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Abstract

Although the Standard Model of Particle Physics can reproduce the results of all the ex-

periments performed to this date, it can only be an effective theory of fundamental physics.

However, treating the Standard Model this way brings its own set of challenges; namely, the

coefficients of relevant operators become extremely sensitive to UV physics. The relevant

operator of the Standard Model is the Higgs mass which causes the ”hierarchy problem”,

while the cosmological constant term of cosmology results in the ”cosmological constant

problem”. In this thesis defense, I will discuss about how these issues can guide us in the

pursuit of searching for new physics, both from a model building perspective and from a

phenomenological perspective.
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Gabriel Lee, and Ofri Talem. I very much appreciate their hospitality during much of

my doctoral studies. Thanks should also go to former Cornell members Brando Bellazzini,

Javier Sarra, Eric Kuflik, Yonit Hochberg, Jeff Asaf Dror, and Salvator Lombardo for helpful

conversations.

I am very grateful to former and current Ph.D. students of Syracuse University Physics

Department Suraj Shankar, Francesco Serafin, Brandon Melcher, Raghav Govind Jha, Ma-

hesh Chandrasekhar Gandikota, S.M. Emtiaz, Nouman Tariq Butt, Swetha Bhagwat, Scott
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Chapter 1

Introduction

Without a doubt, the Standard Model of Particle Physics (SM) can be considered as one

of the most significant victories of Theoretical High Energy Physics in the last century.

It provides the most accurate and complete description of fundamental particles and the

interactions between them. The last remaining piece of it, the Higgs boson, was finally

discovered in July 2012 at CERN [1, 2], thereby it has been verified up to the energy scale

and experimental accuracy that today’s collider technology can reach.

Despite of its success, the SM is not the final theory of fundamental interactions. In this

chapter, we will try to explain why this is the case. After a brief review of SM, we will argue

why SM should be treated as an Effective Field Theory (EFT). But we will see that this

treatment brings deep conceptual issues which arise due to existence of relevant operators.

Finally we will conclude this chapter with an outline of the dissertation.

1.1 Brief Review of the Standard Model

SM is a non-abelian gauge theory, with the gauge group given by SU(3)C ⊗ SU(2)L ⊗ U(1)Y .

These gauge symmetries describe three of the four known fundamental forces. The SU(3)C

group describes the strong force while the product group SU(2)L ⊗ U(1)Y describes the

weak force and electromagnetism unified at high energies. At low energies, this group is

1



spontaneously broken to a subgroup U(1)EM due to Higgs mechanism, and as a result the

electromagnetism and the weak force are portrayed as separate interactions.

Being a quantum field theory, the fundamental building blocks of the SM are quantum

fields, which are categorized in terms of their transformation properties under the SM gauge

group and the Lorentz group.

First category consists of gauge bosons, which are the necessary ingredients of a gauge

theory. These are spin-1 fields and they transform under the adjoint representation of the

corresponding gauge group. Physically, these fields are force carriers since the interactions

between matter particles are carried using them. The gauge fields corresponding to the

group SU(3)C are called gluons, while the ones corresponding to the group SU(2)L ⊗ U(1)Y

are called electroweak bosons. The number of gauge fields are determined by the dimension

of the representation. Since the dimension of the adjoint representations of the SU(N) group

is N2 − 1, there are 8 gluons and 4 electroweak bosons. With all these information, we can

write the Yang-Mills part of the SM Lagrangian in terms of the gauge field strengths as

LYM = − 1

4g23

8∑
a=1

Ga
µνG

µνa

︸ ︷︷ ︸
SU(3)C

− 1

4g2

3∑
b=1

W b
µνW

µνb

︸ ︷︷ ︸
SU(2)L

− 1

4g′2
BµνB

µν︸ ︷︷ ︸
U(1)Y

, (1.1)

where g3, g and g′ are gauge coupling constants of SU(3)C , SU(2)L and U(1)Y respectively.

Second category contains the spin 1/2 fields, known as fermions. These fields are not

required in order to define a gauge theory, however they need to exist in the SM because

phenomenologically we know these particles do exist. They can be classified into two cate-

gories depending on whether they transform under the strong group SU(3)C or not. While

the quarks transform under SU(3)C , the leptons do not. Another classification can be made

according to their representations under the Lorentz group. Left-handed and right-handed

fermions transform in the
(
1
2
, 0
)

and
(
0, 1

2

)
representation of the Lorentz group respectively.

For some unknown reason, the transformation of left and right-handed fermions under the

SU(2)L group are not the same. While the left-handed fermions transform in the fundamen-

2



tal representation, the right-handed fermions are singlets, i.e. they do not transform under

SU(2)L. On the other hand, all quarks transform under the fundamental representation of

the strong group SU(3)C .

Since the left-handed fermions are in the fundamental representation of SU(2)L, both

left-handed quarks and leptons need to be paired separately in doublets. Again for some

unknown reason, there are 3 copies of quark and lepton doublets, known as generations.

Thus, the left-handed fermion content of the SM can be described as

Li =


νeL
eL

,
νµL
µL

,
ντL
τL


 , Qi =


uL
dL

,
cL
sL

,
tL
bL


 , (1.2)

where i = 1, 2, 3 is the generation index. The right-handed fermions will be the singlet

versions of these states with the exception of neutrinos since no right-handed neutrino has

been observed so far. Thus the right-handed fermion content is given by

eiR = {eR, µR, τR} , uiR = {uR, cR, tR} , diR = {dR, sR, bR}. (1.3)

Then, the fermion kinetic terms in the SM Lagrangian are written by

LK = iL̄i /DLi + iQ̄i /DQi + iēiR /De
i
R + iūiR /Du

i
R + id̄iR /Dd

i
R, (1.4)

where /D ≡ γµDµ and Dµ is the gauge covariant derivative corresponding to the representa-

tion of the fermion and sum over the generation index i is assumed.

All the SM particles do transform under the U(1)Y group and their transformation prop-

erties under this group are determined by their hypercharges. Since U(1)Y is an abelian group,

in contrast to the SU(3)C and SU(2)L groups which are non-abelian, the hypercharges are

in general arbitrary real numbers. However in the SM they need to be rational numbers in

order that the SM is a consistent quantum field theory. More specifically, the hypercharges

need to be rational numbers satisfying some relations in order that the gauge anomalies do

3



SU(3)C SU(2)L U(1)Y

Gluons {Ga}8a=1 Ad 1 0

Electroweak bosons {W a}4a=1 1 Ad 0

Left-handed leptons {Li}3i=1 1 � −1
2

Right-handed leptons {eiR}
3

i=1 1 1 −1

Left-handed quarks {Qi}3i=1 � � 1
6

Right-handed up-type quarks {uiR}
3

i=1 � 1 2
3

Right-handed down-type quarks {diR}
3

i=1 � 1 −1
3

Higgs H 1 � 1
2

Table 1.1: Particle content of the Standard Model. Ad and � represent adjoint and funda-
mental representations respectively. 1 means that the particles are singlets under the gauge
group.

vanish. The cancellation of gauge anomalies is a requirement for a consistent quantum field

theory, since otherwise unitarity will not be preserved and the theory will contain negative

norm states. The representations of the SM fields, plus the Higgs field which we will describe

soon, under the SM gauge group are shown in Table 1.1.

So far we did not include any mass term, although we know that all quarks and fermions,

as well as some gauge bosons, W± and Z, are massive. But we can’t write mass terms for

these particles explicitly, since these terms are not gauge invariant. This tells us that in order

to generate mass terms for the fermions and gauge bosons, the gauge symmetry needs to be

spontaneously broken. This phenomenon can be explained using the Higgs Mechanism [3–5].

In this mechanism, one adds to the SM field content a spin-0 complex scalar field multiplet

H, the Higgs field, which is a doublet under the SU(2)L and singlet under the SU(3)C . One

4



also assumes a potential for the Higgs given by

V (|H|) = −m2
H |H|2 + λH |H|4, λH > 0. (1.5)

If m2
H < 0, then this potential is clasically minimized at H = 0, hence the vacuum expectation

value (VEV) of the Higgs becomes 〈H〉 = 0. However, when m2
H > 0 the Higgs acquires a

non-zero VEV given by 〈|H|〉 = mH√
2λH

6= 0. This non-zero VEV spontaneously breaks the

SU(2)L ⊗U(1)Y symmetry into U(1)EM, which is the gauge group of electromagnetism. This

phenomenon is known as the electroweak symmetry breaking.

To see how the gauge bosons W± and Z get their masses, we should consider the full

electroweak Lagrangian including the Higgs:

LEW = −1

4
W a

µνW
µνa − 1

4
BµνB

µν + (DµH)†(DµH)− V (|H|), (1.6)

where V (|H|) is given by (1.5). This is the Glashow-Weinberg-Salam model of electroweak

unification [6–8]. The coupling between the Higgs and the electroweak bosons arises due to

the gauge covariant derivative term which is explicitly given by

DµH = ∂µH − igW a
µ τ

aH − 1

2
g′BµH. (1.7)

In this expression {τa} are canonically normalized Pauli matrices, τa = 1
2
σa, which are

the generators of SU(2) Lie algebra. {W a
µ , Bµ} are electroweak gauge bosons, g and g′ are

SU(2)L and U(1)Y gauge couplings respectively, and 1
2

factor comes from the fact that the

Higgs doublet has hypercharge Y = 1
2
. For a vanishing Higgs VEV, (1.6) reduces to the

Lagrangian of the pure SU(2)L ⊗ U(1)Y gauge theory with massless gauge bosons. However

if the Higgs gets a VEV, then we need to expand around this new vacuum. This can be done
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by expanding the Higgs field after the symmetry breaking as

H = exp

{
2i
πaτa

vH

} 0

1√
2
(vH + h)

, (1.8)

where vH = mH√
λH

. The {πa}’s are the analog of the Nambu-Goldstone bosons (NGBs) which

arises due to spontaneous breaking of continuous global symmetries. The number of NGBs

is equal to the number of broken generators, so the breaking SU(2)L ⊗ U(1)Y → U(1)EM

introduces 4−1 = 3 NGBs. The field h is the massive excitation of the Higgs field H around

the new vacuum and it represents the Higgs particle.

The particle content after the symmetry breaking can be studied by substituting the

expansion (1.8) into the Lagrangian (1.6) and choosing the unitary gauge to set πa = 0.

Also some field redefinitions are needed to diagonalize the mass terms:

Zµ ≡ cos θwW
3
µ − sin θwBµ,

Aµ ≡ sin θwW
3
µ + cos θwBµ, (1.9)

W±
µ ≡ 1√

2

(
W 1

µ ∓ iW 2
µ

)2
,

where θw = g′

g
. With these redefinitions, the kinetic and mass terms in (1.6) after the

symmetry breaking becomes

LEW→EM ⊃− 1

4
FµνF

µν − 1

4
ZµνZ

µν +
1

2
m2

zZµZ
µ

− 1

2

(
∂µW

+
ν − ∂νW

+
µ

) (
∂µW ν− − ∂νW µ−)+m2

WW
+
µ W

µ−

+
1

2
∂µh∂

µh− 1

2
m2

hh
2, (1.10)

where Fµν = ∂µAν − ∂νAµ, Zµν = ∂µZν − ∂ν − Zµ, and the mass terms are

mz =
gvH

2 cos θw
, mW =

gvH
2

, mh =
√
2mH . (1.11)
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We see that the W± and Z bosons which were massless before the electroweak symmetry

breaking now become massive, but the gauge boson Aµ, which corresponds to the photon,

remains massless. As shown by Eugene Wigner in 1939, the number of degrees of freedom

(DOF) of massive spin-s field is 2s + 1, while the number of DOF of any massless field is

2 [9]. Therefore, the massive gauge bosons should get a degree of freedom due to symmetry

breaking and it should come from the Higgs field. The three degrees of freedom that {W±, Z}

bosons need come from the NGBs {πa}. Thus we say that the NGBs are eaten by the gauge

bosons as a result of spontaneous symmetry breaking.

We will conclude this section by explaining how the fermions, more specifically charged

leptons and quarks, can get their masses. The SM fermions as shown in (1.2) and (1.3) are

2-component Weyl fermions, so they are by definition massless. In order to write a mass term

for a fermion, we need to mix left-handed and right-handed Weyl fermions. For instance,

a mass term for the electron will be of the form ēLeR. The problem is that such a term

does break SU(2)L, so it is not allowed by gauge invariance. This shows that, just as the

massive gauge bosons, the fermions need to get their masses by the Higgs mechanism. In

order this to happen, they need to couple to the Higgs field. This can be accomplished by

adding Yukawa terms to the SM Lagrangian. For charged leptons we need to add

LL
Yuk = −

∑
i={e,µ,τ}

yiL̄
iHeiR + h.c. (1.12)

where {yi} are Yukawa couplings. Quark masses can be generated similarly by

LQ
Yuk = −

3∑
i,j=1

(
Y d
ijQ̄

iHdjR + Y u
ij Q̄

iH̃ujR

)
+ h.c. (1.13)

where H̃ ≡ iσ2H
∗. In this expression, the first term generates masses for the quarks {d, s, b},

while the second term generates for the quarks {u, c, t}. After the symmetry breaking, the

Higgs field H will be replaced by its VEV, H → mH√
2λH

= vH√
2
. Then (1.12) generates mass

7



terms for the charged leptons. As an example, the mass term for the electron will be

−me(ēLeR + ēReL), with me =
yevH√

2
. The Yukawa terms for the quarks (1.13) become after

the symmetry breaking

LQ
Yuk = − v√

2

(
d̄LY

ddR + ūLY
uuR

)
+ h.c. (1.14)

where now Y d and Y u are 3× 3 complex matrices with elements
(
Y u,d

)
ij
= Y u,d

ij . To obtain

the quark masses, the mass terms in (1.14) need to be diagonalized. This can be achieved

by introducing two diagonal matrices Md and Mu and two unitary matrices Ud and Uu so

that

YdY
†
d = UdM

2
dU

†
d and YuY

†
u = UuM

2
uU

†
u. (1.15)

One can further write

Yd = UdMdK
†
d and Yu = UuMuK

†
u, (1.16)

where Kd and Ku are again unitary matrices. Then, after a change of basis by uL → UuuL,

dL → UddL, dR → KddR and uR → KuuR, (1.14) in the mass basis becomes

LQ
Yuk = −

3∑
i

(
md

i d̄
i
Ld

i
R +mu

i ū
i
Lu

i
R

)
+ h.c. (1.17)

where
{
md

i

}
and {mu

i } are the diagonal elements of v√
2
Md and v√

2
Mu respectively.

This concludes our lightning review of the SM. In the next section we will discuss why

we expect that this picture should change eventually.
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1.2 The Standard Model as an Effective Theory

The SM is being tested continuously in collider experiments with ever-increasing precision.

So far, no statistically significant deviation have been measured1. Despite of this, we know

that there should exist physics beyond the SM since there are a lot of physical phenomena

which cannot be explained using the framework of SM. Some of the notable ones are

• Neutrino Masses: Neutrinos are massless in the SM. Writing mass terms for them

using the Yukawa interactions like in (1.12) is not possible because right-handed neu-

trinos do not exists in the field content of the SM; at least they have not been observed.

But, we have learned from neutrino oscillations experiments that they do have a tiny

but non-zero mass.

• Dark Matter: Latest cosmological observations show that the SM fields can only

provide 15% of the matter in the observable universe [15]. The rest of it consists

of a hypothetical substance called dark matter. If it is a particle, then it should be

electrically neutral, weakly interacting and stable to explain all the observations. The

SM does not have such a candidate.

• Dark Energy: The supernova observations made in 1998 showed that the universe is

not only expanding but the expansion is accelerating [16,17]. The most commonly used

cosmological model for explaining both dark matter and dark energy is ΛCDM model

which contains cold dark matter and a positive cosmological constant term. Attempting

to derive this term using the SM leads to a 120 order of magnitude discrepancy known

as the cosmological constant problem. We shall explore this further later in this chapter.

• Matter-antimatter Asymmetry: Our observable universe contains vastly more

matter than antimatter although there is no reason that the universe should start in an
1They are some experimental anomalies such as the proton radius puzzle [10], anomalous magnetic dipole

moment muon [11] and B-meson decays [12–14]. But it is still uncertain that these anomalies definitely
contradicting the SM.
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asymmetric state. Hence, there should be a process which occurred in the early universe

and produced this asymmetry. Such a process is not possible with the ingredients of

the SM [18].

In addition to all these missing pieces, the strongest hint for the incompleteness of the SM

comes from the fact that an UV complete quantum description of gravity is missing in the

SM. The phrase UV complete is crucial for the validity of this statement, since an effective

description of quantum gravity is perfectly compatible with the SM and even provide testable

predictions. To arrive such a description, we start with the fact that the graviton, which is

the force carrier of the gravity, should be a massless spin-2 field. Then using the requirements

of unitarity and Lorentz invariance, it is possible to show that the unique Lagrangian one

can write is [19]

Lg =M2
pl

√
− det

(
ηµν +

1

Mpl
hµν

)
R
(
ηµν +

1

Mpl
hµν

)
, (1.18)

where hµν represents the fluctuations of the metric, i.e. gµν = ηµν +M
−1
pl hµν , Mpl = G

−1/2
N ≈

1019GeV with GN being the Newton’s constant, and R is the Ricci scalar. The scale Mpl

has been introduced so that the graviton field hµν has mass dimension one. This is precisely

the Einstein-Hilbert Lagrangian of general relativity. This shows that the Lagrangian for

general relativity is the unique Lagrangian that can couple a spin-2 field to matter.

If this construction works so well, why do we say that the description of quantum gravity

in the SM is not complete? The answer is related to the strength of the gravitational

interaction. If we expand the Lagrangian (1.18) we find

Lg ∼
1

2
h�h+

1

MPl
�h3 +O

(
1

M2
pl

)
. (1.19)

We see that the gravitational interaction term �h3 has the coupling constant M−1
pl which has

negative mass dimension. Same situation will happen if we want to couple gravity to the SM
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particles. As a spin-2 field, graviton should couple to the stress-energy tensor corresponding

to the SM

T µν
SM = − 2√

−g
δSSM

δgµν
with SSM =

∫
d4x

√
gLSM, (1.20)

and just from dimensional analysis the coupling should be of the form

1

Mpl
hµνT

µν
SM. (1.21)

The fact that the gravity coupling has negative mass dimension makes this description of

gravity perturbatively non-renormalizable. In these kind of field theories, one needs infinite

number of counterterms to cancel all the infinities arising from the loop corrections to the

model parameters. Despite of this difficulty, this description of gravity is perfectly valid and

even predictive, as long as the energy scale E we are probing is much smaller than the Planck

scale, E � Mpl. In other words, the Lagrangian (1.19) together with the coupling (1.21)

provides an effective theory description of quantum gravity valid up to the cutoff scale Mpl

of the theory.

The breakdown of perturbative renormalizability does not mean that a field theory is ill-

defined at higher energies. Such a field theory might be non-perturbatively renormalizable, if

the Renormalization Group (RG) evolution of its couplings having negative mass dimensions

have non-trivial fixed points in the UV. Such theories are called asymptotically safe [20]. It

is a possibility that the gravity is such a theory, and this description holds even at higher

energies [21].

However, from a historical perspective, non-renormalizable theories were generally signs

of new physics and the cutoffs of these theories gave good estimates about the scale at which

new physics appeared. The most well known example of a non-renormalizable theory is the

Enrico Fermi’s theory β-decay [22]. In this theory, the weak decays are modeled using a
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Lagrangian of the form

LFermi = GF ψ̄pψnψ̄eψν , (1.22)

where {p, n, e, ν} are {positron, neutron, electron, neutrino}. Since each fermion should have

mass dimension 3/2, the mass dimension of GF should be −2, thus this theory is non-

renormalizable. The value of GF can be measured using muon decays. It’s latest value

is [23]

GF = 1.1663787(6)× 10−5GeV−2 ≈
(

1

293GeV

)2

. (1.23)

From an EFT point of view, this result tells us that new physics should replace the Fermi’s

theory around the energy scale E ∼ 293GeV. We know that the replacement is the Glashow-

Salam-Weinberg(GSW) model of electroweak interactions, for which we wrote down the La-

grangian explicitly in (1.6). While in the Fermi theory, the weak decays are point interactions

between four fermions, in GSW model the weak decays are four fermion interactions due to

exchange by a massive electroweak gauge boson, whose masses are [23]

mW = 80.379(12)GeV and mZ = 91.1876(21)GeV. (1.24)

Although these numbers are smaller than our naive expectation E ∼ 293GeV, they agree

very well as an order of magnitude estimate. If the perturbative gravity can also be UV

completed in a similar way, we can argue that the SM is an effective theory valid up to the

cutoff scale ΛSM given by

ΛSM .Mpl ≈ 1019GeV. (1.25)

Of course this bound assumes that there is no new physics between the Planck scale and
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the energy scale being probed by today’s colliders, which is ∼ TeV. It is perfectly possible, in

fact expected, new physics will show up well before the Planck scale. In this case the cutoff

scale of the SM will be much lower than (1.25). Whenever the new physics scale appears,

and how complicated the new physics will be, it should be possible to express its effects in

energies E � ΛSM by adding non-renormalizable operators to the SM Lagrangian. Hence to

study new physics, we can expand the SM Lagrangian generically as

LSM → LSM +
∞∑

∆=5

1

Λ∆−4
SM

O∆, (1.26)

where the mass dimension of the operator O∆ is [O∆] = ∆2.

The higher-dimensional operators {O∆} are commonly used in attempts to explain the

problems of the SM we have mentioned before. For example, to generate neutrino masses

without right-handed neutrinos3, one can use the 5-dimensional Weinberg operator [24]

1

ΛSM

(
L̄H̃
)(

LcH̃
)
, (1.27)

where Lc is the charge conjugate of the lepton doublet. This is the unique ∆ = 5 term

which can be written in the SM Lagrangian. With order one coefficients, this term generates

neutrino masses around mν ∼ 0.1 eV for ΛSM ≈ 1014GeV [25]. This example shows that the

EFT picture allows us to get hints about where the new physics might appear, even though

we don’t know the details of the new physics.

If we push ourselves to consider a situation where the SM does not get any corrections up

to the Planck scale and breakdown of perturbative renormalizability of quantum gravity is

saved by the asymptotic safety, there is still a problem which might prevents SM from being

a UV complete theory. The problem is with the RG evolution of the U(1)Y hypercharge
2By mass dimension we mean canonical dimension, i.e. we are ignoring anomalous mass dimensions.
3With right-handed neutrinos, neutrino masses can be generated with ∆ = 4 operators.
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gauge coupling g′. At one loop, the RG evolution of g′ is given by [26]

4π

α1(E2)
=

4π

α1(µ2)
− 41

10
log

(
E2

µ2

)
, (1.28)

where

α1 =
1

4π

5

3
g′2 =

5α

3 cos2 θw
, (1.29)

with α being the fine structure constant. The µ2 is an energy scale at which the coupling

constant α1 needs to be measured experimentally. We can see that due to the negative sign

of the log-term in (1.28), which corresponds to a positive β-function coefficient, there is an

energy scale ΛL at which the coupling constant diverges. This scale is given by α−1
1 (ΛL) = 0

or

4π

α1(µ2)
=

41

10
log

(
Λ2

L

µ2

)
. (1.30)

Using the fact α(m2
W ) ≈ 1/128 and sin2 θw(m

2
Z) ≈ 0.231 [23], we get α1(m

2
Z) ≈ 0.017 and

ΛL ∼ 1041GeV. (1.31)

This is called the Landau pole related to the U(1)Y gauge coupling and represents the break-

down of predictability of the SM as a perturbative field theory. One might worry that the

one-loop expression (1.28) is derived using perturbation theory but close to the Landau pole,

the gauge coupling g′ becomes non-perturbative and the one-loop expression looses its va-

lidity. In fact the lattice simulations of Quantum Electrodynamics (QED), which has the

similar problem albeit at Λ ∼ 10277GeV, show that before reaching to its Landau pole the

theory enters to a new phase at which fermions form a condensate and breaks the chiral

symmetry [27–29]. But such a condensate will also break the electroweak symmetry at a
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much higher scale than the weak scale which will be in conflict with the GSW model we

have described in Section 1.1.

The take-away message of this section should be that although there is no mathematically

rigorous argument which proves that the SM is incomplete, there are a lot of hints, both

from theoretical and experimental point of view. In the rest of this dissertation, we will take

the SM as an EFT with some cutoff scale ΛSM as our starting point, and study what kind

of hints can we get from this effective description about the physics beyond the SM.

1.3 The Relevant Operator of the Standard Model and

the Hierarchy Problem

In the previous section we have argued that a good starting point for studying the beyond

the SM physics is an effective description of the SM with up to some cutoff scale ΛSM. This

cutoff scale should not be very close to the electroweak scale mW , since the current version

of the SM can reproduce the results of the collider experiments perfectly. We don’t know the

precise value for this cutoff, but it is pretty likely that the SM will be replaced by something

else at latest at the Planck scale, so for definiteness we choose ΛSM .Mpl.

Theories with a physical cutoff can be studied using the framework of Wilsonian renor-

malization group [30–34]. In contrast to the continuum RG picture where Λ stands for an

UV regulator which renders the loop integrals finite, the Wilsonian RG treats Λ as a refer-

ence scale of the theory, like atomic spacing in a metal. The RG evolution of the coupling

constants can be obtained by reducing the cutoff from Λ to Λ′, where one integrates out the

degrees of freedom Λ′ < p < Λ, and adjusting the coupling constants so that the low-energy

physics is the same.

In the Wilsonian RG and the EFT language, the operators are classified according to

their mass dimensions. If d denotes the number of spacetime dimensions and ∆ denotes

mass dimension of the operator, then the operator is called relevant if ∆ < d, irrelevant if
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∆ > d, and marginal if ∆ = d. Classically marginal operators can get anomalous dimensions

from quantum corrections and depending the sign of the correction they can be relevant or

irrelevant, marginally so if the quantum corrections are small. If C∆−d is the (in general

dimensionful) coefficient of an operator of mass dimension ∆, then it can be shown that

under a RG transformation Λ → Λ′ = bΛ with b < 1, C∆−d scales as [35]

C∆−d → C ′
∆−d = b∆−dC∆−d. (1.32)

Therefore for an irrelevant operator C ′ < C so the coupling of this operator decreases to-

wards lower energies, or towards IR, which implies that at lower energies E � Λ this operator

becomes less important. We note that the irrelevant operators correspond to the perturba-

tively non-renormalizable terms in the Lagrangian. This explains why non-renormalizable

field theories are perfectly valid and predictive as low energy effective field theories.

On the other hand for a relevant operator C ′ > C and the coupling increases towards IR.

This implies that the relevant operators are sensitive to the UV physics. This immediately

rings an alarm bell. Our aim was to consider the SM as an effective theory with the hope

that its low-energy description will be independent of its UV completion, but we ended up in

a situation where the UV sensitivity of our model increases as we go to lower energy scales.

We would have been fine if the SM did not contain any relevant operators, but this is not

the case. There is only one relevant operator in the SM4, which is the Higgs mass parameter

in the Higgs potential (1.5). This is the essence of the so called hierarchy problem which we

will describe in detail now.

In (1.26), we added irrelevant operators to the Lagrangian by the terms of the form

Λ
−(∆−4)
SM O∆ with ∆ > 4. By extrapolating this form to the relevant operators we can argue

4Here we mean “relevant” by naive power counting. There are also marginally relevant operators in the
SM, like the QCD field strength squared.
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that the Higgs mass term should be of the form

cΛ2
SM|H|2, (1.33)

where c is a dimensionless coefficient. We can see this formally by calculating the quantum

corrections to the Higgs mass parameter of (1.5). These corrections will come from Higgs

self-interactions, gauge and fermion loops. All these contributions are quadratically divergent

so they need to be regulated with a cutoff. Since we are treating the SM as an effective theory,

we can use ΛSM to regulate the integrals. Then we can express the quantum corrections to

the Higgs mass parameter as

δm2
H ≈ Λ2

SM
16π2

[
−6y2t +

1

4

(
9g2 + 3g′2

)
+ 6λH + · · ·

]
, (1.34)

where yt is the top-quark Yukawa coupling5. Thus we see although we would have chosen a

small value for the bare Higgs mass parameter m2
H , the quantum corrections will push it all

the way to the cutoff scale.

Of course the bare mass parameter is not an observable and we have to choose it such

that m2
H + δm2

H reproduces the experimentally measured value for the Higgs mass, which

can also be defined as the pole mass. Since the Higgs pole mass is mh ≈ 125GeV, using

(1.11) we get (m2
H)pole ≈ (88GeV)2. Choosing the SM cutoff ΛSM to be the Planck scale Mpl

we find

(m2
H)pole = (m2

H)bare + δm2
H ⇒ (88GeV)2 ≈ (m2

H)bare +
(
1019GeV

)2
, (1.35)

where (m2
H)bare is the bare mass parameter in the Higgs potential. This result shows that

5We have ignored the contribution from other fermions since they will be small compared to the top-quark
contribution.
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the bare mass parameter should be tuned to a precision of

(m2
H)pole

Λ2
SM

≈ (88GeV)2

(1019GeV)2
∼ 10−34. (1.36)

This is called fine-tuning which means extreme sensitivity of the physical observables, such

as the Higgs pole mass, to variation of model parameters. The theories which require such

a precise tuning are usually called fine-tuned or unnatural.

Since the quadratic sensitivity to the cutoff scale in (1.35) comes from an UV divergent

integral, it is a meaningful question to ask what would have happened if we had choose a dif-

ferent regularization scheme to perform the loop integrals. A commonly used regularization

scheme in gauge theories is the dimensional regularization since it respects gauge invariance.

If one evaluates the loops in (1.34) using dimensional regularization, then one finds that the

quadratic divergence is replaced by a pole at ε = 0 with d = 4− ε

(δm2
H)DimReg ∼ 1

ε
+ finite. (1.37)

As in the usual renormalization procedure, this pole can be canceled by introducing suitable

counterterms and so one finds that the quantum correction to the Higgs mass is finite and

does not depend on the cutoff ΛSM at all.

At this point, one might think that the quadratic sensitivity to the cutoff scale in (1.34) is

merely a consequence of choosing a wrong regulator, therefore it does not represent something

physical. However from an effective field theory point of view, the Λ2
SM in (1.34) not a

regulator, it is a physical scale which is a placeholder for new physics. Now we will show this

explicitly using a toy model6. We consider a theory given by the Lagrangian

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2 +

λ

4
φ4 + iΨ̄(/∂ −M)Ψ + yφΨ̄Ψ, (1.38)

6The following discussion is based on the lectures given by Nathaniel Craig at the Prospects in Theoretical
Physics (PiTP) 2017 summer school available at https://www.youtube.com/watch?v=orCZeoQXXWw.
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where a scalar field φ is coupled to a fermion Ψ with a Yukawa interaction. We assume that

the mass of the scalar is much smaller than the fermion mass, so m � M . In this case, we

consider an EFT with only the scalar field φ, where the heavy fermion Ψ has been integrated

out. The Lagrangian in the effective theory is

LEFT =
1

2
Zφ∂µφ∂

µφ− 1

2
m̃2φ2 + · · · , (1.39)

where Zφ is the wave-function renormalization term and m̃2 is the renormalized mass param-

eter. We didn’t include the φ4 term since we only interested in the corrections that the mass

parameter will get. Now we want to perform a matching procedure between the full theory

and the effective theory at the scale M . This can be done by matching the scalar two-point

functions in both descriptions. At one loop, this matching can be done by calculating the

one-loop contribution involving the heavy fermion7:

To avoid any confusion with quadratic divergences, we will use the dimensional regularization

with minimal subtraction (MS) scheme to evaluate this loop. Then the contribution of this

loop to the scalar self-energy is given by

Σ2(p
2) =

4y2

16π2

[(
3

ε̄
+ 1 + 3 log

(
µ2

M2

))(
M2 − p2

6

)
+
p2

2
− p2

20M2
+ · · ·

]
, (1.40)

where ε̄−1 = ε−1 − γE + log(4π) with γE being the EulerMascheroni constant. Then we

perform the renormalization procedure by adding counterterms to cancel the 1/ε̄ pole and
7The Feynman diagrams in this thesis are produced by the TikZ-Feynman package [36]
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match at the scale µ =M . After this we find the Lagrangian in the effective theory as

LEFT =

(
1− 4

3

y2

16π2

)
1

2
∂µφ∂

µφ−
(
m2 − 4y2

16π2
M2

)
1

2
φ2 + · · · . (1.41)

We see that the scalar mass gets quantum corrections proportional to M2. This toy model

clearly demonstrates that the quadratic divergence in (1.34) is really a placeholder for new

physics. The hierarchy problem is not about quadratic divergences. It is about the sensitivity

to higher energy scales.

One might worry that this contribution arises due to the coupling between the heavy

fermion Ψ and the Higgs, and it might be possible to avoid this contribution by not coupling

the new physics to the Higgs. Let us assume that the heavy fermion Ψ is not coupled to

the SM at all. But it should at least couple to gravity. Then we can write the following

three-loop correction to the Higgs mass involving gravitons coupled to top quark loop and

the heavy fermion loop:

The correction to the Higgs mass due to this diagram is given by

δm2
H ∼ 6y2t

(16π2)3

(
M

Mpl

)4

M2. (1.42)

If the mass of the heavy fermion is very close to the Planck scale M .Mpl, then despite of

the suppression coming from the loop factor, the M2 correction to the Higgs mass does still

exists. In summary, it is really hard to shield the Higgs mass from the corrections coming
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from the higher energy scales.

Before concluding this section, we will mention yet another way to describe the hierarchy

problem, which will make use of the symmetries. We have said that the hierarchy problem

is unique to the Higgs, since it is the only relevant operator in the SM. But there is another

reason why the Higgs suffers from this problem. To see this, consider the Lagrangian for

Quantum Electrodynamics (QED):

LQED = −1

4
FµνF

µν + ψ̄
(
i /D −me

)
ψ, (1.43)

with Dµψ = ∂µψ + ieAµψ. Here, ψ is the electron represented as a Dirac fermion and me

is the electron mass. The electron mass term looks like a relevant parameter so naively

we expect the quantum corrections will push it to higher scales. But if we calculate the

corrections we will find

δme =
3αem

2π
me log

(
Λ

me

)
, (1.44)

where αem is the fine-structure constant. We see that the quantum corrections are propor-

tional to the electron mass itself, and instead of a quadratic divergence we get a much weaker

logarithmic divergence. To appreciate how much weaker it is, let us imagine an alternative

universe where the QED holds up to the Planck scale. Then taking Λ ∼ Mpl, αem ≈ 1/137

and me ≈ 0.511MeV we find

δme

me

∼ 0.2. (1.45)

What is the reason behind the logarithmic dependence in (1.44)? The answer is the

symmetry. If we set the electron mass me to zero in (1.43), the electron gains an additional

symmetry, namely the symmetry under axial transformations of the form ψ → eiαγ5ψ. In

other words, setting the electron mass to zero enhances the symmetry of the theory. Since in
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this case the symmetry will also be respected by quantum corrections8, the corrections to the

mass parameter should be proportional to the mass parameter itself. Then by dimensional

analysis, we can conclude that the cutoff Λ can only appear inside the logarithm. In such a

scenario, one usually says that the electron mass is protected by the chiral symmetry.

The same situation happens with the Yukawa couplings in the SM. Setting them to zero

enhances the symmetry of the SM, so they are insensitive to higher energy scales. Therefore

the hierarchy between various Yukawa couplings, such as ye/yt ∼ 10−5, is not considered

to be a hierarchy problem. It is still a puzzle why such a hierarchy exists, but if it can

be explained in a UV completion of the SM, then that explanation will remain valid at

low energies too. Introducing a symmetry which protects the Higgs mass from quadratic

divergences is the most commonly used strategy in attempts to solve the hierarchy problem,

which we will briefly mention in Chapter 2.

1.4 A Relevant Operator of Cosmology and the Cos-

mological Constant Problem

When we wrote down the potential for the Higgs in (1.5), we didn’t include a constant term

V0. Such a term does not have any effect in particle physics, but it plays a big role in

cosmology. Although this term does not couple to any SM field, it will couple to gravity. If

we denote the VEV of Higgs by φh =
√
2 〈|H|〉, then the energy density of the vacuum will

be given by

〈
T 0
0

〉
≡ ρV = V (φh) = V0 −

m4
H

λH
. (1.46)

8Actually the chiral symmetry is anomalous so quantum corrections will introduce a term of the form FF̃
where F̃µν = εµνρσF

ρσ. But in the case of QED the FF̃ term is a total derivative so it does not contribute
to the equation of motion.
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We see that the energy density of the vacuum is dependent on the choice of V0. The Einstein

equations with the cosmological constant term is given by

Rµν −
1

2
gµνR+ Λgµν =

8π

M2
pl
Tµν , (1.47)

where Λ is the cosmological constant. From this expression we can see that the vacuum energy

density ρV contributes to the cosmological constant term, giving an effective cosmological

constant expressed as

Λeff = Λ+
8π

M2
Pl
ρV . (1.48)

So total effective vacuum energy of the universe is given by

〈ρ〉 = ρV + Λ
M2

pl

8π
= Λeff

M2
pl

8π
. (1.49)

This value can be measured using cosmological observations: [16, 17,37–41]

Λeff ∼ 10−52m−1 (1.50)

which corresponds to a vacuum energy density of

〈ρ〉 ∼ (10−12GeV)4. (1.51)

We shall see now that the smallness of this value results in a fine-tuning problem which

is much worse compared to the hierarchy problem. In the expression of the effective vacuum

energy (1.49), all the terms were classical contributions. There will also be quantum correc-

tions to the vacuum energy. If we consider SM with the cutoff ΛSM, then the sum of the

23



zero-point energies of all normal modes of some field of mass m will be given by

∫ ΛSM

0

d3k

(2π)3
1

2

√
k2 +m2 ≈ Λ4

SM
16π2

. (1.52)

Notice that, this is in agreement with our expectation from the effective field theory point

of view. The constant term in the Higgs potential V0 is a ∆ = 0 operator, therefore it

should appear in the effective theory as cΛ4V0, where c is a coefficient and Λ is the cutoff.

Again choosing the SM cutoff to be the Planck scale we find the natural value of the vacuum

energy density should be 〈ρ〉 ∼ M4
pl. Comparing with the experimentally measured value

(1.51) implies a tuning of

(10−12GeV)4

M4
pl/(16π

2)
∼ 10−122. (1.53)

This is called the cosmological constant problem. It is the question of what kind of physical

process could have cancelled the enourmous contribution coming from the zero-point energies

of the quantum fields, such that the observed cosmological constant is very small.

The cosmological constant problem becomes much more interesting when we consider the

phase transitions in the early universe. The potential we wrote for the Higgs field in (1.5) is

at zero temperature. Since the temperature of the universe is very small today, T ∼ 3K, the

zero temperature description is adaquate for studying the phenomena happening at present

times. But at the early stages of the universe, the temperature was very high and one cannot

rely on a zero temperature description. The physics of the early universe can be studied using

finite-temperature field theory. In this framework, the classical potential V (φh) is replaced

by the finite-temperature effective potential, which is the free energy density associated with

the φh field. It can be expressed by

VT (φh) = ρφ − Tsφ, (1.54)
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where ρφ is the energy density and sφ = −∂VT (φh)/∂T is the entropy density. To one loop in

quantum and thermal corrections, the finite-temperature effective potential VT (φh) is given

by [42,43]

VT (φh) = V1(φh) +
T 4

2π2

∫ ∞

0

dxx2 log

[
1− exp

{
−
√
x2 +

M2

T 2

}]
, (1.55)

where M2(φh) = −m2
H + 3λHφ

2
h and V1(φh) is the zero-temperature potential including one

loop quantum effects

V1(φh) = V0 −
1

2
m2

Hφ
2
h +

1

4
λHφ

4
h +

M4

64π2
log

(
M2

µ2

)
, (1.56)

with µ being an arbitrary renormalization scale. The integral in (1.55) can be expanded in

M2/T 2 to get

VT (φh) = V1(φh)−
π2

90
T 4 +

M2

24
T 2 + · · · . (1.57)

Then using (1.56) we obtain

VT (φh) =

(
Ṽ0 −

π2

90
T 4 − m2

H

24
T 2

)
+

(
λH
8
T 2 − 1

2
m̃2

H

)
φ2
h +

λ̃H
4
φ4
h + · · · , (1.58)

where
{
Ṽ0, m̃H , λ̃H

}
represent one-loop renormalized model parameters of the zero-temperature

Higgs potential. From this expression we see that for m̃2
H > 0, the coefficient of the φ2

h term

changes sign at a critical temperature Tc given by

Tc ≈
2m̃H√
λH

. (1.59)

Therefore the electroweak symmetry, which is broken at zero temperature, was unbroken

when the temperature of the universe was higher than this critical temperature. Precise

determination of this value requires the knowledge of the renormalized model parameters,
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but as an order of magnitude estimate we can accept Tc ∼ 100GeV ∼ mEW, where mEW is

the electroweak scale.

Now, let us investigate what will happen to the vacuum energy density after the symmetry

restoration. Using (1.54) we can calculate the energy density as

ρφ =

(
Ṽ0 +

π2

30
T 4 +

m2
H

24
T 2

)
−
(
λH
8
T 2 +

1

2
m̃2

H

)
φ2
h +

λ̃H
4
φ4
h. (1.60)

At zero temperature, the minimum of the potential is at φh(T = 0) = m̃H√
λ̃H

then the vacuum

energy density at zero temperature becomes

ρφ(T = 0) = Ṽ0 −
m̃4

H

4λ̃H
. (1.61)

On the other hand at high temperature T � Tc the electroweak symmetry is restored so the

minimum of the finite temperature potential is at φh(T � Tc) = 0. In this case the vacuum

energy density is

ρφ(T � Tc) = Ṽ0 +
π2

30
T 4 +

m2
H

24
T 2. (1.62)

Therefore the change in the vacuum energy during the phase transition at T = Tc is given

by

∆ρφ ≡ ρφ(T = Tc)− ρφ(T = 0) ≈ π2

30
T 4
c +

m̃4
H

4λ̃H
∼ T 4

c , (1.63)

where we have ignored the T 2
c term and used (1.59). From this calculation, we conclude

that a phase transition at some critical temperature Tc should be accompanied by a jump in

vacuum energy density at the order of T 4
c . This result does not depend on the order of the

phase transition.

We have showed that even if the vacuum energy density is very small today for some
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unknown reason, it wasn’t always small during the history of the universe. We know that

the universe had at least two phase transitions; one is the electroweak phase transition at

Tc ∼ mEW ∼ 100GeV, the other is the QCD phase transition at Tc ∼ ΛQCD ∼ 200MeV. It

is a possibility that they are other phase transitions, such as the phase transition to a Grand

Unified Theory (GUT), at much higher temperatures like Tc ∼ 1015GeV. We don’t know yet

whether the vacuum energy did really behave like this, since most of the phenomena relevant

to the observational cosmology, such as Cosmic Microwave Background (CMB), structure

formation, nucleosynthesis, are sensitive to the temperatures well below the QCD scale.

Moreover, both phase transitions are either second order or crossover, so their imprints are

much weaker compared to first order phase transitions. For example, a strongly first order

phase transition might have an imprint in the gravitational waves, which can be measured

with future space-based interferometers such as the proposed Laser Interferometer Space

Antenna (LISA) [44].

Despite the fact that the vacuum energy density might be large at earlier times, it should

not have dominated the total energy density until very late times. During both phase tran-

sitions, the universe was always radiation dominated, except during the phase transitions.

This makes the cosmological constant problem much more peculiar for the following reason.

Let us assume that only electroweak and QCD phase transitions happened during the evo-

lution of the universe at temperatures TEW
c ∼ 100GeV and TQCD

c ∼ 200MeV respectively.

Then the universe should start with a vacuum energy density slightly larger than TEW
c , but

not too much so that it can remain subdominant. After the electroweak phase transition,

the vacuum energy density drops by a factor of ∼ (TEW
c )4, but this decrease should be such

that there is enough vacuum energy left for the QCD phase transition. In other words, the

jump should satisfy

ρφ(T & TEW
c )− ρφ(T . TEW

c ) ∼
(
TQCD
c

)4 ∼ (200MeV)4 . (1.64)
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Figure 1.1: The evolution of the radiation pressure pR and the vacuum energy density ρV .
From left to right, the jumps in the vacuum energy density represent the electroweak, QCD
and (hypothetical) GUT phase transitions. Adapted from [45].

Thus, the universe somehow knows when the next phase transition will be [45]. This behavior

is shown in Figure 1.1. This strange property makes the cosmological constant problem one

of most important questions in fundamental physics.

1.5 Organization of the Dissertation

In this dissertation, our aim is to describe two possible approaches for understanding the

problems related to the UV sensitivity of the relevant operators. One approach will be from a

model building perspective while the other one will be from a phenomenological perspective.

We will try to address the hierarchy problem with the former, and the cosmological constant

problem with the later.

In Chapter 2, we will explain most popular proposals for solving the hierarchy problem.

In particular, we will describe models with warped extra dimensions and the AdS/CFT

correspondance in detail, which are the fundamental building blocks of the model we will

present in Chapter 3.
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In Chapter 3, we will present an attempt for solving the hierarchy problem where we

will try to relate the critical point of the Higgs sector to a minimum in the potential for a

dynamical field. The hope of this relation is to make the Higgs criticality an attractor, so

that a (classical) zero Higgs mass can be obtained for a sizable region in parameter space. We

will build our model on a five dimensional geometry, where the extra dimension is a circle.

The modulus field whose minimum sets the classical Higgs mass to zero will be identified

with the radion, which corresponds to the size of the warped extra dimension. Using the

AdS/CFT correspondance, we will comment on the interpretation of our model as a strongly

coupled approximate conformal field theory in four spacetime dimensions.

In Chapter 4, we will argue that the behavior of the vacuum energy during phase transi-

tions can be tested experimentally using the gravitational waves emitted by a merger of two

neutron stars. Instead of a phase transition at large temperature, we will focus on a phase

transition of QCD which is expected to occur at zero temperature but at very high nuclear

density. Such densities are expected to be found at the cores of heavy neutron stars. If

such a phase transition exists, then it will drammatically affect the equation of state (EoS)

of neutron stars, and such an affect might have a big imprint on gravitational wave observ-

ables. Thus, neutron star mergers might provide an unique test bed for testing whether the

vacuum energy really jumps during the phase transitions.
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Chapter 2

Solutions to the Hierarchy Problem

In Section 1.2 we have argued that the SM should be treated as an effective theory, and in

Section 1.3 we have shown that this treatment makes the Higgs mass extremely sensitive to

the UV physics and causes the hierarchy problem. In this chapter we will briefly mention

some strategies for taming this problem. Since we have also showed explicitly that the

quadratic divergences are really placeholders for new physics, we take the result in (1.34) as

our starting point.

2.1 Supersymmetry (SUSY)

The main property of SUSY which provides a solution to the hierarchy problem is that

it imposes a relation between the elementary scalars and the fermions, so that the chiral

symmetry which is protecting the fermion masses can be extended to protect the elementary

scalar masses. The SUSY provides exactly this kind of relation.

The mathematical motivation of SUSY comes from the Coleman - Mandula theorem,

which states that it is not possible to build a consistent QFT based on a non-trivial, i.e. non-

commuting, combination of internal symmetries and spacetime symmetries [46]. However,

as shown by Haag, opuszaski and Sohnius, there is one possible exception which is to use a

graded Lie algebra whose generators are fermionic [47].
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The anticommutation relation which defines SUSY is given by1

{
Qα, Q

†
α̇

}
= 2σµ

αα̇Pµ (2.1)

where Q and Q† are SUSY generators, also called supercharges, and Pµ is the momentum

operator. The {α, α̇} = 1, 2 are the spinor indices2 and

σµ
αα̇ =

{
12×2, σ

i
}

, σ̄µα̇α =
{
12×2,−σi

}
, (2.2)

with {σi} being the Pauli matrices and 12×2 is the 2×2 unit matrix. Single particle states are

irreducible representations of the SUSY algebra (2.1) and are called supermultiplets. Each

supermultiplet contains an equal number of bosonic and fermionic degrees of freedom [48].

The bosons and the fermions inside the same supermultiplet are called superpartners of each

other. The simplest examples of supermultiplets are

• Chiral supermultiplet: Contains a complex scalar and a Weyl fermion.

• Vector supermultiplet: Contains a gauge field and a Weyl fermion.

The simplest way to make the SM supersymmetric is to assume that each SM degree of

freedom is either in a chiral or in a vector supermultiplet, and introduce superpartners for

them. This is known as the Minimal Supersymmetric Standard Model (MSSM) [49–52]. The

superpartners of the SM fermions are named with a “s-” prefix, while the superpartners of

SM bosons are named with a “-ino” postfix. For example the superpartner of the electron is

called selectron, while the superpartner of the Higgs is called Higgsino. The particle content

of the MSSM is shown in Table 2.1. Notice that there are two Higgs supermultiplets, one

corresponding to the SM Higgs and another with the same SM representations but with

opposite hypercharge. The reason for introducing an extra supermultiplet is to cancel the
1This relation can be extended to multiple supercharges {QA}NA=1. In order to solve the hierarchy problem

N = 1 will be enough.
2In calculations with spinors, the spinor indices of conjugate spinors, like Q† are written as α̇.
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Superpartners SM Particles SU(3)C SU(2)L U(1)Y{
G̃a
}8
a=1

{
Ga
}8
a=1

Ad 1 0{
W̃ a
}4
a=1

{
W a
}4
a=1

1 Ad 0{
L̃i
}3
i=1

{
Li
}3
i=1

1 � −1
2{

ẽiR
}3
i=1

{
eiR
}3
i=1

1 1 −1{
Q̃i
}3
i=1

{
Qi
}3
i=1

� � 1
6{

ũiR
}3
i=1

{
uiR
}3
i=1

� 1 2
3{

d̃iR
}3
i=1

{
diR
}3
i=1

� 1 −1
3

H̃u =
{
H̃+

u , H̃
0
u

}
Hu =

{
H+

u , H
0
u

}
1 � 1

2

H̃d =
{
H̃0

d , H̃
−
d

}
Hd =

{
H0

d , H
−
d

}
1 � −1

2

Table 2.1: Particle content of the MSSM. The description of the representations is the same
in Table 1.1. Superpartners are shown with a .̃ A second Higgs supermultiplet is needed to
cancel the gauge anomaly.

gauge anomalies.

The degeneracy between fermions and bosons is the mechanism in SUSY which protects

the Higgs mass getting quadratically divergent corrections. As an example, the Λ2 con-

tribution from the top quark loops will be cancelled by the Λ2 contribution from the stop

loops, where stop is the superpartner of the top quark. Of course this requires that both

Yukawa couplings yt be the same but since both top quark and stop live under the same

supermultiplet, this is satisfied by definition in MSSM. Such cancellations occur for all the

diagrams contributing to the Higgs mass to all orders in perturbation theory. An easy way to

see this is to remember that SUSY introduces a degeneracy between the fermion and boson

masses and as we saw at the end of Section 1.3, the fermion masses are protected by chiral

symmetry.

If SUSY were a perfect symmetry of the nature, then the superpartners should have the
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same masses as their SM partners, and therefore we would have discovered them long time

ago. Since this is not the case, SUSY must be broken at some scale mSUSY. Then following

the discussion of Section 1.4, just by dimensional analysis, we can argue that the quantum

corrections to the Higgs mass in a broken SUSY should have the form

δm2
H ∼ λ2

16π2
m2

SUSY log

(
ΛSUSY

mSUSY

)
, (2.3)

where λ is some dimensionless coupling and ΛSUSY is cutoff of SUSY. Since the SUSY break-

ing results in mass splittings between the SM particles and their superpartners, mSUSY

determines the order of these splittings. Then (2.2) tells us that irrespective of the cutoff

ΛSUSY, we need mSUSY ∼ O(TeV) in order to get rid of the fine tuning. This condition

is under tense pressure from the results of the LHC experiments [53]. Even if SUSY does

exist in nature, it might not be a perfect solution for the hierarchy problem as people have

thought in the beginning.

2.2 Composite Higgs Models

The main idea behind the Composite Higgs (CH) models [54] is to abandon the idea that the

Higgs is an elementary scalar, and consider it to be a bound state of a strongly interacting

sector. This idea is reminiscent of what happens in QCD, where spin-0 pions are bound states

which arise due to condensation of quarks. Before the discovery of the Higgs, a popular way

to explain the hierarchy problem was using the technicolor models where the electroweak

symmetry breaking occurs directly via a strong condensate, not due to the Higgs [55–57].

Hence technicolor models generally do not predict a Higgs particle, after the discovery of

the SM-like Higgs, such models are strongly disfavored. CH models are modifications of

technicolor models, which produces the Higgs as a bound state3.

The main ingredient of CH models is a new strongly interacting composite sector which
3This discussion of CH models is based on [25]
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confines around the energy scale f ∼ O(1 – 10TeV). This sector emerges from an even more

fundamental theory which is defined at a very high scale ΛUV � f . The value of this scale is

not important since the main goal of this construction is to make the Higgs mass insensitive

to higher scales. One further assumes that at the scale ΛUV, this sector sits close to a fixed

point of its RG evolution and there is no strongly relevant deformations around this fixed

point. The motivation behind this assumption is to generate a reasonable hierarchy between

the scales f and ΛUV without introducing severe tuning.

However, this is not enough. If the Higgs were a regular bound state, then its mass

would be comparable to the breaking scale f . Then the composite sector would have con-

fined around f ∼ O(100GeV) and this would have introduced a zoo of bound states, called

resonances, with masses below TeV. Since these states have not been observed, the CH mod-

els should be accompanied by some mechanism which explains the mass hierarchy between

the Higgs and the resonances. This is possible if the Higgs is promoted to a Nambu-Goldstone

Boson (NGB).

NGBs arise due to spontaneous breaking of global symmetries as a result of the Goldstone

Theorem [58]. This theorem states that spontaneous breaking of a global symmetry G into

one of its subgroups H ⊂ G implies the existence of massless degrees of freedom in the

broken theory which are called NGBs. The number of NGBs is equal to the number broken

generators. Mathematically speaking, the NGBs span the coset space G/H. After the

symmetry breaking, the broken part of the global symmetry realizes itself as shift symmetries

for the NGBs. These shift symmetries allow only derivative interactions for the NGBs, hence

quantum correction cannot generate a potential for them. This restriction can be avoided if

the global symmetry G were an approximate symmetry which is explicitly broken by some

terms in the Lagrangian. Then quantum corrections generate a potential for the NGBs,

turning them into pseudo NGBs (pNGBs).

Having all these information, the recipe to create a viable CH model is as follows: First

we have the SM Lagrangian, but without the Higgs potential and the Yukawa interactions.
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Then we have a strongly interacting composite sector with a global symmetry G which

should at least contain the SU(2)L × U(1)Y subgroup. The explicit breaking of this global

symmetry is done by coupling the global SU(2)L×U(1)Y conserved current of the composite

sector to the electroweak gauge bosons {W a}. This process is often described as gauging the

SU(2)L × U(1)Y subgroup of G.

An obvious question to ask is what is the minimal possible coset G/H for a viable CH

model. We have said that it should at least contain SUL(2)×U(1)Y . But this is usually not

enough. The strongest constraints to the BSM models come from the electroweak precision

observables, i.e. S and T parameters. The T parameter is more constraining and it predicts

ρ ≡ m2
W

m2
Z cos2 θW

= 1±O(1%). (2.4)

The reason that this value is very close to 1 is the approximate custodial symmetry in the

SM. To see this symmetry, note that the SM Higgs potential (1.5) is invariant under a global

SU(2)L × SU(2)R symmetry under which

H → ULHU
†
R, (2.5)

where UL ∈ SU(2)L and UR ∈ SU(2)R. When the Higgs gets a VEV, only SU(2)L part

is broken. There is still a left-over SU(2)R symmetry, known as the custodial symmetry.

Although this symmetry is broken by Yukawa couplings, their contributions to (2.4) are

smaller than 1%.

Therefore a good strategy for model building various BSM models is to respect this

custodial symmetry. With this condition the minimal coset is SO(5)/SO(4). Such a model is

studied in [59,60], where the global symmetry of the composite sector G = SU(3)c⊗SO(5)⊗

U(1)B−L is spontaneously broken into H = SU(3)c⊗SO(4)⊗U(1)B−L
4. This model is known

4The U(1)B and U(1)L are symmetries of the SM which correspond to baryon number and lepton number
conservation respectively. While both symmetries are anomalous, their combination U(1)B−L is exact.
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as the Minimal Composite Higgs Model (MCHM).

2.3 Large/Warped Extra Dimensions

The idea of introducing extra space dimensions in order to solve physical problems dates

back to the attempts by Theodor Kaluza and Oskar Klein to unify gravitation and classical

electromagnetism. Their idea was to introduce a fifth space dimension which is compactified

into a circle of microscopic size [61–63]. This way both the metric of gravitation gµν and the

vector potential of electromagnetism Aµ can be expressed in terms of a 5-dimensional metric

g5mn, which is given by

g5mn =

 gµν Aµ

Aµ φr

 , (2.6)

where φr is an extra scalar field which corresponds to the 55-component of the 5-dimensional

metric. It is often called the radion.

Although this strategy didn’t accomplish the unification of the gravity and the electro-

magnetism, most of the ideas and terminology in modern extra dimensional theories stem

from the model of Kaluza and Klein. We shall now describe the basics of these models and

explain why there are viable models to address the hierarchy problem5.

The easiest example of an extra-dimensional model is to consider all the extra dimensions

to be flat and are compactified into a circle. Let d denote the dimension of the full spacetime

and D = d− 4 be the number of compactified dimensions. The line element is6

ds2 = gmn dx
m dxn , m, n = 0, 1, 2, 3, 5 (2.7)

5We mainly follow [64] in this section.
6We will use Roman letters m,n to denote the full d-dimensional spacetime indices, while reserving Greek

letters µ, ν for the usual 4-dimensional spacetime indices.
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where for flat extra dimensions the metric is

gmn = diag(1,−1,−1, . . . ,−1). (2.8)

Since all the physics we have observed so far are consistent with a four-dimensional spacetime,

we assume that the extra dimensions are compactified into a D-dimensional torus expressed

as

TD =
D+4∏
i=5

S1(Ri), (2.9)

where S1(R) is a circle with radius R, i.e. R5 and R6 are the radii of fifth and sixth dimensions

respectively.

Now consider a massive real scalar field φ living on a 5-dimensional spacetime. Let us

also denote the 4d spacetime coordinates by x and extra dimensional spacetime coordinate

by y. Then action can be written as

S =

∫
d4x dy

(
1

2
∂mφ(x, y)∂

mφ(x, y)− 1

2
m2

0φ(x, y)
2

)
. (2.10)

Since we are interested in the effects of extra dimensions on the four-dimensional physics,

we should find a way to construct a 4d EFT out of this extra dimensional action. This can

be done using a procedure called Kaluza-Klein (KK) decomposition. Here one solves the

equation of motion (EOM) for φ, plug back in the action (2.10) and finally integrate over the

extra dimension. This is also described as integrating out the extra dimension. The EOM

for φ is

(
∂m∂

m +m2
0

)
φ(x, y) =

(
∂2x +m2

0 − ∂2y
)
φ(x, y) = 0, (2.11)

where ∂2x ≡ ∂µ∂
µ. The key step in the KK decomposition is to use the fact that the extra
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dimensions are compactified, in order to express the scalar field φ(x, y) as a Fourier series.

If the extra dimension is compactified on a circle of radius R, then the Fourier expansion of

the scalar field becomes

φ(x, y) =
1√
2πR

∑
n∈Z

φ(n)(x) exp
{
i
n

R
y
}
, (2.12)

where Z is the set of integers. Since φ is real, this sets φ∗
(n)(x) = φ(−n)(x). Plugging this back

into the action (2.10), integrating out the extra dimension using the orthogonality relations

gives

Seff =

∫
d4x

(
∂µφ

∗
(0)∂

µφ(0) −m2
0

∣∣φ(0)

∣∣2)+ ∞∑
n=1

(
∂µφ

∗
(n)∂

µφ(n) −
n2

R2

∣∣φ(n)

∣∣2) . (2.13)

So in the effective theory we have a complex scalar field φ(0) with the mass m0 plus an

infinite number of heavy particles with masses mn = n/R, which are called KK modes, or

KK tower. As the radius of the extra dimension is getting smaller, the masses of KK modes

become heavier.

A similar analysis can also be done for the gauge fields for which the action reads

S =

∫
d4x dy

(
−1

4
FmnF

mn

)
, (2.14)

where Fmn = ∂mAn − ∂nAm, and

Am =

 Aµ

A5

 . (2.15)

Under 4d-Poincare transformationsAµ is a vector whileA5 is a scalar. The KK decomposition
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can be done as in the scalar case. The Fourier expansion is

Am(x, y) =
1√
2πR

∑
l∈Z

A(l)
m (x) exp

{
i
l

R
y

}
. (2.16)

Plugging this into (2.14) and performing the integration over the extra dimension gives

Seff =

∫
d4x

{[
−1

4
F (0)
µν F

µν(0) +
1

2
∂µA

(0)
5 ∂µA

(0)
5

]

+
∞∑
l=1

[
−1

2
F (l)
µνF

µν(−l) +
l2

R2
A(l)

µ A
µ(−l) − i

l

R

(
A(l)

µ ∂
µA

(−l)
5 − Aµ(−l)∂µA

(l)
5

)]}
.

(2.17)

The last term suggest a mixing between A
(l)
µ and A

(l)
5 when l 6= 0. But this mixing can be

removed by gauge freedom. Namely in the 5d axial gauge we can set

A(l)
µ → A(l)

µ − i

l/R
∂µA

(l)
5 , A

(l)
5 → 0, for l 6= 0, (2.18)

which removes this mixing term. So the effective action we get is

Seff =

∫
d4x

{[
−1

4
F (0)
µν F

µν(0) +
1

2
∂µA

(0)
5 ∂µA

(0)
5

]
+ 2

∞∑
l=1

[
−1

4
F (l)
µνF

µν(−l) +
1

2

l2

R2
A(l)

µ A
µ(−l)

]}
.

(2.19)

So in the effective theory we have a massless gauge boson F
(0)
µν , a massless scalar field A

(0)
5

and a tower of massive gauge bosons
{
A

(l)
µ

}∞

l=1
. The excitations of A5’s are unphysical since

they can be removed by gauge fixing.

Now consider the gauge covariant derivative in this setup. It is given by

Dm = ∂m − ig5Am, (2.20)

where g5 is the 5d gauge coupling. Since [∂m] = 1, from (2.14) the mass dimensions of the
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field strength Fmn and the gauge field Am should be [Fmn] = 5/2 and [Am] = 3/2 in 5d. But

then (2.20) tells us that the 5d gauge coupling g5 should be dimensionful and [g5] = −1/2.

We can get a dimensionless effective 4d gauge coupling by plugging the Fourier expansion

(2.16) into (2.20). This way we find

Dµ = ∂µ − ig5

(
1√
2πR

A(0)
µ + . . .

)
, (2.21)

which says that the effective 4d coupling constant g4 is

g4 =
g5√
2πR

. (2.22)

This result can be generalized to higher dimensions by [65]

g24 =
g24+D

volD
, (2.23)

where volD is the total volume of the extra dimensions.

Same exercise can also be done for the gravitational coupling. The Einstein-Hilbert action

in a flat spacetime with D extra dimensions is given by7

S4+D = −M2+D
4+D

∫
d4+Dx

√
|g4+D|R4+D, (2.24)

where M4+D is the analog of Planck scale in higher dimensions. For flat extra dimensions

we have R4+D = R4 at linear order [65], thus after integrating out the extra dimension we

get

S4+D = −M2+D
4+D

∫
dDx

√
|gD|

∫
d4x

√
|g4|R4 = −M2+D

4+D volD

∫
d4x

√
|g4|R4, (2.25)

7The power of the Planck scale 2 +D comes from the fact that the mass dimension of the Ricci scalar is
[R] = 2 in all dimensions.
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Thus we obtain the Planck scale in an extra dimensional theory as

M2+D
4+D =

M2
pl

volD
. (2.26)

We can now try to estimate the natural size of the extra dimension. The simplest as-

sumption would be that all dimensionful parameters are set by the same physical scale and

take that scale to be M4+D. By generalizing the exercise following (2.20), we can find that

in the case D extra dimensions [g4+D] = −D/2, so the natural size of this gauge coupling is

g4+D ∼ 1

M
D/2
4+D

. (2.27)

Combining this result with (2.26) and (2.23) gives

vol1/D ∼ R ∼ 1

Mpl
g
− 2+D

D
4 , (2.28)

where R is the average size of the extra dimensions. The result shows that the natural size

of the extra dimensions would be on the order of the Planck length lpl ∼ 10−35m and the

KK modes are at the Planck scale. Clearly this is not a viable phenomenological model.

Moreover this model didn’t help to solve the hierarchy problem at all. It is important to

keep in mind that in this setup all the SM particles are propagating in the bulk, which is the

space spanned by the extra dimensions. We shall see now the situation drastically changes

if one relaxes this assumption.

Instead of letting them to propagate through the whole bulk, the fields can be localized

by introducing the concept of branes. Branes are 3 + 1 dimensional hypersurfaces with

localized stress-energy tensor so that fields can be trapped on them. Mathematically one

can define them as topological defects of some sort. String theories have similar objects,

called D-branes where open strings are attached. From a BSM model building point of view,

it is not important how these branes did end up there. All the models we will mention in
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this section should be considered as effective field theories valid up to some cutoff scale ΛUV.

Proper explanation of the branes should be handled by some new physics which is expected

to replace the effective description at the cutoff scale.

The simplest implementation of branes in extra-dimensional theories is the scenario of

Large Extra Dimensions, introduced by Arkani-Hamed, Dimopoulos, and Dvali [66]. In their

model, all the SM fields are localized on a brane, and only gravity can propagate through

the bulk. Then, as a consequence of (2.26) one can lower the fundamental scale of gravity

M4+D ≡M∗ considerably by choosing volume the extra dimensional space volD to be large.

Since M∗ is the cutoff which will enter to the SM calculations, lowering M∗ to the TeV would

solve the hierarchy problem.

If there are D extra dimensions with a similar radii R, then from (2.26) we can write

R ∼ 1

M∗

(
Mpl

M∗

)2/D

. (2.29)

Choosing M∗ ∼ 1TeV and Mpl ∼ 1019GeV gives

R ∼ (1TeV)−1 × 1032/D ∼ 10(32/D−19)m. (2.30)

For d = 1, this gives R ∼ 1013m which is on the order of the solar system and is clearly ruled

out. For d = 2, we get R ∼ 1mm. Although this might seem large too, it is very hard to

experimentally test the gravity. The current bound isR < 37 µm [67,68] which excludes d = 2

with M∗ ∼ 1TeV, but not too much. This bound can be avoided if M∗ & 3TeV. However

much stringent bounds exist from astrophysical and cosmological observations which pushes

M∗ to M∗ > 10 – 103TeV [69–71].

For larger D, the sizes of extra dimensions are within experimental limits. However this

idea has one big conceptual issue. If M∗ is the fundamental scale of the theory, then the

size of the extra dimension should also be determined by that scale, which would imply

R ∼M−1
∗ . But (2.29) shows that if there is a large hierarchy between Mpl and M∗, which is
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needed to solve the hierarchy problem, then R �M−1
∗ . In other words, this model redefines

the hierarchy problem between the weak scale and gravity to the hierarchy problem between

the size of the extra dimension and the fundamental gravity scale.

An obvious next step would be to abandon the assumption flat extra dimensions and

consider extra dimensions with non-trivial geometry. This is not an easy task though since

it is generally very hard to find gravity solutions. Such a solution were found by Randall

and Sundrum in their famous paper [72]. They showed that a metric of the form

ds2 =

(
R

z

)2 (
ηµν dx

µ dxν − dz2
)
. (2.31)

with R being a constant, is a solution to the 5d Einstein equations on a 5d interval with

negative cosmological constant Λ, bounded by two branes having tensions T0 and T1. These

branes are called UV and IR branes respectively. (2.31) is the metric for the 5-dimensional

Anti-de-Sitter AdS5 space and the conformal factor (R/z)2 is called the warp factor. We will

see that this warp factor will play a big role in addressing the hierarchy problem. This model

and other models which are based on this one are called Randall-Sundrum (RS) models in

the literature.

We will now calculate the effective 4d gravity and gauge couplings. We will assume that

the branes are located at z0 ∼ R ∼M−1
pl and z1 ∼ R′ ∼ TeV. Matching the gravity coupling

is slightly more involved in this case, since the extra dimension is not flat. This can be done

by embedding the 4d graviton hµν(x) into the AdS5 metric as [65]

ds2 =

(
R

z

)2 [
(ηµν + hµν(x)) dx

µ dxν − dz2
]
. (2.32)

What we need to calculate is how the Ricci tensor R(4)
µν calculated from hµν is contained in

R(5)
µν which is calculated from (2.32). Since both metrics differ only by a conformal factor
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(R/z)2 we find

R(5) ⊃
(
R

z

)2

R(4). (2.33)

Then the effective gravity action becomes

Seff = −M3
∗

∫
d4x dz

√
|g(5)|R(5) ⊃ −M3

∗

∫ R′

R

dz

(
R

z

)3 ∫
d4x

√
|g(4)|R(4). (2.34)

By performing the integral over the extra dimension, we find the effective Planck scale as8

M2
pl =M3

∗R

[
1−

(
R

R′

)2
]
. (2.35)

We see that for R ∼ M−1
∗ , we have Mpl ∼ M∗ so unlike in the large extra dimensional

scenario, in warped space models there is no hierarchy between the 4d and the 5d gravity.

Let us do a similar exercise for the weak scale. For simplicity, assume that there is only

the Higgs field and is localized on the TeV brane. Then we can add the following term to

the 5d action:

S(5) ⊃
∫

d4x dz
√
−g1δ(z −R′)LH , (2.36)

where g1 is the induced metric on the TeV brane, (g1)µν = (R/R′)2ηµν , and LH is the usual

Higgs Lagrangian:

LH =
(
∂µH†) (∂µH) +m2

H |H|2 − λH |H|4. (2.37)

8There is an extra factor of 2 in this result coming from the fact that in RS models one usually considers
the extra dimension to be a S1/Z2 orbifold. In these configurations the extra dimension starts as a circle
S1 with a radius rc and domain −πrc ≤ y ≤ πrc. The branes located at y0 = 0 and y1 = πrc. Then one
imposes a Z2 symmetry by y → −y so that the theory is formulated on a line segment 0 ≤ y ≤ πrc. However
the integration over the extra dimension contains a double copy of this line, and hence we get an additional
factor of 2.
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The crucial part is that we have to use the induced metric to raise and lower the Lorentz

indices in this expression, i.e.

(
∂µH†) (∂µH) = gµν1

(
∂µH

†) (∂νH) =

(
R

R′

)−2

ηµν
(
∂µH

†) (∂νH) . (2.38)

Now we can integrate out the extra dimension to get an effective 4d action

S(4) ⊃
∫

d4xL(4)
H , (2.39)

where

L(4)
H =

(
R

R′

)2

ηµν
(
∂µH

†) (∂νH) +

(
R

R′

)4

m2
H |H|2 − λH

(
R

R′

)4

|H|4. (2.40)

However the Higgs kinetic term is not canonically normalized. We can normalize it by

rescaling the Higgs by H → (R′/R)H. After this rescaling we obtain

L(4)
H = ηµν

(
∂µH

†) (∂νH) +

(
R

R′

)2

m2
H |H|2 − λH |H|4. (2.41)

The scaling factor in front of the Higgs mass term is the key property of RS models which

makes them a popular solution to the hierarchy problem. We can see that even mH is set by

M∗, which would naturally be the case, in the 4d effective theory it appears much smaller

provided that R/R′ � 1. In particular, for M∗ ∼ 1019GeV and mH ∼ 102GeV, one needs

R/R′ ∼ 10−17. This result shows the key distinction between the large and the warped extra

dimensions. In large extra dimensions, both weak and gravity scales are at TeV, but the

apparent gravity scale is Mpl due to its dilution through the extra dimension. On the other

hand in RS models, both weak and gravity scales are at Mpl, but the weak scale warped

down by the extra dimension so its apparent 4d scale is TeV.

Now the question is how can we get a hierarchy of R′/R ∼ 1017 naturally? In RS model,
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this needs to be set by hand since there is no mechanism which can stabilize the size of the

extra dimension. A stabilizing mechanism was found by Goldberger and Wise shortly after

the RS paper, and it is usually called Goldberger-Wise (GW) mechanism in the literature [73].

GW did consider a massive scalar field Φ living the bulk whose action is

SGW =
1

2

∫
d4x dz

√
g
(
gmn∂mΦ∂nΦ−m2Φ2

)
. (2.42)

Again there are UV and IR branes, but this time they contain potentials for Φ:

Sbrane = −
∑
i=0,1

∫
d4x

√
−giλi

(
Φ2 − v2i

)2
, (2.43)

where the subscripts 0 and 1 represent parameters for the UV and the IR branes respectively.

These potentials cause the bulk scalar Φ to develop a z-dependent VEV, which can be

obtained by solving the classical EOM arising from the variation of (2.42) with respect to

Φ. The unique solution can be found with the help of the two boundary conditions imposed

by the branes. This solution can then be put back into the action (2.42) and the extra

dimension is integrated out. After all these steps one obtains a 4d effective potential for the

size of the extra dimension. GW then showed that the effective potential has a minimum

around

log

(
R′

R

)
≈
(

2

mR

)2

log

(
v0
v1

)
. (2.44)

For log(v0/v1) ∼ O(1), a large hierarchy R′/R ∼ 1017 can be generated by a modest value

of (mR)2 ∼ (m/M∗)
2 ∼ 0.1.

In the paper of GW, the form of the metric is held constant, i.e. the backreaction of the

scalar field Φ on the metric is ignored. The coupled scalar-gravity equations can be solved

exactly for some bulk potentials, including the potential used in the GW model, using the

superpotential method [74]. Such a calculation for one scalar field is presented in [75] while
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the generalization to multiple fields is also possible [76].

2.4 AdS/CFT Correspondence

In this final section of this chapter, we will see how the CH models we have presented in

Section 2.2 and RS models we have presented in Section 2.3 can be related to each other

by using one of the most powerful ideas in theoretical physics in recent years, which is the

gauge-gravity duality. The main reference for this section will be [77].

In physics, duality means the description of a physical system in completely different

ways having entirely different degrees of freedom and interactions. As a basic intuition, one

can think of a system, such as QCD, which is weakly coupled at high energies and therefore

perturbative. At this energies, its degrees of freedoms are approximately free. However at

lower energies this theory becomes strongly coupled, its degrees of freedom are no longer

uncoupled from each other, and therefore perturbation theory breaks down. But at strong

coupling, bound states of fundamental degrees of freedom might be formed and these can

behave as a new set of variables which are weakly coupled to each other. So it is somehow

expecting that a system should be able to described differently at different energies.

The AdS-CFT correspondence [78] is a special example of a general class of dualities

known as gauge-gravity dualities. It is duality between Type IIB string theory on AdS5 × S5

and N = 4 Super-Yang-Mills theory which is a Conformal Field Theory (CFT) in four

dimensions with the gauge group SU(N). The parameters on both sides of the duality are

related to each other by

(
R

ls

)4

⇔ 4πg2YMN, (2.45)

where R is the AdS radius, ls is the string scale and gYM is the gauge coupling on the CFT

side. In order to describe gravity on the AdS side classically, one needs R � ls which means

on the CFT side we need g2YMN which corresponds to strong coupling. The usefulness of
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this duality lies in this observation. We can explain strongly coupled field theories by doing

calculations with classical gravity.

The symmetry group of a conformal Poincare-invariant field theory in d dimensions is

the conformal group SO(d, 2). This group contains the Poincare transformations, d special

conformal transformations and a scale transformation given by

D : t→ λt, x → λx. (2.46)

Conformal field theories are field theories which are invariant under this transformations,

hence they lack a physical scale. The main motivation behind the AdS/CFT correspondence

is the fact that the isometry group9 of AdSd+1 is also SO(d, 2). The scale transformations in

(2.45) are reflected on the AdS side as

D : t→ λt, x → λx, z → λz. (2.47)

The last transformation is crucial. It says that a scale transformation on the CFT corre-

sponds to a movement in the extra dimension. Since scale transformation is related to RG

evolution in a field theory we have

movement in extra dimension ⇔ RG evolution in 4d theory.

Breaking one the symmetries on one side corresponds to breaking it on the other side.

The branes we have encountered in Section 2.3 do break the AdS isometry, so they correspond

to breaking of conformal symmetry on the CFT side.

A global symmetry of the field theory is realized as a gauge symmetry on the AdS side.

But there is no such requirement for the gauge symmetries of the field theory. This is

not surprising since gauge symmetries are not real symmetries; they are redundancies in the
9An isometry is a map between two metric spaces which preserve the distance.
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description. Moreover since different gauge symmetries are characteristics of different degrees

of freedom, so it is expected that they don’t match. However gauge invariant quantities are

physical, therefore they should match. This is indeed true. Each field on the gravity side

corresponds to a gauge invariant operator in the field theory.

To see this explicitly, let us consider the action given in (2.42) without any branes but in

d+ 1 dimensions. Close to the boundary of the AdSd+1, z → 0, we can express the solution

to Φ as

Φ(z → 0, x) = z∆−
[
α(x) +O(z2)

]
+ z∆+

[
β(x) +O(z2)

]
, (2.48)

where α(x) and β(x) are functions of the 4D coordinates and

∆± ≡ d

2
±
√
d2

4
+m2R2. (2.49)

Since z → λz under a scaling transformation, the functions α and β should scale as

α(x) → λ−∆−α(x) and β(x) → λ−∆+β(x). (2.50)

One of these functions should be fixed by boundary conditions. A commonly used choice is to

fix α by α(x) ≡ J(x) for some choice of J(x). This way β(x) becomes a dynamical variable

which in the field theory can be identified with an operator O(x) with scaling dimension

∆+. Since O(x) is turned on after introducing J(x), J(x) is identified as a source for the

operator O(x). Note that this implies the scaling dimension of J(x)O(x) is ∆+ + ∆− = d

which should be the case for a field theory in d dimensions. In summary, AdS/CFT provides

a relation between the partition functions of the gravity and the field theory:

Z[Φ;α(x) = J(x)] ⇔ ZCFT[source for O(x) is J(x)]. (2.51)
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Although it is expected that this relation to hold for generic models, we only know how to

do classical gravity. The left hand side of this relation approaches to the classical gravity if

one considers the large-N limit on the CFT side, i.e. when g2YMN � 1.

Since the scaling dimension of O is ∆+ using (2.49) we can classify O as


irrelevant if m2R2 > 0,

marginal if m2R2 = 0,

relevant if m2R2 < 0.

(2.52)

Unlike the Minkowski space, the AdSd+1 space allows scalar having negative masses as long

as they satisfy the Breitenlohner-Freedman (BF) bound [79, 80]:

m2R2 ≥ −d
2

4
. (2.53)

This sets the bound ∆ ≥ d/2 for any operator in the CFT. However this bound can be

lowered to ∆ ≥ d/2− 1 by modifying the gravity action with boundary terms [81].

With all these information we can build the bridge between the Composite Higgs and the

Randall-Sundrum models. We will try to explain the general picture without specifying how

the individual fields are related to each other, since they can be model dependent. We start

with a pure AdS5 space without any branes which is dual to a strongly coupled 4d CFT, and

we identify this CFT with the composite sector of CH models. We will add ingredients one

by one to either side and describe the related deformation on the other side, as it has been

done in [82] which we shall follow closely.

Let us start by adding a UV, or Planck, brane. On the CFT side this gets translated

to an UV cutoff ΛUV, at which the CFT description breaks down. Since the metric is still

pure AdS, we still have an exact CFT below the cutoff. Moving the UV brane from 1/R to

1/R̃ where R̃ > R corresponds to integrating out the degrees of freedom between the energy

scales Λ = 1/R and Λ̃ = 1/R̃.
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Putting an IR, or TeV, brane at R′ = 1/Λ′ strongly breaks the conformal invariance of

the composite sector at 1/Λ′. If all the SM fields live on the TeV brane like in the RS model,

then this would imply that all the SM fields emerge as bound states of the composite sector.

So from the 4d point of view, the RS model is a theory where the SM is embedded inside a

strongly coupled CFT above the TeV.

Now add a scalar field to the bulk as in the GW mechanism. We already know that it

should correspond to an operator on the CFT side OΦ with scaling dimension

∆+ = 2±
√
4 +m2R2 ≈ 4 +

m2R2

4
, for small m2R2. (2.54)

We see that for smallm2R2, the operator OΦ is marginally relevant form2 < 0 and marginally

irrelevant for m2 > 0. This operator is sourced by the coefficient of z∆− term of (2.48). All

these amount to perturbing the CFT by an operator

LCFT → LCFT + JOΨ, (2.55)

which mildly breaks the conformal symmetry explicitly. The RG running of this operator

is determined by the RG running of its coupling constant J , which will be Jz∆− . Since

∆− ≈ −m2R2

4
, for m2 < 0 this coupling will grow towards the IR and at some point breaks

the CFT, which is realized on the AdS side as the IR brane. The m2 > 0 case can be thought

as a mechanism for generating the UV brane. In this case the coupling will grow towards

the UV and breaks the CFT at some UV scale, which is realized on the AdS side as an UV

brane.
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Chapter 3

Self-Organized Higgs Criticality

3.1 Introduction

The Higgs instability in the electroweak sector of the Standard Model (SM) appears thus

far to be of the simplest variety, with the Higgs sector residing “unnaturally” close to a

critical point seemingly unprotected by symmetry and well described by mean field theory.

The Higgs sector is associated with a Landau-Ginzburg theory of a symmetry breaking

phase transition. The Higgs field of the Standard Model develops a vacuum expectation

value (VEV) due to a relevant operator (the Higgs mass term) having the “wrong sign”

in the infrared which destabilizes the origin in field space. The naturalness issue, or the

hierarchy problem, is the statement that in units of the much larger fundamental scales in

the problem, i.e. the Planck or GUT scales, the bare mass must be tuned to an absurd degree

to accommodate the observed value for the VEV and the mass of the Higgs particle, and

that quantum corrections spread this sensitivity among fundamental parameters. That is,

quantum effects make the Higgs mass similarly sensitive to, for example, the value of the top

quark Yukawa coupling. As a consequence it is expected that low energy effective theories

with Higgs sectors like that of the SM are extraordinarily rare when there are other large

physical scales present.
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Most proposed resolutions of this problem invoke new symmetries requiring new particles

with fixed interactions that ameliorate the sensitivity of the Higgs mass to larger mass scales.

The paucity of new particles at the TeV scale has sown growing doubt that this is the way

nature has created a low electroweak scale.

In this work, we begin an investigation of the possibility that the critical point for Higgs

sectors like that of the SM can arise naturally not due to symmetry, but rather because of a

self-organization principle, as suggested in [83]. This is inspired by critical behavior that has

been observed in a wide variety of seemingly unrelated physical systems in nature [84, 85],

with the canonical example being the sandpile. In this example, a pile of sand is created

and sustained by slowly pouring sand from a funnel onto a fixed point. The sand self-

organizes into a cone with opening angle fixed by microscopic interactions between grains.

Perturbations, even if only involving a single grain of sand, result in avalanches at all scales,

following a power law distribution. After the avalanche, when the system has removed the

perturbation, the cone of sand is in a new configuration, but still critical so long as sand

continues to be slowly added. Such “self-tuning” is also thought to arise at earthquake fault

lines, river bifurcations, and temporally near financial market crashes [86]. It has been key

to describing some astrophysical phenomena as well [87]. It has been hypothesized that

these phenomena of criticality at the threshold of “catastrophic failure” can be related to an

instability arising from critical exponents becoming complex, corresponding to discrete scale

invariance [88]. This possibly suggests an approach to the Higgs fine-tuning problem in extra-

dimensional models in AdS space, where similar features appear when the Breitenlohner-

Freedman (BF) bound [80] is violated, leading to complex scaling dimensions and a complete

loss of conformality in a hypothetical 4D dual [89].

Typically, in the examples we have in statistical physics, criticality is “self-organized” by

temporal loading of the system: the slow addition of sand grains at a pile’s apex, gradual

stress building at faults due to tectonic drift, etc. In relativistic theories, this slow temporal

loading can be exchanged with mild spatial gradients, and in 5D, through the AdS/CFT
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duality [78], spatial translation and gradients can be, in turn, related to scale transforma-

tions and renormalization group evolution. This further suggests an approach where the

instability associated with complex scaling dimensions is reached dynamically through slow

renormalization group evolution, or, in a 5D dual, via growth of a deformation of AdS space

that leads to eventual violation of the BF bound. This has a parallel in some perturbative

4-dimensional theories where dimensional transmutation directs the Higgs potential [90]. In

models such as the MSSM, the instability of the electroweak sector can be arrived at through

quantum corrections [91–93]: RG flow from some microscopic theory seemingly devoid of in-

stabilities evolves to an IR theory where a Higgs picks a non-vanishing condensate.

Stepping away from the background motivation, we can state generally that the eventual

goal of this line of research is to have a zero for the Higgs mass term coinciding (or nearly

coinciding) with a minimum in the potential for an extra-dimensional modulus field over a

wide range of extra-dimensional input parameters. In this case Higgs criticality would be a

dynamical attractor for the theory without extreme sensitivity to fundamental constants. In

other words, such a 5D system self-tunes to the critical point of its 4D low energy effective

Higgs theory. This is similar to the way in which the strong CP problem is resolved by the

axion hypothesis where the axion field promotes the CP phase to a dynamical field whose

potential minimum resides at the point where CP is conserved in QCD, and also to models

which solve the hierarchy problem using cosmological dynamics and slightly broken shift

symmetries [94].

To be properly identified as self-organization, in the most conservative application of

this label, criticality near the minimum of the potential must be robust under reasonable

variation of model input parameters: we are looking for a theory with a near-critical Higgs

region. From the perspective of the low energy theory, at energy scales below the modulus

VEV, the lightness of the Higgs would be in apparent violation of effective field theory

principles and power counting, that is, a violation of the principle of locality of scales.1

1Such violation has been observed before in a toy model with discrete scale invariance [95], another
suggestive connection to self-organized critical systems.
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Figure 3.1: This figure exhibits a cartoon of a potential for a modulus field, φ, where the singular
minimum matches on to a critical point at which the mass of a physical light Higgs field fluctuation
passes through zero. On either side of the singular point, the Higgs boson mass is finite and positive,
but on one side the mass squared for the field is negative, with the instability driving spontaneous
symmetry breaking.

This could be reconciled by the fact that in a microscopic 5D theory, quantum corrections

might renormalize the potential for the Higgs and modulus field simultaneously, shifting the

location of the minimum, but not the property that the physical Higgs boson is light at

that minimum. A cartoon is shown in Figure 3.1. We emphasize that this has not yet been

realized in a dynamical model in this work, but rather is a longer term goal in which this

paper could be a crucial first step.

To realize such a scenario, there first must be a feedback mechanism, such that when the

Higgs field develops a VEV, the potential for the modulus responds, as shown in Figure 3.1.

This is somewhat akin to the way thresholds can play an important role in Casimir energies,

as in, for example [96]. If this feedback is itself the origin of the minimum of the potential,

with the minimum being at or near the critical value at which the Higgs VEV turns on, the

modulus field will be attracted to the minimum, where the mass of the Higgs fluctuation is

small or vanishing.

In one “toy” and one fully dynamical construction, we investigate the mutual potential
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of a modulus field (in our case, the radion of a Randall-Sundrum (RS) 2-brane model [72])

and a 5D Higgs field. The models are constructed so that the value of the modulus field

vacuum expectation value influences the Higgs stability criterion. Specifically, we consider

scenarios where the Higgs instability is linked to dynamical violation of the BF bound far

from the UV boundary of the RS geometry through interactions with the modulus field.

The CFT dual of this picture corresponds to the theory described above: one which is

conformal in the deep UV, without instabilities, and which contains a near marginal defor-

mation that drives a slow running of the scaling dimension of an operator in this approximate

CFT [82, 97]. There is an interplay between two operators, Oε, a near marginal operator,

and OH . Similar to the way dynamical symmetry breaking for the Higgs can occur via

radiative corrections, here an analogous instability is reached in the RG flow for the dual

picture, with the scaling dimension for the operator OH becoming complex, and causing an

“unhealthy” [98] limit cycle-like behavior in the RG flow that is terminated by condensa-

tion of operators in the approximate CFT, breaking the approximate conformal invariance

spontaneously.

Curiously, in the models studied here, a nontrivial cosmology may be a common feature

of the classical ground state. In the 5D picture, the metric and scalar fields must include

a cosmology for the low energy 4D effective theory in order to satisfy the metric junction

conditions for the two brane model, unless UV and IR brane tensions are tuned. We sus-

pect this is due to a frustration mechanism similar to that which causes striped and other

inhomogeneous phases to appear in some high Tc superconductors [99], and may lead in this

case to a time-dependent vacuum state [100, 101]. Studies of holographic superconductivity

have identified such phases when the BF bound is violated deep in the interior of asymp-

totically AdS geometries due to non-trivial gauge and gravitational field backgrounds [102].

In other words, the resolution of the RG limit cycle instability may have its imprint in the

low energy theory as a limit cycle in time evolution. We have left a full exploration of the

time dependence for future work, however we do speculate on the possible relevance of this
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feature for cosmology [103,104].

The chapter is organized as follows: In Section 3.2, we set the stage with a discussion of

a possible effective theory for a dilaton vacuum expectation value that has features that we

find in our holographic model, and which points towards a new way to set the confinement

scale in an approximately conformal theory. In Section 3.3, we describe a 5D toy holographic

implementation of these ideas that leaves out certain backreaction terms, with a bulk Higgs

mass that is given explicit dependence on the extra-dimensional coordinate. In Section 3.4,

we show how to promote this simplest model to a dynamical one, where the effective Higgs

mass evolves due to a coupling to a “driving” scalar which picks a coordinate-dependent

VEV. In Section 3.5 we discuss in more detail a possible approximate CFT interpretation

of the 5D model, and make some connections to generalized BKT scaling discussed in [89].

In Section 3.6, we briefly discuss connections to self-organized critical models in statisti-

cal physics, to catastrophic failure modes of these systems, and future implementation of

these ideas into an extension of the SM. Finally, we discuss aspects of the cosmology of the

model, part of which involve speculation that can be more fully resolved with future work,

in Section 3.7.

3.2 Preliminaries: The Frustrated Dilaton

We begin by considering an effective theory of a dilaton that has aspects of the behavior of the

more detailed holographic models we consider. In an approximately scale-invariant theory

that undergoes spontaneous breaking, the potential that sets the scale of that breaking is

a (nearly) scale-invariant quartic: Vdil = α(f)f 4, where α has some weak dependence on f

that encodes the amount of explicit breaking. This potential can have a nontrivial minimum

at small values of f if α obeys some basic properties.

It is important to note that in this effective theory, f is a summed total scale of conformal

breaking, and relations between individual VEVs are hidden in this potential. In other
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words, many operators could be simultaneously condensing which all contribute to conformal

breaking. In addition, if there is some small breaking of conformal invariance, there can be

nontrivial relations between these operator VEVs that are not encoded in the total dilaton

potential.

Now we note that it could be the case that there is simply no solution that satisfies

the relation between VEVs in the approximate CFT for a total f below some critical value,

f < fcrit. How does the theory exit the CFT in this case? The dilaton is frustrated –

internally, it seeks to satisfy the relations between operator VEVs, providing a lower limit to

the total breaking scale. On the other hand, in the low energy theory, a smaller or vanishing

f is preferred.

As a very simple example of this, we could consider two VEVs fφ and fhiggs where at

some critical value of decreasing fφ, fhiggs begins to turn on:

f 2
higgs =

 −λfφ−µ2

λH
λfφ − µ2 < 0

0 otherwise
.

Such behavior occurs in the “relaxion” models of electroweak symmetry breaking. Note

however, that we are not specifying a global potential for this behavior, but instead are

merely providing an ad hoc relationship between operator VEVs that might arise inside of

the approximate CFT. In the holographic models we consider, fφ corresponds to the VEV of

a marginally relevant operator, and fhiggs to the VEV of an operator whose scaling dimension

is driven into the complex plane.

If these VEVs contribute to an effective dilaton potential as Vdil ≈ α(f 4
φ + f 4

higgs) (as

though they are both from operators with scaling dimension near 4), the potential will be

globally minimized when f 2
φ = λ

2λHfφ
f 2

higgs if the relationship between VEVs is maintained.

A large hierarchy between fhiggs and fφ can be created by having a small value of λH , and

the dilaton potential appears to be minimized at some fcrit while enforcing the relation.

We note that the dilaton potential itself does not enforce the relation between the VEVs,
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which is instead specified by some dynamics that is part of the UV completion of the dilaton

effective theory. This can create a puzzle from the perspective of the low energy theorist,

which sees only the total breaking scale f , not the interrelations between the individual

f ’s that contribute. The low energy observer would think that f = 0 should minimize the

pure quartic potential, but instead the theory gets “trapped” at a larger f . Of course these

relations between VEVs would require some breaking of scale invariance, and the potential

would not be precisely quartics.

There may be a connection here to the concept of frustrated phase separation in con-

densed matter physics, a phenomenon where (for example) high Tc superconductivity is

blocked due to long range Coulomb interactions, and the theory resolves the tension by

creating an intermediate phase which spontaneously breaks translation invariance, creating

“stripes” [99]. Here, Higgs condensation may be blocked by quasi-long range dilaton inter-

actions, and there may be some analog of these striped phases that resolves the frustration

that is important for cosmology.

With this hypothetical scenario as context and motivation, we begin our holographic

studies.

3.3 Toy Model: Explicitly Varying Higgs Mass

To illustrate a basic model with the features we seek, we work in 5D asymptotically anti-de

Sitter space without a UV brane, and give the Higgs a bulk mass term that varies explicitly

with the extra-dimensional coordinate. We strongly emphasize that this is a toy model

that easily illustrates some curious features that help motivate the more realistic model in

Section 3.4. Specifically, this model leaves out backreaction between the Higgs and the (here

unspecified) dynamics that give rise to the varying mass term, while in Section 3.4, this

backreaction is taken fully into account.

The metric can be written as (setting the AdS curvature near the AdS boundary, k, to
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1) [105]:

ds2 =
1

z2

[
dx24 −

dz2

G(z)

]
. (3.1)

The coordinate z ranges from 0 at the AdS boundary to an IR brane at z = z1, and for

z → 0, the function G has the asymptotic behavior G(z) → 1 and G′(z) → 0. Away from

z = 0, the function G encodes the effects of gravitational backreaction due to nontrivial bulk

physics such as condensates. We are restricting our ansatz for the background to solutions

obeying 4D Lorentz invariance.

The action is given by

S =

∫
d4xdz

√
g

[
|∂MH|2 + 6

κ2
−m2(z)|H|2 − 1

2κ2
R

]
−
∫
d4xz−4m2

0|H|2
∣∣∣∣
z→0

−
∫
d4xz−4V1(|H|)

∣∣∣∣
z→z1

,

(3.2)

with κ2 = 1/(2M3
Pl). The bulk mass function is chosen to a have fixed value in the limit

z → 0, and decreases monotonically and slowly as z increases:2

m2(z) = −4 + δm2 − λzε. (3.3)

Note that m2 = −4 corresponds to the Breitenlohner-Freedman bound, and δm2 is taken

to be a positive quantity so that the z → 0 limit is well-defined.3 We note that past work

explored constant Higgs bulk mass at or near the BF bound [106, 107] with interesting

implications for radius stabilization. A possible relationship between the BF bound and

scalars with suppressed mass in lattice studies of theories at the boundary of the conformal
2It is not difficult to arrange for this type of z-dependent mass term to arise dynamically, rather than

through this forced explicit breaking of the isometries of AdS. We give examples in Section 3.4.
3If the mass is taken below the BF bound as z → 0, perturbations solving the scalar equation of motion

oscillate rapidly in the UV, indicating the need for an ultraviolet cutoff, such as a brane that cuts off the
small z region of the spacetime [89].
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window was discussed in [108]. For the IR brane potential, we take

V1(|H|) = T1 + λH |H|2
(
|H|2 − v2H

)
, (3.4)

where T1 is the tension of the brane. The Higgs may, for some regions of parameter space,

pick a nonvanishing vacuum expectation value, 〈H〉 = φ(z)/
√
2, where the Higgs VEV has

a nontrivial profile along the z-coordinate.

Restricting to solutions that obey 4D Lorentz invariance, the 5-5 component of the Ein-

stein equations relate the metric function G to the behavior of the Higgs VEV in the bulk:

G =
−κ

2

6
V (φ)

1− κ2

12
(zφ′)2

, (3.5)

and they can be further employed to reduce the effective potential for the classical background

configuration to a pure IR boundary term [75]:

Vrad =
1

z41

[
V1(φ) +

6

κ2

√
G

]
. (3.6)

There is generally a UV contribution from the brane at z0 as well, but it vanishes as z2
√
δm2

0

in the z0 → 0 limit, with the exception of a constant term which is tuned to give vanishing

effective cosmological constant. We also note that the remaining components of Einstein’s

equations in the bulk do not give additional information on G, being equivalent to the

scalar field equation of motion for the z-dependent background, and that for the purposes

of calculation of the effective potential for the size of the extra dimension, we fix the 4D

portion of the metric to be flat. This amounts to satisfying vanishing variation of the action

with respect to those metric components in a trivial manner, requiring that the variations

themselves vanish: δgµν = 0.

For small values of the Higgs VEV, or alternatively weak 5D gravity, this effective radion
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potential reduces to

Vrad =
1

z41

[
V1(φ) +

6

κ2
− 1

4
m2(z1)φ

2(z1) +
1

4
z21φ

′2(z1)

]
. (3.7)

The scalar field equation of motion in the limit of small κ2 is

φ′′ − 3

z
φ′ − 1

z2
∂V

∂φ
= 0, (3.8)

with energetic favorability of a nontrivial solution depending on the boundary conditions,

which are (again in the small κ2 limit):

zφ′|z=z0,1 = ±1

2

∂V0,1(φ)

∂φ
. (3.9)

Near the AdS boundary z → 0, the solutions are power law in z, with the expected behavior

φ ∝ z2±
√
δm2 , where the two different scaling laws correspond to two different boundary

conditions or definitions of the action [81]. The scaling law z∆+ is more generic, with fine-

tuning of BCs (or supersymmetry) required to obtain the scaling with power law ∆−. The

full solution for all z, including the effects of the changing bulk mass, is

φ ∼ φ±z
2J±ν

(
2
√
λ

ε
zε/2

)
, (3.10)

where ν ≡ 2
√
δm2/ε. For m2

0 6= 2 −
√
δm2, only the + solution is relevant, while for

the special case m2
0 = 2 −

√
δm2, the field behavior is given by the − solution. Choosing

the special case corresponds in the holographic picture to fine-tuning the coefficient of an

operator O†
HOH to force the RG flow to go “backwards” compared to the more generic +

scaling solution [89, 109], or in other words, tuning so that the theory sits at a UV fixed

point.

Choice of the UV boundary condition does not much affect the discussion, and we choose
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to display the effects of the first of these two solutions, taking m2
0 = 0.

For large values of z, and small ε, the asymptotics of the Bessel function exhibit log-

periodicity on top of scaling when z is past the point where the BF bound is surpassed by

the evolving bulk mass:

φ ∝ z2−ε/4 cos
(√

λ log z + γ
)
. (3.11)

This log-periodic power law behavior may be a common feature in systems where criticality

is self-organized [88].

The condition for formation of a condensate is met when the IR brane boundary condition

favors a nontrivial value for the coefficients of the bulk solution:

1

ε

(
λHv

2
H − 4

)
≥ xJ ′

ν(x)

Jν(x)
, (3.12)

where ν ≡ 2
√
δm2/ε and x ≡ 2

√
λz

ε/2
1 /ε. Equality is associated with the presence of the exact

critical point. Note that equality is satisfied at many values of z1 due to quasi-periodicity

of the right-hand side at large z1. We label the i-th critical point as zic. The emergence of

a massless degree of freedom at these critical points can be seen in the small momentum

behavior of the bulk correlator for the Higgs fluctuations. Working in the unbroken phase,

the Green’s equation for scalar fluctuations is given by

[
∂2z + p2 − 3

z
∂z −

m2(z)

z2

]
G
(
z, z′; p2

)
= izδ(z − z′). (3.13)

At the point of criticality, for small p2, the Green’s function in terms of an eigenfunction

decomposition takes the form

G
(
z, z′; p2

)
≈ ψ0(z)ψ

∗
0(z

′)

p2
−

∞∑
i=1

ψi(z)ψ
∗
i (z

′)

m2
n

, (3.14)
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where ψ0(z) solves the 5D equation of motion for p2 = 0, and thus takes the same functional

form as the VEV, φ(z). The mn are the usual KK-mode masses. As we discuss in further

detail below, the m2
n are not guaranteed to be positive at all of the critical points, and in

fact only one, the smallest zc critical point, z1c has a positive spectrum.

As the Higgs VEV turns on, the character of the radion potential also changes dramati-

cally. Of primary interest is the behavior of the radion potential near the region of z1 where

the Higgs VEV is just turning on. A linearized approximation of the Higgs contribution

to the potential gives the leading contribution in the immediate neighborhood of criticality.

The function for φ(z1)2 is analytic, and near its zeros, say one at z1 = z1c , we have

φ(z1)
2 ≈ σ2

(
z1
z1c

− 1

)
, (3.15)

where σ2 is a positive function of the parameters of the theory:

σ2 =
−4m2 (z1c ) + λHv

2
H (λHv

2
H − 8)

2λH
. (3.16)

The radion potential in the regime just after the VEV turns on is given by

Vrad ≈ 1

z41

[
δT1 +

λHσ
4

8

(
z1
z1c

− 1

)]
. (3.17)

The radion potential is thus piecewise, and if we look in the vicinity of the critical point, it

takes the form

Vrad ≈


1

z41
δT1 z1 < z1c

1

z41

[
δT1 +

λHσ
4

8

(
z1
z1c

− 1

)]
z1 > z1c

, (3.18)

where δT1 is the mistune between the IR brane tension and the bulk cosmological constant.

We note that quantum corrections will spread z-dependence from the scalar mass to the

cosmological constant term, and the background will no longer be pure AdS. These small
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corrections will modify the background potential away from a pure quartic - this is not,

however, important for the features we draw attention to in this model. In the next section,

the background potential is modified away from a pure quartic by a Golderberger-Wise type

potential.

At the critical point, there is a kink discontinuity in the radion potential.4 The contribu-

tion of the Higgs condensate to the radion potential is also positive definite. In order for the

derivative of the radion potential to change sign, creating a kink minimum, an additional

condition for the radion quartic (the IR brane mistune) must hold:

0 < δT1 <
1

128λH

[
4m2

(
z1c
)
− λHv

2
H

(
λHv

2
H − 8

)]2
. (3.19)

These requirements are satisfied relatively robustly under variation of the input parameters.

In Figure 3.2, we show an example of the radion potential, where we have taken δT1 = 1,

δm2 = 1, λ = ε = 0.1, v2H = 0, and λH = 1/8.

There are two plots in the figure: in the first, on the left, we show a close-up that focuses

on the critical value of the radion VEV. On the right, we zoom out. Unsurprisingly, it appears

that there are multiple such minima, and that the first one is metastable. This is due to

the quasi-periodicity of the Higgs VEV solution at large values of z. Closer examination of

the theory in these regions shows that there are unresolved tachyon instabilities associated

with Higgs fluctuations. In these regions, no VEVs are formed, but there are solutions to the

scalar equation of motion with negative mass squared, as we show in the next subsection.

Before studying the instabilities, it is worthwhile to explore the behavior of the effective

potential under variations of the fundamental parameters. Crucial to the success of the

model as one of self-organized Higgs criticality is the existence of a broad critical region,

over which the Higgs remains light. In Figure 3.3, we examine the behavior of the radion

potential under variations of the IR brane Higgs mass squared, encoded in v2H . We see that
4We note that this kink feature is due to the fact that we are deliberately ignoring backreaction between

the Higgs and the dynamics that creates the varying mass term. The properties of the critical point differ
in complete models, and we begin a study of an explicit example in Section 3.4.
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Figure 3.2: Here we display the radion potential, Vrad(z1). In the white region, the Higgs VEV
is vanishing, and the radion potential is a pure quartic. In the gray region, φ(z1) 6= 0, and the
contribution of the Higgs to the radion potential causes a kink-like minimum to appear at the
critical points. In the first plot, we have zoomed in on the first minimum, corresponding to the
smallest z1 for which the criticality conditions are met. In the second plot, we zoom out, showing
other potential minima. These are unhealthy, in that the theory at this point contains unresolved
tachyons. The dashed vertical line in the second plot corresponds to the value of z at which the
evolving bulk Higgs mass passes the BF bound.

with changing v2H , the location of the minimum is relatively constant, however there is a

crucial value of v2H past which the location of the minimum moves away from the kink in the

potential. The region of parameter space where the minimum resides at the kink is a critical

region, as there is a zero mode Higgs for all values of v2H < v2H(crit).

In the next subsection, we comment on properties of this kink minimum in the effective

radion potential, in particular those related to the metric ansatz that we have enforced.

3.3.1 Metric Boundary Conditions

In calculating the radion potential in Eq. (3.7), we have imposed the boundary conditions

for the scalar fields, but we have neglected the metric junction conditions on the branes,

which enforce

√
G(z0) =

κ2

6
V0,

√
G(z1) = −κ

2

6
V1. (3.20)
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Figure 3.3: Here we show, on the left, the dependence of the potential on the IR brane parameter v2H
in the vicinity of the first critical point. The curves correspond to v2H = −1 (solid), v2H = v2H(crit)
(dashed), v2H = 1 (dotted), and v2H = 2 (dot-dashed). The dots indicate the minimum of the
potential. The minimum moves into the region where the Higgs VEV is nonzero after some critical
point v2H(crit). On the right, we show the value of the Higgs field on the IR brane in units of
the scale f = z−1

min, where zmin is the location of the minimum of the radion potential. The VEV
(and Higgs mass/inverse of the correlation length), which is proportional to φIR, is vanishing below
v2H(crit), and grows quickly after the critical point is exceeded.

This is equivalent to having the UV brane and IR brane contributions to the effective po-

tential separately vanish [110,111]:

ṼUV = V0 −
6

κ2

√
G0 = 0,

ṼIR = V1 +
6

κ2

√
G1 = 0,

(3.21)

where we have defined Vrad = 1
z40
ṼUV + 1

z41
ṼIR. In fact, these conditions are not satisfied for

any values of z in the above potential. These conditions should be interpreted as consistency

conditions for our metric ansatz, in which we have forced the metric to exhibit 4D Lorentz

invariance so that we can interpret the result as a Lorentz-invariant 4D effective potential for

the modulus field. In terms of variation of the scalar-Einstein-Hilbert action, we have satisfied

vanishing variation of the action by keeping the variations of the 4D metric components δgµν

themselves to be zero, and in so doing, Eq. (3.20) is no longer a constraint on the solution.

In the usual Goldberger-Wise scenario, the second of the two conditions in Eq. (3.20) is

met automatically at the minimum of the potential, with the value of the size of the extra

dimension being set by its solution. The first is then arranged for by tuning (equivalent
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to the usual tuning of the bare cosmological constant to small values). From this, we can

roughly interpret the time dependence away from the minimum of the usual Goldberger-

Wise potential as a combination of cosmological acceleration and oscillations of the stabilized

radion. The situation is quite different in the case of the potential described above. At the

kink minimum generated by the Higgs contribution, these junction conditions cannot both

be met unless two tunings are performed – both the bare cosmological constant and the

mistune in the IR brane tension.

This doesn’t necessarily mean that the region where the kink is a minimum is forbidden,

but rather tells us that once inside this region, a dynamical geometry is unavoidable, and

must be included in a fully consistent calculation of the spectrum of the low energy theory.

In other words, in a theory with fully dynamical gravity, the ansatz for the background must

be relaxed to include a nontrivial 4D cosmology. In Section 3.7, we discuss this issue of a

dynamic cosmology further, and speculate on its resolution and interpretation.

We further note that the same behavior occurs in the case of the dynamical scalar model

considered in Section 3.4, although the kink feature is absent.

3.3.2 Instabilities

Here we briefly examine the stability of fluctuations for different values of the position of

the IR brane. Summarizing the results first: the minimum for smallest zc and neighboring

values of the radion VEV is always a “healthy” minimum where there are no unresolved

tachyonic states. However, past the first region where the Higgs VEV resolves the tachyon,

there are apparently instabilities without condensates to rectify them, or the condensates are

insufficient to prevent all of them. In this case, the approximation of a static 5D description is

not a good one, and the theory must resolve the tachyon with some more dramatic dynamics.

We comment briefly on this in Section 3.6, and a more complete analysis of this region is

part of future work.

We can inspect the tachyon instabilities through examination of the spectrum of Higgs
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fluctuations. The equation of motion for these, presuming a vanishing Higgs VEV, is given

by

h′′(z)− 3

z
h′(z)− 1

z2
(
−4 + δm2 − λzε

)
h(z) = −m2h(z), (3.22)

with IR boundary condition given by

h′(z1) =
1

2z1
λHv

2
Hh(z1). (3.23)

The UV boundary condition we impose is that the solution must asymptote to the behavior

given in Eq. (3.10), on the + branch. Equivalently, one could impose z0h′(z0) = m2
0h(z0)/2

for some non-tuned value of m2
0, and subsequently take the limit as z0 → 0. The result is

similar.

Solving the boundary value problem gives the spectrum of states. In Figure 3.4, we

display the lowest eigenvalue, expressed as the ratio (mh/f)
2, where f−1 = z1. The region

where the Higgs VEV resolves the tachyon is shaded, and there Higgs fluctuations are mas-

sive. At larger z1, outside the gray region where there is no Higgs condensate, there is a

tachyon that persists. It appears that the condensate can rectify the tachyon so long as the

mode is not too tachyonic. For larger z1, the problem grows still worse: in the neighborhood

of the n-th critical value of z1, there are n− 1 unresolved tachyons.

Due to the presence of unresolvable tachyons for larger z1, we focus our main attention

on values of z1 where there is either no tachyon, at z1 < z1c , or there is a single tachyon that

is resolved by the vacuum expectation value for the Higgs field, z1 & z1c .

It is interesting that the first minimum appears metastable, with other minima at larger

values of z1, but lower effective potential energy, as seen in Figure 3.2. We comment further

on this in Section 3.6. However, we must not take this region of large z1 too seriously. For

one, the vacuum expectation value for the Higgs diverges at the end of the first condensate

region, and the theory cannot be trusted there, where gravitational backreaction will be very
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Figure 3.4: Here we show the lowest eigenvalue associated with the Higgs fluctuations, the solutions
to Eq. (3.22) with the boundary conditions associated with the IR brane-localized Higgs potential.
The region where the Higgs VEV resolves a single tachyon is shaded, and the physical Higgs
fluctuation here is in fact massive. This is the first critical region, where there is only one tachyon
to be resolved. An unresolved tachyon emerges for larger z1, when the Higgs VEV turns off,
indicating a fundamental instability.

large. It is not obvious that the geometry can be considered at all past this point.

Additionally, as discussed in the previous subsection, we have not taken into account the

required time dependence in the solution. It is not obvious that the same instabilities will be

present once the ansatz for the background is relaxed to allow for a dynamical background.

Finally, we have enforced a rigid dependence of the mass on the z-coordinate, which is not

likely to be possible in a self-contained fully dynamical model. It is likely that this rigidity of

the mass profile is responsible for the kinked behavior of the potential at the critical point.

Backreaction between the dynamics that drives the mass and the Higgs VEV may smooth

out the potential. This is confirmed in a fully dynamical model explored in the next section.5

5We thank Prashant Saraswat and Michael Geller for useful comments on the first version of this pre-print
that led us to more fully explore the details of the dynamical model.
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3.4 Dynamical Model

In the previous section, the varying bulk mass for the Higgs was taken as an input, breaking

the isometries of AdS explicitly, and we took the UV brane to the AdS boundary. In this

section we show how similar physics can be derived in a dynamical and more realistic model

with a UV brane where the interplay of a Goldberger-Wise-like scalar field and a bulk Higgs

on an AdS background generates a similar physics result. This model has the benefit of

being fully dynamical, of having a possible CFT dual that is easier to interpret, and having

a modulus potential that does not exhibit the kink of the previous toy model. The 5D Higgs

profile can no longer be solved for analytically, and so we perform a numerical study.

This model has two bulk scalar fields, a real scalar, φd, the “driving scalar”, in addition

to a Higgs scalar. The fields are coupled in such a way that a varying VEV of the scalar

φd drives the effective bulk mass of the Higgs, making it a function of the extra-dimensional

coordinate. The 5D action is given by

S =

∫
d4xdz

√
g

[
|∂MH|2 + 1

2
(∂Mφd)

2 +
6

κ2
−
(
m2

H − λφd
)
|H|2 − 1

2
m2

φd
φ2

d −
1

2κ2
R

]
−
∫
d4xz−4V0(φd, |H|)

∣∣∣∣
z→z0

−
∫
d4xz−4V1(φd, |H|)

∣∣∣∣
z→z1

.

(3.24)

The brane potentials are assumed to take the form V0,1 = δT0,1 + V φd
0,1 + V H

0,1. For the brane

Higgs potentials, we take

V H
0 = m2

0|H|2, V H
1 = λH |H|2

(
|H|2 − v2H

)
. (3.25)

The potential here is quite similar to that in [94], however in this model, there are no very

small parameters, and this is a 5D bulk potential – the effective bulk potential in the 4D the-

ory is of course related, but not in one-to-one correspondence. There is a mild approximate

shift symmetry in the bulk for the φd scalar – a slightly suppressed bulk mass parameter

as utilized in the Goldberger-Wise stabilization mechanism [73], and a perturbative bulk
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interaction with the 5D H field.

The equation of motion for φd is given by

φ′′
d −

3

z
φ′

d −
1

z2

(
m2

φd
φd −

λ

2
φ2
h

)
= 0, (3.26)

which is a simple linear non-homogeneous equation for a given Higgs background, φh, and

the solution is given by

φd = zε
(
φε +

λ

4(2− ε)

∫ z

z0

φ2
h(z̃)z̃

−1−εdz̃

)
+ z4−ε

(
φ4 −

λ

4(2− ε)

∫ z

z0

φ2
h(z̃)z̃

−5+εdz̃

)
,(3.27)

where ε = 2−
√

4 +m2
φd

. We take ε to be small and positive, but not tiny, e.g. ε = O(0.1),

corresponding to a small tachyonic bulk mass for φd. There are two contributions to the

solution – the solution to the homogeneous part of Eq. (3.26), and the integrals that solve

the nonhomogeneous part from a non-vanishing Higgs VEV.

The Higgs equation of motion is given by

φ′′
h −

3

z
φ′
h −

1

z2
(
m2

H − λφd
)
φh = 0, (3.28)

which can, in principle, be expressed as a single nonlinear integro-differential equation by

inserting the solution to the φd boundary value problem.

The radion potential, again assuming small gravitational backreaction, now takes contri-

butions from both fields, and is given in general by

Vrad =
1

z40

[
V0 −

6

κ2

√
G0

]
+

1

z41

[
V1 +

6

κ2

√
G1

]
≈ 1

z40

[
δT0 + V

φd,0
0 + V H

0 +
1

4
m2

H(z0)φ
2
h,0 −

1

4
z20φ

′2
h,0 +

1

4
m2

φd
φ2

d,0 −
1

4
z20φ

′2
d,0

]
+

1

z41

[
δT1 + V

φd,1
1 + V H

1 − 1

4
m2

H(z1)φ
2
h,1 +

1

4
z21φ

′2
h,1 −

1

4
m2

φd
φ2

d,1 +
1

4
z21φ

′2
d,1

]
.

(3.29)

Using the analytic solution for φd in terms of the function φh from Eq. (3.27), supplemented
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by the boundary conditions for φd, one can express the entire radion potential purely in

terms of the solution to the φh equation of motion.

We first specify to a model where much can be done analytically to show some basic

results in this model. We take the IR brane potential for the φd scalar to be a localized

mass term, V φd
1 = −εφ2

d. If we assume this value for the mass, and if the Higgs VEV is

taken to be zero, the solution is φd = v0(z/z0)
ε. Without the Higgs contribution, the radion

potential is just a scale-invariant quartic. We then assume a UV brane potential that fixes

v0 to some value (a stiff-wall-type boundary condition). In this background, ignoring the

nonhomogeneous part of φd in the Higgs equation of motion, the solution for the Higgs VEV

is the same as described in the previous section.

Also, in the case of the model under consideration, there are considerable simplifications

of the radion potential. Specifically, all of the φd terms in the IR brane contribution cancel

after imposing the boundary condition zφ′
d = εφd, which arises from the boundary potential

we have chosen for φd.

The radion potential, expressed purely in terms of the boundary values of and integrals

over the solution to the Higgs equation of motion, is

Vrad =
1

z40

[
δT̃0 +

m2
0

2
φ2
h,0 +

1

4

(
m2

H − λv0
)
φ2
h,0 −

1

4

(
z0φ

′
h,0

)2 − 1

2
εv0z

4−ε
0 I4 −

1

4

(
z4−ε
0 I4

)2]
+

1

z41

[
δT̃1 −

1

4

{
m2

H − λ

(
z1
z0

)ε(
v0 +

zε0
2(2− ε)

Iε −
z4−ε
0

2(2− ε)
I4

)}
φ2
h,1

+
1

4
λHφ

2
h,1

(
φ2
h,1 − 2v2H

)
+

1

4

(
zφ′

h,1

)2]
,

(3.30)

where Iε and I4 are the following integrals:

Iε =
λ

2

∫ z1

z0

φ2
h(z̃)z̃

−1−εdz̃,

I4 =
λ

2

∫ z1

z0

φ2
h(z̃)z̃

−5+εdz̃.

(3.31)

This expression is exact up to contributions from gravitational backreaction, which we are
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here neglecting.

We note that one can show analytically by expanding the solution near the critical point

that the kink of the previous section is removed by the backreaction of the Higgs VEV onto

the driving scalar [112].

In the limit of tiny Higgs VEV, the Higgs background is well approximated by the solution

that assumes φd = v0(z/z0)
ε, which was explored in the previous section:

φh = z2
(
φ+Jν

(
zε/2

2
√
λv0
ε

)
+ φ−J−ν

(
zε/2

2
√
λv0
ε

))
, (3.32)

where ν = 2
√
δm2/ε, with δm2 = m2

H+4. This is sufficient for determining the critical point,

however, for the purposes of evaluating the effective potential, a full numerical solution is

necessary. That is, past the critical point, the Higgs background looks similar to this profile,

but the differences due to the nonlinearities need to be incorporated in order to correctly

determine the radion potential.

In the next subsection, we embark on a full numerical analysis of the coupled equations,

working with a more common setup for the φd scalar, where its boundary values are set to

v0,1 on the UV/IR branes.

3.4.1 Still Wall Model

In the stiff wall limit, the boundary conditions for φd are φd(z0,1) = v0,1. Thus, the value of

the bulk Higgs mass varies from m2
H(z0) = m2

H−λv0 on the UV brane to m2
H(z1) = m2

H−λv1

in the IR. It is not difficult to arrange for the effective Higgs mass to vary such that it crosses

the BF bound somewhere in the bulk, and evolves from power law behavior in the UV to a log-

periodic power law in the IR. For small values of z1, the AdS tachyon is not reached, however,

for larger values, the tachyon eventually must emerge and be resolved by condensation of

some sort. In order to understand this process fully, we embark on a numerical exploration

of solutions to the scalar equations of motion.
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We note that the bulk equations governing the behavior of φd and φh are nonlinear, and

that one must take care in seeking out solutions to the scalar equations of motion. Existence

and uniqueness are not guaranteed in the case of the general nonlinear boundary value

problem. Due to this complication, we do not search for solutions with fixed z1, but rather

search for solutions with varying values of the Higgs VEV. We note that there is always a

solution with φh = 0 – the solution to the linear Goldberger-Wise problem with just the φd

scalar.

To numerically investigate the solutions, we generalize the bulk equations to accommo-

date a sort of shooting method. That is, we search for solutions to the boundary value

problem at hand by scanning over a range of initial value problems until we find a global

solution. To do so, we write the solution to the Higgs as φh = h0fh(z) with fh(z0) set to

some arbitrary value. The coefficient h0 does not appear explicitly in the Higgs equation of

motion, as for fixed φd, that equation is linear. It does, however, appear in the φd equation:

f ′′
h − 3

z
f ′
h − (m2

H − λφd)fh = 0,

φ′′
d −

3

z
φ′

d − (ε2 − 4ε)φd +
λ

2
h20fh(z)

2 = 0.

(3.33)

We shoot from the UV brane, enforcing the UV brane boundary conditions for fh and φd,

which in our cases of study are f ′
h(z0) = m2

0fh(z0)/(2z0) and φd(z0) = v0. We then use a

prechosen value of h0 to define each solution. The magnitude of h0 closely tracks the low

energy effective Higgs VEV as a fraction of the KK scale. As fh(z0) is fixed arbitrarily,

the only remaining condition is on φ′
d, the correct value for which will be determined by

shooting. The value of z1 for a φ′
d guess is chosen by finding the point in the bulk at which

the IR brane boundary condition for the Higgs is met: h20 = 1/fh(z)
2
(
v2H − 2f ′

h(z)

λHzfh(z)

)
. Of

course at that z1, it will not usually be the case that the IR boundary condition for φd is

met, so we repeat the process by shooting with different values of φ′
d until both the Higgs

and φd boundary conditions are solved at the same value of z1. In summary, for a given

input Higgs VEV, we obtain a value for z1 and the associated bulk profiles for φh and φd.
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It is useful to characterize each solution in terms of some parameter with physical meaning

to a low energy observer, and we choose the effective Higgs VEV, evaluated by integrating

the Higgs solution squared over a hypothetical flat zero-mode gauge boson wave function

with appropriate metric factors:

(
veff

f

)2

= z21h
2
0

∫ z1

z0

1

z3
f 2
h(z)dz. (3.34)

We find that the types of solutions one obtains can be divided into two classes based

on the value of the IR brane-localized Higgs mass, determined by taking different values for

v2H . If v2H is taken to be very negative, corresponding to a non-tachyonic brane-localized

Higgs mass squared, there is no solution for nonzero Higgs VEV with z1 > zc. Instead,

with increasing Higgs VEV (roughly h0 in our numerical analysis), the solution requires

smaller values of z1. This then means that for a given value of z1 < zc, there may be

two solutions, one with positive effective 4D Higgs mass squared/vanishing VEV, and the

other with nonvanishing Higgs VEV. For more positive values of v2H , a different behavior is

possible, e.g. where the value of z1 at first increases as the Higgs VEV is turned on, and

then turns around, so that at some particular z1 value, there are two possible values of the

effective Higgs VEV.

None of this should be too surprising from the perspective of the 4D CFT dual. The value

of z1 represents some total scale of conformal breaking through the relation z1 ∼ 1/f where

f should be some additive combination of all vacuum expectation values in the system that

break approximate conformal invariance spontaneously. The bulk φd|H|2 interaction has

enforced a relationship between the multiple f ’s (in this case, dual to the φd and φh scalar

solutions), and lifted the constraint of uniqueness present in theories without bulk scalar

interactions. In other words, the nonlinearity of the boundary value problem has allowed for

multiple solutions for a given z1, and thus different ways for the bulk theory to produce a

given total f ∼ 1/z1. In Figure 3.5, we show for two different values of v2H that are close to

76



0.000 0.005 0.010 0.015

0

1.× 10-13

2.× 10-13

3.× 10-13

4.× 10-13

5.× 10-13

0.000 0.005 0.010 0.015
-2.5× 10-12

-2.× 10-12

-1.5× 10-12

-1.× 10-12

-5.× 10-13

0

Figure 3.5: In this plot, we show the effective VEV as a function of z1. On the left, we show it for
a value of v2H that is very close to “critical,” but with v2H > v2H(crit). In this case, for small Higgs
vev, z1 > zc. On the right, we display it for v2H more negative than the critical value, and in this
case, for all values of the Higgs VEV, we find z1 < zc. We also sketch the “bifurcation” diagrams
for each of these scenarios as a function of z1, where the solid lines represent the stable scalar
configurations and the dashed line represents the background solution with unresolved tachyon(s).
The branching point corresponds to z1 = zc.

a critical value (but on either side) the relationship between z1 and the effective VEV. We

note that the Higgs VEV grows extremely fast near the critical point.

This matches onto the first part of our preliminary discussion of the dilaton effective

theory in Section 3.2. Extremization of the scalar part of the action corresponds in the dual

picture to sorting out the correct relationship between the vacuum expectation values of

operators in the approximate CFT. This relationship must now be fed into the total radion

effective potential.

Now we consider the radion potential for this model. Plugging in the results from the

numerical solutions, we find that for v2H > v2H(crit), there are solutions to the scalar equations

of motion and boundary conditions with z1 > zc. For all v2H < v2H(crit), there is a minimum

in the effective radion potential at z1 = zc, the value of z1 where the Higgs fluctuation is
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Figure 3.6: In this plot, we show the radion potential for two different values of v2H near v2H(crit).
In the column on the left, v2H > v2H(crit). We have taken ε = v0 = 1/10, m2

H = −3.9, v0 = 1,
δT1 = −1/10, λ = 1/3, m2

0 = 4.1, and λH = 1/8. The critical point is between v2H = −16.5830 and
v2H = −16.5831, and the two columns correspond respectively to these two values of v2H that straddle
v2H(crit). In descending order, the plots display: the difference between the radion potentials with
and without a Higgs VEV as a function of log z1/z1(crit), the same potential with Vcrit being its
value at the critical z1, but instead as a function of veff/f , and finally the value of ṼIR, defined in
Eq. (3.21), indicating the degree of mismatch of the metric junction condition on the IR brane.
There is no discernible difference in these two plots on either side of the critical value of v2H , and
there is certainly no zero.

massless. We note that this is under the constraint that values of z1 where there is an
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Figure 3.7: In this plot, we display the behavior of veff/f at the minimum of the radion potential
for subcritical v2H > v2H(crit) as it approaches the critical region. The dashed line is a linear fit to
the numerical data forced to pass through the origin by adjusting v2H(crit). The critical value is
determined in this manner to be v2H(crit) = −16.58305605

unresolved tachyon are disallowed. 6

In Figure 3.6, we display the results of the radion potential for two values of v2H near the

critical value. We show the potential both as a function of z1 and as a function of veff/f . In

this plot, VGW denotes the GW contribution to the radion potential, while Vcrit is the radion

potential at the critical z1. For the subcritical case, the location of the potential minimum

is at an energy which is lower than if the Higgs VEV is turned off – symmetry breaking is

the preferred configuration for that value of z1.

One can now make contact with the dilaton effective potential discussed in Section 3.2.

The value of 1/z1 for a given solution corresponds to the total scale of symmetry breaking,

with the KK-mode masses of the extra-dimensional theory corresponding to its value. Larger

values of z1 have scalar instabilities. Ignoring this region, the radion potential is minimized

at the largest value of z1 that accommodates a solution to the scalar equations of motion.
6Dynamics of the system will move the IR brane into this region - the true vacuum is not simply one

in which the brane rests at zc. Going past the critical value of v2H , there is likely a phase transition of the
system that cannot be encapsulated under the static ansatz that was the starting point for this analysis. We
speculate on its nature in Section 3.7, leaving a full analysis of the v2H < v2H(crit) region for future work.
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Figure 3.8: In this Figure, we display the curvature of the radion potential as a function of the
effective Higgs VEV for v2H < v2H(crit). In the plot on the left, we focus on v2H close to the
critical value, while on the right, we display the curvature for a wider range of v2H < v2H(crit).
Near the critical v2H , the behavior is well described by a line intersecting with the origin, with the
critical value here determined to be v2H(crit) = −16.58305645, apparently consistent with the value
determined on the sub-critical side in Figure 3.7 up to numerical errors in the solving routine.

In Figure 3.7, we display the behavior of the model with subcritical v2H , focusing on the

value of the Higgs VEV in the approach to Higgs criticality. The Higgs VEV, roughly

the inverse correlation length in the low energy theory, appears to depend linearly on√
v2H − v2H(crit) in the approach.

In Figure 3.8, we display the behavior of the model with supercritical values of v2H ,

focusing on the value of the second derivative of the radion potential at the minimum.

The second derivative remains positive for all v2H values less than the critical one, and so

the minimum of the potential along the line where the Higgs boundary conditions are met

coincides with the Higgs critical point.

While the radion potential has a smooth minimum (as a function of the effective Higgs

VEV) in this dynamical model on either side of the critical value of v2H , we again find that it

does not generally satisfy the µν components of Einstein’s equations, specifically the metric

junction conditions
√
G0,1 = ±κ2

6
V0,1.

Of course one could fine-tune both tensions to meet both metric junction conditions, as

is done in the original unstabilized Randall-Sundrum model, however one should first ask

what physical phenomena occur when such tuning is not performed. In the RS model, the
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mistunes lead to either collapse or runaway of the branes, however in this case, it seems

unlikely that the same behavior occurs, as the potential does not exhibit obvious runaway

directions. What seems more likely is that the background solution obtained after relaxing

the metric ansatz to include bent branes (e.g. nontrivial time dynamics). This is discussed

further in Section 3.7.

3.5 CFT Interpretation

Here we comment on the 4-dimensional CFT interpretation of this model. The dual of

this picture has a parallel in weakly coupled models where electroweak symmetry breaking is

driven radiatively, as is the case in the MSSM [91]. In such cases, the electroweak scale arises

via dimensional transmutation, with renormalization group effects creating the instability

that is rectified by the vacuum expectation value of the Higgs in spite of the microscopic

theory having no explicit scales.

In the picture under consideration, a similar instability is reached when the scaling di-

mensions of operators in a quasi-conformal theory are pushed towards and potentially into

the complex plane through renormalization group flow. Such complex scaling dimensions

are a usual part of the description of theories with a discrete scale invariance, thus we have

a picture where a theory evolves off of a standard nontrivial UV fixed point and begins

to exhibit discrete scale invariance in the IR. Discrete scale invariance is found in the IR

behavior of the Higgs profile, where the Higgs behaves approximately as

φ ∝ z2−ε/4 cos
(√

λ log z + γ
)
. (3.35)

The solution is simple scaling under the discrete transformation z → z exp
(
2π/

√
λ
)

, cor-

responding to a discrete scale transformation µ → µ exp
(
−2π/

√
λ
)

. While at first glance

interesting, discrete scaling behavior is forbidden in the deep IR [98], and is expected to be

terminated in some way – likely by the formation of condensates and a transition scale past
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which RG flow resumes more standard behavior. Indeed, the study of the scalar fluctua-

tions in Section 3.3 shows that if one tries to continue the bulk too far into the regime of

log-periodic behavior, additional tachyons emerge that are, at least in the toy 5D theory of

Section 3.3, unresolved.

In the dynamical model of Section 3.4, the driving scalar field φd plays the role dual to

an operator whose coupling runs slowly, slightly deforming the CFT, with the deformation

growing in the infrared. This running backreacts, in general, on the theory, and can generate

a running for scaling dimensions of other operators in the theory. The bulk trilinear coupling

between the Higgs and the scalar φd is the pathway for this backreaction.

The running scaling dimension of the operator associated with the bulk Higgs is dual to

the 5D z-dependence of the effective 5D mass of the Higgs in the background of the scalar,

φd, and the instability associated with complex scaling dimensions and discrete scale invari-

ance is dual to supersaturation of the Breitenlohner-Freedman bound. Since the effective

mass begins above the BF bound, the far UV behavior is that of a normal CFT without

instabilities, where the operators have normal real scaling dimensions. It is only in the IR

behavior, where scaling dimensions become complex, that an instability emerges.

This class of instability, without the dynamical aspect we explore, was investigated in

work by Kaplan, Lee, Son, and Stephanov [89] along with a proposed AdS dual. In this

work, it was conjectured that the loss of conformality as a function of some descriptor of

the theory, such as the number of massless QCD flavors, can be thought of as due to the

annihilation of two fixed points (UV and IR) under variations of that parameter. They posit

that such a theory could contain some operator O that has different scaling dimensions at

the two fixed points, ∆UV, IR, and these scaling dimensions smoothly merge and become

complex when the external descriptor is moved past some critical value. It was pointed

out in this work that the behavior of the theory under this transition is closely similar to

scaling behavior associated with finite temperature topological phase transitions of the sort

studied by Berezinskii, Kosterlitz, and Thouless (BKT) [113,114]. In these models, there is a
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critical line, with the theory being conformal for a finite range of descriptor, and with a gap

turning on smoothly past the point where conformality is lost. These two scaling dimensions,

∆UV, IR, correspond in the 5D AdS dual to the two solutions to the scalar equations of motion

in the z → 0 region, each of which has different scaling properties given by ∆UV and ∆IR.

In 5D, the loss of conformality corresponds to the merging of these two scaling solutions at

the Breitenlohner-Freedman bound as the bulk mass is taken through m2 = −4. Below the

BF bound, the theory requires a UV cutoff, and also predicts an IR scale associated with

rectification of a tachyon instability through condensation of bulk fields, corresponding in

the holographic picture to a VEV for the operator O.

The 5D model we have described has given dynamics to this picture, where what was an

external parameter has been promoted to a coupling in the theory which has nontrivial RG

evolution. In Figure 3.9, we give a cartoon of what the model we explore achieves. In [89],

in the case that parameters are chosen to put the theory in a conformal window, there

are explicit UV and IR fixed points, both nontrivial. Moving in and out of the conformal

window is achieved by varying those external parameters, with the fixed points merging at

its threshold. In the case of our model, the idea is that the theory begins at or flows quickly

to an IR fixed point which has been demoted by a slightly relevant deformation of the theory

to a quasi-fixed point. The theory tracks this IR quasi-fixed point until it disappears after

annihilating its associated UV quasi-fixed point. Under further RG flow, scaling dimensions

become complex with a corresponding discrete scaling law, the theory becomes unstable, and

the instability is potentially resolved by condensates. The theory can also begin and remain

near the UV quasi-fixed point, in principle, corresponding to taking the tuned boundary

condition for the bulk scalar that picks out the other slower-growing solution.

When the instability is rectified by condensates, the approximate conformal invariance

is broken spontaneously. There are different options for this breaking. The Higgs itself

can form a vacuum expectation value, likely along with condensates of the operator that is

driving the theory towards the instability. This option gives a Higgs mass and 4D effective
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Figure 3.9: Here we show a cartoon of an approximate CFT dual of our 5D model. On the left
is the picture of fixed points annihilating under continuous variation of some descriptor of the
theory, as explored in [89]. On the right is our picture of quasi-fixed points annihilating under
renormalization group evolution.

VEV that is not typically suppressed in comparison with the 5D KK scale or its dual picture

compositeness scale. There are other options, however. It is known that the phase structure

of superconductivity can be quite rich, allowing for condensates with inhomogeneous spatial

configurations such as stripes or crystalline structure, and this has been reproduced in the

holographic context [102].

A dynamical dilaton field, corresponding to the condensates of operators in the CFT

and fluctuations about these points in field space, has a potential that depends on which

operators take on VEVs, and its potential selects the most attractive channel for resolving

the tachyon. The extra-dimensional modulus field, the radion, is the dual to this dilaton.

Finding the classical extrema of the 5D effective potential corresponds to identifying the

vacuum state of the dual CFT.

When sourced operators with nontrivial scaling dimension take on vacuum expectation

values, approximate conformal invariance is spontaneously broken, and the dilaton potential

is nontrivial (more than a scale-invariant quartic). If the potential has a nontrivial minimum,

the resulting mass of the dilaton particle is proportional to the degree of explicit breaking

of conformal symmetry. In our picture, as a function of the gap of the CFT associated with

a VEV of a marginally relevant operator Oε, an IR tachyon instability eventually emerges

for smaller values of 〈Oε〉, in the regime of discrete scale invariance. At this point the VEV
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〈OH〉 turns on in addition to 〈Oε〉.

The kink in the toy model of Section 3.3, or its cousin, the non-existence of solutions

with nonvanishing Higgs VEV past some critical z1 in the dynamical model of Section 3.4,

are the most curious features of this setup. These behaviors appear to be strongly tied to

the type of instability that is dominant in the model. The tachyon that emerges due to

the renormalization group instability/violation of the BF bound appears to be a necessary

component for novel behavior of the potential. This hypothesis is supported by what is

observed in Figure 3.3, and in the behavior of the scalar solutions in Section 3.4. Taking, for

example, v2H to be large, giving a large 4D tachyonic mass to the Higgs on the brane, gives a

more standard kind of picture where a Higgs condensate turns on and determines the brane

location. However, for smaller or negative v2H , when there is no longer a 4D brane-localized

tachyon, there is a turnaround in the behavior of the solutions. For v2H below the critical

value, it is the bulk mass falling below the BF bound that is the more important component

of the instability.

3.6 Discussion

3.6.1 Connections to Condensed Matter and Statistical Physics

The construction we explore potentially gives a new way to think about self-organized criti-

cality in the fields where it was first explored and named [84]. The scaling of perturbations

(1/f flicker noise in the literature), and the instabilities associated with catastrophic failure

and its possible connection to an emergent discrete scale invariance have their signatures in

the purported holographic dual we have proposed. The 1/f so-called “flicker” noise (in fact

1/fα, where α can depend on the system under consideration) is simply the signature of

criticality itself [85] – a fixed point where perturbations exhibit scaling laws. There should

be CFTs describing the coarse-grained effective theory of such systems where criticality is

self-organized, and there could be AdS dual descriptions of such theories. The scaling laws
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associated with the self-organized critical point are associated in this case to the scaling

behavior of field solutions in AdS space. The above discussion applies to any critical point,

not just self-organized ones. However, the particular 5D picture we have presented here

appears to have features which place it close to systems with self-organization. These share

the commonality that the systems in question are brought to the point of some sort of failure

mode that leads to time dynamics, typically a form of adjustment. It has been suggested

that the development of the adjustment behavior can be associated, in the coarse-grained

theory, with scaling dimensions of the critical point being driven into the complex plane,

and creating a discrete scale invariance, with fluctuations obeying a log-periodic power law.

In the context of quantum field theory, it is known that such scaling laws are not allowed,

and have instabilities associated with them [98]. In our picture these instabilities map to the

region in the radion potential in which there are unresolved tachyons. Should the system be

placed at these points of instability, it is, at the moment, unknown what the response of the

system will be.

3.6.2 Incorporation of the Standard Model

The eventual goal is to embed this class of Higgs sector into a theory which accommodates

the rest of the SM field content, and where the Higgs resides not precisely at the point

of criticality, but instead picks a VEV and breaks the electroweak gauge symmetry spon-

taneously. This may occur as a result of finite radiative corrections, or perhaps through

nontrivial feedback due to explicit breaking of conformal invariance in the SM (for example,

from confinement and chiral symmetry breaking in QCD), or in extensions of it (as in [94]).

If the SM can accommodate such a Higgs sector, a key calculation will be the Higgs cubic

coupling in the context of the manner in which its potential is generated, as this will be

eventually probed by colliders. As we will discuss in the next section, cosmology of such

an extension of the SM could be very interesting. As we have emphasized, we have not yet

fully identified the vacuum state, which we argue must be time-dependent unless tuning is
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performed.

3.7 Speculation: Cosmology

The phenomenology of this scenario, if employed by nature in creating a low electroweak

scale, is expected to be quite novel. Cosmology stands out as a particularly interesting area,

due to the interplay between the radion and the Higgs. Metastability of the self-organized

critical state is a vital consideration, although possibly resolved trivially by details of the

deformation that drives self-organization or by a more complete model without a hard wall.

A very interesting possibility is that dynamics of the radion could “rock” the early universe

across the electroweak phase transition, sourcing a stochastic gravitational wave background,

and creating an era of the early universe with an exotic equation of state (leading to modified

constraints on inflationary scenarios and/or moduli masses) [115]. This may be interesting

also from the standpoint of baryo- and leptogenesis.

Even more curious features are likely to emerge under a full calculation of the classical

background, which we have left for future work. As we have emphasized, in writing down

a 4D Lorentz-invariant radion potential, we have been required to do some violence to the

theory. That is, we have calculated the potential under the presumption that the metric

slices are flat. However, at the minima we have identified, the consistency conditions for a

flat metric ansatz on the boundaries of the space, that both the UV and IR contributions

to the radion potential separately vanish at the minimum, cannot be met without tuning.

Bent 4D slices thus appear to be an integral part of the full solution to the theory at or near

Higgs criticality. The theory is telling us that, as part of the resolution of the AdS tachyon,

it breaks Lorentz invariance spontaneously at long distances. It is interesting to speculate at

the form that this takes without (at least in this work) undertaking a detailed calculation.

Pessimistically, we might imagine that the solution could be a runaway. This seems

unlikely from the following consideration of the dynamical model discussed in Section 3.4:
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one could imagine adjusting the bulk cubic coupling λ between φd and the Higgs, increasing

it starting from some small value. The system would then reside at the minimum of the

Goldberger-Wise potential created by the VEV of the φd scalar, and the Higgs would have

positive mass squared. One would in this case start in an unbroken phase with a massive

Higgs field near the KK scale, and a completely static geometry (presuming the usual single

tuning of the UV brane tension). Increasing the coupling would move the turn-on of the

Higgs VEV ever closer to the minimum of the Goldberger-Wise potential, the critical z1

value approaching the minimum from large z1. The lowest-lying Higgs excitation would then

gradually move to the bottom of the spectrum. There is a fine-tuned value of λ where the

Higgs extremum coincides exactly at the minimum of the GW potential. The theory at this

point, as the usual solution to the theory at the Goldberger-Wise minimum tells us, has a

massive radion. Due to the adjustment of λ, it also has a (finely-tuned) massless Higgs. The

only nearby instability in the low energy theory seems like the usual one associated with the

Higgs phase transition. Further increase in λ either results in a Higgs VEV and symmetry

breaking of the usual sort, or a more novel transition. It would appear the latter is a good

possibility in some fraction of the parameter space of the model.

We have shown that the change in the radion potential due to the Higgs contribution

creates a new minimum and for large negative v2H , there appears to be an onset of a novel type

of transition that does not satisfy the usual metric junction condition. This means that the

transition is not likely a normal Higgs one, but rather could be a transition to a spontaneously

Lorentz-violating dynamical background. The radion should still be stabilized by its mass if

we remain close to the boundary of the critical region. Therefore if it moves, it likely oscillates

rather than runs away, acting “trapped” [116].7 Amusingly, such a “trapped” modulus, the

oscillating radion field, might look cosmologically similar to non-relativistic matter from the

standpoint of the low energy theory: a Bose-Einstein condensate of radion particles. Deeper

into the critical Higgs region, as the metric junction conditions become further from being
7We thank Ofri Telem for suggesting the possibility of an oscillating radion background.
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satisfied, this time dependence may become very complicated, involving a mixture of the

many degrees of freedom in the model. A simulation including full backreaction may be

needed. It will be interesting to see more clearly what the low energy theory looks like with

further study.

In short, the resolution of the IR-emergent AdS tachyon appears to require a spontaneous

breakdown of 4D Lorentz invariance possibly a time-dependent oscillatory vacuum state. In

the language of condensed matter physics and superconductivity literature, the theory would

be resolving the instability by entering a “striped phase” at long distances with oscillations

of the radion state breaking time translation invariance. The generic phenomenon of clas-

sical spontaneous breakdown of time translation invariance was investigated in [100], with

a quantum mechanical version explored in [101]. These striped phases in condensed mat-

ter systems appear to arise in the presence of a frustration in the system where competing

phenomena strive to set the vacuum state. In the case of our radion model, there are two

competing “minima” of the potential: one where the radion is at a global minimum set by

the Goldberger-Wise mechanism, but the Higgs is unstable, and the other where the Higgs

field is stabilized, but the 5D gravity sector is not at an extremum of the action. The out-

come in some condensed matter systems is to resolve such tension by entering a translation

invariance-breaking striped phase, and we are suggesting similar physics may be at work in

resolution of this AdS tachyon, although the breaking could be of time-translation invariance.

A picture of these competing extrema is shown in Figure 3.10.

This sort of time dependent vacuum state and its application to cosmology was first

explored in [103], with important recent followup work concerning stability of this scenario

in [104].

In the 4D CFT language, there may be strongly coupled quasi-conformal 4D theories

with a dynamically generated gap that have aspects of matter-Λ cosmology built into their

ground state at long distances due to frustration of the dilaton. Classical breaking of time-

translation invariance in the 5D theory corresponds to its quantum mechanical counterpart
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Figure 3.10: Here we show the radion potential. The dashed line is the potential if the Higgs
VEV is left vanishing. There is a minimum of this potential where the metric ansatz for the
IR brane is satisfied, but it corresponds to an unstable Higgs configuration. The solid line
is the region where the effective Higgs mass squared in the low energy theory is positive. At
the dot, the mass vanishes, and if v2H < v2H(crit), the potential of the radion is minimized
if the unstable Higgs region is forbidden. The gravity sector is not extremized here – the
metric junction condition on the IR brane is not met.

in the 4D dual. The apparent puzzle of the light and seemingly unprotected Higgs in the

critical region may be that it is the Goldstone boson of this breaking, a type of phonon,

perhaps making the lightness of the Higgs directly connected to the presence of a cosmology

with non-relativistic matter and dark energy content.

A better understanding of the dynamical aspects of this class of Higgs model is definitely

required to make these statements more firm, but there seem to be some quite promising

avenues to pursue.

3.8 Conclusions

We have discussed a new possible approach to the Higgs hierarchy problem. The model is in

part inspired by attempts to model aspects of self-organized criticality in condensed matter

systems in which it has been hypothesized that some classes of these critical states on the

brink of catastrophic failure contain critical exponents that are becoming complex under
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loading of the system, leading to discrete scale invariance and instabilities.

We have explored 5D constructions that have features that are similar to the behavior

just described. It has made us directly confront the AdS tachyon, associated with violation

of the Breitenlohner-Freedman bound, and search for the manner in which field theory might

resolve it. In this model, the resolution takes the form of an IR brane with characteristics

that depend on the 5D fundamental parameters. We found that there is are large regions of

the parameter space where a novel type of transition appears to be taking place.

A dynamical cosmology is an unavoidable consequence of the model when placed inside

or near this region. Time evolution appears crucial to resolution of the AdS tachyon in

this model. This could be a feature rather than a bug, tying together puzzling aspects of

fundamental particle physics with puzzling features of cosmology in a novel way. It remains

to be seen what the Higgs vev and spectrum will be once this time evolution is completely

taken into account, and whether its effective mass and/or vacuum expectation value are tied

in some interesting way to aspects of the cosmology.

Top priorities are to further investigate the cosmological dynamics, determine whether

this type of setup can be utilized as an extension of the Standard Model, study its novel

phenomenological implications and constraints if so, and to seek an embedding in a more

complete microscopic theory.
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Chapter 4

Testing Vacuum Energy Using

Neutron Star Mergers

4.1 Introduction

The recent observations of gravitational waves (GW’s) from the merger of neutron stars

(NS’s) by LIGO/Virgo [117] along with the corresponding electromagnetic observations of

the resulting kilonova have reverberated across most areas of physics and astronomy. From

the point of view of particle physics the most important consequence of GW170817 and future

merger events is our new ability to directly examine the properties of the QCD matter forming

the inner layers of NS’s, allowing us to use NS’s as laboratories for fundamental physics

[118–120]. This might also open up new avenues to testing the gravitational properties of

vacuum energy (VE) which may also get at the heart of some of the deepest puzzles in

fundamental physics [45].

It has long been speculated that there may be a new phase of nuclear matter at the core

of the NS’s [121]. If such a phase indeed exists it is expected to be accompanied by a jump

in VE [122] of order Λ4
QCD (where ΛQCD ∼ 200MeV is the usual QCD scale) making NS’s

the only known objects where VE might make up a non-negligible fraction of the total mass.
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Therefore studies of the interior structure of NS’s can also probe the gravitational properties

of VE, possibly shedding light on some of the most interesting open questions in physics: it

could provide verification of the equivalence principle for VE. This would be the first test

independent of those obtained from the cosmic acceleration of the Universe. Acceleration of

the Universe provides information on VE in the low-temperature low density phase of the

SM, while NS’s could probe a low temperature but very high density phase if it exists in

their cores. This could allow us to isolate the QCD contribution to ordinary VE and probe

its gravitational properties.

Alongside the exciting advent of the gravitational wave observation era shepherded in by

LIGO/Virgo, the Neutron star Interior Composition ExploreR (NICER) mission will soon

measure masses and radii of several millisecond pulsars [123]. These measurements as well

as the chirps from the inspiral of merging neutron stars can provide information about the

equation of state (EoS) of dense nuclear matter. The chirps in particular are sensitive to the

tidal deformability of NS’s as they approach each other [124–128]. There has already been

considerable work on constraining the EoS using the new LIGO/Virgo data [129–133].

There exists an extensive literature focused on trying to put bounds on the nuclear EoS

at high densities from neutron star measurements (see for example [134–137]). Some recent

theoretical work has focused on modeling possible new phases at the cores of neutron stars

by using quasi-particle quarks rather than neutrons to provide the simplest description of the

microscopic physics [138–144]. Further work has been done using NS’s to constrain “beyond

the Standard Model” physics [118–120].

In this paper we will assume that there is only Standard Model physics involved in the

composition of neutron stars, and we will not try to model the microphysics of the putative

new phase. Our main goal is to investigate the observable effects of the presence of VE

on the GW signal as well as the mass versus radius curve of NS’s, possibly providing new

experimental probes of VE. To achieve this we will parameterize the effect of the new phase

with a jump in the ground state energy due to a QCD phase transition assumed at the
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core [45, 144–146]. This new phase would appear at a critical pressure of order pc ∝ Λ4
QCD,

and is expected to also lead to a change of VE [122] of order ∆Λ ∝ Λ4
QCD. We will follow

the conventional models for NS’s where the EoS is divided into 7 layers, but we modify the

innermost layer to take the effect of the phase transition and the appearance of VE at the

core into account. Previous studies treat all 7 layers as simple polytropic fluids, but this is

expected to be a poor fit to an inner core exhibiting the physics of a new phase of QCD, where

the vacuum energy does not vanish. We will then evaluate the tidal Love numbers for such

models, varying over the value of the vacuum energy at the core. One important consequence

of the new phase (along with the presence of vacuum energy) is that the jump conditions

at the boundary of the inner core have to be modified from those traditionally used in NS

simulations [144–146]. We will explore the effect of a difference in energy densities of the

two phases that includes a discontinuous, density independent term reflecting the absence

of the low density QCD contribution to VE [45]. We will present several models of NS cores

and estimate the effect of VE on tidal Love numbers. We find that VE can have a significant

effect on NS merger waveforms with high chirp masses, so that such events serve as a probe

of the physics of vacuum energy.

While vacuum energy is found to have a significant effect on waveforms, there are cur-

rently significant uncertainties both in terms of experimental waveform data and in terms

of theoretical expectations for parameters describing the equation of state. Disentangling

the effect of the QCD vacuum energy from other high density physics is currently not yet

possible, however, the future of gravity wave observation holds great promise in terms of ob-

taining multiple independent measurements of neutron star observables, significantly tight-

ening constraints on the equation of state of QCD. Additionally, progress may be made on

the theory side – QCD is a complete microscopic theory, therefore its high density behav-

ior can be uniquely determined from first principles. The ultimate goal is to use neutron

stars as new astrophysical laboratories for studying physics at the density frontier, and de-

termining whether the SM (plus classical gravity) agrees with data, or whether new exotic
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(gravitational or particle) physics is necessary to explain the observations.

The chapter is organized as follows. In Section 4.2 we present the models we use for

nuclear matter in the interior of NS’s, along with a detailed discussion of the treatment

of the phase transition at the boundary of the innermost layer. Section 4.3 contains the

description of the tidal deformability of NS’s. The results of our simulations and the effects

of VE on the NS observables are given in Section 4.4: we show the mass versus radius curves

and the tidal deformabilities for three different well-studied NS models and the effects of VE

on those observables. Finally we conclude in Section 4.5.

4.2 Modelling High Density QCD

The main difference between our work and that of previous studies of tidal deformability of

NS’s is that we will fully account for a phase transition to an exotic phase of QCD in the in-

nermost core region of NS’s. Crucially, we take into account the Standard Model expectation

that there is a constant shift Λ, independent of baryon number density, in the ground state

energy relative to the surrounding layers parametrizing the change in VE due to the phase

transition. In the ordinary phase of QCD the nonperturbative condensates of quarks and

gluons make contributions [122] of order (100MeV)4 to the VE. These contributions, along

with those from other sectors of the SM, are canceled by the “bare” cosmological constant

down to the observed cosmological constant of order (meV)4:

ΛSMvac
QCD + ΛSMother + Λbare ' (10−3 eV)4 . (4.1)

The origin of the mechanism leading to this cancelation remains unknown. In an exotic

phase of QCD the QCD contributions to the VE will have order one modifications and hence

the precise cancelation will no longer apply:

Λexotic
QCD + ΛSMother + Λbare ' ∆Λ , (4.2)
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where ∆Λ is the shift in the QCD vacuum energy due to the phase transition. Hence in the

absence of a dynamical adjustment mechanism, Standard Model physics predicts a density

independent shift in the energy of the exotic phase compared to the ordinary phase, which

will serve as a new effective cosmological constant term for this phase. An estimate of the

difference between the VE of the exotic phase and the ordinary vacuum is given by nuclear

saturation density: |∆Λ| ∼ Λ4
QCD [45]. Such a phase change is strongly suspected to occur

at high chemical potential, with theoretical evidence arising from truncated diagrammatic

expansions and other approximate methods [139, 140]. The phase change is in fact part of

the standard picture of the QCD phase diagram. For many plausible descriptions of the

matter in the outer portions of the star, nuclear saturation density is approached near the

core of the densest NS’s, making it quite possible that the most massive NS’s contain cores

with an exotic phase. In this section, we give a description of how one can model the QCD

equation of state at various pressures, with particular attention paid to the phase transition

that may occur in the innermost region.

4.2.1 Modeling the Outer Layers

The physics of neutron stars is an extremely rich field, and there are many details that

go into modeling the different regions of NS’s. Such an analysis is well beyond the scope

of this work, however there are methods for coarse-graining these complexities to obtain

an approximate equation of state for nuclear matter up until the phase transition we are

interested in. Such an approximation is sufficient for the purposes of making predictions for

gravitational wave signals. The most common methodology for modeling the high density

nuclear physics region outside the exotic phase core is to separate the neutron star into

multiple layers, with each layer satisfying a non-relativistic polytropic equation of state.

The parameters of the polytrope are fixed either by matching conditions or by fitting results

from more detailed studies.

We follow this established methodology and model the nuclear fluid and its corresponding
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EoS as a piecewise polytrope where the boundaries between each layer are set by a given

value of the pressure. Following previous work [136, 137] we will parametrize the EoS with

a total of 7 layers. The Israel junction conditions [147, 148] require that the pressure must

always be continuous between layers, even if each side of the boundary is separated by a

first order phase transition. It is traditional to parameterize the EoS by assuming that the

pressure is given by a power of the mass density ρ(r) = mnn(r) rather than a power of the

energy density (as would be natural for a high-density, relativistic fluid). Since we want to

efficiently compare our results with the existing state of the art simulations (some of which

have been used as benchmarks for the LIGO/Virgo analysis) we will bow to this tradition

and parametrize the EoS as

p = Kiρ
γi , pi−1 ≤ p ≤ pi , (4.3)

where i ∈ {1, . . . , 7} for Ki, γi and i ∈ {1, . . . , 6} for pi. The pressures, pi, dividing the

various layers have a one to one correspondence with the boundaries in the mass density:

ρi. The Einstein equations contain the energy density, which is related to the mass density

via the first law of thermodynamics: d(ε/ρ) = −p d(1/ρ). Integrating the first law together

with (4.3) yields the corresponding energy density:

ε = (1 + ai)ρ+
Ki

γi − 1
ργi , (4.4)

where the ai are integration constants. Note that the appearance of the ai parameters is a

consequence of using a polytropic ansatz for the mass density. Naively, one would think that

using a relativistic polytropic ansatz for the energy density would have led us to a relation

with one less free parameter. However another thermodynamical condition, continuity of

the chemical potential, would have forced us to reintroduce the baryon number density,

and therefore to bring back another parameter. So these simply correspond to different

parametrizations of the EoS, and we adopt the one described above in order to follow the
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traditional approach.

By using 7 layers we have introduced a large number of parameters (γi, Ki and ai). Most

of those can be determined by continuity of various quantities at the layer boundaries. For

the outer 6 layers we assume the continuity of the energy density at the boundaries, which

allows us to determine the ai’s:

ai =
ε(ρi−1)

ρi−1

− 1− Ki

γi − 1
ργi−1
i−1 . (4.5)

If the K1 constant for the outermost layer is known, then the other Ki values (except for

the innermost layer) can be determined by the continuity of the pressure:

Ki = Ki−1ρ
γi−1−γi
i−1 , i ∈ {2, . . . , 6} . (4.6)

For the outermost layer, the “crust”, we have p0 = 0. Requiring that limρ→0
ε
ρ
= 1 (physically

this means that the edge of the star is ordinary non-relativistic matter) implies that a1 = 0.

Thus the parameterization of the EoS of the NS for the outer layers will require us to specify

the critical pressures pi, all the polytropic exponents γi as well as the outermost polytropic

constant K1, while all other parameters will be determined by the continuity conditions.

4.2.2 Modeling the Core and the Effect of VE

For the last layer, we use an equation of state that incorporates physics associated with a

change in the QCD vacuum state due to high density. There are two effects expected at this

phase transition: a vacuum energy term Λ in the fluid that is independent of baryon number

density, and a jump in energy density across the boundary. Unlike in the outer layers, in

the exotic phase the nature of the baryonic states may be very different from the usual zero

temperature baryons. Since QCD conserves baryon number, for the innermost layer it is

more natural to use baryon number density n in place of the mass density as the variable

parametrizing the EoS for the central core (p > p6). In this case, the equation of state can
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be written as:

p = K̃7n
γ7 − Λ , (4.7)

ε = ã7n+
K̃7

γ7 − 1
nγ7 + Λ . (4.8)

Note that the vacuum energy appears with the opposite sign in the energy density and

pressure, just as with the cosmological constant. Our goal is to see how sensitive neutron

star observables are to the VE shift Λ.

To keep the form of the EoS unchanged in the various layers we can introduce the density

ρ = mnn where mn is the ordinary neutron mass, and use this rescaled number density for

the innermost layer. We can easily see that in terms of this rescaled density the EoS will

have the same form as for the outer layers:

p = K7ρ
γ7 − Λ , (4.9)

ε = (1 + a7)ρ+
K7

γ7 − 1
ργ7 + Λ , (4.10)

where K7 = K̃7/m
γ7
n , (1 + a7) = ã7/mn are just redefinitions of the unknown constants

parametrizing the EoS for the inner layer. We adopt this notation in order to stay close to

the standard formalism used in the literature.

Let us now examine in detail the continuity (or jump) of the various quantities at the

phase boundary between the sixth and the seventh (innermost) layer. The Israel junction

conditions [147,148] still require that the pressure be continuous:

K7ρ
γ7
+ − Λ = K6ρ

γ6
− = p6 , (4.11)

but due to the appearance of the Λ term this now requires a jump in ρ(r) from ρ+ to ρ−

(where ρ− = ρ6) and consequently also in ε(r) from ε+ to ε−. Since QCD conserves baryon

number, another quantity that we need to require to be continuous is the chemical potential
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µ (that is we are assuming chemical equilibrium at the phase boundaries with conserved

baryon number). The chemical potential at zero temperature is given by

µ =
ε+ p

n
, (4.12)

where n is again the baryon number density. This relation holds even if the VE is nonzero.

Therefore the jumps from ε+ to ε− and from ρ+ and ρ− (in our convention ρ+ = mnn+ and

ρ− = mnn−) are related to each other by

ε+ + p6
ρ+

=
ε− + p6
ρ−

. (4.13)

The convexity of the free energy
(

∂2F
∂V 2

)
T,N

> 0 can be translated to
(
∂p
∂n

)
T,N

> 0. This

latter form implies that the number density increases with pressure, yielding ρ+ ≥ ρ−. This

condition together with the continuity of the chemical potential tells us that the jump in

energy density should also be positive, i.e. ε+ ≥ ε−.

A typical phase transition will have both ∆ε and Λ non-vanishing, and this scenario is

the focus of our studies. We choose to parametrize the jump in energy density such that it

is proportional to the absolute value of the shift in VE:

ε+ − ε− = α|Λ| . (4.14)

For each value of γ7, α, and Λ, this condition, together with continuity of the chemical

potential, fixes the values of K7 and a7. This parametrization of the phase transition has

the advantage that the Λ = 0 limit reproduces the results obtained in the literature since

both the mass density and the energy density become continuous in this case. In principle,

α could be taken to be zero, isolating the effects of vacuum energy from a jump in the

energy density, corresponding to a second order phase transition. Here we will assume that

the phase transition is first order with an accompanying jump in most quantities across the
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phase boundary and take α > 0. A final consistency condition is that both the full pressure

and the partial pressure of the fluid, K7ρ
γ7 , must be positive. This implies that Λ must

satisfy −p6 < Λ.

4.3 Modeling Neutron Stars

After presenting the relevant physics of the dense QCD matter forming the interior of the

NS we are now ready to review the usual method for calculating the structure of the interior

of the NS. GW emission observed by LIGO/Virgo originates from the inspiral phase, when

the stars are far apart relative to their radii. In this stage of the merger, the NS’s are still

well approximated by nearly spherically symmetric static objects, with deviations described

by a linear response in an expansion in spherical harmonics. In this paper we will ignore the

effects of NS angular momentum but plan to further investigate that in a future publication.

First we briefly review the equations relevant for the spherically symmetric solution and then

present an overview of the perturbations due to the gravitational field of the other NS.

4.3.1 Spherically Symmetric Solutions

At lowest order, the stars are spherically symmetric, and their mass distribution is given by

the solution to the Tolman-Oppenheimer-Volkoff (TOV) equations [149]. These equations

are easily derived by starting with a spherically symmetric metric ansatz

ds2 = eν(r)dt2 −
(
1− 2Gm(r)

r

)−1

dr2 − r2dΩ2 , (4.15)
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and using the associated Einstein equations assuming a spherically symmetric fluid distri-

bution with pressure p(r) and energy density ε(r). The resulting TOV equations are:

m′(r) = 4πr2ε(r) , (4.16)

p′(r) = − p(r) + ε(r)

r (r − 2Gm(r))
G
[
m(r) + 4πr3p(r)

]
, (4.17)

ν ′(r) = − 2p′(r)

p(r) + ε(r)
, (4.18)

where ′ denotes differentiation with respect to the radial coordinate r. The TOV metric

provides the unperturbed solution around which the gravitational field of the second star

will introduce perturbations that can be dealt with using a multipole expansion. From the

solution to these equations, one obtains the internal structure of the star: the mass as a

function of radius, as well as the thicknesses and masses of the various layers.

4.3.2 Tidal Distortion and Love Numbers

In a neutron star binary, each neutron star experiences gravitational tidal forces due to the

other. This force squeezes the stars along the axis passing through both of their centers,

and deforms the stars, inducing a quadrupole moment. The size of this induced quadrupole

moment is determined by the structure of each neutron star, which can be characterized by

its compactness and the stiffness of the EoS. These in turn depend on the physical properties

of the dense QCD matter as described by its EoS discussed in the previous section. The

effect of the induced quadrupole on gravitational wave data is to change the power emission

as a function of time and frequency. Thus LIGO data on NS inspirals contains information

about this tidal deformability, which depends on the equation of state of the matter making

up the stars.

A common way to describe the deformability of a star is through the Love number. Love

numbers were originally introduced in the study of Newtonian tides [150]. The application

of Love numbers to gravitational waves produced in neutron star inspirals was initiated
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in refs. [124, 125], and further generalized in [151]. Detailed studies of the prospects for

gravitational wave detection were provided in [126–128].

In the local rest frame of one star a small tidal field can be described in terms of a

Taylor expansion of the Newtonian gravitational potential, or the time-time component of

the metric tensor. There are two contributions, one from the effect of the distant star,

and the other from the induced quadrupole moment. At large distances (using Cartesian

coordinates, xi) gtt takes the form [126]

1 + gtt
2

≈ GM

r
+

3GQij

2r5
xixj − 1

2
Eijxixj . . . (4.19)

Here Eij parametrizes the external tidal gravitational field, and Qij is the induced quadrupole

moment. Both matrices are traceless and symmetric. To linear order in the response, the

induced quadrupole is determined by the tidal deformability, λ, defined by

Qij = −λ Eij . (4.20)

One can then define a dimensionless quantity k2 by

k2 =
3

2

Gλ

R5
, (4.21)

where R is the radius of the neutron star. This is referred to as the l = 2 tidal Love number,

and is the main physical observable. The advantage of this parametrization is that the Love

number does not vary much with the size of the star, with typical Love numbers ranging

from k2 = 0.001 to k2 = 1 as masses and equations of state are varied.

In order to determine k2, one performs the perturbative expansion of the solutions to the

Einstein equations in the presence of an external gravitational field assuming a multipole ex-

pansion. Thus inside and near the star we will write the metric perturbation as an expansion

in spherical harmonics Y m
l . Due to the axial symmetry around the axis connecting the cen-
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ters of the two stars, m is zero, and since the tidal deformation is dominantly quadrupolar,

with no dipole, the leading contribution is at l = 2 [126]. Hence the full perturbed metric

gαβ + hαβ (where gαβ is the metric from (4.15)) is written as

hαβ = diag
(
eν(r)H(r), eµ(r)H(r), r2K(r), r2 sin2 θK(r)

)
Y 0
2 (θ, φ) , (4.22)

where eµ(r) and eν(r) are the functions in the solution to the unperturbed spherically sym-

metric metric (4.15):

eµ(r) = (1− 2Gm(r)/r)−1 , (4.23)

ν ′(r) = − 2p′(r)

p(r) + ε(r)
, (4.24)

and the Einstein equations relate the functions K and H:

K ′(r) = H ′(r) +H(r)ν ′(r) . (4.25)

Inserting the perturbed metric into Einstein’s equations results in a second order differential

equation for H(r):

H ′′ = 2Heµ

{
−2πG

[
5ε+ 9p+

dε

dp
(ε+ p)

]
+

3

r2
+ 2G2eµ

(
m(r)

r2
+ 4πrp

)2
}

+
2

r
H ′eµ

{
−1 +

Gm(r)

r
+ 2πGr2(ε− p)

}
.

(4.26)

To find solutions, one starts with a series expansion of H very near the core of the star,

at small r:

H(r) = a r2 +O
(
r4
)
. (4.27)

The linear term drops out since the solution must be regular at r = 0. The size of the
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coefficient a is linearly proportional to the size of the external perturbation, Eij, and is not

an intrinsic property of the star, as is clear from the fact that it is simply a normalization

coefficient for the solution to the linear ODE for H. One can thus pick this coefficient

arbitrarily in numerically solving for H. The l = 2 tidal Love number, on the other hand is

an intrinsic property, and the value for a drops out in calculating it. The value for k2 can

be calculated once H is found, and matched at large r onto the metric ansatz in Eq. (4.19).

It is given by

k2 =
8C5

5
(1− 2C)2[2 + 2C(y − 1)− y]

×
{
2C[6− 3y + 3C(5y − 8)] + 4C3[13− 11y + C(3y − 2) + 2C2(1 + y)]

+ 3(1− 2C)2[2− y + 2C(y − 1)] log(1− 2C)
}−1

,

(4.28)

where C is the compactness parameter GM/R, and y is obtained from the solution to H

evaluated on the surface of the star:

y =
RH ′(R)

H(R)
. (4.29)

Another dimensionless quantity, known as the dimensionless tidal deformability, is often

found in the literature. It is obtained from the definition of k2 by factoring out the C5 in

front:

λ̄ =
2k2
3C5

=
λ

G4M5
. (4.30)

4.4 Results and Fits

We are now ready to present our results for the effects of adding a VE component to the

innermost layer. We will use several different benchmark EoS’s for modeling the NS’s and

investigate the consequences of the presence of VE in each of those cases. Two of the EoS’s are
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more “conservative” in the sense that the maximum stable NS mass that can be achieved just

barely goes above 2M� (the maximum NS mass observed thus far is M = (2.01± 0.04)M�).

The two more conservative models are the AP4 [152] and SLy [135] EoS’s, which were also

used as benchmarks by LIGO/Virgo [117]. We also consider the less restrictive model of

Hebeler et al. [137] which permits larger masses, up to nearly 3M�. For the AP4 and SLy

models we use the piecewise polytropic parametrization for all 7 layers provided by Read et

al. [136]. We have tabulated the corresponding parameters in Table 4.1. While the model

of Hebeler et al. also uses a piecewise polytropic EoS for the innermost three layers, for the

outer four layers corresponding to the crust they use a semi-analytic expression. In their

parametrization, the outer crust is modeled by the BPS EoS [153] assuming β equilibrium1,

followed by a layer for which chiral EFT (valid up to the nuclear saturation density around

0.18 baryons/fm3) is used to obtain the EoS. This semi-analytic expression is consistent with

the piecewise polytropic approach of AP4 and SLy.

Varying the EoS leads to more or less compact NS’s, whose deformability will also change.

The compactness of the NS can be characterized by the radius of a NS with a fixed mass.

The deformability describes how much the NS reacts to the presence of the gravitational field

of the second NS in the binary merger event and is characterized by the tidal deformability.

In the first subsection, we present our results for the mass versus radius, M(R), curves of

neutron stars with different nuclear EoS’s including the effect of VE, while in the second,

we study the tidal deformability and comment on the potential for LIGO/Virgo to discern

between models with different assumptions about the change in VE in exotic phases of QCD.

4.4.1 M(R) Results

We first present the results for the mass versus radius curves for the three different benchmark

equations of state, whose parameters are displayed in Table 4.1. These three benchmarks

cover a realistic range of possible EoS’s, with a wide variation in the maximum possible
1β-equilibrium corresponds to equal rates of neutron decay and proton capture of electrons.
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SLy AP4 Hebeler

K1 9.27637× 10−6 See [137]

p1 (0.348867)4

p2 (7.78544)4 See [137]

p3 (10.5248)4

p4 (40.6446)4 (41.0810)4 (72.2274)4

p5 (103.804)4 (97.1544)4 (102.430)4

p6 (176.497)4 (179.161)4 (149.531)4

γ1 1.58425

γ2 1.28733

γ3 0.62223

γ4 1.35692

See [137]

γ5 3.005 2.830 4.5

γ6 2.988 3.445 5.5

γ7 2.851 3.348 3

Table 4.1: The parameters used for each EoS. The exponents γi are dimensionless, the
various pressures have units of MeV4, and K1 is in units of MeV4−4γ1 . The Hebeler et al.
parametrization [137] uses a semi-analytic expression which is not piecewise polytropic in
the outer region of the star, and thus cannot be displayed in the table.

stable neutron star mass. We take care not to violate basic constraints on the behavior of

high density QCD matter. For example, when pressures near the center of the star become

very large, and relativistic effects dominate, one must ensure that the equation of state does

not violate causality. Causality requires that the speed of sound in the fluid does not exceed

the speed of light:

vs =

√
dp

dε
≤ 1 . (4.31)

However, using simple EoS models this condition is often violated for very large central

pressures. Such violation does not imply the instability of the NS, but is rather an indication
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that the ansatz for the EoS is no longer a good approximation of the underlying nuclear

physics in that region. Such causality violation would never arise in the true QCD equation

of state at very high densities.

The true stability condition for the central pressures that a neutron star can support is

given by

∂M

∂pcenter
> 0 . (4.32)

This constraint arises from considerations of radial pulsation modes of the star, and is di-

rectly associated with stability of the fundamental mode of oscillation [154]. The relation in

Eq. (4.32) above can be violated when the jump in the energy density is too large [145]:

ε+ − ε− ≥ 1

2
ε− +

3

2
p6 . (4.33)

Above this bound, the mass of the NS no longer increases with increasing core pressure, and

the NS is unstable [142,143,145,146,155]

We note that the condition in Eq. (4.32) can be satisfied for two stars of the same mass,

but different internal pressures [156–158], corresponding to different phases in the core of

the star. In such cases, the critical energy density jump exceeds that in Eq. (4.33) at the

transition. However, even with this instability, one sometimes finds for p > p6, that there is a

disconnected class of solutions that does not exceed the bound in Eq. (4.32). The possibility

then arises that some of the exotic, disconnected solutions have the same masses as some of

the normal, lower pressure solutions.

Which of the two conditions, causality or monotonicity, will limit the central pressure

depends on the EoS. For AP4 and SLy, the limit is set by causality. This bound can be

avoided by modifying the EoS via a “causal extension” [137] into the regions where the

pressure exceeds the maximal value set by the causality bound. For the models we are

working with, we have found that this extension simply flattens out the curves at the point
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Figure 4.1: Mass versus radius curves corresponding to the stiff parametrization of Hebeler et
al. [137] with α = 3. Dotted curves in the plot on the left correspond to unstable configurations
violating Eq. (4.32). Positive values of Λ are shown in the plot on the left, and negative ones on
the right.

where causality is violated, and hence does not change the value of the maximum mass

significantly. For this reason we have chosen not to make this modification and ended the

curves at the point where the speed of sound reaches unity.

The M(R) curve and the effect of VE for the Hebeler et al. EoS [137] are shown in

Fig. 4.1. Each curve is obtained by varying the pressure at the center of the star but keeping

all of the other parameters fixed. We have fixed α = 3 in this plot, as well as all those that

follow.2 When the central pressure is greater than p6, the value of Λ becomes relevant and

the other curves depart from the behavior of the Λ = 0 case. Dotted parts of the curves

correspond to unstable regions, i.e. solutions of the TOV equations in which the stability

condition (4.32) is violated. The shaded region represents the most massive neutron star

measured to date, with a mass of (2.01±0.04)M� [159]. Notice that for some positive values

of Λ, i.e. when the jump in energy density is big enough according to Eq. (4.33), we find a

second stable region which is disconnected from the main branch, as discussed above. This

means that for a given mass, there are two possible types of stars, one with no exotic phase in

the core, and another with a significant portion of the star in the new phase. This gives rise
2Taking α to be small reduces the change in the curves relative the Λ = 0 case, however small values of α

are not representative of most phase transitions, which are typically accompanied by a change in the energy
density as well as the vacuum energy.
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Figure 4.2: M(R) curves for the SLy and AP4 equations of state for various Λ values on the
seventh layer. For all the curves, the proportionality constant α in the jump equation (4.14) is
chosen to be α = 3. The gray region shows the allowed mass range of the heaviest neutron star,
with mass (2.01± 0.04)M�.

to interesting effects, both for M(R) curves and in GW observables. For example, assuming

that the Λ = (165MeV)4 curve is the correct one, it would be possible to observe two 2M�

neutron stars with significantly different radii. That is, there are two stable configurations

for stars with the same mass. It is quite interesting that the physics of QCD may allow for a

plethora of different compact objects, with population numbers depending on the conditions

of their formation.

Our procedure for introducing the VE for this model is the following. In order to

make sure that all values of Λ considered here are compatible with a neutron star mass

of (2.01 ± 0.04)M�, we stop the next-to-innermost polytropic region as soon as the mass

reaches 2.00M�. This corresponds to choosing a critical pressure p6 ≈ (150MeV)4. Once

the critical pressure is reached, we transition into the innermost polytropic region with a

nonzero VE, and we allow for the central pressure to be as high as possible without violating

the causality bound.

Next we present results for the AP4 [152] and SLy [135] EoS models. The M(R) curves

for the AP4 and SLy models with different values of the VE in the innermost layer are shown

in Fig. 4.2. One can again see that up to a certain critical mass, the curves corresponding
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to different Λ’s in the innermost layer do coincide with each other. The reason for this is

that below this mass the central pressure is not high enough to enter the exotic high density

phase of QCD. The critical pressure for the phase transition to occur is set by p6 which is

an input of the model. For the AP4 and SLy models, p6 ≈ (179MeV)4 and p6 ≈ (176MeV)4

respectively which correspond to a critical mass of approximately 1.6M� for both models.

The plots for all three EoS’s show that the maximal mass of the neutron star decreases

for both positive and negative values of VE. This is a generic feature of neutron star models

with phase transitions with vacuum energy in our study, and is due to the jump in the energy

density across the phase transition. This conclusion is similar to that obtained in previous

works that study phase transitions without vacuum energy [160].

4.4.2 Tidal Deformabilities and LIGO/Virgo

Let us now discuss NS observables from GW’s emitted during the merger of NS’s. The

frequency versus time behavior of the waveform of the emitted gravitational wave, usually

expressed in terms of the “gravitational wave phase” appearing in the Fourier transform of

the chirp, can be determined by an expansion in relativistic effects, starting at Newtonian

order, and proceeding to post-Newtonian corrections in the velocity. At dominant Newtonian

order, where the two NS’s are approximated by point masses, the waveform depends only

on a particular combination of the masses called the chirp mass:

M = µ3/5M
2/5
tot =

(M1M2)
3/5

(M1 +M2)1/5
, (4.34)

where µ is the reduced mass of the system [161]. For the recently observed merger event,

GW170817, the chirp mass was measured to be M = 1.188+0.004
−0.002M�.

Since this is the dominant contribution to the waveform, the chirp mass can be de-

termined quite accurately. However, the individual masses must be extracted from higher

order velocity corrections to the waveform, and are thus more difficult to constrain. At
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higher order, spin-couplings are important as well, and without information about the stars’

rotational speeds and axes, precise extraction of the masses is impossible. This information

is in principle retrievable from measurements of the waveform, but is difficult as it relies on

data near the end of the inspiral, where current experiments lose sensitivity, and where full

numerical simulation of the merger event may be necessary [162].

At present, the individual masses can only be estimated by using the chirp mass and

some assumptions for the angular rotation frequency of the stars. For GW170817 in the

low-spin case, the estimated mass range is 1.36–1.60M� for the heavy star and 1.17–1.36M�

for the light star, while for the high-spin case, there is considerably more possible variation

in the masses: 1.36–2.26M� for the heavy star and 0.86–1.36M� for its less massive partner.

Similarly, it is not yet possible to measure individual tidal deformabilities. However, it

is possible to constrain a weighted combination of the individual masses and deformabili-

ties through their contribution to the gravitational wave phase at order v5. This so-called

“combined dimensionless tidal deformability” is defined as

Λ̃ =
16

13

(M1 + 12M2)M
4
1 λ̄1 + (M2 + 12M1)M

4
2 λ̄2

(M1 +M2)5
. (4.35)

For the recent event GW170817, the current constraint placed on Λ̃ is ≤ 800 for the low-spin

assumption and ≤ 700 for the high-spin case. In the low-spin case, the neutron star masses

are probably too low to contain an exotic QCD phase, and thus event GW170817 would not

contain information about VE. Of course, this may not be the case for future merger events,

which may involve heavier NS’s. In the high-spin case, however, the inner core could be in

the exotic phase, and the constraints from GW170817 are relevant for studying VE.

The rest of this section contains our results for the effects of VE on the tidal deformabil-

ities, which will be presented in a series of plots. Each plot will be presented both for the

Hebeler et al. EoS, which allows for larger NS masses and hence larger effects from VE, as

well as for the AP4 and SLy EoS’s, which cut NS masses off at 2M� and thus have smaller
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VE effects.

• Fig. 4.3 shows the individual tidal deformabilities of both NS’s and the effect of VE

using the Hebeler et al. EoS.

• Fig. 4.4 translates the effects of VE into a fractional shift of the combined tidal de-

formability Λ̃. This plot shows that the effect of VE can be as large as 70% and is

generically sizable for the case of the Hebeler et al. EoS.

• Figs. 4.5, 4.6, 4.7 repeat the same analyses for the AP4 and SLy EoS’s, where we see

that the deviations are generically smaller, but can still reach 25–30% for larger chirp

masses.

• Figs. 4.8, 4.9 emphasize the role of the chirp mass: they show the maximal achievable

effect of VE as the chirp mass is increased. We can see that observing events with

chirp masses above 1.6–1.8M� will be key to observing the effects of VE.

• Fig. 4.10 shows the effect of VE on GW170817 (assuming the Hebeler EoS) where

it can significantly change the allowed region of NS masses one would infer from the

constraint on the tidal deformability.

The EoS parametrization of Hebeler et al. [137] allows for large possible deviations in

the tidal deformability when a VE term is added to the central core in the new phase. In

Fig. 4.3, we show the effect of varying the VE term for a selection of three different input

chirp masses. The curves are obtained by fixing the chirp mass M at a few representative

values and then scanning over the mass of the heaviest star, M1. Typically it is found that

the heavier the star, the smaller the tidal deformability. This is largely due to the fact that

more massive stars typically have smaller radii, and thus respond less to external tidal fields.

We note that the Λ = (165MeV)4 curve in the third plot is composed of two separate

branches, corresponding to the two separate stable stars with equal masses but different radii

as explained in the previous section. The branch with the highest values of λ̄2 corresponds
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Figure 4.3: Tidal deformabilities for the Hebeler et al. parametrization with α = 3. Each plot
corresponds to a different chirp mass. Dotted parts of the curves with Λ = (165MeV)4 correspond
to unstable configurations. In all cases, the deviation from the Λ = 0 curve is significant.

to only the most massive star laying in the disconnected branch of the M(R) curve, while

in the other case both stars in the binary would come from the disconnected branch. Part

of the reason why the deviations from the Λ = 0 curve are significant here can be found

directly in Fig. 4.1. Since there the maximum mass for the Λ = 0 curve is close to 3M�, the

curves that correspond to a nonzero Λ can depart significantly without being excluded by

the measurement of the most massive neutron star, (2.01± 0.04)M�.

As we are most interested in the changes brought about by considering non-vanishing

VE, it is useful to introduce a variable that quantifies the relative shift in Λ̃ due to VE:

δ ≡ Λ̃− Λ̃0

Λ̃0

, (4.36)
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Figure 4.4: Plots on the right show the relative deviation of the combined dimensionless tidal
deformability, Λ̃, as a function of the heaviest star mass for the Hebeler et al. parametrization with
α = 3 for various values of the chirp mass. Plots on the left show Λ̃ for vanishing VE for the same
chirp masses. Dotted parts of the curves correspond to unstable configurations. The disconnected
branches associated with two stable NS configurations allow for the largest deviations.
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Figure 4.5: Tidal deformability curves for a neutron star binary with SLy and AP4 EoS’s. The
chirp mass is taken to be M = 1.188M�, which is the same value as in GW170817. λ̄1 and
λ̄2 correspond to the dimensionless tidal deformability parameters for the heavy and light stars,
respectively. Each curve is obtained by varying the heavy star mass while holding the chirp mass
fixed. The α-parameter of (4.14) is chosen to be α = 3.

where Λ̃0 is the value of Λ̃ obtained by taking the VE term to zero.

The deviation as a function of the heavy star mass, M1, for the Hebeler et al. parametriza-

tion is shown in Fig. 4.4. The negative values for δ mean that introducing a VE term lowers

the value of Λ̃. In order to isolate as much as possible the effects that a nonzero value of Λ has

on the internal structure of the stars, we are comparing each point in a given curve with the

corresponding event on the Λ = 0 curve that has the same neutron star masses. Therefore,

any deviation in the value of Λ̃ comes entirely from the change in the tidal deformabilities,

λ̄i.

Even with the more conservative SLy and AP4 models one still finds large deviations in

Λ̃ for events with larger chirp masses. The case of the (smaller) chirp mass corresponding

to GW170817 is displayed in Fig. 4.5, and the deviations in deformability are small. This

is because the combined deformability is typically dominated by the contribution from the

less massive star, which does not contain a core in the new phase where VE plays a role.

However for higher chirp masses the effect of vacuum energy can be sizable even for the SLy

and AP4 EoS’s, as shown in Figs. 4.6 and 4.7. As the chirp mass increases more of the star

contains the new phase, and eventually both stars typically contain cores in the new phase,
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Figure 4.6: Plot of the deviation of the combined dimensionless tidal deformability as a function
of the heavy star mass for the SLy EoS with different values for the chirp mass. M = 1.188M�
is the same as the one of GW170817, while M = 1.65M� corresponds to a chirp mass where if
the two NS masses are equal they have a mass of 1.9M�. For the smaller chirp mass the effect is
rather small, however for a higher chirp mass the effect can be as large as 38%. The α-parameter
of (4.14) is again chosen to be α = 3.

yielding the increased sensitivity to VE. The high chirp mass we have chosen for these figures

corresponds, if the stars are of equal mass, to individual masses of 1.9M�, approaching that

of the most massive NS observed to date. One can see that for this case the deviation can

be as large as 37%, even for these more conservative equations of state.

Since the chirp mass is the most accurately measured property of the NS merger, it is

worthwhile to examine the dependence of δ (characterizing the sensitivity to VE) on the chirp

mass. In Figs. 4.8 (Hebeler) and 4.9 (AP4 and SLy) we plot Λ̃max
0 and δmax as a function of

the chirp mass. The superscript expresses the fact that, when evaluating the quantities in

Eqs. (4.35) and (4.36), the mass of the heavy star is kept fixed at the maximal value allowed
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Figure 4.7: Plot of the deviation of the combined dimensionless tidal deformability as a function
of the heavy star mass for the AP4 EoS with different values for the chirp mass. Plots on the left
show the value of Λ̃, while plots on the right show the fractional deviation, δ. The chirp mass
M = 1.188M� is the same as the one of GW170817, while M = 1.65M� corresponds to a chirp
mass where if the two NS masses are equal they have a mass of 1.9M�. For the smaller chirp mass
the effect is rather small, however for a higher chirp mass the effect can be as large as 25%. Again
the α-parameter of (4.14) is chosen to be α = 3.

by the corresponding fixed value of Λ. Fixing one of the stars to have maximal mass will

generically (though not always) give the largest VE effect on Λ̃. The important result of the

plots is that the deviation increases substantially above a certain chirp mass denoted by the

vertical gray line in the plots. This threshold corresponds to the chirp mass for which the

lighter star mass also reaches the critical mass for the phase transition. Therefore, the large

deviation can be understood from the fact that both stars are in the new phase.

In our final plot in Fig. 4.10, we display the limits that GW170817 places on VE as-

suming the Hebeler et al. parametrization. In particular, we note that including a VE term
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Figure 4.8: Dependence on the chirp mass in the Hebeler et al. parametrization, keeping the
heaviest star mass fixed at M1 = 2.27M� (the maximum value for the Λ = (150MeV)4 curve). The
left plot shows the corresponding value of the combined tidal deformability for the Λ = 0 curve.
The right plot represents the relative deviation of the combined tidal deformability by turning on
Λ = (150MeV)4 and is a measure of how the effect of VE potentially increases with the chirp mass.
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Figure 4.9: Dependence on the chirp mass in the AP4 and SLy parametrizations, keeping the
heaviest star mass fixed at M1 = 1.98M� (the maximum value for the Λ = (120MeV)4 curve). The
chirp mass range is from M = 1.188M� to M ≈ 1.72M�, where the latter corresponds to the case
when both stars have masses M1,2 = 1.98M�. The left plot shows the corresponding value of the
combined tidal deformability for the Λ = 0 curves. The right plot represents the relative deviation
of the combined tidal deformability and is a measure of how the effect of VE potentially increases
with the chirp mass. The vertical gray line denotes the chirp mass at which the light star mass
reaches the critical mass for the phase transition.

significantly changes the allowed range of the individual masses for the high-spin assumption.

The effect is less pronounced for the SLy and AP4 models. As more data on NS mergers

are collected with some of those corresponding to mergers of more massive stars, strong

limits could be placed on the EoS of dense nuclear matter. This will especially be true once

the sensitivities for probing the tidal contributions to the gravitational wave phase further
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Figure 4.10: Combined tidal deformability Λ̃ as a function of the heavy star mass M1 for the
Hebeler et al. parametrization with α = 3. The chirp mass is the same as in the event GW170817.
The figure shows the upper bounds set by the LIGO/Virgo analysis and demonstrates how a nonzero
value of Λ can affect the allowed mass range.

improve.

The future outlook is difficult to extrapolate, but promising. At present, due to the

sensitivity of the experiments, the limited statistics, and the number of parameters involved

in the simulations, it is not possible to precisely and unambiguously determine from NS

measurements the vacuum energy contribution to the QCD equation of state. However, the

constraints that are placed in the coming years will depend strongly on currently uncertain

characteristics of NS binaries or NS-black hole mergers that will be captured by upcoming

data-taking runs at LIGO and other GW observatories [163]. Constraints will depend upon

masses, spins, and branch populations in cases where there are multiple configurations with

the same mass. In addition, the sensitivities of the experiments will evolve, and may be

able to better capture higher order contributions to the waveforms. This will help single

out the different contributions to the observable quantities, for example distinguish the

effects of vacuum energy from the rest of the EoS parameters, once the uncertainties on
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masses, radii and tidal deformabilities are reduced. Finally, utilization of neutron stars

as laboratories to study very high density physics and VE depends crucially on a precise

theoretical calculation of the QCD equation of state at high densities [164]. Such a calculation

is certainly very difficult, mainly due to technical challenges rather than conceptual ones.

Taking an optimistic viewpoint on these issues leads us to the conclusion that neutron star

mergers can tell us about the interface of gravity and quantum field theory in a regime never

before tested.

4.5 Conclusions

In this chapter, we have argued that neutron star mergers can be a valuable tool for testing

new phases of QCD at large densities, in particular for finding the contribution of a VE

term in exotic high density phases. To study the effects of such a new phase on neutron star

observables, we have started with the conventional 7-layer parametrization of the EoS, then

assumed a nonzero value for the VE in the innermost layer leading to a jump in the energy

density.

For the three benchmark models we have chosen, we have calculated the M(R) curves and

tidal Love numbers for different values of the VE. By using those results, we have obtained

individual tidal deformabilities and calculated the combined dimensionless tidal deformabil-

ity parameter which can be constrained by neutron star mergers observed in gravitational

wave observatories. We have found that for larger chirp masses, the nonzero VE at the

innermost core can have an O(1) effect on the combined dimensionless tidal deformability

parameter, hence future observations of neutron star merger chirps can place strong limits on

the EoS of dense nuclear matter. We have also shown that for some parameters, introducing

a nonzero VE can create a disconnected branch of stable neutron star solutions allowing the

possibility of having two neutron stars of the same mass with significantly different radii.

This possibility is unique to EoS’s which have a phase transition at the core, hence it is a
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smoking gun for new phases of QCD.
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Presentation in Conference of Young Physicist

Interdisciplinary Talks

• Runaway Ramps of Theoretical High Energy Physics September 2017
Remote presentation at an event organized by graduate students at
Physics Department of Istanbul Technical University

• Ph.D. Application Process to US Universities January 2015
Remote presentation at an event organized by graduate students at
Physics Department of Istanbul Technical University

• Physics of Rainbows August 2012
Remote presentation at an event organized by graduate students at
Physics Department of Istanbul Technical University

• Transposition in Music via Linear Algebra August 2011
Joint presentation with my collegues Tuna Pesen and Gizem Şengör
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• I. Uludağ High Energy Physics Winter School February 2012
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