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Abstract

Recent years have witnessed exponential growth in mobile data and traffic. Limited

available spectrum in microwave (µWave) bands does not seem to be capable of

meeting this demand in the near future, motivating the move to new frequency bands.

Therefore, operating with large available bandwidth at millimeter wave (mmWave)

frequency bands, between 30 and 300 GHz, has become an appealing choice for the

fifth generation (5G) cellular networks. In addition to mmWave cellular networks,

the deployment of unmanned aerial vehicle (UAV) base stations (BSs), also known as

drone BSs, has attracted considerable attention recently as a possible solution to meet

the increasing data demand. UAV BSs are expected to be deployed in a variety of

scenarios including public safety communications, data collection in Internet of Things

(IoT) applications, disasters, accidents, and other emergencies and also temporary

events requiring substantial network resources in the short-term. In these scenarios,

UAVs can provide wireless connectivity rapidly.

In this thesis, analytical frameworks are developed to analyze and evaluate the per-

formance of mmWave cellular networks and UAV assisted cellular networks. First,

the analysis of average symbol error probability (ASEP) in mmWave cellular net-

works with Poisson Point Process (PPP) distributed BSs is conducted using tools

from stochastic geometry. Secondly, we analyze the energy efficiency of relay-assisted

downlink mmWave cellular networks. Then, we provide an stochastic geometry frame-

work to study heterogeneous downlink mmWave cellular networks consisting ofK tiers



of randomly located BSs, assuming that each tier operates in a mmWave frequency

band. We further study the uplink performance of the mmWave cellular networks

by considering the coexistence of cellular and potential D2D user equipments (UEs)

in the same band. In addition to mmWave cellular networks, the performance of

UAV assisted cellular networks is also studied. Signal-to-interference-plus-noise ra-

tio (SINR) coverage performance analysis for UAV assisted networks with clustered

users is provided. Finally, we study the energy coverage performance of UAV energy

harvesting networks with clustered users.
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Chapter 1

Introduction

Recent years have witnessed exponential growth in mobile data and traffic due to, e.g.,

ever increasing use of smart phones, portable devices, and data-hungry multimedia

applications. According to the UMTS traffic forecasts, 1000 fold increase in mobile

data traffic is predicted by the year 2020 [1]. In another estimate, more than 50

billion devices may be connected wirelessly by 2020 which may cause a capacity

crisis [2]. Limited available spectrum in microwave (µWave) bands does not seem

to be capable of meeting this demand in the near future, motivating the move to

new frequency bands. Therefore, the large available bandwidth at millimeter wave

(mmWave) frequency bands, between 30 and 300 GHz, becomes a good candidate for

the fifth generation (5G) cellular networks and has attracted considerable attention

recently [3] – [8].

Despite the great potential of mmWave bands, they have been considered attrac-

tive only for short range-indoor communication due to increase in free-space path

loss with increasing frequency, and poor penetration through solid materials such as

concrete and brick. However, these high frequencies may also be used for outdoor

communication over a transmission range of about 150-200 meters as demonstrated

by recent channel measurements [3], [4], [7], [8]. Also, comparable coverage area and
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much higher data rates than µWave networks can be achieved provided that the base

station density is sufficiently high and highly directional antennas are used [9]. With

the employment of directional antennas, mmWave cellular networks can be considered

as noise-limited rather than interference-limited [5], [10], [11], [12], [13].

Evaluating the system performance of mmWave cellular networks is a crucial task

in order to understand the network behavior. Stochastic geometry has been identified

as a powerful mathematical tool to analyze the system performance of mmWave cel-

lular networks due to its tractability and accuracy. Therefore, in most of the recent

studies on mmWave cellular networks, spatial distribution of the BSs is assumed to

follow a point process and the most commonly used distribution is the Poisson point

process (PPP) due to its tractability and accuracy in approximating the actual cel-

lular network topology [14], [15]. In [15], authors provide a comprehensive tutorial

on stochastic geometry based analysis for cellular networks. Additionally, a detailed

overview of mathematical models and analytical techniques for mmWave cellular sys-

tems are provided in [16]. Since the path loss and blockage models for mmWave

communications are significantly different from µWave communications, three differ-

ent states, namely line-of-sight (LOS), non-line-of-sight (NLOS) and outage states,

are considered for mmWave frequencies [12], [13].

In addition to mmWave cellular networks, there are other new technologies and

designs under consideration for 5G cellular networks in order to meet the increasing

data demand. One of them is expected to be the deployment of dense low-power

small-cell BSs to assist the congested lower-density high-power large-cell BSs by of-

floading some percentage of their user equipments (UEs), resulting in a better quality

of service per UE [5], [14]. Additionally, in the case of unexpected scenarios such as

disasters, accidents, and other emergencies or temporary events requiring the exces-

sive need for network resources such as concerts and sporting events, it is important

to provide wireless connectivity rapidly [17]–[19]. In such scenarios, the deployment
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of unmanned aerial vehicle (UAV) BSs, also known as drone BSs, has attracted con-

siderable attention recently as a possible solution.

These aforementioned considerations motive us to conduct the current and pro-

posed research, which will be described later in more detail in this thesis. Firstly, the

analysis of average symbol error probability (ASEP) in mmWave cellular networks

with Poisson Point Process (PPP) distributed base stations (BSs) is conducted using

tools from stochastic geometry. Secondly, we employ stochastic geometry to analyze

the energy efficiency of relay-assisted downlink mmWave cellular networks. Then, we

provide an analytical framework to analyze heterogeneous downlink mmWave cellular

networks consisting of K tiers of randomly located BSs where each tier operates in a

mmWave frequency band. We further study the uplink performance of the mmWave

cellular networks by considering the coexistence of cellular and potential D2D UEs

in the same band. In addition to mmWave cellular networks, we also study the

performance of UAV assisted cellular networks.

1.1 Main Contributions

We summarize the main contributions of the thesis below:

In Chapter 2, we develop a mathematical framework for the analysis of average

symbol error probability (ASEP) in mmWave cellular networks with PPP distributed

BSs using tools from stochastic geometry. We incorporate the distinguishing features

of mmWave communications such as directional beamforming and having different

path loss laws for LOS and NLOS links in the average error probability analysis.

First, we obtain average pairwise error probability (APEP) expression by averaging

pairwise error probability (PEP) over fading and random shortest distance from mo-

bile user (MU) to its serving BS. Subsequently, we approximate average symbol error

probability from APEP using the nearest neighbor (NN) approximation. We analyze
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ASEP for different antenna gains and base station densities. Finally, we investigate

the effect of beamforming alignment errors on ASEP to get insight on more realistic

cases. This chapter, as a conference paper, appeared in the Proceedings of the IEEE

Vehicular Technology Conference (VTC)-Fall in 2015 [20].

In Chapter 3, we analyze the energy efficiency of relay-assisted mmWave cellu-

lar networks with PPP distributed BSs and relay stations (RSs) using tools from

stochastic geometry. Following the description of the system model for mmWave cel-

lular networks, we compute the coverage probabilities for each link. Subsequently,

we model the average power consumption of BSs and RSs and determine the energy

efficiency in terms of system parameters. We also investigate the energy efficiency in

the presence of beamforming alignment errors to get insight on the performance in

practical scenarios. Finally, we analyze the impact of BS and RS densities, antenna

gains, main lobe beam widths, LOS interference range, and alignment errors on the

energy efficiency via numerical results. This chapter, as a conference paper, appeared

in the Proceedings of the IEEE Vehicular Technology Conference (VTC)-Fall in 2016

[21].

In Chapter 4, we provide an analytical framework to analyze heterogeneous down-

link mmWave cellular networks consisting of K tiers of randomly located BSs where

each tier operates in a mmWave frequency band. We derive the Signal-to-interference-

plus-noise ratio (SINR) coverage probability for the entire network using tools from

stochastic geometry. We take into account the distinguishing features of mmWave

communications such as directional beamforming and having different path loss laws

for LOS and NLOS links in the coverage analysis by assuming averaged biased-

received power association and Nakagami fading. We obtain a simpler expression

requiring the computation of only one numerical integral for coverage probability

by using the noise-limited assumption for mmWave networks. Also, we investigate

the effect of beamforming alignment errors on the coverage probability analysis to
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get insight on the performance in practical scenarios. We also derive the downlink

rate coverage probability to get more insights on the performance of the network.

Moreover, we analyze the effect of deploying low-power smaller cells and the impact

of biasing factor on energy efficiency. Finally, we address a hybrid cellular network

operating in both mmWave and µWave frequency bands. This chapter, as a journal

paper, appeared in IEEE Transactions on Communications in 2017 [22], and, as a

conference paper, appeared in the Proceedings of the IEEE Global Communications

Conference (Globecom) in 2016 [23].

In Chapter 5, we provide an analytical framework to analyze the uplink perfor-

mance of device-to-device (D2D)-enabled mmWave cellular networks. We derive the

SINR outage probabilities for both cellular and D2D links using tools from stochastic

geometry. We employ the distinguishing features of mmWave communications such

as directional beamforming and having different path loss laws for LOS and NLOS

links in the outage analysis by considering a flexible mode selection scheme and Nak-

agami fading. This chapter, as a conference paper, appeared in the Proceedings of

the IEEE Vehicular Technology Conference (VTC)-Fall in 2017 [24].

In Chapter 6, we provide an analytical framework to analyze the uplink perfor-

mance of D2D-enabled mmWave cellular networks with clustered D2D user UEs.

Locations of cellular UEs are modeled as a PPP, while locations of potential D2D

UEs are modeled as a Poisson Cluster Process (PCP). SINR outage probabilities are

derived for both cellular and D2D links using tools from stochastic geometry. The

distinguishing features of mmWave communications such as directional beamforming

and having different path loss laws for LOS and NLOS links are incorporated into

the outage analysis by employing a flexible mode selection scheme and Nakagami

fading. Also, the effect of beamforming alignment errors on the outage probability

is investigated to get insight on the performance in practical scenarios. Moreover,

area spectral efficiency (ASE) of the cellular and D2D networks are determined for
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both underlay and overlay types of sharing. Optimal spectrum partition factor is

determined for overlay sharing by considering the optimal weighted proportional fair

spectrum partition. This chapter , as a journal paper, appeared in IEEE Transactions

on Wireless Communications in 2019 [25], and, as a conference paper, appeared in

the Proceedings of the IEEE Vehicular Technology Conference (VTC)-Fall in 2018

[26].

In Chapter 7, we provide an analytical framework to analyze the SINR coverage

probability of unmanned aerial vehicle (UAV) assisted cellular networks with clus-

tered UEs. Locations of UAVs and ground BSs are modeled as PPPs, and UEs are

assumed to be distributed according to a PCP around the projections of UAVs on

the ground. Initially, the complementary cumulative distribution function (CCDF)

and probability density function (PDF) of path losses for both UAV and ground

BS tiers are derived. Subsequently, association probabilities with each tier are ob-

tained. SINR coverage probability is derived for the entire network using tools from

stochastic geometry. Finally, ASE of the entire network is determined, and SINR

coverage probability expression for a more general model is presented by considering

that UAVs are located at different heights. Via numerical results, we have shown

that UAV height and path-loss exponents play important roles on the coverage per-

formance. Moreover, coverage probability can be improved with smaller number of

UAVs, while better area spectral efficiency is achieved by employing more UAVs and

having UEs more compactly clustered around the UAVs. This chapter, as a journal

paper, appeared in the IEEE Access in 2018 [27].

In Chapter 8, we provide an analytical framework to analyze the energy coverage

performance of UAV energy harvesting networks with clustered UEs. Locations of

UAVs are modeled as a PPP, while locations of UEs are modeled as a PCP. Two

different models are considered for the LOS probability function to compare their

effect on the network performance. Moreover, ultra-wideband (UWB) antennas with
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Figure 7.1: UAVs (black plus signs) and BSs (red squares) are distributed as independent

PPPs, UEs (blue dots) are normally distributed around projections of UAVs on the ground.

as 0th tier that only includes the UAV at the cluster center of the typical UE similarly

as in [93] and [94]. Thus, our model consists of three tiers; a 0th tier cluster-center

UAV, 1st tier UAVs, and 2nd tier ground BSs. The proposed network model is shown

in Fig. 7.1.

Link between a UAV and the typical UE can be either a line-of-sight (LOS) or

non-line-of-sight (NLOS) link. Path-loss in NLOS links is generally higher than the

path-loss in LOS links due to the reflection and scattering of signals. Therefore, an

additional path-loss is experienced in NLOS links. Specifically, the path-loss of LOS

and NLOS links in tier k for k = 0, 1 can be modelled as follows [75], [96]:

Lk,LOS(r) = ηLOS(r2 +H2)αLOS/2

Lk,NLOS(r) = ηNLOS(r2 +H2)αNLOS/2 (7.3)

where r is the distance between the typical UE and the cluster center of the UAVs

on the 2-D plane, i.e., projections of UAVs on the ground, H is the UAV height,
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αLOS and αNLOS are the path-loss exponents, ηLOS and ηNLOS are the additional path

losses in LOS and NLOS links, respectively. Path-loss for the 2nd tier ground BSs

can be modeled by L2(r) = ηBr
αB where ηB is the additional path-loss over the free

space path-loss and αB is the path-loss exponent. Similar to the UAV-to-typical

UE link, the link between a BS and the typical UE can have two states, namely

LOS and NLOS, with a LOS probability function which depends on the size and

the density of the blockages in the environment. When communication occurs in

mmWave frequency bands, the effect of blockages plays an important role and cause

a significant difference between the LOS and NLOS path losses in the BS-to-typical

UE link. Although the analysis of two-state path-loss model would be very similar to

that of the UAV-to-typical UE link, in this chapter, we consider the transmission in

lower frequencies in which the difference between the LOS and NLOS path losses is

not very large, and we model the path-loss in the link between the BS and the typical

UE using a single state. Regarding the probability of LOS in UAV links, different

models have been proposed in the literature. In this chapter, we adopt the model

proposed in [75]:

PLOS(r) =
1

1 + b exp
(
−c
(

180
π

tan−1
(
H
r

)
− b
)) (7.4)

where b and c are constants which depend on the environment. As can be seen in

(7.4), probability of having a LOS connection increases as the height of the UAVs

increases.

7.2.1 Statistical Characterization of the Path Loss

We first characterize the complementary cumulative distribution function (CCDF)

and the probability density function (PDF) of the path-loss in the following lemmas

and corollaries.
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Lemma 7.1 The CCDF of the path-loss from the typical UE to a 0th tier UAV can

be formulated as

F̄L0(x) =
∑

s∈{LOS,NLOS}

F̄L0,s(x)

=
∑

s∈{LOS,NLOS}

∫ ∞√
( x
ηs

)
2/αs−H2

Ps
(√

d2 +H2
)
fD(d)dd (7.5)

where fD(d) and PLOS(r) are given in (7.1) and (7.4), respectively, and PNLOS(r) =

1− PLOS(r).

Proof: See Appendix I.

Lemma 7.2 CCDF of the path-loss from the typical UE to a 1st tier UAV is given

by

F̄L1(x) = exp(−Λ1([0, x))) (7.6)

where Λ1([0, x)) is defined as follows:

Λ1([0, x)) = Λ1,LOS([0, x)) + Λ1,NLOS([0, x))

=
∑

s∈{LOS,NLOS}

2πλU

∫ √(x/ηs)2/αs−H2

0

Ps(r)rdr. (7.7)

Similarly, the CCDF of the path-loss from the typical UE to a 2nd tier BS is given

by

F̄L2(x) = exp(−Λ2([0, x))) (7.8)

where Λ2([0, x)) = πλB(x/ηB)2/αB .

Proof: See Appendix J.
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Corollary 7.1 The PDF of the path-loss from the typical UE to a LOS/NLOS 0th

tier UAV can be computed as

fL0,s(x) = −
dFL0,s(x)

dx

=
1

σ2
c

x2/αs−1

αsη
2/αs
s

Ps

√( x
ηs

)2/αs

−H2

 exp

(
− 1

2σ2
c

((
x

ηs

)2/αs

−H2

))
. (7.9)

Corollary 7.2 The PDF of the path-loss from the typical UE to a LOS/NLOS 1st

tier UAV can be computed as

fL1,s(x) = −
dF̄L1,s(x)

dx
= Λ′1,s([0, x)) exp(−Λ1,s([0, x))) (7.10)

where Λ′1,s([0, x)) is obtained as follows using the Leibniz integral rule:

Λ′1,s([0, x)) = 2πλU
x2/αs−1

αsη
2/αs
s

Ps

√( x
ηs

)2/αs

−H2

 . (7.11)

Similarly, the PDF of the path-loss from the typical UE to a 2nd tier BS is given by

fL2(x) = −dF̄L2(x)

dx
= Λ′2([0, x)) exp(−Λ2([0, x))) (7.12)

where Λ′2([0, x)) = 2πλB
x2/αB−1

αBη
2/αB
B

.

7.2.2 Cell Association

In this work, we consider a flexible cell association scheme similarly as in [22], [50].

In this scheme, UEs are assumed to be associated with a UAV or a BS offering

the strongest long-term averaged biased-received power (ABRP). In other words, the
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typical UE is associated with a UAV or a BS in tier-k for k = 0, 1, 2 if

PkBkLk(r)
−1 ≥ PjBjLmin,j(r)

−1, for all j = 0, 1, 2, j 6= k (7.13)

where P and B denote the transmit power, and biasing factor, respectively, in the

corresponding tier (indicated by the index in the subscript), Lk(r) is the path-loss

in the kth tier as formulated in (7.3), and Lmin,j(r) is the minimum path-loss of the

typical UE from a UAV or BS in the jth tier. In the following lemmas, we provide the

association probabilities with a UAV/BS in the kth tier using the result of Lemma 1

and Corollary 1.

Lemma 7.3 The probability that the typical UE is associated with a 0th tier LOS/NLOS

UAV is

A0,s =

∫ ∞
ηsHαs

fL0,s(l0,s)e
−
∑2
j=1 Λj

([
0,
PjBj
P0B0

l0,s
))
dl0,s (7.14)

for s ∈ {LOS ,NLOS} where Λ1([0, x)), Λ2([0, x)), and fL0,s(l0) are given in (7.7),

(7.8), and (7.9), respectively. The probability that the typical UE is associated with a

1st tier LOS/NLOS UAV is

A1,s =

∫ ∞
ηsHαs

Λ′1,s([0, l1,s))F̄L0

(
P0B0

P1B1

l1,s

)
e
−
∑2
j=1 Λj

([
0,
PjBj
P1B1

l1,s
))
dl1,s (7.15)

for s ∈ {LOS ,NLOS} where F̄L0(x), and Λ′1,s([0, x)) are given in (7.5) and (7.11),

respectively.

The probability that the typical UE is associated with a 2nd tier BS is

A2 =

∫ ∞
0

Λ′2([0, l2))F̄L0

(
P0B0

P2B2

l2

)
e
−
∑2
j=1 Λj

([
0,
PjBj
P2B2

l2
))
dl2 (7.16)

where Λ′2([0, x)) is given in (7.12).
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Proof : See Appendix K.

7.3 SINR Coverage Analysis

In this section, we develop a theoretical framework to analyze the downlink SINR

coverage probability for the typical UE clustered around the 0th tier UAV using

stochastic geometry.

7.3.1 Signal-to-Interference-plus-Noise Ratio (SINR)

The SINR experienced at the typical UE at a random distance r from its associated

UAV/BS in the kth tier can be written as

SINRk =
Pkhk,0L

−1
k (r)

σ2
k +

∑
j Ij,k

(7.17)

where

Ij,k =
∑

i∈Φj\Ek,0

Pjhj,iL
−1
j,i (r) (7.18)

represents the sum of the interferences from the UAVs/BSs in the jth tier, hk,0 is the

small-scale fading gain from the serving BS, and σ2
k is the variance of the additive

white Gaussian noise component. Small-scale fading gains denoted by h are assumed

to have an independent exponential distribution in all links. According to the cell

association policy, the typical UE is associated with a BS/UAV whose path-loss is

Lk(r), and therefore there exists no BS/UAV within a disc of radius
PjBj
PkBk

Lk(r) cen-

tered at the origin. This region is referred to as the exclusion disc and is denoted by

Ek,0. 2

2In this chapter, UAVs, BSs and UEs are assumed to have omnidirectional antennas, i.e. antennas
with unit gain. However, the analysis can be extended to the case of directional antennas without
much difficulty. For instance, in this case, one needs to multiply the transmit powers of the serving
and interfering UAVs/BSs with the antenna gain, and update the exclusion discs for each tier by
considering antenna beamwidth.
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7.3.2 SINR Coverage Probability

The SINR coverage probability PC
k (Γk) is defined as the probability that the received

SINR is larger than a certain threshold Γk > 0 when the typical UE is associated with

a BS/UAV from the kth tier, i.e., PC
k (Γk) = P(SINRk > Γk|t = k) where t indicates

the associated tier. The total SINR coverage probability PC of the network can be

computed as follows:

PC =
1∑

k=0

∑
s∈{LOS,NLOS}

[
PC
k,s(Γk)Ak,s

]
+ PC

2 (Γ2)A2, (7.19)

where PC
k,s(Γk) is the conditional coverage probability given that the UE is associated

with a kth tier LOS/NLOS UAV, Ak,s is the association probability with the kth tier

for k ∈ {0, 1}, and PC
2 (Γ2) is the conditional coverage probability given that the UE

is associated with a BS in the 2nd tier and A2 is the association probability with the

2nd tier. In the following theorem, we provide the main result for the total network

coverage.

Theorem 7.1 : The total SINR coverage probability of the UAV assisted cellular

networks with clustered UEs is given as

PC =

∑
s∈{LOS,NLOS}

∫ ∞
ηsHαs

e
−

Γ0l0,sσ
2
0

P0

 2∏
j=1

LIj,0
(

Γ0l0,s
P0

) fL0,s(l0,s)e
−
∑2
j=1 Λj

([
0,
PjBj
P0B0

l0,s
))
dl0,s

+
∑

s∈{LOS,NLOS}

∫ ∞
ηsHαs

e
−

Γ1l1,sσ
2
1

P1

 2∏
j=0

LIj,1
(

Γ1l1,s
P1

)Λ′1,s([0, l1,s))F̄L0

(
P0B0

P1B1
l1,s

)

× e−
∑2
j=1 Λj

([
0,
PjBj
P1B1

l1,s
))
dl1,s

+

∫ ∞
0

e
−Γ2l2σ

2
2

P2

 2∏
j=0

LIj,2
(

Γ2l2
P2

)Λ′2([0, l2))F̄L0

(
P0B0

P2B2
l2

)
e
−
∑2
j=1 Λj

([
0,
PjBj
P2B2

l2
))
dl2

(7.20)
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where

LI0,k(u) =
∑

s′∈{LOS,NLOS}

∫ ∞
E0,0

1

1 + uP0x−1
fL0,s′

(x)dx (7.21)

LI1,k(u) =
∏

s′∈{LOS,NLOS}

exp

(
−
∫ ∞
E1,0

uP1x
−1

1 + uP1x−1
Λ′1,s′(dx)

)
(7.22)

LI2,k(u) = exp

(
−
∫ ∞
E2,0

uP2x
−1

1 + uP2x−1
Λ′2(dx)

)
. (7.23)

Proof: See Appendix L.

General sketch of the proof is as follows: First, SINR coverage probability is

computed given that the typical UE is associated with a kth tier LOS/NLOS UAV

or a 2nd tier BS. Subsequently, each of the conditional probabilities are multiplied

with their corresponding association probabilities, and then they are summed up

to obtain the total coverage probability of the network. In order to determine the

conditional coverage probabilities, Laplace transforms of interferences from each tier

are obtained using tools from stochastic geometry. We also note that although the

characterization in Theorem 7.1 involves multiple integrals, the computation can be

performed relatively easily by using numerical integration tools.

7.4 Area Spectral Efficiency

In Section 7.3, we have analyzed the SINR coverage probability performance of a UAV

assisted cellular network with clustered UEs. In this section, we consider another

crucial performance metric, namely area spectral efficiency (ASE), to measure the

network capacity. ASE is defined as the average number of bits transmitted per unit
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time per unit bandwidth per unit area. It can be mathematically defined as follows:

ASE =

(
λU

( 1∑
k=0

∑
s∈{LOS,NLOS}

[
PC
k,s(Γk)Ak,s

])
+ λBPC

2 (Γ2)A2

)
log2(1 + Γ) (7.24)

where PC
k,s(Γk) is the conditional coverage probability given that the UE is associated

with a kth tier LOS/NLOS UAV for k ∈ {0, 1}, and PC
2 (Γ2) is the conditional coverage

probability given that the UE is associated with a BS in the 2nd tier, λU and λB

are the average densities of simultaneously active UAV and BS links per unit area,

respectively. Note that ASE defined in (7.24) is valid for a saturated network scenario,

i.e., each UAV and BS has at least one cellular UE to serve in the downlink. If the

network is not saturated, the presence of inactive UAVs and BSs will lead to increased

SINR (due to lower interference), and coverage probability will increase. However,

ASE may be lower as a result of fewer number of active links per unit area.

7.5 Extension to a Model with UAVs at Different

Heights

In the preceding analysis, we consider that UAVs are located at a height of H above

the ground, and H is assumed to be the same for all UAVs. However, the proposed

analytical framework can also be employed to analyze the coverage probability when

UAV height is not fixed, i.e., UAVs are assumed to be located at different heights. In

this setup, we assume that there are M groups of UAVs such that the mth UAV group

is located at the height levelHm form = 1, 2, . . . ,M and UAVs at each height level can

be considered as a UAV-tier distributed according to an independent homogeneous

PPP with density of λU,m and the total density is equal to
∑M

m=1 λU,m = λU . Different

from the preceding analysis in which we have considered a single typical UE located

at the origin and named its cluster center UAV as 0th tier UAV, a separate typical
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UE for each UAV tier needs to be considered in the coverage probability analysis

for this model with UAVs at different heights. For example, when we are analyzing

the coverage probability of the network for a UE clustered around an mth tier UAV,

we assume that the typical UE is located at the origin and its cluster center UAV

is considered as the 0th tier UAV similar to the previous model. Therefore, SINR

coverage probability of the network given that the typical UE is clustered around an

mth tier UAV for m = 1, 2, . . . ,M can be computed as follows:

PC
m=

M∑
k=0

∑
s∈{LOS,
NLOS}

[
PC
m,k,s(Γk)Am,k,s

]
+ PC

m,M+1(ΓM+1)Am,M+1, (7.25)

where PC
m,k,s(Γk) is the conditional coverage probability given that the typical UE is

clustered around anmth tier UAV and it is associated with a kth tier LOS/NLOS UAV,

Am,k,s is the association probability with a kth tier LOS/NLOS UAV, PC
m,M+1(ΓM+1)

is the conditional coverage probability given that the typical UE is clustered around

an mth tier and it is associated with a BS in the (M + 1)st tier, and Am,M+1 is the

association probability with the (M + 1)st tier.

Theorem 7.2 SINR coverage probability of the network given that the typical UE is
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clustered around an mth tier UAV is given as

PC
m =

∑
s∈{LOS,NLOS}

∫ ∞
ηsH

αs
m

e
−

Γ0l0,sσ
2
0

P0

M+1∏
j=1

LIj,0
(

Γ0l0,s
P0

) fL0,s(l0,s)e
−
∑M+1
j=1 Λj

([
0,
PjBj
P0B0

l0,s
))
dl0,s

+
M∑
k=1

∑
s∈{LOS,NLOS}

∫ ∞
ηsH

αs
k

e
−

Γklk,sσ
2
k

Pk

M+1∏
j=0

LIj,k
(

Γklk,s
Pk

)Λ′k,s([0, lk,s))F̄L0

(
P0B0

PkBk
lk,s

)

× e−
∑M+1
j=1 Λj

([
0,
PjBj
PkBk

lk,s

))
dlk,s

+

∫ ∞
0
e
−

ΓM+1lM+1σ
2
M+1

PM+1

M+1∏
j=0

LIj,M+1

(
ΓM+1lM+1

PM+1

)Λ′2([0, lM+1))F̄L0

(
P0B0

PM+1BM+1
lM+1

)

× e
−
∑M+1
j=1 Λj

([
0,

PjBj
PM+1BM+1

lM+1

))
dlM+1 (7.26)

Proof: Derivation of PC
m follows similar steps as that of PC in (7.20). In particular,

Laplace transforms LI0,k and LIj,k for j = 1, 2, . . . ,M are computed using the Laplace

transform equations given in (7.21) and (7.22), respectively, by updating UAV height

as Hj and UAV density as λj for j = 0, 1, . . . ,M . Similarly, LIM+1,k
is computed

using the Laplace transform expression given in (7.23). Λj([0, x)) for j = 1, 2, . . . ,M

and Λ′k,s([0, x)) for k = 1, 2, . . . ,M are computed using the equations Λ1([0, x)) and

Λ′1,s([0, x)) given in (7.7) and (7.11), respectively, by inserting the UAV height and

UAV density for each tier. Similarly, ΛM+1([0, x)) and Λ′M+1([0, x)) are obtained using

the equations for the 2nd tier BSs, Λ2([0, x)) and Λ′2([0, x)), respectively. Furthermore,

F̄L0(x) and fL0,s(x) are computed using (7.5) and (7.9), respectively, by denoting the

UAV height as Hm.
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Table 7.1: System Parameters

Description Parameter Value

Path-loss exponents αLOS, αNLOS, αB 3, 3.5, 3.5

Average additional path-loss
for LOS and NLOS

ηLOS, ηNLOS, ηB 1, 10, 1

Environment dependent
constants

b, c 11.95, 0.136

Height of UAVs H 10m

Transmit power P0, P1, P2 37dBm, 37dBm,
40dBm

UAV and BS densities λU , λB 10−4, 10−5 (1/m2)

Biasing factor, SINR threshold,
noise variance

Bk, Γk, σ
2
k ∀k 1, 0dB, -90dBm

UEs distribution’s variance σ2
c 25

7.6 Simulation and Numerical Results

In this section, theoretical expressions are evaluated numerically. We also provide sim-

ulation results to validate the accuracy of the proposed model for the UAV-assisted

downlink cellular network with clustered UEs as well as to confirm of the analyt-

ical characterizations. In the numerical evaluations and simulations, unless stated

otherwise, the parameter values listed in Table 7.1 are used.

First, we investigate the effect of UE distribution’s standard deviation σc on the

association probability for different values of the UAV height H in Fig. 7.2. As the

standard deviation increases, the UEs have a wider spread and the distances between

the 0th tier UAV and UEs also increase. As a result, association probability with the

0th tier UAV decreases, while association probability with 1st tier UAVs and 2nd tier

ground BSs increases. Similarly, 0th tier association probability decreases also with the

increase in the heights of the UAVs due to increase in the relative distances between

the 0th tier UAV and UEs. Association probability with 2nd tier BSs increases, while

association probability with 1st tier UAVs remains almost unchanged. The intuitive

reason behind this behavior is that when all UAVs are at a higher height, UEs are still

more likely to be associated with the 0th tier UAV, which is at the center of cluster,
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Figure 7.2: Association probability as a function of UE distribution’s standard deviation

σc for different values of UAV height H. Simulation results are also plotted with markers.

rather than 1st tier UAVs. Therefore, more UEs get connected to the ground BSs if

the UAV height increases. Finally, we note that simulation results are also plotted

in the figure with markers and there is a very good match between simulation and

analytical results, further confirming our analysis.

Next, in Fig. 7.3 we plot the SINR coverage probabilities of different tiers (i.e.,

PC
0 , P

C
1 and PC

2 ) and also the total SINR coverage probability PC as a function of

the SINR threshold for different values of UAV height H. As seen in Fig. 7.2, UEs

are more likely to be associated with the 0th tier UAV, which is the UAV at their

cluster center, and therefore we observe in Fig. 7.3 that the coverage probability of

0th tier UAV is much higher than that of 1st tier UAVs and 2nd tier BSs. Fig. 7.3 also

demonstrates that the total coverage probability gets worse with the increasing UAV

height as a result of the increase in the distances between the 0th tier UAV and UEs.

As also noted in Fig. 7.3, this increase in the distances causes coverage probability

of ground BSs to increase. Also similarly as before, since the association probability

with the 1st tier UAVs remains almost unchanged with the increasing UAV height,
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Figure 7.3: SINR Coverage probability as a function of the threshold in dB for different

values of UAV height H. Simulation results are also plotted with markers.

their coverage probability also remains same.

In Fig. 7.4, the effect of path-loss exponents on the coverage probability is in-

vestigated at different values of the UAV height by assuming αLOS = αNLOS = αB

(additional path-loss for NLOS UAV links, ηNLOS, is still present.). Coverage prob-

ability initially improves when the path-loss exponents increase, but then it starts

diminishing. As path-loss exponents increase, received power from the serving UAV

or BS decreases, but the received power from interfering nodes also diminishes re-

sulting in an increase in the coverage performance. However, further increasing the

path-loss exponents deteriorates the coverage performance. Therefore, there exists an

optimal value for path-loss exponents in which the coverage probability is maximized

and this optimal value changes for different values of UAV height. For instance, we

notice in the figure that the optimal value decreases when the UAV height increases.

Increasing the height reduces the received power from the serving UAV, and hence

lower path-loss exponent is preferred to optimize the performance. Another observa-

tion from Fig. 7.4 is that coverage probability performance is not affected significantly
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Figure 7.4: SINR coverage probability as a function of the path-loss exponents αLOS =

αNLOS = αB for different values of UAV height H. Simulation results are also plotted with

markers.

from varying the path-loss exponent if the UAV height is small.

Next, SINR coverage probability is plotted as a function of the SINR threshold

for different values of UAV density λU in Fig. 7.5. As shown in the figure, increase

in the UAV density results in a degradation in the coverage probability. Since UEs

are clustered around the projections of UAVs on the ground, they are more likely to

be associated with the 0th tier UAV, i.e., the UAV at their cluster center. Therefore,

increasing UAV density results in higher interference levels from other UAVs and

consequently lower coverage probabilities. However, as we have shown in Fig. 7.6

increase in UAV density leads to higher area spectral efficiency (ASE) because more

UEs are covered in the network.

Specifically, in Fig. 7.6, we plot ASE as a function of the UAV density λU for

different values of standard deviation σc of the UE distribution. As the UAV density

λU increases, ASE first increases and then starts decreasing. This shows that there

exists an optimal value for λU maximizing the ASE. Below this optimal value, in-

creasing UAV density λU helps improving the spatial frequency reuse. However, after
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Figure 7.5: SINR coverage probability as a function of the threshold in dB for different

values of UAV density λU . Simulation results are also plotted with markers.

this optimal value, the effect of the increased received power from interfering UAVs

offsets the benefit of covering more UEs due to having more UAVs. Furthermore,

decrease in the UE distribution’s standard deviation σc results in a higher ASE for

the same value of λU . Smaller σc means that UEs are, on average, more compactly

packed around the cluster center, and hence the distance between the UAV at the

cluster center is shorter. Therefore, coverage probability is improved for smaller σc.

Also, optimal value for λU increases with decreasing σc indicating that more UAVs

can be deployed to support more UEs if UEs are located compactly in each cluster.

Finally, in Fig. 7.7, we plot the SINR coverage probability as a function of the

SINR threshold for two different values of the UE distribution’s standard deviation

σc when UAVs are assumed to be located at different heights. In this setup, we

use the same parameters given in Table 7.1 with some differences for UAV height

and UAV density. More specifically, we consider M = 2 groups of UAVs located at

altitudes H1 = 10m and H2 = 20m with densities λU,1 = λU,2 = λU/2 and transmit

powers P1 = P2 = 37dBm. Therefore, transmit power of the 0th UAV is also equal
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Figure 7.6: Area spectral efficiency (ASE) as a function of UAV density λU for different

values of UE distribution’s standard deviation σc. Simulation results are also plotted with

markers.

to P0 = 37dBm. Moreover, transmit power of the 3rd tier ground BSs is equal to

P3 = 40dBm. In Fig. 7.7, solid lines plot the coverage probabilities when the height

is the same for all UAVs. Dashed lines display the coverage probabilities when half

of the UAVs are located at height H1 and the other half are located at height H2,

and the typical UE is clustered around a UAV at either height H1 or H2. As shown

in the figure, for σc = 5 when the typical UE is clustered around a UAV at height

H1 = 10m in the model with two different UAV heights, it experiences almost the

same coverage performance with the typical UE when all UAVs are at the same height

of H1 = 10m. The same observation can be made for the case of H2 = 20m. On

the other hand, when σc gets larger (and hence the UEs are more widely spread

around the cluster-center UAV), coverage performance in the model with UAVs at

two different height levels becomes worse than that of the case in which all UAVs are

at the same height. Moreover, coverage performances for the typical UEs clustered

around UAVs at heights H1 = 10m and H2 = 20m approach each other. There are

mainly three reasons behind these results: 1) association probability with the other
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UAVs and BSs rather than the cluster-center 0th tier UAV increases for larger values

of σc (e.g., see Fig. 7.2); 2) when the typical UAV is clustered around a UAV at

height H1 = 10m, interference from half of the UAVs located at height H2 = 20m is

smaller than that if all UAVs were at the same height of H1 = 10m, but at the same

time if the UE is associated not with its cluster center UAV but with a UAV at height

H2 = 20m, link distance will be larger, adversely affecting the coverage probability;

3) when the typical UE is clustered around a UAV at height H2 = 20m, interference

from half of the UAVs located at the lower height of H1 = 10m is greater but if the UE

is associated with a non-cluster-center UAV at height H1 = 10m then the link quality

can be better due to shorter distance. Hence, there are several interesting competing

factors and tradeoffs. As a result, we observe in the case of large σc that due to either

increased interference or higher likelihood of being associated with a UAV at a larger

height, coverage performances in the model with different UAV heights get degraded

compared to the scenario in which all UAVs are at the same height.

7.7 Conclusion

In this chapter, we have provided an analytical framework to compute the SINR

coverage probability of UAV assisted cellular networks with clustered UEs. Moreover,

we have formulated the ASE, and investigated the effect of UAV density and standard

deviation of the UE distribution on the ASE. Furthermore, we have presented SINR

coverage probability expression for a more general model by considering that UAVs

are located at different heights. UAVs and ground BSs are assumed to be distributed

according to independent PPPs, while locations of UEs are modeled as a PCP around

the projections of UAVs on the ground and UEs are assumed to be connected to the

tier providing the maximum average biased-received power.

Using numerical results, we have shown that standard deviation of UE distribu-
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ferent values of the UE distribution’s standard deviation σc. Solid lines show the coverage
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located at height H2 = 20m, and the typical UE is clustered around a UAV at either height
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tion σc and UAV height H have significant impact on association probabilities. For

instance, less compactly located UEs and higher UAV height lead to a decrease in

the association with the cluster center UAV. We have also shown that total coverage

probability can be improved by reducing the UAV height as a result of the decrease

in the distances between cluster center UAV and UEs. Moreover, path-loss exponents

play a crucial role in the coverage performance if the UAV height is high, and there

exists an optimal value for path-loss exponents in which the coverage probability is

maximized. Another important observation is that smaller number of UAVs results in

a better coverage performance, while deployment of more UAVs lead to a higher ASE.

Furthermore, a higher ASE can be achieved if the UES are located more compactly

in each cluster.
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Chapter 8

Energy Harvesting in Unmanned

Aerial Vehicle Networks with 3D

Antenna Radiation Patterns

In this chapter, an analytical framework is provided to analyze the energy coverage

performance of unmanned aerial vehicle (UAV) energy harvesting networks with clus-

tered user equipments (UEs). Locations of UAVs are modeled as a Poison Point Pro-

cess (PPP), while locations of UEs are modeled as a Poisson Cluster Process (PCP).

Two different models are considered for the line-of-sight (LOS) probability function to

compare their effect on the network performance. Moreover, ultra-wideband (UWB)

antennas with doughnut-shaped radiation patterns are employed in both UAVs and

UEs, and the impact of practical 3D antenna radiation patterns on the network per-

formance is also investigated. Initially, the complementary cumulative distribution

function (CCDF) and probability density function (PDF) of path losses for each tier

are derived. Subsequently, association probabilities with each tier are obtained. En-

ergy coverage probability is derived for the entire network using tools from stochastic

geometry. Via numerical results, we have shown that cluster size and UAV height
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play crucial roles on the energy coverage performance. Furthermore, energy coverage

probability is significantly affected by the antenna orientation and number of UAVs

in the network.

8.1 Introduction

In order to meet the growing data demand due to increasing use of smart phones,

portable devices, and data-hungry multimedia applications, new technologies and

designs have been under consideration for 5G cellular networks. As we discussed in

Chapter 7, one of them is expected to be the deployment UAV BSs. UAVs have been

primarily considered as high-altitude platforms at altitudes of kilometers to provide

coverage in rural areas. On the other hand, use of low-altitude UAVs has also become

popular recently due to the advantage of having better link quality in shorter-distance

line-of-sight (LOS) channels with the ground users. Moreover, owing to the relative

flexibility in UAV deployments, UAV BSs can be employed in a variety of scenarios

including public safety communications and data collection in Internet of Things (IoT)

applications. Other scenarios include disasters, accidents, and other emergencies and

also temporary events requiring substantial network resources in the short-term such

as in concerts and sporting events, in order to provide wireless connectivity rapidly

[17]–[19].

In addition to growing data traffic, increasing number of devices results in a sig-

nificant growth in energy demand. RF (radio frequency) energy harvesting where

a harvesting device may extract energy from the incident RF signals has emerged

as a promising solution to power up low-power consuming devices [97], [98]. There-

fore, the advances in energy harvesting technologies have motivated research in the

study of different wireless energy harvesting networks. For example, wireless energy

and/or information transfer in large-scale millimeter-wave and microwave networks
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has been studied in [99]–[102]. In these works, energy is harvested wirelessly from

energy transmitters which are generally deployed at fixed locations. However, low-

power consuming devices can potentially be distributed in a large area, and in such

cases the performance of energy harvesting will be limited by the low end-to-end

power transmission efficiency due to the loss of RF signals over long distances [103].

In order to improve the efficiency, instead of fixed energy transmitters such as

ground base stations (BSs), the deployment of mobile energy transmitters is pro-

posed recently. In particular, UAV-assisted energy harvesting has become attractive

due to the flexibility and relative ease in deploying UAV BSs. In [104], mobility of

the UAV with a directional antenna is exploited by jointly optimizing the altitude,

trajectory, and transmit beamwidth of the UAV in order to maximize the energy

transferred to two energy receivers over a finite charging period. In [103], authors

consider a more general scenario with more than two energy receivers where the

amount of received energy by all energy receivers is maximized via trajectory control.

In [105], a UAV-enabled wireless power transfer network is studied as well. Minimum

received energy among all ground nodes is maximized by optimizing the UAV’s one-

dimensional trajectory. Both downlink wireless power transfer and uplink information

transfer is considered in [106] with one UAV and a set of ground users in which the

UAV charges the users in downlink and users use the harvested energy to send the

information to the UAV in the uplink. Similarly, a wireless-powered communication

network with a mobile hybrid access point UAV is considered in [107] where the UAV

performs weighted energy transfer and receives information from the far-apart nodes

based on the weighted harvest-then-transmit protocol.

In a separate line of research in the literature, the performance of UAV-assisted

wireless networks is extensively studied recently. Similar to 2D networks, stochastic

geometry has been employed in the network level analysis of UAV networks by consid-

ering UAVs distributed randomly in 3D space. Effect of different network parameters
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on the coverage probability is explored in several recent works such as [27], [76],

[77]. Spectrum sharing in UAV networks is analyzed in [79], [84], [108]. Additionally,

optimal deployment of UAVs is investigated in [80]–[83].

It is important to note that the antenna number, type, and orientation are critical

factors that affect the performance in UAV-assisted networks. Indeed, several recent

studies, e.g., [109] and [110], have addressed scenarios in which antenna arrays are

deployed in UAV-assisted cellular networks. Regarding the antenna type, omnidirec-

tional antennas can be used especially considering the mobility of UAVs [111]. At

the same time, since even the UAV’s own body can shadow the antenna and result

in a poor link quality, the orientation of the antennas plays an important role on

the performance [112]. There has been limited analytical and experimental works

studying the effect of three dimensional (3D) antenna radiation patterns on the link

quality between the UAV and ground users. In [112], impact of antenna orientation

is investigated by placing two antennas on a fixed wing UAV flying on a linear path

with 802.11a interface. Similarly, path loss and small-scale fading characteristics of

UAV-to-ground user links are analyzed with a simple antenna extension to 802.11

devices in [113]. In [114], ultra-wideband (UWB) antennas with doughnut-shaped

radiation patterns are employed at both UAVs and ground users to analyze the link

quality at different link distances, UAV heights, and antenna orientations. Authors

develop a simple analytical model to approximate the impact of the 3D antenna ra-

diation pattern on the received signal. However, none of these works study the effect

of UAV antenna orientation on the network performance.

Similar to Chapter 7, in this chapter we also consider a UAV network consisting

of UAVs operating at a certain altitude above ground. While we model the locations

of UAVs as Poisson Point Process (PPP) distributed, locations of UEs are modeled

as a Poisson cluster process (PCP). Since UAVs are deployed in overloaded scenarios,

locations of UAVs and UEs are expected to be correlated and UEs are more likely
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to form clusters. Hence, modeling the UE locations by PCP is more appropriate and

realistic. Moreover, we consider that UWB antennas with doughnut-shaped radiation

patterns are employed at both UAVs and UEs, and we study the effect of practical

3D antenna radiation patterns on the network performance.

More specifically, our main contributions can be summarized as follows:

• An analytical framework is provided to analyze energy coverage performance of

a UAV network with clustered UEs by employing tools from stochastic geometry.

Locations of UEs are modeled as PCP distributed to capture the correlations

between the UAV and UE locations.

• We divide the network into two tiers: 0th tier UAV and 1st tier UAVs. 0th tier

UAV is the cluster center UAV around which the typical UE is located, while

other UAVs constitute the 1st tier.

• Two different LOS probability functions, i.e., a high-altitude model and a low-

altitude model, are considered in order to investigate and compare their impact

on the network performance.

• Different from the previous studies, more practical antennas with doughnut-

shaped radiation patterns are employed at both UAVs and UEs to provide a

more realistic performance evaluation for the network.

• We first derive the CCDFs and the PDFs of the path losses for each tier, then

obtain the association probabilities by using the averaged received power UAV

association rule.

• Total energy coverage probability is determined by deriving the Laplace trans-

forms of the interferences from each tier using tools from stochastic geometry.
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8.2 System Model

In this section, the system model for a UAV network with clustered UEs is presented.

We consider a downlink network, where the UAVs are spatially distributed according

to an independent homogeneous PPP ΦU with density λU on the Euclidean plane.

UAVs are placed at a height of H above the ground. UAVs are deployed to provide

relief to the ground cellular BSs by offloading traffic from them around hotspots or

large gatherings such as sporting events or concerts. In energy harvesting applications,

UAVs can be used to transfer energy to e.g., ground sensors, to energize them. They

can also be deployed during emergencies or other instances during which ground BS

resources are strained [85]. UEs are clustered around the projections of UAVs on

the ground, and the union of cluster members’ locations form a PCP, denoted by

ΦC . Since UEs are located in high UE density areas, they are expected to be closer

to each other, forming clusters. Therefore, PCP is a more appropriate and accurate

model than a homogeneous PPP.

In this chapter, we model ΦC as a Thomas cluster process, where the UEs are

symmetrically independently and identically distributed (i.i.d.) around the cluster

centers (which are projections of UAVs on the ground), according to a Gaussian

distribution with zero mean and variance σ2
c . The probability density function (PDF)

and complementary cumulative distribution function (CCDF) of a UE’s location are

given, respectively, by [40]

fD(d) =
d

σ2
c

exp

(
− d2

2σ2
c

)
, d ∈ R2, (8.1)

F̄D(d) = exp

(
− d2

2σ2
c

)
, d ∈ R2. (8.2)

where d is the 2D distance of a UE with respect to the cluster center on the ground.

Without loss of generality, a typical UE is assumed to be located at the origin accord-

ing to Slivnyak’s theorem, and it is associated with the UAV providing the maximum
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Figure 8.1: Network model for a UAV energy harvesting network. BSs are distributed as

a PPP, while UEs are normally distributed around the cluster centers (projections of UAVs

on the ground). Both BS and UEs are equipped with UWB antennas with different antenna

orientations.

average received power. Although we have only one tier network composed of UAVs,

we also consider an additional tier, named as 0th tier that only includes the cluster

center of the typical UE similarly as in [27] and [93]. Thus, our network model can

be considered as a two-tier network consisting of a 0th tier cluster-center UAV and

1st tier UAVs. The proposed network model is shown in Fig. 8.1.

8.2.1 Path Loss and Blockage Modeling

A transmitting UAV can either have a line-of-sight (LOS) or non-line-of-sight (NLOS)

link to the typical UE. Consider an arbitrary link of length r between a UE and a

UAV, and define the LOS probability function as the probability that the link is

LOS. Different LOS probability functions have been proposed in the literature. In

this chapter, we adopt the two models proposed in [75] and [115], which are high-

altitude and low-altitude models, respectively.

High-altitude model is widely used especially in satellite communications where

the altitude is around thousands of meters. It has also been widely employed in UAV-

assisted networks recently. LOS probability function for the high-altitude model is
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given as follows:

Phigh
LOS(r) =

(
1

1 + b exp
(
−c
(

180
π

sin−1
(
H
r

)
− b
))) , (8.3)

where r is the 3D distance between the UE and UAV, H is the UAV height, b and c

are constants which depend on the environment. As can be seen in (8.3), probability

of having a LOS connection increases as the height of the UAVs increases.

Since practical values for UAV height in certain applications is around 50∼100

meters, a more realistic LOS probability function proposed for 3GPP terrestrial com-

munications is employed also for UAV networks in [115]. The height of a macrocell

base station is usually around 32 m, which is comparable to the practical UAV height.

Therefore, employment of the LOS probability function for 3GPP macrocell-to-UE

communciation is also reasonable for the UAV networks in such relatively low-altitude

scenarios. For the low-altitude model, LOS probability function is expressed as

P low
LOS(r) = min

(
1,

18

r

)(
1− exp

(
− r

63

))
+ exp

(
− r

63

)
. (8.4)

Note that different from the high-altitude model, LOS probability function in (8.4)

decreases with the increase in the 3D distance r, independent of the UAV height.

In Fig. 8.2, LOS probability function is plotted using high-altitude and low-altitude

models. Solid lines show the LOS probability as a function of the UAV height H when

the 2D distance to the cluster center UAV is fixed at d = 10 m, and dashed lines

display the LOS probability as a function of the 2D distance to the cluster center UAV

d when the UAV height is H = 50 m. As shown in Fig. 8.2, LOS probability increases

with increasing UAV height when the high-altitude model is used, and decreases when

the low-altitude model is considered. We observe that the LOS probability decreases

for both models as the 2D distance to the cluster center UAV increases. We also

note that the analysis in the remainder of the chapter is general and is applicable to
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Figure 8.2: LOS probability function for high-altitude and low-altitude models as a function

of (a) UAV height H and (b) 2D distance to the cluster center UAV d.

any LOS probability function. Only in Section 8.5, we employ the LOS probability

functions in (8.3) and (8.4) to obtain the numerical results.

Path loss in NLOS links is generally higher than the path-loss in LOS links due to

the reflection and scattering of signals. Therefore, different path loss laws are applied

to LOS and NLOS links. Thus, the path loss on each link in tier k for k = 0, 1 can

be expressed as follows:

Lk,LOS(r) = rαLOS

Lk,NLOS(r) = rαNLOS ,

(8.5)

where αLOS and αNLOS are the LOS and NLOS path-loss exponents, respectively.

8.2.2 3D Antenna Modeling

In this chapter, we adopt the analytical model developed in [114] for the effect of

3D antenna radiation patterns on the received signal. UWB transmitter and receiver

antennas with doughnut-shaped radiation patterns are placed at the UAV and UE,

respectively, and air-to-ground channel measurements are carried out in order to

characterize the impact of the 3D antenna radiation pattern on the received signal for
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different antenna orientations in [114]. As a result of these measurements, transmitter

and receiver antenna gains are modeled analytically for horizontal-horizontal (HH),

horizontal-vertical (HV) and vertical-vertical (VV) antenna orientations as follows:

Gk(θ) = GTX(θ)GRX(θ) =


sin(θ)sin(θ) for HH

sin(θ)cos(θ) for HV,

cos(θ)cos(θ) for VV

(8.6)

where θ is the elevation angle between the transmitter at the UAV and the receiver at

the UE on the ground. In this antenna model, radiation pattern is approximated by

a circle in the vertical dimension, while it is assumed to be constant for all horizontal

directions. In other words, antenna gains depend only on the elevation angle θ, and

are considered as independent of the azimuth angle between the transmitter at the

UAV and the receiver at the UE. Approximated antenna radiation patterns of UAV

and UE are shown in Fig. 8.3 for HH antenna orientation. They can be plotted for

HV and VV orientations as well by rotating the transmitter and/or receiver antennas

by 90◦. Note that for HH antenna orientation GTX(θ) = GRX → 0 as θ → 0 which

happens when the UEs are located far away from the cluster center, i.e. as the

σc increases, and GTX(θ) = GRX → 1 as θ → 90o which happens when the UEs

get closer to the cluster center. Similar observations can be drawn for VH and VV

antenna orientations. Effective antenna gain Gk as a function of r can be rewritten

in terms of UAV height H and the path loss on each link in tier k for k = 0, 1 as

follows:

Gk(r) =



H2L
− 2
αs

k,s (r) for HH

H

(√
L

2
αs
k,s(r)−H2

)
L
− 2
αs

k,s (r) for HV(
L

2
αs
k,s(r)−H

2

)
L
− 2
αs

k,s (r) for VV.

(8.7)

In the rest of the analysis, we assume that the typical UE and all UAVs in the
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Figure 8.3: Approximated antenna radiation pattern for HH antenna orientation.

network have horizontal antenna orientation. Therefore, HH antenna orientation for

the main link and interfering links are considered due to its analytical tractability.

Moreover, UEs are considered to be clustered around the projections of UAVs on the

ground and more UEs are encouraged to be associated with their cluster center UAV.

As a result, the angle between the transmitter at the UAV and the receiver at the UE

is expected to be large. Therefore, HH antenna orientation is more suitable than the

other two orientations. However, in the numerical results section, simulation results

for HV and VV orientations are also provided in order to compare their effect on the

UAV association and energy coverage probabilities.
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8.3 Path Loss and UAV Association

8.3.1 Statistical Characterization of the Path Loss

We first characterize the complementary cumulative distribution function (CCDF)

and the probability density function (PDF) of the path loss in the following lemmas

and corollaries.

Lemma 8.1 The CCDF of the path loss from a typical UE to a 0th tier UAV can be

formulated as

F̄L0(x) =
∑

s∈{LOS,NLOS}

F̄L0,s(x)

=
∑

s∈{LOS,NLOS}

∫ ∞
√
x2/αs−H2

Ps(
√
d2 +H2)fD(d)dd, (8.8)

where fD(d) is given in (8.1), Ps(·) is the LOS or NLOS probability depending on

whether s = LOS or s = NLOS 1.

Proof: See Appendix M.

Lemma 8.2 CCDF of the path loss from a typical UE to a 1st tier UAV is given by

F̄L1(x) =
∏

s∈{LOS,NLOS}

F̄L1,s(x) =
∏

s∈{LOS,NLOS}

exp
(
− Λ1,s([0, x))

)
, (8.9)

where Λ1,s([0, x)) is defined as follows:

Λ1,s([0, x)) = 2πλU

∫ x
1
αs

H

Ps(r)rdr. (8.10)

1For instance, LOS probability is given by (8.3) and (8.4) for the high-altitude and low-altitude
models, respectively, and NLOS probability is PNLOS = 1− PLOS
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Proof: See Appendix N.

Corollary 8.1 The PDF of the path loss from a typical UE to a 0th tier LOS/NLOS

UAV can be computed by using the Leibniz integral rule as follows:

fL0,s(x) = −
dF̄L0,s(x)

dx

=
1

σ2
c

x
2
αs
−1

αs
Ps
(
x

1
αs

)
exp

(
− 1

2σ2
c

(
x

2
αs −H2

))
. (8.11)

Corollary 8.2 The PDF of the path loss from a typical UE to a 1st tier LOS/NLOS

UAV can be computed as

fL1,s(x) = −
dF̄L1,s(x)

dx
= Λ′1,s([0, x)) exp

(
− Λ1,s([0, x))

)
, (8.12)

where Λ′1,s([0, x)) is obtained as follows using the Leibniz integral rule:

Λ′1,s([0, x)) = 2πλU
x

2
αs
−1

αs
Ps
(
x

1
αs

)
. (8.13)

In the results above, we have determined the CCDFs and PDFs of the path loss

for each tier. They depend on the key network parameters including the variance of

the cluster process σ2
c , UAV density λU , UAV LOS probability Ps(·), UAV height H

and path loss exponents αs. In the following sections, these distributions are utilized

in determining the association and energy coverage probabilities.

8.3.2 Cell Association

In this work, UEs are assumed to be associated with a UAV offering the strongest

long-term averaged power. In other words, a typical UE is associated with its cluster
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center UAV, i.e., the 0th UAV, if

P0G0(r)L−1
0 (r) ≥ P1G1(r)L−1

min,1(r), (8.14)

where Pk and Gk(r) denote the transmit power and antenna gain of the link, respec-

tively, in tier k ∈ (0, 1). L0(r) is the path loss from the 0th tier UAV, and Lmin,1(r)

is the path loss from 1st UAV providing the minimum path loss. In the following

lemma, we provide the association probabilities using the result of Lemmas 8.1 and

8.2 and Corollaries 8.1 and 8.2.

Lemma 8.3 The association probabilities with a 0th tier LOS/NLOS UAV and 1st

tier LOS/NLOS UAV are given, respectively, as

A0,s =

∫ ∞
Hαs

∏
m∈{LOS,NLOS}

F̄L1,m

((
P1

P0

l
2
αs

+1

0,s

) αm
αm+2

)
fL0,s(l0,s)dl0,s, (8.15)

A1,s =

∫ ∞
Hαs

∑
m∈{LOS,NLOS}

F̄L0,m

((
P0

P1

l
2
αs

+1

1,s

) αm
αm+2

)
F̄L1,s′

(l1,s)fL1,s(l1,s)dl1,s, (8.16)

where s, s′ ∈ {LOS,NLOS} and s 6= s′.

Proof : See Appendix O.

8.4 Energy Coverage Probability Analysis

In this section, we develop a theoretical framework to analyze the energy coverage

probability for a typical UE clustered around the 0th tier UAV (i.e., its own cluster-

center UAV) using stochastic geometry.
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8.4.1 Downlink Power Transfer

The total power received at a typical UE at a random distance r from its associated

UAV in the kth tier can be written as

Pr,k = Sk +
1∑
j=0

Ij,k for k = 0, 1, (8.17)

where the received power from the serving UAV Sk and the interference power received

from the UAVs in the jth tier Ij,k are given as follows:

Sk = PkGk(r)hk,0L
−1
k (r), (8.18)

I0,1 = P0G0(r)h0,0L
−1
0 (r), (8.19)

I1,k =
∑

i∈ΦU\Ek,0

P1Gi(r)h1,iL
−1
i (r), (8.20)

where hk,0 and hj,i are the small-scale fading gains from the serving and interfering

UAVs, respectively. Note that since only one UAV exists in the 0th tier, I0,0 = 0.

All links are assumed to be subject to independent Rayleigh fading, i.e., small-scale

fading gains denoted by h have an exponential distribution. According to the UAV

association policy, when a typical UE is associated with a UAV whose path loss is

Lk(r), there exists no UAV within a disc Ek,0 centered at the origin. This region is

referred to as the exclusion disc.

8.4.2 Energy Coverage Probability

The energy harvested at a typical UE in unit time is expressed as Ek = ξPr,k where

ξ ∈ (0, 1] is the rectifier efficiency, and Pr,k is the total received power given in

(8.17). Since the effect of additive noise power is negligibly small relative to the total

received power, it is omitted [99]. The conditional energy coverage probability EC
k (Γk)

is defined as the probability that the harvested energy Ek is larger than the energy
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outage threshold Γk > 0 given that the typical UE is associated with a UAV from

the kth tier, i.e., EC
k (Γk) = P(Ek > Γk|t = k) where t indicates the associated tier.

Therefore, total energy coverage probability EC for the typical UE can be computed

as follows:

EC =
1∑

k=0

∑
s∈{LOS,NLOS}

[
EC
k,s(Γk)Ak,s

]
, (8.21)

where EC
k,s(Γk) is the conditional energy coverage probability given that the UE is

associated with a kth tier LOS/NLOS UAV, Ak,s is the association probability. In

the following theorem, we provide the main result for the total energy coverage prob-

ability.

Theorem 8.1 In a UAV network with practical antenna radiation patterns and clus-

tered UEs, the total energy coverage probability for the typical UE is approximately

given by

EC ≈
∑

s∈{LOS,NLOS}

N∑
n=0

(−1)n
(
N

n

)

×

[∫ ∞
Hαs

(
1 + âP0H

2l
−(1+ 2

αs
)

0,s

)−1

LI1,0 (Γ0, E0,0)

×
∏

m∈{LOS,NLOS}

F̄L1,m

((
P1

P0

l
2
αs

+1

0,s

) αm
αm+2

)
fL0,s(l0,s)dl0,s

+

∫ ∞
Hαs

(
1 + âP1H

2l
−(1+ 2

αs
)

1,s

)−1
(

1∏
j=0

LIj,1 (Γ1, E1,0)

)

×
∑

m∈{LOS,NLOS}

F̄L0,m

((
P0

P1

l
2
αs

+1

1,s

) αm
αm+2

)
F̄L1,s′

(l1,s)fL1,s(l1,s)dl1,s

]
(8.22)

where â = nη
Γk/ξ

, η = N(N !)−
1
N , N is the number of terms in the approximation and

the Laplace transforms of the interference terms are given by

LI0,k(Γk, Ek,0) =
∑

s′∈{LOS,NLOS}

∫ ∞
Ek,0

(
1 + âP0H

2x
−
(

1+ 2
αs′

))−1

fL0,s′
(x)dx, (8.23)
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LI1,k(Γk, Ek,0) =

∏
s′∈{LOS,NLOS}

exp

(
−
∫ ∞
Ek,0

1−

(
1 + âP1H

2x
−
(

1+ 2
αs′

))−1
Λ′1,s′([0, x))dx

)
. (8.24)

Proof: See Appendix P.

Note that since 0th tier consists of only one UAV, i.e., the cluster center UAV,

Laplace transform expression LI0,0(Γ0, E0,0) = 1. General sketch of the proof is as

follows. First, energy coverage probability is computed given that a UE is associated

with a kth tier LOS/NLOS UAV. Subsequently, each of the conditional probabilities

are multiplied with their corresponding association probabilities, and are summed up

to obtain the total energy coverage probability of the network. In order to determine

the conditional energy coverage probabilities, Laplace transforms of interferences from

each tier are obtained using tools from stochastic geometry. We also note that al-

though the characterization in Theorem 8.1 involves multiple integrals, we explicitly

see the dependence of the energy coverage on, for instance, UAV heights, path loss

distributions, path loss exponents, transmission power levels. Moreover, the integrals

can be computed relatively easily by using numerical integration tools, providing us

with additional insight on the impact of key system/network parameters, as demon-

strated in the next section.

8.5 Simulation and Numerical Results

In this section, we provide the numerical evaluations of theoretical expressions in

addition to the simulation results in order to validate the accuracy of the proposed

UAV network model as well as to confirm of the analytical characterizations. In the

numerical evaluations and simulations, unless stated otherwise, the parameter values

listed in Table 8.1 are used.
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Table 8.1: System Parameters

Description Parameter Value

Path-loss exponents αLOS,
αNLOS

2, 4

Environment dependent constants b, c 11.95, 0.136

Height of UAVs H 50 m

Transmit power Pk ∀k 37 dBm

Energy outage threshold Γk ∀k -30 dB

UAV density λU 10−4 (1/m2)
UE distribution’s standard
deviation

σc 10

Rectifier efficiency ξ 1

8.5.1 Impact of Cluster Size

First, we investigate the effect of UE distribution’s standard deviation σc on the

association probability and the energy coverage probability using the LOS probability

functions of high-altitude and low-altitude models of (8.3) and (8.4) in Figs. 8.4a and

8.4b. As the standard deviation increases, the UEs have a wider spread and the

distances between the cluster-center 0th tier UAV and UEs also increase. As a result,

association probability with the 0th tier UAV, A0, decreases, while the association

probability with 1st tier UAVs, A1, increases for both models. Also, for a fixed height,

LOS probability of cluster center UAV decreases for both models with the increasing

cluster size, and hence association probabilities exhibit similar trends. Therefore,

the energy coverage probability of the 0th tier UAV, EC
0 , increases while the energy

coverage probability of the 1st tier UAVs, EC
1 , decreases as the cluster size grows in

both models. On the other hand, the increase in EC
1 cannot compensate the decrease

in EC
0 , and therefore the total energy coverage probability EC diminishes. In other

words, smaller cluster size, i.e., more compactly distributed UEs results in a higher EC.

Finally, we note that simulation results are also plotted in the figure with markers

and there is a very good match between simulation and analytical results, further

confirming our analysis.



172

10 20 30 40 50 60 70 80 90 100

Cluster Size (
c
)

0

0.2

0.4

0.6

0.8

1

A
s
s
o
c
ia

ti
o
n
 P

ro
b
a
b
ili

ty

A
0
 (P

L

high
)

A
1
 (P

L

high
)

A
0
 (P

L

low
)

A
1
 (P

L

low
)

(a) Association probability.

10 20 30 40 50 60 70 80 90 100

Cluster Size (
c
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

E
n
e
rg

y
 C

o
v
e
ra

g
e
 P

ro
b
a
b
ili

ty

E
0

C
 (P

L

high
)

E
1

C
 (P

L

high
)

E
C

 (P
L

high
)

E
0

C
 (P

L

low
)

E
1

C
 (P

L

low
)

E
C

 (P
L

low
)

(b) Energy coverage probability.

Figure 8.4: (a) Association probability and (b) energy coverage probability as a function

of UE distribution’s standard deviation σc for LOS probability functions of high-altitude

and low-altitude models when H = 50 m. Simulation results are plotted with markers while

dashed/solid curves show theoretical results.
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8.5.2 Impact of UAV Height

Next, in Figs. 8.5a and 8.5b, we plot the association probability and energy coverage

probability as a function of UAV height considering the LOS probability functions of

both high-altitude and low-altitude models. For the high-altitude model, since LOS

probability increases with the increasing UAV height, association probability with

the 0th tier UAV increases slightly. On the other hand, LOS probability decreases

as a result of the increase in the 3D distance with the increasing UAV height in the

low-altitude model. Therefore, more UEs prefer to connect to 1st tier UAVs (i.e.,

UAVs other than the cluster-center one) at higher values of the UAV height.

Energy coverage probability of the cluster center UAV, EC
0 , exhibits similar trends

for both types of LOS functions. More specifically, EC
0 increases first then it starts

decreasing with the increasing UAV height. Since the effective antenna gain for HH

antenna orientation is an increasing function of UAV height for a fixed cluster size, an

initial increase in EC
0 is expected. However, further increase in UAV height results in

a decrease in EC
0 of both high-altitude and low-altitude models due to the increase in

the distance. Therefore, for a fixed cluster size, there exists an optimal UAV height

maximizing the network energy coverage, EC, for both models. On the other hand,

optimal height maximizing the EC in the low-altitude model is lower and EC decreases

faster than that in the high-altitude model because the LOS probability function of

the low-altitude model is a decreasing function of distance while the LOS probability

function of the high-altitude model is an increasing function of the UAV height (e.g.,

as seen in Fig. 8.2). Moreover, since UEs are more compactly distributed around the

cluster center UAVs for σc = 10, energy coverage probability of the 1st tier UAVs,

EC
1 , is relatively small and changes only very slightly for both models.
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Figure 8.5: (a) Association probability and (b) energy coverage probability as a function

of UAV height H for LOS probability functions of high-altitude and low-altitude models

when σc = 10. Simulation results are plotted with markers while dashed/solid curves show

theoretical results.
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(b) VV orientation.
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Figure 8.6: Association probability as a function of UAV height H for different values of

UAV density λU for (a) HH, (b) VV and (c) HV antenna orientations when σc = 10.
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Figure 8.7: Energy coverage probability as a function of UAV height H for different values

of UAV density λU for different antenna orientations when σc = 10.

8.5.3 Impact of Antenna Orientation

In Figs. 8.6a, 8.6b and 8.6c, we plot the association probability as a function of UAV

heightH for different values of UAV density λU for three different antenna orientations

considering the high-altitude LOS probability model. Note that since the analysis for

VV and HV antenna orientations seems to be intractable, only simulation results are

plotted. Since effective antenna gain depends on the sine function of the angle between

the UAVs and UEs for HH antenna orientation, UEs prefer to connect to their cluster

center UAV, and hence A0 is much larger than A1 even when there is an increase in

the number of UAVs (as seen when the UAV density is increased from λU = 10−5

to λU = 10−4) as shown in Fig. 8.6a. Also note that since both antenna gain and

LOS probability is an increasing function with UAV height, increase in them can

compensate the increasing path loss and the association probabilities remain almost

constant.

For the VV case, effective antenna gain depends on the cosine function of the angle

between the UAVs and UEs, and hence the links between the farther away UAVs and
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UEs have a greater effective antenna gain than the closer links. As a result, UEs

are more likely to be associated with 1st tier UAVs than the cluster-center UAV in a

denser UAV network (with UAV density λU = 10−4) as shown in Fig. 8.6b. On the

other hand, as the density of UAVs decreases, larger path loss of 1st tier UAVs results

in cluster-center UAV being preferred at lower UAV heights. However, as the height

increases, A1 dominates A0.

Finally, for the HV case, effective antenna gain is a function of both cosine and sine

of the angle between θ. For larger values of UAV density, association probability with

the 0th tier UAV, A0, slightly increases with increasing UAV height at first as a result

of increase in both the LOS probability and the effective antenna gain. Subsequently,

it starts decreasing because the increase in the LOS probability cannot compensate

the rapid decrease in the effective antenna gain between the UE and the cluster center

UAV. For a less dense network, UEs associate with the cluster-center UAV mostly

at lower UAV heights. However, with the increasing height, antenna gain with the

cluster-center UAV decreases and consequently, the association probability with 1st

tier UAVs, A1, increases.

We also plot the energy coverage probability for different UAV heights, antenna

orientations, and UAV densities in Fig. 8.7. The performance with the HV antenna

orientation exhibits similar behavior as that with the HH antenna orientation which is

described in Section 8.5.2. The only difference is that increasing the UAV density im-

proves the energy coverage performance for both HH and HV orientations as a result

of the increase in the interference levels (which are indeed beneficial for energy har-

vesting purposes). On the other hand, performance with the VV antenna orientation

is significantly different from that with other antenna orientations. For lower-density

UAV networks, UEs are forced to connect with their cluster center UAV as shown in

Fig. 8.6b at lower UAV height values, and hence the performance degrades initially

with increasing UAV height, but then starts improving with the further increase in
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Figure 8.8: Energy coverage probability as a function of UAV density λU .

the height as a result of increase in the association with 1st tier UAVs which pro-

vide higher antenna gains. When the UAV density is higher, UEs are more likely

to be associated with the 1st tier UAVs rather than the cluster-center UAV. In this

case, better energy coverage probability is achieved. Therefore, energy coverage per-

formance can be improved by changing the antenna orientations depending on the

number of UAVs in the network and their height.

Furthermore, we plot the energy coverage probability as a function of UAV density

for three different antenna orientations considering the high-altitude LOS probability

model in Fig. 8.8. Energy coverage probability is an increasing function of UAV

density irrespective of antenna orientation for a fixed UAV height. Adding more

UAVs to the network results in an increase in the total power received at the typical

UE, hence energy coverage performance of the network improves. We also note that

VV antenna orientation generally leads to larger energy coverage probabilities when

the UAV density is sufficiently large, due to the fact that one can harvest more

energy from the dense 1st-tier UAVs with smaller elevation angles when this antenna

orientation is used. .
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Figure 8.9: Energy coverage probability as a function of energy outage threshold in dB

for LOS probability functions of high-altitude and low-altitude models when σc = 10 and

H = 50 m. Simulation results are plotted with markers while dashed/solid curves show

theoretical results.

8.5.4 Impact of Energy Outage Threshold

In Fig. 8.9, we plot the energy coverage probabilities of different tiers (i.e., EC
0 and

EC
1 ) and also the total energy coverage probability EC as a function of the energy

outage threshold for both high-altitude and low-altitude models. As seen in Fig. 8.4a

and Fig. 8.5a, UEs are more likely to be associated with the 0th tier UAV rather

than 1st tier UAVs in the high-altitude model when σc = 10, and hence EC
0 is much

higher than EC
1 . On the other hand, for the low-altitude model, since association

probabilities with each tier are not very different, more UEs can be covered by 1st

tier UAVs compared to the high-altitude model. However, EC
0 is still greater than EC

1

due to the relatively smaller distance to the cluster-center UAV. We also observe that

as a general trend, energy coverage probabilities expectedly diminish with increasing

energy outage threshold.
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8.6 Conclusion

In this chapter, we have provided an analytical framework to compute the energy

coverage probability of a UAV network with clustered UEs. UAVs are assumed to

be distributed according to an independent PPP, while locations of UEs are modeled

as a PCP around the projections of UAVs on the ground, and UEs are assumed to

be connected to the tier providing the strongest long-term averaged power. In this

setting, we have determined the association probabilities and characterized the energy

coverage probability. We have analyzed the effect of two different LOS probability

functions on the network performance. We have also investigated the impact of

practical 3D antenna radiation patterns on the energy coverage performance.

Using numerical results, we have shown that standard deviation of UE distribution

σc, UAV height H, and antenna orientation have significant impacts on UAV asso-

ciation and energy coverage probabilities. For instance, less compactly located UEs

result in a decrease in the total energy coverage probability of the network for both

LOS probability models. While for a certain cluster size there exists an optimal UAV

height that maximizes the network energy coverage, this optimal height depends on

the type of the LOS probability model. We have also shown that antenna orientation

greatly affects the energy coverage probability depending on the UAV density, and

better performance can be achieved by changing the antenna orientations according

to the number of UAVs in the network and their height.
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Chapter 9

Conclusion

9.1 Summary

In this thesis, performance of mmWave cellular networks has been studied. Tools

from stochastic geometry are employed to study the error probability, energy effi-

ciency, coverage probability, outage probability of mmWave cellular networks. Addi-

tionally, performance of the UAV assisted cellular networks is analyzed. Specifically,

the contributions of this thesis are summarized below.

In Chapter 2, we have analyzed the average error performance of downlink mmWave

cellular networks, incorporating the distinguishing features of mmWave communica-

tion into the average error probability analysis. Sectored antenna and simplified

ball-LOS models have been considered to simplify the analysis. Numerical results

show that employing directional antennas improves the error performance. Also, we

show that better ASEP values can be obtained by increasing BS density and main

lobe gain.

In Chapter 3, we have analyzed the energy efficiency of relay-assisted downlink

mmWave cellular networks by incorporating the distinguishing features of mmWave

communication into the energy efficiency analysis. Directional beamforming with
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sectored antenna model and simplified ball-LOS models have been considered in the

analysis. BSs and RSs are assumed to be distributed according to independent PPPs,

and SINR coverage probabilities are derived using tools from stochastic geometry to

characterize the energy efficiency. Numerical results demonstrate that employing

directional antennas makes the mmWave cellular networks more energy efficient. In

other words, increasing the main lobe gain and decreasing the main lobe beam width

results in improved energy efficiency. We have also shown that BS density should

be lowered to achieve the maximum energy efficiency when the LOS ball radius is

larger. Moreover, we have observed that there is a tradeoff between the area spectral

efficiency and energy efficiency depending on the RS density. Finally, the effect of

alignment error on energy efficiency is quantified.

In Chapter 4, we have provided a general analytical framework to compute the

SINR and rate coverage probabilities in heterogeneous downlink mmWave cellular

networks composed of K tiers. Moreover, we have studied the energy efficiency met-

ric and analyzed the effect of biasing on energy efficiency. Directional beamforming

with sectored antenna model and D-ball approximation for blockage model have been

considered in the analysis. BSs of each tier and UEs are assumed to be distributed

according to independent PPPs, and UEs are assumed to be connected to the tier

providing the maximum average biased-received power. Numerical results show that

mmWave cellular networks can be approximated to be noise-limited rather than be-

ing interference-limited especially if the number of tiers is small. We have also shown

that increasing main lobe gain results in higher SNR coverage. Moreover, we have

observed the effect of biasing. Increase in the biasing factor of smaller cells has led

to better coverage probability of smaller cells because of the higher number of UEs

connected to them, while the overall network coverage probability has slightly di-

minished due to association with the BS not offering the strongest average received

power. Furthermore, we have shown that smaller cells provide higher rate than larger



183

cells. Additionally, it is verified that there is an optimal biasing factor to achieve the

maximum energy efficiency. The effect of alignment error on coverage probability is

also quantified. Finally, we have demonstrated that the proposed analytical frame-

work is also applicable to µWave-mmWave hybrid networks, and gleaned interesting

insight on the impact of interference when operating in µWave frequency bands.

In Chapter 5, we have provided an analytical framework to compute SINR outage

probabilities for both cellular and D2D links in a D2D-enabled mmWave cellular

network. Directional beamforming with sectored antenna model and modified LOS

ball model for blockage modeling have been considered in the analysis. BSs and

UEs are assumed to be distributed according to independent PPPs, and potential

D2D UEs are allowed to choose cellular or D2D mode according to a flexible mode

selection scheme. Numerical results show that probability of selecting D2D mode

increases with increasing biasing factor Td and decreasing pL,c. We have also shown

that increasing the main lobe gain and decreasing the beam width of the main lobe

result in lower SINR outage. Moreover, we have observed that the type of spectrum

sharing plays a crucial role in SINR outage performance of cellular UEs.

In Chapter 6, we have provided an analytical framework to compute the SINR out-

age probabilities for both cellular and D2D links in a D2D-enabled mmWave cellular

network with clustered UEs. Distinguishing features of mmWave communications,

such as directional beamforming with sectored antenna model, modified LOS ball

model for blockage modeling and Nakagami fading, have been considered in the anal-

ysis. BSs and cellular UEs are assumed to be distributed according to independent

PPPs, while potential D2D UEs locations’ are modeled as a PCP. Potential D2D

UEs in the clusters are allowed to choose cellular or D2D mode according to a flexible

mode selection scheme. Under these assumptions, we have analyzed the interference

experienced in cellular uplink and D2D links, and characterized the SINR outage

probabilities. Numerical results show that probability of selecting D2D mode de-
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creases with increasing UE distribution’s standard deviation σd and increasing pL,c,

while increase in pL,d leads to higher D2D mode selection probability. We have also

shown that more simultaneously transmitting potential D2D UEs and/or higher clus-

ter center density result in higher outage probabilities for both cellular and D2D links

due to the growing impact of interference. Moreover, the type of spectrum sharing

plays a crucial role in the SINR outage performance of cellular UEs. Another inter-

esting observation is that smaller LOS ball radius is preferred for small values of σd

while the opposite is advantageous for large values of σd. Moreover, increasing the

main lobe gain and decreasing the beam width of the main lobe result in lower SINR

outage. Effect of alignment error on outage probability is also quantified and impor-

tance of beam alignment in improving the performance is noted. Finally, ASE of the

cellular and D2D networks are analyzed for both underlay and overlay types of shar-

ing. We have shown that there is an optimal number of simultaneously active D2D

links, maximizing the ASE in the D2D network. This optimal number is independent

of the cluster center density and spectrum partition factor. For overlay sharing, there

exists an optimal spectrum partition factor if the optimal weighted proportional fair

spectrum partition is considered.

In Chapter 7, we have provided an analytical framework to compute the SINR

coverage probability of UAV assisted cellular networks with clustered UEs. Moreover,

we have formulated the ASE, and investigated the effect of UAV density and standard

deviation of the UE distribution on the ASE. Furthermore, we have presented SINR

coverage probability expression for a more general model by considering that UAVs

are located at different heights. UAVs and ground BSs are assumed to be distributed

according to independent PPPs, while locations of UEs are modeled as a PCP around

the projections of UAVs on the ground and UEs are assumed to be connected to the

tier providing the maximum average biased-received power. Using numerical results,

we have shown that standard deviation of UE distribution σc and UAV height H have
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significant impact on association probabilities. For instance, less compactly located

UEs and higher UAV height lead to a decrease in the association with the cluster

center UAV. We have also shown that total coverage probability can be improved

by reducing the UAV height as a result of the decrease in the distances between

cluster center UAV and UEs. Moreover, path-loss exponents play a crucial role in the

coverage performance if the UAV height is high, and there exists an optimal value

for path-loss exponents in which the coverage probability is maximized. Another

important observation is that smaller number of UAVs results in a better coverage

performance, while deployment of more UAVs lead to a higher ASE. Furthermore, a

higher ASE can be achieved if the UES are located more compactly in each cluster.

In Chapter 8, we have provided an analytical framework to compute the energy

coverage probability of a UAV network with clustered UEs. UAVs are assumed to

be distributed according to an independent PPP, while locations of UEs are modeled

as a PCP around the projections of UAVs on the ground, and UEs are assumed to

be connected to the tier providing the strongest long-term averaged power. In this

setting, we have determined the association probabilities and characterized the energy

coverage probability. We have analyzed the effect of two different LOS probability

functions on the network performance. We have also investigated the impact of

practical 3D antenna radiation patterns on the energy coverage performance. Using

numerical results, we have shown that standard deviation of UE distribution σc,

UAV height H, and antenna orientation have significant impacts on UAV association

and energy coverage probabilities. For instance, less compactly located UEs result

in a decrease in the total energy coverage probability of the network for both LOS

probability models. While for a certain cluster size there exists an optimal UAV

height that maximizes the network energy coverage, this optimal height depends on

the type of the LOS probability model. We have also shown that antenna orientation

greatly affects the energy coverage probability depending on the UAV density, and
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better performance can be achieved by changing the antenna orientations according

to the number of UAVs in the network and their height.

9.2 Future Research Directions

In this section, some promising directions are presented for future work related to the

contributions in this thesis.

9.2.1 Simultaneous Information and Energy Transfer in UAV

Networks with 3D Antenna Radiation Patterns

In Chapter 8, energy coverage probability of a UAV network with clustered users is

studied. Impacts of different LOS probability functions and practical 3D antenna

radiation on the network performance is analyzed. In this work, we consider only

downlink power transfer. On the other hand, transmitted signal carry both energy

and information simultaneously. Therefore, in order to make the best use of the RF

spectrum and radiations, a joint transfer of information and power to the receiv-

ing node, which is known as simultaneous wireless information and power transfer

(SWIPT), has attracted considerable attention in recent years. Employment of UAVs

in SWIPT systems is another promising research direction. Therefore, it would be

interesting to analyze the performance of a UAV network with SWIPT and practical

3D antenna radiation.

9.2.2 Visible Light Communication Energy Harvesting

As we have discussed in Chapter 8, energy consumption of wireless devices has been

increasing tremendously and hence RF energy harvesting technology, where the en-

ergy content of incident signal from BSs/UAVs are exploited for energy harvesting,

is one of the promising solutions to meet this increasing energy demand. However,
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currently utilized RF spectrum will not be sufficient to provide energy to the expo-

nentially increasing number of wireless devices. Therefore, coexistence of RF and

visible light communication (VLC) links for energy harvesting has been emerged as a

promising technology. Hence, it would be interesting to study the energy harvesting

in a network consisting of both UAVs and ground BSs.
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Appendix A

Proof of Lemma 4.1

Intensity function for the D-ball path loss model can be computed as

Λk([0, x))
(a)
=

∫
R2

P(Lk(r) < x)dr

= 2πλk

∫ ∞
0
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where (a) follows from the definition of intensity function for the point process of the

path loss Nk = {Lk(r)}r∈φk ; (b) is obtained when different values of distance depen-

dent path loss exponent αk(r) are inserted according to the D-ball model; and (c)

follows from the definition of the indicator function. Finally, evaluating the integrals

and rearranging the terms, we obtain the result in Lemma 4.1.
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Appendix B

Proof of Lemma 4.3

Note that the association probability is

Ak,s = P
(
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where s, s′ ∈ {LOS,NLOS}, and s 6= s′. In (a), CCDF of Lj is formulated as a

result of the first probability expression, and similarly P(Lk,s′ > Lk,s) = F̄Lk,s′ (lk,s) =

e−Λk,s′ ([0,lk,s)); (b) follows from the definition of the CCDF of the path loss, and by plug-

ging the PDF of the path loss Lk,s; and (c) follows from the fact that Λk,s([0, lk,s)) +

Λk,s′([0, lk,s)) = Λk([0, lk,s)).



191

Appendix C

Proof of Theorem 4.1

The coverage probability can be expressed as
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]
,

(C.1)

where the last step follows from the assumption that Φj and Φk are independent

from each other for j 6= k. The expression to obtain the association probability, Ak,s

was provided in Lemma 4.3. Given that the UE is associated with a BS in Φk,s, the
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conditional coverage probability Pk,s
C (Γk) can be computed as follows
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Ij,LOS + Ij,NLOS

)))

≈
Ns∑
n=1

(−1)n+1

(
Ns

n

)
e−uσ

2
k

K∏
j=1

(
LIj,LOS

(u)LIj,NLOS
(u)

)
, (C.2)

where u =
nηsΓkLk,s
PkG0

, Ij,s =
∑

i∈Φj,s\Bk,0 PjGj,ihj,iL
−1
j,i (r) is the interference from the

jth tier LOS and NLOS BSs, and LIj,s(u) is the Laplace transform of Ij,s evaluated

at u. The approximation in the last step is obtained using the same approach as

in [9, Equation (22) Appendix C]. Tools from stochastic geometry can be applied to

compute the Laplace transform LIj,s(u) for s ∈ {LOS,NLOS}. Using the thinning

property, we can split Ij,s into three independent PPPs as follows [32]:

Ij,s = IMM
j,s + IMm

j,s + Immj,s =
∑

G∈{MM,Mm,mm}

IGj,s (C.3)

where IGj,s for s ∈ {LOS,NLOS} denotes the interference from BSs with random

antenna gain G defined in (4.1). According to the thinning theorem, each independent

PPP has a density of λjpG where pG is given in (4.1) for each antenna gain G ∈

{MM,Mm,mm}. Inserting (C.3) into the Laplace transform expression and using

the definition of Laplace transform yield

LIj,s(u) = EIj,s [e−uIj,s ] = EIj,s
[
e−u(I

MM
j,s +IMm

j,s +Immj,s )
]

=
∏
G

EIGj,s [e
−uIGj,s ], (C.4)

where G ∈ {MM,Mm,mm}, u =
nηsΓkLk,s
PkG0

, and the last step follows from the fact

that IGj,ss are the interferences generated from independent thinned PPPs. Laplace
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transforms of the interferences from the LOS and NLOS interfering BSs with a generic

antenna gain G can be calculated using stochastic geometry as follows:

EIGj,s
[
e−uI

G
j,s

]
= e

−
∫∞
PjBj
PkBk

lk,s

(
1−Eh,s

[
e−uPjGhj,sx

−1
])

Λ′j,s(dx)

(a)
= e

−
∫∞
PjBj
PkBk

lk,s

(
1−1/(1+uPjGx

−1/Ns)
Ns
)

Λ′j,s(dx)

, (C.5)

where Λ′j,s(dx) is obtained by differentiating the equations in (4.6) and (4.7) with

respect to x for s ∈ {LOS,NLOS}, respectively, (a) is obtained by computing the

moment generating function (MGF) of the gamma random variable h, and the lower

bound for the integral is determined using the fact that the minimum separation

between the UE and the interfering BS from the jth tier is equal to
PjGjBj
PkGkBk

lk,s. Fi-

nally, by combining (4.11), (C.1), (C.2), (C.4) and (C.5), SINR coverage probability

expression given in Theorem 4.1 is obtained.
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Appendix D

Proof of Lemma 6.1

Probability of selecting the D2D mode for a potential D2D UE located in a cluster

x ∈ ΦC can be computed as

PD2D

=
∑

s∈{L,N}

∑
s′∈{L,N}

P
(
Tdr
−αs′,d
d ≥ r−αs,cc

)
ps′,d(rd)Bs,c

=
∑

s∈{L,N}

∑
s′∈{L,N}

P
(
rc ≥ r

αs′,d/αs,c
d T

−1/αs,c
d

)
ps′,d(rd)Bs,c

=
∑

s∈{L,N}

∑
s′∈{L,N}

∫ ∞
0

∫ ∞
0

F̄s

rαs′,d/αs,cd

T
1/αs,c
d

 fRd(rd|ω)fΩ(ω)ps′,d(rd)Bs,cdrddω

(a)
=

∑
s∈{L,N}

∑
s′∈{L,N}

∫ ∞
0

∫ ∞
0

e
−2πλBψs

(
r
αs′,d/αs,c
d /T

1/αs,c
d

)
fRd(rd|ω)fΩ(ω)ps′,d(rd)drddω

(D.1)

where F̄s(rc) = e−2πλBψs(rc)/Bs,c is the complementary cumulative distribution func-

tion (ccdf) of the cellular link distance rc to the nearest LOS/NLOS BS, Bs,c =

1 − e−2πλB
∫∞
0 xps,c(x)dx is the probability that a UE has at least one LOS/NLOS BS,

ps′,d(rd) is the LOS/NLOS probability function for the D2D link given in (6.4), and

(a) follows by substituting the cdf of rc into the expression.
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Appendix E

Proof of Lemma 6.2

Laplace transform of the aggregate interference at the BS from cellular UEs trans-

mitting in the same uplink channel in different cells can be calculated using (6.13) as

follows:

LIcc(v) =
∏
G

∏
j

LIGcc,j(v), (E.1)

where the Laplace transform for IGcc,j can be computed using stochastic geometry as

follows:

LIGcc,j (v)
(a)
= exp

(
− 2πλBpG

∫ ∞
0

(
1− Eh

[
e−vPcGht

−αj,c
])
Q(tαj,c)pj,c(t)tdt

)
(b)
= exp

(
− 2πλBpG

∫ ∞
0

(
1− 1

(1 + vPcGt−αj,c/Nj)
Nj

)
Q (tαj,c) pj,c(t)tdt

)
,

(E.2)

where (a) follows from computing the probability generating functional (PGFL) of

PPP and h in (a) is a gamma random variable with parameter Nj, (b) is obtained by

computing the MGF of the gamma random variable h, and Q(y) is given in (6.3). By

inserting (E.2) into (E.1) for j ∈ {L,N} andG ∈ {MBS0MUE,MBS0mUE,mBS0MUE,mBS0mUE},

the Laplace transform expression can be obtained.
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Appendix F

Proof of Lemma 6.3

Laplace transform of the aggregate interference at the BS from both intra-cluster and

inter-cluster D2D UEs can be calculated using (6.13)

LIdc(v) =
∏
G

∏
j

LIGdc,j(v), (F.1)
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where the Laplace transform for IGdc,j can be computed using stochastic geometry and

following the similar steps as in [70]:

LIGdc,j (v)

(a)
= EΦC

 ∏
x∈ΦC

EAxd

 ∏
y∈Axd

Ehyx
[
e−vPdGhyx‖x+y‖−αj,d

]
(b)
= EΦC

 ∏
x∈ΦC

EAxd

 ∏
y∈Axd

1

(1 + vPdG‖x+ y‖−αj,d/Nj)
Nj


(c)
= EΦC

[ ∏
x∈ΦC

∞∑
k=0

(∫
R2

1

(1 + vPdG‖x+ y‖−αj,d/Nj)
Nj
pj,d(‖x+ y‖)fY (y)dy

)k
P(K = k)

]

(d)
= exp

(
− λC

∫
R2

(
1−

∞∑
k=0

(∫
R2

1

(1 + vPdG‖x+ y‖−αj,d/Nj)
Nj

(‖x+ y‖)fY (y)dy

)k

× pj,d
(n̄PD2DpG)ke−(n̄PD2DpG)

k!

)
dx

)
(e)
= exp

(
− 2πλC

∫ ∞
0

(
1−

∞∑
k=0

(∫ ∞
0

1

(1 + vPdGu
−αj,d/Nj)

Nj
pj,d(u)fU (u|w)du

)k

× (n̄PD2DpG)ke−(n̄PD2DpG)

k!

)
wdw

)
(f)
= exp

(
− 2πλC

∫ ∞
0

(
1− exp

(
− n̄PD2DpG

∫ ∞
0

(
1− 1

(1 + vPdGu
−αj,d/Nj)

Nj

)

× pj,d(u)fU (u|w)du

))
wdw

)
(F.2)

where (a) follows from the assumption of independent fading gains across all inter-

fering links, (b) is obtained by computing the moment generating function (MGF)

of the gamma random variable hyx with parameter Nj, (c) follows from the fact

that the locations of the cluster members in each cluster are independent when

conditioned on x ∈ ΦC and expectation over the number of interfering devices

which are Poisson distributed, (d) is determined by computing the probability gen-

erating functional (PGFL) of PPP, (e) follows by applying a change of variables

with ‖x + y‖ → u, and converting the coordinates from Cartesian to polar by
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using the pdf of the distance distribution fRyx (ryx|ω) = Ricepdf(ryx , ω;σ2
d) where

{ryx = ‖x + y‖,∀x ∈ ΦC ,∀y ∈ Axd} and ω = ‖x‖, (f) follows from the averaging kth

power of A =
∫∞

0
1

(1+vPdGu
−αj,d/Nj)

Nj
pj,d(u)fU(u|w)du over the Poisson distribution,

i.e.,
∑∞

k=0(A)k (n̄PD2DpG)ke−(n̄PD2DpG)

k!
= e−(n̄PD2DpG)(1−A). By inserting (F.2) into (F.1)

for j ∈ {L,N} and G ∈ {MBS0MUE,MBS0mUE,mBS0MUE,mBS0mUE}, we obtain the

Laplace transform expression in (6.15).

Laplace transform expression in (F.2) can be lower bounded by

LIdc(v)

(a)

≥ exp

(
− 2πλC n̄PD2DpG

∫ ∞
0

∫ ∞
0

Ψ

(
Nj ,

vPdGu
−αj,d

Nj

)
fU (u|w)pj,d(u)duwdw

)

= exp

(
− 2πλC n̄PD2DpG

∫ ∞
0

Ψ

(
Nj ,

vPdGu
−αj,d

Nj

)
pj,d(u)udu

)
(F.3)

where Ψ(N, x) = 1 − 1/(1 + x)N , (a) follows from the Taylor series expansion of

exponential function, i.e. 1− exp(−x) ≈ x for small x, and the last step follows from

the Rician distribution property that
∫∞

0
fU(u|w)wdw = u. By inserting (F.3) into

(F.1) for j ∈ {L,N} and G ∈ {MBS0MUE,MBS0mUE,mBS0MUE,mBS0mUE}, we obtain

the lower bound in (6.16).
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Appendix G

Proof of Lemma 6.5

Laplace transform of the intra-cluster interference at the typical UE ∈ N x0
r in the

representative cluster can be calculated using (6.13) as follows:

LIddintra
(v|w0)) =

∏
G

∏
j

LIGddintra,j
(v), (G.1)
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where the Laplace transform for IGddintra,j
conditioned on w0 can be computed following

similar steps as in the proof of Lemma F:

LIGddintra,j
(v)

= EAx0
d

 ∏
y∈Ax0

d \y0

Ehyx0

[
e−vPdGhyx0

‖x0+y‖−αj,d
]

(a)
= EAx0

d

 ∏
y∈Ax0

d \y0

1

(1 + vPdG‖x0 + y‖−αj,d/Nj)
Nj


(b)
=

∞∑
k=0

(∫
R2

1

(1 + vPdG‖x0 + y‖−αj,d/Nj)
Nj
pj,d(‖x0 + y‖)fY (y)dy

)k
P(K = k)

=

∞∑
k=0

(∫
R2

1

(1 + vPdG‖x0 + y‖−αj,d/Nj)
Nj
pj,d(‖x0 + y‖)fY (y)dy

)k

× ((n̄PD2D − 1)pG)ke−(n̄PD2D−1)pG

k!

(c)
= exp

(
− (n̄PD2D − 1) pG

∫ ∞
0

(
1− 1

(1 + vPdGu
−αj,d/Nj)

Nj

)
fU (u|w0)pj,d(u)du

)
(G.2)

where (n̄PD2D − 1)pG is the mean number of the interfering D2D UEs in D2D mode

in the representative cluster with random antenna gain G, i.e. total of n̄PD2D D2D

UEs in D2D mode are simultaneously transmitting on average in this cluster, (a) is

obtained by computing the MGF of the gamma random variable hyx0
with parameter

Nj, (b) follows from the fact that the locations of the intra-cluster D2D UEs simul-

taneously transmitting in D2D mode are independent when conditioned on x0 ∈ ΦC

and expectation over the number of interfering devices which are Poisson distributed,

(c) follows by applying a change of variables with ‖x0 + y‖ → u, and converting

the coordinates from Cartesian to polar by using the pdf of the distance distribution

fRd1 (rd1|ω) = Ricepdf(rd1 , ω0;σ2
d) where {rd1 = ‖x0+y‖,∀y ∈ Ax0

d \y0} and ω0 = ‖x0‖,

and averaging the kth power of A =
∫∞

0
1(

1+vPdGr
−αj,d
d1 /Nj

)Nj fU(u|w0)pj,d(u)du over

Poisson distribution, i.e.,
∑∞

k=0(A)k ((n̄PD2D−1)pG)ke−((n̄PD2D−1)pG)

k!
= e−((n̄PD2D−1)pG)(1−A).
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By inserting (G.2) into (G.1) for j ∈ {L,N} andG ∈ {MUEMUE,MUEmUE,mUEMUE,mUEmUE},

we readily obtain the Laplace transform expression.
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Appendix H

Proof of Theorem 6.1

The outage probability for a typical UE in cellular mode can be calculated as follows:

Pcout(Γ) = Pcout,L(Γ)BL,c + Pcout,N (Γ)BN,c

Pcout(Γ) =
∑

s∈{L,N}

P

(
PcG0h0r

−αs,c
c

σ2
N + Icc + Idc

≤ Γ

)
Bs,c

=
∑

s∈{L,N}

∫ ∞
0
P
(
h0 ≤

Γr
αs,c
c

PcG0

(
σ2
N + Icc + Idc

)∣∣∣∣rc) fs(rc)Bs,cdrc
≈

∑
s∈{L,N}

∫ ∞
0

Ns∑
n=0

(−1)n
(
Ns

n

)
e−vσ

2
NLIcc(v)LIdc(βv)fs(rc)Bs,cdrc (H.1)

where v = nηsΓr
αs,c
c

PcG0
, h0 is a gamma random variable with parameter Ns, LIcc(v)

and LIdc(βv) are the Laplace transforms of interferences at the BS from cellular

UEs and D2D UEs, respectively, and β is the spectrum sharing indicator. (H.1) is

approximated using the same approach as in [9, Equation (22) Appendix C].
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Appendix I

Proof of Lemma 7.1

The CCDF of the path-loss L0 from the typical UE to a 0th tier UAV can be computed

as follows:

F̄L0(x) =
∑

s∈{LOS,NLOS}

F̄L0,s(x)

=
∑

s∈{LOS,NLOS}

Er [Ps(r)P (L0,s(r) ≥ x)]

=
∑

s∈{LOS,NLOS}

Ed
[
Ps
(√

d2 +H2
)
P
(
ηs(d

2 +H2)αs/2 ≥ x
)]

(I.1)

=
∑

s∈{LOS,NLOS}

Ed

Ps (√d2 +H2
)
P

d ≥
√(

x

ηs

)2/αs

−H2


=

∑
s∈{LOS,NLOS}

∫ ∞√
( x
ηs

)
2/αs−H2

Ps
(√

d2 +H2
)
fD(d)dd (I.2)

where fD(d) is given in (7.1) and (I.1) follows from the definition of path-loss and

noting that r = d for 0th tier.



204

Appendix J

Proof of Lemma 7.2

Intensity function for the path-loss model from the typical UE to a 1st tier UAV for

s ∈ {LOS,NLOS} can be computed as

Λ1,s([0, x)) =

∫
R2

P (L1(r) < x) dr (J.1)

= 2πλU

∫ ∞
0

P
(
ηs
(
r2 +H2

)αs/2
< x

)
Ps(r)rdr

= 2πλU

∫ ∞
0

P
(
r <

√
(x/ηs)2/αs −H2

)
Ps(r)rdr

= 2πλU

∫ √(x/ηs)2/αs−H2

0

Ps(r)rdr (J.2)

where (J.1) follows from the definition of intensity function for the point process of

the path-loss. Intensity function for 2nd tier BSs can be also computed using the same

approach. Since the link between the ground BSs and the typical UE has only one

state, intensity function expression in (J.2) reduces to Λ2([0, x)) = πλB(x/ηB)2/αB .
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Appendix K

Proof of Lemma 7.3

Association probability with a 0th tier LOS/NLOS UAV can be computed as follows:

A0,s = P(P0B0L
−1
0,s ≥ PjBjL

−1
min,j) (K.1)

=

(
2∏
j=1

P
(
P0B0L

−1
0,s ≥ PjBjL

−1
j

))

=

∫ ∞
ηsHαs

2∏
j=1

F̄Lj

(
PjBj

P0B0

l0,s

)
fL0,s(l0,s)dl0,s (K.2)

=

∫ ∞
ηsHαs

e
−
∑2
j=1 Λj

([
0,
PjBj
P0B0

l0,s
))
fL0,s(l0,s)dl0,s (K.3)

where (K.1) follows from the definition of association probability, in (K.2)CCDF of

Lj is formulated as a result of the probability expression, and (K.3) follows from the

definition of the CCDF of the path-loss.

Association probability with a 1st tier LOS/NLOS UAV can be computed as fol-



206

lows:

A1,s = P(P1B1L
−1
1,s ≥ PjBjL

−1
min,j)P(L1,s′ > L1,s) (K.4)

=

(
2∏

j=0,j 6=1

P
(
P1B1L

−1
1,s ≥ PjBjL

−1
j

))
P(L1,s′ > L1,s)

=

∫ ∞
ηsHαs

2∏
j=0,j 6=1

F̄Lj

(
PjBj

P1B1

l1,s

)
e−Λ1,s′ ([0,l1,s))fL1,s(l1,s)dl1,s (K.5)

=

∫ ∞
ηsHαs

F̄L0

(
P0B0

P1B1

l1,s

)
e
−Λ2

([
0,
P2B2
P1B1

l1,s
))
e−Λ1,s′ ([0,l1,s))Λ′1,s([0, l1,s))e

−Λ1,s([0,l1,s))dl1,s

(K.6)

=

∫ ∞
ηsHαs

Λ′1,s ([0, l1,s)) F̄L0

(
P0B0

P1B1

l1,s

)
e
−
∑2
j=1 Λj

([
0,
PjBj
P1B1

l1,s
))
dl1,s, (K.7)

where s, s′ ∈ {LOS,NLOS}, and s 6= s′. (K.4) follows from the definition of associa-

tion probability, in (K.5), CCDF of Lj is formulated as a result of the probability ex-

pression, and similarly P(L1,s′ > L1,s) = F̄L1,s′
(l1,s) = e−Λ1,s′ ([0,l1,s)); (K.6) follows from

the definition of the CCDF of the path-loss, and by plugging the PDF of the path-loss

L1,s; and (K.7) follows from the fact that Λ1,s([0, l1,s)) + Λ1,s′([0, l1,s)) = Λ1([0, l1,s)).

Since the minimum distance between UEs and UAVs is equal to H, integration starts

from lk,s = ηsH
αs . Association probability with a 2nd tier BS can be obtained follow-

ing the similar steps. Note that, since the minimum distance between the typical UE

and a ground BS is equal to 0, integration starts from 0.
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Appendix L

Proof of Theorem 7.1

Given that the UE is associated with a UAV in k = {0, 1}, the conditional coverage

probability PC
k,s(Γk) can be computed as follows

PC
k,s(Γk) = P(SINRk,s > Γk)

= P

(
Pkhk,0L

−1
k,s

σ2
k +

∑2
j=0 Ij,k

> Γk

)

= P

(
hk,0 >

ΓkLk,s
Pk

(
σ2
k +

2∑
j=0

Ij,k

))

= e−uσ
2
k

2∏
j=0

LIj,k(u), (L.1)

where u =
ΓkLk,s
Pk

, LIj,k(u) is the Laplace transform of Ij,k evaluated at u, the last steps

follows from hk,0 ∼ exp(1), and by noting that Laplace transforms of interference at

the UE from different tier UAVs and BSs are independent. PC
2 (Γ2) can be obtained

using the similar steps. Tools from stochastic geometry can be applied to compute

the Laplace transforms. Recall that 0th is generated by the UAV at the cluster center

of the typical UE. When the typical UE is associated with a UAV or a BS in tier-k

for k = 1, 2, Laplace transform of the interference from 0th tier UAV can be obtained
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as follows:

LI0,k(u) = EI0,k
[
e−uI0,k

]
=

∑
s′∈{LOS,NLOS}

Ex
[
Eh0,0

[
exp

(
−uP0h0,0x

−1
)
|x > P0B0

PkBk

lk

]]
(L.2)

=
∑

s′∈{LOS,NLOS}

Ex
[

1

1 + uP0x−1
|x > P0B0

PkBk

lk

]
(L.3)

=
∑

s′∈{LOS,NLOS}

∫ ∞
E0,0

1

1 + uP0x−1
fL0,s′

(x)dx (L.4)

where conditioning in (L.2) is a result of the fact that interfering 0th tier UAV lies

outside the exclusion disc E0,0 with radius P0B0

PkBk
lk, and (L.3) follows from h0,0 ∼ exp(1).

Also note that, LI0,k(u) is equal to one, if the typical UE is associated with 0th UAV.

Laplace transform of the interference from 1st tier UAVs can be calculated as

LI1,k(u) = EI1,k
[
e−uI1,k

]
(L.5)

=
∏

s′∈{LOS,NLOS}

exp

(
−
∫ ∞
E1,0

(
1− Eh1,i

[
e−uP1h1,ix

−1
])

Λ′1,s′(dx)

)

=
∏

s′∈{LOS,NLOS}

exp

(
−
∫ ∞
E1,0

(
uP1x

−1

1 + uP1x−1

)
Λ′1,s′(dx)

)
(L.6)

where Λ′1,s′(dx) is obtained by differentiating Λ1,s′([0, x)) given in (7.7) with respect

to x for s′ ∈ {LOS,NLOS}, respectively, interfering 1st tier UAVs lie outside the

exclusion disc E1,0 with radius P1B1

PkBk
lk, (L.5) is obtained by computing the PGFL of

the PPP, and (L.6) follows from computing the MGF of the exponentially distributed

random variable h. Laplace transform of the interference from 2nd tier BSs, LI2,k(u),

can be calculated following the same steps with the calculation of LI1,k(u). However,

note that there are only LOS BSs for 2nd tier. Finally, by inserting (7.14), (7.15),

(7.16), (7.21), (7.22), (7.23) into (7.19), coverage probability expression in (7.20) can

be obtained.
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Appendix M

Proof of Lemma 8.1

The CCDF of the path loss L0,s from a typical UE to a 0th tier LOS/NLOS UAV can

be computed as follows:

F̄L0,s(x)

= Er [P (L0,s(r) ≥ x)Ps(r)]

= Ed
[
P
(
(d2 +H2)αs/2 ≥ x

)
Ps(
√
d2 +H2)

]
(M.1)

=

∫ ∞
0

P
(
d ≥

√
x2/αs −H2

)
Ps(
√
d2 +H2)fD(d)dd

=

∫ ∞
√
x2/αs−H2

Ps(
√
d2 +H2)fD(d)dd (M.2)

fors ∈ {LOS,NLOS} where fD(d) is given in (8.1), Ps(·) is the LOS or NLOS prob-

ability depending on whether s = LOS1 or s = NLOS, and (M.1) follows from the

definition of path loss. Therefore, the CCDF of the path loss L0 from a typical UE

to a 0th tier UAV given in (8.8) can be obtained by summing up over s.



210

Appendix N

Proof of Lemma 8.2

Intensity function for the path loss model from a typical UE to a 1st tier UAV for

s ∈ {LOS,NLOS} can be computed as

Λ1,s([0, x)) =

∫
R2

P (L1(r) < x) dr (N.1)

= 2πλU

∫ ∞
H

P (rαs < x)Ps(r)rdr (N.2)

= 2πλU

∫ ∞
H

P
(
r < x1/αs

)
Ps(r)rdr (N.3)

= 2πλU

∫ x1/αs

H

Ps(r)rdr (N.4)

where (N.1) follows from the definition of intensity function for the point process of

the path loss. CCDF of the path loss L1 from a typical UE to a 1st tier UAV given

in 8.9 can be obtained by summing up Λ1,s([0, x)) over s.
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Appendix O

Proof of Lemma 8.3

Association probability with a 0th tier LOS/NLOS UAV can be computed as follows:

A0,s =
∏

m∈{LOS,NLOS}

P(P0G0(r)L−1
0,s ≥ P1G1(r)L−1

1,m) (O.1)

=
∏

m∈{LOS,NLOS}

P

P0
H2

L
2
αs
0,s

L−1
0,s ≥ P1

H2

L
2
αL
1,m

L−1
1,m

 (O.2)

=
∏

m∈{LOS,NLOS}

P

(
L1,m ≥

(
P1

P0

L
2
αs

+1

0,s

) αm
αm+2

)

=

∫ ∞
Hαs

∏
m∈{LOS,NLOS}

F̄Lm

((
P1

P0

l
2
αs

+1

0,s

) αm
αm+2

)
fL0,s(l0,s)dl0,s (O.3)

where (O.1) follows from the definition of association probability and the fact that

LOS and NLOS links in the 1st tier are independent, (O.3) follows from the definition

of the CCDF of the path loss. Since the minimum distance between UEs and UAVs

is equal to H, integration starts from l0,s = Hαs .

Association probability with a 1st tier LOS/NLOS UAV can be computed as fol-
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lows:

A1,s = P(L1,s′ > L1,s)
∏

m∈{LOS,NLOS}

P(P1G1(r)L−1
1,s ≥ P0G0(r)L−1

0,m) (O.4)

= P(L1,s′ > L1,s)
∏

m∈{LOS,NLOS}

P

P1
H2

L
2
αs
1,s

L−1
1,s ≥ P0

H2

L
2
αm
0,m

L−1
0,m


= P(L1,s′ > L1,s)

∏
m∈{LOS,NLOS}

P

(
L0,m ≥

(
P0

P1

L
2
αs

+1

1,s

) αm
αm+2

)

=

∫ ∞
Hαs

F̄L1,s′
(l1,s)

∏
m∈{LOS,NLOS}

F̄L0,m

((
P0

P1

l
2
αs

+1

1,s

) αm
αm+2

)
fL1,s(l1,s)dl1,s, (O.5)

where s, s′ ∈ {LOS,NLOS}, and s 6= s′. (O.4) follows from the definition of associa-

tion probability and the fact that LOS and NLOS links in the 0th tier are independent,

and P(L1,s′ > L1,s) = F̄L1,s′
(l1,s).
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Appendix P

Proof of Theorem 8.1

Given that the UE is associated with a LOS/NLOS UAV in k = {0, 1}, the conditional

energy coverage probability EC
k,s(Γk) can be computed as follows:

EC
k,s(Γk) = P(ξ (Sk,s + Itot) > Γk) (P.1)

≈
N∑
n=0

(−1)n
(
N

n

)
ESk,s,Itot

[
e−â(Sk,s+Itot)

]
(P.2)

=
N∑
n=0

(−1)n
(
N

n

)
ESk,s

[
e−âSk,sEItot|Sk,s

[
e−âItot

]]
=

N∑
n=0

(−1)n
(
N

n

)
ELk,s

[ (
1 + âPkGkL

−1
k,s

)−1
1∏
j=0

EIj,k|Lk,s
[
e−âIj,k

] ]
(P.3)

=
N∑
n=0

(−1)n
(
N

n

)
ELk,s

[(
1 + âPkH

2L
−(1+ 2

αs
)

k,s

)−1 1∏
j=0

LIj,k(Γk, Ek,0)

]
(P.4)

where â = nη
Γk/ξ

, η = N(N !)−
1
N , N is the number of terms in the approximation,

LIj,k(Γk, Ek,0) is the Laplace transform of Ij,k, (P.1) follows from the definition of

energy coverage probability, (P.2) is approximated by following the similar steps in

[99]. In (P.3) we inserted the antenna gain Gk = H2L
2
αs
k,s, and the last step in (P.4)

follows from hk,0 ∼ exp(1) and by noting that Laplace transforms of interference at

the UE from different tier UAVs are independent.
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Tools from stochastic geometry can be applied to compute the Laplace transforms.

Recall that 0th is generated by the UAV at the cluster center of the typical UE. When

the typical UE is associated with a UAV in the 1st tier, Laplace transform of the

interference from 0th tier UAV can be obtained as follows:

LI0,k(u) = EI0,k
[
e−âI0,k

]
=

∑
s′∈{LOS,NLOS}

Ex
[
Eh0,0

[
exp

(
−âP0G0h0,0x

−1
)
|P0G0x

−1 < PkGkl
−1
k

]]
(P.5)

=
∑

s′∈{LOS,NLOS}

Ex

(1 + âP0H
2x
−
(

1+ 2
αs′

))−1
∣∣∣∣∣∣x >

(
P0

Pk
l
1+ 2

αs
k,s

) αs′
αs′+2

 (P.6)

=
∑

s′∈{LOS,NLOS}

∫ ∞
Ek,0

(
1 + âP0H

2x
−
(

1+ 2
αs′

))−1

fL0,s′
(x)dx (P.7)

where conditioning in (P.5) is a result of the cell association policy, i.e., the received

power from the interfering 0th tier UAV is less than the received power from the

associated UAV, (P.6) follows from h0,0 ∼ exp(1) and inserting the antenna gains,

in the last step the exclusion disc Ek,0 =

(
P0

Pk
l
1+ 2

αs
k,s

) αs′
αs′+2

. Also note that LI0,k(u) is

equal to one, if the typical UE is associated with 0th tier UAV.

Laplace transform of the interference from 1st tier UAVs can be calculated as

LI1,k(u) = EI1,k
[
e−âI1,k

]
=

∏
s′∈{LOS,NLOS}

exp

(
−
∫ ∞
Ek,0

(
1− Eh1,i

[
e−âP1H2h1,ix

−
(

1+ 2
αs′

)])
Λ′1,s′([0, x))dx

)

(P.8)

=
∏

s′∈{LOS,NLOS}

exp

(
−
∫ ∞
Ek,0

1−

(
1 + âP1H

2x
−
(

1+ 2
αs′

))−1
Λ′1,s′([0, x))dx

)

(P.9)

where (P.8) is obtained by computing the probability generating functional of the
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PPP, and (P.9) follows by computing the moment generating function of the ex-

ponentially distributed random variable h. Note that the interfering 1st tier UAVs

lie outside the exclusion disc Ek,0 with radius

(
P1

Pk
l
1+ 2

αs
k,s

) αs′
αs′+2

. Finally, by inserting

(8.15), (8.16), (8.23), (8.24) into (8.21), energy coverage probability expression in

(8.22) can be obtained.
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