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ABSTRACT

The era of gravitational wave astronomy was ushered in by the LIGO (Laser

Interferometer Gravitational-Wave Observatory) collaboration with the detection of

a binary black hole collision [2]. The event that shook the foundation of space-time

allowed mankind to view the cosmos in a way that had never been done previously.

Since then, another remarkable event was found by the LIGO and Virgo detectors

where two neutron stars collided, sending both gravitational and electromagnetic

waves to earth [3]. LIGO was built with the purpose of detecting the ripples in space-

time caused by astrophysical events with the hopes of understanding the complexities

hidden within the cosmos. In 2011, the primary stages of Advanced LIGO were in-

stalled and commissioned to start the first observing run (O1). During the writing of

this thesis, the detectors had hardware replaced in order to mitigate noise from scat-

tered light and new optics which reduced the losses from absorption. The upgrades

were in preparation for the third observing run (O3) and the work presented here

is primarily focused on experimental techniques for operating at higher power and

mode matching Gaussian beams in the dual-recycled Michelson interferometer for the

Advanced LIGO era and beyond. The first two chapters discuss the fundamentals

of gravitational waves and the LIGO detector configurations. The third chapter in-

troduces the reader to fundamentals in mode matching Gaussian laser beams. The

fourth and fifth chapter summarizes the author’s work at Syracuse University. The

sixth chapter deals with work at the LIGO Hanford observatory with an emphasis on

mode sensing and high-power operation.
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1

Chapter 1

Introduction

This chapter will focus primarily on the theoretical constructs of gravitational waves

and underlying principles of using a Michelson interferometer to detect them. The

derivations draw heavily on the work of Schutz [80] and Saulson [77].

1.1 Gravitational Waves

In 1915, Albert Einstein published his theory of general relativity [38], which contains

the most complete description of gravity to date. This theory has stood the test of

time and scrutiny by correctly predicting the perihelion of mercury [36], the bending

of light from massive objects [35], the gravitational redshift effect [86], and the loss of

energy from gravitational radiation [90]. The seminal equation in this theory, called

the Einstein Field Equation is

Gµν = 8πTµν (1.1)

which is a set of 10 coupled second-order differential equations that are nonlinear and

fully describes the interaction between space-time and mass-energy. Equation 1.1 is

difficult to solve analytically except in situations where specific approximations allow

a user to find exact solutions, such as spherical symmetry [21] [81]. In areas where

the curvature is close to flat, the weak field approximation can be applied and the

metric is described as

gµν u ηµν + hµν (1.2)
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where ηµν is the metric of flat spacetime and |hµν | � 1 is the perturbation due to a

gravitational field. Considering only the vacuum solution (Tµν = 0), we obtain the

wave equation from [80],

(
∇2 − 1

c2

∂2

∂t2

)
hµν = 0 (1.3)

where hµν = hµν − 1
2
ηµνh

α
α and only in the transverse-traceless gauge [80] will hµν =

hµν . For the remainder of the text, hµν will be referred to as the gravitational wave

(GW). One could ask if a GW passes by a pair of particles initially separated by

length L, what would be the change in distance between the two points? In [80], the

length change δl, was shown to be

δl =

∫
gµνdx

µdxν =

∫ L

0

gxxdx ≈ |gxx(x = 0)|1/2 ≈ [1 +
1

2
hxx(x = 0)]L (1.4)

which is proportional to the gravitational wave and the initial separation between the

particles. This means a detector that is large will have a better chance to measure

the perturbation, which was an important point that drove the design of the Laser

Interferometer Gravitational-Wave Observatory.

Figure 1 : A ring of free floating particles being stretched and squeezed by a passing

gravitational wave. In this picture, the wave is traveling in the transverse direction to the rings

(in/out of the page) and the two pictures represent the plus and cross polarizations.
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1.2 Measuring Gravitational Waves with Light

During the Chapel Hill Conference in 1957 [8], which included some of the great

minds of the era such as Wheeler, Dicke, and Feynman, the experimental search for

gravitational waves began to take hold. One interesting thought experiment that

was proposed by Pirani [25][74] where he considered a bead sliding on a string with

friction as a gravitational wave passes. As the bead slides back and forth due to

the wave described by equation 1.4, there will be some heat dissipated which means

the gravitational wave must carry some energy and hence, be a physical effect. The

earliest attempts at detecting gravitational waves were done by Joseph Weber [89]

using large aluminum bars and piezoelectric transducers to extract the energy from

gravitational waves at the resonant frequencies. However, these bars are limited by

thermal noise and could only detect GWs in very narrow frequency bands.

With the development of lasers in the 1960s, which created coherent and spatially

confined light that could propagate long distances, another prospect for measuring

gravitational waves using interferometry was thoroughly considered by Weiss et al.

[39]. As light travels in space, it picks up an important quantity called phase as a

function of distance. Interferometers are transducers that measure small displace-

ments by using a laser beam that is split by a partially transmitting mirror, which

allows 50% of the light to get reflected and 50% to be transmitted. Each of the beams

travel down the arms and reflect off of mirrors and return to the beamsplitter. Upon

reaching the optic, the two beams recombine and by the principle of superposition the

electromagnetic waves will add linearly at the output port (or antisymmetric port),

Figure 2. The laser beams will gather phase as they propagate down each individual

arm, and when recombining, the intensity of the light will be proportional to the

phase differences between each beam. This will correspond to a differential length

that is described by

l− = lx − ly (1.5)

As shown in equation 1.4, the effect of gravitational waves on the proper length be-

tween two free falling objects is proportional to the initial separation. It can be shown

that interferometry is an ideal technique to sense signals from a gravitational wave

and one can explicitly derive the detector’s response to a GW from an astrophysical

object.
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Figure 2 : A Michelson Interferometer. A laser is split between with a partially transmitting

optic called a beamsplitter (BS), then propagate down each arm to reflect off mirrors, sometimes

called test masses (TM). The beams return to the beamsplitter and recombine, photodetectors are

placed at the antisymmetric port (AS).

If the gravitational wave radiation is propagating towards the interferometer from

directly above, the GW is strictly a function of time and the polarization aligns with

the interferometer. So, the null geodesic equation (i.e. the path of a photon) in the

interferometer frame becomes [77]

ds2 = −dt2 + [1 + h(t)]dx2 + [1− h(t)]dy2 + dz2 = 0 (1.6)

where h(t) is the GW amplitude. Now, if the photon is traveling along the x-arm,

this means that dy2 = dz2 = 0 and the metric equation transforms to

dt

dx
=
√

1 + h(t) ≈ 1 +
1

2
h(t) (1.7)

The amount of time required for the photon to reach the x-end mirror (starting at

t = 0) is equal to

t1 =

∫ lx/c

0

[1 +
1

2
h(t)]dt (1.8)

where lx is the total length of the x-arm and h(t) is the GW amplitude as a function

of propagation distance. Upon returning to the beamsplitter, the photon’s total time
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of flight for the x and y arms are, respectively,

t2 = 2
lx
c

+
1

2

∫ lx/c

0

[
h(t) + h(t+ lx/c)

]
dx (1.9)

t′2 = 2
ly
c
− 1

2

∫ ly/c

0

[
h(t) + h(t+ ly/c)

]
dy (1.10)

If the gravitational wave period is much longer than the time of flight, then h(t) does

not change significantly during the measurement, which means h(t) ≈ h(t + lx/c) ≈
constant (similarly for the y-direction). By subtracting the flight times of the photons

for each arm and setting l = lx = ly, the difference is proportional to the gravitational

wave perturbation multiplied by the sum of arm lengths,

∆t = t2 − t′2 =
2l

c
h (1.11)

By recasting the expression for time of flight in terms of the phase picked up laser

light as it travels through space, the differential phase shift is [77]

∆Φ = Φ(t2)− Φ(t′2) =
4π

λ
h l (1.12)

The equation above only works for gravitational wave signals that are varying slowly

with respect to the round trip light propagation time and it assumes that the path

length can be arbitrarily long. Both points are not strictly true [77] but we can

alleviate these discrepancies by considering a gravitational wave signal of the form

h(t) = h0 e
i2πfGW t and repeating the calculation between equations 1.8 and 1.12:

∆Φ(t) = h(t) τRT
2πc

λ
sinc(fGW τRT )eiπfGW τRT (1.13)

where τRT = 2l/c. The response for a detector has null points from the sinc function

that is dependent on the gravitational wave frequency and the round trip time con-

stant. Figure 3 compares the response of an interferometer with 4 km arms versus

100 km and there is larger low frequency response for the longer detector but has

large dips when approaching the kilohertz regime where solar mass compact binaries

tend to merge. This means that the instrument is not as useful for detecting known

astrophysical events [42] when the length reaches close to 100 km, however, it is very



6

expensive and difficult to make a terrestrial detector of this size. On the other hand,

space-based detectors such as the LISA project will have to account for this effect.

Figure 3 : The phase response of an interferometer to a gravitational wave. The horizontal

axis is in GW frequency and the vertical axis is the accumulated phase shift.

1.3 Detection of Gravitational Waves

The purpose of LIGO is to observe gravitational waves emanating from astrophysical

objects [39], so it is natural to wonder how well a single detector can probe the

universe. The inspiral horizon distance is how far a single detector can detect a binary

system comprised of two equal mass compact objects optimally oriented in the sky

relative to the detector. Using the convention from [1], the optimal signal-to-noise

ratio (SNR) can be expressed as

ρ =

√
4

∫ fh

fl

h̃(f)h̃∗(f)

Sn(f)
(1.14)

where Sn(f) is the one-sided average power spectral density of the detector noise

and h̃(f) is the Fourier transform of the detectors’ response to a gravitational-wave

signal. The lower limit frequency, fl is determined by the increased detector noise at

lower frequencies. For Advanced LIGO, this is typically 20 Hz. The high frequency

limit, fh, will be determined by the innermost stable circular orbit [42]. For an binary

system where each object has a mass equal to 1.4M�, the upper frequency cutoff is

1570 Hz.
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Consider two dense objects which are approximated by point sources with equal

masses (m1 and m2) spiraling around each other. If the binary is optimally oriented

and located in the sky relative to the detector then the signal which appears at the

interferometer can be described by [43]

h̃(f) =
1

dH

(
5π

24c3

)1/2

(GM)5/6(πf)−7/6eiΨ(f ;M) (1.15)

where

M =
(m1m2)3/5

(m1 +m2)1/5
(1.16a)

By convention, M is called the chirp mass, dH is the horizon distance, and Ψ(f ;M)

is a real function of frequency that is parameterized by the total mass. By setting the

signal to noise ratio in equation 1.14 to ρ = 8 and using equation 1.15, the horizon

distance is

dH =
1

8

(
5π

24c3

)1/2

(GM)5/6(π)−7/6

√
4

∫ fh

fl

f−7/3

Sn(f)
(1.17)

To go from the horizon distance which is the furthest an interferometer can sense

an optimally placed binary neutron star to the quantity commonly referred to as

sensemon range, dh is divided by a factor of 2.26 to account for averaging over all

sky locations and binary orientations [43]. In the control rooms at the LIGO detectors,

the sensemon range is one figure of merit for the interferometer performance.
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Chapter 2

The LIGO Instrument

When gravitational waves were first detected, the first question on everybody’s mind

was: “Is it real?”.

Soon after, the question was “How do we get more?”.

The previous chapter dealt with gravitational waves and briefly touched on how

a laser interferometer is particularly well-suited for detecting them. In its simplest

form, the LIGO instrument is an incredibly large Michelson interferometer. How-

ever, to make a practical gravitational-wave observatory, the complexity had to be

extended far beyond what Michelson and Morley used. The next sections will ex-

plore the various instrument configurations that improve LIGO’s sensitivity and a

few fundamental noise sources.

2.1 Interferometer Configurations

2.1.1 Simple Michelson

As shown in Figure 2, modern interferometers use a laser which is incident on a

partially-reflecting and partially-transmitting beamsplitter that sends half of the laser

light down each arm. The individual beams gather phase as they propagate down

the arms and then reflect off of two end mirrors and eventually recombine at the

same beamsplitter. Whether the light constructively or destructively interferes will

depend on their relative accumulated phase from propagating down each arm. A

photodetector is placed at the output and measures the total power which converts

the total amount of light into an electronic signal. In Section 1.2, it was shown that the
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differential time of flight between photons traveling down the individual arms carry

gravitational wave information. The difference in flight times, ∆t, can be converted

into how much phase, ∆φ, is accumulated by the photons as they propagate through

space.

But the question remains, how does an interferometer explicitly measure ∆φ?

If the input electric field of the interferometer is E0, the beamsplitter will transmit

iE0/
√

2 down the x-arm and reflect E0/
√

2 towards the y-arm. By setting the beam-

splitter to be the origin, the two plane waves traveling down their respective arms will

have gathered a phase φi, where the individual arms are denoted by the subscripts.

Then, upon reflecting off the end mirrors and returning to the beamsplitter the re-

sultant fields are transmitted to the antisymmetric port. Each of the electric fields

from the arms can be described by these equations

Ex =
iE0

2
e2iφx

Ey =
iE0

2
e2iφy

(2.18)

Since the electromagnetic waves are linear, the resultant sum of waves at the antisym-

metric port will be Eout = Ex +Ey. The photodiode at the output, or antisymmetric

(AS), port detects the integrated power which is related to the total electric field by

PAS =

∫
Area

I dA

=

∫
Area

|Ex + Ey|2 dA

= Pin cos2(∆φ)

(2.19)

where ∆φ = φx − φy = kxlx − kyly and Pin =
∫

Area
|E0|2dA is the input power. By

using equation 1.12 and the common (or average) arm length l+ = lx+ly
2

, the power

due to a differential phase shift is

PAS|Bright ≈ Pin (1− 2∆φ) = Pin (1− 2kl+h+) (2.20)

There is a large DC term that is dependent on the input power and generally, it is

very difficult to measure small changes in a large signal. This is configuration can be
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referred to as being on a bright fringe. So the next obvious method is to shift the

arm lengths such that the output port is operating on a dark fringe, normally this

is called a null-point operation. However, there are difficulties associated with this

method as well. Consider shifting the phase of equation 2.19 by π/2, which would

result in

PAS|Dark = Pin sin2(∆φ) ≈ Pin (kl+h+)2 (2.21)

This results in a second-order dependence on a gravitational-wave signal that is al-

ready approximated to be very small. So a good solution to the issue of how to read

out a gravitational wave signal can be remedied using radio frequency (RF) detec-

tion methods. By changing the interferometer input from a single laser to adding an

electro-optical modulator (EOM) that sinusoidally modulates the laser frequency and

expanding to first order using the Bessel functions,

Ein = E0e
i(wt+βcos(Ωt))

≈ E0e
iwt[J0(β) + J1(β)eiΩt + J1(β)e−iΩt]

= EC,in + ESB+,in + ESB−,in

(2.22)

where Ω and β are the modulation frequency and depths, respectively. The first term

is commonly called the carrier field whereas the second and third terms are referred

to as the (upper or lower) sidebands. Because there are multiple electric fields, it is

useful to define an optical transfer function which maps the interferometer’s input

fields to its output,

Eout = EC + ESB+ + ESB− =


tC

tSB+

tSB−

(EC,in ESB+,in ESB−,in

)
(2.23)

The carrier transfer function, tC has already been calculated by equations 2.19 - 2.21

and the sideband transfer functions are not much different.

tSB± = rx,±e
iφ±,x − ry,±eiφ±,y (2.24)

where φ±,i = (k±kΩ) `i = (w+Ω
c

)`i. In the current example, the sidebands and carrier

fields reflect off the mirrors identically, however, this will not be true in general when
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dealing with resonators that are highly frequency dependent. Plugging equation 2.24

into 2.23, the output electric field becomes

Eout = ieiwt[J0(β)k`+h+ + J1(β) sin(k∆`+ kΩ∆`)(eiΩt + e−iΩt)] (2.25)

where ∆` = lx−ly
2

is the average differential arm length. The frequency offset of the

sidebands allow them to accumulate phase differently than the carrier field. Thus, by

choosing a static offset between the arm lengths such that the carrier signal is on a

dark fringe, k∆` = π/2, but the sideband are slightly off the null point (Figure [4])

and leak into the anti-symmetric port. This technique is colloquially known as the

Schnupp Asymmetry and the electric field reduces to

Eout = ieiwt[J0(β)k`+h+ + J1(β) sin(kΩ∆`)(eiΩt + e−iΩt)] (2.26)

Figure 4 : A heterodyne detection scheme for interferometers. The laser enters an electro-

optical modulator which creates three fields described by equation 2.22 and read out by a photode-

tector. The error signal at the output is then filtered and described by equation 2.29.
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The intensity, which is equal to the electric field squared can be described by

I = |Eout|2 =|EC |2 + |ESB+|2 + |ESB−|2

+ 2Re{ ESB+E
∗
SB−e

2iΩt }

+ 2Re{ (ECE
∗
SB− + ESB+E

∗
C)eiΩt }

(2.27)

The last term is referred to as the beat note between the carrier signal and the

sidebands. To extract the term at the modulation frequency, one can use a mixer

which is an analog device that outputs the product of two inputs. Usually, the same

oscillator that was used to modulate the input beam can be one of the mixer inputs,

cos(Ωt), so that the demodulated signal is

IDemod ∝
[
4πJ0(β)J1(β)

`+

λ
sin(kΩ∆`) h+

][
cos(Ωt) sin(Ωt+ φDemod)

]
∝
[
4πJ0(β)J1(β)

`+

λ
sin(kΩ∆`) h+

][
sin(φDemod) + sin(2Ωt+ φDemod)

] (2.28)

where φDemod is the phase that can be set by the user in order to account for extra

phase shifts (ie. longer cables). After the mixer, there will be signals at DC, Ω, 2Ω

and so on. However, the part that is linear in the gravitational wave amplitude will

be at DC so a low-pass filter will allow the final signal to dominate [9]:

S = 4πJ0(β)J1(β)
`+

λ
sin(kΩ∆`) sin(φDemod) h+ (2.29)

This shows that a RF detection technique will be linear in GW signal with no large

DC offset. Setting the carrier on a null point means ∆` = kΩ

k
π
2

and allows the de-

signer to optimize the Schnupp asymmetry length to get the best signal for some

modulation frequency. This type of readout scheme was used in Enhanced LIGO and

is called heterodyne detection, where the sideband fields are produced by an EOM

and its efficacy depends on the local oscillator’s stability [47]. In contrast, the Ad-

vanced LIGO scheme uses a homodyne detection [55] method called “DC-Readout”.

Here, the oscillator field is produced by slightly offsetting the arms away from the

dark fringe and letting a small amount of carrier light through the antisymmetric

port. A gravitational wave will induce sidebands on the carrier such that the beat

note between the two fields will have a linear signal in gravitational wave strain. This
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method benefits from naturally being co-aligned and mode matched with the signal

field. All techniques follow the same logic of beating the field containing useful infor-

mation with a reference field to extrapolate a linear signal but the differences come

from technical noise such as laser intensity fluctuations and effective quantum noise.

2.1.2 Fabry-Perot Cavities

There are two ways to improve the LIGO detectors: one is to increase the response

from gravitational waves and the other is to decrease the noise contributions. From

equation 1.12, the gravitational wave signal is proportional to the optical path length

that the photon travels, which means the most straightforward method of increasing

the sensitivity is to make the arms as long as possible (up to the null point described

by equation 1.13). There are two methods to achieve this: a Herriott delay line or a

Fabry-Perot resonator, the differences between each method is shown in Figure 5. At

the time of writing this thesis, all modern gravitational wave detectors use the latter

method.

Figure 5 : Delay Line (top) vs Fabry Perot (bottom)

A Fabry-Perot cavity is an optical system comprised of two or more partially

transmitting mirrors with one laser input. To create such a resonator, the user must

design a system so that once the electric field has made one round trip within the

optical system, the phase of the beam is the same as when it started such that it

constructively interferes. This is done by changing the cavity length, which may

seem simple conceptually but in practice, controlling and sensing any optical cavity

comes with a few challenges.

To start understanding the longitudinal degree of freedom, consider a two mirror
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system in Figure 5 which is separated by a length L with reflection and transmission

coefficients: r1, t1, r2, t2. Starting with a plane wave at the input mirror with

amplitude E0, the beam will enter the cavity and propagate back between the two

mirrors. The reflected, transmitted, and circulating fields [77], which are a result of

the geometric series, can be described as

EREFL = rFPE0 =

(
− r1 +

t21r2e
−i2kL

1− r1r2e−i2kL

)
E0 (2.30)

ETRAN = tFPE0 =

(
t1t2e

ikL

1− r1r2e−i2kL

)
E0 (2.31)

ECIRC = cFPE0 =

(
t1

1− r1r2e−2ikL

)
E0 (2.32)

The above fields are all highly dependent on the round trip phase accumulated within

the cavity which becomes resonant when the length is L = nλ/2. While on resonance,

the circulating coefficient in the cavity is maximized such that the gain is

Gain = c2
FP |resonating =

(
t1

1− r1r2

)2

(2.33)

Notice that the fields are dependent on the cavity length and laser frequency, 2kL,

so one might naively determine that modulating the two parameters independently

cause the same effect. However, when both are changing by large amounts, they are

related by a frequency dependent transfer function [63]

C(ω)
∆ω

ω
= −∆L

L
(2.34)

where C(ω) = 1−e−2iωL/c

2iωL/c
. It is only when the cavity is on resonance that the frequency

and length variations are related by ∆w
w

= −∆L
L

. Depending on the relative reflection

coefficients of the input and output mirrors, the fields on resonance will be different

in amplitude. For example, in the LIGO 4 km arms, the end test masses are highly

reflective with a transmission of about 4 parts per million while the input test masses

have a transmission of about 0.015. This means that the arm cavities are very much

over-coupled and almost all of the light reflects back towards the beamsplitter. It is

important to understand the Fabry-Perot response while sweeping through either the
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(a) Reflected Power (b) Circulating Power

(c) Transmitted Power

Figure 6 : The reflected, circulating, and transmitted powers for a single Fabry-Perot

cavity. The optical properties used represent the Hanford 4 kilometer x-arm [28], which is a highly

over-coupled cavity [9] so almost all of the light reflects toward the beamsplitter. The input power

is normalized to 1 Watt to show the relative gain of the circulating power.

laser frequency or cavity length and measuring the reflected (or transmitted) fields,

there are features of the power spectrum which relate directly to the cavity’s physical

properties.

The finesse describes the line width of the resonant peak and is a function of r1

and r2. A higher finesse will mean the line width is smaller and the peak height taller

compared to a lower finesse cavity:

F =
π
√
r1r2

1− r1r2

(2.35)

The cavity storage time, τs, describes how long it takes the power circulating in the

cavity to decay by a factor of 1/e if the laser suddenly turns off,

τs =
L

cπ
F (2.36)

The pole frequency, fpole, is when the magnitude of the cavity’s transfer function (see
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(a) Transfer function with respect to cav-

ity length offset

(b) Transfer function with respect to laser

frequency offset.

Figure 7 : Bode plots of a linear Fabry-Perot response in reflection.

Figure 7 ) reaches 3dB below the DC level:

fpole =
1

4πτs
(2.37)

The free spectral range,fFSR, is the frequency span from one resonant peak to the

next.

fFSR =
c

2L
(2.38)

It is useful to understand the power circulating as a function of our defined parameters

slightly off resonance by a length of ∆L

Pcav = |cFP |2 =
Gain

1 +
(

2F
π

)2
sin2(k∆L)

(2.39)

Stable resonance requires the beam to stay spatially confined on the mirrors, mean-

ing a resonant cavity does not have a continually growing beam size in steady-state

operation. In order to prove that an optical cavity is geometrically stable, it is useful

to introduce the matrices that describe a periodic optical system which is explicitly

derived in Appendix A. A Fabry Perot cavity that is separated by distance L with

spherical mirrors that have radii of curvature R1 and R2 will need to satisfy

0 ≤
(

1− L

R1

)(
1− L

R2

)
≤ 1 (2.40)
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in order to be stable.

LIGO uses optical cavities for a number of reasons: Firstly, the round trip phase

of the gravitational wave is amplified by the finesse (equation 2.35) of the 4 kilometer

arm cavities, therefore increasing the sensitivity. Secondly, the input and output of the

interferometer’s Gaussian beam mode can be refined by only allowing the fundamental

mode of the laser to resonate (input and output mode cleaners). Thirdly, Advanced

LIGO uses a dual-recycled Michelson interferometer which means the symmetric port

has a mirror inserted to resonate the light reflected from the Fabry Perot arms (power

recycling) and another mirror shapes the frequency response of the differential cavity

pole at the anti-symmetric port (signal recycling).

Achieving Resonance in an Optical Cavity

Described above are the theoretical constructs for a Fabry-Perot cavity, but the ques-

tion remains, how does one practically construct a resonant optical cavity? The

answer comes from using a heterodyne sensing scheme similar to the one described in

Section 2.1.1. Except in this case the optical system is not a Michelson interferometer

but rather a two mirror cavity and can apply to a number of different geometries such

as triangular or bow-tie cavities.

Starting with an input laser and EOM (electro-optical modulator) that imparts

upper and lower sidebands at a modulation frequency Ω, the user injects three beams

into the optical system described in Equation 2.22. When placing a photodetector

on the reflection port, one should see the cavity’s effect on each of the three electric

fields.

EFP,out = EC + ESB+ + ESB− =


rC

rSB+

rSB−

(EC,in ESB+,in ESB−,in

)
(2.41)

rC = −r1 +
t21r2e

−i2kL

1− r1r2e−i2kL
(2.42)

and

rSB± = −r1 +
t21r2e

−i2(k+kΩ)L

1− r1r2e−i2(k+kΩ)L
(2.43)

where the reflection coefficients follow equation 2.30. Because sidebands are frequency
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shifted, they will effectively see a different cavity than the carrier and the total phase

accumulated by the two fields will be different. To make a good reference for the

resonant carrier beam, the modulation frequency Ω, is chosen such that sidebands

are anti-resonant, which effectively means they are rejected from entering the cavity.

The formalism to read out the error signal is shown in Equation 2.27 where a

photodetector in reflection (see Figure 8) reads out the sum of fields squared and

demodulates to get the error signal which will be linearly proportional to the laser

frequency and cavity length [9].

Error Signal ∝ LF
λ

[
δw

w
+
δL

L

]
(2.44)

Figure 8 : Control scheme for an optical cavity. The electric fields in reflection provide the

error signal when mixed with the local oscillator and then gets low-passed for a DC signal to drive

the end mirror which will control the length of the cavity, see Figure 9.

2.1.3 Fabry-Perot Michelson

Using an optical cavity to increase the number of bounces along the 4 kilometer

arms will amplify the gravitational wave signal but it will also shape the frequency

dependence of the sensitivity as well. This has already been alluded to in section 1.2

where the overall increase in arm length will tune the response function of equation

1.13. The same concept applies to integrating the use of Fabry-Perot arms with a

Michelson interferometer and looking at the signal at the antisymmetric port as a

function of gravitational wave frequency. Previously in section 2.1.1, it was shown

that the heterodyne RF detection technique required beating the sidebands with a

carrier field that contains the gravitational wave information. Another method known

as homodyne detection uses signal sidebands beating with a reference carrier field as

a valid way of measuring the signal of interest. In fact, Advanced LIGO employs
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Figure 9 : Pound-Drever-Hall (PDH) error signal in reflection of a Fabry Perot cavity.

By modulating the frequency (or length) close to the zero offset point, the error signal is linear.

However, if the actuation is too far away from the lock point, the signal becomes highly non-linear.

Within this regime where the error signal is not useful, the control output to an actuator must wait

until the error signal comes close enough to linear before triggering on. Generally, this is done by

sweeping the frequency or length offset until the cavity becomes roughly resonant and then closing

the loop.

a specific type of homodyne detection called DC readout [47][31]. The idea is that

the carrier field will resonant in the arms but will be slightly modulated due to a

gravitational wave which will create audio frequency sidebands imparted on the field.

A small offset in the arm lengths will allow some of the carrier light to leak into the

antisymmetric port in order to provide the reference field.

Figure 10 shows an input electric field E0 incident on a 50/50 beamsplitter which

then enters two orthogonal arm cavities of length Lx and Ly. Notice that the distance

from the beamsplitter to the input couplers for both arms is denoted by lx and ly,

this is to allow the description of the DARM offset which is analogous to the Schnupp

asymmetry described in section 2.1.1. After partially transmitting and reflecting at

the beamsplitter, the fields will resonate in each of the arm cavities and obey the re-

flectivity relations described by equation 2.30. Upon recombining at the beamsplitter,

the antisymmetric port electric field will be related to the arm fields by,

EAS =
1√
2

[EARM
x + EARM

y ] (2.45)

where EARM
i = E(ω)± [E(+ωGW)+E(−ωGW)] sin kδl represents the reflected fields for
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the x and y arms which contain the carrier(first term) and GW signal sidebands(last

two terms). In this case, the gravitational wave sidebands are a single frequency for

simplicity but this analysis will work for all frequencies spanning the LIGO sensitivity

band. The antisymmetric port will only be sensitive to the differential motion between

the arm cavities, which means the gravitational wave sidebands in the x-arm will

be out of phase with the y-arm. Also it is important to note that inserting a DC

microscopic length shift of a few picometers represented by δl = lx − ly allows for

some carrier leakage field to propagate towards the antisymmetric port which creates

the static reference to form a beat note with the signal sidebands. In practice, this

is achieved by introducing a static offset between the x and y arm cavity lengths,

Lx 6= Ly, this is referred to as a differential arm (DARM) offset.

Figure 10 : Michelson with Fabry Perot arms

For the carrier field, the amplitude of reflection is simple because the LIGO arms

are a strongly over-coupled cavity operating on resonance therefore

E(ω) =
E0√

2

(
− r1 +

t21r2

1− r1r2

)
≈ −E0√

2
(2.46)

The sidebands are a different story because the modulation caused by the gravi-

tational wave slightly moves the field off resonance. Imagine the carrier circulating in

the arms and then suddenly, a disturbance due to a gravitational wave differentially

displaces the end mirrors at a frequency ωGW by an amount ∆L−. By using the same

formalism as the expansion of a modulated field in equation 2.22, the sideband fields
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can be described by,

E(±ωGW) =

[
t1

1− r1r2e−2ikL+

]
E0√

2

[
t1

1− r1r2e
−2i(kL+±ωGW

L+
c

)

]
ik∆L−

=

[
t21

1− r1r2

]
E0√

2

[
1

1− r1r2e
±2iωGW

L+
c

]
ik∆L−

(2.47)

The first bracket is the circulating field of the carrier signal amplified by the Fabry

Perot cavity and the second bracket is the circulating field slightly off resonance due to

the gravitational wave frequency offset. Notice that the static arm length is denoted

by L+ = Lx+Ly
2

, which refers to the common arm length for the two Fabry-Perot arms.

Setting the fields to resonate already simplifies the equation but it is also reasonable

to approximate the gravitational wave as a weak signal and expand the exponential

e−2iωGW
L+
c ≈ 1 − 2iωGW

L+

c
. This transforms the signal sideband field into a simpler

form,

E(±ωGW) ≈
[

t1
1− r1r2

]2
E0√

2

[
1

1± iωGW

ωp

]
ik∆L− (2.48)

where ωp = 1−r1r2
r1r2

c
2L+

is the differential pole frequency; notice that it matches the sin-

gle arm cavity pole so a Fabry-Perot Michelson interferometer has the same frequency

dependence.

The photodiode signal at the antisymmetric port is proportional to the beat note

between the carrier and signal sideband in the audio frequency band with a demod-

ulation phase φD,

S ∝ 2[E(ω)E∗(+ωGW) + E(−ωGW)E∗(ω)] sin (kδl) sin (φD)

∝ 4kE2
0

[
t1

1− r1r2

]2[
1

1− iωGW

ωp

]
sin (kδl) sin (φD)∆L−

∝ E2
0

8πL+

λ

[
t1

1− r1r2

]2[
1

1− iωGW

ωp

]
sin (kδl) sin (φD)hGW

(2.49)

where the length disturbance ∆L− was transformed to originate from a gravitational

wave signal k∆L− = 2πL+

λ
hGW. The response of this particular interferometer to

differential arm length motion is linearly proportional to the gravitational wave am-

plitude as well as the input power P0 ∝ E2
0 , but there is also a frequency dependent

component which is the same as that of a single Fabry-Perot cavity. This acts like a
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low pass filter above the corner frequency colloquially called the DARM cavity pole.

By adding resonators, there is also a DC amplification of the signal by a factor of[
t1

1−r1r2

]2

, which is the gain of a linear Fabry-Perot cavity (≈ 268 for Advanced LIGO

optics [28]).

2.1.4 Power-Recycled Fabry-Perot Interferometers

If the interferometer is operating such that the intensity at the antisymmetric port

is close to null, conservation of energy requires that the arm powers will reflect back

towards the input laser. Fritschel et al. [48] [45] showed the effects of adding a

partially reflecting mirror increases the Michelson optical gain for both the sideband

and carrier fields. Section 2.1.3 showed that the Michelson interferometer with Fabry

Perot arms can be represented by a single cavity response. Therefore it is useful to

model a power recycled interferometer by using a coupled cavity approach where one

of the mirrors is replaced with the total reflected field of the Fabry-Perot Michelson

on a bright fringe. Here the reflectivity and transmissivity of the power recycling

mirror (PRM) is denoted by rp and tp, respectively.

Figure 11 : A power recycled Fabry-Perot interferometer. Adding a mirror at the symmetric

port forms another resonator called the power recycling cavity (PRC) where the distance between

from the power recycling mirror (PRM) to the beamsplitter is denoted by lp and the reflectivity is rp.

The interferometer usually operates with the symmetric port on the bright fringe and the reflection

from a Fabry-Perot Michelson can be represented by a single reflectivity, rFPM while the length lPRC

is the average distance from PRM to the ITMs. This model makes handling the mathematics of a

coupled cavity much more tangible.

In this configuration, the effective length of the cavity is the average path between
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the power recycling mirror and the high reflectivity surfaces of the input test masses,

lPRC = lp +
lx + ly

2
(2.50)

The circulating power in the cavity is given by equation 2.32 but uses the reflectivity

of arm cavities,

EPRC =
tp

1− rprFPMe−2iklPRC
Ein (2.51)

where rFPM ≈ 1 − F
π
LARM for high finesse (F) arm cavities and the round trip arm

losses are denoted by LARM which include scattering, mode mismatch, absorption,

and any other effect which is not directly reflected or transmitted from optics. This is

a valid approximation for the Advanced LIGO since their values for arm finesse can

be around 450 or higher depending on the losses. This means the circulating power

in the recycling cavity while on resonance can be expressed by

PPRC =
1− r2

p[
1− rp(1− F

π
LARM)

]2Pin (2.52)

By taking the derivative with respect to rp and setting to zero, the optimal power

recycling tuning is dependent on the round trip loss,

ropt = 1− F
π
LARM (2.53)

so it important to keep the arm cavity losses as low as possible and this also limits

the ability to increase the finesse.

Adding a power recycling mirror will be equivalent to introducing higher power

into the arm cavities but it will not shape the gravitational wave sideband frequency

dependence in any other way. This can be reasoned qualitatively by imagining the sig-

nal sidebands that get created in the arm cavities and propagate to the beam splitter

where they will combine, however, the stretching and squeezing from the gravita-

tional wave pattern will make the x-arm shorter while lengthening the y-arm and

vice versa. This makes the anti-symmetric port transmissive to the signal sidebands

but the carrier field which mostly gets reflected to the symmetric port will see the

power recycling amplification. This means the beat note between the static carrier
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field and gravitational wave signal for a power recycled Fabry-Perot interferometer is

SPRFP ∝ E2
0

8πL+

λ

√
gPRC

[
t1

1− r1r2

]2[
1

1− iωGW

ωp

]
sin (kδl) sin (φD)hGW (2.54)

where gPRC = PPRC/Pin is the power recycling gain.

2.1.5 Dual-Recycled Fabry-Perot Interferometers

Figure 12 : A dual recycled Fabry-Perot interferometer. The left diagram is similar to Figure

11 but with a signal recycling mirror (SRM) placed at the anti-symmetric port a distance ls away

from the beamsplitter. Similar to the analysis done when adding power recycling, collapsing the

SRM and ITM into a single mirror system that has one reflectivity, r1+s and an average length

lSRC =
(
ls +

lx+ly
2

)
will simplify the coupled cavity picture. The round trip phase of the SRC will

effectively increase or decrease r1+s which will shape the frequency dependence of the interferometer’s

optical gain for gravitational-wave sidebands.

One of the biggest changes made between initial and Advanced LIGO was the

addition of a signal recycling mirror at the antisymmetric port (see Figure 12 ). In

the previous section, it was shown that the gravitational wave sensitivity was improved

by adding a power recycling cavity to increase the effective input power entering the

arm cavities. Adding another partially reflecting optic called the signal recycling

mirror (SRM) at the antisymmetric port to create a resonant cavity will shape the

interferometer’s response to gravitational waves. This allows for some flexibility in

optimizing the instrument for specific sources such as binary neutron stars, but it

also creates a more broadband response at higher frequencies while allowing the arm

cavity finesse and/or power recycling to impart more power.
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Figure 13 : Comparing the shot noise limited differential arm spetra for different inter-

ferometer configurations. Here, the simulation was ran with FINESSE [71] using the Advanced

LIGO optical parameters [12].

A nice way to model the effect of signal recycling on the gravitational wave side-

bands is to combine the SRM and arm cavity input test mass to create a combined

mirror that is dependent on the round trip phase, φs of the signal recycling cavity.

The SRM will have a reflectivity and transmissivity equal to rs and ts, respectively,

so the combined mirror will have a reflectivity and transmissivity equal to

r1+s =
r1 − rse−2iφs

1− r1rse−2iφs
(2.55)

t1+s =
t1tse

iφs

1− r1rse−2iφs
(2.56)

where φs = k
(
ls + lx+ly

2

)
= k lSRC is the average signal recycling length. Plugging

this into equation 2.47 in place of the input test mass reflectivity shows that the

cavity pole is directly affected by the signal recycling properties, namely, the SRM

reflectivity and the microscopic detuning of the length. The field propagating to the

antisymmetric port is in transmission of the signal recycling cavity which is accounted
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for with the last bracketed term.

EAS(±ωGW) =

[
t21

1− r1r2

]
E0√

2

[
1

1± r1+sr2e
−2iωGW

L+
c

][
t1tse

iφs

1− r1rse−2iφs

]
ik∆L−

∝
[

Constant

1± 2i r1+sr2
1−r1+sr2

ωGW
L+

c

]
∝
[

Constant

1± iωGW/ωDR

] (2.57)

Here, the frequency dependence of the differential cavity pole with dual recycling is

denoted by

ωDR =
1− r1+sr2

r1+sr2

c

2L+

=
1− r1rse

−2iφs

(r1 − rse−2iφs)r2

− 1

(2.58)

The carrier field will also see a gain from the signal recycling cavity equal to

√
gSRC =

ts
1 + rsrFPMe−2iφs

(2.59)

The equations above show that the gravitational wave sideband and carrier fields will

see the signal recycling cavity effects differently and the responses are highly sensitive

to the length detuning of φs. Putting all the pieces together to get the dual recycled

Fabry-Perot interferometer response to gravitational waves,

SDRFP ∝ E2
0

8πL+

λ

√
gPRC

√
gSRC gARM

[
1

1− iωGW

ωDR

]
sin (kδl) sin (φD)hGW (2.60)

The previous sections only considered the effect of Fabry-Perot cavities and re-

cycling mirrors at the antisymmetric port (AS) due to the differential length change

(DARM) of the 4 kilometer arms but the Advanced LIGO interferometer has a few

lengths which are actively controlled. The other degrees of freedom include the com-

mon arm length (CARM), the power recycling length (PRCL), and signal recycling

length (SRCL). These signals are sensitive at ports other than AS, such as in reflec-

tion of PRM (REFL) and a pick off port in the power recycling cavity (POP). A

good reference for what signals are expected at these important readout points can

be found in [57] [58] [59].
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Figure 14 : Important sensor ports for Advanced LIGO The green optics are used to distin-

guish the main interferometer mirrors from pick off mirrors which sense various degrees of freedoms

for sensing and controls.

2.2 Fundamental Noise Sources

The preceding sections described ways to increase the response of LIGO to gravita-

tional waves; equally as important is the science of characterizing and reducing the

noise contributions from everything that is not gravitational waves to optimize the

sensitivity.

Quantum Noise

In quantum mechanics [82], solving the Schrödinger equation for the harmonic os-

cillator using creation (â†) and annihilation (â) operators leads to the existence of a

non-zero energy ground state which has variances in momentum and position related

by the Heisenberg uncertainty principle. When it comes to electromagnetic fields, the

pair associated with the uncertainty principle is the amplitude and phase of the laser
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Figure 15 : Noise budget from GWINC (Gravitational Wave Interferometer Noise Cal-

culator)

beam.

As a result, one of the main noise sources that is limiting LIGO’s sensitivity comes

from the fluctuations of quantum vacuum entering the anti-symmetric port and cou-

pling to the input laser. A quantum mechanical description of an interferometer was

constructed by Caves [22][23] [24], where he used electric field operators to show that

vacuum fluctuations are the cause of radiation pressure and shot noise in a simple

interferometer (no resonant cavities). The following analysis below will also be sim-

plified in this way but is reasonably close in estimating the amount radiation pressure

and shot noise. For studies that take into account more complicated interferometer

configurations with resonant cavities, refer to Buonanno, Chen, and Kimble [20] [26]

[60].

Quantum states: A solution to the quantum harmonic oscillator in the energy

eigenbasis employs the annihilation and creation operators, â† and â, to factorize the

Hamiltonian [82] [51]

Ĥ = ~w(N̂ + 1/2) (2.61)

where N̂ = â†â is the number operator. When using this formalism to create a

coherent electromagnetic field, it is useful to define a unitary operator that displaces
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the vacuum state [49]:

D̂ ≡ D̂(α) ≡ exp(αâ† − α∗â) = e−
|α|2

2 eαâ
†
eα
∗â (2.62)

and has the properties,

D̂(α) = D̂−1(α) = D̂(−α)

D̂† â D̂ = â+ α

D̂† â† D̂ = â† + α∗

(2.63)

When applying the displacement operation on the vacuum state, the resultant vector

has an amplitude α and follows the same uncertainty distribution as an unperturbed

vacuum vector,

|α〉 = D̂ |0〉 = e−
|α|2

2 eαâ
† |0〉 (2.64)

Radiation Pressure

Power fluctuations in the main laser causes radiation pressure effects on the test

masses, however, if the 50/50 beamsplitter is perfect, then the momentum transfer to

each test mass will result in a common length change and will not vary the intensity

at the antisymmetric port (or the symmetric port for that matter). The coupling

of radiation pressure into the interferometer is shown below to come directly from

vacuum fluctuations.

Consider plane wave waves entering the interferometer from both the symmetric

and anti-symmetric ports. This method is similar to the input-output methods of

section 2.1.1, however, the difference being that the beamsplitter will couple the

electric fields from the input laser and quantum vacuum.

The electric fields combine at the beamsplitter from both ports and add linearly,

Ex =
1√
2

[
iE0 + EAS,in

]
(2.65a)

Ey =
1√
2

[
E0 + iEAS,in

]
(2.65b)

where E0 is the input field from the laser and EAS,in is the field from the anti-

symmetric port. The electric fields will travel down each arm and strike the mirrors
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with intensities denoted by,

|Ex|2 =
1

2

[
|E0|2 + |EAS,in|2 + i(E0E

∗
AS,in − E∗0EAS,in)

]
(2.66a)

|Ey|2 =
1

2

[
|E0|2 + |EAS,in|2 − i(E0E

∗
AS,in − E∗0EAS,in)

]
‘ (2.66b)

Therefore, differential momentum transfer between the two masses will be equal

to the differences in intensities between the two arms:

P =
2~ω
c

(
|Ex|2 − |Ey|2

)
=

2~ω
c

(
E0E

∗
AS,in − E∗0EAS,in

)
⇒ P̂ =

2~ω
c

(
â†1â2 − â†2â1

) (2.67)

The last part of equation 2.67 replaces the classical electric fields with creation and

annihilation operators for the symmetric input mode (â†1, â1) and antisymmetric input

mode (â†2, â2) modes. Recall that there is a well established convention denoting the

wave function of the two dimensional modes of the quantum harmonic oscillator

[49], |α, β〉, where α denotes the input symmetric mode and β refers to the input

antisymmetric mode:

|α, 0〉 = D̂1(α) |0, 0〉 (2.68)

The interesting results arising from this formulation is the expectation value turns

out to be null,

〈P̂〉 = 〈α, 0| P̂ |α, 0〉 = 0 (2.69)

However, the variance of the momentum transfer is non-zero,

∆P2 = 〈P̂2〉 − 〈P̂〉2

=

(
2~ω
c

)2

〈α, 0| â†1â2â1â
†
2 + â†2â1â2â

†
1 − â

†
2â1â1â

†
2 − â

†
1â2â2â

†
1 |α, 0〉

=

(
2~ω
c

)2

|α|2

(2.70)
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For some time interval ∆T , the input laser power consisting of 〈N〉 = |α|2 photons is

Pin =
~ω
∆T
|α|2 (2.71)

To solve for the amplitude spectral density of the displacement, Newton’s second law

can be applied in the frequency domain

M(2πf)2x̃(f) = F̃ (f) =
∆P

∆T
(2.72)

Here, the quantum radiation force spectrum, F̃ (f), is actually flat in frequency be-

cause the impacting photons have a randomly distributed amplitude but this gives a

straightforward pathway to calculate the displacement spectrum ,

x̃RP (f) =

√
~ω
∆T

Pin
1

2Mc(πf)2
(2.73)

This means the noise spectral density of radiation pressure for an interferometer with

a mirror of mass M = 40 kg, input power Pin = 125 Watts, and laser frequency

λ = 1064 nm

h̃RP (f) = 2.04× 10−20 1

f 2

[
Strain√

Hz

]
(2.74)

So it is shown that the contribution of quantum radiation pressure in a simple inter-

ferometer increases with the square root of the input power.

Shot Noise

Another way that quantum fluctuations at the antisymmetric port can vary the

sensitivity is by adding phase noise. Imagine holding the test masses rigidly such

that the only effects on the output light is due to a phase change in the laser light in

the arms. By using the same formulation for radiation pressure but propagating the

fields back to the beam splitter, equations 2.65 will have extra phase that depends

on the arm lengths are denoted by lx and ly in a simple Michelson interferometer,

Ex,out =
1√
2

[
iE0 + EAS,in

]
e−i2klx (2.75a)

Ey,out =
1√
2

[
E0 + iEAS,in

]
e−i2kly (2.75b)
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Therefore the antisymmetric port field is described by

EAS,out =
1√
2

(Ex,out + iEy,out)

= ie−iklx−ikly
[

cos(∆φ)E0 − sin(∆φ)EAS,in
] (2.76)

where ∆φ = k(lx − ly) is used for brevity. The intensity is once again found by

squaring the electric field,

IAS,out = |EAS,out|2

=

[
cos2(∆φ)|E0|2 + sin2(∆φ)|EAS,in|2 − sin(∆φ) cos(∆φ)

[
E0E

∗
AS,in + E∗0EAS,in

]]
⇒ ÎAS,out =

[
cos2(∆φ)a†1a1 + sin2(∆φ)a†2a2 − sin(∆φ) cos(∆φ)

[
a†1a2 + a†2a1

]]
(2.77)

The expectation value for the intensity using an input coherent laser with α and

quantum vacuum input at the antisymmetric port is

〈Î〉 = 〈α, 0| ÎAS,out |α, 0〉

= cos2(∆φ)|α|2
(2.78)

which matches the classical description of a Michelson output described in section

2.1.1. Following the same methods to calculate the radiation pressure, photon number

variance is

∆I =

√
〈̂I2〉 − 〈̂I〉2)

= |α|
[

cos2(∆φ)
] (2.79)

In order to cast the variance into an expected phase noise, consider the derivative of

the intensity with respect to the phase and plugging in the input power,

∂I

∂φ
= −2|α|2 cos(∆φ) sin(∆φ) (2.80)

δφ =

√
~ω
Pin

cot(∆φ) (2.81)

Here δφ is the microscopic change in phase due to shot noise, whereas ∆φ is the DC

offset in the arm lengths to begin with. So in general, the shot noise contribution is
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dependent on the amount of light present at the anti-symmetric port and this will

vary depending on what type of signal readout scheme is implemented. To calculate

the shot noise sensitivity, the phase shift in shot noise can be scaled by a factor of
λ
2π

1
L

where λ is the laser wavelength and L is the DC length of the Michelson arms,

h̃SN(f) = 8.2× 10−22

[
Strain√

Hz

]
(2.82)

Unsurprisingly, the shot noise is proportional to 1/
√
Pin and the initial phase dif-

ference between the interferometer arms. There are a few subtleties associated with

measuring shot noise, this model assumes that the interferometer is a simple Michelson

and the readout is a single photodetector located at the antisymmetric port. As shown

in section 2.1.5, there is freedom to choose the readout scheme of the interferometer

(heterodyne or homodyne) which will also affect the overall quantum sensitivity and

introducing Fabry-Perot cavities will shape the shot noise for frequencies above the

differential cavity pole in equations 2.48 and 2.58.

Seismic Noise

The main contributions to seismic noise are primarily caused by either natural oc-

currences (tectonic plates, wind driven microcosms, oceanic storms etc) or man-made

disturbances (heavy automotive traffic, industrial machinery, etc) which contribute

to the background hum of motion. Table 1 shows the large In general, this will be

the low frequency barrier for all terrestrial gravitational-wave detectors. One of the

biggest upgrades from eLIGO to aLIGO was the increase in complexity for seismic

isolation and suspensions. Using multiple stages of actively controlled platforms [65]

[66] [67][4], the noise contribution can be attenuated for frequencies larger than 1Hz;

in addition, the use of quadruple pendulums to hang the main arm cavity optics

further reduces the motion above the pendulum’s resonance frequency[32][10]. This

is a tremendous upgrade from the mostly passive isolation methods used in initial

LIGO. An interesting point to note is that the estimate of noise contributions from

seismic activities to the strain sensitivity is negligible for frequencies above 10 Hz,

but absolutely vital for lock acquisition and resonator stability [92] [46].
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Frequency Band Causes
0.03 - 0.10 Hz Wind and EQs
0.10 - 0.30 Hz Wave driven micro-seismic motion
3.00 - 10.0 Hz Anthropogenic and trucks

Table 1 : Frequency bands of common seismic noise at LHO.

Thermal Noise

Brownian motion [37] is the random movement of particles suspended in a fluid.

The LIGO test masses that make up the 4 kilometer long Fabry-Perot cavities are

large macroscopic objects but their constituent atoms can be excited by the ambient

temperature which leads to random motion. Those atoms are interconnected which

allow for the propagation of an infinite number of elastic wave modes that contain

random relative phases and the linear superposition of the modes create distortions

that result in thermal noise.

A good way to start analyzing thermal noise is to consider a simple harmonic

oscillator with mass m that is in a thermal bath with a damping force, F = −bẋ(t):

ẍ(t) + γẋ(t) + ω2
0x(t) = F/m (2.83)

where γ = b/m and the force can be described by white noise. In this case, F

represents work being done on the system by the external world, whereas the damping

factor is the release of the system’s energy to the outside world. By taking the Fourier

transform, the equation of motion becomes

x̃(f) =
F̃ (f)

m

1

ω2 + iγω + ω2
0

(2.84)

This implies that the spectral density for viscous damping is

Svis =
SF
m2

1

(ω2 − ω2
0)2 + (γω)2

(2.85)

Because the noise is due to a thermal bath, the integrated power over all frequencies

must satisfy this equation

1

2

∫ ∞
−∞

Svis(ω)
dω

2π
=
kBT

mω2
0

(2.86)
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where kB is the familiar Boltzmann’s constant and T is the ambient temperature.

Solving the integral and plugging the result for SF back into the equation 2.85 gives

the power spectrum for viscous damping,

Svis =
4kBTγ

m

1

(ω2 − ω2
0)2 + (γω)2

(2.87)

This equation shows that for three different frequency regimes, the response can vary

wildly,

ω << ω0 → Svis =
4kBT

mQω3
0

(2.88a)

ω ≈ ω0 → Svis =
4kBT

mω3
0

Q (2.88b)

ω >> ω0 → Svis =
4kBT

mQ

ω0

ω4
(2.88c)

where Q = ω0/γ is commonly known as the quality factor of a resonator. Qualita-

tively, this is directly proportional to the resonance height and its thinness. Figure

16 shows the resultant frequency dependent amplitude spectral density for a few dif-

ferent quality factors, for higher Q systems the amount of noise contribution from

thermal noise is reduced at frequencies above the resonance. Another commonly used

definition of the quality factor is the amount of energy loss per cycle, if the Q of a

system is high, then the amount of energy loss per oscillation is very small and will

take a longer time returning to equilibrium. A good description of the quality factor

and its application to gravitational wave detectors can be found in section 7.5 of [77].

As system’s mode number increases, the previous analysis becomes very difficult to

solve analytically. However, the connection between a damped harmonic oscillator’s

energy loss and power spectrum can be described generically using the Fluctuation

Dissipation Theorem,

Sx(f) =
kBT

π2f 2
|Re(Y (f))| (2.89)

where Y (f) is the complex mechanical admittance (inverse of the impedance) of a

system. The physical interpretation of equation 2.89 can be viewed as a tunnel of

energy between a system of interest and the outside world. If there is an ability to

couple energy from one system to another via some process, then the reverse must

be true as well. This subtle but powerful statement can be applied generally. For
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example, a resistor which is able to dissipate thermal energy when current is flowing

through it will convert random external temperature fluctuations into stray currents

that results in Johnson Noise. Another principle which the FD theorem relies upon

is that when the system is in thermal equilibrium, its response to fluctuations will be

the same as applying a small force randomly.

Using this method, the mechanical admittance of a system is defined as Y (f) =

ẋ(f)/F (f) which can be written down directly for a damped harmonic oscillator using

equation 2.84,
ẋ(f)

F
=
iω

m

1

ω2
0 − ω2 + iγω

=
iω

m

(ω2
0 − ω2 − iγω)

(ω2
0 − ω2)2 + (γω)2

(2.90)

and by plugging this into the fluctuation dissipation theorem, the power spectral

density matches equation 2.87 for the viscous damping. To extend the usage further,

consider the thermal noise from a solid which has some thermoelastic dissipation from

an internal mode given by Fdiss = −k(1+φL)x(t) where the phase term comes from the

lag between applied force and the system’s response to said force. By solving Newton’s

second law with this new damping term, the displacement spectrum becomes

x̃(f) =
F̃

m

1

(1 + iφL)ω2
0 − ω2

(2.91)

Unlike the previous example of viscous damping, the integral for thermoelastic dissi-

pation only holds for some frequency regime but implementing the fluctuation dissi-

pation theorem leads directly to the noise power spectrum,

STN(f) =
4kBTω

2
0φL

mω

1

(ω2 − ω2
0)2 + (ω0φL)2

(2.92)

The frequency response will also be different compared to viscoelastic dissipation,

ω << ω0 → Svis =
4kBT

mQωω2
0

(2.93a)

ω ≈ ω0 → Svis =
4kBT

mω3
0

Q (2.93b)
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ω >> ω0 → Svis =
4kBT

mQ

ω2
0

ω5
(2.93c)

The structural damping formalism can also be applied to the suspension fibers which

hold the 40 kilogram test masses [50], [77] which yield a noise spectral density that

contains resonances at a variety of frequencies. In Advanced LIGO, the violin modes

and their harmonics could get rung up from earthquakes and saturate the output

mode cleaner’s DC photodiodes so they must be actively damped in order to obtain

nominal low noise.

The largest contribution to the total thermal noise for current interferometers do

not stem from viscous damping [79], thermoelastic damping of the substrate [77], or

internal friction of the suspension fibers. The most dominant type of thermal noise is

from the mechanical loss of the dielectric coatings [52] [40] which cause phase noise

at the high reflectivity surface of the mirrors.

Figure 16 : Displacement spectrum for thermal noise. By varying the resonance width of a

system, the thermal noise at frequencies above the resonant peak will be decreased for higher Q’s.

Newtonian Noise

Described in the previous sections are noise sources which can be reduced using

increasingly complicated techniques such as increased isolation stages for seismic or

using squeezed states of light for quantum noise. However, for Newtonian noise caused

by fluctuating gravitational fields from the wave motion of the ground cannot easily be

reduced but possibly be measured and fed-forward or subtracted off-line [33][78][56].
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2.3 Mode Matching with Squeezed States of Light

In Section 2.2, the quantum limited sensitivity for a Michelson interferometer was

shown to be composed of shot noise and radiation pressure. Although quantum fluc-

tuations are a fundamental noise source, their effects can be modified by manipulating

the vacuum state with correlated photons and injecting these states of light into the

antisymmetric port of the interferometer. Within the LIGO community, this proce-

dure of modifying quantum vacuum is called squeezing. The production of squeezed

states with nonlinear devices is a well understood subject and was successfully tested

in the sixth LIGO science run [29][30]. An extension of the formalism described in

Section 2.2 was developed by Caves-Schumaker [23] which describes two-photon quan-

tum optics and squeezing, but it is outside of the scope in terms of mode matching.

However, it useful to understand the quantum noise in a way that scales the inter-

ferometer sensitivity in terms of the Standard Quantum Limit (SQL). The radiation

pressure and shot noise add in quadrature to form the quantum noise and both are af-

fected the input power but inversely from each other as shown in 2.2. The SQL refers

to the input power minimizes the total quantum noise and is the minimum achievable

noise without squeezing. The radiation-pressure back-action coupling constant, κ, is

given by [60]

κ =
4P0ω0

mc2f 2
(2.94)

where P0 is the input power on the beamsplitter, ω0 is the laser angular frequency,

m is the optic mass, and f is the Fourier domain frequency. The SQL for a simple

Michelson is given by [60],

SSQL =
4~

mL2f 2
(2.95)

With these two equations above, the total single-sided power spectral density for a

simple Michelson is

SSM =
SSQL

2

(
1

κ
+ κ

)
(2.96)

Here the first term represents the shot noise while the second term is the radiation

pressure contribution. Extending the Michelson quantum noise to the full Fabry Perot

power recycled Michelson interferometer is essentially the same steps as Section 2.1.3,

which showed that the gravitational wave signal became frequency dependent with
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respect to the cavity pole of the arms. In addition, adding a power recycling mirror

was analogous to increasing the input power by a PRC gain factor. The coupling

constant for this configuration is

Υ = 2I0
4ω0

mL2

1

f 2(γ2 + f 2)
(2.97)

where γ = Tc
2L

represents the cavity’s full width half maximum and T is the input test

mass transmissivity.

Modifying the field entering the antisymmetric port by replacing the quantum

vacuum with a squeezed state has interesting effects on the strain sensitivity and

reduces the noise floor below the standard quantum limit. The power spectral density

for a power recycled Fabry Perot interferometer with injected squeezing is described

by [60],

SPR =
SSQL

2

(
1

Υ
+ Υ

)
[cosh 2R− cos(2(φs + θs)) sinh 2R]

=
SSQL

2

(
1

Υ
+ Υ

)
e−2R for θs = −φsx

(2.98)

where R is the squeeze factor, θs is the squeeze angle, and φs = cot−1(Υ). The squeeze

angle can change the regime of strain which is affected, for example, when injecting

for optimal shot noise reduction one would choose θs = π/2. However, when trying to

reduce the radiation pressure noise, then choosing θs = 0 is optimal. For the second

line in the equation above, to achieve broadband squeezing, the squeeze angle must

be rotated as a function of frequency. Fortunately, this can be achieved by reflecting

the squeezer beam off a filter cavity before injecting into the interferometer [70] [41].

Various configurations for squeezing is shown in Figure 17b. The addition of optical

losses play a large role in the interferometer sensitivity for a number of reasons:

1. The arm cavities and output optical train have associated losses which couple

vacuum fluctuations and contribute shot noise. Generally, the former will have

associated frequency dependence and be proportional to the round trip loss in

the arm cavities.

2. A back-action coupling will also increase as a function of the round trip loss

and contribute to the radiation pressure.
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3. Vacuum fluctuations originating from the antisymmetric port of the interferom-

eter will also add losses.

4. And finally, the squeezing degradation will be affected by the losses injected

into the interferometer and mode matching.

An equation found in Kimble [60] can describe the first three points by defining

the loss coefficient as L = 2LARM/T where LARM is the round trip arm loss so the

fractional power loss will be

ε =
2L

(1 + (f/Υ)2)
(2.99)

which leads to a more complete equation for the quantum limited sensitivity with

losses and optimal squeezing

SPRL =
SSQL

2

[
ε+ εOT

Υ
+
L
2

Υ +

(
1− 1

2
ε

)(
1

Υ
+ Υ

)
e−2R

]
(2.100)

Here, εOT represents losses from the interferometer optical readout train due to mode

mismatch between the IFO and the output mode cleaner. The fourth point for optical

losses is handled differently because it has to deal with mode mismatched coupling

between the squeezed light and the interferometer which reduces the effective squeez-

ing level. It is shown in Chua’s thesis [27] that quantum vacuum combines with the

squeezed state through losses and forces the optical field variance back to the vacuum

state, thereby degrading the squeezing benefits. By coupling the fundamental field

that is squeezed to a combination of higher order modes, this will also act as a direct

loss. Figure 1 of Dwyer et al [34] shows that squeezing efficacy depends strongly

on total losses and the squeeze quadrature fluctuations. The details of mode mis-

match will come in the next chapters but it is clear that reducing losses will play an

important role for the operation of both a squeezed or non-squeezed interferometer.
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(a) Power recycled Fabry Perot Michelson quantum noise

(b) Power recycled Fabry Perot Michelson quantum noise with

various squeezing angles
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Chapter 3

The Fundamentals of

Mode-Matching

When dealing with the length sensing degrees of freedoms in Chapter 2, the plane wave

approximation is sufficient for describing the resonator dynamics. However, when

trying to understand the misalignment and mode mismatch signals, it is necessary to

incorporate Gaussian beams and their associated higher order modes. This formalism

plays a pivotal role in the LIGO detectors because the gravitational wave is sensed

using the fundamental eigenmode of the arm cavities and any coupling to higher order

modes results in a loss of signal at the antisymmetric port. Equally as important, the

reduction of angular motion to remain locked relies on robust sensing of the cavity

misalignment from external disturbances [46] and torque-to-angle coupling [83]. Mode

matching is a second order effect but it will be shown in Chapter 6 that mismatches

play an important role in the practical operation of a large scale interferometer.



43

3.1 Gaussian Beam Optics

To show that a Gaussian beam is a valid electromagnetic wave, consider the famous

Maxwell’s equations:

∇× E = −∂B

∂t

∇ ·B = 0

∇×B = µ J +
1

c2

∂E

∂t

∇ · E =
ρ

ε

(3.101)

Concentrating on the electric field in vacuum, we arrive at the Helmholtz Equation

(∇2 + k2)U(r, t) = 0 (3.102)

where k = 2πν
c

is the wave number and U(r, t) is the complex amplitude which can

describe either the electric or magnetic fields. There are a variety of solutions to

equation 3.102 which include the plane and spherical waves [76]. These two types of

solutions are the extremes when considering the angle and spatial distribution as a

function of propagation. The plane wave which has been used in chapter 1 is a beam

whose rays have no variance in the spatial direction as it propagates through space,

whereas the spherical wave starts at a point and spreads as a function of distance

from the origin. Somewhere in between these two extrema is the paraxial wave which

is a wave pattern that consists of rays at small angles relative to the direction of

propagation. It is possible to express the paraxial solution to equation 3.102 as a

plane wave with a modulated complex envelope A(r),

U(r) = A(r)e−ikz (3.103)

However, in order for the paraxial wave to exist, U(r) must satisfy the Helmholtz

equation. Alternatively, the A(r) must satisfy a separate differential equation known

as the paraxial Helmholtz Equation which can be derived explicitly by imposing

constraints that force the envelope to vary slowly with respect to the z-axis within
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the distance of one wavelength λ = 2π/k:∣∣∣∣∂2A

∂z2

∣∣∣∣� ∣∣∣∣k∂A

∂z

∣∣∣∣ (3.104a)∣∣∣∣∂2A

∂z2

∣∣∣∣� ∣∣∣∣k∂2A

∂x2

∣∣∣∣ (3.104b)∣∣∣∣∂2A

∂z2

∣∣∣∣� ∣∣∣∣k∂2A

∂y2

∣∣∣∣ (3.104c)

The partial differential equation which arises is called the Paraxial Helmholtz Equa-

tion:

∇2
TA(r)− i2k∂A(r)

∂z
= 0 (3.105)

where ∇2
T = ∂2

∂x2 + ∂2

∂y2 is the transverse Laplacian. A simple solution for equation

3.105 is the complex paraboloidal wave,

A(r) =
A0

q(z)
e
−ikr2
2q(z) , q(z) = z + iz0 (3.106)

The parameter z0 is referred to as the Rayleigh range and is directly proportional

to the waist size squared. In order to separate the amplitude and phase portions of

the wave, it is useful to rewrite q(z) as

1

q(z)
=

1

R(z)
− i λ

πW 2(z)
(3.107)

Plugging equation 3.107 into 3.106 leads directly to the complex amplitude for a

Gaussian Beam

U(r, z) = A0
W0

W (z)
e
− r2

W2(z) e−ikz−ik
r2

2R(z)
+iζ(z) (3.108)

where

W (z) = W0

√
1 +

(
z

z0

)2

(3.109a)

R(z) = z

[
1 +

(
z

z0

)2]
(3.109b)

ζ(z) = tan−1

(
z0

z

)
(3.109c)
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W0 =

√
λz0

π
(3.109d)

The Gaussian beams are named as such because of the intensity distribution,

I(r, z) = |U(r, z)|2 = I0

[
w0

w(z)

]2

exp

[
−2r2

w2(z)

]
(3.110)

where I0 = |A0|2 and has a peak at r = 0 and z = 0. The width increases as the beam

propagates along the ẑ axis away from the waist position and the intensity maximum

on the beam axis decreases (see Figure 20),

I(0, z) =
I0

1 + (z/z0)2
(3.111)

Figure 18 : A depiction of the Gaussian beam properties with respect to cylindrical

coordinates. Because the beam is axially symmetric, the two coordinates are denoted by r̂ for the

radial and ẑ for the axis of propagation with the origin located at the center. The thick dark lines

represent the beam size, w(z), which is minimal at the waist, w(z) = w0 when z = 0 and asymptotic

towards λ/πw0 when z ≈ inf as shown by the dotted gray lines. The red dashed line represents

the intensity cross section of the beam which changes to a wider and flatter profile as a function of

distance from the waist.

Hermite-Gauss Modes

The fundamental Gaussian beam is not the only solution which can be used to

solve equation 3.105. In fact, there exists a complete set of solutions that can solve

the paraxial Helmholtz Equation in rectangular coordinates, which are referred to as
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Figure 19 : Beam size, radius of curvature, and Gouy phase as a function of distance

propagation from the waist. The vertical dashed gray lines represent the integer number of

Rayleigh ranges. At the point z = z0, the beam size is
√

2 of the waist size and the radius of

curvature is minimal. At this point, the Gouy phase propagation is lagging the plane wave by π/4

and the beam intensity is half of that at the waist.

the Hermite Gauss modes

Umn(x, y, z) = Amn

[
W0

W (z)

]
Gm

( √
2x

W (z)

)
Gn

( √
2y

W (z)

)

× exp

{
− ikz − ik(x2 + y2)

2R(z)
+ i(m+ n+ 1)ζ(z)

} (3.112)

where,

G(u) = H(u) exp(−u2/2) (3.113)

and H(u) are the well known Hermite polynomials. It is important to mention that

the Gouy phase of the complex amplitude is different than the fundamental Gaussian

beam by a factor of (m + n + 1) and that the intensity distribution of these higher

order modes are much different. Both of these facts will become extremely important

in the following wavefront sensing discussion.

Laguerre Modes

Another complete set of alternative solutions to equation 3.105 exists which are

called the Laguerre-Gauss modes
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Figure 20 : Intensity

Vµν(ρ, θ, z) = Aµν

[
W0

W (z)

]
Lµν

( √
2x

W (z)

)

× exp

{
− ikz − ikρ2

2R(z)
+ i(µ+ 2ν + 1)ζ(z)

} (3.114)

where Lµν
( √

2x
W (z)

)
is the Laguerre polynomial function. Both equations 3.112 and

3.114 are able to fully describe any complex electromagnetic amplitude; and because

they both form complete sets, there is a rotation which can map from one basis to

the other [7] [72]

ULG
µν (x, y, z) =

N∑
k

ikb(n,m, k)UHG
N−k,k(x, y, z) (3.115)

where

b(n,m, k) =

√(
(N − k)!k!

2Nn!m!

)
1

k!

dk

dtk
[(1− t)m(1 + t)m]|t=0 (3.116)

3.1.1 Misalignment and Higher Order Modes

Morrison and Anderson [5] [68] derived a simplistic way of how small misalignments

and mode mismatch in cavities can couple the fundamental Gaussian beam into vari-

ous higher order modes. This is done by taking a linear cavity and using its perfectly

matched Gaussian beam as a reference, and then varying the input electric field with
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small perturbations and expanding in terms of the higher order modes. So long as

the mismatches are small, it is possible to consider only the first few terms of the ex-

pansion which have gained most of their power from the fundamental mode. Between

various texts, the terms misalignment and mode mismatch are used interchangeably,

which is not incorrect but creates some confusion. This thesis will try to distinguish

the two effects because the actuators and sensors used for correction can be quite

different.

Consider the first three Hermite-Gauss modes of equation 3.112 in one dimension

and normalized to set the total optical power to unity:

U0(r) =

(
2

πw2(z)

)1/4

e−r
2/w2(z)

U1(r) =

(
2

πw2(z)

)1/4
2r

w(z)
e−r

2/w2(z) ,

U2(r) =

(
2

πw2(z)

)1/4
1√
2

(
4r2

w2(z)
− 1

)
e−r

2/w2(z)

(3.117)

Beam Axis Tilted

If the input beam entering an optical cavity is tilted by an angle α with respect to

the nominal cavity axis, the wave front of the input beam will have an extra phase

propagation relative to the cavity that is approximately proportional to eikαr. By

implementing the small angle approximation, which is valid if the misalignment is

much smaller than the divergence angle of the fundamental mode kαr << 1, the

resultant input beam is

Ψ ≈ U0(r)eikαr ≈ U0(r)(1 + ikαr) = U0(r) +
ikαw(z)√

2π
U1(r) (3.118)

Here, the factor associated with the first higher order mode is complex, indicating

there is a 90 degree phase difference between the fundamental and off-axis mode.

Beam Axis Displaced

If the input beam is displaced in the transverse direction by a quantity ∆r, the

resultant waveform will be
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Ψ = U0(r + ∆r)

=

(
2

πw2(z)

)1/4

e−(r+∆r)2/w2(z)

=

(
2

πw2(z)

)1/4

e−(r2+2r∆r+∆r2)/w2(z)

≈
(

2

πw2(z)

)1/4

e−r
2/w2(z)e−2r∆r/w2(z)

≈
(

2

πw2(z)

)1/4

e−r
2/w2(z)

(
1− 2r∆r

w2(z)

)
=

(
U0(r)−

√
2

π

∆r

w(z)
U1(r)

)

(3.119)

Similar to a tilted input beam axis, the displaced beam axis couples power to the first

higher order mode, however, the latter does not have a 90 degree phase difference.

This point is extremely important when trying to discern between the two effects.

Although comparing the two cases in Figure 21b, one can already see the difference

between wavefronts in the near field, z << zR, and the far field, z >> zR. In the

near field, there is no wavefront phase difference between the original beam and the

displaced beam, but there is one for a tilted beam. Conversely in the far field, there

is no phase difference due to a tilted beam, but there is one from a displaced beam.

In order to implement a closed loop feedback system, the wavefront sensors discussed

in Section 3.2 will use this precise logic to extract an error signal.

3.1.2 Mode Mismatch and Higher Order Modes

Using the same formalism as above, determining the second order mode coupling from

mode mismatch is repeated.

Waist Size Shifted

By considering the effect of evaluating the fundamental mode at the waist position,

z = 0, but changing the waist size by a small amount ε, it is possible to see coupling



50

into higher order modes by expanding to first order.

Ψ = U0

(
r, w(z) = w0/(1 + ε)

)
=

(
2

πw2
0

)1/4√
1 + ε e−r

2(1+ε)2/w2
0

≈
(

2

πw2
0

)1/4

(1 + ε/2) e−r
2/w2

0 e−2r2ε/w2
0

≈
(

2

πw2
0

)1/4

(1 + ε/2) e−r
2/w2

0 (1− 2r2ε/w2
0)

≈
(

2

πw2
0

)1/4(
1 + 2ε

(
1

4
− r2

w2
0

))
e−r

2/w2
0

= U0(r) − ε√
2
U2(r)

(3.120)

By changing the waist size by a small amount, the mismatch will couple the funda-

mental mode to the in-phase second order Hermite Gauss mode.

Waist Position Shifted

To repeat the process from above with a waist position shift, it is useful to start with

a more general equation that includes the phase that is gained from including the

radius of curvature,

Ψ =

(
2

πw2(z)

)1/4

e−r
2/w2(z) e−ikr

2/2R(z) (3.121)

where R(z) is from equation 3.109b. It is also useful to approximate the shift in waist

position along the longitudinal axis is small compared to the Rayleigh range of the

beam, ∆z << z0, which leaves the waist size approximately the same and the radius

of curvature inversely proportional to the shift.

w2(∆z) = w2
0

[
1 +

(
∆z

z0

)2]
≈ w2

0 (3.122a)

R(∆z) = ∆z

(
1 +

(
z0

∆z

)2)
≈ z2

0

∆z
(3.122b)
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Plugging the equations above into 3.121,

Ψ ≈
(

2

πw2
0

)1/4

e−r
2/w2

0 e−ikr
2∆z/2z2

0

≈
(

2

πw2
0

)1/4

e−r
2/w2

0

(
1− ikr2∆z

2z2
0

)
= U0(r)−

(
2

πw2
0

)1/4

e−r
2/w2

0
ikr2∆z

2z2
0

= U0(r)− i ∆z

2kw2
0

(
4U2(r) + U0(r)

)
(3.123)

The equations above show that a fundamental Gaussian mode that is shifted in

waist position will couple power to the second order Hermite Gauss mode. Although

changes in the waist size or position couple power to the same mode, they differ by

a 90 degrees in phase as denoted by the extra factor of i in the coupling coefficient.

By recognizing the two effects are in different quadrature phases will allow a user to

design a system to distinguish between the different types of physical couplings, this

is shown in Section 3.2.

In order to be physically valid one would need to consider the full two dimensional

space so that the equation would encapsulate the full transverse mode, however, the

x and y components would follow the exact same derivation. On that point, it is

important to note that only the mode mismatch couplings from either a varying

waist position or size has higher order modes that are circularly symmetric.

3.2 Wavefront Sensing

In Chapter 2.1.1 and 2.1.5, a heterodyne detection scheme was used to sense the

longitudinal degree of freedom for optical cavities. Analogously, a technique using

sidebands can employ a modal decomposition of the full electric field which allows

the use of wavefront sensors to extract an error signal. Hefetz et.al [53] created a

formalism to describe the use of wavefront sensors by creating frequency sidebands

which accumulate a different Gouy phase than the electric field at the carrier frequency

when passed through the optical system. By observing the demodulated signal of

the intensity, it is possible to obtain a linear signal that corresponds to a physical

misalignment or mode mismatch. Fundamentally, the purpose of wavefront sensing
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(a) Beam axis displaced by ∆r. (b) Beam axis rotated by α.

(c) Beam waist displaced by ∆z. (d) Beam waist reduced by ε

Figure 21 : Misaligment and mode mismatch between two different Gaussian beams. The

purple solid curves represent the original Gaussian shape and the red dotted curves are beams which

have been augmented in one degree of freedom. It is important to note that using this representation

uses the eigenmode of the cavity as a starting basis, if one were to create these misalignments using

the actual optics, there needs to be a linear combination of rotations or curvature changes.
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is to detect the content of higher order modes due to physical disturbances of the

optical cavity and by extension, it is examining the difference between the incoming

beam and the cavity eigenmodes.

Consider a general equation for an electric field which is a linear combination of

all higher order modes of the complex amplitude

E(x, y, z) =
∞∑
m,n

amnUmn(x, y, z) (3.124)

where Umn(x, y, z) are the eigenmodes described in equation 3.112 (or 3.114) and amn

is the complex amplitude. It is also convenient in the following analysis to use vectors

when describing the composition of the electric fields.

|E(x, y, z)〉 =



E00

E01

E10

E20

E02


(3.125)

When creating a theory that involves laser beams, it is useful to define operators that

are important in describing physical situations. For example, laser beams propagate

through space and pick up phase according to equation 3.112 which can be represented

by the spatial propagation operator,

P̂mn,kl = δmnδkl exp[−ik(z2 − z1)]exp[i(m+ n+ 1)ζ(z)] (3.126)

However, it is useful to compare how the fundamental Gaussian mode propagates

compared to the higher order modes,

η̂µν =



eiζ 0 0 0 0

0 e2iζ 0 0 0

0 0 e2iζ 0 0

0 0 0 e3iζ 0

0 0 0 0 e3iζ


(3.127)



54

From the above diagonal elements, it is clear that the higher order modes have an

extra phase compared to the fundamental 00 mode, this effect will be extremely

important on how an error signal can be derived from the optical system.

|E(x, y, z2)〉 = M̂(x, y, z1, z2) |E(x, y, z1)〉 (3.128)

where M̂(x, y, z1, z2) is the misalignment operator. Since we are using the paraxial

approximation, the z-components of the misalignment operator are small so we can

approximate M̂(x, y, z1, z2) ≈ M̂(x, y) and the expectation value is

Mmn,kl = 〈Umn(x, y, z1)|M(x, y) |Ukl(x, y, z2)〉 (3.129)

where the product is an integral over the transverse space
∫∫
D(x,y)

dxdy

Θ̂µν =



1 2iθx 2iθy 0 0

2iθx 1 0 0 0

2iθy 0 1 0 0

0 0 0 1 0

0 0 0 0 1


(3.130)

D̂µν =



1 αx/ω0 αy/ω0 0 0

αx/ω0 1 0 0 0

αy/ω0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


(3.131)

Ẑµν =



1 0 0 ∆zx ∆zy

0 1 0 0 0

0 0 1 0 0

∆zx 0 0 1 0

∆zy 0 0 0 1


(3.132)
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where ∆z(x,y) = i√
2

λb
2πω0

Ẑ0,µν =



1 0 0 ∆z0,x ∆z0,y

0 1 0 0 0

0 0 1 0 0

∆z0,x 0 0 1 0

∆z0,y 0 0 0 1


(3.133)

where ∆z0,(x,y) = 1√
2
ω′−ω0

ω0

Gouy Phase

Understanding the relationship between Gouy phase as defined by 3.109c and how

the term is used colloquially within the LIGO experimental community is not very

straightforward. Gouy phase given by equation 3.109c is the phase lag between a

Gaussian beam and a perfect plane wave that occurs as a function of propagation

along the ẑ-axis which ranges from ζ(z) = ±π/2 for z = ± inf. Physically, this

could be interpreted as the difference between the laser beam behaving like a plane

wave when z ≈ 0 (or near field) and eventually evolving into a spherical wave when

z ≈ ± inf (or far field), see Figure 19. Although this phenomenon is interesting

mathematically, most texts do not consider how to practically use or measure the

Gouy phase. In LIGO technical notes and electronic logs, the Gouy phase of sensors or

actuators is often used to describe where along the beam path the piece of equipment is

located. This will indicate what degree of freedom is being observed or adjusted. For

example, in ray optics [76] a laser beam has two degrees of freedom, the displacement

and angle from the optical axis. If an actuator such as a piezo-electric transducer

with an attached reflective mirror is placed near the origin or focus of the laser

beam, then the controlled degree of freedom is only the angle. Alternatively, if the

actuator is placed in the far field then the controlled degree of freedom is almost

entirely displacement. So to have full control over the alignment of a laser beam, it

is required to have two actuators separated by 90 degrees in Gouy phase.

This is also true of sensors at various points along the ẑ-axis to determine the exact

alignment of the optical beam. In practice, it is impossible to sense the true waist

of an optical system because it could be inside a Fabry-Perot cavity. So the clever
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designer must insert a pick-off beam to sample the transmission or reflection of the

interested optical system and use a combination of lenses to create a telescope for the

sensors and infers the degrees of freedom. Then, by rotating to the two-dimensional

space created by the sensors to represent the interested space spanned by the optical

system’s degrees of freedom; colloquially, this is known as a sensing matrix. Using this

method, sensors do not have to be exactly at the near or far field because it is only

required that the two sensors are separated by π/2 in Gouy phase, in fact, it is usually

easier to place one sensor at +π/4 and the other at −π/4. Unfortunately, there is no

transducer that directly measures the Gouy phase so in order to determine the Gouy

phase of a particular sensor or actuator, one must model the beam propagation and

fit the waist location.

Another way which Gouy phase is presented in many LIGO discussions is regard-

ing the round trip accumulation of phase while propagating in an optical cavity. This

plays an important role because the round trip Gouy phase is directly proportional

to the transverse mode spacing. Recall that the free spectral range of a cavity is

equal to fFSR = c/2L which sets the frequency separation between the fundamen-

tal modes, and that the Gouy phase propagation for higher order modes is equal to

(m+ n+ 1)ζ(z) so these modes will effectively see a different cavity than the zeroth.

Gouy phase can be calculated explicitly by using the ABCD formulation and relating

the matrix elements to the round trip phase,

ζ = sgnB arccos

(
A+D

2

)
(3.134)

where A, B, C, and D are the matrix elements of the optical system. The Gouy phase

is related to the transverse mode spacing by

fTMS =
ζ

2π
fFSR (3.135)

The extra Gouy phase that a higher order mode accrues as a function of z shows up

as in the frequency or cavity length domain as one sweeps through a full free spectral

range using an offset in the length or frequency error signal. This can be directly used

to measure the higher order mode separation and becomes important if the cavity has

a low finesse which means the fundamental Gaussian mode has a spread comparable
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in frequency to the first order mode then it is easy to hop from one to the other (see

Figure 22).

Figure 22 : A Finesse model of a longitudinal mode scan comparing the Advanced LIGO

power recycling and signal recycling cavities The upper and lower plots represents the PRC

and SRC, respectively. The main difference between these two optical cavities is obvious when

comparing the three large peaks corresponding to the 00 mode resonances. The power recycling

cavity has a much higher and sharper peak which indicates a larger finesse where as the signal

recycling cavity is a much lower finesse has a broader and shorter peak. The red traces are with

nominal alignment compared with the blue lines corresponding to misalignments of PR3 and SR3

by 1µrad. This allows higher order mode content to resonate as a function of length or frequency.
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Chapter 4

Simulating Mode-Matching with

FINESSE

In Chapter 2, the optical gain from differential arm motion was determined analyti-

cally with very few approximations but in actuality, LIGO has more degrees of free-

dom which make precise calculations very cumbersome. The complexity scales very

rapidly in application to the main interferometer and mode matching is no exception

so it is useful to use a full scale numerical simulation to extract as much information

as possible. FINESSE [71] [11] is one of the leading full-scale interferometer simu-

lation tools which uses the linear input-output relations of electromagnetic fields to

model optical properties of the LIGO interferometer. This chapter uses FINESSE to

model the quantum limited noise sensitivity with mode mismatch at key points in the

interferometer and determine which actuators are needed for optimal matching into

the output mode cleaner. This is extremely important in the current generation of

Advanced LIGO when squeezing is implemented because of the sensitivity to losses

between the optical parametric oscillator and the interferometer cavities. By using

FINESSE’s ability to incorporate higher order beams and RF sidebands, it is possible

to quickly and accurately model mode matching.

4.1 FINESSE Simulations

The power of numerical simulations has an interesting dual advantage, firstly, optical

parameters which are difficult to measure such as Gouy phase or higher order mode
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Figure 23 : Full interferometer simulation with FINESSE. This includes squeezed light injec-

tion, a lossless 16-meter filter cavity, and an ideal mode matching telescope (highlighted in blue) at

the signal recycling output port which can be turned on/off to determine the SRC mode mismatches

without additional lensing effects when changing the radius of curvatures. For brevity, the input

mode cleaner is omitted in the schematic but is also a resonant cavity in the simulation where it is

approximated to have small thermal effects and is at least 99.9% mode matched to the interferom-

eter. Optical parameters are taken from the as-designed values for advanced LIGO and a few key

variables are replaced with H1 specific constants.

content can be directly calculated to guide in designing future systems. Secondly,

when analytical calculations become unwieldy, numerical methods accurately describe

complicated optical responses in the presence of perturbations or imperfections.

An Advanced LIGO configuration file [12] which utilizes as-designed values for
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Figure 24 : How FINESSE sees a beamsplitter. An example of the coupling matrix for an

arbitrary beamsplitter with reflectivity, rb, and transmissivity, tb. Another free parameter for a

beamsplitter is the phase shift φ = 2φu
ω
ω0

cos(α), where φu is a user defined phase that can be

varied for a simulation (such as dithering), ω/ω0 is the ratio of the reflected to incident angular

wave frequency and α is the angle between the beamsplitter front surface and the incident field

vector In1. As it turns out, most of the resonators in the following simulations use beamsplitters to

represent the cavity mirrors.

the lengths and optical parameters serves as a good starting point for simulating the

entire interferometer. To incorporate more realistic numbers, in-situ measurements

were taken at Hanford with a beam scanner and ruler at HAM6 to understand the

Gaussian beam shape entering the output mode cleaner. By defining the optical

parameters and distances, FINESSE creates coupling matrices for individual com-

ponents which are generally comprised of mirrors, spaces, or beamsplitters. Some

specialized components are also useful such as modulators to create sideband fields,

Faraday isolators, and detectors (both amplitude and power). For each component,

there are corresponding nodes that link the entire optical system together. The cou-

pling matrices are compiled into an interferometer matrix and the solutions are found

numerically,

M̂ IFO
ij |xsol〉 = |xinput〉 (4.136)

where |xsol〉 and |xinput〉 are the solution and input vectors, respectively. Generally,

the right hand side is made up of laser inputs, modulator sidebands, noise, and signal

sidebands. This form has incredible efficiency and can represent the entire inter-

ferometer in a single matrix with direct access to all field amplitudes. In addition,

changing optical parameters during a simulation is made easier by varying the cou-

pling coefficients after the matrix has been calculated so the algorithm does not have

to re-compute every term.
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Figure 25 : Quantum limited sensitivity simulation to compare mismatches in the pres-

ence of squeezed light. With 10 dB of broadband squeezing, the simulation introduced mismatch

at various actuators to change the mode shape at the output port. Although there is still 5% mis-

match in each case, the introduction of quantum noise and the degradation of squeezing is much

worse when introducing losses in the signal recycling cavity as opposed to the output train. In

addition, mismatching the signal recycling cavity will change the relative phase angle between the

interferometer and squeezed light which has to be re-optimized.

4.2 Effects of Signal Recycling Mismatch

Beam tracing in FINESSE starts by determining the q-parameters for each user de-

fined cavity. If there are multiple cavities, it will calculate in the order written and

the last cavity in the parameter file sets the basis of populating the rest of the in-

terferometer. Table 4 shows the extracted cavity values for reference. The algorithm

continues by automatically propagating the laser beam through each node via ABCD

transformation methods. For a perfectly mode-matched interferometer, the q’s at

each node are the same no matter which cavity basis is chosen but this is not true

when introducing thermal lensing or errors for individual resonators. At this point,

it becomes extremely important to properly track the q-parameters because they are
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used to calculate the overall mismatch between cavities. To simplify the use of mul-

tiple coupled resonators, it is useful to turn all but one of the cavity commands off

so that only one basis q-parameter is explicitly used and there is no ambiguity.

FINESSE has the ability to determine two parameters which calculate the sensi-

tivity: noise and signal. By default, vacuum fluctuations are present at each unused

port and associated optical losses. This methodology can be verified analytically

using the full quantum mechanical description in Section 2.2 and the semi-classical

Schottky shot noise estimation. For radiation pressure effects, the mechanical transfer

function is defined by a simpled pendulum with H(f) ∝ 1
M f2 dependence above the

resonance frequency which is chosen to be approximately 0.1 Hz for these simulations.

As previously shown in Section 2.2, the radiation pressure effects are proportional to

the input laser power and convert amplitude fluctuations into phase noise. Naturally,

this is a nonlinear equation so FINESSE makes certain approximations which reduces

the complexity,

1. Induced motion from radiation pressure is very small compared to the light

wavelength so the equations of motion can be linearized.

2. Signal sideband frequencies are very small compared to the optical sidebands

created by the modulator such that the carrier creates a much larger radiation

pressure effect.

3. The amplitude of signal sidebands are much smaller than the carrier.

In terms of gravitational wave detectors, these approximations are reasonable because

the machines tend to operate with closed-loop control systems and in steady-state

equilibrium. Also, the signal sidebands never reach above 8 kilohertz for two rea-

sons: astrophysical sources from compact binaries coalesce at around 1.5 kHz and the

Nyquist frequency for the differential arm channel is sampled at 16 kHz so the Nyquist

frequency is much smaller compared to the 9 MHz sideband from the electro-optical

modulator.

To generate the signal, differential arm motion is simulated by varying the two

arm cavity lengths 180 degrees out of phase and measuring the optical gain transfer

function at the output mode cleaner transmission port. The results can be compared

directly to the analytical transfer function described be equation 2.60 to verify the

right DC amplitude and pole frequency.
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With regards to the squeezer implementation, the model applies both squeezed

light and a filter cavity before entering the interferometer to compare the effect of

mode-matching losses on the quantum limited sensitivity. In FINESSE, the squeezer

node employs a classical sideband implementation while in reality, modified vacuum

is generated using the optical parametric oscillator (OPO) [49]. This requires using

a bow-tie cavity with a nonlinear optic that is not yet handled by the available

FINESSE components and the nonlinear crystal actually keeps the cavity from being

geometrically unstable. So for now, it is enough to use quantum noise sidebands whose

defined phase and amplitude variances have two open parameters, the squeezing gain

and phase angle.

Figure 26 : Simulating the output actuator phase spaces projected onto the OMC mode

basis. The ending dots indicate the positive direction for changing radii of curvature as seen by the

various optics. Also, the change in radii of curvature in units of meters is shown on the legend.

LIGO’s coupled optical cavities allow for a large parameter space when trying to

match multiple resonators. Changing the curvature of an optic in the signal recycling

cavity will obviously change its overlap with the output mode cleaner but the effect

will also vary the arm mode propagation to the OMC as well. This will have a confus-

ing result because it is impossible to discern whether the degradation in performance



64

is due to the arm or SRC mismatch. One of the ways to get around this is to imple-

ment a perfect mode-matching telescope between the SRC and OMC to keep the arm

modes consistent with the output mode cleaner so that the only effect on the interfer-

ometer is a non-optimal signal recycling cavity. The deterioration in sensitivity when

mismatching the SRC has a two-fold effect. The introduction of vacuum fluctuations

will degrade the squeezed field in a nonlinear fashion hence increasing the noise (even

with perfect squeezing phase). On top of that, extra SRC losses will affect the total

optical signal gain at the antisymmetric port, which means using the SRC to mode

match the squeezer field will not actually improve the sensitivity if the SRC will be

mismatched from the arm cavities. Comparatively, mode mismatch introduced at the

antisymmetric port before entering the output mode cleaner will only create extra

noise from the degradation of squeezing. The comparison is shown in Figure 25.

By allowing FINESSE to do the ray tracing algorithm for the entire interferometer,

it is relatively straightforward to change the radii of curvature for different optics

and project the effect onto the OMC in order to understand the orthogonality when

choosing mirrors for mode matching. In Figure 26, the most orthogonal actuators for

small mismatches happen to be SRM and OM2. However, OM1’s actuation intersects

SRM in phase space at about 96% mode mismatch in the negative direction so for

large mismatches OM1 may be more orthogonal to OM2. (It is worthwhile to note

that some literature will convert the phase space units to waist size and curvature

instead of the imaginary and real parts of the q-parameter.)

A useful tool to understand the actuation matrix in a full interferometer configu-

ration is to calculate the induced waist position or size shift per diopter in Tables 2

and 3. The code runs through each optic and slightly varies the radius of curvature

or focal length and traces the beam for every cavity eigenmode. This assumes the

mismatches are relatively small so the slope is linear and can give a bit of insight on

the directionality and magnitude of the actuators.

The simulations in this chapter correctly models the interferometer fields and

showed that mode mismatch between various cavities to the output mode cleaner

will affect the quantum limited sensitivity differently. Further, signal recycling cavity

mode mismatching will degrade the squeezing more than mismatch originating from

optical train prior to entering the output mode cleaner even if the amount mismatched

is the same.
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Chapter 5

Experimental Mode Matching

Cavities at Syracuse

In conjunction with Magaña-Sandoval et al [64], the table-top adaptive mode match-

ing experiment was able to show the feasibility of a fully dynamical system at Syracuse

University. Most of the work done by the author of this dissertation was focused on

converting and upgrading the real-time digital sysem (RTCDS) from being used by

the optical trap experiment [73] to adaptive mode matching and interfacing the analog

RF sensors into the digital system. There is also a section on the usage of cylindrical

lenses and quadrant photodiodes as a viable method of extracting a mode matching

error signal.

5.1 Commissioning the Real Time Digital System

Dynamic control systems require both actuators and sensors which are interfaced in a

real-time manner and this requires the use of analog-to-digital (ADC) and digital-to-

analog (DAC) converters. A LIGO standard system uses a front end computer that

reads in data and processes the signals based on a Simulink graphical model that

allows for simple logic, mathematical operations, and frequency-dependent filtering.

The real time data acquisition code is user-interfaced with a Motif Editor and Display

Manager (MEDM) that is able to report and execute variables such as gains and

matrix elements. The use of a LIGO standard digital system means that hardware

and software developed at Syracuse can be transferred smoothly to the LIGO sites.
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Figure 27 : MEDM master screen for adaptive mode matching at Syracuse. Here, the

demodulated error signal in reflection of the Fabry-Perot cavity is divided by a beamsplitter and

fed into two RF detectors, one of which is depicted to have a mode matching telescope MMT to

project a different Gouy phase to sense an orthogonal degree of freedom. Then the signal is sent to

an actuator function which allows for diagonalizing the signals and can be sent to a set of thermal

lens at different Gouy phases for actuation. The adaptive lenses are actually placed in the beam

path before entering the cavity but for demonstrative purposes, they are portrayed at two different

Gouy phases of the resonator.

5.2 Sensors

Recall in Section 3.2 that the RF modal decomposition technique relies on compar-

ing the Gouy phase of higher order modes to the fundamental Gaussian mode with

an array of RF photodiodes in order to extract an error signal. The complication

arises when using this method to extract the beat note between the fundamental

mode and symmetric donut mode because the photodetector arrays must match the

higher order mode geometry. This is easier to deal with when trying to sense angular

distortions from a misaligned cavity because the 01 and 10 modes can be sensed with

a split photodetector, however, using a quadrant photodiode will not work to sense

mode mismatch due to the cylindrical symmetry of the 02 and 20 modes. Currently,

Advanced LIGO uses no RF sensors to detect mode mismatch so the next sections

will provide sensing methods which can be used for dynamic closed loop feedback

control.
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Figure 28 : Model overview for adaptive mode matching. Using the LIGO digital system as a

test bed for technology development has the advantage of easy integration at both LIGO sites. The

Syracuse system uses a Simulink style model with LIGO standard modules to read in data from the

analog-to-digital converter (ADC) that contain signals from each RF photodiode segments, apply a

phase rotation to get the signal into one quadrature (nominally I for a linear cavity) and normalize

by the total power on the sensor. Afterwards, the signals are sent to a master actuator function that

diagonalizes the sensor signals into an actuators basis and sent to the digital-to-analog converter

(DAC) to control the heater drivers.

5.2.1 Bullseye Photodiodes (BPD)

It is clear that using a quadrant photodetector to measure the symmetric U20 + U02

mode which arises from mismatch is futile because the integrated power on each

side will be exactly the same due to donut mode symmetry. So it is simplest to try

subtracting the inner beam power from the outer ring of the electric field in order

to measure a phase difference using a specialized RF photodiode called a Bullseye

Photodetector (BPD) shown in Figure 29. This method was proven to work in the

Enhanced LIGO era [69] and is the most natural extension of the angular wavefront

sensing/controls that is widely implemented in Advanced LIGO.
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Figure 29 : RF Bullseye Photodiode. The left figure shows the analog readout electronics and

the right gives segment numbers used in the sensing matrix.

Calibration

To use the BPDs, there are a few steps required in designing the optical setup which

is different than the standard PDH or WFS method. Most notably, the beam size

incident on the BPD must be tuned such that the zero crossing of the (U20 + U02)

matches the boundary between the inner and outer segments. This condition is met

if ω0 =
√

2r0 which gives a well defined power ratio of the outer to inner segments as

Power Ratio =
P1 + P2 + P3

P4

=
e−2r2

0/ω
2
0

1− e−2r2
0/ω

2
0

≈ 0.582 (5.137)

In Appendix C, the complete derivation for the sensitivity of QPDs (Pitch/Yaw) and

BPDs (Pitch/Yaw/Width) is explicitly shown for DC mismatches. Another constraint

is that the Gouy phase separation between successive BPDs must be close to 45 or 135

degrees such that the error signals from each BPD can be orthogonalized, this is in

contrast to angular wavefront sensors which require 90 degree Gouy phase separation.

5.2.2 Mode Converters

The bullseye photodiodes can be difficult to calibrate and manufacture so a particu-

larly interesting method of sensing mode mismatch is to convert the axially symmetric

fields with a cylindrical telescope such that an error signal can be extracted with a
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quadrant photodiode. This process is shown to preserve both the angular and modal

mismatch error signals. Using lenses which have two radii of curvature for each direc-

tion (x or y) with one being flat and the orthogonal is curved with some focal length,

f . The idea is to break the cylindrical symmetry of the donut mode (Figure 30) and

convert the beam into a pringle mode by advancing the phase of one axis by a factor

of π/2 to create a relative sign flip. Then, an error signal can extracted using the

radio frequency quadrant photodiode that the angular wavefront sensors employ.

Figure 30 : Passing a bullseye mode through a π/2 mode converter. The reflected fields of

a well aligned Fabry-Perot cavity with a slight mode mismatch will have a large contribution from

the |HG20〉 + |HG02〉 mode which is cylindrically symmetric. After passing through a cylindrical

telescope which has a π/2 phase advance for one axis, there is a relative sign flip which breaks the

the symmetry and the error signal can be extracted with an RF quadrant photodiode.

Vector formalism for laser beams and optical cavities

Consider an optical cavity that is longitudinally resonant on the TEM00 mode using

the Pound-Drever-Hall technique shown in Section 2.1.2 and also locked with angular

wavefront sensors shown in Section 3.2. When there is a small mismatch between the

waist size and position of the input beam relative to the cavity, this is equivalent to

coupling the TEM-00 mode into higher order modes. Since mode matching is only

concerned with coupling to the second order modes, the resultant field in reflection

(rFP ) of a Fabry-Perot resonator will have the form

|Urefl〉 = rFP


U00

0

0

+ ε


0

U20

U02

 (5.138)
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ε =
1√
2

(
δw

w0

+ i
δz

zR

)
(5.139)

where δw and δz are the mismatches in waist size and position, respectively. O’Neil

et al [72] wrote down a formalism that explicitly showed the effects of cylindrical

telescopes on the full range of Hermite Gauss modes. An arbitrary mode conversion

system, M̂ , is comprised of two cylindrical lenses and can be described by two distinct

operators,

M̂ = R̂Ĉ (5.140)

where R̂ is a rotation operator that depends on a angle θ which can rotate about

the axis of propagation and Ĉ is the mode converting operator which depends on the

amount of phase advance seen by higher order modes. Physically, R̂ can be shifted

by rotating the entire cylindrical telescope about the axis of propagation whereas

the phase advance can be changed by choosing various focal lengths. Since mode

matching primarily couples power into the 02 and 20 modes of the cavity, we can use

a 3x3 matrix. For rotations about the axis of propagation, the operator is

R̂ij =


1 0 0

0 cos(∆θ) sin(∆θ)

0 − sin(∆θ) cos(∆θ)

 (5.141)

For the mode converter phase advance, the operator is

Ĉij =


1 0 0

0 e−iΩ20 0

0 0 eiΩ02

 (5.142)

where Ωmn = (m+ 1
2
) tan−1

(
d

zR,x

)
+ (n+ 1

2
) tan−1

(
d

zR,y

)
and d is the distance from

one cylindrical lens to the waist. Ωmn is the amount of phase advance that a higher

order mode will experience due to the mode converter. It is important to note, the

matrices above show that the Gaussian beam is only astigmatic within the region of

between the cylindrical lenses and unchanged outside of the telescope. If the beam

reflected from the cavity is well mode matched to the cylindrical telescope, then a

mode converter will introduce an astigmatism and vary the separate Rayleigh ranges
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[7],
zR,x
zR,y

=
1 + d/f

1− d/f
(5.143)

Of course, the tuning of θ, d and f is left up to the optical designer’s choice. The

obvious selection for θ should rotate the output beam such that the pringle mode

intensities are centered on the individual quadrant photodiodes. The choice of sepa-

ration distance d and focal length f are a bit more subtle.

The second order coupling to higher order HG modes from mode mismatch creates

a cylindrically symmetric intensity profile. This can be broken by creating a phase

difference between HG20 and HG02 such that there is a relative sign flip. In Figure

31 of O’Neil [72], the only conversion that transforms the diagonal HG mode into a

symmetric donut mode is with ∆Ω = π/2. This implies the converse is also true if

one desires to transform the donut mode into an HG mode of the same order. Making

this choice of phase propagation automatically constrains the optical setup and the

second order mode along the lens axis will see a phase advance equal to

π

2
= 2

[
tan−1

(
d

zR,x

)
− tan−1

(
d

zR,y

)]
(5.144)

⇒
√

2− 1 =
d

zR,y
=
zR,x
d

(5.145)

The equation above only shows a relation between the Rayleigh ranges and the lens

separation. However, by imposing mode matching conditions it is possible also con-

strain the focal length of the cylindrical lenses as well.

f =

[
1

Rx(d)
− 1

Ry(d)

]−1

=
d√
2

(5.146)

where Ri(d) = d[1 + (
zR,i
d

)2].

Extracting information from mode

Mueller et al [69] showed that the error signal from mode mismatch could be extracted

by using an RF detection scheme. Using this formalism, the error signal on a quadrant
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photodetector from a mismatched cavity after a mode converter is

S ∝ Im

{
ε∗
[ ∫

A1,A3

M̂ †
00 〈U00|

[
M̂ †

U20
|U20〉+ M̂ †

U02
|U02〉

]
−∫

A2,A4

M̂ †
00 〈U00| (M̂ †

20 |U20〉+ M̂ †
02 |U02〉)

]}
∝ Im

{
ε∗
[ ∫

A1,A3

〈U00|
(
|U20〉 − |U02〉

)
−
∫
A2,A4

〈U00| (|U20〉 − |U02〉)
]} (5.147)

where the surface integrals are over each segment. In the above equation, Ĉij was

chosen with ∆Ω = π/2 and R̂ij should rotate the beams such that the intensities in

Figure ModeConverter are aligned with the quadrant photodiodes.

Figure 31 : Intensity profiles passing through a mode converter [72]. The image in upper

left corner represents the m = 3 and n = 0 Hermite Gauss (LG) mode which gets transformed

through a converter for different rotations and phase advances. The only combination which gives a

symmetric Laguerre Gauss (LG) mode is φ = 45 deg and θ = π/2. This gives some intuition about

how to reverse this process to take an input LG mode and breaks the cylindrical symmetry so that

the modal content can be sensed by a quadrant photodiode.

5.2.3 DC Mode Matching

The benefit to using the RF sensing scheme for generating an error signal is the auto-

matic reduction of the higher order mode content which can use actuators to adjust
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Figure 32 : Simulated error signals from MATLAB (QPD) and FINESSE (BPD). A

numerical simulation of the error signal in reflection from a linear Fabry Perot cavity with different

detectors when varying either the waist position (∆z) or Rayleigh range (∆zR). The error signal

orthogonality at two different Gouy phases is demonstrated using both sensing schemes for active

wavefront control.

the incoming mode of the beam to whatever the cavity requires. This is particularly

useful in areas where the laser power density is high and absorption on the high re-

flectivity surfaces cause thermal distortions in the cavity mode. However, the output

mode cleaner remains fixed in its eigenbasis regardless of interferometer heating such

that the nominal input mode is also static; in fact, the current alignment scheme

uses DC quadrant photodiodes to feed back to the OMC suspensions and the control

loop offsets are tuned to minimize the 10/01 modes. If there was a low-noise way

to continually measure the beam size at two different Gouy phases prior to entering

the output mode cleaner, then there could be an error signal which would be used

for thermal actuators directly after the signal recycling cavity. This can be achieved

with bullseye sensors that read power ratio relatively quickly. Another interesting

way of measuring the mode is using a slowly rotating razer blade with known angular

frequency in front of a single photodiode and inferring the error function which will

directly give the beam size.
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Chapter 6

Wavefront Control at LIGO

Hanford

Simulations and calculations are wonderful guides to understanding and building

intuition about mode matching, no model is perfect and experiments have a way of

presenting the most interesting and challenging problems. Preparation for the third

observing run (O3) required extensive work to understand Advanced LIGO’s path to

achieve higher arm power. One of the most important tasks was tuning the thermal

compensation and interferometer sensing/controls systems in order to maintain the

power build-ups in the PRC and the long interferometer arms during nominal low

noise operation. This chapter will explain how lensing affects the interferometer

fields and describe a few strategies to tune the Thermal Compensation System (TCS)

at LIGO Hanford. Then, it summarizes in-situ measurements that were taken to

understand the mode matching between the squeezer optical parametric oscillator

(OPO) and the output mode cleaner in single bounce configuration.

For Advanced LIGO, test mass heating comes from main two sources: absorption

by arm cavity optics from the main interferometer beam and heat applied by the TCS

which is meant to combat the wavefront distortion by applying heat in key places.

Thermal compensation currently utilizes ring heaters at all four main test masses, a

disk heater at the SR3, and CO2 lasers at the input test masses.
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6.1 Hot vs. Cold Interferometers

When fully operational, the arm cavities can have approximately 150 kilowatts of

circulating power. An estimated but useful description of the total arm power in each

arm is

PARM ≈
1

2
(gPRC ∗ gARM ∗ Pin) (6.148)

where gPRC ≈ 45 is the power recycling cavity gain and gARM ≈ 225 is the single arm

cavity gain. For O3, the intended input power Pin will reach approximately 30 W

which means PARM ≈ 150, 000 W. A fraction of that power between (0.2-0.8 ppm),

will be absorbed by the high reflectivity surface creating a thermo-elastic effect which

changes the radius of curvature. By changing the test mass curvatures, the resonant

Gaussian mode will also change its profile. Additionally, the thermo-refractive effect

will vary the index of refraction within the bulk as a function of absorbed light power

creating a thermal lens that turns out to be an order of magnitude larger than the

wavefront distortion from thermo-elastic effects in fused silica [91].

6.1.1 Thermal Lensing

As seen in Section 2.1.5, the sideband and carrier frequencies propagate differently

in the interferometer by design, which means their fields see different thermal lensing

effects. The ITM substrate which sees the thermo-refractive change from absorption

will play the largest role because the carrier is not affected to first order (shown

below). To understand how the fields change, the easiest way is to invoke the ABCD

transfer matrix approach to track how the phase changes as they propagate through

the optical system [62].

Carrier

The carrier is resonant in the 4 kilometer arm cavities as well as the PRC, so a

simplified model resembles a coupled cavity setup where there is already a locked

resonator with some leakage beam and there is an input mode propagating from the

power recycling cavity. Consider the diagram in Figure 33, which shows a two-mirror

optical system with an input carrier beam, |Ec
in〉, that has a portion promptly reflected
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Figure 33 : A simplified model for the effect of a substrate thermal lens on the carrier

field. An input beam, Ec
in, from the power recycling mirror (PRM) will have a radius of curvature

that mode matches to the input test mass (ITM). The promptly reflected beam, Ec
p, is denoted by

equation 6.151 and the leakage beam, Ec
` , is expressed by equation 6.152 where the sum of them

would make the total reflected beam. The leakage field will have the same shape as the ITM radius

of curvature R when exiting the arm and see the thermal lensing f . The promptly reflected field

will also see the lens f twice but when combined with the leakage beam, the total reflected field is

not affected by the thermal lens.

off the input mirror to create |Ec
p〉

|Ec
p〉 = M̂ c

p |Ec
in〉 (6.149)

The prompt reflection is made up of a beam incident on a converging lens from the

substrate and a single reflection from the input coupler’s convex surface, therefore,

the transfer matrix is

M̂ c
p =

[
1 0

− 1
f

1

][
1 0

+ 2
R

1

][
1 0

− 1
f

1

]
(6.150)

where R is the radius of curvature of the high reflectivity (HR) surface and f is the

thermal lens of the mirror substrate. In general, this can be a combination of the static

lens and any thermal effects which create additional (intentional or non-intentional)

lensing.

|Ec
p〉 = M̂ c

p

[
1
1
qin

]
=

[
1

1
qin

+ 2
(

1
R
− 1

f

)] =

[
1
1
qp

]
(6.151)

Here, 1
qin

= − 1
Rin
− i λ

πw2 , is the q-parameter of the input beam where w is the beam

size on the HR surface and Rin is the radius of curvature entering the cavity and is

converging at that point.
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In addition, there is also a circulating field inside the cavity which leaks out in

reflection and can be denoted by |Ec
` 〉 which exits with the input coupler’s radius of

curvature and sees a single pass through the substrate lens,

|Ec
` 〉 =

[
1 0

− 1
f

1

][
1

1
R
− i λ

πw2

]
=

[
1

1
R
− i λ

πw2 − 1
f

]
(6.152)

The total reflected beam is a summation of the prompt and leaked cavity fields. LIGO

uses arms which are highly over-coupled optical cavities so the promptly reflected

amplitude is |Ec
p| ≈ |Ein| and using equation 2.32, the leakage amplitude is |Ec

` | ≈
−2|Ein|. Putting all this together, the total reflected field of the carrier is

Ec
REFL = Ec

` + Ec
p

= Ein

[
exp

(
−ikr2

2qp

)
− 2exp

(
−ikr2

2q`

)]
≈ Ein

[
− 1− ikr2

2

(
1

qp
− 2

q`

)]
≈ Ein

[
− 1− ikr2

2

[
1

qin

+
2

R
− 2

f
− 2

(
1

R
− i λ

πw2
− 1

f

)]]
≈ −Ein

[
1 +

ikr2

2

[
− 1

Rin

+ i
λ

πw2

]]
≈ −Ein exp

(
−ikr2

2

[
1

Rin

− i λ

πw2

])

(6.153)

The fourth line is where the phase gain due to the substrate thermal lens and test

mass radius of curvature will cancel for the prompt reflection and the leakage beams.

The last line shows that the total reflected carrier field will be negative of the original

amplitude with the same beam size and absolute curvature, however, now the beam is

diverging instead of converging. The amazing part is that the end result is in-

dependent of the substrate lensing to first order. Here, the approximation used

to expand the exponential from the second to the third line is valid when considering

points close to the beam center (kr
2

R
<< 1) where the paraxial approximation is true

[76]. If considering areas where this condition is not strictly true, the model is only

meant to show that the first leading order term between the leakage and promptly

reflected fields cancel, which will not be true for second order effects. Another point
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where this model breaks down is when the power recycling mode is altered so much

by lensing effects that the PRC is no longer well mode matched to the arms; this

leads to the input beam not having the right radius of curvature. At that point,

there will be extra losses from higher order mode-coupling. Lensing can also change

the radius of curvature to a point where the PRC g-factor makes the resonant mode

no longer geometrically stable (see Appendix A), however, this requires significant

thermal lensing well beyond what is expected in Advanced LIGO [62]. A numerical

FINESSE model uses this simplified geometry to calculate the power recycling gain

and arm build up in Figure 48 as a function of round trip losses and thermal lensing.

Sidebands

Using the same formalism as the carrier fields, the sidebands will have the same input

curvature, however, they do not resonate in the arms so there is no cavity leakage

field. Therefore, the sidebands will see the phase change due to the substrate lens

and this has very important consequences on the sideband build up within the power

recycling cavity.

GW Signal

As mentioned in Section 2.1.5, LIGO currently employs a DC readout scheme that

extracts the signal by beating the carrier field with the audio frequency sidebands

created by the gravitational wave. Although the carrier field was shown to be immune

from substrate thermal lensing, the gravitational wave sideband field will see a single-

passed lensing effect as it propagates out of the cavity and towards the beamsplitter.

If there is differential lensing, the signal recycling cavity will see an effective thermal

lens, TL−, which will scatter light into higher order modes. This causes a reduction

in the amount of gravitational wave signal at the anti-symmetric port that is directly

proportional to the mode mismatch between the arms.

6.2 Wavefront Distortions from Thermal Effects

In the previous section, it was shown that lensing in the substrate affects fields in the

interferometer differently. The thermal distortions were modeled as a simple addition

of phase, however, it is useful to understand how the optical path varies from first
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principles. This provides theoretical groundwork for modeling interferometer heating

as well as corrective measures using TCS. A lot of work in this field was introduced

in the context of gravitational wave detectors by Hello and Vinet [54] [87] where they

implemented the Heat Diffusion equation in order to analytically derive the phase

change due to thermal aberrations. In general, there are two effects which occur when

a beam interacts with an optic which has a temperature field: thermo-refractive and

thermo-elastic.

The first arises from the index of refraction changing as a function of the temper-

ature distribution T (r, z),

∆nr(r, z) =
dn

dT
T (r, z) (6.154)

where dn
dT

is the temperature index coefficient and is dependent on the optic material,

which can be (and often is) inhomogeneous. For example, if the heating source comes

from a laser beam which imparts onto the optic a Gaussian-like intensity pattern,

inhomogeneities in the optic cause the temperature profile to be non-uniform and

thus leading to a varying index of refraction that causes wavefront distortions (see

Figure 34).

Figure 34 : A plane wave passing through a lens with a temperature gradient. The index

of refraction, n, depends on the material and temperature so when a plane wave moves through a

medium with a non-uniform temperature field, a phase lag or lead occurs in the wavefront. Since
dn
dT is negative, the distortion will resemble a diverging lens.

To understand how changing the index of refraction varies the optical path length,

consider the function S(r) which describes surfaces that are perpendicular to the rays.

If S(r) is a known function then the rays can be reconstructed using the gradient,

∇S(r). As an analogy to electrostatics, S(r) is similar to the potential function V and

the electric field is described by E = −∇V. As an extension of ray optics, Fermat’s
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principle requires that the Eikonal equation be satisfied,

|∇S|2 = n2 (6.155)

By integrating along the axis of propagation (ẑ) in Figure 34 through the substrate,

one can find the optical path distortion

Z(r) =
dn

dT

∫ +h/2

−h/2
T (r, z)dz (6.156)

It is clear that the temperature field is key to understanding exactly how the wavefront

is distorted. In order to analytically solve for T (r, z), one must invoke the famous

Heat equation,

κ∇2T (r, z) = ρC
∂T

∂t
(6.157)

where κ is the thermal conductivity, ρ is the density, and C is the specific heat. A

complete solution for such an equation will be a sum of two parts:

T (r, z, t) = Ts(r, z) + Tt(r, z, t) (6.158)

where the first term is the steady-state solution which includes the an ambient tem-

perature and a perturbation, Ts(r, z) = Tp(r, z)+T0. The main goal for the remainder

of the section will be finding a solution to the perturbation field. The second term is

the transient time-dependent solution which will converge to the stead-state as time

goes to infinity. For the LIGO test masses which are approximately cylindrical, the

heat equation in steady-state equilibrium is

κ

[
1

r

∂

∂r

(
r
∂

∂r

)
+

∂2

∂z2

]
Ts(r, z) = 0 (6.159)

The next step is to understand the boundary conditions using Figure 35 and the

balance of heat fluxes at each of the surfaces,

n · [F + κ∇Ts]surf = 0 (6.160)

Assuming that the outward flux is from radiation which follows the Stefan-Boltzmann
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law,

n · Ftsurf = σB[T 4
s − T 4

0 ] = σB[(Tp(r, z) + T0)4 − T 4
0 ]

≈ 4σBT
3
0 Tp(r, z)

(6.161)

where σB is the Stefan-Bolzmann’s constant. It is important to note that σB depends

on the material and may vary by a scalar amount but for brevity, it is used as a

constant here. The last part of the equation assumes that the temperature field

is only a small perturbation from the ambient surroundings, Tp(r, z) << T0, which

allows the radiation term to become linear. Figure 35 shows boundary conditions for

the LIGO test masses,

Figure 35 : A conceptual model of flux balance for a cylindrical object. The red dotted

lines represent the radiative fluxes escaping the optic while a Gaussian beam with intensity profile

I(r) is pumping energy in as denoted by the red solid line.

At the surface where z = h/2 the total flux is radiative,

− κ∂Tp(r, h/2)

∂z
= 4σBT

3
0 Tp(r, h/s) (6.162)

At the barrel of the cylinder where r = a, total flux is also radiative,

− κ∂Tp(a, z)
∂r

= 4σBT
3
0 Tp(a, z) (6.163)

At the surface where z = −h/2 there are two components of flux, one is radiative
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and the second is the input power from the laser beam striking the optic surface,

− κ∂Tp(r,−h/2)

∂z
= −4σBT

3
0 Tp(r,−h/s) + εaI(r) (6.164)

where I(r) = 2P
πw2 exp{−2r2/w2} is the laser beam intensity with power P over a beam

size of w and εa is the absorption coefficient. Here, the radiative term has a negative

sign to represent the flux direction. Once boundary conditions are established, most

introductory textbooks that deal with partial differential equations will apply an

educated guess for the solution. In this case, the resulting temperature field will be

a harmonic function,

Tp(r, φ, z) = (Ae+kz +Be−kz)J0(kr) (6.165)

where J0 is the spherical Bessel function of the first kind and k is a constant. Although

this particular temperature distribution can be even more general by allowing all the

orders of Jn, this form is sufficient. Using the boundary condition from 6.163 and the

property ∂J0(x)
∂x

= −J1(x),

− κk∂J0(kr)

∂r

∣∣∣∣
r=a

= 4σBT
3
0 J0(ka) (6.166)

kaJ1(ka)− χJ0(ka) = 0 (6.167)

where χ = 4σT 3
0 a/κ is the reduced time constant. There exists an infinite number

of discrete solutions which can solve 6.167 using various values of kna = ρn. The

temperature field then becomes,

Tp(r, z) =
∞∑
n=0

(Ane
+knz +Bne

−knz)J0(knr) (6.168)

In order to solve the conditions from equations 6.162 and 6.164, the strategy is use the

orthogonality of the spherical Bessel functions in order to expand the equations into a

solvable algebraic form. This will include expanding the intensity profile I(r) in this

basis as well. Consider the boundary from r = 0 to r = a, the functions J0(knr) form

a complete basis set and the normalization constant is given by the Sturm-Louisville
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problem,∫ a

0

J0(knr)J0(kmr) r dr = δmn
[χ2 + (kna)2]

2k2
n

J2
0 (kna) = δmn

1

Nn

(6.169)

Then expanding the intensity profile in terms of the Bessel function: I(r) =
∑∞

n pnJ0(knr)

and inverting to solve for pn leads to,

pn = Nn

∫ a

0

I(r)J0(kna) r dr

= Nn

∫ a

0

[
2P

πw2

]
J0(kna) exp

{
−2r2/w2

}
r dr

≈ Nn
P

2πa2
exp

{
−(knw)2

8

} (6.170)

The approximation came from integrating to infinity instead of a which is reasonable

if diffraction losses are small on the substrate. Plugging in the equation 6.168 and

I(r) into the remaining boundary conditions,[
kn −

4σBT
3
0

κ

]
e−knhAn −

[
kn +

4σBT
3
0

κ

]
Bn =

εpn
κ
e−knh/2 (6.171a)

[
kn +

4σBT
3
0

κ

]
An −

[
kn −

4σBT
3
0

κ

]
Bne

−knh = 0 (6.171b)

Solving for An and Bn,

An =
εapn
κ
e−3knh/2

η+

η+ − η−e−2knh
(6.172a)

Bn =
εapn
κ
e−knh/2

η−
η+ − η−e−2knh

(6.172b)

where η± = kn± 4σBT
3
0

κ
is used for brevity. Now it is possible to write down the entire

steady-state temperature field for a cylindrical test mass with a laser beam impinging

on the surface,

Tp(r, z) =
∞∑
n=0

εapn
κ

η−e
−kn(3h/2−z) + η+e

−kn(h/2−z)

η+ − η−e−2knh
J0(knr) (6.173)
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Once the temperature profile is solved, the path length distortion from the thermo-

refractive effect can be found by solving by equation 6.156,

ZTR(r) =
dn

dt

εa
κ

∞∑
n=0

pn
kn

1− e−knh

[η+ − η−e−knh]
J0(knr) (6.174)

where pn contains information about the heating profile so it is possible to directly

plug in equation 6.170 to represent the distortion from a Gaussian beam,

ZG
TR(r) =

dn

dt

εa P

2πa2κ

∞∑
n=0

Nn

kn
e−(knw)2/8 1− e−knh

[η+ − η−e−knh]
J0(knr) (6.175)

The thermo-refractive effect due to coating and substrate absorption is only one type,

there is also an effect which elastically curves the surface from thermal expansion [87].

This thermo-elastic effect deals with the internal stresses of the material and employs

the stress-strain relations in order to derive the wavefront curvature. For the LIGO

test masses which use fused silica, this effect is smaller than the thermo-refractive

wavefront distortion by about an order of magnitude.

6.3 Contrast Defect

Generally, the contrast defect is defined as the ratio of the darkest to the brightest

power at a given point in the interferometer, which in practice is the ratio of power at

the antisymmetric and reflected port when locked on a dark fringe. In other words, it

is the amount of junk light that is present in the interferometer when light between

the two arms do not perfectly interfere with each other. This junk light can be the

symptom of various causes, for example, an imbalance of reflectivity between ITMX

and ITMY will cause non-perfect destructive interference at the antisymmetric port

and a camera would see a TEM00 beam when locked on length. Another cause of

contrast defect could be from misalignment between the ITMs or beamsplitter which

will result in seeing a TEM 01/10 mode. However, if both of the aforementioned

causes are fixed with a combination of stringent design specifications for the reflec-

tivity and alignment loops closed to minimize angular jitter, then the contrast defect

will be dominated by mode mismatch which can be fixed by a combination of ring

heaters and CO2 lasers. The picture gets even more complicated when adding in the
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absorption for individual optics and introducing multiple Fabry-Perot cavities which

will treat the sidebands and carrier fields differently.

One of the main goals for the Thermal Compensation System is to correct the

cold and hot interferometer differences in radii of curvature.

6.3.1 Simple Michelson Contrast Defect

The simple Michelson can give a first estimate of the contrast defect when starting to

commission the interferometer’s thermal system, however, it is not used in nominal

low noise since the dual-recycled Michelson is implemented. By propagating the

input mode cleaner beam to the beamsplitter and taking a single bounce at the high

reflectivity surface, one can approximate the resultant mode overlap by measuring

the power at the antisymmetric port. The static mismatch correction was measured

this way and is compensated using one of the CO2 lasers to reduce the contrast at 2

Watts of input power from 0.4% to 0.1%.

At this point the carrier and sideband fields follow the same ABCD matrix transfer

function, so only one calculation is needed to estimate the contrast defect. A keen

reader will notice that this model will not take the Schnupp asymmetry into account

which allows the x̂-direction beam to travel an extra 8 centimeters further than the

ŷ, however, this effect will only change the end result by approximately 10%. In fact,

for this interferometer configuration, the dominate source of mismatch will be from

the prompt reflection off the HR surfaces of the ITMs where most of the phase change

occurs. The sideband contribution at the antisymmetric port can be estimated by

using equation 2.24 and measuring the modulation depth, ΓΩ, for the 9 and 45 MHz

RF fields that enter the interferometer,

PSB = 2Pin

(
Γ

2

)2

tSB±

= 2Pin

(
Γ

2

)2

sin2(kΩ∆`)

(6.176)

Additionally, the beamsplitter RMS motion will also contribute extra power at the

AS and can be estimated by calculating the coupling coefficient from the 00 to 01 HG
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mode,

P01 = 2Pin

(
π αw(z)

λ

)2

(6.177)

where w(z) is the beam size on the test mass and α is the misalignment RMS.

6.3.2 Modal Contrast Defect

During full lock, the formalism must be extended to include the mode shape of two

arm cavities interfering at the beamsplitter. Using the Laguerre-Gauss modes is

useful for brevity because the mode mismatch couples to only one higher order mode.

Contrast defect can be defined using the zeroth eigenmode of each arm and then

expanded to project the X-arm’s basis onto Y-arm using higher order LG modes,

LG00
y → LG00

x + αLG10
x . Where α = 1√

2

(
∆ω0

ω0
+ i∆z

zR

)
is the amount of higher order

mode coupling due to mismatch in beam size and location, respectively (see Chapter

3).

CD ≡ PAS
PREFL

=
|LG00

x − LG00
y |2

|LG00
x + LG00

y |2

=
|LG00

x |2 + |LG00
x + αLG10

x |2 − 2 Re(LG00
x [LG00∗

x + αLG10
x ])

|LG00
x |2 + |LG00

x + αLG10
x |2 + 2 Re(LG00

x [LG00∗
x + αLG10

x ])

≈ α2

4

≈ 1

8

[(
∆ω0

ω0

)2

+

(
∆z

zR

)2]
(6.178)

Mismatch between the arm cavities can stem from a few sources such as the difference

between the radii of curvature on the high reflectivity surfaces that will cause the

resonant modes to be shaped differently between the X-arm and Y-arm. LIGO tries

to optimize this effect by pairing the optics based on their properties, however, during

the upgrades from O2 to O3 at Hanford, ITMX was replaced but ITMY was not which

lead to a static mismatch between the input test masses.
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6.4 Tuning Thermal Compensation for LIGO

As mentioned in Section 6.1.1, the circulating power in each of the arms can be close

to 150 kW for O3 and will be higher for the subsequent observation runs. Even with

absorption only in the range of 0.2 − 0.8 parts per million, the induced substrate

lensing can be significant. The Thermal Compensation System (TCS) [62] [17] [91]

[84] was developed to correct the wavefront by applying heat to cancel the deformities

caused by interferometer heating. Ease of lock acquisition and gravitational-wave

noise minimization are the main criteria for success when commissioning most LIGO

systems. To aid in the former, TCS is required to thermally lens the ITM substrate

such that the optical path difference is minimized for the carrier and sideband power

recycling gains.

To optimize the TCS settings for the best power build-ups, there are two sepa-

rate strategies: The first requires estimating the amount of absorption on the test

masses with the Hartmann Wavefront Sensors to measure the optical path distortion

induced by the interferometer during a lock loss. Then pre-load the ring heaters with

the nominal settings which would cancel carrier beam’s thermal absorption in the

“hot” state. The ring heaters have a very long time constant (30 hours) to reach

thermal equilibrium with a step response of electrical power, so if there is compensa-

tion needed, the heaters must be energized at all times. However, turning them on

will change the radius of curvature and induce a substrate lens (see Section 6.4.2) that

has to be canceled out by the CO2 (Carbon Dioxide) lasers which create a lens on the

compensation plate of the quadruple pendulum. Since the CO2 lasers have a time

constant of approximately 0.5 hours, they can be turned up during lock acquisition

and reduced as needed when the interferometer input power is increased.

The second method is to use relevant interferometer RF signals at various ports

to experimentally adjust the lensing commonly or differentially to maintain power

recycling build-ups while increasing the interferometer input power. In principle,

either method should lead to the same answer but in practice, both are used to find

the nominal thermal compensation configuration. The section below describes how

to tune the Hartmann Sensors and how the system can be used to determine the

uniform absorption.
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6.4.1 Hartmann Wavefront Sensors

All estimates of steady-state curvature changes due to heating by the main interfer-

ometer beam depend linearly on the absorption. This can be quite difficult to detect

when the coating absorption are typically less than one part in a million.

In order to diagnose this effect, the Hartmann Wavefront Sensors (HWS) [13] [85]

was developed by Adelaide and Caltech [15] [16]. It uses an auxiliary beams and

charged-coupled imaging devices (CCD) to sense the wavefront distortions formed by

heating from the interferometer beam during power up and a lock loss. Currently,

there are four Hartmann sensors installed at each test mass, which are injected from

the AR surface side of the optics. Technical constraints require the ITM HWSs

optical paths to differ from the ETM HWSs but the concept is still the same, so for

brevity, only the ITMs HWSs will be discussed in detail. In Figure 36, the system

starts with an auxiliary super-luminous LED (SLED) beam being injected into the

vacuum system and a telescope (Lens 1, Lens 2) which collimates/expands the beam

to sample a space 200 mm in diameter on the test mass HR surface. The return

beams are picked-off and sent to a CCD with a Hartmann plate mounted on the front

which effectively decompose the wavefront into individual rays. Using a wavefront

from a previous time with a cold optic as a reference. The Hartmann code creates

a gradient vector field between the two times which have information about thermal

lensing. Then numerically integrates the gradients to fit a wavefront field which is

normally referred to as the optical path distortion in length units. The algorithm

then uses the Zernike polynomials as a single basis to represent the effective thermal

lens. [14]

Tuning the Hartmann Sensors

It was found that the CCDs (Dalsa pantera 1m60) had a number of hot pixels, which

would create large spikes in their intensity counts and these produce large artifacts

in the gradient plots that corrupted the spherical lens fitting (see Figure 38). One of

the requirements for the HWSs is a wavefront distortion resolution of 1.35 nm [17]

and a single hot pixel could register a few orders of magnitude higher. A solution for

this was implemented by using the dark images to locate the bad pixels by averaging

the counts over a few minutes and finding all the pixels which have counts higher
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Figure 36 : ITM Hartmann sensors optical layout. The path for injection is different for the

two Hartmann sensors which use separate wavelengths to take advantage of the main beamsplitter

AR/HR surface reflectivity. The ITMX (magenta) and ITMY (green) probe beam wavelengths are

800 nm and 833 nm, respectively, and have a 40 nm linewidth [17]. The beams are sent into the

vacuum system and retro-reflected off their respective optics back towards the pick-off mirrors before

going into the CCDs with a Hartmann plate attached. The cameras are then sent via fiber to a

computer that runs the analysis pipeline on the images and exports the data to EPICS so the users

can interface with the real time digital system in the control rooms.
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Figure 37 : Noise spectra for the HWS spherical lensing. Taken from [17], this puts a lower

bound on the Hartmann sensitivity to distortions for various time scales.
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than a particular threshold, generally 1.5 times above the average ambient dark noise

level (about 50 counts). The dark frames would be read in by the Hartmann code,

which uses the dark images as a reference to find the average of surrounding pixels

and replace the problematic pixel. This digital procedure greatly reduced the impact

of hot pixels in the Hartmann sensor data.

Another source of systematic error was from beam clipping along the in-vacuum

beam path on the ITMX HWS, see Figure 39. This creates diffraction fringes which

are extremely sensitive to misalignment; one fix that was applied to reduce this noise

was to digitally mask the fringes so they do not confuse the fitting algorithms. Hand

tuning must be done so that the mask is wide enough and centered around the

interferometer lensing but not so large that the Hartmann fitting is corrupted by the

fringes. Two in-air periscope mirrors with pico-motors were used for alignment, but

beam clipping could not be fully removed. This artifact was also found at LLO so

it suggests a design flaw in the initial alignment scheme. A possible fix could be

implemented by replacing an in-vacuum steering mirror with a pico-motor that could

be aligned remotely.

When increasing the input power into the interferometer, there were large spikes

associated with the spherical power estimation on the ITMX corresponding to time

scales of less than a second which is not likely due to lensing from uniform absorption.

This was eventually tracked down to a leakage beam caused by stray light from

the interferometer. At times, the leakage beam was 40% the intensity of the main

Hartmann beam which severely distorted the fitting algorithms. ITMY HWS did not

see this effect because SR2 is such a good high reflector and attenuated any 1064 nm

contributions down to the ppm level.

Measuring Uniform Absorption

After the arm power drops suddenly, the lensing decays exponentially at a rate that

depends on the amount of absorption on the high reflective surfaces of the arm cavity.

Using the HWS, it is possible to fit the decay rate to a finite element model of a

cylindrical mass in order to solve for a single uniform absorption estimate. It is

extremely important to have reliable measurements to aid in pre-determining the

amount compensation necessary to prepare the test masses for lock acquisition.

Figure 43 shows the measured spherical power from interferometer heating for
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Figure 38 : ITMX Hartmann Sensor output. Between the reference and current times for this

measurement, no heating was applied to the test masses so the expectation is a relatively flat and

smooth wavefront. This is mostly true except for a large, anomalous arrow at pixel coordinate [X,Y]

= [-410, 405] of the gradient plots (upper right) which leads to a false wavefront distortion in the

same area for the contour plot (lower right). The sharp iris in the middle represents a digital mask

that is can be turned on to reduce the effects of fringing. A histogram in the bottom left plot shows

the intensity distribution for each of the gradients; if the HWS beams are co-aligned well with the

interferometer beam, then most of the information about thermal lensing occurs near the center of

the intensity distribution.
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Figure 39 : Clipping on ITMX Hartmann Sensor. A source of systematic error found at both

sites when trying to simultaneously align ITMX and ITMY Hartmann Sensors. The CCD spot

positions are very sensitive to the SR3 alignment so control loops and initial alignment are not

recommended for this particular optic. An in-vacuum pico-motor may help alleviate the clipping.

ITMX/ITMY and comparing the two optics shows that the spherical power difference

for ITMY is almost a factor of 2 larger than ITMX. Applying an Markov Chain

Monte-Carlo method allows some statistical uncertainty estimates for the exponential

fitting to the data shown in Figure 44, where the priors are assumed to be random

Gaussian noise and the initial guesses are scaled roughly with a least squares fitting

algorithm. One of the main differences between the O2 and O3 observing runs was

the replacement of ITMX, ETMX, and ETMY test masses. With a fully running

Hartmann Sensor system in place which monitors the wavefront curvature across

the optic, long-term trends over the observation runs will be able to determine how

absorption changes as a function of time and whether test masses have an innate

lifetime. This will be particularly important if the next generation of detectors use

much higher power levels in order to achieve better high frequency sensitivity [18].

Using this method, the current absorption estimates for the H1 input test masses are

as follows:
AITMX = 328± 84 ppb

AITMY = 688± 85 ppb
(6.179)
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Figure 40 : A time series of the interferometer power increase sequence. During this

time, the interferometer is using DC-readout and locked at 2 watts of PSL input power with all

of the angular control loops closed with high-bandwidth, in this configuration, the power recycling

gain is approximately 45. The left figure shows the increase of PSL input power (bottom) and the

CO2 lasers (top two) stepping down in power where levels of compensation were experimentally

determined such that the angular control loops were stable and sideband build ups remained as high

as possible. The right plot shows the Hartmann sensor spherical power as a function of time with

the starting point scaled to zero micro-diopters for ITMX and ITMY. Although the point absorbers

do not exhibit the same spatial structure as uniform heating so it is difficult to derive absolute

absorption for ITMY, the spherical fitting gives some information about the relative scale of heating

absorption between the two optics.

6.4.2 Ring Heater and CO2 Laser Commissioning

To counteract the effects of interferometer heating, Advanced LIGO uses a ring heater

[75] [88] which has two heating elements mounted on the suspension cage. Each of

them are comprised of a semi-circular glass cylinder that is wrapped by nichrome wire,

which has current running through the wire to radiate an annular heating pattern.

The ring heaters will have two effects: it will induce a substrate lens and a radius of

curvature change. As shown in Section 6.1, the carrier beam will not see the substrate

lens but the radius of curvature difference will change the overall modal shape of the

cavity. Similar to the distortion derived in section 6.2 where the thermo-refractive
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Figure 41 : ITMX gradient plots (left) and wavefront maps (right) during a power up to

30 Watts of input power. It is important to note that there is a back-reflected stray beam from

the super-luminous LED that is incident in the bottom left portion of the camera which is digitally

cropped out during the real-time analysis. As previously noted, this particular Hartmann sensors

suffers from beam clipping on the right side of the image which adds to the systematic noise. A blue

cross denotes the origin which is fitted with the Zernike polynomials to derive a spherical power.

The arrow lengths in the gradient plots are normalized to each individual plot and are meant to

guide the eye in discerning the directionality and pattern of lensing.
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Figure 42 : ITMY gradient plots (left) and wavefront maps (right) during a power up

to 30 Watts of input power. Compared to the ITMX phase map in Figure 41, ITMY has a

much larger overall heating pattern and higher spatial frequencies in the contours which was the

first clue that revealed multiple (possibly 4) point absorber on the test mass. There is also a halo of

gradients on the outer rim of the plots which is most prominent on the lower left corner. This is due

reducing the CO2 laser power in an attempt to compensate the lensing effects as the interferometer

beam heats up the test mass. The overall scale of self-heating with the higher spatial frequencies of

the point absorbers makes it very difficult to compensate with using the CO2 lasers as designed by

Advanced LIGO.
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(a) ITMX absorption

(b) ITMY absorption

Figure 43 : Thermal lensing as seen by the ITM Hartmann Sensors after a lock loss. A

finite element simulation from COMSOL shows an impulse response which resembles an exponential

decay can be linearized and fitted to the spherical power. The model assumes a beam size of 54

mm and 1 Watt of uniformly absorbed power then uses MCMC to fit the offset and scale to the

data. Comparing ITMX and ITMY at Hanford shows a huge overall difference between the two

optics, mostly due to the fact that ITMY has multiple point absorbers adding to the absorption

estimate. In addition, fitting ITMY data points with the model does not seem to agree very well

which indicates extra physics that stems from non-uniform heating by a 54 mm beam.
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(a) ITMX (b) ITMY

Figure 44 : Posterior distributions from fitting the Hartmann sensor spherical power.

Using the MCMC Hammer [44] to fit the finite element model from Figure 43, the two open param-

eters to solve for the decaying exponential is the amplitude and the decay rate which is related to

the level of uniform absorption.

effect dominates when dealing with a Gaussian beam, the same is true from the ring

heaters.

After using the Hartmann sensors to determine the absorption and pre-loading

the ring heaters to compensate the interferometer lensing, the fact that the substrate

is cold makes lock acquisition difficult. Therefore, it is necessary to use CO2 (Car-

bon Dioxide) lasers to mimic the interferometer’s heating by delivering heat to the

compensation plate. The CO2 lasers are located on each input test mass chamber

and injected through a double zinc selenide viewport, then two steering mirrors direct

the heating beam to the compensation plate of the reaction mass. In initial LIGO,

the CO2 beams were injected onto the high reflectivity surfaces of the test masses

which created both a radius of curvature on the cavity side and a thermo-refractive

change in the substrate. However, in advanced LIGO, the CO2 lasers will only affect

the substrate lensing. Tuning the CO2 power will have a dramatic effect on the in-

terferometer auxiliary degrees of freedom because the sidebands get rejected by the

arm cavity and only resonate in the recycling cavities. The self-heating caused by
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Substrate HR surface Compensation Plate
Self Heating *4.9e-4 *-3.6e-5 N/A
Ring Heater -9.0e-6 *9.9e-7 N/A
CO2x N/A N/A 1.5e-5
CO2y N/A N/A 2.5e-5

Table 5 : Single pass actuator lensing calibrations for aLIGO TCS in micro-

diopters/Watt. The asterisks indicate the values are extracted from a model and the measured

values use the Hartmann sensors which cannot distinguish between surface and substrate lensing,

however, the latter is larger by an order of magnitude. CO2x and CO2y were measured to be dif-

ferent in their actuation strength which could stem from either misalignment or a misplaced central

mask. The uncertainty is expressed by the last digit available.

the interferometer beam is assumed to have a Gaussian intensity profile, while the

CO2 heating beam is meant to have a uniform profile across the test mass surface

which allows for a consistent phase distortion as a beam passes through the substrate.

Settings for the ITM ring heaters and CO2 lasers are calculated in Figure 45 based off

the Hartmann measurements. Adding the effect of pre-loading will inherently change

the Gaussian mode overlap between the x-arm and y-arm. Using equation D.221, one

can directly calculate the power overlap between a pre-loaded cavity and the original,

as it turns out, the effect varies the overlap by less than 0.1% so the addition of ring

heater power for O3 will not change the modal contrast defect by much.

Determining the ITM ring heaters and CO2 power levels still leaves the end test

mass ring heaters to be set. In Figure 46, the goal is to maintain the mode matching

between the arms while simultaneously searching for the optimal overlap with the

power recycling cavity. This is done by determining the spatial mode overlap between

all three cavities (XARM, YARM, and PRC). The linear portion of the graph shows

a combination of common and differential adjustment of each ETM ring heater that

keeps the mode matching between the arms at less than 1 ppm by calculating the

Gaussian beam overlap. Once that region is found where both arms are well mode

matched, sampling the ara where there is maximal mode overlap with the power

recycling cavity can be determined and is shown with contour plots.
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Figure 45 : Calculated TCS settings to balance the substrate lens. The nominal circulating

power denoted by the vertical blue line is a function of the input power, the recycling gain, and

the arm cavity gain. The nominal input power for O3 will be 50 Watts and the power recycling

gain is around 45. The arm cavity gain can be estimated by calibrating the transmitted power

from each of the arms and is approximately 228. The horizontal, dashed turquoise line represents

the nominal substrate lens with a focal length of 50 km. The total substrate thermal lensing from

ring heaters, CO2 lasers, and interferometer heating should sum up to the turquoise line. The left

column of graphs show the necessary ring heater and CO2 laser powers required to compensate the

interferometer heating. The left column of graphs show the required CO2 power if the ring heaters

are constantly energized during lock acquisition because their thermal time constants are on the

order of a few hours. The spread in the estimates stem from uncertainty in the uniform absorption

which is crucial in determining the correct TCS settings
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Figure 46 : Mode matching the arm cavities to the power recycling cavity.



105

6.5 Point Absorbers

Up till now, all actuators models, and measurements assumed uniform absorption

across the optics which results in second order Hermite-Gauss coupling with the

fundamental Gaussian beam . As it turns out, the instrument is not so simple. One

of the main successes for the Hartmann Wavefront Sensors have been the ability to

find excess absorption due to point absorbers on the high reflectivity surfaces of the

test masses. During the second observation run (O2), there was an absorber found

on ITMX that made increasing the input power past 30 watts extremely difficult and

futile because of increased coupling intensity noise into DARM. The exact origin of

these point absorbers is still an active area of research but incursions into the vacuum

system will always pose a risk of spreading particulate on the HR surfaces.

Part way into commissioning for O3, another point absorber on ITMY

was detected that showed similar characteristics. Since their spatial frequen-

cies are much higher than the uniform absorption, many of the models for scattered

power and thermal effects require significant adjustment to predict the interferometer

behavior. To decompose the differential phase map into the Hermite Gauss basis re-

quires a relatively high order and makes full interferometer simulations very difficult.

For example, FINESSE calculations on a laptop tend to become unwieldy at around

n+m = 6. The high spatial frequency of point absorbers affects the HWS’s ability to

properly evaluate a singular thermal lens from the interferometer, therefore changing

the estimated absorption.

A way to separate the point absorber effect from uniform absorption could be

considering the temporal effects which quadratically depend on the point absorber

size. The thermo-refractive transient solution found in Vinet [87] has the form

ZTR(t) ∝ 1− exp{−t/τ} (6.180)

where τ =
ρCw2

pa

3κ
is the characteristic time constant that depends on the beam size

wpa, the thermal conductivity κ, the specific heat C and the material density ρ. A

simple model can consist of two beams with different sizes which will have separate

time constants. Another interesting way of characterizing what can be compensated

for O3 could be to Fourier transform the optical path distortion and low pass the

high spatial frequency components with a Gaussian filter. The cut-off frequency can
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be estimated by the approximate point absorber size (10-20 mm). Of course, early

detection and replacement of an optic may be the most efficient way to avoid custom

thermal compensation. Figure 47 shows a comparison between ITMX and ITMY

while the interferometer is increasing input laser power from 2 to 30 Watts. Within

the first few hundred seconds, the point absorbers begin showing up in the optical

path distortion map.

There are two main parts which allow point absorbers to adversely affect inter-

ferometer performance. The first is scattering from the arm cavity that takes away

carrier light and couples to higher order modes, and secondly, the thermal lens in the

substrate distorts the power recycling cavity for the sideband build ups dramatically.

An interesting coupling that was discovered which the point absorbers could be

responsible for is higher order mode 9 Mhz leakage through the OMC. Generally, the

OMC is very good at rejecting both the sidebands and first few higher order modes

but the addition of point absorbers couples greater spatial frequencies than antici-

pated. Careful analysis by Koji Arai [6] shows the Hanford OMC can allow some 9th

order Hermite Gauss modes from the 9 MHz sidebands onto the OMC DCPDs. This

coupling should provide a decent metric for indicating the point absorber’s induced

noise on the interferometer.

During commissioning periods, the highest starting priority is to achieve full res-

onance as quickly as possible, and that is easier to accomplish using approximately 2

W of input laser power. This requires locking the arm length stabilization (ALS) sys-

tem with 532 nm, the vertex degrees of freedom (DRMI) and complete the common

arm length (CARM) transition. Additionally, closing all angular degrees of freedom

(ASC) will take a lot of time and energy. If major upgrades or fixes have occurred

such as replacing main test masses then all the prior steps require many months of

commissioning. Generally, vacuum incursions into the main vertex cost the most time

and money because of the large volume needing to be pumped. All this is to say:

the earlier point absorbers are detected, the better. However, this requires a high

level of arm power which historically has come much later on the road to nominal low

noise. In Figure 37, the signal-to-noise ratio is 10 at 0.01 Hz for 37.5 mW of absorbed

power which means the circulating arm power must reach at least 75 kW (assuming

absorption is approximately 0.5 ppm) to be detectable within the time constant of

point absorbers.
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The power recycling gain for a single arm is described by

gPRC’ =

∣∣∣∣ tp
1− rpr1

1
2

∣∣∣∣2 ≈ 0.12 (6.181)

where the factor of 0.5 comes from the main beamsplitter. This is much different

than a gain of 45 for a full interferometer but it is still a factor of 4 larger than

direct transmission through the PRM. So with a single power recycled arm cavity the

expected circulating power absorbed on the HR surface of the test masses is

P1-ARM = Pin ∗ gARM ∗ gPRC’ ∗ εa

≈ 0.94 mW

[
Pin

70 Watts

] [
gARM

225

] [
gPRC’

0.12

] [
εa

0.5 ppm

] (6.182)

where the coefficient εa is the estimated absorption from a point absorber. Using

Dsub ≈ 487 µD
1 Watt

as the modeled conversion from absorbed power to steady-state

spherical thermal lensing, the expected substrate lensing in units of micro-diopters

[µD] is

S1-ARM = P1-ARM ∗Dsub ≈ 0.46 µD (6.183)

which is not detectable by the current Hartmann sensors but the overall effect will be

dependent on the absorption coefficient. Commissioning and installation schedules

are ever-changing entities and there have been times when the end stations are not

ready for integration simultaneously. This provides a window where only single arm

commissioning is available so this method may be able to detect the existence of point

absorbers much sooner.

Once these anomalies are found, the question remains, what can be done?

One consideration is a complete re-design of Thermal Compensation to account

for higher frequency spatial corrections. There are already custom masks at Hanford

which are designed to smooth the optical path distortion in the substrate and can be

implemented with the CO2 lasers on the compensation plate to increase the sideband

build ups, which is one of the biggest difficulties associated with point absorbers.

However, this does not solve the fundamental problem of losing power recycling gain

due to power scattering where the quadratic losses of the arm cavity set an upper

limit for increasing power. Another way to avoid these effects is to move the beam



108

spot away from the point absorber on the HR surface but it must be sufficiently far

or the odd higher order modes will couple very strongly with asymmetry. These two

strategies are not necessarily orthogonal since moving the spot position changes the

required correction mask.

In terms of noise, the 9 MHz RIN coupling to the OMC DCPDs could be reduced

by changing the OMC transverse mode spacing by locking on a different carrier res-

onance a free spectral range away. The introduction of a well-tuned custom mask

should also reduce higher order mode content in the recycling cavities.
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Figure 47 : Comparing 3-D plots of the optical path distortion for ITMX and ITMY test

masses after powering up the interferometer. The horizontal axes represent the test mass

coordinates as seen on the Hartmann sensors and the vertical axis is the optical path distortion

in units of nanometers. The color map is scaled for each plot and is meant to show particularly

hot areas and roughly compare the high frequency spatial distribution of point absorbers. Plots in

the left column (ITMX) have smooth spatial features that stem from uniform absorption and the

effects are not prominent till after approximately 500 seconds. In contrast, plots in the right column

(ITMY) have very sharp spatial features which already rise above the floor at 200 seconds into

powering up. Comparing the overall surface deformation on the same scale, the difference between

ITMX and ITMY is striking and it is clear how an interferometer with point absorbers on the surface

will struggle to increase powers above 200 kW within the arm cavities.
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6.6 Higher Power Operation

The goal for O3 is 150 kW of circulating power in the arms. With the sensors and

tests described in the preceding sections, a cohesive plan to pre-load the interferometer

was implemented in order to achieve stable higher power operation in the detectors.

Generally, the Thermal Compensation System has two goals: Firstly, the actuators

are used to pre-load the test masses with heat in anticipation of the lensing due to the

interferometer while operating at full lock and higher power. Secondly, the amount of

mode-matching between the coupled cavities must be optimized in order to achieve

the best sensitivity. Using the absorptions measured in Figure 43, it is possible to

estimate the total amount of lensing from self-heating as a function of input power

(see Figure 45).

In principle, the Hartmann measurements of absorbed power should provide suf-

ficient information to pre-load the interferometer in anticipation of 50 W of input

power. The biggest difficulty associated with implementing this thermal compensa-

tion scheme was consistently locking DRMI in high micro-seismic conditions. This

could be attributed to misalignment of CO2 lasers to the test masses, which were

initially aligned using the Hartmann sensors and double-checked by cycling the lasers

on/off to measure the single bounce interferometer beam deflection at the anti-

symmetric port. At Hanford, this difficulty for reliably locking the interferometer

forced a reduction in pre-loading, so with the combination of estimates provided by

the Hartmann Sensors and experimentation with the CO2 power levels at each stage

of increasing the PSL power, the interferometer is able to consistently lock at 30

Watts of PSL input power and ≈ 140 kW of circulating arm power.

During the early phases of commissioning for higher power at Hanford, most of the

lock losses occurred when the 18 MHz sidebands in transmission at PR2 (POP-18)

would fall below a certain threshold level of approximately 70% of buildup compared

to locking at 2 W of input power. This effect was not observed at Livingston and

can be attributed to the point absorber that uniquely contaminated H1-ITMY. To

study the effects of differential uniform lensing in an interferometer, FINESSE is able

to simulate the POP-18 signal at the power recycling pick-off port demodulated at

18 MHz which shows the sideband power buildup in the power recycling cavity (see

Figure 49). In this particular simulation the differential lensing requires finding a new
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Figure 49 : Model of POP-18 as a function of differential thermal lensing using FINESSE.

The horizontal axis is differential lensing between the ITMX/ITMY substrates and the vertical axis

represents the normalized power when locked with nominal mode matching. Even with modest

differential lensing (10 microdiopters), the buildup drops by 20 percent and eventually the simulation

has trouble maintaining resonance, similar to the actual interferometer.

operating point to continually lock the longitudinal degrees of freedom. Additionally,

the simulated sensors which are used to maintain resonance and measure the RF

power need to be re-phased; this agrees with the analytical calculation mentioned in

Section 6.1.1 where the carrier power recycling gain is not as adversely affected by

the substrate thermal lens compared to the sideband fields.

In the ideal mode matching scenario, the carrier and sidebands resonate differently

in the power recycling cavity; where the 9 MHz modulation sidebands has approx-

imately a factor of 10 larger finesse than the carrier [57]. However, this assumes a

lossless interferometer and needs to be revisited in the presence of substrate thermal

lensing. As with all Pound-Drever-Hall locking, an error signal relies on the static and

varying field accumulating different phases to lock the cavity. As lensing causes more

losses for the sideband compared to the carrier, the difference in accumulated phase

between the two fields is reduced hence the optical gain starts to diminish. For the

current Advanced LIGO configuration, all vertex degrees of freedom (PRCL, SRCL,

MICH) utilize the POP port for their error signals shown in Figure 50. The degra-

dation can be estimated by injecting a dither line into each degree of freedom and

digitally demodulating the respective sensors at the excitation frequency, see Figure

51. This provides insight on how much the optical gain/phase shifts as a function

of heating. When powering up to 30 Watts, the loss of optical gain in PRCL is al-

most 80% with a 10 degrees phase shift, which enough to drive the system towards
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Figure 50 : Vertex open loop transfer functions while in Nominal Low Noise. The nominal

UGF for PRCL is around 45 Hz.

an unstable loop. This can be compensated by adjusting the digital gain but that

fix is only temporary because the problem stems from an optical loss so eventually,

the error signal will have no linearity about the zero-point. Alternatively, searching

for optimal thermal compensations settings to undo these losses can be very time

consuming because of the long thermal time constants and in the case of point ab-

sorbers, the current thermal compensation system is not designed to correct the high

spatial frequencies. As previously mentioned, one of the main limiters to higher power

operation will be reducing the optical loss from mode mismatch.
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Figure 51 : Measuring vertex optical gains as a function of heating. At time t=0, the power

begins increasing from 2 watts of input power to 20 watts. In PRCL, there is a reduction to 80% of

the starting magnitude and 7.5 degrees of phase rotation with the first power increase. At 0.9 hours,

the input power goes from 20 to 30 watts and the magnitude drops to about 30% of the original

gain which results in a lock loss. As for the SRCL and MICH degrees of freedom, there are slight

changes first power increase but not nearly as bad as PRCL.
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Figure 52 : OPO to OMC cavity scanning for various Lens2 positions. The top figure has

the lens closest to the OPO along the propagation axis, the middle figure represents Lens2 at half

the actuation range and the bottom figure shows the lens furthest from the OPO. During this time,

the OMC ASC control loops were closed on the reflected QPDs to minimize the odd order mode

coupling.

6.7 Mode Matching from the OPO to the OMC

As mentioned in Chapter 2, one of the main limitations to effective squeezing is mode

mismatch which needs to be characterized carefully. Generally, the mode exiting the

OPO and OMC cavities are accurately determined from design values but the path

lengths and mode profile was measured and the results are presented in this section.

Using the OMC as an optical spectrum analyzer is one simplest methods for

understanding the mode matching coming out of the interferometer. In a single

bounce configuration, measuring the ratio between the second order mode and the

fundamental gives a first look at the limit of matching. Similar techniques can be
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used with the squeezed beam as well and during commissioning of the squeezer, a

mode mismatch between 12-17% was observed which led to a re-design of the OPO

to OMC optical path. Figure 52 shows the results for scanning the OMC length using

PZT2 with the ASC control loops closed on the reflected QPDs to minimize odd-order

mode coupling. The measurements were taken in-air which made the results rather

noisy so before the peak-finding algorithm tries to fit the 00 or 02 modes, the data is

low-passed with a corner frequency of 1kHz.

Using a well-calibrated mode profiler that measures beam sizes along the propa-

gation axis is the most direct way of determining OPO to OMC mode matching. This

method can also predict the actuator Gouy phase of the second lens after the OPO,

which is on a translation stage with approximately 4 centimeters of range. Generally,

the length measurement between optics is the largest systematic error especially in

the near-field where beam sizes do not change very much as a function of ẑ. In addi-

tion, places to put a beam profiler become very limited as HAM6 becomes crowded

with optical components. In preparation for squeezing in Advanced LIGO, the mode

matching from the OPO to OMC was measured and found to be approximately 88%

at best. When implementing a telescope with fast lenses, the distances between optics

must be stringently characterized but the OPO platform is very crowded along the

output path so it was very difficult to accurately measure the path lengths with a

ruler. Between the second lens and ZM1, the table is much clearer and by removing

Lens2, the Gouy phase is approximately in the far-field which means the distance

measurements can be more easily measured as a function of beam size. Figure 53

shows the results of characterizing the OPO output mode as it enters HAM5 by re-

moving Lens2, a fit constrains the Lens1 positioning and the OPO mode is assumed

from its design document [70].

With the poor mode matching shown in Figure 54, the fast telescope lenses needed

to be replaced, or otherwise, risk being the limit to effective squeezing for O3. The

available range in the translation stage did not allow for increased matching and the

crowded OPO platform did not permit coarse moves of Lens1. In addition, moving

the translation stages for Lens2 closer to the OPO cavity does not gain any extra

mode overlap. The next option was replacing the lenses with a solution which did

not incorporate large actuation range but was more suited for mode matching. There

were a few clean lenses available that provided the right solution but greatly reduced
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the translation stage efficacy, on the other hand, this made the telescope placement

much more robust to path length errors which is the original problem to begin with.

The new model is shown in Figure 55 where the lenses are now fnew
Lens1 = 250 mm and

fnew
Lens2 = 350 mm where Lens1 is closer to the OPO output. The calculated overlap in-

tegral between the expected OMC mode and the squeezer is on the order of 99% with

very little sensitivity in the Lens2 positioning as expected. Follow up measurements

with OMC scans in-vacuum indicate approximately 95% mode matching between the

OPO to SRM and back to the OMC, this is due to the astigmatism mentioned pre-

viously that is still prevalent after changing the lenses. However, the mode matching

from the OPO to ITMs and back to the OMC shows 99% mode matching with the

new lens configuration [19] which is effectively the path of squeezed light. It is im-

portant to note that measurements taken in-vacuum had pre-loaded TCS settings in

anticipation for 50 W.

For future implementations of high sensitivity telescopes, length measurements

between optics will need to be more stringently constrained with specialized tools

such as laser range finders or mechanical jigs while simultaneously re-confirmed with

profile scans to understand the laser beam entering the interferometer. Distances

between optics were the largest source of uncertainties in these measurements so

understanding the optical path length will help curb the systematic errors.
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Figure 53 : Mode measurement from the OPO. The results without Lens2 are shown in black

for two transverse directions (x/y) and constrain the distance of Lens1 relative to the OPO output.

Then, Lens2 is replaced back in its original position on a translation stage at half the range and

measurements were taken in order to constrain the distance between Lens1 and Lens2. The beam

sizes were fit to find the Gaussian q-parameter entering HAM5. There is some slight deviation in

the transverse directions after Lens2, possibly from misalignment of the lens. This method seems to

provide a good model of what beam is being injected from the squeezer side.
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Figure 54 : Projecting the modes from the squeezer to the OMC. Determining the actuation

range with the translation stage using the as-installed focal lengths, fLens1 = 111 mm and fLens2 =

334 mm, showed that the mode matching into the OMC was at most 80% with various translation

stage positions with “Close” referring to the position of Lens2 relative to the OPO cavity. Here,

crosses represent the transverse-x direction and pluses denote the transverse-y orientation. One very

interesting feature is that the astigmatism as measured seems to be worse after re-entering HAM6

from HAM5 and is not explainable by the slight deviations shown in Figure 53, so it is possible

that some sort of clipping occurs while propagating through the main output Faraday isolator. Near

the OMC waist, the predicted mode shapes for different translation stage positions agree with the

measured beam sizes and power overlaps were confirmed to be accurate with OMC scans to within

a percent.
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Figure 55 : Repeated measurements with new lenses. The model tries a few different lens

solutions and settles on fnewLens1 = 250 mm and fLens2 = 350 mm, which severely limits the actuation

range. However, it shows approximately 97% mode matching for the fitted transverse-y data and

92% for the transverse-x data. Astigmatism which was already shown in Figure 54 is still prevalent

here and brings the average mode matching to 95% from the OPO to OMC in the single bounce

configuration.
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Chapter 7

Conclusions

The LIGO detectors are currently entering the engineering run to start observing

astrophysical events at the best network sensitivities ever achieved for binary neu-

tron star inspirals and both machines include upgrades to inject squeezed vacuum.

The mode matching work presented in this thesis helped reduce the optical losses at

Hanford and a parallel team implemented similar work at Livingston. In addition,

it has been shown that active wavefront control will need to be carefully considered

for future design phases for the next generation of laser interferometric gravitational

wave detectors where its difficulties are rooted in both the noise performance and op-

erational stability. It has also been shown that substrate thermal lensing from excess

absorption will be the critical limiter for increasing input power. The continuation of

engineering and science tasks are itemized below:

• Point Absorbers

– Early detection of point absorbers is crucial, so resonating each arm with

power recycling and maximal input power ahead of full lock acquisition is

a possible strategy for mapping out the optimal spot position on each test

mass.

– Corrections for the high spatial frequencies from point absorbers will re-

quire significant re-work of the current thermal compensation hardware

which is underway with custom masks for the CO2 lasers. This will help

with sideband build ups but does not solve the arm scatter losses which

limit the sensitivity improvement with increased higher power. However,
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it does provide the possibility of reducing the 9 Mhz higher order mode

RIN coupling which co-resonates in the OMC.

– For Advanced LIGO, POP sensors provide the most sensitive error signals

for the longitudinal vertex degrees of freedom [57][58][59]. However, in

the face of irreparable lensing from point absorbers, re-visiting the sensing

matrix for the available ports when the interferometer has reached thermal

equilibrium may yield a better sensor for locking PRCL.

• Global Mode Matching

– Even if the point absorbers are not present, to truly implement a system

that solves the mode matching challenges presented in LIGO, an active

control scheme that implements both sensors and actuators will be required

to span the degrees of freedom that are present in the interferometer.

Similar to the angular wavefront sensors already being used in LIGO at

the time of this writing, the active wavefront control system should be

expanded to a global sensing and actuation scheme, however, this adds to

an already heavy commissioning load in preparing for runs.

– The addition of mode converters and phase cameras will provide a glimpse

into the interferometer modal content which is crucial in determining the

upper limits of operating power. The effect of point absorbers on the inter-

ferometer noise is an on-going area of research but it is clear that increased

differential substrate lensing beyond the Advanced LIGO specifications will

increase the technical complications of high power operation.

• Hartmann Sensor Tunings

– Reducing the amount of in-chamber clipping on the Hartmann Sensors will

provide more accurate and reliable results to estimate the total absorption,

this can be done by replacing the in-vacuum steering mirrors with pico-

motors in preparation for the fourth observing run.

– Implementation of the current Thermal Compensation System still faces

challenges with reliable lock acquisition when pre-loading the ring heaters

in anticipation for 50 Watts of power but with the combination of careful
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Hartmann Sensor tuning and sufficient fine-tuning it is possible to obtain

the desired settings.

• Squeezer to Interferometer Mode Matching

– Integrating reliable path length measurements with beam profile scans will

make existing models more accurate which is important when using high

sensitivity telescopes.
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Appendix A

Resonator Formulas

Equation 2.40 describes the stability condition for a two mirror Fabry-Perot cavity,

but is worthwhile to derive the criterion for geometric stability from the ray matrix

tools commonly used in optics. The alignment of two plane waves traveling in space

can differ by two quantities: the axial and angular separations, y and θ, respectively.

These two quantities can be transformed via these optical matrices:

Lens:

F̂i =

(
1 0

− 1
fi

1

)
(A.184)

Curved Mirror:

M̂i =

(
1 0
2
Ri

1

)
(A.185)

Space:

D̂i =

(
1 di

0 1

)
(A.186)

Using these matrices, the periodic Fabry-Perot with two mirrors can be represented

by the matrix, (
ym+1

θm+ 1

)
= M̂FP

(
ym

θm

)
(A.187)

where

M̂FP = M̂iD̂iM̂iD̂i (A.188)

is the optical transfer matrix. The goal is to find a geometric condition that is
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dependent on the optical transfer matrix which keeps the axial displacement from

diverging. (
ym+1

θm+ 1

)
=

(
A B

C D

)(
ym

θm

)
(A.189)

which means

θm =
ym+1 − Aym

B
(A.190a)

θm+1 =
ym+2 − Aym+1

B
(A.190b)

Solving for ym+2

ym+2 = (A+D) ym+1 − det(M̂FP )ym (A.191)

Assuming a geometrical solution where ym = yoh
m and plugging into the equation

above,

h2 = (A+D)h− det(M̂FP ) (A.192)

which is a quadratic equation that has two solutions and can be further simplified if

the index of refraction for the entire system remains constant such that det(M̂FP ) = 1.

Plugging back into ym and doing some algebra

ym ∝ sin(mφ) (A.193)

where φ = cos−1(A+D
2

), which is also referred to as the round trip Gouy phase of the

cavity. In order for ym to be harmonic instead of hyperbolic and hence confined, this

condition must be met
|A+D|

2
≤ 1 (A.194)

By actually calculating the terms of M̂FP and doing even more algebra, it is clear

that

0 ≤
(

1− L

R1

)(
1− L

R2

)
≤ 1 (A.195)

which is what was stated in equation 2.40. There is a simpler and less algebraic way

to reach the same conclusion by looking at the Rayleigh range of a finite Gaussian

beam for a simple cavity. In Table II of Kogelnik and Li [61], there is an expression

for the Rayleigh range
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z2
R =

L(R1 − L)(R2 − L)(R1 +R2 − L)

(R1 +R2 − 2L)2

=
g1g2(1− g1g2

(g1 − g2 − 2g1g2)2

(A.196)

If the Rayleigh range is a real number, then once again, equation 2.40 must be true.
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Appendix B

Hermite Gauss Normalization

According to equation 3.112, the higher order modes in the Hermite Gauss basis has

the intensity profile,

Imn(x, y, z) = |Amn|2
[
W0

W (z)

]2

G2
n

( √
2x

W (z)

)
G2
n

( √
2y

W (z)

)
(B.197)

It is useful to normalize the first few lowest order modes with respect to the total

optical power since the Gaussian beam will couple to them the most due either mis-

alignment or mode mismatch as seen in section []. In one dimension, the total optical

power for the first 3 modes are

P0(x, y, z) =

∫ ∞
−∞
|A0|2

[
W0

W (z)

]
e−2x2/w2(z)dx

P1(x, y, z) =

∫ ∞
−∞
|A1|2

[
W0

W (z)

]
8x2

w2(z)
e−2x2/w2(z)dx

P2(x, y, z) =

∫ ∞
−∞
|A2|2

[
W0

W (z)

](
8x2

w2(z)
− 2

)2

e−2x2/w2(z)dx

(B.198)
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In two dimensions, the total optical power for the first 3 modes are

P00(x, y, z) =

∫ ∞
−∞

∫ ∞
−∞
|A00|2

[
W0

W (z)

]2

e−2x2/w2(z)e−2y2/w2(z)dxdy

P10(x, y, z) =

∫ ∞
−∞

∫ ∞
−∞
|A10|2

[
W0

W (z)

]2
8x

w2(z)
e−2x2/w2(z)e−2y2/w2(z)dxdy

P20(x, y, z) =

∫ ∞
−∞

∫ ∞
−∞
|A20|2

[
W0

W (z)

]2(
8x2

w2(z)
− 2

)2

e−2x2/w2(z)e−2y2/w2(z)dxdy

(B.199)

By setting the equations above to unity, the normalization factors become

A0 =

(
2

πw2
0

)1/4

A1 =

(
2

πw2
0

)1/4
1√
2

A2 =

(
2

πw2
0

)1/4
1√
8

(B.200)

A00 =

√
2

πw2
0

A10 =

√
1

πw2
0

A20 =

√
1

4πw2
0

(B.201)
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Appendix C

Bullseye and Quadrant Photodiode

Characterization

Both RF and DC segmented photodiodes are widely used in LIGO’s sensing schemes,

however, the quadrant photodiodes (QPDs) are more readily implemented. Recently,

a bullseye photodiode has been installed upstream of the pre-mode cleaner to sense

the size and angular jitter noise contribution from the high powered oscillator. It is

useful to have angular sensors both upstream and downstream of optical cavities to

narrow down where jitter could be coupling into the optical path. That being said,

to calibrate the two types of sensors in common units, it is easiest to scale by beam

diameters.

C.1 Quadrant Photodiodes (QPD)

Calculating the QPD response to angular jitter is relatively straight forward. Be-

ginning with a Gaussian beam in rectangular coordinates that is displaced along the

horizontal axis by a small value ∆x and expanding to first order:

I(x, y) =

(
2

πw2

)
e−2

(x+∆x)2+y2

w2

≈
(

2

πw2

)
e−2x

2+y2

ω2

(
1− 4x∆x

w2

) (C.202)



131

Seg 1 Seg 2 Seg 3 Seg 4

Pit 1 1 -2 0
Yaw -1 1 0 0
Wid 1 1 1 -1
Sum 1 1 1 1

Table 6 : Bullseye photodiode sensing matrix.

Converting to polar coordinates where x = r cos θ and y = r sin θ then integrating

over the individual segments to get the power,

P =

(
2

πw2

)∫ ∞
0

∫ θ2

θ1

e−2 r
2

ω2

(
1− 4r cos θ

w2
∆x

)
rdrdθ

=
1

2
− [cos θ2 − cos θ1]

8∆x

πω4

∫ ∞
0

e−2 r
2

ω2 r2dr

=
1

2
− [cos θ2 − cos θ1]

∆x

2πω2

(√
2πω erf(

√
2r)

ω
)− 4re−2 r

2

ω2

)∣∣∣∣∞
0

=
1

2
− [cos θ2 − cos θ1]

∆x

w

√
1

2π

(C.203)

where θ1 and θ2 are the limits from ±π/2 for the right half and ∓π/2 for the left

half. Denoting the right and left segment as P2 and P1, respectively, it is possible to

subtract the halves and obtain a calibrated DC signal in units of beam diameter.

S = P2 − P1 = 2

√
2

π

∆x

ω
(C.204)

It is trivial to repeat the calculation for vertical displacements so it is left for the

reader to complete.

C.2 Bullseye Photodiodes

Similar to the QPD calibration above, it is possible to express pitch and yaw displace-

ments that are normalized to beam diameters. Additionally, the bullseye’s geometry

will give insight on the beam size jitter. A sensing matrix for these degrees of freedom

is realized in Table 6.
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C.2.1 Width

The bullseye’s calibration is determined in a similar manner to the QPD however, the

sensitivity will inherently depend on the beam size. To calculate what beam size is

optimal, first consider a power integral for a cylindrically symmetric Gaussian beam,

Power =

∫ B

A

|A00|2e
−2r2

ω2 2πrdr

= −|A00|2
πω2

2
e
−2r2

ω2

∣∣∣∣B
A

(C.205)

Plugging in limits for the equation where R is the boundary between the inner and

outer segments,

Pin = Power

∣∣∣∣R
0

= |A00|2
πω2

2
[1− e

−2R2

ω2 ] (C.206)

Pout = Power

∣∣∣∣∞
R

= |A00|2
πω2

2
[e
−2R2

ω2 ] (C.207)

The error signal comes from subtracting the inner segment from the outer,

SWID = Pin − Pout (C.208)

Minimizing the derivative with respect to the beam size will determine the optimal

width which gives the best sensitivity to beam size change,

∂SWID

∂ω
≈ 8R2

ω2

(
1− 2R2

ω2

)
= 0

⇒ ω =
√

2R

(C.209)

When determining the beam size, it is possible to measure the beam size directly by

fitting the power ratio. For example, if the constraint that ω =
√

2R then the power

ratio is,

DC Power Ratio =
Pout

Pin

=
e−2R2/ω2

0

1− e−2R2/ω2
0

≈ 0.582 (C.210)
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C.2.2 Pitch

To calibrate the pitch signal on a bullseye, first consider a Gaussian that is displaced

in the vertical direction,

IPit(x, y) =

(
2

πw2

)
e−2

x2+(y+∆y)2

w2

≈
(

2

πw2

)
e−2x

2+y2

ω2

(
1− 4x∆y

w2

) (C.211)

The integrated power for a given segment is,

PPit
θ1→θ2 =

(
2

πw2

)∫ ∞
R

∫ θ2

θ1

e−2 r
2

ω2

(
1− 4r sin θ

w2
∆y

)
rdrdθ

=

(
θ2 − θ1

2π

)
e−2R

2

ω2 + (cos θ2 − cos θ1)
1√
2π

∆y

ω

[
erfc

(√
2R

ω

)√
8

π

R

ω
e−2R

2

ω2

]
(C.212)

The error signal from a pitch displacement following Table 6 is,

SPit = PPit
seg1 + PPit

seg2 − 2PPit
seg3 = 3

√
3

2π

∆y

ω

[
erfc

(√
2R

ω

)
+

√
8

π

R

ω
e−2R

2

ω2

]
(C.213)

C.2.3 Yaw

Using C.202 and repeating the mathematics above, the power for an individual seg-

ment is

PYaw
θ1→θ2 =

(
2

πw2

)∫ ∞
R

∫ θ2

θ1

e−2 r
2

ω2

(
1− 4r cos θ

w2
∆x

)
rdrdθ

=

(
θ2 − θ1

2π

)
e−2R

2

ω2 + (cos θ2 − cos θ1)
1√
2π

∆x

ω

[
erfc

(√
2R

ω

)√
8

π

R

ω
e−2R

2

ω2

]
(C.214)

Plugging in the angles to get the signal response in terms of beam radius,

SYaw = PYaw
seg1 − PYaw

seg2 =
3√
2π

∆x

ω

[
erfc

(√
2R

ω

)
+

√
8

π

R

ω
e−2R

2

ω2

]
(C.215)
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Appendix D

Overlap of Gaussian Beams

When a cavity is mode mismatched to an incoming laser field, the amount of power

loss from scattering to higher order modes is quantified by the spatial overlap integral

between the TEM00 cavity eigenmode and TEM00 of the input beam. An arbitrary

Gaussian integral is defined as,

|A(r)〉 =
A0

q(z)
e
−ikr2
2q(z)

=
A0

q(z)
e
−ikr2(z−iz0)

2|q(z)|2

(D.216)

where A0 is a real amplitude, q(z) = z + iz0 is the complex beam parameter, k

is the wave number, and r is the radial variable in the transverse direction. Then

normalizing to unity,

〈A(r)|A(r)〉 =
|A0|2

z2 + z2
0

∫ ∞
0

e
−kr2z0
|q(z)|2 2πrdr = 1 (D.217)

A0 =

√
kz0

π
(D.218)

For a Gaussian beam with arbitrary q-parameters,

|Ai〉 =
A0,i

qi
e
−ikr2(z−iz0)

2|qi|2 (D.219)
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where z0,i is the waist size of one particular beam, the overlap integral for the ampli-

tude becomes

〈A1|A2〉 = 2i
z0,1z0,2

q1 − q∗2
(D.220)

So the power overlap is:

Power Overlap = | 〈A1|A2〉 |2 = 4
z0,1z0,2

|q1 − q∗2|
2 (D.221)

Essentially, mode matching an optical system only requires the designer to match the

incoming beam’s q-parameter to the cavity’s, so it makes sense that the final power

overlap depends only on the waist size and location.



136

Bibliography

[1] J. Abadie et al. Sensitivity Achieved by the LIGO and Virgo Gravitational

Wave Detectors during LIGO’s Sixth and Virgo’s Second and Third Science

Runs. arXiv, 2012. 6

[2] B. P. e. a. Abbott. Observation of gravitational waves from a binary black hole

merger. Phys. Rev. Lett., 116:061102, Feb 2016. doi: 10.1103/PhysRevLett.

116.061102. URL https://link.aps.org/doi/10.1103/PhysRevLett.116.

061102. i

[3] B. P. e. a. Abbott. Gw170817: Observation of gravitational waves from a

binary neutron star inspiral. Phys. Rev. Lett., 119:161101, Oct 2017. doi:

10.1103/PhysRevLett.119.161101. URL https://link.aps.org/doi/10.1103/

PhysRevLett.119.161101. i

[4] R. Abbott, R. Adhikari, G. Allen, S. Cowley, E. Daw, D. DeBra, J. Giaime,

G. Hammond, M. Hammond, C. Hardham, J. How, W. Hua, W. Johnson,

B. Lantz, K. Mason, R. Mittleman, J. Nichol, S. Richman, J. Rollins, D. Shoe-

maker, G. Stapfer, and R. Stebbins. Seismic isolation for advanced ligo. Clas-

sical and Quantum Gravity, 19(7):1591, 2002. URL http://stacks.iop.org/

0264-9381/19/i=7/a=349. 33

[5] D. Z. Anderson. Alignment of resonant optical cavities. Appl. Opt., 23(17):

2944–2949, Sep 1984. doi: 10.1364/AO.23.002944. URL http://ao.osa.org/

abstract.cfm?URI=ao-23-17-2944. 47

[6] K. Arai. H1 omc hom/sb resonant structure (and possible mitigation of 9th-order

9mhz sb resonance), 2019. URL https://alog.ligo-wa.caltech.edu/aLOG/

index.php?callRep=46667. 106

https://link.aps.org/doi/10.1103/PhysRevLett.116.061102
https://link.aps.org/doi/10.1103/PhysRevLett.116.061102
https://link.aps.org/doi/10.1103/PhysRevLett.119.161101
https://link.aps.org/doi/10.1103/PhysRevLett.119.161101
http://stacks.iop.org/0264-9381/19/i=7/a=349
http://stacks.iop.org/0264-9381/19/i=7/a=349
http://ao.osa.org/abstract.cfm?URI=ao-23-17-2944
http://ao.osa.org/abstract.cfm?URI=ao-23-17-2944
https://alog.ligo-wa.caltech.edu/aLOG/index.php?callRep=46667
https://alog.ligo-wa.caltech.edu/aLOG/index.php?callRep=46667


137

[7] M. Beijersbergen, L. Allen, H. van der Veen, and J. Woerdman. Astigmatic

laser mode converters and transfer of orbital angular momentum. Optics Com-

munications, 96(1):123 – 132, 1993. ISSN 0030-4018. doi: https://doi.org/10.

1016/0030-4018(93)90535-D. URL http://www.sciencedirect.com/science/

article/pii/003040189390535D. 47, 74

[8] P. G. Bergmann. Summary of the chapel hill conference. Rev. Mod. Phys., 29:

352–354, Jul 1957. doi: 10.1103/RevModPhys.29.352. URL https://link.aps.

org/doi/10.1103/RevModPhys.29.352. 3

[9] E. D. Black. An introduction to pound–drever–hall laser frequency stabilization.

American Journal of Physics, 69(1):79–87, 2001. doi: 10.1119/1.1286663. URL

https://doi.org/10.1119/1.1286663. 12, 15, 18

[10] D. G. Blair. The detection of gravitational waves. Cambridge University Press,

2005. 33

[11] C. Bond, D. Brown, A. Freise, and K. A. Strain. Interferometer techniques for

gravitational-wave detection. Living Reviews in Relativity, 19(1):3, Feb 2017.

ISSN 1433-8351. doi: 10.1007/s41114-016-0002-8. URL https://doi.org/10.

1007/s41114-016-0002-8. 58

[12] C. e. a. Bond. Finesse input files for the h1 interferometer, 2013. URL https:

//dcc.ligo.org/LIGO-T1300904. 25, 59

[13] A. Brooks, P. Veitch, J. Munch, and T.-L. Kelly. An off-axis hartmann sen-

sor for the measurement of absorption-induced wavefront distortion in advanced

gravitational wave interferometers. General Relativity and Gravitation, 37(9):

1575–1580, Sep 2005. ISSN 1572-9532. doi: 10.1007/s10714-005-0137-5. URL

https://doi.org/10.1007/s10714-005-0137-5. 91

[14] A. F. Brooks. Hartmann Wavefront Sensors for Advanced Gravitational Wave.

PhD thesis, The University of Adelaide, 7 2007. 91

[15] A. F. Brooks, T.-L. Kelly, P. J. Veitch, and J. Munch. Ultra-sensitive wave-

front measurement using a hartmann sensor. Opt. Express, 15(16):10370–10375,

http://www.sciencedirect.com/science/article/pii/003040189390535D
http://www.sciencedirect.com/science/article/pii/003040189390535D
https://link.aps.org/doi/10.1103/RevModPhys.29.352
https://link.aps.org/doi/10.1103/RevModPhys.29.352
https://doi.org/10.1119/1.1286663
https://doi.org/10.1007/s41114-016-0002-8
https://doi.org/10.1007/s41114-016-0002-8
https://dcc.ligo.org/LIGO-T1300904
https://dcc.ligo.org/LIGO-T1300904
https://doi.org/10.1007/s10714-005-0137-5


138

Aug 2007. doi: 10.1364/OE.15.010370. URL http://www.opticsexpress.org/

abstract.cfm?URI=oe-15-16-10370. 91

[16] A. F. Brooks, D. Hosken, J. Munch, P. J. Veitch, Z. Yan, C. Zhao, Y. Fan, L. Ju,

D. Blair, P. Willems, B. Slagmolen, and J. Degallaix. Direct measurement of

absorption-induced wavefront distortion in high optical power systems. Appl.

Opt., 48(2):355–364, Jan 2009. doi: 10.1364/AO.48.000355. URL http://ao.

osa.org/abstract.cfm?URI=ao-48-2-355. 91

[17] A. F. Brooks, B. Abbott, M. A. Arain, G. Ciani, A. Cole, G. Grabeel,

E. Gustafson, C. Guido, M. Heintze, A. Heptonstall, M. Jacobson, W. Kim,

E. King, A. Lynch, S. O’Connor, D. Ottaway, K. Mailand, G. Mueller, J. Munch,

V. Sannibale, Z. Shao, M. Smith, P. Veitch, T. Vo, C. Vorvick, and P. Willems.

Overview of advanced ligo adaptive optics. Appl. Opt., 55(29):8256–8265, Oct

2016. doi: 10.1364/AO.55.008256. URL http://ao.osa.org/abstract.cfm?

URI=ao-55-29-8256. 90, 91, 92, 93

[18] D. Brown. Personal Communication, 2018. 96

[19] D. Brown. 992018. URL https://alog.ligo-wa.caltech.edu/aLOG/index.

php?callRep=45511. 117

[20] A. Buonanno and Y. Chen. Quantum noise in second generation, signal-recycled

laser interferometric gravitational-wave detectors. Phys. Rev. D, 64:042006, Jul

2001. doi: 10.1103/PhysRevD.64.042006. URL https://link.aps.org/doi/

10.1103/PhysRevD.64.042006. 28

[21] S. M. Carroll. Spacetime and geometry: an introduction to general relativity.

Pearson, 2003. 1

[22] C. M. Caves. Quantum-mechanical noise in an interferometer. Phys. Rev. D,

23:1693–1708, Apr 1981. doi: 10.1103/PhysRevD.23.1693. URL https://link.

aps.org/doi/10.1103/PhysRevD.23.1693. 28

[23] C. M. Caves and B. L. Schumaker. New formalism for two-photon quantum

optics. i. quadrature phases and squeezed states. Phys. Rev. A, 31:3068–3092,

http://www.opticsexpress.org/abstract.cfm?URI=oe-15-16-10370
http://www.opticsexpress.org/abstract.cfm?URI=oe-15-16-10370
http://ao.osa.org/abstract.cfm?URI=ao-48-2-355
http://ao.osa.org/abstract.cfm?URI=ao-48-2-355
http://ao.osa.org/abstract.cfm?URI=ao-55-29-8256
http://ao.osa.org/abstract.cfm?URI=ao-55-29-8256
https://alog.ligo-wa.caltech.edu/aLOG/index.php?callRep=45511
https://alog.ligo-wa.caltech.edu/aLOG/index.php?callRep=45511
https://link.aps.org/doi/10.1103/PhysRevD.64.042006
https://link.aps.org/doi/10.1103/PhysRevD.64.042006
https://link.aps.org/doi/10.1103/PhysRevD.23.1693
https://link.aps.org/doi/10.1103/PhysRevD.23.1693


139

May 1985. doi: 10.1103/PhysRevA.31.3068. URL https://link.aps.org/doi/

10.1103/PhysRevA.31.3068. 28, 38

[24] C. M. Caves, K. S. Thorne, R. W. P. Drever, V. D. Sandberg, and M. Zimmer-

mann. On the measurement of a weak classical force coupled to a quantum-

mechanical oscillator. i. issues of principle. Rev. Mod. Phys., 52:341–392, Apr

1980. doi: 10.1103/RevModPhys.52.341. URL https://link.aps.org/doi/

10.1103/RevModPhys.52.341. 28

[25] J. L. Cervantes-Cota, S. Galindo-Uribarri, and G. F. Smoot. A brief history

of gravitational waves. Universe, 2(3), 2016. ISSN 2218-1997. doi: 10.3390/

universe2030022. URL http://www.mdpi.com/2218-1997/2/3/22. 3

[26] Y. Chen, S. L. Danilishin, F. Y. Khalili, and H. Müller-Ebhardt. Qnd measure-

ments for future gravitational-wave detectors. General Relativity and Gravita-

tion, 43(2):671–694, Feb 2011. ISSN 1572-9532. doi: 10.1007/s10714-010-1060-y.

URL https://doi.org/10.1007/s10714-010-1060-y. 28

[27] S. S. Y. Chua. Quantum Enhancement of a 4km Laser Interferometer

Gravitational-Wave Detector. PhD thesis, The Australian National University,

4 2013. 40

[28] L. Collaboration. Ligo optics, 2019. URL https://galaxy.ligo.caltech.edu/

optics/. 15, 22, 67

[29] T. L. S. Collaboration. A gravitational wave observatory operating beyond the

quantum shot-noise limit. Nature Physics, 7:962, Nov 2009. doi: 10.1038/

nphys2083. URL http://dx.doi.org/10.1038/nphys2083. 38

[30] T. L. S. Collaboration. Enhanced sensitivity of the ligo gravitational wave de-

tector by using squeezed states of light. Nature Physics, 7:613, Jul 2013. doi:

10.1038/nphoton.2013.177. URL http://dx.doi.org/10.1038/nphoton.2013.

177. 38

[31] T. L. S. Collaboration. Advanced ligo. Classical and Quantum Gravity, 32(7):

074001, 2015. URL http://stacks.iop.org/0264-9381/32/i=7/a=074001. 19

https://link.aps.org/doi/10.1103/PhysRevA.31.3068
https://link.aps.org/doi/10.1103/PhysRevA.31.3068
https://link.aps.org/doi/10.1103/RevModPhys.52.341
https://link.aps.org/doi/10.1103/RevModPhys.52.341
http://www.mdpi.com/2218-1997/2/3/22
https://doi.org/10.1007/s10714-010-1060-y
https://galaxy.ligo.caltech.edu/optics/
https://galaxy.ligo.caltech.edu/optics/
http://dx.doi.org/10.1038/nphys2083
http://dx.doi.org/10.1038/nphoton.2013.177
http://dx.doi.org/10.1038/nphoton.2013.177
http://stacks.iop.org/0264-9381/32/i=7/a=074001


140

[32] R. DeRosa, J. C. Driggers, D. Atkinson, H. Miao, V. Frolov, M. Landry, J. A.

Giaime, and R. X. Adhikari. Global feed-forward vibration isolation in a km

scale interferometer. Classical and Quantum Gravity, 29(21):215008, 2012. URL

http://stacks.iop.org/0264-9381/29/i=21/a=215008. 33

[33] J. C. Driggers, J. Harms, and R. X. Adhikari. Subtraction of newtonian noise

using optimized sensor arrays. Physics Review D, 86(10):102001, Nov. 2012. doi:

10.1103/PhysRevD.86.102001. 37

[34] S. Dwyer, L. Barsotti, S. S. Y. Chua, M. Evans, M. Factourovich, D. Gustafson,

T. Isogai, K. Kawabe, A. Khalaidovski, P. K. Lam, M. Landry, N. Mavalvala,

D. E. McClelland, G. D. Meadors, C. M. Mow-Lowry, R. Schnabel, R. M. S.

Schofield, N. Smith-Lefebvre, M. Stefszky, C. Vorvick, and D. Sigg. Squeezed

quadrature fluctuations in a gravitational wave detector using squeezed light.

Opt. Express, 21(16):19047–19060, Aug 2013. doi: 10.1364/OE.21.019047. URL

http://www.opticsexpress.org/abstract.cfm?URI=oe-21-16-19047. 40

[35] E. A. Dyson F. and D. C. Ix. a determination of the deflection of light by the sun’s

gravitational field, from observations made at the total eclipse of may 29, 1919.

Philosophical Transactions of the Royal Society of London A: Mathematical,

Physical and Engineering Sciences, 220(571-581):291–333, 1920. ISSN 0264-3952.

doi: 10.1098/rsta.1920.0009. URL http://rsta.royalsocietypublishing.

org/content/220/571-581/291. 1

[36] A. Einstein. Die grundlage der allgemeinen relativitätstheorie. Annalen der

Physik, 354(7):769–822, 1905. doi: 10.1002/andp.19163540702. URL https:

//onlinelibrary.wiley.com/doi/abs/10.1002/andp.19163540702. 1

[37] A. Einstein. Investigations on the theory of the brownian movement. Ann. der

Physik, 1905. URL http://www.physik.fu-berlin.de/~{}kleinert/files/

eins_brownian.pdf. 34

[38] A. Einstein. Zur Elektrodynamik bewegter Körper. (German) [On the electro-

dynamics of moving bodies]. Annalen der Physik, 322(10):891–921, 1905. doi:

http://dx.doi.org/10.1002/andp.19053221004. 1

http://stacks.iop.org/0264-9381/29/i=21/a=215008
http://www.opticsexpress.org/abstract.cfm?URI=oe-21-16-19047
http://rsta.royalsocietypublishing.org/content/220/571-581/291
http://rsta.royalsocietypublishing.org/content/220/571-581/291
https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.19163540702
https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.19163540702
http://www.physik.fu-berlin.de/~{}kleinert/files/eins_brownian.pdf
http://www.physik.fu-berlin.de/~{}kleinert/files/eins_brownian.pdf


141

[39] R. W. et al. Ligo document m890001-v3, 1989. URL https://dcc.ligo.org/

LIGO-M890001/public. 3, 6

[40] M. Evans, S. Ballmer, M. Fejer, P. Fritschel, G. Harry, and G. Ogin. Thermo-

optic noise in coated mirrors for high-precision optical measurements. Phys.

Rev. D, 78:102003, Nov 2008. doi: 10.1103/PhysRevD.78.102003. URL https:

//link.aps.org/doi/10.1103/PhysRevD.78.102003. 37

[41] M. Evans, L. Barsotti, P. Kwee, J. Harms, and H. Miao. Realistic filter cav-

ities for advanced gravitational wave detectors. Phys. Rev. D, 88:022002, Jul

2013. doi: 10.1103/PhysRevD.88.022002. URL https://link.aps.org/doi/

10.1103/PhysRevD.88.022002. 39

[42] L. S. Finn. Binary inspiral, gravitational radiation, and cosmology. Phys. Rev.,

D53:2878–2894, 1996. doi: 10.1103/PhysRevD.53.2878. 5, 6

[43] L. S. Finn and D. F. Chernoff. Observing binary inspiral in gravitational radia-

tion: One interferometer. Phys. Rev. D, 47:2198–2219, Mar 1993. doi: 10.1103/

PhysRevD.47.2198. URL https://link.aps.org/doi/10.1103/PhysRevD.47.

2198. 7

[44] D. Foreman-Mackey, D. W. Hogg, D. Lang, and J. Goodman. emcee : The mcmc

hammer. Publications of the Astronomical Society of the Pacific, 125(925):306,

2013. URL http://stacks.iop.org/1538-3873/125/i=925/a=306. 101

[45] P. Fritschel, D. Shoemaker, and R. Weiss. Demonstration of light recycling

in a michelson interferometer with fabry–perot cavities. Appl. Opt., 31(10):

1412–1418, Apr 1992. doi: 10.1364/AO.31.001412. URL http://ao.osa.org/

abstract.cfm?URI=ao-31-10-1412. 22

[46] P. Fritschel, N. Mavalvala, D. Shoemaker, D. Sigg, M. Zucker, and G. González.
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