − y+〉︸ ︷︷ ︸
a1

+ 〈d+, Dx+ − y+〉︸ ︷︷ ︸
a2

+
η

2
‖Dxk − y+‖2︸ ︷︷ ︸

a3

− η
2
‖Dx+ − y+‖2︸ ︷︷ ︸

a4

(5.28)
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Rewriting dk = d+ + η(Dx+ − y+) (5.23), we see that

a1 + a2 = 〈d+, Dx+ −Dxk〉 − η〈Dx+ − y+, Dxk − y+〉.

Now, by completing the square, we get that

a1 + a2 + a3 = 〈d+, Dx+ −Dxk〉+
η

2
‖Dx+ −Dxk‖2 −

η

2
‖Dx+ − y+‖2.

Noting that Dx+ − y+ = 1
η
(d+ − dk), we get

a1 + a2 + a3 + a4 = 〈d+, Dx+ −Dxk〉+
η

2
‖Dx+ −Dxk‖2 −

1

η
‖d+ − dk‖2.

By Lemma 5.3.1, we know that ∇h(x+) = 1
λ
(x+ − z) = D>d+, so (5.28) can be rewritten

h(xk)− h(x+)− 〈∇h(x+), Dxk −Dx+〉︸ ︷︷ ︸
b1

+
η

2
‖Dx+ −Dxk‖2︸ ︷︷ ︸

b2

− 1

η
‖d+ − dk‖2︸ ︷︷ ︸

b3

,

noting the sign change due to flipping Dxk and Dx+.

Since h is strongly convex, we know that b1 ≥ 1
2λ
‖xk − x+‖2. We also know that b2 ≥

η
2
λmin(D>D)‖x+ − xk‖2. Finally, we apply the bound from Lemma 5.3.3, and get

b1 + b2 + b3 ≥
(

1

2λ
+
η

2
λmin(D>D)− 1

ησλ2

)
‖xk − x+‖2.

Remark 5.3.1. While we assume that λmin(DD>) > 0, we make no such assumption on

λmin(D>D). For the applications discussed in Chapter 6, we will have λmin(D>D) = 0.
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Finally, Proposition 5.3.1 and Theorem 5.3.1 provide the convergence analysis for Algo-

rithm 3.

Proposition 5.3.1. Let {xk, yk, dk} be the sequence generated by Algorithm 3. If σ :=

λmin(DD>) > 0 and the parameter η satisfies η ≥ max{ 2
σλ
, 1
α
}, then the following statements

hold:

(i) The sequence {Lη(xk, yk, dk)} is decreasing.

(ii) The sequence {xk, yk, dk} has a convergent subsequence.

(iii) The sequence {xk, yk, dk} satisfies (5.24).

Proof. Item (i): Add together the results of Lemmas 5.3.4 and 5.3.5 to get

Lη(xk, yk, dk)− Lη(xk+1, yk+1, dk+1)

≥
(

1

2λ
+
η

2
λmin(D>D)− 1

σλ2η

)
‖xk − xk+1‖2 +

η − 1
α

2
‖yk − yk+1‖2.

By the assumption on η, we see that the above is greater than zero.

Item (ii): By Lemma 5.3.1, D>dk = 1
λ
(xk − z). It follows that σ‖dk‖2 ≤ ‖D>dk‖2 ≤

1
λ2
‖xk − z‖2. Therefore, the boundedness of {xk} implies the boundedness of {dk}. The

boundedness of {yk} can be derived from the monotonicity of Lη and the semiconvexity of

fα. By item (i),

Lη(x0, y0, d0) ≥ Lη(xk, yk, dk)

=
1

2λ
(1− 1

σηλ
)‖xk − z‖2 + fα(yk) +

η

2
‖Dxk − yk −

dk
η
‖2.

(5.29)
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Now since yk+1 ∈ prox 1
η
fα

(Dxk − dk
η

),

fα(yk) +
η

2
‖Dxk −

dk
η
− yk‖2 ≥ fα(yk+1) +

η

2
‖Dxk −

dk
η
− yk+1‖2 +

(η − 1
λ
)

2
‖yk+1 − yk‖2

≥
(η − 1

λ
)

2
‖yk+1 − yk‖2.

Then

Lη(xk, yk, dk) ≥
1

2
(− 1

σηλ2
+ η) min{‖xk − z‖2, ‖yk+1 − yk‖2} ≥ 0.

Item (iii): Suppose {xkj , ykj , dkj} is a convergent subsequence of {xk, yk, dk} such that

lim
j→∞
‖xkj − x∗‖2 = 0, lim

j→∞
‖ykj − y∗‖2 = 0, lim

j→∞
‖dkj − d∗‖2 = 0.

The continuity of Lη yields

lim
j→∞
Lη(xkj , ykj , dkj) = Lη(x∗, y∗, d∗) > −∞,

From item (ii), (5.29), and η ≥ max{ 1
σλ
, 1
α
},

Lη(x0, y0, d0)− Lη(xkj , ykj , dkj)

≥
(

1

2λ
+
η

2
λmin(D>D)− 1

σλ2η

) kj−1∑
i=0

‖xi − xi+1‖2 +
η − 1

α

2

kj−1∑
i=0

‖yi − yi+1‖2.

Thus
∑∞

i=0 ‖xi+1 − xi‖2 and
∑∞

i=0 ‖yi+1 − yi‖2 converge.

Finally, this implies limi→∞ ‖xi+1 − xi‖2 = 0 and limi→∞ ‖yi+1 − yi‖2 = 0, and from (5.25),

limi→∞ ‖di+1 − di‖2 = 0.

Theorem 5.3.1. Suppose that σ := λmin(DD>) > 0 and η ≥ max{ 1
σλ
, 1
α
}. Then the sequence
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{xk, yk, dk} converges to (x∗, y∗, d∗) and x∗ is a stationary point of (P).

Moreover,
∑∞

k=1 ‖xk+1 − xk‖ <∞.

Proof. Therefore the sequence {xk, yk, dk} converges, denote this limit point (x∗, y∗, d∗). It

follows from Lemma 5.3.2 and item (iii) of Proposition 5.3.1 that x∗ is a stationary point of

(P).

Let Lη(x∗, y∗, d∗) = `∗. Note that limi→∞ Lη(xi, yi, di) = `∗. If Lη(xi, yi, di) = `∗ for some

i, we show that Algorithm 3 terminates in i+ 1 iterations. Actually, by the monotonicity of

{Lη(xk, yk, dk)}, we must have Lη(xj, yj, dj) = `∗ for all j ≥ i. Otherwise, infinitely many

terms of the convergent sequence {Lη(xk, yk, dk)} will be less than `∗, which is a contradiction.

We conclude from Proposition 5.3.1 (i) and η ≥ max{ 1
σλ
, 1
α
}, we conclude that xi = xj for

j ≥ i. As a consequence, we have di = dj and yi+1 = yj+1.
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Applications

In this chapter, we study the application of our structured sparsity promoting functions to

the problems of signal and image denoising. The total variation denoising (TVD) model is

given by

argmin{ 1

2λ
‖x− z‖2 + ‖x‖TV : x ∈ X}. (TVD)

Here X is either Rn (1D signals) or Rm×n (grayscale images), z is the noisy input, and ‖·‖TV

is the corresponding total variation function which we define in each section. Variational

problems are widespread in image processing due to their sensitivity to geometric features of

images, and these geometric features can be captured by sparsity in the appropriate basis.

By a slight abuse of notation, we modify this problem by replacing ‖ ·‖TV with (‖ ·‖TV )α:

argmin{ 1

2λ
‖x− z‖2 + (‖ · ‖TV )α(x) : x ∈ X}. (TVD-α)

This is a special case of the problem (P) discussed in Chapter 5 and can therefore be solved

using the algorithms described there. We give numerical results comparing the performance
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of (TVD) against (TVD-α) and offer insight into the parameter choices for these models.

6.1 Total Variation Denoising: Signals

In the case of one-dimensional signals x ∈ Rn, the TV function ‖x‖TV = ‖Dx‖1, where

D ∈ Rm×n is the difference matrix defined by

D =


−1 1

. . . . . .

−1 1

 ,

which measures the difference between one measurement of the signal and the next. Then

the problem (TVD) becomes

argmin { 1

2λ
‖x− z‖22 + ‖Dx‖1 : x ∈ Rn}, (6.1)

where z ∈ Rn is a noisy signal. From our previous discussion of ‖ ·‖1 as a sparsity promoting

function, it is clear that the TV penalty removes small fluctuations from the signal. The

parameter λ both controls how closely the solution x̂ fits the noisy data z and determines

the threshold of what is considered noise.

We propose replacing the `1-norm with the function (‖ · ‖1)α(x) = ‖x‖1 − envα‖·‖1(x).

Then the problem (TVD-α) becomes

arg min { 1

2λ
‖x− z‖22 + (‖ · ‖1)α(Dx) : x ∈ Rn}. (6.2)

As above, λ controls how closely x̂ must fit the data z, but the parameter α allows greater
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customization of the thresholding behavior (see Section 4.4).

Note that, for the given matrix D, σ := λmin(D>D) = 2−2 cos(π
n
) where n is the length of

the signal z. For n large this is approximately 4( π
2n

)2, and the bound η > 1
σλ

for Algorithm 3

is not optimal. Experimental results in [32] suggest the much smaller η = 1
nλσ
≈ 1

λ
√
σ
, which

we use in our experiments.

We examine the performance of Algorithm 1 (PD), Algorithm 2 (DCA), and Algorithm

3 (ADMM) for this model on piecewise constant signals with added Gaussian noise. Table

2 contains the average recovery error over 25 samples for each method. We compare the

performance of the convex model (α = 1.1λ‖D‖2) and the nonconvex model (α = 0.5λ‖D‖2).

We note that the nonconvex model generally outperforms both the convex model and the `1

model.

Table 2: Relative recovery error of L1-PD, PD, DCA, and ADMM methods for signal de-
noising.

λ L1-PD DCA ADMM PD DCA ADMM PD

α = 0.5λ‖D‖2 α = 1.1λ‖D‖2
White Gaussian noise with standard deviation 0.25

3 0.0273 0.1767 0.0167 0.0221 0.0302 0.0285 0.0315
4 0.0316 0.0215 0.0187 0.0278 0.0220 0.0199 0.0235
5 0.0322 0.0208 0.0174 0.0280 0.0319 0.0287 0.0347

White Gaussian noise with standard deviation 0.50

5 0.0459 0.0351 0.0356 0.0416 0.0464 0.0468 0.0489
6 0.0545 0.0434 0.0423 0.0503 0.0415 0.0403 0.0443
7 0.0509 0.0387 0.0353 0.0469 0.0665 0.0657 0.0713

Figure 16 shows the convergence of each algorithm in terms of the true recovery error.

While DCA is the slowest of the four, it converges in only a few iterations. We see that while

L1-PD and PD achieve a low recovery error relatively quickly, ADMM eventually achieves a

lower recovery error. Finally, Figure 17 shows examples of these results for a given signal.
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Figure 16: Recovery error of L1-PD, DC, ADMM, and PD vs. the number of iterations.
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Figure 17: Figure (a) is the original signal, and figure (b) is the noisy signal. Figure (c)
shows the recovered signal using the usual ‖ · ‖1 penalty for PDA. The remaining figures
show the results of the (‖ · ‖1)α penalty for (d) PDA, (c) DCA, and (e) ADMM.97
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6.2 Total Variation Denoising: Images

To apply our models to the problem of image denoising, we must specify the appropriate

function ‖·‖TV . We begin by extending the difference matrix D to the two-dimensional case.

Let B denote the N ×N matrix defined by the equation

B :=



0

−1 1

. . . . . .

−1 1


,

and let D be the 2N2 ×N2 matrix given by

D :=

IN ⊗B
B ⊗ IN

 (6.3)

where IN is the N×N identity matrix and the notation P⊗Q denotes the Kronecker product

of matrices P and Q.

Let u be an image in RN2
. We choose f : R2N2 → R as

f(z) :=
N2∑
i=1

∥∥∥∥∥∥∥
 zi

zN2+i


∥∥∥∥∥∥∥
2

, z ∈ R2N2

. (6.4)

With the function f and D given above, f ◦D(u) = ‖u‖TV is the well-known Rudin-Osher-

Fatemi total variation, which measures the two dimensional variation in pixel values.

The corresponding function fα is given by Lemma 6.2.1, and its proximity operator is

given by Proposition 6.2.2. But first, we compute (‖ · ‖2)α and its proximity operator.
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Proposition 6.2.1. Let q = ‖ · ‖2. Then, it holds for any x ∈ Rd that

proxβqα(x) = proxβ|·|α(‖x‖2)
x

‖x‖2
.

Proof. First, a direct computation gives

qα(x) :=

 ‖x‖2 −
1
2α
‖x‖22, if ‖x‖2 ≤ α;

1
2
α, otherwise.

Clearly, qα(x) = | · |α(‖x‖2). Therefore, the result holds.

Lemma 6.2.1. For the function f defined in (6.4), we have that for z ∈ R2N2

fα(z) =
N2∑
i=1

qα


 zi

zN2+i


 ,

where q = ‖ · ‖2 the `2 norm of R2.

Proof. This is a direct consequence from (6.4) and the definition of proximity operator.

Proposition 6.2.2. Let the function f be defined in (6.4), and let α and β be two positive

parameters. If y = proxβfα(z) for z ∈ R2N2
, then

 yi

yN2+i

 = proxβ|·|α


∥∥∥∥∥∥∥
 zi

zN2+i


∥∥∥∥∥∥∥


 zi

zN2+i


∥∥∥∥∥∥∥
 zi

zN2+i


∥∥∥∥∥∥∥
, i = 1, 2, . . . , N2.

Proof. It is simply the result of Lemma 6.2.1 and Proposition 6.2.1.
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In our experiments, we choose the “Cameraman” image as the original image x. Camera-

man is a 256× 256 grayscale image commonly used in image processing. The noisy images

are modeled as

z = x+ ε

with ε being Gaussian noise. The noise levels of ε with the standard deviations 15, 20, and

25 are added to the original image to evaluate the proposed model and the corresponding

algorithms.

The quality of denoised images x̃ obtained from various denoising algorithms is evaluated

by the peak-signal-to-noise ratio (PSNR)

PSNR := 20 log10

(
255

‖x− x̃‖2

)
.

Generally, the PSNR value of an image is the ratio between the maximum possible power

of the signal (255 for grayscale images) and the power of the noise (given here by the mean

squared error). A higher PSNR value indicates greater fidelity between the recovered image

and the original.

The average PSNR values for the denoised images for various values of λ and α over

30 trials are listed in Table 3. For noise with standard deviation 20, the regularization

parameter λ being 16, and the parameter α being 1.6λ‖D‖2, the denoised images are shown

in Figure 18. For the same parameters λ and α, we report the PSNR values and CPU times

(in seconds) of each noise realization in Figure 19
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Table 3: Numerical results of ROF-PD, DCA, ADMM, and PD method for the image of
“Cameraman”.

λ ROF-PD DCA ADMM PD DCA ADMM PD

α = 1.6λ‖D‖2 α = 0.9λ‖D‖2
White Gaussian noise with standard deviation 15

8 30.26 29.77 29.69 29.77 28.57 28.34 28.58
9 30.39 30.26 30.21 30.27 29.40 29.19 29.41
10 30.39 30.54 30.29 30.55 30.00 30.52 30.02
11 30.29 30.64 30.64 30.66 30.37 30.29 30.38
12 30.12 30.62 30.62 30.63 30.52 30.49 30.53
13 29.91 30.50 30.51 30.51 30.53 30.53 30.54

White Gaussian noise with standard deviation 20

13 28.88 28.83 28.80 28.85 28.12 27.92 28.14
14 28.90 29.03 29.01 29.05 28.56 28.41 28.57
15 28.85 29.13 29.12 29.15 28.84 28.74 28.86
16 28.76 29.14 29.14 29.16 29.00 28.95 29.02
17 28.64 29.09 29.10 29.11 29.07 28.95 29.02
18 28.49 29.00 29.01 29.01 29.06 29.06 29.08

White Gaussian noise with standard deviation 25

17 27.77 27.74 27.70 27.76 27.11 26.89 27.12
18 27.79 27.90 27.88 27.92 27.45 27.29 27.47
19 27.78 27.99 27.98 28.01 27.70 27.59 27.72
20 27.73 28.03 28.02 28.05 27.87 27.79 27.89
21 27.65 28.01 28.01 28.03 27.96 27.92 27.98
22 27.56 27.96 27.97 27.98 27.99 27.97 28.01
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(a) (b) (c)

(d) (e) (f)

Figure 18: (a) Cameraman; (b) Cameraman with Gaussian noise of standard deviation
20; the denoisied images by using (c) ROF-PD; (d) DCA; (e) ADMM; and (f) PD. The
regularization parameter λ is 16 and the parameter α is 1.6λ‖D‖2.
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(a) (b)

Figure 19: (a) The PSNR value of each Gaussian noise realization and (b) the cpu time con-
sumed with standard deviation 20. The regularization parameter λ is 16 and the parameter
α is 1.6λ‖D‖2.
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Chapter 7

Conclusions and Future Directions

Motivated by the need for nonconvex penalties in sparse optimization, we provide a simple

and intuitive definition of sparsity promoting functions and introduce a method of construct-

ing semiconvex sparsity promoting functions. Theoretical properties of these functions are

developed throughout Chapter 3. In particular, we show that our construction preserves

properties of the parent function, and both functions are characterized by the threshold-

ing effects of their proximity operators. A basic study of geometric properties related to

optimization is included. A deeper examination of certain classes of functions is given in

Chapter 4, and several examples of practical interest are given in detail. Chapter 5 highlights

the model flexibility and algorithmic performance of our construction. Finally, we demon-

strate the applicability of our work by applying these results to the total variation denoising

problems in signal and image processing in Chapter 6.
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Future Directions

Chapter 3. Because of the relationship between a function f and its envelope envα f ,

we believe that fα may have even more structure than described here. For example, we

show that our constructed functions are semiconvex, but they may also be quasiconvex

or pseudoconvex. This would open up a variety of results in the theory of quasiconvex

functions and quasimonotone operators. There is also more work to be done regarding

the  Lojasiewicz property. There are many characterizations of  Lojasiewicz (or Kurdkyka-

 Lojasiewicz) functions which provide avenues into other applications. Even more generally,

we are also interested in studying whether this construction might be of use in contexts

beyond sparsity promotion.

Chapter 5. We believe that the structure of our functions can further improve con-

vergence analysis for the algorithms given here. Recent work shows that the difference of

convex algorithm can be boosted if part or all of the objective function is differentiable.

While we have shown that the dual objective for our problem is differentiable under certain

circumstances, the functions involved may be very difficult to compute. Instead, we hope

to modify the boosting algorithm to suit the primal problem. We also suspect that we can

improve the parameters in Algorithm 3 by leveraging properties of our functions.

Chapter 6. We would like to extend the results from this chapter to the problem

of image restoration, in which the TVD model is adapted to include a blurring kernel.

We will also be exploring how our sparsity promoting functions can be used for functional

compression, which has implications for computational efficiency and security. Functional

compression considers the problem of compressing source data in such a way that a function

of the sources can be computed at the receiver using only the compressed data, where here

the compression will be achieved using our functions. Questions of interest include how
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to incorporate knowledge of the end function into our model and whether we can provide

theoretical compression guarantees.
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