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ABSTRACT

In this thesis, we study black hole ringdowns as a probe to understand the strong-field

clssical gravity. When two black holes merge, they form a single distorted black hole that then

radiates gravitational waves and settles into a final stable Kerr state. The signal produced

during this process is called the ringdown and can be modelled as perturbations on the

space-time of the final Kerr black hole. Ringdowns contain information about the strong

field dynamics close to the black holes and thus, can be used to test our understanding of

gravity. There are three specific questions that we explore in this thesis: First, at what

point after the merger of two black holes can one use a perturbative description to model the

space-time? This tells where in the gravitational wave signal of a binary black hole merger

can one start a ringdown-based test. Second, how likely are we to realistically find a signal

that allows us to perform a ringdown-based test given the current and future gravitational

wave observatories. And finally we discuss, how should the data analysis be carried out in

order to extract information from the ringdown of an observed GW signal?
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the procedure described in Sec. 4.3.3 on the BBH post-merger. The left panels
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Kerrness measure in the strong-field, while the bottom panel shows the news

function at I +. The purpose of plotting the news function directly below

each Kerrness measure is to emphasize that the top and bottom panels are

mapped to the same time axis. The dashed lines of di↵erent colors indicate

the % decrease from the peak value of the respective Kerrness measures. The

horizontal axis corresponds to the simulation coordinate time induced on the

news function extracted from a world tube radius of R = 128 M . Furthermore,

unlike the strong-field result plots that aim at rigorous characterization of

isometry to Kerr, here we aim at providing insight into validating the start

time of ringdown for data analysis. Therefore, these plots are on linear scale

as opposed to logarithmic scale. Notice that the curves on the left panel decay

more slowly than those on the right; Type D 1 is the slowest to decay, closely

followed by Type D 2. Also, recall that we cannot compare the magnitude of

the top part of each of these panels as they are dimensionally di↵erent. . . . 63
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20  4 in the equatorial plane for both a single BH with an l = m = 2 perturbation

of amplitude " = 7.5 ⇥ 10�3 and " = 10�3 (left panel), and for the BBH

ringdown (right panel) at times that achieve the same Kerrness as (left

panel). For all cases, Kerrness is matched on a coordinate 2-sphere of R = 5 M .

The two black circles correspond to coordinate radii R = 5 M and R = 8 M .

The Gaussian envelope of width R = 8 M , as described in Fig. 7, can be seen

in the plots for the single BH cases. Note that this is only meant to show

qualitative agreement between  4 on both slices, as the quantity is still subject

to coordinate tetrad e↵ects in the strong-field region. Notice that although the

two systems look similar, allowing us to infer the BBH simulation perturbation

amplitude, the mapping does have some imperfections. . . . . . . . . . . . . 67
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that this is only meant to show qualitative agreement between  4 on both slices,
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region. Notice that although the two systems look similar, the mapping does

have some imperfections. Recall, however, that it is ultimately the invariant
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times, known as crossing times are then mapped onto the waveform, and used

to validate the start time of ringdown. Note that the measures have di↵erent

crossing times. The time axes are shifted to agree with the timestamps of the
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Chapter 1

Introduction

1.1 Overview

Many challenges of 21st-century physics revolve around our understanding of the nature

of gravity. Some of the major open research problems include: the quantization of gravity

[9, 10, 11, 12], the black hole (BH) information paradox [13, 14, 15, 16, 17], building an

unified theory that describes all the fundamental forces [18], the fine-tuning problem in

cosmology [19, 20] and understanding the nature of the dark energy [21]. The general theory

of relativity (GR) which describes the classical behaviour of gravitation [22], has an elegant

theoretical structure and has been tested experimentally in various regimes[23]. Nevertheless,

our current understanding of gravity seems to be in conflict with the framework of quantum

mechanics [24, 25, 26] and reconciling the two theories in a consistent framework has been

very challenging. Developing a quantum theory of gravity remains an important puzzle that is

crucial to our understanding of fundamental physics. Additionally, the fine-tuning problem in

cosmology suggests that our understanding of gravity might be incomplete at the large scales.

With this understanding that GR might be a good description of gravity only up to certain

scales (and that it might need both UV and IR corrections), alternative descriptions of gravity

are being developed that aim to resolve one or more of these inconsistencies [23, 27, 28, 29].

Experimental and observational tests of GR and other alternative theories of gravity are

needed to understand the nature of gravity at di↵erent scales [30, 31, 32, 33].

Metric theories of gravity predict propagating disturbances in the space-time curvature

known as the gravitational waves (GW) [34]. The details of the GW produced by a dis-

turbance depends on the exact underlying theory of gravity [23]. For instance, if there is

an IR modification to GR, one could witness a change in propagation of GW from a high

redshift source, while if there were additional degrees of freedom in the theory, one could see



2

propagation in scalar and vector sectors as well. Depending on the details of the underlying

theory the morphology of the GW emitted changes. Thus, a measurement of GW can help

eliminate or constrain families of alternative theories of gravity and test the validity of GR

[35, 36].

The advent of GW astronomy o↵ers an unprecedented method of testing GR and probing

the nature of gravity in di↵erent regimes[34]. Two GW signals from binary black hole (BBH)

mergers (named GW150914 and GW151226) were observed by the Laser Interferometer

Gravitational-wave detectors (LIGO) in its first observing run with a statistical significance

greater than 5 � [37]. In the second observing run, a binary neutron star (BNS) event (named

GW170817) and three more BBH events (named GW170608, GW170814 and GW170104) were

observed [38, 39, 40, 41]. With these observations, tests have been performed to understand

the underlying theory of gravity; GR was seen to be consistent with all the observed GW

signals [5]. Although the possibility of an alternative description of gravity could not be

excluded, these observations placed rigorous constraints on many families of alternative

theories of gravity [42, 5, 43]. With the upgrades to the current LIGO facilities [44] and the

future ground-based missions like the Cosmic Explorer [6] and the Einstien Telescope [45],

complemented by the proposed space-based projects like the LISA [46], our ability to probe

the nature of gravity will improve significantly.

GW emitted during a BBH coalescence can be roughly divided into three parts [47].

Each of these parts contains imprints of gravitational dynamics at di↵erent length scales

and spacetime curvatures, therefore, testing di↵erent regimes of gravity. In the first phase,

called the ‘inspiral’, the GW emitted has an increasing frequency and amplitude (referred

to as the GW chirp). In this phase, the two BH are far apart (compared to the size of the

BH horizons) and are slowly orbiting (compared to the speed of light, c) the common centre

of mass. One can use an analytical series expansion in v
c , called the ‘post-Newtonian (PN)

approximations’ to compute the GW emitted during the inspiral phase. This approximation

assumes the limit v
c << 1. This part of the signal can be used to study the accumulated

e↵ects of the small di↵erences in the dynamics predicted by GR. This phase is followed by a

‘plunge-merger’ phase where v
c grows to become comparable to 1 and the PN approximation

breaks down. It contains imprints of the rich nonlinear-strong field dynamics. In this stage,

the two BHs merge and form a single distorted BH. The third part of the signal is called

the ‘ringdown’ (RD). During the RD, the newly formed BH settles down to its final stable

configuration. This phase can be described in the framework of analytical BH perturbation

theory. The GW radiated during this phase is a superposition of the characteristic modes
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of the final BH, called the ‘quasi-normal-modes’ (QNM). The plunge-merger and the RD

signals contain imprints of dynamics in the strong field gravity and probe a length scale of

the order of the BH horizon size.

The GW signal from a BBH event o↵ers some powerful tests of GR. In particular, using

the inspiral signal in a parameterized-post-Newtonian (PPN) scheme [c.f chapter 4 of [48]],

one can experimentally constrain violations of many fundamental features of GR. Some of

the features that one can test using this framework are the following: the amount of spatial

curvature given a central mass, the time delay e↵ects, the lorentz dispersion, di↵eomorphism

symmetry of GR, the principle of equivalence and the conservation laws associated with the

global symmetries [48]. Similarly, the merger-RD part of a CBC GW signal can be used

to perform tests of GR in the strong field and, to explore nature of the compact objects

[49, 50, 51, 52, 53]. These tests probe a region of spacetime with high curvature 1. The tests

that can be performed using this part of the signal include the no-hair theorem test [54, 55],

the BH area increase test [56, 57], direct observation of BH QNM spectrum [58] and the

absence (or presence) of echoes in post-merger signal [59, 60]. These tests are invaluable as

they let us probe gravity in regimes that are inaccessible to most other experiments.

Some of the important tests using the RD rely on the BH perturbation theory. For

instance to perform tests to validate the no-hair theorem and the area increase law, one

needs to measure at least two QNM modes present in the RD. Unfortunately, the GW150914

signal has an SNR ⇠ 8 in the RD. The uncertainty in the measurement of the frequency of

the dominant RD mode is large (⇠ 40 Hz) [5], which leads to large error bars in the tests of

gravity; it was not accurate enough to perform stringent tests to rule out other alternative

descriptions. Further, the BBH system that generated GW150914 signal comprised of nearly

equal mass BHs. This produces a merger phase that excites primarily the dominant RD

mode and suppresses sub-dominant mode excitations. Although the RD in GW150914 signal

is consistent with the prediction of GR [5], it could not be used to perform precision tests of

the strong field gravity. However, this signal gives us hope that for louder signals from BBH

systems with a larger mass ratio, stringent tests of GR could be carried out using RD signals

in the future.

The primary focus of this thesis is to develop the tools needed to probe the strong field

gravity using the RD of a BBH merger. RD is a particularly appealing part of the BBH

GW signal; it has an elegant analytical description o↵ered by the BH perturbation theory.

1LIGO detects stellar mass BHs, which are relatively small compared to say, the mass of the BH at the

center of the galaxy. The smaller the BH, the higher the curvature close to the BH. With detections of BH in

various mass ranges, we also probe gravity at di↵erent length scales and curvatures.
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To complement this, since BBH evolution only deals with vacuum spacetime (unlike in the

case of, say neutron star merges where it is hard to model complicated matter dynamics),

numerical relativity (NR) can provide apprehensible insights into the strong-field dynamics.

Although, the RD signals contain a rich set of information about the strong field dynamics

and nature of the compact objects, the extraction of this information from of these signals

are far from straightforward. Currently, the GW research community is building robust data

analysis tools to test GR with BBH RDs. In this thesis, we explore aspects of BBH RD

signal, using a conglomeration of techniques developed in analytical BH perturbation theory,

NR and GW data analysis.

1.2 On the discovery of GW150914

Chapter 2 of this thesis summarizes the first direct detection of gravitational wave from

a BBH merger, the GW150914. It was remarkably fortunate that the first detection also

happened to be an extraordinary loud signal and that it allowed for visual inspection of

the signal in the raw detector data with minimal data conditioning. We performed the first

visualization of the GW signal in the raw data to check for visual consistency of the signal

observed by the two detectors and the best-fit template reported by the search pipelines. A

more refined version of this analysis was later performed by the LIGO collaboration and is

presented in Figure 1 of the GW150914 discovery paper [3].

As a part of the LIGO collaboration, I was involved in the review process of an im-

plementation of a waveform approximant that uses an e↵ective one body formalism and

includes precession e↵ects during the inspiral, called the ”SEOBNRv3” template family. This

waveform family was used to improve the parameter estimation results of GW150914 and we

summarize the astrophysical properties of GW150914 obtained by the LIGO collaboration

using this waveform approximant.

1.3 On ringdown and scales of perturbation

Several RD-based tests of GR rely on verifying the predictions of BH perturbation theory

using the GW observations. One of the major challenges of performing these tests is to

identify where in the post-merger signal one needs to start this analysis, i.e., where does

the RD start? One naive argument could be that one needs to at least wait until the scale

of perturbation is smaller than the scale of the event horizon of the final BH formed for

perturbation theory to be valid. This requires us to quantify the scale of perturbation which
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is a di�cult problem in the framework of GR. The di↵eomorphic invariance of GR makes if

hard to quantify the perturbation as a function of time of evolution. In Chapter 3, we set up

two simplified toy models to explore the concept of scales of perturbation in BBH RD: i) a

system comprising of two point masses and, ii ) a rotating tri-axial ellipsoid. This work is

primarily meant to develop an intuition towards the scales of perturbation that occurs in

the source frame (close to BH) during the RD phase and to motivate the more precise study

presented in Chapter 4.

1.4 On choosing the start time of binary black hole ringdown

In this chapter, we present an algorithmic method to analyze the choice of the RD start time

in the observed waveform. This method is based on determining how close the post-merger

BBH spacetime is to a Kerr BH which we call the Kerrness. Using numerical relativity

simulations, we characterize the Kerrness of the strong-field region close to the BH using a

set of local, gauge-invariant geometric and algebraic conditions that measure local isometry

to Kerr. We produce a map that associates each time in the gravitational waveform with a

value of each of these Kerrness measures; this map is produced by following outgoing null

characteristics from the strong and near-field regions to the wave zone. We perform this

analysis on a numerical relativity simulation with parameters consistent with GW150914.

The choice of RD start time of 3 ms after merger used in [5] to test GR using GW150914

corresponds to a high value of the dimensionless perturbation amplitude of ⇠ 7.5 ⇥ 10�3 in

the strong-field region. This suggests that in higher SNR detections, one would need to start

analyzing the signal at a later time for studies that depend on the validity of BH perturbation

theory.

This chapter contains the work published as ‘On choosing the start time of binary black

hole RD’ by Swetha Bhagwat, Maria Okounkova, Stefan W. Ballmer, Duncan A. Brown,

Matthew Giesler, Mark A. Scheel, Saul A. Teukolsky [61].

1.5 On spectroscopic analysis of stellar mass black-hole mergers

In Chapter 5, we investigate the prospects of ground-based detectors to perform a spectroscopic

analysis of signals emitted during the RD of the final Kerr black-hole formed by a stellar

mass BBH merger. If we assume an optimistic rate of 240 Gpc�3yr�1, about 3 events per

year can be measured with su↵cient SNR to be spectroscopically interesting by the Advanced

LIGO detectors. Upgrades to the existing LIGO detectors will increase the odds of measuring
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multiple RD modes significantly. New ground-based facilities such as the Einstein Telescope

or the Cosmic Explorer could measure multiple RD modes in about thousand events per year.

We perform Monte-Carlo injections of 106 BBH mergers in a search volume defined by a sphere

of radius 1500 Mpc centered at the detector, for various proposed ground-based detector

models. We assume a uniform random distribution in component masses of the progenitor

binaries, sky positions and orientations to investigate the fraction of the population that

satisfy our criteria for detectability and resolvability of multiple RD modes. We investigate the

detectability and resolvability of the sub-dominant spheriodal harmonic modes corresponding

to l = m = 3, l = m = 4 and l = 2, m = 1. Our results indicate that the modes with

l = m = 3 and l = 2, m = 1 are the most promising candidates for sub-dominant mode

measurability. We find that for stellar mass black-hole mergers, resolvability is not a limiting

criteria for these modes. We emphasize that the measurability of the l = 2, m = 1 mode is

not impeded by the resolvability criterion.

This chapter contains the work published as ‘Spectroscopic analysis of stellar mass black-

hole mergers in our local universe with ground-based gravitational wave detectors’ by Swetha

Bhagwat, Duncan A. Brown, Stefan W. Ballmer [62].

1.6 On the detectability of the subdominant mode in a binary

black hole ringdown

In the previous chapter, we tried to understand the prospects spectroscopic analysis in

RD using a Fisher matrix formalism. In this Chapter, we will further explore this theme

with a full Bayesian Parameter estimation framework. While Fisher matrix gives a good

approximation to study the variance in the estimated parameters for a signal with a loud SNR,

in reality to measure the parameters of the RD one generally uses full Bayesian Parameter

estimation framework. Here, we are specifically interested in detecting the presence of the

loudest subdominant mode in RD assuming that the underlying theory of gravity is GR.

To first order, whether or not one can detect a subdominant mode depends on the overall

SNR ratio present in the RD signal and on the mode amplitude ratio. In this Chapter, we

study zero noise-injections of RD signals, systematically varying both these parameters to

understand their interplay. We perform a full Bayesian parameter estimation to detect the

presence of the subdominant mode in a set of analytical ringdown signals. This study is done

with the aim of developing an intuition on what kind of systems might allow us to detect

the second mode at di↵erent SNRs. We find that detection of the subdominant mode seems
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promising for unequal mass progenitor binaries with advanced LIGO detector. A follow up

study with a real gaussian noise is underway.

This chapter contains the work that will be soon published as ‘Detectability of the

subdominant mode in a binary black hole ringdown’ by Swetha Bhagwat, Miriam Cabero,

Collin Capano, Badri Krishnan, Duncan Brown.
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Chapter 2

On the discovery of GW150914

2.1 An overview on the search and the best-fit template

In the second generation detectors, a GW signal from a CBC event is generally buried in the

detector noise and careful data analysis needs to be performed to extract the information of

the signal from the raw detector data. Several GW search pipelines have been developed,

equipped with various algorithms and techniques to detect the GW signal in the detector

data [66, 67, 68, 63, 64, 65].

The search for GW from a CBC relies on a technique known as the matched filtering [69, 47].

The basic idea in matched filtering is to cross-correlate the data from the detector with the

expected GW waveform. These expected GW waveforms are known as the templates. The

waveforms are obtained by solving Einstein’s equations, either using a variety of analytical

approximations or numerically or with a combination of both analytical and numerical

techniques [70]. Each method of solving Einstein’s equation yields a waveform family or an

approximant.

The operation of matched filtering can be written down as a weighted inner product in

the frequency domain,

M(t) = hs|hi = 4Re

Z fhigh

flow

s(f)h⇤(f)e2⇡◆ft

Sn(f)
df, (2.1)

where s(f) is the Fourier transform of the data and h(f) is the template in the Fourier

domain. Sn(f) is the one-sided power spectral density (PSD) of the detector. PSD describes

the sensitivity of the detector across the frequency band. It is computed by,

hs(f)s(f 0)i =
1

2
Sn(f)�(f � f 0) (2.2)
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In practice, the detector data contains noise transients and is non-gaussian, and therefore

additional statistical tools are implemented to construct a detection statistic [71, 72, 73, 64].

When a GW signal from a CBC event is present in the data, one does not know apriori

the parameters of the CBC system. Therefore, a bank of templates is created and the data

is matched against each of the templates present in this bank [73]. In the search pipeline,

PyCBC, the template bank corresponds to waveforms emitted by the compact binary systems

whose component masses have spins that are aligned/anti-aligned to the orbital angular

momentum of the system (the bank is, thus, called an aligned spin bank). Further, the

binaries are assumed to have negligible eccentricity. When constructing the template bank,

one needs to sample the astrophysical parameter space su�ciently densely to be able to

capture the GW signal with enough SNR but also keep the bank sparse enough so that

it is computationally viable. In PyCBC, the template bank is generated such that no more

than 3% SNR is lost due to the discreteness of the template bank. When a matched filter

operation is performed throughout this bank, the search pipeline reports the parameters of

the template that produces the maximum match as the best-fit-template. These parameters

give an approximate estimate of the astrophysical parameters of the source but a further

careful parameter estimation(PE) study is followed to infer the true parameters of the system.

Note that the best-fit template parameters will depend on the state of the detectors at the

time of the event, on the family of templates being used and the discreteness of the bank

chosen.

2.2 On the detection of GW150914

On the 14th of September, 2015, both of the LIGO detectors recorded a GW signal consistent

with what GR would predict when BHs with masses ⇠ 36M� and ⇠ 29M� inspiraled and

merged [3, 74]. The signal was first found by a Generic transient search pipeline (specifically,

a CWB pipeline) [66, 75] which identifies the events by looking at the coherent excess power

in the time-frequency plots of the data from the two detectors. The signal was also reported

by two independent CBC focused search pipelines. In this chapter, the specific CBC GW

search pipeline we refer to is called PyCBC; it is an open source software package that has

inbuilt algorithms to detect and analyze the CBC events using calibrated detector data. For

the details of PyCBC search pipeline refer to [64].

To ensure that the signal is from an astrophysical source and not of instrumental origin,

one must look for coincidence between the two detector’s data. Since the detectors are far

apart, one does not expect to see correlated noise sources and the data stream from each of
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the detectors can be assumed as independent. Statistical significance is assigned to a GW

detection by estimating the recurrence of witnessing an SNR comparable to (or greater than)

the GW trigger solely due to noise coincidences. For reporting the statistical confidence of this

detection, data from a total coincident observation time of 16 days 1 was used. From this data,

a noise background equivalent to 608000 years was produced by performing unphysical time

delay; the time shifts greater than 10 milliseconds (typically, a timeshift that is greater than

the light travel time between the detectors) ensure that the simulated data stream contains no

true astrophysical signal in it and contains simply the detector noise realization. The statistic

used by the LIGO collaboration for detection is an empirically re-weighted new-SNR (SNR

from the two detectors are added in quadrature and is called as combined-new SNR) details

of which can be found in [78]. On analyzing the data containing the GW150914 event, it was

found that this event has a combined SNR of 23.6. The false alarm probability was calculated

to be ⇠ 2 ⇥ 10�7, which a�rms that the signal corresponded to an astrophysical event. The

statistical significance of this event was reported to be 5.1 �. It should be emphasized that

this event was exceptionally loud.

The PyCBC search pipeline also reports the parameters of the best-fit-template, and

therefore provides a rough estimate of the astrophysical parameters of the system immediately

after identifying the event (in low latency). In Table 1, we list the best-fit parameters reported

by the PyCBC search for the GW150914 event. It should be noted that the values of best-fit

template parameters reported by the search di↵er from the parameters inferred on performing

a Bayesian parameter estimation (compare Table 1 with results presented in papers [79]).

However, the parameter estimation studies take a longer timescale (order of a few weeks).

The study presented in section 2.3 was performed shortly after the GW150914 trigger was

recorded. At that time, the parameter estimation studies were still being performed and

the PE inferred values were not available. Therefore, for the study presented in section 2.3,

we use the best-fit-template parameters presented in Table 1 (reported by the PyCBC search

pipeline).

1This is the duration of coincident data obtained after applying the data quality vetoes. The details of

data quality checks and vetoes applied for the analysis of GW150914 event can be found in [76, 77]
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Parameters Best-fit value

Mass 1 49.9 M�

Mass 2 36.6 M�

Spin 1z 0.96

Spin 2z -0.89

E↵ective distance in L1 1194.9118 Mpc

E↵ective distance in H1 970.70534 Mpc

Arrival phase in L1 0.58 rad

Arrival phase in H1 -2.77 rad

Table 1: The parameters of the best-fit-template for GW150914 trigger reported by the PyCBC

search pipeline obtained by analyzing the data containing GW150914 trigger. These values

are used in our study presented in section 2.3

.

2.3 Direct comparison of the data and best fit template

The exceptionally loud nature of GW150914 event prompted us to study the raw data from the

detectors directly. In this study, we present the first visual consistency test of the GW150914

event directly from the raw data from the two LIGO detectors. The premise of this work is

to visually check that the signal seen by the LIGO instruments at Hanford site (H1) and the

Livingston site (L1) are consistent with each other, i.e., the data from each of the detectors

can be lined up against each other. We additionally check that the data from the detectors

are consistent with the best-fit template parameters reported by the search pipeline, thereby

ensuring that both the detectors see the similarly astrophysical signal.

The raw GW strain seen by the LIGO detectors are recorded in a channel called the

GDS-CALIB-STRAIN. The data in this channel is calibrated but no other data quality vetoes

are applied. We use the data recorded in this channel from both the detectors and perform a

minimal set of filtering needed to visually inspect the GW event in the data.

To compare the data from the two detectors, we first condition the data such that the

unphysical artefacts that are introduced due to the detector’s configurations are removed. The

sensitivity of the detectors is not uniform across all frequencies in its band; the noise of the

detector as a function of the frequencies is encoded in the detector PSD. In reality, the detector

noise is not really stationary, although for short time stretches it is a good approximation.

Also, each detector in the network can have a di↵erent detector PSD depending on the state
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of the instruments (in the duration around the event) and this also could vary with time.

To remove this feature from the data, we ‘whiten’ it; the data from each of the detectors

is Fourier transformed and is divided by the respective detector’s inverse noise amplitude

spectrum in the Fourier domain.

The data is band-passed to remove frequencies at which the detector is not sensitive.

Further, there are known physical mechanisms in the detectors that produce high amplitude

noise contamination that are localized in a narrow frequency band in the raw detector data

(for example, the harmonics of the electric power line frequencies, the harmonics of the

resonance frequency of mirror suspensions fibres etc). In order to see the astrophysical signal,

we have to notch out these contaminated frequency bands from the raw data. We do this

using an analytical filter constructed using a zero-pole-gain (zpk-filter) model that notches

out these frequencies. The filter that we use is depicted in the bottom right inlay panel of

Figure 1. The filter is designed such that the amplitude is set to 1 at 100 Hz. Next, the

data is filtered both forward and then backwards to ensure that filtering does not introduce

a phase error (zero-phase filtering). Note that the filter is acausal (specifically, symmetric in

time) and is designed to introduce a zero-phase o↵set. The impulse response of the filter can

be seen in the top right inlay panel of Figure 1. At this point, it must be emphasized that

these sets of filtering are very non-aggressive and are the minimal data conditioning that we

had to perform in order to visually examine the data.

From the search pipeline, we find the time at which the SNR peaks in each of the detector

data. This corresponds to the time when the template aligns best with the data. However,

note that the value of this time-stamp may vary slightly when the search is performed using

the di↵erent template families (also known as waveform approximants); they depend on the

convention of defining the tmerger within the waveform family. We find that this di↵erence in

the time-stamps can a↵ect the alignment of the template with the data.

To overlay the best-fit template on to the detector data, we need a time-domain template

with the best-fit template parameters. However, typically the search uses a frequency

domain template in order to increase computational e�ciency. We construct a template bank

consisting of a single time-domain template corresponding to the parameters given in Table 1.

The template family used in our study corresponds to a spinning e↵ective one body waveform

(called the SEOBNRv2 approximant in the LAL code library) [80]. We then perform a search

on the data containing the event using this single-template ‘template bank’ and record the

reported time of the merger. Further, this reported time of merger is used to align the raw

data from the two detectors. This is also used to align the best-fit template to the data to
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Detector Time-stamp (in sec)

L1 1126259462.415039062

H1 1126259462.422363281

Table 2: The time at which SNR timeseries peaks in each of the detector. The detector

data is match filtered against a single time-domain template constructed using SEOBNRv2

waveform family. The template corresponds to a BBH system with the parameters set to the

best-fit-template parameters reported by the PyCBC search.

produce the overlay plot presented in Figure 1. The merger times obtained are listed in Table

2.

We observed a time delay of 7.32 ms between the Livingston (L1) and Hanford (H1)

detectors. Our analysis uses a sampling rate of 16384 Hz and therefore, to align the data

from the two detectors, we shift the raw data of H1 by 120 sample points. Also, the two

detectors detect signal arriving with di↵erent phase as their location and orientation are

di↵erent. Therefore, the data is suitably phase shifted by the values presented in Table 1.

The result of this study is presented in Figure 1. We see an excellent agreement between

the raw data from the two detectors (see the coherence in the green and the red curve in the

main panel). Note that the best-fit template (the thin blue and black lines) match very well

with the two detector data (and with each other). In this plot we see that a minimal set of

non-aggressive filtering allows us to clearly see the inspiral and the merger phase of the GW

signal buried in the detector noise. However, the RD portion of the waveform is buried under

the noise floor.

A refined version of Figure 1 was prepared by the LIGO collaboration and is presented

in the top two panels of Figure 1 in the GW150914 detection paper [3]. For the ease of

comparison, we present this plot in Figure 2. Figure 2 di↵ers from Figure 1 in the following

ways. The template that was used in the making of Figure 1 of [3] used the numerical relativity

(NR) waveform from the SXS-NR waveform catalogue indexed as SXS:BBH:0305. Note that

this waveform also does not correspond to the most-likely or maximum a posteriori parameters

reported by the parameter estimation presented in [79] and [1]. However, it produces an

overlap of 0.993 with the maximum aposteriori parameters reported in [1]. The template

amplitude, phase, and the arrival times are obtained by a ‘hand’ adjustment to approximately

minimize the visual content of the residue. For data conditioning, a Butter-worth bandpass

filter from 35.0 Hz to 350.0 Hz was applied followed by notching out frequencies where the

PSD contained unphysical spikes.
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Figure 1: Direct comparison of the detector data with the best fit template. The data from

the H1 and L1 have been minimally filtered and appropriately shifted to align with each

other. The best-fit template corresponding to each of the detector timeseries is overlayed on

the data. The inlay panels display the details of the filters used to condition the data. We

see that with very minimal data conditioning, the data from the two detectors as well as the

template aligns well, validating the presence of an astrophysical signal.
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Figure 2: Figure 1 from GW150914 detection paper [3] . This Figure is taken from the

GW150915 detection paper [3] by the LIGO collaboration. The top two panels of this Figure

displays a more refined version of the plot we produce in our preliminary study presented in

Figure 1. The bottom panel is a frequency-time plot, revealing a clear chirping in the data

signal.
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2.4 Parameters of GW150914 inferred using SEOBNRv3 wave-

form family

Since the parameters reported by the search are approximate, a Bayesian PE needs to be

performed to estimate the astrophysical parameters. In this section, we review the parameters

estimation results for GW150914 performed using a template family that includes spin and

precession e↵ect in the BBH waveforms using the framework of an E↵ective One Body

(EOB) formulation. This section contains results of the PE studies performed by the LIGO

collaboration that are presented in papers [79] and [1].

PE of GW150914 was initially performed using two template families that had independent

ways of constructing the waveforms [79].

1. One of the template families used was based on an e↵ective one body (EOB) formulation

and is calibrated to a set of numerical relativity simulations. This model did not allow

for a non-aligned spin, thereby, did not contain precession physics in the waveform

modelling. In the LAL code library, the implementation of this template family is called

SEOBNRv2 [80]. To perform the PE study presented in [79], a reduced ordered model

of this waveform in the frequency domain, called the SEOBNRv2-ROM-DoubleSpin, was

used in view of computational e�ciency.

2. The second waveform family used in the PE study presented in [79] models the waveform

by phenomenologically predicting the amplitude and phase evolution. This waveform

family is also calibrated to a set of numerical relativity simulations. However, in this

waveform family, the precession physics of the binary system is incorporated i.e., it can

generate waveform corresponding to non-aligned BBH systems. In the LAL code library,

the implementation of this waveform family is called as the IMRPhenomPv2 [81].

Two independent template families were used with the aim of understanding the e↵ects

of waveform modelling systematics on the inferred astrophysical parameters of the BBH [79] .

However, since the waveform model SEOBNRv2 lacks the precession physics in it, comparing

them to quantify the modelling error was not entirely fair; it overestimates the errors on the

upper bounds on systematic errors incurred due to the di↵erence in waveform modelling.

An implementation of the EOB template family that incorporated the precession physics

was developed shortly after the initial parameter estimation analysis presented in [1] was

concluded. The new implementation of precessing EOB waveform family was called SEOBNRv3

and the details of the physics in modelling this waveform can be found in [82]. Then the
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PE analysis was repeated using this new template family, thereby, giving a more realistic

estimate of the e↵ects of modelling errors between di↵erent IMR waveform families.

Table 3 presents the PE results obtained by the LIGO collaboration using the SEOBNRv3

template family. It was found that the inferred parameters of GW150914 using the two

precision models were indeed very close, a�rming that inferred astrophysical parameters

of the system are not a↵ected significantly by the di↵erence in the waveform models. The

di↵erence in inferred astrophysical parameters due to the di↵erences in waveform family used

for performing the PE study is beautifully visualized in Figure 1 of [1].
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precessing EOBNR

Detector-frame total mass M/M� 71.6+4.3
�4.1

Detector-frame chirp mass M/M� 30.9+2.0
�1.9

Detector-frame primary mass m1/M� 38.9+5.1
�3.7

Detector-frame secondary mass m2/M� 32.7+3.6
�4.8

Detector-frame final mass Mf/M� 68.3+3.8
�3.7

Source-frame total mass M source/M� 65.6+4.1
�3.8

Source-frame chirp mass Msource/M� 28.3+1.8
�1.7

Source-frame primary mass msource
1 /M� 35.6+4.8

�3.4

Source-frame secondary mass msource
2 /M� 30.0+3.3

�4.4

Source-frame final mass M source
f /M� 62.5+3.7

�3.4

Mass ratio q 0.84+0.14
�0.20

E↵ective inspiral spin parameter �e↵ �0.02+0.14
�0.16

E↵ective precession spin parameter �p 0.28+0.38
�0.21

Dimensionless primary spin magnitude a1 0.22+0.43
�0.20

Dimensionless secondary spin magnitude a2 0.29+0.52
�0.27

Final spin af 0.68+0.05
�0.05

Luminosity distance DL/Mpc 440+160
�180

Source redshift z 0.094+0.032
�0.037

Upper bound on primary spin magnitude a1 0.54

Upper bound on secondary spin magnitude a2 0.70

Lower bound on mass ratio q 0.69

Table 3: The parameters of GW150914 estimated by the LIGO collaboration using the fully

precessing EOB templates. This table contains the first two columns presented in Table 1 of

[1]. In this Table the median value of each of the parameters is quoted along with the 90%

credible intervals.
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Chapter 3

On ringdown and the scales of

perturbation

3.1 The binary black hole ringdowns and the quasi-normal-modes

In GR, when two BHs merge, they form a highly distorted BH, that then rings down to settle

to a final Kerr state 1[83, 84]. The GWs radiated as the distorted BH settles down is known

as the post-merger signal in a BBH waveform. Qualitatively, the post-merger signal contains

two phases. The early part of the post-merger signal carries information about the highly

non-linear dynamics of the strong field region (close to the BH). This part of the signal can

only be modelled by solving the full Einstein’s equation using NR [70]. As the BH evolves

towards its final state, the non-linearity is dissipated as GW and eventually, the system can

be modelled as a linear perturbation on the spacetime of the final Kerr BH [85, 86, 87]. In

this chapter, we will refer to this later part of the signal as ‘ringdown’ 2.

When the final BH is in its ringdown stage, it can be analytically modeled using the

perturbation theory. In Boyer-Lindquist coordinates (t, r, ✓,�), the Kerr metric corresponding

1Although we colloquially say that the BH settles to a Kerr state, strictly speaking, what we mean is that

the spacetime of the merged BH is asymptotically (in time) locally isometric to the Kerr manifold. Kerr is a

stationary spacetime and does not contain any nontrivial time evolution. It has a global time translation

symmetry which is not true for a BBH ringdown spacetime.
2The definition of ringdown is not consistent among di↵erent papers in the literature. Some call the entire

post-merger as ringdown while others choose to call the perturbative regime of post-merger as ringdown. In

this work, I find it useful to use the second terminology.
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to the spacetime of a BH with a mass M and a dimensionless spin a can be written as,

ds2 = (1 � 2Mr

⌃
)dt2 +

4Mar sin2(✓)

⌃
dtd�� ⌃

�
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Here, ⌃ = r2 + a2cos2✓ and � = r2 � 2Mr + a2. In the framework of GR, any perturbation

on this metric is governed by a master equation called the Teukolsky’s perturbation equation

[85, 86, 87] , given as
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Here  is the field that satisfies the perturbation equation, T is the source term and the

spin weight s describes the nature of perturbation. s = 2 corresponds to a gravitational

perturbation while s = 1 and 0 correspond to vector (e.g. electromagnetic) perturbation and

scalar perturbation respectively. Details on  , T and s are summarized in Table 1 of [85]. By

casting this into a radiative boundary value problem and finding the eigensolution, one can

obtain the characteristic resonance frequency of the BH. An inertial observer at the asymptotic

future null infinity (I +) perceives the GW emitted by a perturbed BH as excitation of modes

corresponding to a characteristic discrete frequencies (complex frequencies) spectrum. These

are known as the quasi-normal-modes (QNMs) [88, 89]. Given {Mf , af}, the spectrum of

QNMs is unique for a BH.

3.2 Ringdown as a probe for strong field gravity

Ringdowns serve as a powerful probe to understand the dynamics of strong field gravity.

The equation governing the perturbation when cast in form of a radiative boundary value

problem [90, 89, 83] takes a form similar to the Schrodingern equation and contains an

e↵ective potential for the BH [91]. Since QNMs are the solutions to this equation, observing

them serves as a confirmation of:

1. The equation governing the perturbation: This in turn, is dictated by the Einstien’s

equation and therefore, will validate the dynamics predicted by GR.
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2. The boundary conditions imposed in solving these equations: The boundary conditions

encode the nature and geometry of the compact object. For instance, while on one

hand for a BH one imposes the condition that there should be no outgoing radiation at

the event horizon, on the other hand in the case of many of the exotic compact objects

(ECO) the appropriate condition to impose is a (partially) reflective boundary condition

at the surface of the compact object. The exact detail of the boundary condition will

depend on the structure of the compact object [59, 60].

3. The e↵ective potential of the compact object: This contains information about the

spacetime geometry around the compact object.

Testing these features will allow us to validate GR and to place stringent constraints on the

alternative theories of gravity.

3.3 Intuition on scales of perturbation and start time of ringdown

In order to perform tests of gravity that rely on the BH perturbation theory, it is crucial

to understand which part of the postmerger signal can be described by the perturbation

theory, i.e. where does the ringdown begin? This is not a straightforward question and there

have been various attempts to address it 3[92, 93, 94, 95]. A general notion of validity of

perturbation theory is that the scale of the perturbation should be much smaller than the

scale intrinsic to the unperturbed system 4.

In sections 3.3.1 and 3.3.2, we develop two simplistic models to build an intuition on the

scale of perturbation in the source frame as a function of time during a BBH ringdown. In

both of these cases, we construct an e↵ective source from the observed GW strain at future

null infinity (I +) and use that to study the scales of perturbations in the ringdown. Then

we apply these ideas to a GW wavefrom and present the result in section 3.3.3.

3.3.1 Model 1: Two point masses

Consider an e↵ective system which is comprised of two point particle of mass m1 and m2.

Given this toy system, we now construct the evolution of the separation vector between the

3The di�omorphic symmetry of GR makes it hard to both quantify the amplitude of perturbation in the

source frame (there is no prefered metric) as well as to connect the source frame dynamics to GW observed

at the I +.
4The two physical features of a BH spacetime that can be used as an intrinsic scale are a) the event

horizon (located at 2M for a Schwarzschild BH) and b) the light ring (located at 3M for a Schwarzschild BH).
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two particle such that it produces the observed GW at I +. In this study, GWs are computed

only to the order of the quadrapole moment at I + and we assume a quasi-Keplerian motion.

Therefore, the system is an ‘e↵ective system’ and does not correspond to a BBH merger; the

source frame system is retroengineered to produce a BBH GW at I +, but the source-frame

does not model the dynamics of a BBH merger. We refer to the magnitude of separation as

the e↵ective radius (re↵). re↵ serves as a rough guide to the scale of gravitational dynamics

in the source-frame that we can map to an observed GW.

A GW strain h(t) can be written down as,

h(t) = hampe
◆2!t. (3.2)

Here hamp is the amplitude and ! is the orbital frequency. For the case of two point masses

separated by re↵ , at a distance of R from the observer, hamp has a magnitude of,

hamp =
�4Gr2e↵µ!2

c4R
. (3.3)

Here, µ is the reduced mass of the system. From this, one can define re↵ as,

r2e↵(t) =
hamp(t)c4R

4Gµ!(t)2
(3.4)

Now, we find R assuming that far way from merger, the dynamics of binaries can be described

by quasi-circular-Keplerian orbits. Using Kepler’s law,

re↵(t) =

✓
GM

!2

◆1/3

, (3.5)

where M = m1 + m2. We assume that R will not change in the timescale of evolution of

the binaries. Let t = t0 be some early time in the evolution of the binary system when the

quasi-circular-Keplerian assumption holds. Then, the amplitude of the GW at t = t0 can be

expressed as,

hamp(t0) =

✓
GM

⇡2f 2

◆2/3 4Gµ⇡2f 2

c4R
(3.6)

where f = !
⇡ is the GW frequency. Inverting for R,

R =
4G5/3µM2/3⇡2/3f 2/3

c4hamp(t0)
(3.7)

Now, using Eq. 3.7, we can compute Eq. 3.4 for re↵ as a function of time.

In the early inspiral part of the evolution, we expect that re↵ will match the physical

separation between the component masses of the BBH system. As the two BHs come closer
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and the dynamics becomes more relativistic, re↵ will start to deviate away from the physical

separation of the two BH. After merger, re↵ will give a length scale associated with quadrupole

moment of the final remnant BH, providing a sense for scale of perturbation during the RD

phase. For instance, as the final remnant rings down, we expect re↵ to exponentially decrease.

3.3.2 Model 2: Final black hole as a rotating tri-axial ellipsoid

Next, we build another toy model. We model the merged BH as a rotating triaxial ellipsoid

with a time varying semi-axes. Here, the question we ask is how should the geometry of this

tri-axial ellipsoid change such that an observer along the z axis (axis of spin of the final BH)

will see a GW corresponding to the BBH merger. The scale of this change can be used as a

way to develop an intution of the scales of perturbation during a BBH RD.

Let Ii, where i = {1, 2, 3}, be the moment of inertia of a rotating tri-axial ellipsoid. Let

{a, b, c} be the semi-axis of the ellipsoid. The GW emitted by such a system is given by,

h(t) =
4G(I1 � I2)!2

c4R
e◆2!t. (3.8)

Here we identify amplitude of the GW as

hamp ⌘ �4G(I1 � I2)!2

c4R
. (3.9)

The moment of inertia of an ellipsoid is given by,

I1 =
Mf (b2 + c2)

5
(3.10)

I2 =
Mf (a2 + c2)

5
. (3.11)

Then, the amplitude of the GW can be expressed as,

hamp =
�4GMf (b2 � a2)!2

5c4R
. (3.12)

We use the fitting formula obtained from numerical relativity for the Mf of the merged BH,

presented in [96],

Mf = M(1 + ((8/9)1/2 � 1)⌘ � 0.4333⌘2 � 0.4392⌘3). (3.13)

Here ⌘ is the symmetric mass ratio of the binary system and M is the total mass of the BBH

system. Plugging this back into Eq 3.12, we get

hamp =
4GM(1 + ((8/9)1/2 � 1)⌘ � 0.4333⌘2 � 0.4392⌘3)(b2 � a2)!2

5c4R
. (3.14)



24

Now notice that the quantity (b2 � a2) gives a rough estimate of deformation of the final

BH.

(b2 � a2) =
5hampc4R

4GMf!2
. (3.15)

In terms of parameters of the progenitor BBH,

(b2 � a2) =
5hampc4R

4GM(1 + ((8/9)1/2 � 1)⌘ � 0.4333⌘2 � 0.4392⌘3)!2
. (3.16)

For simplicity, let the scale of the system be the Schwarzschild radius (RS) of the final BH

(instead of the horizon size of the Kerr BH which is spin-dependent), given as,

RS = 2
GMf

c2
. (3.17)

This expressed in terms of ⌘ gives,

RS = 2
GM(1 + ((8/9)1/2 � 1)⌘ � 0.4333⌘2 � 0.4392⌘3

c2
. (3.18)

We now have two scales; an intrinsic scale defined by the radius of the event horizon of

the BH and a scale of perturbation given by (b2 � a2). We shall now proceed to compare

these two scales by defining a measure of fractional deformation �(t) of the final BH as,

�(t) =
(b2 � a2)(t)

R2
S

. (3.19)

For a perturbative analysis to be valid, we demand �(t) << 1. In other words, the scale of

the perturbation should be smaller that at least the inherent scale of the system (i.e) the

Schwarschild radius of the final BH that is formed. This imposes the condition that, for

perturbative analysis to be valid, the following condition has to be satisfied

�(t) =
(b2 � a2)(t)

R2
S

=
5hamp(t)c2R

2R3
S

. (3.20)

=
5µ

Mf

r2eff
R2

S

(3.21)

<< 1. (3.22)

3.3.3 On the scales of perturbation in a GW150914-like ringdown using our toy

models

Having developed two independent toy models to understand the scale of perturbation to the

intrinsic scale of the system, in this section, we investigate the implication on a BBH system.
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We apply the ideas developed in sections 3.3.1 and 3.3.2 to the GW emitted by a system with

the progenitor masses m1 = 49M� and m2 = 36M� and with dimensionless spins along the

z-direction corresponding to s1z = 0.96 and s2z = �0.89. These are the intrinsic parameters

reported by the PyCBC search pipeline [63, 64, 65] for the event GW150914. We use an

aligned spin inspiral-merger-ringdown (IMR) waveform approximant (called the SEOBNRv2

in the LIGO analysis library (LAL)) to produce the waveform with these parameters. The

peak of the strain amplitude occurs at time t = 0. We then use this waveform to compute re↵

as defined in Eq 3.4 and mark it on the waveform in Figure 3. Note that the solid vertical lines

marking re↵ smaller than the Schwarzschild radius are meaningful as the radius of separation

only for the e↵ective point particle model and not for a true BBH system. Although it can

not be interpreted as the radius of separation, re↵ gives a scale for the perturbation for the

BBH system during the post-merger phase. In Figure 3, we see that the line for reff = 2M

(which we identify as the intrinsic scale of the system) corresponds to about half a cycle

after the merger. This implies that one must wait for at least half a cycle after the peak for

perturbation analysis to hold.

Next, we compute the evolution of the deformation parameter �(t) for the waveform and

present it in Figure 4. Note that Figure 4 has the same time axis as the Figure 3. For

perturbation theory to hold, we demand that � be less than 1. From Figure 4, we infer that

for analysis based on perturbation theory one should at least wait for roughly 0.005 ms after

the peak of the waveform.

Both the models used are simple toy models, studied primarily built with the intention of

developing an intuition for the scales of perturbation during BBH RD. These are oversimplified

models compared to the rich non-linear and strong field dynamics that occur in a general

relativistic BBH merger-RD. Moreover, in defining �, we have used the Schwarzschild radius

as the intrinsic scale of the system, whereas the final BH in a BBH merger is a Kerr BH

(unless in case of head-on collisions).

In the next chapter, we will address the issue on the start time of RD in a more rigorous

way using a full NR evolution of the BBH spacetime. In particular, we will compare the

changing geometry of a dynamical spacetime during a BBH merger to that of a stationary

Kerr manifold and predict the start time of RD.
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Figure 3: re↵ marked on the GW strain. This plot presents the GW waveform corresponding

to the best-fit template parameters reported by the PyCBC search pipeline for the event

GW150914. The solid waveform is the + polarization and the dotted one is the ⇥ polarization

of the GW strain h(t). The waveform is zoomed-in on the last few cycles. The lines

indicate to the value of re↵ at di↵erent times of the evolution. The dotted lines correspond

to separation vector before merger of the BBH system and the solid line correspond to

un-physical separation, that provide the scale of perturbation during the merger-ringdown

phase of the BBH evelotion. We use the units where G = c = 1.
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Figure 4: The distortion parameter � as a function of time. This plot depicts the evolution

of the distortion parameter � defined in Equation 3.20. The scale of the perturbation is

comparable to the intrinsic scale of the system roughly when � = 1. We see that about 0.005

sec after the peak of the waveform, the value of � ⇠ 1. Note that by convention used in the

waveform family the merger is set at t = 0 (see Figure 3). We assert that any perturbative

analysis should start later than this time.
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Chapter 4

On choosing the start time of binary

black hole ringdown

4.1 Introduction

The quasi-normal mode (QNM) spectrum seen during the ringdown of a perturbed black hole

(BH) is determined by the Teukolsky equation; it carries the signature of the BH potential

along with the BH horizon and asymptotic boundary conditions [85, 86, 87]. The recent

detections of binary black hole (BBH) gravitational wave (GW) signals by LIGO (the Laser

Interferometer Gravitational-Wave Observatory) [97, 98, 37, 99, 100] allow us to begin to

probe this QNM signature [5]. The QNM spectrum in a gravitational-wave observation allows

us to perform tests of the no-hair theorem. This theorem states that vacuum, asymptotically

flat, stationary, axisymmetric, uncharged BHs are completely characterized by two parameters:

the mass and the spin [49, 50, 51, 52, 53]. This allows us to constrain modified theories of

gravity that violate the no-hair theorem [101, 42]. Observing the QNM spectrum in GWs

can be used to validate the BH uniqueness theorem. This theorem states that the exterior

geometry of an vacuum, asymptotically flat, stationary, axisymmetric, uncharged BH must

be Kerr [49, 102].

However, testing the no-hair and uniqueness theorems relies on observing GWs from the

QNM perturbative regime (without additional transients remaining from the inspiral). This

requires an appropriate choice of start time of this regime.1 Identifying this time in the signal

is mathematically an ill-defined problem, since QNMs form an incomplete and non-orthogonal

1While conventions in the literature vary, in this chapter, by ‘ringdown’, we explicitly mean the part of

the post-merger gravitational waveform that can be described in terms of QNMs.
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basis [103, 104]. Hence, the conventions for choosing the start time of the ringdown have

varied in the literature. Berti et al. [92] and Baibhav et al. [93] chose the start time based on

maximizing the energy contained in the QNM. London et al. [94] used 10 M after the peak of

the dominant mode of  4 (the Newman-Penrose scalar that encodes outgoing radiation) for

fitting to NR waveforms.2 Kamaretsos et al. [95] chose 10 M after the peak luminosity of the

dominant mode of the waveform, while Thrane et al. [105] proposed a loudness-dependent

start time. In the GW150914 testing general relativity (GR) chapter [5], di↵erent start times

were used to perform the QNM analysis shown in Fig. 5 of that chapter, and the results were

consistent with GR when the start time was picked as 3 ms (or later) after the merger.

None of these methods use information from the strong field to motivate the start times.

The strong field refers to the region near the BHs (typically within a radius of few M), where

the scale of the curvature is much smaller than the wavelength of a gravitational wave. In

this chapter, we develop an algorithmic method for validating choices of the start time of

ringdown using strong-field features. Specifically, we measure the Kerrness, or closeness to

Kerr, in the strong-field region of an NR simulation ringdown, and use null characteristics to

map Kerrness onto the GW at asymptotic future null infinity, I +. We then demonstrate this

method on a GW150914-like system. However, this method is generic, and this procedure

can be carried out for any BBH system.

Determining Kerrness in the strong-field regime is non-trivial, since one needs a coordinate-

invariant way of identifying a metric as Kerr. Necessary and su�cient conditions for a

gauge-invariant characterization of local isometry to a Kerr manifold were proposed by

Garćıa-Parrado Gómez-Lobo in [106].3 We use this set of algebraic and geometric conditions

to provide a numerical measure of Kerrness. Previous studies have used multipole moments

of the BH apparent horizon [4], horizon spin measurement comparisons [107], or Petrov

classification [108, 109, 110] to characterize ringdown spacetimes. Our work is the first set of

conditions that completely characterizes a spacetime as isometric to a Kerr manifold. We

study the violation of these conditions post-merger in the strong field of a BBH simulation.

Connecting the strong-field region to the wave zone is a challenge, as the simulation gauge

is di↵erent from the gauge in which GWs are observed. There is no straightforward way

to transform between these gauges. Furthermore, establishing simultaneity between events

is not possible in the GR framework, and thus there is no direct map between an event

in the strong-field region and a point on the waveform. We therefore devise a scheme to

2 Since vacuum GR is a scale-invariant theory, it is convenient to express distance and time in terms of

source mass by setting G = c = 1. Explicitly, 1 M = MBH ⇥G/c3 seconds, where MBH is the mass of the BH.
3Throughout this text, isometry refers to the smooth mapping of manifolds equipped with metrics.



30

approximately associate the two frames. The association used in this study is of a cause-e↵ect

nature: we follow the outgoing null characteristics from the strong-field region to the wave

zone using a Cauchy Characteristic Extraction scheme (CCE) [111, 112, 113], and associate

events in the strong field to the wave zone. However, given that GR is a nonlinear theory,

the source associated with a particular feature in the GW signal may not be well localized in

the spacetime. Nevertheless, one would expect that the source dynamics that dominantly

contribute to certain features in the waveform be localizable to a certain extent. Several such

approximate localizations have been performed in linear perturbation theory [114, 115].

This chapter is organized as follows. Sec. 4.2 presents the theoretical methods used in this

chapter, and Sec. 4.3 discusses their implementation in NR simulations. Sec. 4.4 then presents

and discusses the results of applying these methods to an NR simulation with GW150914-like

parameters. We conclude in Sec. 4.5. Figs. 19 and 27 are the flagship figures, presenting our

major results. The the results are quantitatively summarized in Table 6.

Conventions

We work with the standard 3+1 decomposition of NR (cf. [116] for an introduction). In this

chapter, gab refers to the spacetime metric, na refers to the timelike unit normal vector, �ij

refers to the spatial metric on each slice, Di is the covariant derivative with respect to �ij , and

Kij refers to the extrinsic curvature. We set G = c = 1 and express all quantities in terms of

M , the sum of the Christodoulou Masses of the two BHs at the start of the simulation. Latin

letters at the start of the alphabet, {a, b, c, d}, refer to (4-dimensional) spacetime indices,

while Latin letters in the middle of the alphabet, {i, j, k, l, m, n} are (3-dimensional) spatial

indices. We denote complex conjugation by an overbar (e.g. Ā). To avoid confusion among

the multiple meanings of ‘data’ in this chapter, we refer to the vacuum data {�ij, Kij} on a

spatial slice simply as ‘a slice’.4 Similarly, rather than being purely geometric, a ‘slicing’ in

our case is a foliation equipped with a coordinate chart.

4.2 Theory

4.2.1 Characterizing strong-field Kerrness

First, we explain our method of measuring Kerrness in the strong-field region and develop a

method to map it onto I +. Secs. 4.2.1 and 4.2.1 discuss theoretically characterizing Kerrness

4Vacuum data means that the spatial metric, �ij , and the extrinsic curvature Kij satisfy a set of constraint

equations corresponding to the decomposition of the vacuum Einstein equations.
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Figure 5: The set of conditions for a slice to be locally isometric to Kerr. The nodes refer

to the resulting type of spacetime when the conditions on each edge, given by their name

and equation in the text, are met. For example, a spacetime must meet all four of the

conditions specified in the edge from Algebraically Special to Petrov Type D to belong to the

type D subset of algebraically special spacetimes. In numerical applications, the failure of

these Kerrness conditions to be met gives a set of respective Kerrness measures, where larger

measures denote greater deviation from Kerr. For each measure, we give Nd, the number of

numerical derivatives beyond the first derivatives of the metric needed to evaluate it, which

corresponds to the numerical noise level in the measure, with higher derivative powers giving

more numerical noise.
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in the strong-field region, while Secs. 4.2.2, 4.2.2, and 4.2.2 discuss mapping strong-field

information onto the wave zone via null characteristics.

Overview and historical background

Our overall goal in this section is to evaluate Kerrness : how close a numerical BH ringdown

spacetime is to being locally isometric to the Kerr spacetime. In order to evaluate the

Kerrness of a spacetime, we first need a set of theoretical conditions to evaluate whether a

spacetime is isometric to Kerr. We can then turn these conditions into a set of measures,

where deviation from zero indicates being farther from being locally isometric to Kerr. In a

numerical simulation, one would evaluate these measures on spatial slices of a simulation. To

characterize Kerrness in the strong-field region, one needs local quantifiers evaluated close to

the BH, as opposed to looking at regions far away which are contaminated by gravitational

radiation. Consequently, we seek a point-wise measure and do not use global measures on a

slice such as those proposed in [117, 118, 119].

Uniquely characterizing a spacetime as Kerr has been historically challenging—until

recently one could only classify spacetimes up to a Petrov type, which gives a weaker

classification that admits several manifolds besides Kerr. The Petrov classification uses

algebraic properties of the Weyl tensor Cabcd based on the four principal null directions

(PNDs), by solving the eigenbivector problem (cf. [120] for a review)

1

2
Cab

cdX
cd = �Xab , (4.1)

where eigenbivectors Xab
(↵) have eigenvalues �(↵). The degeneracies of the PNDs give a unique

algebraic classification of a spacetime. A spacetime with no repeated PNDs is fully general

(Petrov Type I). A spacetime with at least one repeated PND is algebraically special. The

Kerr metric belongs to a particular class of algebraically special spacetimes, the set of type

D spacetimes, which have two double PNDs. A necessary condition for the manifold to be

locally isometric to Kerr is to be type D.

Campanelli et al. [109] used this approach to analyze a numerical BBH ringdown. They

determined the degeneracies between the PNDs by solving the eigenbivector problem and

measuring the di↵erence between eigenvalues. Their analysis found that the spacetime

first numerically settled to type II, which has only one double PND, and then to type D.

Owen [110] later showed that this measure was sensitive to the choice of tetrad used to

compute the Weyl scalars needed to solve the characteristic equation. He proposed a new

measure, less-sensitive to the choice of tetrad, and showed that the spacetime settled to type

D without first settling to type II.
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A type D spacetime can then be shown to be locally isometric to Kerr through additional

conditions. Kerr belongs to the Kerr-NUT subset of type D spacetimes. One needs to

show that a spacetime is Kerr-NUT and then constrain the acceleration and the NUT

parameters. We give more information on Kerr-NUT spacetimes and the various parameters

in Appendix A.1. Ref. [109] investigated the asymptotic behavior of the acceleration and the

NUT parameter on a BBH simulation and showed they were constrained to be those of Kerr.

In this study, we do not solve the eigenbivector problem, but rather use a set of local

algebraic and geometric conditions recently proposed by Garćıa-Parrado Gómez-Lobo [106]

to show that a spacetime is locally isometric to Kerr. These conditions are formulated in a

fully covariant way and thus avoid the complications in [109] and [110] due to tetrad choice.

Necessary and su�cient Kerrness conditions

To characterize a spatial Cauchy slice as isometric to Kerr, we first check if the slice is

algebraically special. Next, we use two geometric conditions to check for the existence of

Killing vectors (KVs) on the slice, and we impose two algebraic conditions to verify that

the slice containing the KVs is type D. Then, we check the properties of the KVs and

further classify the slice into the Kerr-NUT subfamily. Finally, imposing conditions on the

acceleration and NUT parameters, we completely characterize the slice as locally isometric to

Kerr. These conditions are summarized in Fig. 5.

All algebraic conditions are expressed in terms of electric and magnetic parts of the Weyl

tensor, Cabcd, as

Eab ⌘ +Cacbdn
cnd , (4.2)

Bab ⌘ �⇤Cacbdn
cnd , (4.3)

where the left dual of the Weyl tensor is defined as ⇤Cabcd ⌘ 1
2✏

abefCef
cd. For a vacuum

spacetime, these spatial tensors can be more readily evaluated on a slice as

Eij = KijK
k
k � Ki

kKjk + (3)Rij , (4.4)

Bij = �✏kl(iDkK l
j) , (4.5)

where (3)Rij is the spatial Ricci tensor evaluated from �ij. These can be combined into a

complex quantity as

Eij ⌘ 1

2
(Eij � iBij) . (4.6)
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In [106], the algebraic condition for a slice to be locally algebraically special is given in

Eq. 85 as

Speciality Index: 6b2 � a3 = 0 , (4.7)

where

a ⌘ 16EijE ij ,

b ⌘ �64Ek
i E ijEjk .

This condition is equivalent to the speciality index in the Petrov classification literature (cf.

Eq. 4.13 of [120]).

Recall that algebraic speciality corresponds to having one double PND, and hence is

a weaker condition than being type D, which corresponds to having two double PNDs. A

necessary algebraic condition for a slice to be type D is given in Theorem 4 of [106] as

Type D 1 :
a

12
�ij � b

a
Eij � 4Ei

kEjk = 0 , (4.8)

which makes use of 4-dimensional algebraic conditions proven in [121] and orthogonally

splits these onto the spatial slice. Here we have called the condition ‘Type D 1’ purely for

bookkeeping purposes, in order to label each of the type D conditions.

The three su�cient conditions for a slice to be type D consist of two geometric conditions

involving KVs and one algebraic condition which also includes the KV. As proven in Theorem 2

of [106], a vacuum type D spacetime has a complex KV field ⇠a which satisfies an algebraic

condition

⌅ab =
27

2
w

11
3 ⇠a⇠b , (4.9)

where ⌅ab is derived from the Weyl tensor, and

w ⌘ � b

2a
. (4.10)

However, one must show that a KV field exists on the slice in the first place, and then

that it satisfies the properties given in Eq. (4.9). The necessary and su�cient geometric

conditions for a slice to contain a KV field are known as Killing Initial Data (KID), and for a

vector ⇠a = Y na + Y a, are given as

Type D 3 : D(iYj) � Y Kij = 0 , (4.11)

Type D 4 : DiDjY � LY lKij (4.12)

� Y ((3)Rij + KKij � 2KilK
l
j) = 0 .
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Satisfying these conditions guarantees that a KV field exists on the slice—note that these

two conditions say nothing so far about type D.

We can then relate this KV field ⇠a to the condition on the KV in a type D spacetime

given in Eq. (4.9) by requiring

Type D 2 : Epj(⌦
2 + ⌦l⌦

l) , (4.13)

� 2⌦l
�
iEk

(p"j)lk⌦+ El(p⌦j)

�

+ �pj

✓
1

2
w⌦2 + ⌦l

✓
�1

2
w⌦l + Elk⌦

k

◆◆

+
1

2
w⌦p⌦j � 27

2
w11/3YpYj = 0 ,

where Eq. (4.13) is the orthogonal splitting of Eq. (4.9), and

⌦j ⌘ Dkw , (4.14)

⌦ ⌘ KjkEjk � wK � 16i
w

a
E jk"kplD

lEp
j ,

Y ⌘ (w⌦j⌦
j + 2Ejk⌦

j⌦k)1/2w�11/6 ,

Yj ⌘ ⌦(2Ejk⌦k + w⌦j) � 2i"jklEp
l⌦p⌦k

27Y w11/3
.

This procedure is shown in Theorem 6 of [106].5

Type D 3 and Type D 4 are independent geometric conditions that depend on the complex

KV ⇠a and show that the slice is KID. Type D 1 is a purely algebraic condition that informs us

of the behavior of the PNDs. Type D 2 ties in the algebraic and geometric conditions, thereby

completing the classification into type D. Speciality Index, meanwhile, is an independent

algebraic condition.

In order to then show that an algebraically special, type D slice is locally isometric to Kerr,

we must also show that it belongs to the Kerr-NUT subset of type D spacetimes. Kerr-NUT

spacetimes have the symmetry property of two commuting KVs [120] - one spacelike and

timelike, and thus if we impose this geometric condition on KV ⇠a as defined above, we arrive

at the condition given in Theorem 8 of [106],6

Kerr 1 : Im(Y Ȳj) = 0 . (4.15)

5The Type D 2 condition has a + in the second term where [106] has a �. The sign error has been

confirmed by the author of [106]. Similarly, The factor of 1

27
in the definition of Yj is not included in [106],

but is in the corresponding Mathematica notebook [122].
6However, this has a typographical error (confirmed by the author [122]), and should include Ȳj , the

complex conjugate, as given Eq. (4.15).
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In order to further show that a slice is locally isometric to Kerr, we must place constraints

on the parameters characterizing Kerr-NUT spacetimes. We summarize the parameters

involved in Type D spacetimes in Appendix A.1. We require that �, the NUT parameter,

vanish, and ✏, which is related to the acceleration of the BH, be greater than zero. These

conditions are given in Theorem 8 of [106] as

Kerr 2 : Z3w̄8 2 R� , (4.16)

for the condition � = 0, where Z ⌘ rawraw, and

Kerr 3 : �|Z|2 + 18Re(w3Z̄) > 0 , (4.17)

for ✏ > 0. However, the above expression only holds outside of the ergoregion [122] in Kerr.

This condition is thus impractical to use in the this study, since it involves finding the

ergoregion, and masking this region would introduce high levels of numerical error within a

spectral code.

Thus, for a slice to be locally isometric to Kerr, it must satisfy all of the above conditions,

which are summarized in Fig. 5. Since the vacuum spacetime at the start of a ringdown may

be fully general, the left hand sides of the Kerrness conditions will not necessarily be zero on

some slices. Instead, the Kerrness conditions turn into a set of Kerrness measures, where

larger deviation from zero indicates a larger deviation from being isometric to Kerr.

4.2.2 Connecting strong-field information to I +

Motivation

Having characterized the Kerrness in the strong-field region, we connect this information to

the GWs at I +. We develop a framework to map the evolution of the Kerrness measures

computed during a post-merger simulation to the evolution of the post-merger waveform

in the asymptotic frame. This provides a procedure to validate the choices of start time of

ringdown when analyzing a gravitational-wave signal.

Just after the two BHs merge, the newly formed BH is expected to be highly distorted.

The dynamics of the BH can be explained only via a full numerical simulation. At I +,

where the GWs are observed, these strong-field dynamics are responsible for features in a

small region close to the peak of the GW amplitude. Once the excitation amplitude in the

strong-field region decays to a level when linear perturbation theory is valid the spacetime

dynamics and the associated waveform is governed by the Teukolsky equation [85, 86, 87].

At I +, the waveform appears as a sum of exponentially damped sinusoids with a specific
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Time

Cauchy Evolution

Null Characteristics

  Time

I+

τ0

τ0

τ0

Figure 6: Prescription for connecting the strong-field information to the asymptotic frame

dynamics. The colored cylinder represents the region of spacetime that is evolved by the

Cauchy code. The vertical green line within the cylinder indicates the direction of coordinate

time. The horizontal lines represent time slices. The details of the location of time slices

depend on the gauge choice. The pink boundary of the cylinder depicts the worldtube from

where the CCE is performed. The purple lines with unit slope illustrate the null characteristics

along which the information on the worldtube is propagated to (the solid blue line) I +. In

our procedure of associating information in the source frame with the asymptotic frame, we

identify all the points along a characteristic by an equivalence. The solid green line in the

cylinder acts as a source to the waveform feature at ⌧0 observed at I +.
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QNM frequency spectrum (with power-law tails that are usually very weak). Beyond this

rough picture, the association of the specifics in the strong-field dynamics to the waveform is

not well understood, especially during the merger and post-merger phases.

Understanding this association is crucial because several strong-field tests of GR rely on

BH perturbation theory and thus, on identifying the perturbative regime in the waveform.

These tests include the no-hair theorem test, consistency tests of the QNM spectrum with

the inspiral parameters, and the area theorem test. The start of ringdown in the GW is

mathematically ill-defined as damped sinusoids form an incomplete and non-orthogonal

basis [103, 104]. Therefore, it is important that we validate the choices of start times in

the data analysis of ringdown guided by the strong-field information, where the validity of

perturbation theory can be better understood.

Conceptual challenges

Mathematically, GR being a non-linear theory does not allow for unambiguous localization

of sources of GWs. However, to a certain extent, one expects that the dominant source of a

particular feature in the wave zone be localizable to a relatively small region of the spacetime

in the past light cone. For instance, studies like [114, 123] identify the dominant source for

the peak of the waveform during the plunge of a test particle into a Schwarzschild BH with

the particle crossing the light-ring.7 Furthermore, the last few cycles of the BBH GW signal

are associated with the dynamics of a linearly perturbed BH [83, 124, 125]. However, one

needs to bear in mind that these studies are performed using linear perturbation theory where

such localizations are better defined. For example, if one adds a massive particle instead of

a test particle in the former case and makes the problem non-linear, one would get some

additional source contributions from self-force, thus making the source localization trickier.

In the case of BBH post-merger, identifying specific events as a source of the features

in the waveform cannot be done unambiguously owing to the non-linear dynamics from

merger. However, drawing intuition from analytical linear perturbation theory, we expect the

region within the support of the analytical e↵ective BH potential to contribute significantly

to the waveform at I +. Thus, we argue that even in a non-linear case, a small region in

the spacetime around the BH containing the strong-field dynamics, can be associated as a

dominant source of features in the GW.

Another challenge in performing this association is that the notion of simultaneity in GR

7The light-ring is the orbit of a massless particle around the BH, which corresponds to the peak of the BH

potential located at 3M in Boyer-Lindquist coordinates for a Schwarzschild BH.
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is not absolute, which means that all spacelike slicings of the spacetime are equally valid.

In numerical simulations however, we have to make a gauge choice. In our case this choice

is made by the Cauchy evolution code. The spatial features corresponding to a particular

timeslice are gauge dependent. We choose to monitor the Kerrness on a spatial coordinate

2-sphere in the strong-field region, instead of computing a volume integral over the source

region in a timeslice.8

We attempt to present a mathematically rigorous validation for the start time of RD.

However, we caution the reader that this association may be a↵ected by gauge choices, and in

particular is dependent on the radius of the 2-sphere we monitor, especially in the strong-field

region.

Forming a source-e↵ect association via null characteristics

Given these challenges, we propose the following association scheme. We evaluate the

Newman-Penrose scalar  4, which measures the outgoing gravitational radiation, on a given

slice of the simulation.  4 is obtained from the Weyl tensor as

 4 ⌘ �Cabcdk
am̄bkcm̄d , (4.18)

where ka is a radially ingoing null vector, and the complex vector ma is formed from spatial

vectors orthogonal to the radially ingoing and outgoing null vectors (cf. [116] for more detail).

By looking at  4 evaluated on the simulation, we infer a 2-sphere radius that lies within

the strong-field region, containing and generating significant radiative fields. This 2-sphere

acts like an e↵ective source for the GW seen at I +. We evaluate a surface integral of the

Kerrness measures at each time slice during the ringdown on this 2-sphere. Then, we connect

the evolution of the Kerrness measures on this surface to the associated features in the GW

by following the outgoing null characteristics emanating from this 2-sphere. The details of

this procedure are described below.

The GWs emanating from a source propagate to I + along outgoing null rays (since the

spacetime is curved, a small portion of GWs also travel inside the light cone). We utilize this

in constructing an association between strong-field information and the features on the GW.

We associate a feature on the GW to a 2-sphere in the strong-field region at a given time (in

the simulation coordinates) if they lie on the same outgoing null hypersurface. This 2-sphere

can thus be interpreted as an e↵ective source producing the point on the waveform. The

8By doing so, the gauge e↵ect is limited to uncertainty of picking the 2-sphere, thereby avoiding contribution

of gauge e↵ects through the entire volume region.
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choice of 2-sphere should be close to the region generating GWs rather than farther out as we

are interested in monitoring the region with a strong support of the BH potential. Measuring

Kerrness of such a surface would give an insight into validity of perturbation theory in the

region that acts as a dominant source of the GWs.

A framework that is naturally suited for such connections is Cauchy Characteristic

Extraction (CCE). CCE foliates the spacetime into a family of outgoing null hypersurfaces and

formulates Einstein’s equations as an initial-boundary value problem in a 2+2 characteristic

decomposition. The mathematical details of this formalism can be found in [126, 113]. CCE

performs a characteristic evolution using the metric data on a timelike boundary of the

Cauchy region (known as the worldtube) and propagates it to I +. At I + the radiation

information is obtained as the Bondi news function N [127]. The GW strain can then be

obtained from N by a time integration,

h(t) =

Z t

�1
N (t0)dt0 . (4.19)

A key feature of this scheme is that each point at I + corresponds to a null hypersurface,

which in turn corresponds to a particular (coordinate) time label on the world tube.

We can thus associate the average of the Kerrness on a 2-sphere to spherical harmonic

modes at I +. We choose to average the quantities, rather than modally decompose them,

in order to obtain a single number, which makes the interpretation and presentation of

results easier. We illustrate this in Fig. 6. Here ⌧0 marks a specific timeslice (horizontal

solid green line) in the Cauchy evolution region in a gauge chosen by the Cauchy code. The

intersection of this timeslice with the worldtube boundary is a spatial (topological) 2-sphere.

The information on this 2-sphere is propagated to I + along a null hypersurface labeled

(solid purple line) as ⌧0. The radiation feature carries the time stamp ⌧0 at I +, which,

roughly speaking, arises from the 2-sphere defined by the intersection of timeslice ⌧0 and the

worldtube in the simulation and thus, we identify them to be associated.

Having established a framework to associate information on a 2-sphere in the strong-field

region to the waveform at I +, we now discuss the choice of the 2-sphere used in this

study. Motivated by analytical studies of test particles plunging into Schwarzschild BHs

[114, 123], one might want to inspect the 2-sphere associated with the peak of e↵ective BH

potential. However, locating it during the merger in a numerical simulation is non-trivial (if

at all well-defined), and is beyond the scope of this chapter. Furthermore, CCE cannot be

performed from an arbitrarily small worldtube close to the horizon. This limitation arises
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because CCE is formulated in light-cone coordinates. In the regions very close to the horizon,

light-cone coordinates can form caustics, leading to coordinate singularities. Because of

these constraints, we choose the worldtube radius corresponding to the smallest coordinate

2-sphere that is accessible to our procedure, but we visually verify that it contains strong-field

dynamics by plotting  4 in Figs. 21.

4.2.3 Inferring perturbation amplitudes via Kerrness
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Figure 7: Envelope function from Eq. (4.21), for two choices of width and fallo↵ parameters,

{W, F}. We show how the envelope parameters a↵ect an extraction radius of R = 5 M

(marked by the dashed black line). For our chosen values of {W = 6 M, F = 8}, the envelope

is at ⇠ 1 and R = 5 M , while for {W = 3 M, F = 8}, the envelope a↵ects the perturbation

amplitude at R = 5 M . We have checked that using a smaller envelope does not change the

qualitative behavior of our results.
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Figure 8: Behavior of absolute Kerrness measures with perturbation amplitude ". We compute

this on an l = m = 2 QNM perturbed Kerr BH with the same mass and spin as the final

remnant in the BBH simulation we consider in this chapter. We average each measure on a

coordinate 2-sphere of R = 5 M . Note that we do not plot Type D 4 due to the high level

of numerical noise in the measure, but it behaves similarly to Type D 3. The behavior is

initially quadratic with " for all measures. At larger amplitudes " � 5 ⇥ 10�3, Type D 2, D

3, D 4 and Kerr 1 show higher-power dependence, and hence non-linearity. We show this

"crit ⇠ 5 ⇥ 10�3 by a dashed vertical line. The lines between the points are only used to

visually connect them (rather than being fits).
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In order to give physical meaning to the values of the Kerrness measures outlined in

Sec. 4.2.1, we can compare their values (on a post-merger spacetime, for example) to those on

a single BH with a known analytic perturbation. Specifically, we can compare the Kerrness

measures during ringdown to those on a l = m = 2 spheroidal QNM perturbed Kerr BH of

the same final mass and spin, with varying dimensionless perturbation amplitude ". This

will provide a true physical comparison, as linearly-perturbed type D spacetimes are fully

generic type I, and thus the Kerrness measures on the perturbed spacetime are expected to

be nonzero [128]. This comparison will allow us to infer the perturbation amplitude to which

a particular coordinate time corresponds. We can then map this inferred amplitude onto the

waveform using the methods in Sec. 4.2.2.

Given the initial masses and spins, we can generate initial data for a perturbed BH

(including all the relevant modes). In this study we choose to use the initial data consisting

of only (2,2) mode as this is the dominant mode of the system. We have fitting formula for

relative mode amplitudes in the perturbative regime, and thus we can extract an overall

amplitude factor and call that ".

Kerrness measures on perturbed metrics

The perturbed metric is generated on a single slice for each " by solving the Teukolsky equation

and reconstructing the metric perturbation hab using a Hertz-potential formalism [129, 130]

(cf. [83] for a general review). The resulting perturbation hab is then added to the background

metric to give

g̃ab = gKerr
ab + "hab , (4.20)

which is correct to linear order. The constraint equations for the metric g̃ab are then solved

to give a fully constraint-satisfying metric gab in Kerr-Schild coordinates using the extended

conformal thin-sandwich formalism (cf. [116]).This introduces some nonlinear e↵ects into

the perturbed metric. Furthermore, the asymptotic radial behavior leads to blow-up of the

solution at large radii [131]. Thus, before solving for gab, we multiply hab by an envelope of

the form

fEnvelope(R) = exp[�((R � r+)/W )F/2] , (4.21)

where r+ is the radius of the outer horizon of the BH, W is the width, and F is the fallo↵

of the envelope. Since the mapping of the Kerrness measures onto the waveform occurs

at R = 5 M , as will be discussed in Sec. 4.3.3, and the horizon typically has outer radius
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R+ ⇠ 1.7 M , we choose W = 6 M to give fEnvelope(5 M) ⇠ 1 so as to minimally a↵ect the

perturbation at the extraction radius. Additionally, we choose F = 8 in order to counteract

the steep growth of the perturbation with radius. We plot the envelope in Fig. 7. In practice,

the metric perturbation is generated using an extension of the code used in East et al. [132],

but with the QNM solution rather than an ingoing GW solution and using the full radial

dependence.

Fig. 8 shows the behavior of the Kerrness measures averaged on a 2-sphere of R = 5 M

with " on a BH of the same final mass and spin as the simulation outlined in Sec. 4.3.1. The

theoretical behavior of the Kerrness measures with perturbation amplitude is unknown [122,

133], and thus this is the first (numerical) computation of the behavior. We first check

that the measures converge to finite values with numerical resolution, thus representing

real physical values. The Kerrness measures increase quadratically for small ", then show

higher-order e↵ects for large ". Type D 2 grows to (best-fit) quartic, Type D 3 and Kerr

1 become cubic, while Speciality and Type D 1 remain quadratic at " ⇠ 10�2, the largest

amplitude for which we can solve for gab before violating the constraints. In particular, the

steep increase of the Type D 3 and Kerr 1 measures, which come from geometric conditions

on KVs, indicates that at large enough perturbation amplitude, the slice fails to have even

an approximate KV. Since the perturbation we are introducing is not axisymmetric, it makes

sense that at large " the slice loses this KV symmetry.

The linear perturbation regime corresponds to the region where the measures increase

quadratically with ", while the non-linear regime approximately begins where one can see

higher-power behavior. In this case, we see the transition from quadratic behavior around

"critical ⇠ 5 ⇥ 10�3, suggesting that this is the approximate start of the nonlinear regime. In

practice, one can normalize all of the " values in this chapter by "critical. However, we do not

do this for readability of the figures.

However, there are some sources of error in the gab analysis. The areal radius of the

perturbed metric on a coordinate 2-sphere of radius R = 5 M changes slightly with perturba-

tion amplitude, changing by 10�2 M between " = 10�6 and 10�2. Thus, a coordinate-radius

measure comparison does not happen on exactly the same 2-sphere. Solving for gab changes

the values of the mass and spin from the parameters used in creating gKerr
ab . At the largest

perturbation amplitude " = 10�2, the dimensionless spin changes by .003, while the mass

changes by .008 M . We keep these errors in mind when computing the Kerrness values of the

strong-field region in terms of " and mapping them to the waveform for the binary case in

Sec. 4.4.3.
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Mapping onto the waveform

A perturbation amplitude " is associated with each timeslice of a post-merger spacetime in

the strong-field region by the procedure described above. Since the procedure developed in

4.2.2 allows us to associate simulation timeslices with the gravitational waveform at I +, we

can map the perturbation amplitude associated with each timeslice to the corresponding parts

of the waveform at I +. This gives an insight into deciding which portion of the waveform at

I + can be modeled as being generated by linearly perturbed Kerr manifold, thus providing

validation of start times chosen in data analysis that rely on perturbative description of Kerr.

4.2.4 Outline of method

For quick reference, we now concisely provide an outline of the algorithmic procedure developed

in this chapter. This also serves as a step-by-step plan that we can apply to future BBH

detections.

1. Performing an NR simulation with waveform parameters inferred from parameter

estimation, and saving the metric data,

2. Generating worldtube data for various extraction radii and performing CCE from the

inner-most possible radius,

3. Evaluating the Kerrness measures on the metric data at this radius for BBH ringdown,

4. Evaluating the Kerrness measures on QNM perturbed data with the same final mass

and spin, and inferring corresponding perturbation amplitude from the Kerrness values,

5. Mapping the Kerrness measures and inferred perturbation amplitudes to the waveform

via null-characteristics,

6. Using these results to validate choices for the start time of ringdown in detector data

analysis.

4.2.5 Measuring Kerrness on the horizon

In addition to local measures throughout a spatial slice discussed in Sec. 4.2.1, Kerrness can

also be evaluated on the post-merger apparent horizon (AH). Owen describes a multipolar

horizon analysis in [4], finding that the multipolar structure of a final BBH remnant was that

of Kerr. Probing the multipolar structure also serves as a test of the no-hair theorem [83].
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This formalism involves computing the mass multipole moments I↵ of the horizon as

I↵ =

I
y↵RdA , (4.22)

where R is the scalar curvature of the horizon, dA is the metric volume element on the AH,

and ↵ labels generalized (non-axisymmetric) scalar spherical harmonics y↵. These generalized

spherical harmonics are computed from the eigenvalue problem

�y↵ = �(↵)y↵ , (4.23)

where � is the operator � ⌘ gABrArB on the AH, and � is its eigenvalue. In analogy with

axisymmetric spherical harmonics Ylm, an e↵ective l is defined for the eigenvalues as

� = � le↵(le↵ + 1)

r2
, (4.24)

where r is the areal radius of the horizon. Since the le↵ values are time-dependent, we refer

to a given multipole by its final value.

As discussed in [4], the multipole moments that are zero on a Kerr BH either immediately

vanish due to the symmetry of the AH, or decay to zero from their excited values as the

remnant BH settles to Kerr. The multipole moments that do not vanish on Kerr are functions

of the mass and spin, and reach these values with increasing coordinate time. We use the

code implemented and tested in [4] to compute the multipole moments. However, since

the multipole moments are features of the horizon, we cannot map their behavior onto the

waveform at I +. Moreover, CCE cannot be performed close to the horizon, as discussed in

Sec. 4.2.2. Nevertheless, we can compare the qualitative behavior of the multipole moments

with those of the Kerrness measures as done in Secs. 4.4.1 and 4.4.2.

4.3 Numerical implementation

4.3.1 Description of simulation

We apply the methods outlined Sec. 4.2 to the numerical simulation presented in Fig. 1

of [134], with similar parameters to GW150914, the first LIGO detection. The simulation

is performed and the methods are applied using SpEC, the Spectral Einstein Code. The

waveforms and parameters are available in SXS:BBH:0305 in the SXS Public Catalog [135].

The simulation has initial mass ratio q = 1.221, and dimensionless spins �A = (0, 0, 0.33)

and �B = (0, 0, �0.44). The initial orbital frequency is ⌦0 = 0.017. The final (post-merger)

BH has dimensionless spin �C ' (0, 0, 0.69) (within numerical error, as measured using the



47

techniques in [107]) and mass 0.952 M . The inspiral proceeds for 3694.4 M until the formation

of a fully-resolved common AH. The visible part of the post-merger waveform on a linear

scale has a temporal duration of ⇠ 61 M .

Within a BBH simulation, the metric equations are evolved in a damped harmonic

gauge [136, 137], with excision boundaries just inside the apparent horizons [138, 139], and

minimally-reflective, constraint-preserving boundary conditions on the outer boundary [140].

The spectral grid used during the inspiral of the simulation has an excised region for each

BH. Once a common AH forms, the simulation proceeds for a few M before switching to a

new grid, in which there is one excision region for the new AH [138]. For this simulation, the

grid-switch happens at 3696.9 M . For more information on the code, see [141].

4.3.2 Implementation of Kerrness measures

We discuss the numerical implementation of the Kerrness measures outlined in Sec. 4.2.1,

and summarized in Fig. 5, on an NR BBH post-merger. Note that these measures will not be

zero even on a numerical Kerr spacetime, due to the resolution of the simulation.

In order to quantify the Kerrness measures at each point, we convert the complex tensors

into scalars. We contract a tensor Aij, a vector Bi, and a scalar C as

SA = AijĀij SB = BiB̄i SC = CC̄ , (4.25)

where raising and lowering occurs using the spatial metric �ij.9 Throughout the rest of the

chapter, all of the measures will refer to their respective scalars generated using Eq. (4.25).

Because our simulations are performed using spectral methods, we expect errors to

converge exponentially with increasing numerical resolution [142]. In Fig. 9, we plot the

Kerrness measures as a function of resolution for a single Kerr black hole; we see that the

measures decay exponentially towards zero as expected.

SpEC solves a first-order formulation of the Einstein equations, and therefore evolves both

the spacetime metric and variables corresponding to its time and spatial derivatives [143].

The metric and first derivatives are available to the accuracy of the numerical simulation on

each slice. Kerrness measures that require additional numerical derivatives, however, will

have greater numerical noise and a higher numerical noise floor. The highest numerical order

derivative needed to evaluate each measure is given in Fig. 5. Type D 4, which requires four

9The Kerr 2 measure given in Eq. (4.16) requires that the imaginary part be zero, while the real part be

� 0. Hence, when evaluating Kerr 2, we measure the deviation of the imaginary part from zero, and the

deviation of the real part from being positive (hence only including negative values).
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numerical derivatives, is the noisiest measure and has a higher noise floor than the other

measures, as shown in Fig. 9.

4.3.3 Map from source to I + - implementation

In our study, we use a CCE implementation in SpEC (cf. [144], in prep). This implementation

uses a no ingoing and outgoing radiation condition on the initial null hypersurface of the

characteristic evolution. This means that the code treats the spacetime outside the worldtube

as initially free of any gravitational radiation from the past.10 Usually the CCE worldtube

is placed at a large radius, and the CCE evolution begins at the start of the numerical

simulation during early inspiral. However, here we begin CCE only at the merger portion of

the Cauchy evolution, and in addition, we place the CCE worldtube at a very small radius.

This means that extracted waveform does not contain contribution coming from the inspiral

part of the dynamics.

By decreasing the radius of the extraction worldtube progressively by 1M , we find the

smallest radius of the worldtube that our procedure can be applied to occurs at a coordinate

radius of R = 5 M . For a radius of R = 3 M , the CCE procedure can not be performed,

presumably due to the formation of caustics. At R = 4 M , we get a very glitchy and unreliable

extraction of the news function.

However, performing the CCE from such small radii gives rise to an additional complication.

Since time stamps on the waveform at I + are induced by the simulation coordinates, the

news function obtained is not necessarily in an inertial gauge. In a standard CCE scheme, a

gauge transformation is applied to the news function in order to obtain it in an inertial gauge.

To preserve the map between the time in simulation gauge and the time coordinate on the

extracted news function, we do not perform this gauge transformation. We see the e↵ect of

the gauge transformation in the waveform at I + as a mixing of mode amplitudes. The e↵ect

is very small when the worldtube boundary for CCE is large i.e., lies in the weak field region.

For instance, for a worldtube boundary of R = 128 M the e↵ect of this transformation is

negligible. To confirm this, we compute the overlap O between the news extracted from

R = 128 M with and without the gauge transformation. The overlap O is defined as,

O =
D
eN1| eN2

E
=

Z 1

�1

eN1(f) eN ⇤
2 (f)

| eN1|| eN2|
df , (4.26)

10During the Cauchy evolution, we perform the evolution with a boundary of R ⇡ 670M and we do not

neglect the backscatter from the region outside of the CCE extraction radius.



50

3840 3850 3860 3870 3880 3890 3900
-0.2

-0.1

0.0

0.1

0.2

Im
ag

(N
ew

s F
un

ct
io

n)

Time  (as per R=128 M extraction)

 -0.1

 0.0

 0.1

 0.2

Re
al

(N
ew

s F
un

ct
io

n)

R = 128 M 

R = 5 M

R = 64 M

R = 80 M

R = 96 M

R = 32 M

Figure 10: The l = m = 2 mode of the news function seen at I + extracted from worldtube

boundaries of R = 5 M , 32 M , 64 M , 80 M , 96 M and 128 M . The horizontal axis corresponds

to the time stamps associated with the news function corresponding to CCE from R = 128 M .

The top panel shows the real part and the bottom panel shows the imaginary part of

the news function. The alignment of news functions has been done such that the overlap is

maximized. The transformation that changes the gauge from a non-inertial to an inertial

observer has not been applied to any of the extractions. All of the extractions beginning with

R = 32 M seem to agree with one another (to the point of overlapping with the R = 128 M

line). Notice that the amplitude of the news function extracted from R = 5 M deviates from

the other extractions, especially in the first cycle. Nevertheless, the phase evolution between

the news function from extraction radii seem to agree. The primary goal of this figure is to

compare the extracted waveforms at R = 5 M and R = 128 M . Thus we have bolded and

boxed these lines.
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Figure 11: The phase discrepancy between the news function extracted from a worldtube

radius of R = 5 M and R = 128 M . The news functions are aligned to maximize the overlap.

The top panel presents the phase evolution of the news function for each extraction radius.

The bottom panel shows the fractional di↵erence defined as �128 � �5. Notice that the

phase di↵erence is significant at the very beginning but quickly decreases to an acceptable

level for our analysis. We notice that the phase di↵erence oscillates about 1 radian, indicating

the level of error we introduce by - a) not performing the final gauge transformation, b)

imposing no-ingoing condition for CCE.
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where eN1,2 is the frequency domain Fourier-transformed news function, and ⇤ denotes complex

conjugation for ease of readability, and || is the norm [145].

We find that the mismatch, 1 � O, is ⇠ 10�6. This overlap computation uses only the

merger and post-merger parts of the news function for the dominant (l = m = 2) spin-

weighted spherical mode. However, for a worldtube radius of R = 5 M , there could be

significant amplitude deviations between the waveforms in the simulation-coordinate-induced

gauge and the inertial gauge. Because of technical di�culties in the code implementation, we

could not apply the gauge transformation to an extraction from R = 5M and quantify the

di↵erence.

Furthermore, before the non-inertial to inertial gauge transformation, every point on

I + at the same timestamp on the waveform corresponds to the same null hypersurface

and therefore to the same simulation coordinate time. After the transformation, this is

no longer true: the waveform seen at di↵erent sky directions with the same timestamp

on the waveform corresponds to di↵erent null hypersurfaces and therefore di↵erent values

of simulation coordinate time. This happens because the choice of the 2-sphere is gauge-

dependent.Therefore, we omit the gauge transformation, as the aim in this chapter is to

connect the near-zone to the wave zone, requiring us to retain the timestamps.

Additionally, the initial no-ingoing radiation condition neglects gravitational radiation

coming from the inspiral. This may be significant for extraction done at small radii, where

the initial CCE null hypersurface connects the strong-field region close to merger to I +

and may contain significant radiation from the inspiral. This could contribute towards the

discrepancy between the R = 128 M and R = 5 M waveforms.

To assess this di↵erence, we compare the news function obtained by extraction performed

from R = 5 M with the extractions performed from the worldtubes of larger radii, all without

the gauge transformation. The result of this is presented in Figure 10. We observe that all the

extractions from radii greater than 32M converge with radius, indicating that the e↵ect of

the gauge transformation is insignificant at these radii. Further, the extraction from R = 5 M

has a significant amplitude discrepancy with the other extractions, particularly in its first

cycle. Therefore, we would ideally wish to map the strong-field information computed on the

2-sphere at a coordinate radius of R = 5 M on the news function that has been extracted

from a larger radius like R = 128 M .

We do this mapping in two steps. First, we map the strong-field information computed on

the 2-sphere at a coordinate radius of R = 5 M onto the CCE performed from a worldtube of

R = 5 M using the framework described above. Next, we note that the phase evolution of
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extraction from R = 5 M agrees with the extractions from larger radii.11 We verify this in

Fig. 11. Then we align the news function extracted from R = 5 M to the extraction from

larger radii as shown in Fig. 10. The alignment is done such that the overlap O between the

CCE extracted news function from di↵erent world tube radii is maximized. The maximum

normalized O between the news function extracted from R = 128 M and R = 5 M is 0.82.

Incidentally, this alignment is equivalent to aligning the real part of the news function at

its global minima (or global maxima of the absolute value). Table 4 lists the time shifts

that have been applied in order to align the news function extracted from a radius Ri with

extraction done at R = 128 M .

Worldtube radius Alignment shift wrt R = 128 M

R = 5 M 132.5 M

R = 32 M 96.5 M

R = 64 M 62.5 M

R = 128 M 0 M

Table 4: The shift in the time axis performed to align the news functions extracted from

di↵erent radii in Fig. 10. The alignment has been done such that the overlap between the

news function extracted from di↵erent worldtube radii with the extraction from R = 128 M

is maximized.

Using this alignment we map the time stamps on the R = 5 M to those on R = 128 M .

From this, we infer the mapping of strong-field information at R = 5 M on to the extraction

done from R = 128 M , thus mapping the strong-field information onto the news function as

seen in near inertial gauge.

We summarize our algorithm for mapping the strong-field information onto the news

function:

1. Perform CCE from worldtube with radius of the 2-sphere that lies in the strong-field

region (whose evolution you wish to map on to the news function seen at I +) without

the final non-inertial to inertial gauge transformation. The time stamps on this extracted

news function are induced by the time coordinates in the simulation, thus providing a

natural map between the evolution of the strong-field region and the wave zone.

2. Perform CCE from a large worldtube radius where the e↵ect of the non-inertial to

inertial gauge transformation is negligible.

11The time-derivative of the phase gives the instantaneous frequency of the gravitational radiation.
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3. Align the news functions obtained in steps 1 and 2 such that the overlap between the

waveform is maximized.

4. Use this alignment to map the time stamps of the news function extracted in step

1 to that in step 2. The 2-sphere chosen in step 1 at the timeslice marked with the

simulation time coordinate can be associated as the dominant source of the feature at

I + with the same time stamp.

4.4 Results

We now present the results of performing the analysis outlined in Secs. 4.2 and 4.3 on the

GW150914-like simulation detailed in Sec. 4.3.1. Sec. 4.4.1 presents the behavior of the

multipole moments of the AH, which provides a comparison for the Kerrness measures on

the simulation volume. Sec. 4.4.2 discusses the results of evaluating the Kerrness measures

on the post-merger spacetime and mapping them onto the waveform at I +, presenting them

in terms of the percentage decrease from their peak values. Sec. 4.4.3 presents the results of

comparing the Kerrness measures on the post-merger spacetime to values on perturbed data,

in order to infer the perturbation amplitude in the strong-field region, and mapping them

onto the waveform, presenting them in terms of the inferred perturbation amplitude ". The

percentage decrease from the peak value and " can then be used to estimate the overall level

of Kerrness and validate choices for the start time of ringdown. Finally, in Sec. 4.4.4, we

discuss the implications of these results on analyzing ringdown in GW data, and in Sec. 4.4.5

we compare our results to the ringdown start times chosen in the GW150914 testing GR

study [5].

4.4.1 Horizon behavior and multipolar analysis on BBH ringdown

As a first measure of Kerrness, we apply the horizon multipolar analysis outlined in [4] and

summarized in Sec. 4.2.5 to the simulation described in Sec. 4.3.1. Fig. 12 presents the

behavior of the AH. The areal mass of the AH, given by
p

A/16⇡ where A is the proper area of

the AH, sharply settles to a final value. The minimum and maximum radii are initially noisy,

as the AH is initially peanut shaped, but they decrease exponentially with coordinate time,

showing a settling of the AH to the final state. However, the radii are coordinate-dependent

measures, and thus to check if the BH settles to Kerr it is more instructive to look at the AH

multipole moments.
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Figure 12: Settling of the post-merger AH as a function of coordinate time. The top panel

shows the areal mass quickly attaining a constant value and the minimum and maximum

radii R of the horizon exponentially settling to final values. Each quantity ⇣ is presented

as |⇣ � ⇣final|/⇣final where ⇣final is the value at the final time of the simulation. The bottom

panel shows the behavior of the initially excited AH mass multipoles, labeled by the le↵

given in Eq. (4.24) at the final time. The initially excited quadruple moments (le↵ ⇠ 2) are

shown by the dashed lines, while the initially excited hexadecupole moments (le↵ ⇠ 4) are

shown by the solid lines. As discussed in the text, two of the quadropule moments and four

of the hexadecupole moments, as well as the l ⇠ 1 and l ⇠ 3 moments immediately vanish

due to symmetry. Thus, we do not plot them in this figure. The excited multipoles either

exponentially decay or reach constant values consistent with the values expected for Kerr [4].
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Fig. 12 shows the behavior of the initially non-vanishing quadrupole and hexadecupole

moments, labeled by their corresponding le↵ at the final time, as given in Eq. (4.24). The

quadrupole moments correspond to le↵ ⇠ 2 and the hexadecapole moments correspond to

le↵ ⇠ 4. The multipole moments behave as expected for a generic simulation remnant settling

to a Kerr BH. As explained in [4], two of the five quadrupole moments immediately vanish by

reflection symmetry, while two others exponentially go to zero (eventually hitting a numerical

noise floor) as the final remnant settles to Kerr. Four of the nine possible hexadecupole

moments immediately vanish from reflection symmetry, while four go exponentially to zero

as the remnant settles to Kerr. Note that the l = 1 and l = 3 moments vanish on Kerr due

to symmetry. As in [4], one quadrupole moment (le↵ = 2.1) and one hexadecupole moment

(le↵ = 4.17), both corresponding to m = 0, do not vanish, but rather attain a constant value

in line with that of a Kerr BH of the same final mass and spin.

The multipolar behavior thus confirms that the final state of the AH is that of a Kerr

BH. This serves as an independent test of Kerrness, and thus one would expect the Kerrness

measures presented in Sec. 4.2.1 to also show the strong-field region exponentially settling to

Kerr. This also serves as numerical evidence for BH uniqueness, as the final remnant of a BBH

merger is indeed Kerr, as also discussed in [4]. Similarly, since the final multipolar structure

can be described completely by the mass and spin, this serves as numerical validation of the

no-hair theorem.

4.4.2 Measuring and mapping Kerrness onto the waveform

The goal in this section is to validate choices of the start time of ringdown using Kerrness

measures on the GW150914-like system described in Sec. 4.3.1. We now present the results of

evaluating the Kerrness measures outlined in Secs. 4.2.1 and 4.3.2 (and summarized in Fig. 5)

in the strong-field region and mapping them onto the waveform at I + using the procedure

given in 4.3.3. These measures are evaluated point-wise on each slice, and we map the value

on a 2-sphere at a radius of R = 5 M onto the news function. Recall that larger values of the

Kerrness measures indicate greater deviation from being locally isometric to Kerr.

Fig. 13 shows the Kerrness measures averaged at various coordinate radii on each slice of

the post-merger spacetime, presented as a function of coordinate time. All of the measures

decay exponentially toward zero, showing that the spacetime approaches an isometry to Kerr.

This confirms the results of the multipolar analysis in Sec. 4.4.1. Additionally, this serves as

a numerical verification of BH uniqueness, as the final state of a BBH merger is isometric

to Kerr. The behavior of the measures at large radii (such as R = 128 M in this case) is
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Figure 13: Behavior of absolute Kerrness measures with coordinate time on BBH post-merger

spacetime. The measures are averaged on a variety of concentric nested coordinate 2-spheres

of radii R around the BH, as indicated by the colors. Larger values within each subplot mean

that the 2-sphere is farther from being locally isometric to Kerr. For measures that involve

higher-order numerical derivatives, we present the results only at radii where they are at

least somewhat well resolved. All plots, however, include R = 5 M , the radius we use to map

Kerrness onto the waveform. Type D 4 is particularly noisy, as it contains the highest number

of numerical derivatives. The measures exponentially decay as the spacetime approaches

Kerr, ultimately reaching a numerical noise floor. We observe that the peak of each measure

moves outwards with radius, indicating propagation of non-Kerrness.
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especially interesting to the question of BH uniqueness, which is particularly concerned with

the domain of outer communication [133].

Fig. 14 shows the behavior of the Speciality Index, an algebraic measure (Type D 1) and a

geometric measure (Kerr 1) in the volume, as a function of increasing coordinate time. We see

a distinct quadrupolar pattern in all our measures (the equatorial plane has a modal pattern

that corresponds to |m| = 2), consistent with the dominant mode of gravitational radiation.

Furthermore, the Speciality Index and Type D 1 measures, which determine properties of

the PNDs, settle first further from the BH, while the geometric Kerr 1 measure, which is

determined by properties of the KV, first settles closer to the BH.

The Kerr 2 measure, which constrains the NUT parameter, is e↵ectively constant through-

out the ringdown, as shown in Fig. 15. Since the NUT parameter is one of the hairs of a

generic type D manifold, Fig. 15 confirms that a NUT charge is not generated during a BBH

merger. We thus do not include it further in our analysis.

Of these measures, two are algebraic constraints—Type D 1 and Type D 2—and three are

geometric constraints on the KV, Type D 3, Type D 4, and Kerr 1. In Fig. 13 we see that

all the algebraic measures decay in a similar fashion and all the geometric measures decay

similarly. Type D 4, which requires 4 numerical derivatives, is visibly noisier than the other

measures. This measure checks if the vector identified as (Y, Yj) satisfies the Killing equation

and is crucial for a rigorous mathematical characterization of Kerr manifold. However, all

geometric measures depend on the same Killing vector and we observe that Type D 4 has a

similar decay property as Type D 3 and Kerr 1. Thus, we do not include the noisier Type D

4 in our analysis, rather treating Type D 3 as a proxy for both.

Each measure at each radius in Fig. 13 eventually reaches a floor. This is confirmed to

be a numerical noise floor in Fig. 16, where the floor is shown to exponentially converge to

zero with numerical resolution. The radial behavior of the Kerrness measures stems from the

radial behavior of the Weyl tensor and the metric quantities. For example, for a stationary

background, Eij ⇠ R�3 and Bij ⇠ R�4, and thus Speciality Index given in Eq. (4.7) should

be ⇠ R�18, which we indeed observe.

The analysis outlined in Sec. 4.3.3 requires the Kerrness measures to be extracted at

R = 5 M in order to map them to the news function. Fig. 14 shows that the Kerrness

measures have strong support at R = 5 M , thus justifying the choice of radius as being in

the near field.12

12The measures at R = 3M in Fig. 13 behave similarly to those at R = 5M indicating that R = 3M also

behaves like the near field region, but unfortunately we have not been able to perform CCE from this small a

radius.
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Figure 14: Absolute Kerrness measures on slices of the BBH post-merger spacetime. The

data is presented in the equatorial plane, with the gray region corresponding to the excised

BH. The black circles correspond to coordinate radii R = 5 M and R = 10 M . The columns

correspond to Speciality Index, Type D 1, and Kerr 1, and the rows (from top to bottom)

correspond to coordinate times at which the each measure at R = 5 M achieves 100%, 30%,

10%, and 1% of the combined peak value. The quadrupolar pattern (with |m| = 2) in all three

measures is consistent with the dominant quadrupolar radiation (recall that these are absolute

measures, and hence do not distinguish between positive and negative values). Notice that

the algebraic measures—Speciality Index and Type D 1—settle outward-in, whereas Kerr 1,

a geometric measure, settles inward-out. Additionally, the structures in the measures are

visible even at 1% of the peak value. We can compare these measures to  4 (in Figs. 21) to

infer their sensitivity to the spacetime curvature features.
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Figure 15: Kerr 2 measure throughout the post-merger BBH simulation, averaged on a variety

of coordinate 2-spheres of radius R. The values remain relatively constant and low, indicating

that no NUT charge is gained during ringdown.
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Figure 16: Exponential convergence of the noise floor of each Kerrness measure on the final

timestep of the BBH simulation. Each measure ⇣ is presented as an average over a 2-sphere of

R = 5 M (where the measures have settled to a noise floor), normalized by |⇣0|, the average of

the lowest resolution. The resolution is indicated by 3
p

N , where N is the number of spectral

collocation points. The convergence to zero shows that the noise floor observed in Fig. 13

is a numerical noise floor, rather than real a physical artifact. We have also testing this

convergence behavior on a 2-sphere R = 5 M and verified that the behavior is consistent

(although more noisy).
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The Kerrness measures quantify the violation of the conditions for a manifold to be

isometric to Kerr and therefore, they need not have the same dimensions and sensitivities.

Thus, one cannot compare the absolute magnitudes of these measures with each other and

directly translate their value into statements on validity of start time of perturbative regime.

In order to normalize and combine them into an overall measure of Kerrness, we use the

concomitant percentage decrease from their peak values.

We present the percentage decrease of each of these measures from their peak values

mapped on to the news function in Fig. 17 and Fig. 18. In the bottom panels of these figures,

the news function is plotted as a function of time. On the same time axis, the top panel

depicts the corresponding evolution of the Kerrness measure in the strong-field region. The

waveform feature in the bottom panel at a particular time coordinate is associated to the

timeslice carrying the same time label, via source-e↵ect association outlined in Sec. 4.2.2. In

the bottom panel, the Kerrness value at this time characterizes the deviation from Kerr.

In these figures, we delineate 6 lines marking the percentage decrease from the peak value

of each of the Kerrness measures as a function of time—both in the strong-field region and on

the news function at I +. As stated before, these measures have di↵erent decay properties

and so do not decay to a particular percentage of their peak value at the same time. The

di↵erence between the time at which measures decay to a particular percent is tabulated in

Table 5.

% of peak value Spread in time Combined % Time

100 % 12 M 1.5 M

50 % 9.8 M 11 M

30 % 9 M 14.7 M

10 % 8.3 M 21.7 M

5 % 8.7 M 25.9 M

1 % 6.1 M 35.3 M

Table 5: The spread in the time for given % of the peak value of Kerrness measures computed

using all the measures. The combined % time refers to the value of the dashed lines in Fig. 19

and corresponds to the time at which all the measures have at least decayed to the indicated

% relative to the time at which the peak amplitude of news function occurs.

We present the combined percentage decrease from the peak value on the news function

in Fig. 19. The shaded bands correspond to spread in percentage decay on the news function.

The widths of these bands are given in Table 5. The solid line at the end of each band marks
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Figure 17: Connecting the Kerrness measures in the strong-field to dynamics at I + using

the procedure described in Sec. 4.3.3 on the BBH post-merger. The left panels map the

algebraic measures and the right panels map the geometric measures on to the news function.

The top panel within each subplot corresponds to a Kerrness measure in the strong-field,

while the bottom panel shows the news function at I +. The purpose of plotting the news

function directly below each Kerrness measure is to emphasize that the top and bottom

panels are mapped to the same time axis. The dashed lines of di↵erent colors indicate the

% decrease from the peak value of the respective Kerrness measures. The horizontal axis

corresponds to the simulation coordinate time induced on the news function extracted from

a world tube radius of R = 128 M . Furthermore, unlike the strong-field result plots that

aim at rigorous characterization of isometry to Kerr, here we aim at providing insight into

validating the start time of ringdown for data analysis. Therefore, these plots are on linear

scale as opposed to logarithmic scale. Notice that the curves on the left panel decay more

slowly than those on the right; Type D 1 is the slowest to decay, closely followed by Type D

2. Also, recall that we cannot compare the magnitude of the top part of each of these panels

as they are dimensionally di↵erent.
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Figure 18: This figure is similar to Fig. 17 but for Speciality Index. We plot this separately

as it is an independent measure and decays rapidly compared to the other measures. Further,

we do not indicate the 1% of peak line because of numerical noise (cf. Fig. 13) which leads to

unreliable root finding for time of percentage decrease.
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Figure 19: The concomitant decrease of all of our Kerrness measures. The dashed lines

indicate the time at which all the measures decay to at least the indicated % of peak. The

bands color the region in which di↵erent measures decrease to the indicated % of peak. Notice

that there is about half a cycle spread in each of these bands. Therefore, the dashed lines

provide a conservative idea of the validity of the choice of the start time for data analysis.

We have specifically included the spread of these bands as a quantifier of error bounds in the

statements of validity made further in this chapter. Furthermore, one could shrink the right

boundary of these shaded bands if one combines the Kerrness measures with appropriate

weights based on their sensitivity to the spacetime curvature and the final remnant’s e↵ective

potential.

the time when all these measures have decayed to the indicated percentages and this can be

used to conservatively choose the start time.

Furthermore, in this figure we do not include the Speciality Index. The Speciality Index

is an independent measure that quantifies if the manifold is algebraically special. Since

this is the weakest condition in our Kerrness characterization scheme, we see that it gets

satisfied earliest on the post-merger simulation from Fig. 18. The 1% of peak line which

occurs unexpectedly late arises because of numerical reasons. We assert this by looking at

the nearly flat nature of Speciality Index curves in Fig. 13 at late times, very close to the

numerical noise floor.

We observe that all measures decay to ⇠ 50% of their peak value within half a cycle from

the peak of the news function. Further, in approximately one cycle, all the measures are

reduced to ⇠ 30% of their peak values. The spread in each of the bands is about ⇠ 10 M

when we include all the Kerrness measures in computing the band, and this shrinks to ⇠ 6 M

when we exclude Speciality Index.

We combine the measures with equal weights, thereby presenting a conservative result.

Furthermore, we have repeated our analysis with larger worldtube radii and confirmed that
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our results for the spread do not change significantly. For instance, using R = 128 M results

in a time shift of about +4 M relative to the R = 5 M results, and this positive time shift

monotonically decreases with radius for R = 32, 64 and 80 M .

4.4.3 Estimating and mapping the perturbation amplitude onto the waveform

In order to provide a physical understanding for the values of the measures in the strong-field

region shown in Figs. 13 and 14, we can compare the values to those on an initial slice of a

perturbed Kerr BH with the same final mass and spin as the BBH simulation, as outlined

in Sec. 4.2.3. We can then map the inferred strong-field perturbation amplitude " onto the

waveform using the procedure outlined in Secs. 4.2.2 and 4.3.3. This procedure involves the

following steps:

1. Generate perturbed Kerr manifolds for a range of amplitudes ".

2. Compute the Kerrness measures at R = 5 M on these slices.

3. Compute the Kerrness measures at R = 5 M on the post-merger BBH simulation

(verifying that the gauge-invariant areal radii of the R = 5 M coordinate 2-spheres are

approximately (within 0.01 M in our case) equal for the single-BH and the BBH case).

If the areal radii do not match, then choose a di↵erent surface on the perturbation slice

such that the two areal radii agree.

4. Identify the coordinate time in the post-merger BBH simulation at which the Kerrness

measures at R = 5 M agree with those on the perturbed Kerr slice for a given " — this

gives a crossing time for this ".

5. Use this crossing time to map the inferred " onto the waveform.

Fig. 22 shows the inferred " for the BBH ringdown simulation as a function of coordinate

time in the simulation. The gauge-invariant areal radii at R = 5 M on the BBH simulation

slices and on the metric perturbation are within 10�2 M . The values of the Kerrness measures

on the perturbed data vary quadratically with ", as shown in Fig. 8. At higher values of

", they obtain higher-power dependence, as discussed in Sec. 4.2.3. Each Kerrness measure

decays through various " as the simulation progresses. Type D 1 and Type D 2, the two

algebraic conditions, have comparable crossing times for a given ", while the two geometric

KV conditions, Type D 3 and Kerr 1, also have comparable crossing times. Speciality Index

crosses around 10 M before the other measures, in part because it is a weaker condition that
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a)  4 on " = 7.5 ⇥ 10�3 single BH b)  4 for BBH at " = 7.5 ⇥ 10�3 crossing time

c)  4 on " = 10�3 single BH d)  4 for BBH at " = 10�3 crossing time

Figure 20:  4 in the equatorial plane for both a single BH with an l = m = 2 perturbation

of amplitude " = 7.5 ⇥ 10�3 and " = 10�3 (left panel), and for the BBH ringdown (right

panel) at times that achieve the same Kerrness as (left panel). For all cases, Kerrness is

matched on a coordinate 2-sphere of R = 5 M . The two black circles correspond to coordinate

radii R = 5 M and R = 8 M . The Gaussian envelope of width R = 8 M , as described in

Fig. 7, can be seen in the plots for the single BH cases. Note that this is only meant to show

qualitative agreement between  4 on both slices, as the quantity is still subject to coordinate

tetrad e↵ects in the strong-field region. Notice that although the two systems look similar,

allowing us to infer the BBH simulation perturbation amplitude, the mapping does have

some imperfections.
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Figure 21:  4 in on the x-axis (in the equatorial plane) for both a single BH with an l = m = 2

perturbation of amplitude " = 7.5 ⇥ 10�3 (top panel) and " = 10�3 (bottom panel), and

for the BBH ringdown at times that achieve the same Kerrness. For all cases, Kerrness is

matched on a coordinate 2-sphere of R = 5 M . The x-axis of the plot shows the radius, and

includes the data within the Gaussian envelope of width R = 8 M , as described in Fig. 7.

Note that this is only meant to show qualitative agreement between  4 on both slices, as the

quantity is still subject to coordinate tetrad e↵ects in the strong-field region. Notice that

although the two systems look similar, the mapping does have some imperfections. Recall,

however, that it is ultimately the invariant Kerrness measures that determine the mapping

between the perturbation amplitude and the BBH merger-ringdown time.
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Figure 22: Comparison of the Kerrness measures during the BBH post-merger to the values

of the Kerrness measures on an l = m = 2 QNM perturbed Kerr BH of various perturbation

amplitudes ", with the same mass and spin parameters. The measures are averaged on

a 2-sphere of coordinate radius R = 5 M , which corresponds to comparable areal radii of

⇠ 2.59 M in both systems. The measures evaluated on the BBH slices are shown by solid

black lines, decaying as a function of time. The Kerrness measures for the perturbed metric

are presented as horizontal dashed red lines, one for each ". The times at which the BBH

curves intersect the Kerrness values for a given " Kerr perturbation give a scale for the BBH

Kerrness measures as the post-merger progresses. These times, known as crossing times are

then mapped onto the waveform, and used to validate the start time of ringdown. Note

that the measures have di↵erent crossing times. The time axes are shifted to agree with the

timestamps of the GW at R = 128 M , as explained in Table 4.



70

the others. Each crossing time has an intrinsic 2 M spread due to sampling, and not all

measures cross each " due to numerical noise floors, leading to spreads in crossing time.

In Fig. 21, we qualitatively check the spacetime features by comparing  4 corresponding

to " = 7.5 ⇥ 10�3 and 10�3 on the perturbed Kerr metric with the corresponding timeslice

during the post-merger simulation. The crossing time spread for a particular " arises because

of the imperfect mapping between an analytically perturbed Kerr BH and the post-merger

spacetime. Therefore, unlike in an ideal mapping, the combined crossing times will have

a spread. In particular, the di↵erence in the features between the post-merger and the

perturbed Kerr slice indicates a di↵erence in symmetry and explains the larger spread in the

crossing time between the KV-dependent measures. We see that the spread in the combined

crossing times using only algebraic measures is much smaller than when we include the

geometric measures.

We next map the inferred perturbation amplitude to the news function, using a procedure

similar to the one in the previous section, and present the result in Fig. 23. The top panel

of the figure indicates the crossing time for the Speciality Index, the middle panel for the

algebraic measures, and the bottom panel shows that for geometric measures. The spread

in the crossing time for the algebraic measures decreases from ⇠ 6 M at the start, to our

sampling rate, 2 M . This occurs because at the very start of post-merger, the system is not

yet in a perturbative regime and therefore, our mapping contains a larger error. Geometric

measures are more drastically a↵ected by the imperfections in the mapping, indicating the

di↵erences in the symmetries of the two systems. On including the geometric measures, the

crossing time spreads to ⇠ 8 M . We confirm that the spread of the crossing times calculated

using the algebraic measures is always contained within the spread of crossing times calculated

using the geometric measures.

As the signal decays from the peak to a barely visible amplitude on a linear scale (⇠ 3 � 4

cycles) at I +, the corresponding perturbation in the strong-field region decreases by an order

of magnitude. The peak of the news function corresponds to a perturbation amplitude of

⇠ 7.5⇥10�3. Further, it takes about 2 cycles in the wave zone for the perturbation amplitude

to decay to half its peak value. Also, by the time the perturbation amplitude decays by an

order of magnitude, there is hardly any power left in the signal.
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Figure 23: Mapping the inferred perturbation amplitude close to the BH onto the news

function. The top panel shows the spread in the crossing times computed using just the

Speciality Index, the middle panel uses only the algebraic measures and the bottom

panel utilizes only the geometric measures. Notice that amplitudes larger than 2 ⇥ 10�3 do

cross the post-merger timeslices when computed using the geometric measures and that the

crossing time spreads in them are relatively large, suggesting a di↵erence in the symmetry of

a perturbed Kerr metric and the post-merger BBH spacetime. However, this does not seem

to be reflected when we just consider the algebraic measures as they have a relatively small

spread in the crossing time. The spread in the crossing time of the Speciality Index is equal

to the sampling rate.
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4.4.4 Implication of the start time on data analysis

From news to h

In order to compare the Kerrness measures on the GW to the loss in signal-to-noise ratio

(SNR) at the times used in [5], we must first calculate the strain h from the news function, and

then calculate the merger time. As outlined in Sec. 4.3.3, h can be calculated by integrating

the CCE news function. One can also independently calculate h using the Regge-Wheeler-

Zerilli (RWZ) (cf. [146] for details on the method) [147, 148, 90, 149] method and then

extrapolating it in powers of the extraction radius (cf. [150] for details). The RWZ method

and extrapolation have been implemented and tested in SpEC [150, 151], and the strain

calculated by this method was presented in the GW150914 detection chapter [134]. This

method, however, has a di↵erent retarded time axis [150] than the CCE news function. Thus,

we di↵erentiate the RWZ strain to get a news function, and shift it to align in phase with the

CCE news function. We check the CCE results by comparing the output of the two methods,

presenting the results in Fig. 24.

In the GW150914 testing GR study [5], tmerger is defined as the point at which the

quadrature sum of the h⇥ and h+ polarizations of the most-probable, or maximum a posteriori

(MAP) waveform, produced by E↵ective-One-Body (SEOBNRv4) template [152] is maximal.

For this study, we use the l = m = 2 spin-weighted spherical harmonic mode of the MAP

waveform, as this is the least-damped QNM. In this study, rather than using the EOBNR

waveform, we calculate tmerger based on the time of maximum amplitude of the time-shifted

RWZ strain, as

tmerger ⌘ {t|h2(t) = max
t0

(h2(t0))} , (4.27)

where

h2 ⌘ Real(h)2 + Imag(h)2 . (4.28)

We find tmerger = 3839.0 ± 0.1 M .

Start time and the SNR

While picking too early a start time for an analysis that relies on being in ringdown gives

inaccurate and biased results, picking a start time too late leads to a large statistical error.

Since the amplitude of the signal decays exponentially with time, the SNR in ringdown

decreases as exponential-squared with the start time. Consequently, the spread in the
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Figure 24: Comparison between the strain h calculated using CCE and RWZ methods. All

waveforms are presented in terms of the l = m = 2 mode. We use the fact that the strain

is the integral of the news function to cross-check the methods. The top panel shows the

CCE news function NCCE compared to ḣRWZ, the derivative of the RWZ strain. The bottom

panel shows hCCE, the integral of the CCE news function, compared to the RWZ strain

hRWZ. We find good agreement until late times, when hCCE begins to drift, likely due to the

numerical integration scheme used.
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Figure 25: The top panel of this figure shows the percentage decrease of SNR from the

peak value. The % SNR is set to 100 at tmerger. For this plot, we evaluate Eq. (4.29)

with varying lower bounds for the integration. The dashed horizontal lines correspond to

{80, 60, 40, 20}% SNR. On the same plot, we mark the perturbation amplitude bands for a

direct comparison between perturbation amplitude and statistical error. Notice that by the

time the perturbation amplitude near the BH decreases by an order of magnitude, there is

only a few percent of SNR left in the signal, emphasizing the sharp trade-o↵ between the

systematic biases arising from modeling the post-merger as perturbed Kerr and the statistical

uncertainty arising due to exponentially decay of signal amplitude. The bottom panel

shows the total energy radiated in units of M during the merger-ringdown. This is calculated

by integrating Eq. (4.31). Again, we have plotted the concomitant percentage decrease of the

Kerrness measures from their peak values for an easy comparison between the statistical and

systematic errors associated with the choice of the start time of ringdown. In particular, the

constant settling in the total radiated energy occurs between the time when the Kerrness

measures have decayed to 5 � 1% of their peak values, implying that at these times the GW

is very weak in amplitude.
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No. of cycles % SNR % Kerrness "/10�3

peak 60 100 7.5
1
2 cycle 30 - 40 40 - 50 7.5

1 cycle 20 - 25 35 - 30 5

1 1
2 cycles 10 - 20 8 - 12 3.5

2 cycles ⇠ 10 7 - 5 2 - 2.5

2 1
2 cycles < 10 ⇠ 1 1 - 2

3 cycles < 5 < 1 0.5 - 1

Table 6: Summary of our results. The first column counts the number of cycles from the peak

of the news function. The second column presents the drop in SNR with start time chosen in

the data analysis. SNR is normalized to have 100% when the data analysis starts at the peak

of the waveform (h(t)) i.e., at 3839 M . The third column shows the concomitant percentage

decrease in the Kerrness measures from the peak value (similar to Fig. 19). Further, in the

last column we present the perturbation amplitude inferred by the crossing times computed

with Type D 1 and D 2 measures (similar to middle panel of Fig. 23.)
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Figure 26: Spread in estimation of dominant mode frequency as a function of SNR. We

present the spread, �f in the estimation of frequency calculated using Fisher information

matrix formalism. We should the increase in spread with decreasing SNR, providing the

rough intuition on the implication of Fig. 25 on parameter estimation.



76

posteriors during estimation of ringdown parameters, which goes inversely proportional to

match-filtered SNR, increases and gives rise to large statistical uncertainties. Therefore, one

must chose an optimal middle ground considering both these factors.

In the top panel of Fig. 25, we show the percentage decrease in match-filtered SNR with

the start time of the ringdown. A match-filtered SNR is a noise-weighted scalar product

between the signal and the template and is defined as

SNR = 4

Z 1

0

h̃⇤
1(f

0)h̃2(f 0)

Sh(f 0)
df 0 = hh1|h2i , (4.29)

where ⇤ denotes complex conjugation for ease of readability. Here, h1(t) corresponds to a

ringdown waveform that is tapered at tmerger and acts as a signal. We filter this against

the template, h2(t), which is tapered with varying start time. Further, Sh(f) corresponds

to power spectral density (PSD) of aLIGO at design sensitivity [153]. However, since we

present our results in terms of ratios, our analysis remains valid to any detector noise curve.

Then, a Fourier transform is taken to evaluate Eq. (4.29). Here we use only the l = m = 2

spin-weighted spherical harmonic mode of the RWZ strain waveform computed in Sec. 4.4.4.

The system is considered to be optimally oriented with respect to the detector for this

calculation.

The tapering is done with a tanh window function defined as

W(t) = tanh[↵0(t � t0)]/2 . (4.30)

t0 is the time around which the tapering is centered and it is set to the start time of the

perturbative regime. ↵0 is set to 10 in making the top panel of Fig. 25. Furthermore, we

confirm that our results do not change significantly with the tuning parameter ↵0 using

↵0 = {2, 5, 10, 20} M�1.

We then present percentage decrease of SNR in the top panel of Fig. 25 by defining

100% for start time at tmerger. Further, on this same plot we also indicate the amplitude of

perturbation in the strong-field region (as calculated using the algebraic measures) at the

start time, giving an insight into how statistical and systematic errors vary with the choice of

start time.

The bottom panel of Fig. 25 presents the total energy radiated through the merger-

ringdown as a function of time. This indicates the strength of GW signal and is calculated

by integrating [154]

dE

dt
= lim

r!1

r2

16⇡

I ����
Z t

�1
 4dt0

����
2

d⌦ . (4.31)
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Furthermore, on the same plot we mark the percentage decrease of the Kerrness measures

from their peak values, providing a comparison between the strength of the signal left for

performing the analysis versus Kerrness evaluated in the strong-field region.

To impress the sharp trade-o↵ in systematic and statistical uncertainties in choosing the

start time of the ringdown and, to provide an intuition of implication of Fig. 25, we present

the spread in estimation of dominant QNM frequency, f22 in Fig. 26. For this, we calculate

the spread using the Fisher information matrix formalism similar to that in Eq. 4.1a of [155],

for a GW150914-like system. In particular, we set f22 to 253.7 Hz and the quality factor,

Q22 to 3.2. However, we emphasize that this is a rough estimate intended only to provide

intuition and, we plan to follow this up by a rigorous Bayesian parameter estimation in the

future.

We present the interplay between the systematic and statistical uncertainty concisely in

Table 6. Furthermore, we find that by the time the news function peaks, the SNR has already

dropped down to 60%. However, at this time the algebraic Kerrness measures are at their

peak value. We also observe that by about a cycle of news function, there is less than 20

percent SNR left in the signal. Therefore, there seems to be a sharp trade-o↵ between the

systematic modeling error and statistical uncertainties.

4.4.5 Comparison with GW150914 testing GR chapter

The test of consistency of ringdown of the GW150914 signal with the analytically predicted

QNM frequency is given in Fig. 5 of [5]. The analysis chooses various start times of ringdown,

namely tmerger + 0, 1, 3, 5, 6.5 ms. At a start time of tmerger + 3 ms (or later), parameter

estimation of the dominant QNM in ringdown is consistent with predictions using initial

masses and spins.

A time 3 ms for the system corresponds to 9.4 M from tmerger. In our analysis, tmerger =

3839 M (cf. Eq. (4.27)), while the peak of the news function occurs at 3846 M . Thus, 3 ms

corresponds to 2.4 M after the peak of the news function. In this region, as shown in Fig. 27,

the perturbation amplitude is & 7.5 ⇥ 10�3. Our analysis indicates that this corresponds to

a relatively large deviation from Kerr. Recall that Fig. 8 suggests that " = 5 ⇥ 10�3 is the

approximate start of the nonlinear regime.

With a start time of tmerger + 3 ms, the SNR was about 8.5 and the spread in the estimate

of QNM frequency was roughly 40 Hz [5]. Because of this low SNR and high spread, the

GW150914 testing GR analysis may not have been sensitive to the large non-Kerrness we see

close to the BH. However, in the case of higher SNR, where the analysis is sensitive to the
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Figure 27: Comparison of the times chosen in the testing GR study of GW150914 [5]. Here,

we make statements about their validity to perform tests that rely on the perturbative nature

of the BH. Specifically, we propose that a plot of this nature be done for future detections,

especially if the SNR is high, to gain an insight into the inferred strong-field perturbation

amplitudes corresponding to di↵erent choices of ringdown start time. The dotted line in the

top panel shows di↵erent choices of start time for performing tests on the detector data.

The bottom panel shows what each time choice corresponds to in the simulation gauge.

Although a practical choice of start time to perform tests like no-hair theorem tests should

be decided based on the interplay between the statistical and systematic uncertainty, a plot

of this nature gives significant understanding of the results of such tests. For instance, in

the case of GW150914, had the signal been much louder than what we observed, this plot

suggests that we could get biased results due to large inferred perturbation amplitude in the

strong-field leading to errors in modeling the post-merger as a perturbed BH at 3 ms.
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systematics of the ringdown model, our study suggests picking a later start time.

Our analysis uses geometric and algebraic conditions to identify isometry to Kerr. However,

these conditions do not directly measure the deviation of the curvature BH potential from

that of Kerr. Since the QNM are intrinsic tests of the BH potential along with the boundary

conditions, deviation of QNM frequencies will depend on details of the BH potential, and

thus are not directly quantified in our measures. Additionally, the parameters used in this

study correspond to SXS:BBH:0305 waveform used in the GW150914 detection chapter [97],

which are slightly di↵erent from those of the MAP waveform used in the testing GR chapter.

4.5 Conclusion

In this study, we present a method for validating choices of the time at which a BBH GW

signal can be considered to enter the ringdown stage. This is done by computing algebraic

and geometric measures of Kerrness in the strong-field region of an NR simulation of a

BBH ringdown, and then associating each point on the asymptotic-frame waveform with a

particular value of these Kerrness measures. Thus, for each point on the asymptotic-frame

waveform there is an estimate for how close the BH spacetime is to Kerr spacetime. This is

the first time this set of measures, proposed in [106], are evaluated in the strong-field region.

This is also the first time measures of Kerrness in the strong-field region is mapped onto

the waveform. We outline this method in Secs. 4.2 and 4.3, and implement this analysis in

Sec. 4.4 on a GW150914-like NR simulation.

We observe that after merger, the Kerrness measures of a BBH ringdown simulation

decrease exponentially with coordinate time in the simulation, eventually settling to a

numerical noise floor, as shown in Fig. 13. This decay is consistent with measuring Kerrness

using multipole moments of the apparent horizon, as in Fig. 12 and [4]. In all cases, the

measures on the final slice of the simulation indicate that the final remnant is a Kerr BH,

thus providing numerical consistency with the BH uniqueness theorem. Moreover, we find

that the final state in the multipolar analysis depends just on mass and spin, which serves as

a confirmation of the no-hair theorem in the strong-field region. Additionally, as shown in

Fig. 14, the Kerrness measures have a quadrupolar (with |m| = 2) structure consistent with

the dominant gravitational radiation. The geometric measures, which rely on the existence of

a Killing vector field, first decay to zero close to the horizon, then later they decay at larger

radii as gravitational radiation propagates out. On the other hand, algebraic measures, which

depend on principal null directions, first decay to zero at larger radii, before decaying near

the BH. We also see that the NUT parameter remains zero during merger and ringdown, as
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shown in Fig. 15.

These gauge-independent Kerrness measures are crucial to the nonlinear stability analysis

of Kerr, as they quantify the deviation from being isometric to Kerr. The analytical behavior

of these measures with perturbation amplitude is unknown [133, 122]. Through this study we

provide insights into their numerical behavior in Fig. 8. We find that all of these measures scale

quadratically with " for low amplitude perturbations, but acquire higher-order nonlinearities

for larger perturbation amplitudes. Furthermore, in Figs. 13 and 14, we provide the radial

behavior of these measures, up to a large radius of R = 128 M . For a BBH simulation, we

track these measures starting from merger, where linear perturbation theory is not expected to

hold. Despite the large initial excitation, our study shows that the BBH ringdown simulation

evolves to a final Kerr state, providing a numerical validation of the nonlinear stability of

Kerr.

To connect the Kerrness measures in the strong-field region to the asymptotic waveform

at I +, we use CCE, which evolves Einstein’s equations on a foliation of outgoing null

hypersurfaces. A null characteristic evolution can be done only in a region free from caustics.

We demonstrate that CCE results using a worldtube at R = 5 M are consistent with those

done from larger radii. This implies that during ringdown, caustics only exist very close to

the BH. Furthermore, we show that the map between the strong-field region and the wave

zone can be extended all the way in to R = 5 M .

Although caustics do not form, we see in Figs. 14, 21 strong features in the curvature

quantity  4 in the region enclosed by R ⇠ 10 M . This implies that our extraction radius

choice of R = 5 M lies within the strong-field and within the support of the BH potential.

In Fig. 17, we label each point of the BBH ringdown waveform with the percentage

decrease of the Kerrness measures in the strong-field region relative to their maximum values.

In order to give a physical interpretation of the values of the Kerrness measures, we compare

them throughout the post-merger spacetime to those evaluated on a l = m = 2 QNM

perturbed Kerr BH of the same final mass and spin. From this we infer the amplitude of

BH perturbation during ringdown and map onto a particular point in the BBH ringdown

waveform; this is marked on the BBH ringdown waveform in Fig. 23.

As the BBH simulation proceeds after merger, the strong-field region starts looking like

Kerr, indicating the validity of perturbative analysis. However, as time progresses, the

amplitude of the ringdown decreases, leading to a rapid decay in SNR in a GW detection.

We find that by the time the Kerrness measures decrease to 50% of their peak values, there is

only about 20% SNR left in the signal. In terms of perturbation amplitude close to the BH,
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this maps to an amplitude between 7.5 � 5 ⇥ 10�3. This occurs after 1 � 1.5 cycles of the

news function, which corresponds to ⇠ 16.4 M after tmerger. Additionally, we find that the

start time of ringdown used in [5], tmerger + 3 ms, corresponds to an amplitude of 7.5 ⇥ 10�3.

Our results also agree with the start time proposed in [156]. In future detections with higher

SNR, where the statistical noise is significantly smaller, one may need to choose a later start

time to perform precision tests of GR such as no-hair theorem tests.

A future extension to this project would be to investigate methods that allow us to

perform similar source-asymptotic frame associations for smaller radii. For instance, the light

ring would be an interesting region to monitor as it is crucial to the QNM structure. This

can perhaps be done numerically through ray-tracing methods such as those used in [157]

and [158], to understand the evolution of the peak of the BH potential (if it forms). Another

possible technique could be to try performing CCE from smaller radii after the high amplitude

of the initial excitation has reduced. Additionally, being able to perform this association at

smaller radii would allow one to understand the propagation of perturbations very close to

the BH horizon onto the waveform; these are expected to be redshifted and appear on the

waveform with a large time delay.

Another avenue of future work would be investigating the e↵ects of implementing a more

realistic condition on the initial null hypersurface by relaxing the no-ingoing-waves condition

used in performing CCE. In addition, we can study the trade-o↵ involved in choosing an earlier

ringdown time, which will decrease the spread in recovered ringdown parameter posterior

distributions and increase the systematic errors that arise because of deviations from Kerr in

the strong-field region.

The methods used in this chapter can be applied to future BBH detections in order to

guide the choice of the start time of ringdown. For the sake of quick reference to the procedure

described in this chapter, we concisely enumerated the steps in Sec. 4.2.4. Note that the

results of this chapter approximately hold for any equal mass system with an appropriate

mass rescaling (cf. footnote 2) and e↵ective spin near zero. The analysis presented, however,

is fully generic and holds for all spins and masses. Our method would better allow one to

perform precision tests of GR that depend on being in perturbative regime, such as tests

of the no-hair theorem and area theorem. With this procedure, we provide an algorithmic

way to check whether an unexpected deviation in a QNM analysis is due to not being in the

perturbative regime, rather than due to a violation of GR or corresponding theorems.

For future detections, we plan to repeat this analysis using an NR simulation with the

MAP waveform parameters.
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Chapter 5

On spectroscopic analysis of stellar

mass black-hole mergers

5.1 Introduction

The recent detection of gravitational waves from the coalescence of binary black-holes [134, 159]

stand as the first stringent test of the validity of the General Theory of Relativity in the

regime of strong-field gravity [160, 161, 43]. We investigate whether detections of stellar-mass

black-holes can be used to experimentally confirm some fundamental predictions of this theory

like the uniqueness theorem and the no-hair theorem [162, 163]. The no-hair theorem states

that a space-time dictated by an isolated and stationary black-hole is fully characterized

by just three parameters - the mass, the spin and the charge of the black-hole [164, 165].

Verifying the no-hair theorem would place strong constraints on possible alternative theories

of gravitation [166, 167]. In a binary black-hole system, the two black-holes orbit around

each other eventually merging and settling down to a final stationary Kerr black-hole. This

post-merger signal, often called ringdown, contains information about the final Kerr black-

hole formed by the coalescence of of the progenitor black-holes [168], presenting us with an

opportunity to verify the no-hair theorem. In light of these observations, e↵orts were made to

study the ringdown signal. Although the features of the black-hole ringdown were discernible

and had frequencies in a favorable regime of the detector’s response, the signal-to-noise ratios

(SNRs) of the signal in the two Laser Interferometer Gravitational-wave Observatory (LIGO)

detectors were inadequate to perform a detailed ringdown analysis to draw firm conclusions

about the final black-hole properties [161].



83

The ringdown signal seen by a distant observer during the coalescence of a binary black-

hole system can be modeled as the gravitational waves arising from the perturbations, on

the metric, associated with the final Kerr black-hole [169]. At spatial asymptotic infinity,

these perturbations on the Kerr background manifest themselves as superpositions of damped

sinusoidal oscillating modes, known as quasi-normal-modes (QNMs) [170, 171, 88, 172, 173,

174]. Assuming the General Theory of Relativity is valid, the no-hair theorem necessitates

that the spectrum of frequencies and the damping of these modes be dictated entirely by

the mass and the spin of the final Kerr black-hole formed. Thus, a spectral analysis of

the ringdown part of the signal not only helps us to understand the properties of the final

black-hole formed, but also can serve as a test of the no-hair theorem.

We attempt to address the following three questions. What are the prospects of performing

black-hole spectroscopy using future ground-based gravitational-wave detectors? Which of

the modes contained in the ringdown are likely to be measurable? What is the frequency

range that should be targeted to optimize sensitivity of ground-based detectors to test the

no-hair theorem with the ringdown signal?

Our study concentrates on stellar mass black-hole mergers in our local universe. We

focus our analysis on the measurability of the three largest sub-dominant modes: l = m = 3,

l = m = 4 and l = 2, m = 1. We perform a Monte-Carlo injection of 106 analytical post-

merger gravitational wave signals, which are modeled as damped sinusoids with frequencies

and damping times predicted by the linear perturbation theory on the Kerr background [175].

We do a mode-by-mode analysis; we consider each mode separately to assess its detectability

and resolvability from the fundamental l = m = 2 mode. We calculate the fraction of

simulated signals that allow for measurability of at least one sub-dominant mode as well as

the the dominant l = m = 2 mode. We repeat this study with di↵erent proposed ground-

based detectors - A+ [44], Einstein Telescope [45] and Cosmic Explorer [6]. A mode is

considered detectable if its SNR is greater than 5 and resolvable if it satisfies the Rayleigh

resolvability criterion [176, 177] described in Section II. If a mode satisfies both of these

conditions, we identify that mode as measurable. A signal with more than one measurable

mode is spectroscopically valuable. Using the range of binary black-hole coalescence rates [2]

measured by Advanced LIGO [178], we estimate the number of spectroscopically valuable

events per year.

Although it is improbable that we detect signals of spectroscopic value with Advanced

LIGO, we estimate that hundreds of such signals will be detected by the future ground-based

detectors such as Einstein Telescope and Cosmic Explorer every year. We deduce that the
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modes with l = m = 3 and l = 2, m = 1 are the most promising candidates for sub-dominant

mode measurability. Further, we find the measurability of the l = 2, m = 1 mode is not

impeded by the resolvability criterion. We find that sub-dominant mode detectability is a

su�cient condition to ensure measurability for all the modes considered in our study. We

propose that a detector de-tuning around a frequency range of 300-500 Hz would be optimal

for ringdown-oriented searches.

Our work is complimentary to the recent work by Berti et al. [179]. We perform a numerical

Monte-Carlo simulation over sky positions and orientations and assume a uniform distribution

of component masses of progenitor black-holes, while Berti et al. perform an approximate

analytical angle-averaged analysis for di↵erent astrophysical black-hole population models.

We have used a method of mode-by-mode matched filtering followed by a Fisher matrix

analysis [180] to arrive at our results, in contrast to hypothesis testing and generalized

likelihood used in [179]. Another novel aspect of our work is that we include the l = 2, m = 1

sub-dominant mode. Although the two analyses di↵er in their methods, we agree on the result

that a detector beyond Advanced LIGO is essential for spectroscopic analyses of black-hole

mergers.

The remainder of this chapter is structured in the following way. In Section II we provide

a detailed description of the analysis methods used in our study. Section III presents our

results and highlights their implications to the broader theme of black-hole spectroscopy. We

then conclude in Section IV on the prospects of stellar mass black-hole spectroscopy in our

local universe with next-generation ground-based gravitational-wave detectors.

5.2 Methods

We perform Monte-Carlo injections of ringdown-only gravitational-wave signals corresponding

to stellar mass binary black-hole mergers in our local universe. Specifically, 106 binary

black-hole merger events are simulated uniformly in a volume defined by a sphere of radius

1500 Mpc around the the detector in question. Focusing our study on stellar mass mergers,

we choose the component masses of the progenitor binary systems to be a uniform random

distribution between 10 M�and 60 M�. Our study is limited to systems whose progenitor

binaries are non-spinning, although we expect the qualitative results to hold for spinning cases.

The sky positions and orientations of progenitor binaries with respect to the detector are also

assumed to have a uniform random distribution. The analysis is performed independently for

two future generation detectors - Einstein Telescope and Cosmic Explorer, a proposed upgrade

to the current Advanced LIGO detector that we refer to as A+ and the design sensitivity of
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Advanced LIGO. Further, it is desirable to investigate which part of the detector’s frequency

range needs to be tuned for a ringdown-optimized search in addition to discerning which

mode is more measurable, independent of the detector’s sensitivity curve. For that reason, we

also repeat the entire analysis on an unrealistic flat noise spectrum with a strain amplitude

of 10�25 per 2
p

Hz and present its results. For comparison, we display the relative sensitivities

of all the detector curves used in our study in Figure 28.

We assume the binary black-hole ringdown signals observed by gravitational-wave detectors

comprise of linear superpositions of a finite number of QNMs. Despite the mathematical

issues, such as the incompleteness of QNMs [181, 58], it is known that for binary black-hole

mergers this is a good approximate model [182, 183]. We test each mode independently for

its measurability. Since we conduct a mode-by-mode analysis, we model the signal waveform

as a single damped sinusoid of the following form:

h(+,⇥)
lm (t) =

M

r

h
A(+,⇥)

lm sin(2⇡flmt)e
�t
⌧lm Ylm(◆, �)

i
. (5.1)

Here A+,⇥
lm , flm and ⌧lm denote the amplitudes associated with the two polarizations, the

central frequency and the damping-time, respectively, of the dominant overtone of (l, m)

modes in a black-hole ringdown. (◆, �) specify the orientation of the progenitor binary system

in the sky. Further, we approximate the spheriodal harmonic function associated to each

mode by spin-2 weighted spherical harmonics Ylm(◆, �) = Ylm(flm; ◆, �), which is a good first

order approximation for Kerr black-holes that are not extremaly spinning [184].

We calibrate the central frequency and the decay time of each mode using the fitting

functions presented in [8]. Ref. [7] presents mode amplitudes as functions of symmetric-

mass-ratios ⌘ of the progenitor binary system by fitting 68 numerical relativity waveforms

corresponding to non-spinning black-hole binary systems. We have used the corrected

formulae from the erratum [185] for our analysis. The start-time of all modes are chosen

to be 10 M after the occurrence of the peak in luminosity corresponding to the l = m = 2

mode. We use these fitting formulae to determine the mode amplitudes Alm in our waveform

model. Figure 33 presents the mode amplitudes of the sub-dominant modes. Dictated by

the symmetry of the initial perturbation, the l = m = 2 mode is the dominant mode in

the ringdown of a Kerr black-hole formed during the merger of a binary black-hole system.

Based on the sub-dominant mode amplitudes, we limit the scope of this study to l = m = 3,

l = m = 4 and l = 2, m = 1 sub-dominant mode measurability.

The signal h(t) observed at a detector is then given as,
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Figure 28: The following are sensitivity models for each detector [6] we consider in our study.

The aLIGO curve corresponds to the design sensitivity of Advanced LIGO and the A+ curve

to the proposed upgrade to the Advanced LIGO detectors. The Cosmic Explorer (CE) and

the Einstein Telescope (ET) are two of the proposed next generation ground-based detectors.

We also perform the analysis with a flat noise curve at a strain per 2
p

Hz of 10�25, to infer

some conclusions which are independent of the shape of the noise curve. The shaded region

shows the frequency band that corresponds to optimal tuning of the detectors for ringdown

searches.



87

l=m=2
l=2, m=1
l=m=3
l=3, m=2
l=m=4

0.00 0.05 0.10 0.15 0.20 0.25
10-5

10-4

0.001

0.010

0.100

1

η

M
od
e
A
m
pl
itu
de

||A
||

Figure 29: This figure presents the magnitude of mode amplitudes ||A|| predicted by the

fitting formulae given in [7] as a function of dimensionless symmetric-mass-ratio ⌘. Comparing

the amplitudes of di↵erent modes, we infer that the potential candidates for sub-dominant

mode measurability correspond to l = m = 3, l = 2, m = 1 and l = m = 4.

h(t) = F+h+(t) + F⇥h⇥(t), (5.2)

where F+,⇥ are orientation-dependent detector pattern functions that project the signal on

to the detector.

Expressing this in the Fourier domain, we obtain

h̃+(f) =
M

r
A+

lm

h
e◆�

+
lmYlmb+ + e�◆�+

lmY⇤
lmb�

i
(5.3)

h̃⇥(f) = �◆M
r

A⇥
lm

h
e◆�

⇥
lmYlmb+ � e�◆�⇥

lmY⇤
lmb�

i
, (5.4)

where
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b± =
2/⌧lm

(1/⌧lm)2 + 2⇡(f ± flm)2
(5.5)

and �+
lm and �⇥

lm are phase of arrival associated with h̃+(f) and h̃+(f) respectively. We

follow [186] in setting up the framework for our analysis.

We use the standard expression for SNR ⇢

⇢2 = 4

Z 1

0

h̃⇤(f 0)h̃(f 0)

Sh(f 0)
df 0 = hh|hi, (5.6)

where h̃(f) is the Fourier transform of the waveform and Sh(f) is the power spectral density

of the detector [187]. A mode is considered detectable if the single detector SNR of that mode

exceeds a pre-defined threshold for detection. We choose ⇢ � 5 as our threshold and each

mode is independently checked for this detectability criterion. Once a sub-dominant mode
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Figure 30: We show the dimensionless central frequency of QNMs as a function of symmetric-

mass-ratio ⌘ as predicted by [8]. Note that modes with di↵erent l have central frequencies

that are well separated. One could naively expect that resolving modes with the same l could

be challenging. However, for stellar mass black-hole mergers this is not the case.
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Figure 31: These contour plots show the di↵erences in the central frequencies of the sub-

dominant modes: l = 2, m = 1, l = m = 3 and l = m = 4, with the dominant mode.

The color bar presents a measure of frequency di↵erence in Hz. Notice that the central

frequency of the l = m = 3 and l = m = 4 sub-dominant mode di↵ers from the dominant

mode by hundreds of Hz. It would be right to assume that resolvability of these modes

is not challenging. However, it is very interesting to note that even for the l = 2, m = 1

sub-dominant mode the central frequency is separated by at least 20 Hz from the central

frequency of the dominant mode. This is consistent with the fact that our results indicate

that resolvability is not a limiting factor.
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passes this criterion for detectability, we then proceed to check that its central frequency is

resolvable from that of the dominant mode.

We use an extension of Rayleigh criterion developed in [8, 176, 177] to establish the

limits of resolvability. The Rayleigh criterion for di↵raction states that to distinguish two

points, the di↵raction maxima of the second point should lie at least at the minima of the

first point [180]. This translates to a condition that the peak of the estimators of QNM

frequencies should be separated by at least the largest of their variances. If �2
f1 and �2

f2 are

the variances of the maximum likelihood estimators of f1 and f2 associated with the modes

under investigation, then the minimum criterion for resolvability is given by,

max[�f1 , �f2 ]

|f1 � f2|
= 1. (5.7)

In the scheme of Fisher information theory, the spread �fi in the estimate of the frequency

fi is given by

�2
fi = ��1

fifi
, (5.8)

where � is the Fisher matrix [188]. To compute the Fisher matrix, we parametrize the

waveform by the mode amplitude, frequency, quality factor, arrival time and phase. The

likelihood function has peaks around the central frequency of each of the QNMs. We perform

a Fisher matrix analysis around each of these mode frequencies to determine the spread in

the estimate of the central frequency of the modes. Then it follows that the critical SNR ⇢c

that sets the resolvability limit of these modes is given by,

⇢c =
max[⇢�f1 , ⇢�f2 ]

|f1 � f2|
. (5.9)

A dimensionless ratio R determines the resolvability of QNMs:

R =
⇢

⇢c
=

|f1 � f2|
max[�f1 , �f2 ]

. (5.10)

When R is greater than 1, the central frequency of the sub-dominant mode in the signal can

be successfully resolved from the dominant mode.

Having established our criteria of detectability and resolvability, we perform a mode-by-

mode analysis on each of the injected signals with the detector curves depicted in Figure 28.

Equations (6) and (10) are evaluated numerically and for each mode we test if ⇢lm > 5 and

R > 1 to determined their measurability. We then categorize the signals based on their

measurability.
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a) Central frequencies of modes l = m = 3 and

l = m = 2 in Hz.

b) Central frequencies of modes l = m = 4 and

l = m = 2 in Hz.

c) Central frequencies of modes l = 2,m = 1 and

l = m = 2 in Hz.

Figure 32: Scatter plots of all points that allow for measurability of sub-dominant modes in

our analysis using a flat detector sensitivity curve at a strain of 10�25 2
p

Hz
�1

. The x and y

axes of these plots correspond to the central frequencies of l = m = 2 and the measurable

sub-dominant modes in Hz respectively. From these plots, we can infer that if one were

to perform detector de-tuning optimized towards a spectroscopic analysis of stellar mass

black-holes, a frequency band around 300 Hz to 500 Hz would be the best choice for narrow

banding.

5.3 Results and Implications

We find that we are able to measure sub-dominant modes during the ringdown of stellar

mass Kerr black-holes with the proposed designs for future ground-based gravitational wave

detectors. The results are summarized in Tables 1-4. With detectors like Cosmic Explorer

and Einstein Telescope, we find that approximately 20-30% of the total detected stellar mass

black-hole mergers will be spectroscopically valuable. Our results also indicate that the
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design sensitivity of Advanced LIGO might detect signals that would allow for multi-mode

measurements if the optimistic rate predictions hold. However, implementing A+ to the

detector would increase our odds of sub-dominant mode measurability to a little less than

3% of the total detected black-hole mergers.

The astrophysical rates of stellar mass black-hole mergers have significant uncertainty and

hence, in Table 3, we tabulate both the optimistic and pessimistic rates of events that would

allow for ringdown spectroscopy of the final Kerr black-hole using various proposed ground-

based detectors. With an optimistic rate of 240 Gpc�3yr�1 merger events [2], we expect about

a thousand events per year will be spectroscopically valuable with Einstein Telescope and

Cosmic Explorer. It is further encouraging to notice that, with the implementation of the A+

upgrade to the current detectors, an optimistic rate would indicate that about an order of 50

spectroscopically valuable events will be detected every year. Further, even a pessimistic rate

of only 13 Gpc�3yr�1 binary black-hole mergers, leads us to estimate about 40-60 events that

allows for multi-mode measurements using Einstein Telescope and Cosmic Explorer.

From our analysis using a flat detector curve depicted in Figure 28 we infer, independent

of proposed-detector sensitivities, that the l = m = 3 sub-dominant mode has the most

measurability, closely followed by the sub-dominant mode with l = 2, m = 1. An optimistic

rate of 240 Gpc�3yr�1 merger events suggests that nearly 650-1000 events would allow for

measurability of the l = m = 3 sub-dominant mode and about a 100-250 would allow for

measurability of the l = m = 4 mode each year with Cosmic Explorer and Einstein Telescope.

Furthermore, analyzing the mode l = 2, m = 1, we find that its measurability with Cosmic

Explorer is about 1000 events per year and that with Einstein Telescope is about a 500 events

per year. A few of the existing literature [189, 179] have not considered the sub-dominant

mode corresponding to l = 2, m = 1 in their studies. Our study highlights that for the

detection of stellar mass black-hole mergers with Cosmic Explorer, the l = 2, m = 1 is the

most promising mode. From Figure 33, we can see that the l = 2, m = 1 sub-dominant mode

has a slightly smaller mode amplitude compared to the l = m = 3 mode. However it should

also be noted that it is the least damped sub-dominant mode. Thus, for noise curves such as

that of Cosmic Explorer, where the detector has a favorable sensitivity in lower frequencies,

the odds of measuring the l = 2, m = 1 sub-dominant mode is markedly elevated.

In contrast to the naive expectation formed by looking at Figure 30, we find that the

frequency of the sub-dominant mode corresponding to l = 2, m = 1 is well separated from the

central frequency of the dominant mode for the case of stellar mass black-hole mergers. For

all the sub-dominant modes, including l = 2, m = 1 we notice that detectability is the primary
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condition that limits mode measurability and that only very few signals fail measurability due

to the resolvability criterion. Figure 31 shows that even for l = 2, m = 1 mode, the central

frequency of the dominant and sub-dominant mode di↵er by at least 20 Hz for all cases

considered in our study. Thus, resolvability does not seem to crucially e↵ect measuarbility of

the modes. This result might be advantageous while developing new data-analysis techniques

to measure sub-dominant modes for stellar mass black-hole mergers because it indicates that

checking detectability is su�cient and removes an additional layer of complexity of having to

check mode resolvability. However, resolvability could indeed become a potential challenge if

one were to deal with super-massive black-holes targeted by planned space-based detectors.

In such cases a more carefully designed data-analysis technique needs to be developed.

Finally, we address the question of which frequency band should be targeted for a ringdown

oriented detector de-tuning. For a spectroscopic analysis of black-hole ringdowns, our focus

should be on measuring the sub-dominant modes because their single-mode SNRs are generally

much smaller than the dominant mode. The scatter plots in Figure 32 capture the information

of mode frequencies corresponding to the population of signals that passed our measurability

criterion. Again, this plot is made using a flat sensitivity curve to arrive at a conclusion that

is independent of the shape of the detector noise curve. Looking at the central frequencies

of sub-dominant modes l = m = 3 and l = m = 4 of signals that passed out measurability

criterion in Figure 30 and Table 2, we propose that an increase in sensitivity around 300 Hz

and 500 Hz would enhance the measurability of both l = m = 3 and l = m = 4. Measurability

of l = 2, m = 1 sub-dominant mode however would benefit from detector de-tuning around

150-300 Hz. Considering that the joint measurability of sub-dominant modes l = m = 3

and l = m = 4 seems more promising, it can be inferred that a frequency band between 300

Hz and 500 Hz is the best target for detector tuning optimized for spectroscopic analysis of

stellar mass black-holes. This result for frequency tuning relies on the assumption that the

the initial black holes are uniformly distributed in the mass range of 10 to 60 M�. Using

a di↵erent astrophysical source distribution will lead to di↵erent optimal frequency bands,

since the distribution of QNM frequencies depend on the masses of progenitors. Our method

can be used to compute this frequency tuning for other mass distributions.

5.4 Conclusion

In this chapter we have investigated the prospects of our ability to perform black-hole

spectroscopy using the current and future ground-based gravitational-wave detectors. We

find that with a realistic rate of binary black-hole mergers, one could expect to detect several
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tens of spectroscopically valuable signals with future ground-based detectors like Einstein

Telescope and Cosmic Explorer. Although Advanced LIGO might detect signals that would

allow for multi-mode measurements only if the optimistic rates hold, implementing A+

upgrade increases our odds of detecting such signals. From the results of this study, we also

conclude that sub-dominant modes corresponding to l = m = 3 and l = 2, m = 1 o↵er the

most measurability. We emphasize that resolvability is not a limiting factor for stellar mass

black-hole mergers for all the modes we have considered in our study. Further, we propose

that a detector de-tuning around a frequency band between 300 Hz and 500 Hz is optimal

for a ringdown-oriented search.

In this study we have used the choice made in [7] that all modes of ringdown begin 10

M after the peak of luminosity corresponding to the l = m = 2 mode. This choice was

motivated by the work pioneered in [95]. Although there is no absolute framework to choose

the start time of the ringdown, this is a conservative choice. Even with this conservative

choice, we find an encouraging rate of detectable spectroscopically valuable signals using the

future ground-based detectors. We intend to explore alternative choices, such as in [190] in a

future study and we expect this will improve the chances of measuring sub-dominant modes

significantly. Further, this study is done in the scheme of the Fisher information theory.

Future work will follow this study with a full Bayesian parameter estimation like that in

[191] and a comparison of the results.
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Detector Curve Set 1 Set 2 Set 3 Set 4 Set 5 Set 6

Advanced LIGO 0.83 0.16 0.0008 2 ⇥10�5 1.6 ⇥10�5 0

A+ 0.6 0.37 0.01 0.0004 0.0001 0

Einstein Telescope 0.32 0.47 0.18 0.03 0.01 2 ⇥10�4

Cosmic Explorer 0.3 0.44 0.3 0.08 0.04 5 ⇥10�6

A flat noise curve at 10�25 2
p

Hz
�1

0.17 0.35 0.41 0.06 0.18 0.001

Table 7: The above table shows the results we obtain from a Monte-Carlo simulation of 106

stellar mass binary black-hole mergers uniformly distributed in component mass, orientation

and in volume defined by a sphere of radius 1500 Mpc. We categorize each event into one

of the set defined below and tabulate the fraction of signals that fall into each set. Set

1: l = m = 2 mode could not be detected, Set 2: l = m = 2 could be detected but no

other sub-dominant mode could be detected, Set 3: l = m = 3 sub-dominant mode can be

measured, Set 4: l = m = 4 sub-dominant mode can be measured, Set 5: Both l = m = 3 and

l = m = 4 sub-dominant modes can be measured, Set 6: failed measurability of sub-dominant

mode due to resolvability criterion.

Detector Curve Set 1 Set 2 Set 3 Set 4

Advanced LIGO 0.84 0.15 1.8⇥10�4 0

A+ 0.59 0.4 0.004 0

Einstein Telescope 0.31 0.52 0.16 0

Cosmic Explorer 0.24 0.41 0.34 0

A flat noise curve at 10�25 2
p

Hz
�1

0.14 0.33 0.52 0

Table 8: The above table has information similar to Table 1 but with sets defined di↵erently.

Here, Set 1: l = m = 2 mode could not be detected, Set 2: l = m = 2 could be detected but

l = 2, m = 1 sub-dominant mode could be detected, Set 3: l = 2, m = 1 sub-dominant mode

is both detected and resolved, Set 4: l = 2, m = 1 sub-dominant mode is detected but not

resolved . Here again, we tabulate the number of events out of 106 Monte-Carlo simulated

binary black-hole mergers that fall in each of these sets.
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Detector Curve Optimistic Rate Pessimistic Rate

Advanced LIGO 2.9/yr 0.2/yr

A+ 47.3/yr 2.6/yr

Einstein Telescope 694.3/yr 37.6/yr

Cosmic Explorer 1130/yr 61.2/yr

A flat noise curve at 10�25 2
p

Hz
�1

1570/yr 85 /yr

Table 9: Using our results in Table 1 and the optimistic (pessimistic) rates of binary black-hole

mergers, predicted based on the recent discoveries of binary black-hole mergers [2], at 240

Gpc�3 yr�1 (13 Gpc�3 yr�1 ), we present the rate of events that would allow measurability of

l = m = 3 or l = m = 4 sub-dominant mode with current and future ground-based detectors.

We present this combined (l = m = 3 or l = m = 4) rate, because de-tuning the detector

around the frequency band 300 � 500 Hz for a ringdown oriented search benefits both of

these modes.
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For l = m = 3 Optimistic Rate Pessimistic Rate

Advanced LIGO 2.9/yr 0.2/yr

A+ 46.4/yr 2.5/yr

Einstein Telescope 645.4/yr 34.9/yr

Cosmic Explorer 1024.3/yr 55.5/yr

A flat noise curve at 10�25 2
p

Hz
�1

1409.2/yr 76.3/yr

For l = m = 4 Optimistic Rate Pessimistic Rate

Advanced LIGO 0.08/yr 0.004/yr

A+ 1.4/yr 0.08/yr

Einstein Telescope 96.7/yr 5.2/yr

Cosmic Explorer 263.1/yr 14.2/yr

A flat noise curve at 10�25 2
p

Hz
�1

605.7/yr 32.8/yr

For l = 2, m = 1 Optimistic Rate Pessimistic Rate

Advanced LIGO 0.6/yr 0.03/yr

A+ 13.4/yr 0.7/yr

Einstein Telescope 545.6/yr 29.6/yr

Cosmic Explorer 1162.7/yr 63/yr

A flat noise curve at 10�25 2
p

Hz
�1

1772.3/yr 96/yr

Table 10: Using our results in Table 2 and the optimistic (pessimistic) rate of binary black-hole

mergers, predicted based on the recent discoveries of binary black-hole mergers [2], at 240

Gpc�3 yr�1 (13 Gpc�3 yr�1 ), we present the rate of events that would allow measurability

of single sub-dominant modes.
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Chapter 6

On detectability of the subdominant

mode in a binary black hole ringdown

6.1 Introduction

At a su�ciently late time, the post-merger signal emitted during the coalescence of a binary

black hole (BH) system can be modelled by linear perturbation theory [88, 91, 162]. We refer

to this part of the postmerger as the ‘ringdown’ (RD) in this study. The equation governing

the perturbation on a Kerr manifold when cast in form of a radiative boundary-value-problem

takes a form similar to the Schrodinger equation with an e↵ective BH potential [85, 86, 87].

The BH quasi-normal modes (QNM) are the solutions to this equation and observing them

serves as a probe to understand the linear perturbative dynamics of the strong field gravity

[30, 31, 32, 103, 168].

By observing the QNM spectrum, we test the validity of the equation governing the

evolution of perturbations, which in turn, is obtained from Einstein’s equation. We also test

the shape of e↵ective BH potential which encodes the nature and the geometry of the central

compact object. Further, the boundary conditions used to solve this equation is dictated by

the presence or absence of an event horizon. Moreover, observing a QNM spectrum consistent

with a BH validates that the perturbative dynamics on a Kerr geometry can be parametrised

by just two parameters; the mass and spin of the final BH the no-hair theorem [164], thereby,

observationally verifying the no-hair theorem.

Since the discovery of gravitational waves (GW) from the binary BH systems, many

studies have been performed to understand and infer the nature of BH RDs [79, 94, 199, 156,

93, 61, 42, 179].In GW1501914 signal, the frequency and damping of the dominant QNM has
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been measured and confirmed to be consistent with GR within the error bars of measurement

[5]. However, the measurement errors were large; ⇠ 40 Hz in the frequency and ⇠ 6 ms

in the damping time. No subdominant mode was inferred. Improving the accuracy in the

measurement of the dominant mode and measuring at least the second most dominant mode

(we refer to this as the sub-dominant mode throughout this text) in the QNM spectrum, will

allow us to test GR rigorously.

The prospects of measuring the subdominant mode depend principally on the overall

SNR present in the RD ⇢RD and the mode excitation amplitude of the subdominant mode.

For instance, an nearly equal mass binary system like the GW150914 does not excite the

subdominant modes su�ciently and thus, is not ideal for inferring multiple modes in the

QNM spectrum. As a rule of thumb, the higher the asymmetry in the progenitor system, the

lower is the ⇢RD needed to detect the subdominant modes. In this paper, we present a study

on the interplay of these two factors to understand what kind of RD signals will enable us to

perform a multimode detection in RD.

The inspiral-merger phase sets the initial conditions for the perturbation, thus, deciding

the intrinsic amplitude of excitation of di↵erent QNMs. There are phenomenological fits

that relate the mass ratio q of the progenitor BHs to the ratio of the intrinsic amplitudes

of excitation AR = A33
A22

in the framework of GR [155]. However, note that the observed

subdominant mode amplitude also depends on the inclination angle (◆) extrinsically through

the spherical harmonic function 1 (see Figure 3 of [155]).

We study the e↵ect of varying AR and ⇢RD on the recovery of intrinsic parameters in

RD, with a particular interest in the parameters that describe the subdominant mode i.e.,

the AR and the phase of the subdominant mode �33. We perform a full Bayesian Parameter

Estimation (PE) on a set of two-mode RD injections. For this study, we fix the mass

Mf = 70M� and the dimensionless spin af = 0.65 of the final BH formed. We assume that

the underlying theory of gravity is GR and compute the frequencies (!lm) and damping times

(⌧lm) as dictated by linear perturbation theory for a given BH [89, 183].

Furthermore, we argue that even though we fix Mf and af for this study, the result

should approximately hold true for a general case. We expect this because most of the

SNR in the RD comes from the beginning of the signal and therefore, the analysis is not

particularly sensitive to the exact value of frequency or damping time. The dominant mode

and the subdominant mode are separated su�ciently in frequencies that they are always

1A natural basis function to decompose ringdown is a weighted spheroidal harmonic functions; however,

we approximate it with spin2-weighted spherical harmonic function. For details of mode-mixing due to this

approximation, refer to [184].
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resolvable [62]. Since the log-likelihood scales as the square of SNR, to first order, we expect

the parameter estimation to be sensitive to just ⇢RD and AR.

This chapter is organized in the following way: In section 6.2 we describe the theory of

Bayesian PE. In section 6.3, we describe the injections used in this study and the details

of the setting we employ for our PE. Next, in section 6.4 we present our results and finally

discuss its implication in section 6.5.

6.2 Theory

6.2.1 Parameter Estimation

Given a GW observation in form of a timeseries data D 2, one can use the framework of

Bayesian inference to estimate the properties of the BBH system. Let H be a model that

we believe describes the observation and let the model be parameterized by the parameters

#. One can use Bayesian inference to compute the posterior probability density function

(PDF) and infer the parameters # given an observation. In this section, we provide a brief

introduction to Bayesian inference.

Bayesian inference relies on the philosophy that, given a H, one has expectations on

the distribution of parameter values before performing an observation [193, 194]. These

expectations prior to performing the experiment is encoded in a probability density function

called the prior P(#|H). Once the observation is performed and the data set is obtained, one

updates their beliefs with information obtained from this observation. This input is encoded

in the Likelihood function P(D|#, H) and the inferred probability density for #, often called

the posterior probability density function P(#|D, H), is informed by both the prior and the

likelihood function.

The Bayes theorem states that the posterior probability density function P(#|D, H) for

the parameters # is given by [193, 194],

P(#|D, H) =
P(#|H)P(D|#, H)

P(D|H)
. (6.1)

Here, P(D|H) is the evidence and severs as a normalization factor.

The likelihood function P(D|#, H) depends on both the signal and the nature of noise

present in the data. Let timeseries data from the detector contain a GW signal S embedded

in the detector noise N , i.e D = S +N . If the N is Gaussian and stationary, the likelihood

2Convention: The boldfaced symbols in this section correspond to vectors.
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function, P(D|#, H), can be written as

P(D|#, H) / e�
1
2 hN |N i = e�

1
2 hD�S|D�Si. (6.2)

Here, h.i denote the inner product weighted by the power spectral density (PSD) of the

detectors. The form of the prior distributions, P(#|H) is a choice that one has to make and

there is no unique way to pick it. With the intention of extracting maximum information

from the data itself, a non-informative prior is used in this study.

All the information about the distribution of the estimated parameters is contained in

the landscape of P(#|D, H) and therefore, the goal of a scheme using Bayesian PE is to

sample the parameters space of # and construct the distribution P(#|D, H) 3. In practice,

these posterior distributions are computed by sampling [195] the allowed parameter space

using routines for sampling employ an algorithm called the Markov Chain Monte Carlo

(MCMC) [196, 197, 198]. In our study we emply a parallel tempered sampling algorithm

called emcee � pt. Once we obtain the posterior distribution for the parameter, we use

credible intervals infer the parameters of the model.

6.3 Methods

6.3.1 The Ringdown Injections

The injections used in this study contain only two QNM modes of RD, with the frequencies

and the damping times calculated using the linear perturbation theory. Therefore, there is

no non-linear merger physics in these injections. The RD injections correspond to a BH with

{Mf = 70M�, af = 0.65}. It must be highlighted that the intent of this paper is to investigate

the detectability of a subdominant mode in BBH RD assuming that the underlying theory of

gravity is GR.

Additionally, we fix the inclination angle ◆ for each of the injections to 0.7 and the sky

position is chosen to be {RA = 2.2, Dec = �1.24}. The polarization angle  is set to 0.3.

Note that these extrinsic parameters are chosen arbitrarily. Figure 3 of [155] presents the

e↵ect of the choice of ◆ on the observed amplitudes of QNM; we note that our choice of

◆ = 0.7 is fairly favourable for viewing the subdominant mode l = m = 3. Therefore, it

should be highlighted that the statements in this study are optimistic. The initial phase of

3In most cases where one is just interested in estimating the parameter values for #, P(#|D,H) is

calculated up to a normalization factor. Typically, one need not compute the evidence to estimate the

parameters of the model. Moreover, calculating the evidence is computation challenging, especially when the

parameter space spanned by # is large.
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the dominant mode is set to 0 and that of the subdominant mode is set to 1. These choices

are again arbitrary and we hold them fixed for all the injections used in this study. Further,

this study is performed considering only the two LIGO detectors at their design sensitivity.

We then systematically vary the amplitude of the dominant mode such that the injections

correspond to an optimal RD SNR of {15, 20, 25, 30}. Figure 33 plots the amplitude of

QNMs in RD of the nonspinning BBH systems as a function of progenitor mass ratio ⌘ using

the fitting formulae presented in [7]. For all the non-spinning BBH systems, l = m = 3

is the loudest subdominant mode. In our injections the dominant mode corresponds to

l = m = 2 mode and the subdominant mode is l = m = 3. We study RDs with varying

AR = A220/A330 2 {0.1, 0.2, 0.3}.

l=m=2
l=2, m=1
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l=3, m=2
l=m=4
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Figure 33: This figure presents the magnitude of mode amplitudes ||A|| predicted by the

fitting formulae given in [7] as a function of dimensionless symmetric-mass-ratio ⌘. This

figure is taken from [62]

For simplicity, we perform these injections in zero noise. Note that zero noise is a

realisation of Gaussian noise and therefore any assumptions during the PE that rely on the

nature of noise being Gaussian still remains valid. A more detailed work of similar nature

needs to be performed in the presence of detector noise to understand how it influences the
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analysis in a realistic case, but this is beyond the scope of our current study.

6.3.2 Details on Parameter Estimation

We perform a full Bayesian PE using the code package PyCBC to produce the posterior

distribution of intrinsic parameters for all the cases considered in our study. We use the

emcee pt ensemble sampler to perform the parallel tempered Markov chain Monte Carlo

(MCMC) operation. The technical details of this algorithm are presented in [?]. We use 38

inverse-temperatures chains to sample the parameter space. For each temperature chain, we

use 200 walkers to explore the space. We use an analytical model of the advanced LIGO

sensitivity curve, named Zero-detuned high power (ZDHP) noise curve, for calculating the

likelihood function at each sampled point. Further, a Gaussian likelihood model is used;

thereby, we assume the nature of the noise to be Gaussian.

The waveform model used to perform the PE consists of l = m = 2 and l = m = 3 QNMs

as a function of {Mf , af} of the final BH. Analytical expression for the waveform can be

written down as,

h+ = A22

�
e�

t
⌧22 cos(2⇡f22t)Y

22
+ (◆)

+AR(e�
t

⌧33 cos(2⇡ f33t)Y
33
+ (◆))

 

h⇥ = A22

�
e�

t
⌧22 sin(2⇡f22 t)Y 22

⇥ (◆)

+AR(e�
t

⌧33 sin(2⇡ f33 t)Y 33
+ (◆))

 
.

(6.3)

Here {flm, ⌧lm} = {flm(Mf , af ), ⌧lm(Mf , af )} are the QNM frequencies and damping time of

l = m 2 2, 3 modes.

There are 6 intrinsic parameters in this RD model # = {Mf , af , A22, AR,�22,�33}. We fix

the extrinsic parameters and estimate only these 6 intrinsic parameters of the injections. In a

more realistic case, one can do this if the PE on the full IMR waveform provides a reasonably

well-constrained inference of the extrinsic parameters.

Further, we use non-informative prior summarised in Table 11 to avoid any bias. However,

in reality, when one has the parameter inference from a full IMR PE, using a more informative

prior, particularly on the Mf , af , A22 might help to better infer the parameters of RD.
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Parameters Minimum Maximum Description

Final mass 50 100 Uniform

Final Spin -0.99 0.99 Uniform

Amplitude of

dominant mode
10�25 5 ⇥10�20 Uniform in Log10

Amplitude Ratio 0 0.5 Uniform

Phase of

dominant mode

Uniform in

angles

Phase of

second mode

Uniform in

angles

Table 11: The list of prior used to perform two mode RD PE. In this Table, we list the choice

of priors used in our study. Note that these priors are non-informative in the sense that we

do not favour any particular configuration. However, the bounds of the parameter space

contain some information in itself. Further, the prior on A22 is set to be log-uniform and not

uniform to ensure a better sampling of the smaller amplitudes.

6.4 Results

AR=0.1 AR=0.2 AR=0.3

SNR = 15 No No Yes

SNR = 20 No Yes Yes

SNR = 25 No Yes Yes

SNR = 30 Yes Yes Yes

Table 12: Testing the presence of the second mode. From looking at the posterior plots

present in Figures 34, 35, 36 and 37, we infer the cases in which we can detect the presence

of the second mode.

We perform PE on 16 systems, with injection corresponding to varying ⇢RD and AR and

present the results in Figure 34, 35, 36 and 37. Although the PE has been performed to
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Figure 34: This is a null result test. Above are the posterior plots for the recovery of mode

amplitude ratio and phase of the subdominant mode. The injected waveform has ringdown

corresponding to only the dominant mode but it is recoved by a template family that has

two modes of ringdown. The top panel corresponds to an injection of an optimal injected

SNR = 15, the top right to SNR =20, the bottom left to SNR = 25 and that in bottom right

to SNR = 30.

infer all the intrinsic parameters of the ringdown i.e., {Mf , af , A22, AR,�22,�33} we present

only the results for the inference of {AR,�22} in the figures for readbiltiy. However, for each

case we confirm that the 90 % confidence interval contains the injected values for all the

parameters.

The Figure 34 corresponds to ‘the null test’, where the injections contains only one mode

i.e., AR = 0. The Figures 35, 36 and 37 correspond to AR = 0.1, 0.2 and 0.3 respectively. In

all the four figures, the top left panel corresponds to ⇢RD = 15, the top right panel corresponds

to ⇢RD = 20, the bottom left panel corresponds to ⇢RD = 25 and the bottom right panel

corresponds to ⇢RD = 30. In each of these cases, we find that the injected value of parameters

(indicated by red line in the figures) lie within 50 % (and thus, 90 %) credible interval.

Further, the null test in Figure 34 is consistent with what is expected; the marginalized
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Figure 35: Above are the posterior plots for the recovery of mode amplitude ratio and phase

of the subdominant mode. The mode amplitude ratio of the injection is 0.1 and the phase of

the subdominant mode is 1. The top panel corresponds to an injection of an optimal injected

SNR = 15, the top right to SNR =20, the bottom left to SNR = 25 and that in bottom right

to SNR = 30.

posterior for AR rails against AR = 0, thereby, indicating the absence of the second mode.

Also, there is no information on the phase of l = m = 3 mode that can be infered from the

PE results for this case.

Among the injections we have studied, the most unlikely candidate to allow for detection

of the subdominant mode is AR = 0.1 and ⇢RD = 15 (panel 1 of Figure 35). Here we see that

posterior distribution for AR still rails against AR = 0, thereby, not allowing us to assert

the presence of the subdominant mode. Nevertheless, we notice that the posterior for AR

has more support for higher values of AR compared to the null test case. As we increase

the ⇢RD, the posterior distribution for AR shifts towards AR = 0.1. Since the population

studies of BBH favours nearly equal mass BBH systems [?], studying the RDs for smaller AR

is crucial. We therefore perform a injection with ⇢RD = 40 for the AR = 0.1 and show that

we can indeed infer the presence of the subdominant mode for a higher ⇢RD system even with
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Figure 36: Above are the posterior plots for the recovery of mode amplitude ratio and phase

of the subdominant mode. The mode amplitude ratio of the injection is 0.2 and the phase of

the subdominant mode is 1. The top panel corresponds to an injection of an optimal injected

SNR = 15, the top right to SNR =20, the bottom left to SNR = 25 and that in bottom right

to SNR = 30.

a AR = 0.1. The PE result for this case is presented in Figure 38.

However, it is striking that the posterior distribution for the phase of l = m = 3 mode

�33, peaks around the corrected injection value even for AR = 0.1 and ⇢RD = 15 case. This

provides strong hints favouring the presence of the subdominant mode even for AR = 0.1

with smaller values of ⇢RD. In fact, in all the case we have studied, we see that the ringdown

PE performs remarkably good for the recovery of the phase of the subdominant mode.

For this study, the criteria for a confident inference of the presence of the subdominant

mode is that the 90 % credible interval should not have support for AR = 0. With this

criterion, we see that for AR = 0.1 we cannot claim the detection of the subdominant mode

at least up to an ⇢RD = 30. But for AR = 0.2, we can infer the presence of the second mode

for a signal with ⇢RD > 20. When AR is increased to AR = 0.3, we can infer the presence of

the second mode for the injections we use in this study, including ⇢RD = 15 . We tabulate
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Figure 37: Above are the posterior plots for the recovery of mode amplitude ratio and phase

of the subdominant mode. The mode amplitude ratio of the injection is 0.3 and the phase of

the subdominant mode is 1. The top panel corresponds to an injection of SNR = 15, the top

right to SNR =20, the bottom let
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Figure 38: Mode amplitude ration of 0.1 at an SNR of 40. In this figure, we show the result

of parameter estimation when the optimal SNR of ringdown injection with amplitude ratio of

0.1 is increased to 40. Panel on the left shows the posterior recovered and can be compared

with Figure 35. Panel on the right compares the normalized histogram for amplitude ratio

for AR = 0 (single mode) and AR = 0.1 and can be compred to Figure 39. In this case we see

that the second mode can be infered.

this result in Table 12.

Next, we compare the marginalized posteriors distribution for AR for di↵erent SNR with

the null case (this will allow us to get an intuition for the false alarm probability for the

inferred presence of subdominant mode). More the overlap of the posteriors distribution for

AR 6= 0 with that for AR = 0, more is the false alarm probability in the claim of presence of the

subdominant mode. This comparison is presented in Figure 39 where the panels are arranged

top to bottom for ⇢RD = 15, 20, 25, 30 respectively. If the posterior distribution for AR clearly

separates from the posterior distribution for the case with AR = 0, the presence of the second

mode can be inferred confidently. We note that the posterior distribution corresponding to

AR = 0.3 (the pink histogram) always separates from AR = 0 (the black histogram), even for

⇢RD = 15, whereas that which corresponds to AR = 0.2 (the blue histogram) separates out

after ⇢RD = 20. Although in none of the cases the posterior corresponding to AR = 0.1 (the

green histogram) clearly separates out from AR = 0, we see that it shifts away from AR = 0.

In the left panel of Figure 38 however, we do see that for ⇢RD = 40, we can infer the presence

of subdominant mode in case of AR = 0.1 confidently.
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Figure 39: Marginalized posteriors for amplitude ratio for all the injection in this study.

The panels corresponds to normalized histogram for amplitude ratio for ringdown injections

corresponding to an optimal SNR = {15, 20, 25, 30} from top to bottom. In each of these

panels, the black histogram corresponds to the null case, where the injected signal has only

one mode. The green, blue and red histogram correspondes to an injection with amplitude

ratio of 0.1, 0.2 and 0.3 respectively. When the colored histograms (corresponding to a

non-zero amplitude ratio) seperate clearly from the black histogram (corresponding to single

mode injection), one can claim the detection of the second mode.
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6.5 Discussions and Implications

For a BBH RD signal, the excitation amplitude of the di↵erent modes depends on the

perturbation conditions set up by the inspiral-merger phase. This, in turn, is dictated by

the asymmetry of the initial binary system i.e., mass ratio and the spin of the progenitor.

An equal mass system does not excite the l = m = 3. To get a mode amplitude ratio of

0.1, a nonspinning progenitor binary would have to have a mass ratio of ⇠ 1.5 and a BBH

with a mass ratio of little more than q = 2 produces an RD with a mode amplitude ratio ⇠
0.2. Although we see that there is larger support for nearly equal mass BBH systems from

the population studies, LIGO has already detected some asymmetric mass ratio system; for

example, GW151012 and GW151226 have a q ⇠ 1.7 and GW170729 and GW170104 have

a q ⇠ 1.5. Unfortunately, these signals did not have enough SNR in the RD to allow for

inference of the subdominant mode even though the amplitude ratio of modes were favourable.

However, with the coming of advanced LIGO operating at its design sensitivity, one expects

the SNR to increase by nearly threefolds, thereby making the prospect of detecting the

subdominant mode of RD quite promising. Furthermore, the number of events to increase

giving us statistically better chances of observing asymmetrical BBH.

Higher the value of relative amplitudes between the modes, one can do spectroscopy of

BBH RD with a smaller SNR. In particular, from our study we note that, while a system

with AR = 0.1 requires an optimal RD SNR of ⇠ 40 for detection of the subdominant mode,

a system with AR = 0.3 needs just an SNR of 15. Putting this in perspective, the GW150914

event has an RD SNR of ⇠ 8. However, if the GW150914 were seen using aLIGO at its design

sensitivity the RD SNR would be around ⇠ 24. At the same RD SNR, had we detected a

mass ratio q = 2 system, it would have been a particularly promising candidate to perform

tests with ringdown that requires the detection of the second mode. This is to emphasise the

fact that we have already seen a system that is close enough in distance to have a loud SNR

in RD and that although the requirement of RD SNR seems challenging, it is not impossible

to observe such events in the upcoming era of GW astronomy.

Note that for a non-spinning progenitor binary system, the l = m = 3 mode is always the

second most dominant mode (intrinsically, without considering the e↵ects of the inclination

angle) and hence, we used it as the subdominant mode in our study. However, it should be

noted that for a su�ciently spinning progenitor BBH system the l = 2, m = 1 mode can be

stronger than the l = m = 3 mode for some parameter space of BBHs (c.f Figure 1 and 2 of

[95]). Therefore, if the IMR parameter inferences indicate the presence of significant total

spin magnitude for the progenitors, the RD PE should also include the l = 2, m = 1 mode
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multimodal analysis.

A follow-up study to investigate the e↵ects of the presence of the detector noise is

underway and will soon be concluded. Furthermore, performing the RD analysis on a full

inspiral-merger-ringdown (IMR) signal has additional complications of identifying the start

time of the perturbation regime; one needs to pick a time carefully such that it optimises the

systematic error arising from starting the RD too early and statistical error that arises from

starting the ringdown too late in the signal. This complication has been circumvented in

this study since we assume the RD to be composed of only QNMs. We are also performing

a follow-up study to understand this e↵ect. Also, a careful astrophysical population study

has to be done to understand the realist probability of seeing signals that will allow for

multimodal RD detection. In this study, we provide preliminary studies on what kind of

signals would allow us to detect two modes in RD and set a stage for the upcoming work.
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Chapter 7

Conclusion

This era of GW astronomy provides an unprecedented opportunity to probe and understand

the nature of gravity, thereby, testing the regime of validity of the general theory of relativity.

Understanding the regimes of validity of GR is one of the flagship challenges that will help

to resolve many challenges in today’s physics. In this thesis, we have primarily focused on

using BBH RD to design the tests that probe the nature of strong field gravity. The three

broad themes that we have discussed here are the following: When does the RD start in

the post-merger GW signal from a BBH merger event? How realistic is it to expect that we

would be able to perform a multimodal RD test in the near future? How should the data

analysis be carried out to extract multimodal RD information using a Bayesian framework

from a BBH GW signal present in the detector data?

GR is an elegant theory that has di↵eomorphism as well as non-linearity at the heart

of it. As a consequence, associating an event that is close to the BH horizon to an event

at future null infinity is extremely hard. Di↵eomorphism brings in the complication of the

gauge choices, i.e., di↵erent observers will see the event happening at a di↵erent time in

their reference frames. Further, the non-linearity in the theory does not allow for a strict

localization of the source; GWs can source and back react on themselves especially in the

strong field region. Therefore, in the framework of GR, localization of the source can only be

done approximately, both spatially and temporally. In Chapter 4, we investigate this issue

and present a technique to approximately connect events close to the BH to its e↵ect at

asymptotic future null infinity. The techniques presented in Chapter 4, although developed

in the context of mapping the source frame perturbation amplitudes to the GW observed at

asymptotic infinity, they can in principle be used to map the evolution of any quantity in

the source frame to the asymptotic frame. Note that the map is based on the cause-e↵ect
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relationship. It should also be noted that our procedures rely on the construction of the

outgoing null characteristics and therefore, has the limitation that these techniques fail in

the region of spacetime that forms strong caustics (intersecting null-rays).

From the studies presented in Chapter 3 and 4, we understand the start time of RD as

seen in the source frame close to the BH. We then connect this to the observation seen by

GW detectors, to predict the start time of RD in the waveform. If an analysis of RD starts at

a point where the perturbative description is not yet valid, one might run into false inferences

that are inconsistent with GR. In practice, while performing an RD based test, the start time

should be chosen, keeping in mind the trade-o↵ between the systematic modelling errors and

the statistical error from the detector noise. On one hand, one would like to maximize the

SNR in the RD by starting the analysis as early as possible (statistical errors) but on the

other hand, starting the analysis too early, when the perturbative description is not yet valid,

might lead to erroneous inferences of the RD parameters (systematic errors). For the current

sensitivity of the LI GO detectors, our study in Chapter 4 indicates that the statistical errors

from the detector’s noise dominate over the systematic e↵ects. However, in the future, with

the next-generation detectors, one would need to carefully pick the start time of RD in such

a way that the errors arising from both these independent sources are minimized.

In Chapter 5 and 6, we study the prospects of a multimodal RD test with the signals

that will be observed by LIGO and other proposed next-generation detectors in the near

future. While Chapter 5 relies on a Fisher Matrix formalism, in Chapter 6 we provide a

demonstration of carrying out a multimode detection in RD using a full Bayesian PE setup.

In Chapter 5, we present a study that shows that the prospects of multimodal RD analysis

are optimistic with the upgrades to the current LIGO facilities and with any of the proposed

future GW detectors. Also, we propose that if a frequency dependent sensitivity increase can

be achieved in the detectors, then an improvement in the band between 300 - 500 Hz will be

optimal for ringdown based analysis.

In Chapter 6, we present a soon-to-be-published study where we develop a framework

to perform a multimodal RD analysis using a full Bayesian inference. The study aims at

developing an intuition on what should be the minimum SNR in the RD for detection of the

subdominant mode given an amplitude ratio between the dominant and the subdominant

mode. This is a preliminary study that is performed in a simplified setting of QNM only

injections in zero noise, with the aim of setting a stage for future followup work in more

realistic scenarios with real detector noise. In this study, we infer that for an amplitude ratio

of 0.1, one needs an RD SNR of ⇠ 40 for a multimodal detection while for an amplitude ratio
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of 0.3 an RD SNR of ⇠ 15 is su�cient. From the preliminary results of this study, we see

that there is an optimistic chance of detecting the presence of the sub-dominant mode in the

RD with aLIGO running at its design sensitivity.

With the promise of the upcoming GW detectors, probing the strong field gravity using RD

seems quite encouraging. Understanding the spacetime dynamics during the transition from

the merger to RD might prove to be challenging and yet essential. Furthermore, excitation of

higher QNM overtones and tail e↵ects might start playing a significant role if the SNR of RD

is high. In order to perform these tests of GR, we need to develop tools that would allow us

to perform robust data analysis on RD as well as understand the details of the morphology

of RD signals for modelling them accurately.

**
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Appendix A

On KERR-NUT spacetime

A.1 Kerr-NUT parameters

In this appendix, we provide a review of the parameters of the Kerr-NUT solution. The

Kerr family of vacuum solutions is unique when one imposes axisymmetry, stationarity

and regularity on the BH horizon along with asymptotic flatness. However, if one allows

for generalization by relaxing the asymptotic flatness condition, one arrives at a family of

solutions called Kerr-NUT. This solution is a part of the broader family of Einstein-Maxwell

type D solutions. This generalized family of spacetimes is parameterized by 6 parameters

(potentially 7 if one includes the cosmological constant ⇤). In Table A.1, we summarize the

parameters, as well as their physical meaning and symbols used in various texts.

The general Einstein-Maxwell Type D solution (including cosmological constant ⇤) has

the form given in Eq. 21.11 of [120], with parameters m, l, �, ", e, and g. m refers to the mass

parameter (closely related to the mass of the BH), � is related to the angular momentum

parameter a (closely related to the spin of the BH), " is related to the acceleration b, e is the

electric charge, g is the magnetic charge, and l is known as the NUT parameter. As outlined

in [203], the mass and the NUT parameter form a complex quantity, as do the angular

momentum and the acceleration, similarly to the electric and magnetic charges. In [203],

" and � do not appear in the curvature quantities, and are called kinematical parameters,

while the others are dynamical parameters.

As shown in Table 21.1 of [120], setting all of the parameters to zero except for m, a

(and hence � and "), and e yields the Kerr-Newman solution, while also setting a = 0 yields

the Reissner-Nordstrom solution. Kerr-Taub-NUT metrics, meanwhile, are parametrized by

mass, spin, and l, with l 6= 0, and are thought to be unphysical [204]. The vacuum BBH

case considered in this study, meanwhile, sets e = 0 and g = 0, since there are no electric
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or magnetic charges at the start of the simulation, and no sourcing of them during the

simulation.

An accelerating and rotating BH with a NUT charge will have non-zero m, l, a, and b,

with a > l. A Kerr solution with a NUT charge will then have b = 0. An accelerating and

rotating BH, meanwhile, will have l = 0. Finally, the Kerr solution has both l = 0 and b = 0.

An illustration of this is provided in Fig. 1 of [205]. The condition l = 0 gives the Kerr 2

condition considered in this paper, given in Eq. (4.16).

After setting l = 0, the parameters m, " and � are related to the mass and spin of a BH

are as follows,

mass =
m

"
3
2

and spin =
2
p

|�|
"

. (A.1)

Since, " > 0 and m > 0 for a Kerr BH, the condition that b = 0 gives " > 0, which

corresponds to the Kerr 3 condition given in Eq. (4.17).
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M. Colpi, N. J. Cornish, K. Danzmann, J.-F. Dufaux, J. Gair, O. Jennrich, P. Jetzer,

A. Klein, R. N. Lang, A. Lobo, T. Littenberg, S. T. McWilliams, G. Nelemans,

A. Petiteau, E. K. Porter, B. F. Schutz, A. Sesana, R. Stebbins, T. Sumner, M. Vallisneri,

S. Vitale, M. Volonteri, and H. Ward. Low-frequency gravitational-wave science with

eLISA/NGO. Classical and Quantum Gravity, 29(12):124016, June 2012.

[47] J. Creighton and W. Anderson. Gravitational-Wave Physics and Astronomy: An

Introduction to Theory, Experiment and Data Analysis. November 2011.

[48] C. M. Will. Theory and Experiment in Gravitational Physics. March 1993.



123

[49] Pawel O. Mazur. Black hole uniqueness theorems. 2000.

[50] C.W. Misner, K.S. Thorne, and J.A. Wheeler. Gravitation. Number pt. 3 in Gravitation.

W. H. Freeman, 1973.

[51] O. Dreyer, B. Kelly, B. Krishnan, L. S. Finn, D. Garrison, and R. Lopez-Aleman. Black-

hole spectroscopy: testing general relativity through gravitational-wave observations.

Classical and Quantum Gravity, 21:787–803, February 2004.

[52] S. Gossan, J. Veitch, and B. S. Sathyaprakash. Bayesian model selection for testing the

no-hair theorem with black hole ringdowns. Phys. Rev. D, 85(12):124056, June 2012.

[53] I. Kamaretsos, M. Hannam, S. Husa, and B. S. Sathyaprakash. Black-hole hair loss:

Learning about binary progenitors from ringdown signals. Phys. Rev. D, 85(2):024018,

January 2012.

[54] Norman Gürlebeck. No-hair theorem for black holes in astrophysical environments.

Phys. Rev. Lett., 114:151102, Apr 2015.

[55] M. Heusler. No-hair theorems and black holes with hair. Helvetica Physica Acta,

69:501–528, November 1996.

[56] S. W. Hawking. Gravitational radiation from colliding black holes. Phys. Rev. Lett.,

26:1344–1346, May 1971.

[57] S. W. Hawking. Black holes in general relativity. Communications in Mathematical

Physics, 25(2):152–166, Jun 1972.

[58] Kostas D. Kokkotas and Bernd G. Schmidt. Quasi-normal modes of stars and black

holes. Living Reviews in Relativity, 2(2), 1999.

[59] V. Cardoso, E. Franzin, and P. Pani. Is the Gravitational-Wave Ringdown a Probe of

the Event Horizon? Physical Review Letters, 116(17):171101, April 2016.

[60] H. Nakano, N. Sago, H. Tagoshi, and T. Tanaka. Black hole ringdown echoes and howls.

Progress of Theoretical and Experimental Physics, 2017(7):071E01, July 2017.

[61] S. Bhagwat, M. Okounkova, S. W. Ballmer, D. A. Brown, M. Giesler, M. A. Scheel,

and S. A. Teukolsky. On choosing the start time of binary black hole ringdown. ArXiv

e-prints, November 2017.



124

[62] S. Bhagwat, D. A. Brown, and S. W. Ballmer. Spectroscopic analysis of stellar mass

black-hole mergers in our local universe with ground-based gravitational wave detectors.

Phys. Rev. D, 94(8):084024, October 2016.

[63] Tito Dal Canton et al. Implementing a search for aligned-spin neutron star-black

hole systems with advanced ground based gravitational wave detectors. Phys. Rev.,

D90(8):082004, 2014.

[64] Samantha A. Usman et al. The PyCBC search for gravitational waves from compact

binary coalescence. Class. Quant. Grav., 33(21):215004, 2016.

[65] Alexander H. Nitz, Thomas Dent, Tito Dal Canton, Stephen Fairhurst, and Duncan A.

Brown. Detecting binary compact-object mergers with gravitational waves: Under-

standing and Improving the sensitivity of the PyCBC search. Astrophys. J., 849(2):118,

2017.

[66] S. Klimenko, G. Vedovato, M. Drago, F. Salemi, V. Tiwari, G. A. Prodi, C. Lazzaro,

K. Ackley, S. Tiwari, C. F. Da Silva, and G. Mitselmakher. Method for detection and

reconstruction of gravitational wave transients with networks of advanced detectors.

Phys. Rev. D, 93:042004, Feb 2016.

[67] Kipp Cannon, Romain Cariou, Adrian Chapman, Mireia Crispin-Ortuzar, Nickolas

Fotopoulos, Melissa Frei, Chad Hanna, Erin Kara, Drew Keppel, Laura Liao, Stephen

Privitera, Antony Searle, Leo Singer, and Alan Weinstein. Toward early-warning

detection of gravitational waves from compact binary coalescence. The Astrophysical

Journal, 748(2):136, 2012.

[68] Stephen Privitera, Satyanarayan R. P. Mohapatra, Parameswaran Ajith, Kipp Cannon,

Nickolas Fotopoulos, Melissa A. Frei, Chad Hanna, Alan J. Weinstein, and John T.

Whelan. Improving the sensitivity of a search for coalescing binary black holes with

nonprecessing spins in gravitational wave data. Phys. Rev. D, 89:024003, Jan 2014.

[69] B. F. Schutz. Gravitational wave astronomy. Classical and Quantum Gravity, 16:A131–

A156, December 1999.

[70] J. Centrella, J. G. Baker, B. J. Kelly, and J. R. van Meter. Black-hole binaries,

gravitational waves, and numerical relativity. Reviews of Modern Physics, 82:3069–

3119, October 2010.



125

[71] S. Babak, R. Biswas, P. R. Brady, D. A. Brown, K. Cannon, C. D. Capano, J. H.

Clayton, T. Cokelaer, J. D. E. Creighton, T. Dent, A. Dietz, S. Fairhurst, N. Fotopoulos,
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Potential. Communications in Mathematical Physics, 204:397–423, 1999.
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