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ABSTRACT 

 
The goal of the project was to develop a tool that allows for targeted expression of 

genes in spermatogenesis. To do this the GAL4/UAS system was employed. This system 
places the coding region of the GAL4 gene under a tissue specific promoter, ProtamineB 
in this case. The construct is transformed into Drosophila melanogaster and crossed with 
an existing UAS-reporter strain to make visualization of successful transformants easy. 
Expression was searched for in the testes by dissection and various detection methods. 
Unfortunately no expression was seen in the testes despite the construct being 
successfully integrated into the genome. This information tells us about the timing of 
expression within late spermatogenesis, and that a tool can successfully be developed to 
target genes of interest within spermatogenesis. 
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EXECUTIVE SUMMARY 
 

 This research aims to develop a gene driver tool capable of discovering the 

intimate genetic mechanisms involved in spermatogenesis. Spermatogenesis in D. 

melanogaster is one of the most dramatic instances of cell differentiation. A 

comprehensive understanding of spermatogenesis has useful applications in medicine, 

public health, and agriculture. The spermatogenesis pathways between fruit flies and 

humans are highly conserved and a better understanding of the genes involved and their 

expression patterns could lead to a useful treatment for male infertility.  

In addition to human therapies, a strong understanding of the genes involved in 

spermatogenesis will allow researchers to select target genes to produce sterile males. 

Genetic knockdown experiments can be done with a UAS-RNAi reporter strain to reduce 

population in common insect pests. As the global population increases and food becomes 

an increasingly scarce resource, crop yields must be maximized and insects can be 

detrimental. RNAi knockdown can also be used to reduce population of insects that 

spread disease, such as mosquitos. Sterile males can be engineered and released into the 

wild, effectively reducing the population of the next generation. It is our hope that this 

research can provide useful information and novel tools for further advancing the 

knowledge of spermatogenesis within D. melanogaster. 
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INTRODUCTION 

 

Discovering genetic mechanisms allows researchers to gain a better understanding 

of the biology of an organism.  Knowledge of genes and their functions have broad, and 

incredibly useful applications in agriculture, medicine, and industry. The functions of 

most genes are carried out by the proteins that they encode.  Eliminating expression of 

the gene and observing how the phenotype is affected is a common way to determine 

gene function. The most common way to eliminate gene function is to carry out a 

mutagenesis experiment to create a loss-of-function mutation. Traditionally, this is done 

by treating the model organism with a mutagen and then screening F1 or F2 progeny for 

abnormal phenotypes [i.e., a forward genetic screen (St. Johnston, 2002)].  Because the 

mutagenesis procedure causes random damage to the genome, one must typically screen 

large numbers of offspring before finding the rare mutant in a gene of interest.  More 

recently methods for targeted mutation of specific genes have been developed [e.g., 

CRISPR/Cas9 (Jinek, et al., 2012)] but these methods require advance knowledge of 

what specific gene is to be mutated. 

Overexpression, or ectopic expression (i.e., expressing a gene at an inappropriate 

time or in the wrong place), of a gene of interest can also be useful in determining that 

gene’s function (Phelps and Brand, 1998). In this case, the approach is usually to clone 

the gene of interest into some type of expression vector and then create transgenic 

individuals that will express the gene either constitutively, or under the control of some 

type of inducible or tissue specific promoter (Prelich, 2012).  
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One area of interest in our lab is to understand the genetic control of the complex 

developmental process of spermatogenesis in the Drosophila melanogaster model 

system. Spermatogenesis is one of the starkest examples of cell differentiation, during 

which a round, diploid, unspecialized germline stem cell becomes transformed into an 

incredibly long, streamlined, haploid, motile spermatozoa, capable of being transferred to 

the female reproductive tract where it can survive for many days until it is used for 

fertilization of an egg (Fuller, 1998; Demarco, et al., 2014). Understanding how this 

dramatic developmental process happens, and how genes responsible function and 

interact has important implications for subjects such as male fertility, biological pest 

control, and developmental biology (Sutton, et al., 2016; Demarco, et al., 2014).  

Spermatogenesis in Drosophila begins at the apical tip of the testis with the division of 

germline stem cells into a new germline cell and a gonial cell (Figure 1). The gonial cells 

undergo four rounds of mitotic division, but do not fully separate, yielding a sixteen-cell 

“cyst” of interconnected primary spermatocytes. Following a growth phase in which the 

spermatocytes increase in size, each of the sixteen cells undergoes meiosis, resulting in a 

cyst of 64 round, haploid spermatids, each containing a prominent round nucleus and a 

structure called the nebenkern, consisting of fused mitochondria.  At this stage, the 64 

spermatids elongate in synchrony, and the nuclei condense and experience a dramatic 

shape change, eventually assuming dense, needle-shaped configurations. The spermatids 

then undergo individualization, during which the interconnected spermatid bundle is 

resolved into 64 separate sperm cells, after which they coil up for storage in the seminal 

vesicle (Fuller, 1998).  The orchestration of these complicated events is controlled by the 

coordinated activity of many genes, not all of which have been elucidated.  One goal of 
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our lab is to test collections of various candidate genes of interest for those that play an 

important role in some aspect of this complicated developmental process. 

A powerful tool for manipulating gene expression of candidate genes of interest 

(GOI) is the GAL4/UAS binary system (Duffy, 2002).  This system employs the GAL4 

gene from common baker’s yeast, Saccharomyces cerevisiae. The GAL4 protein is a 

transcriptional activator that binds tightly to an upstream activation sequence (UAS) to 

activate the transcription of the downstream gene. To study a GOI the system is set up in 

such a way that the GAL4 coding region is placed under the control of a known promoter 

sequence. This way, whenever the native gene would normally be expressed the GAL4 

gene is expressed in its place. Separately, the UAS sequence is placed in front of a GOI.  

If the GAL4 and UAS-GOI transgenic lines are crossed, individuals with both 

components will be produced in the F1. In these individuals, GAL4 will bind to the UAS 

and drive target gene expression in the desired time or tissue-specific manner (Figure 2).  

The GAL4/UAS system can target a specific gene of interest for study of expression in a 

controlled manner in vivo. 

RNA interference is a powerful tool for understanding the function of specific 

genes within a pathway. A gene can be “knocked down” using RNAi and the function of 

the gene can be deduced based on the phenotype of the organism. RNA interference is a 

mechanism in which a double-stranded RNA molecule triggers the destruction of the 

mRNA that contains an identical sequence, thereby leading to silencing, or “knockdown,” 

of the corresponding gene’s expression (Hannon, 2002).  In this process, a protein called 

Dicer cuts double stranded RNA (dsRNA) into short fragments and unwinds them.  The 

RNA induced silencing complex (RISC) uses the short interfering RNA (siRNA) from 
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Dicer as a guide to bind to a corresponding sequence in an mRNA and cleaves it, thereby 

reducing the level of that targeted mRNA. Since the mRNA is destroyed no protein is 

made and the gene is effectively silenced (Bernstein, et al., 2001; Hannon, 2002). 

Using the UAS/GAL4 system in tandem with RNAi, genes of interest can be 

targeted for knockdown. In this approach, a transgene is created in which an inverted 

repeat sequence for a GOI is placed downstream of the UAS.  By crossing this line to a 

GAL4 expressing strain, the F1 individuals will express the inverted repeat which will 

fold up into a dsRNA hairpin which will trigger RNAi, thus knocking down expression of 

the GOI (Figure 3; Yamamoto-Hino and Goto, 2013). 

The goal of this project is to create GAL4 “driver” constructs and transgenic fly 

lines that can be used to target overexpression or RNAi knockdown of any gene of 

interest during spermatogenesis.  To accomplish this, we sought to use the promoter 

region of the ProtamineB gene to drive expression of GAL4 in a spermatogenesis-

specific manner. This gene is transcriptionally activated during the late stages of 

spermatogenesis, and its product, ProtamineB, replaces the histone-based nucleosomes 

and is responsible for the tight packaging of the paternal DNA in the sperm head (Raja 

and Renkawitz-Pohl, 2005). The hope was that transgenic lines containing the 

ProtamineB-GAL4 driver could be used in conjunction with UAS-GOI transgenic lines to 

target overexpression or knockdown of the GOI specifically during spermatogenesis.  By 

examining the phenotypic effects of this on sperm development or function, the normal 

role of the GOI might be inferred. 

 

MATERIALS AND METHODS 
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Gel Electrophoresis 

 Gel electrophoresis was performed using 0.7% agarose dissolved in 1X Tris-

Acetate EDTA (TAE) buffer. 2μg/mL of ethidium bromide was added to the TAE buffer. 

4μL of bromophenol blue dye was added to each DNA sample before it was loaded into 

the gel. A HiLo DNA ladder (Bionexus Inc.) was used to approximate DNA size of the 

sample. Normal gel run time was 30 minutes at 90 volts. Gels were visualized with a UV 

lamp. 

 

 

Polymerase Chain Reaction (PCR) 

 PCR was set up in a 0.5mL Eppendorf PCR tube with the following ingredients: 

4μL 5X GoTaq buffer, 2μL dNTP mix (2mM of each nucleotide), 1μL 5’ primer (5μM), 

1μL 3’ primer (5μM), 2μL sample DNA (1/100 dilution of genomic or 1/1000 of 

plasmid), 10μL sterile, distilled water. The usual reaction was performed as follows: 

• Denature the DNA for 5 minutes at 95°C, then return temperature to 72°C.  

• Add 5μL of diluted Taq polymerase to a final volume of 25μL. Dilution was made 

with 19μL of sterile, distilled water, 5μL 5X GoTaq buffer, 1μL Taq polymerase.  

• PCR cycles were started with the following format: 

o 94°C for 1 minute to denature DNA 

o 58°C for 1 minute to anneal primers 

o 72°C for 1 minute to extend DNA 

o Repeat 34 times 

o 72°C for 10 minutes for final extension 
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o Hold at 10°C 

Run 10μL on a gel to test success of PCR. Table 1 contains the list of primers used for 

this project. 

Table 1: Primers used and their sequences 

Primer Name Sequence (5’ to 3’) 

Ubprom5 BF AGATCTGGCCGGCCAACGCAGCGACAGGGATTC 

Ubprom3 B AGATCTGGATTATTCTGCGGGAAGAAAATAGAGATGTGG 

GFPsense AAGGTGAGCAAGGGCGAGGAGCTG 

GFPantisense TTACTTGTACAGCTCGTCCATGCC 

GAL1s TGACATGTCGGATGGCTTGC 

GAL2as GGAGCCTGTTAACGTTAGAG 

GAL3s GGTCTGTCTACTCTTGGGAG 

GAL4as CTCGAAACCTCCTCAATCTC 

GAL5s CAAACTCAAAATCGAATGCTGAG 

GAL6as CATACCTCTTCCAGTACTTG 

GAL7s GTAGCAACGGTCCGAACCTC 

GAL8as CACAGTTGAAGTGAACTTGC 

ProtBPs AGATCTGGCCGGCCGGTACCACTTTCGACCATATAAAG 

ProtBPas AGATCTCAACTAATGTTTAAAAAAACCGACTGCCCG 

pW8.TS1upstream CAAAGCCACATACACTTTTCGCTGC 

pW8.TS1downstream TATGAGGTTTGGCTTTCTGGATCATAG 

 

DNA Ligation Reactions 
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Ligation reactions were generally performed using 5μL of DNA PCR product, 1.5μL 10X 

T4 DNA Ligase buffer, 1μL T4 DNA Ligase, 1μL of plasmid vector, and 6.5μL of 

sterilized, distilled water for a total volume of 15μL. Ligations were incubated overnight 

at 14°C.  

 

Restriction Enzyme Digests 

Restriction enzyme digests were usually performed with the following volumes and 

reagents: 5μL DNA of interest, 2μL of appropriate 10X buffer, 1μL of appropriate 

restriction enzyme, and 12μL sterile, distilled water. Digestion time was usually 1 hour at 

37°C, but was occasionally extended when needed. Digest results were confirmed using 

gel electrophoresis.  

 

Transformation of E. coli using electroporation 

LB + Ampicillin plates were placed into an incubator at 37°C to warm up. 

Electroporation cuvettes were pre-cooled on ice and DH5α electrocompetent E. coli cells 

were removed from the -80°C freezer and placed on ice to thaw. 1μL of sample DNA 

was added to each tube of electrocompetent cells and gently mixed by pipetting. 300μL 

of sterile LB was pipetted into a 14mL sterile tube. Cells with added DNA were 

transferred into an electroporation cuvette and the cuvette was placed into the 

electroporator with voltage set to 1800V. After the electric pulse, 300μL of LB was 

added to the cuvette and mixed well. The cells were transferred to the 14mL tube and 

incubated at 37°C for 45 minutes to an hour. The cells were then transferred to a sterile 

glass tube. 15μL of ampicillin stock (10mg/mL), X-gal (50μL of 2% solution) and IPTG 
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(10μL stock) was added. Roughly 3mL of melted top agarose was then added, mixed, and 

then poured onto the pre-warmed agarose plate. After the agarose had hardened, the plate 

was inverted and placed in the 37°C incubator to grow overnight.  

 

Plasmid Miniprep 

1.5mL of terrific broth (TB) with Ampicillin (50μg/mL) was inoculated with bacteria 

containing the plasmid of interest in a 14mL sterile tube. Culture was grown overnight in 

shaker at 37°C. Culture was transferred into 1.5mL Eppendorf tube and spun in a 

microfuge for 3 minutes at 13,000 RPM. Supernatant was poured off and 200μL of 

resuspension buffer was added. The pipette tip was used to break up the pellet and 

resuspend cells. 200μL of lysis buffer was added, mixed by inverting, and let sit for about 

5 minutes. 200μL of neutralizing buffer was added and mixed by inversion, then put on 

ice for 10 minutes. Next, the solution was spun in a microfuge for 7 minutes at 13,000 

RPM. The supernatant was transferred to a new 1.5mL Eppendorf tube. 450μL of 

isopropanol was added and let sit on ice for 10 minutes. The tube was centrifuged for 10 

minutes at 13,000 RPM. A small, white pellet was visible. Isopropanol was poured off 

and 500μL of 70% ethanol was added. Sample was spun briefly and the ethanol was 

poured off. The excess ethanol was blotted off with a Kimwipe. The pellet was vacuum-

dried until all ethanol was evaporated, about 10 minutes. The DNA pellet was 

resuspended in 100μL TE and incubated at 37°C for 15 minutes. DNA was checked by 

restriction enzyme digest.  

 

Plasmid Midiprep 
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Midipreps were done using Qiagen CompactPrep Plasmid Kits (cat # 12843 and 12863). 

The protocol for high-copy plasmid midiprep, included with the kit, was followed for 

experiments.  

 

Microinjections 

DNA Preparation 

15μg of purified plasmid was mixed with 5μg of helper plasmid, Δ2-3 wc. The mixture 

was ethanol precipitated using 1/10 volume 3M NaOAC and two times 100% ethanol. 

The sample was centrifuged for 30 minutes at 13,000 RPM, and then washed with 70% 

ethanol. The pellet was resuspended in 50μL of injection buffer (5mM KCl, 0.1mM 

NaPO4 buffer pH 7.5).  

Embryo Collection 

Embryos from w1118 stock flies were collected on apple agar plates (100mL apple juice, 

100mL sterile, distilled water, 6g agar, 2mL glacial acetic acid, 2mL methyl-P-

hydroxybenzoate in ethanol) smeared with yeast extract mixed with water. Flies were 

allowed to lie for 30 minutes before changing apple agar plates. Embryos were 

transferred to a microscope slide with a sliver of double-sided scotch tape (tape was 

moistened before transferring embryos). Roughly 12 embryos fit per slide. The embryos 

were oriented so the posterior end was hanging just off the tape using a moist, fine tip 

brush; if the chorion ruptured, or the embryo ruptured, it was discarded.  

Injections 

5μL of DNA mixture was placed into 0.5mL Eppendorf tube with 4μL red dye. A pulled 

glass needle was loaded by backfilling the needle. The loaded needle was connected to 
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plastic tubing connected to a 10mL syringe; to seal the needle the junction was wrapped 

in parafilm. The slide with embryos was placed on the microscope stage. The needle tip 

was aligned with the center of an embryo, and then pierced the embryo. The needle was 

pulled back as far as possible without leaving the embryo, and then the DNA was 

injected. A good injection did not rupture the embryo, and the DNA was visible inside 

the embryo. This process was repeated for each embryo. The tape slice was removed and 

placed in a food vial – flies that developed from these embryos were considered G0 flies. 

Adult G0 flies were crossed with wild-type flies. G1 flies were screened for green-eyed 

transformants.  

 

Dissections 

Flies were dissected in PBS with fine tip forceps. Testes were fixed in 4% formaldehyde 

in PBS in depressive slides. Fixed testes were rinsed 3 times for 10 minutes in PBST 

(0.1% Tween). Testes were placed on microscope slide with a coverslip on top. Edges of 

coverslip were sealed with rubber cement. Testes were viewed under fluorescent 

microscope.  

 

X-Gal Staining 

Flies were dissected in PBS, and then fixed in 3% formaldehyde in PBS for 20 minutes. 

The tissues were rinsed three times with staining buffer (10mM NaH2PO4/Na2HPO4 pH 

7.2, 1mM MgCl2, 150mM NaCl, 5mM K4[FeII(CN)6], and 5mM K3[FeIII(CN)6]), and then 

incubated for 10 minutes at room temperature in staining buffer. The staining buffer was 

removed and replaced with 250μL of staining buffer containing 20μL of 1% X-gal in 
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dimethylformaldehyde. The depression slide is covered with a coverslip to prevent 

evaporation and it is placed in a moist chamber. Tissues were incubated at 37°C in the 

solution overnight, and then washed in PBS plus 1mM EDTA to stop the reaction. 

 

RESULTS 

 

 The goal of this project was to create novel GAL4 “driver” constructs that could 

be used to target expression of various genes of interest (GOI) in cells undergoing 

spermatogenesis. This would allow researchers to assess what effects ectopic expression 

(or overexpression) of a specific GOI has on sperm development or function. These 

GAL4 drivers could also be used to drive targeted expression of hairpin RNA’s to trigger 

RNA-interference and thereby “knockdown” expression of the GOI’s to assess their role 

during spermatogenesis. These constructs will provide a useful genetic tool for dissecting 

the genetic control of spermatogenesis and further our understanding of this important 

developmental pathway. As a control, we also sought to construct a constitutive GAL4 

driver that would direct expression of any GOI not only in the male germline but also in 

somatic cells throughout the fly. 

 The overall strategy for these experiments was straightforward: use PCR to 

amplify and clone a cassette containing upstream regulatory sequences, i.e., promoter 

region from known genes that are expressed in a testis-specific manner (or constitutively 

in the case of the control), and clone that fragment upstream of the coding region of 

GAL4.  This construct could then be subcloned into a transformation vector that would 

allow us to introduce this GAL4 driver into the D. melanogaster genome using germline 
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transformation methods.  Once transgenic flies are created, the chromosome linkage of 

the insertions could be genetically mapped using segregation analysis, and homozygous 

stocks established.  Finally, the GAL4 driver lines could be tested by crossing them to 

existing UAS-reporter lines such as UAS-GFP or UAS-lacZ to examine whether or not 

they effectively drive expression of the reporter in the expected testis-specific manner. 

 

Creation of the pBS/GAL4 plasmid 

 For all of the constructs, the first step was to create a plasmid containing the 

GAL4 coding region flanked by convenient restriction enzyme cutting sites that would 

allow us to first insert the promoter cassette upstream of GAL4 and then cut out the 

Promoter-GAL4 fusion gene fragment for subcloning into a unique cloning site of a 

transformation vector. 

 The starting point for this step was an existing plasmid called pBS/Pros25-

Gal4#11, which had a fragment of the Pros25 proteasome subunit gene (also called 

Prosa2) upstream of the GAL4 coding region (J. Belote, unpublished). This 0.6 kb 

Pros25 fragment could be removed by digestion with BglII, followed by dilution and 

ligation to yield a plasmid that retained the GAL4 sequences but was now missing Pros25 

DNA.  

 The pBS/Pros25-GAL4#11 plasmid was digested with BglII to release the 0.6 kb 

Pros25 fragment and the digestion confirmed by gel electrophoresis. The digested DNA 

sample was then diluted 1/100 with TE and ligated to obtain the pBS/GAL4 plasmid with 

a single BglII restriction site, and missing the Pros25 fragment. The ligation mixture was 

transformed into electrocompetent cells and plated on LB/Amp plates. A negative control 
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using no ligase in a separate reaction was also plated to confirm that the original 

digestion was effective. Ten colonies from the ligation plate were picked and grown 

overnight in TB/Amp and plasmid DNA isolated by miniprep. DNA was digested using 

BglII and electrophoresed to see of any of the ten clones were correct. Of the ten, eight 

showed the right digestion pattern of a single band at 6.1 kb. One of these, 

pBS/GAL4#10, was chosen for future experiments (Figure 4). 

Construction of the ProtamineB-GAL4 Driver 

 Because the ProtamineB gene is highly expressed during the late stages of sperm 

development, we sought to use that gene’s promoter to construct a GAL4 driver that 

would target spermatogenic expression. We first used PCR to amplify a 1.3 kb fragment 

that contained the upstream regulatory region and the transcription start site (Manier, et 

al., 2010), and then ligated the PCR product into the cloning vector pJET1.2 (Figure 5). 

The PCR primers, ProtBPs and ProtBPas, were designed to include BglII sites to allow 

subcloning into the BglII site upstream of the GAL4 coding region of pBS/GAL4#10, and 

a 5’ FseI site so that the ProtBp-GAL4 fragment could be subsequently cloned into the 

transformation vector pBac3xP3-EGFPaf. High fidelity polymerase was used in this PCR 

reaction, and the result was confirmed using gel electrophoresis. Colonies from the 

ligation plate were picked and grown overnight in TB/Amp and plasmid DNA was 

purified by miniprep. DNA was digested using BglII to confirm plasmid with two bands, 

2.9 kb and 1.3 kb. This plasmid was named pJET2.1/ProtBp1.3. 

The next step was the subcloning of the 1.3 kb BglII fragment of 

pJET2.1/ProtBp1.3 into the BglII site of pBS/GAL#10.  To accomplish this, the 

pJET2.1/ProtBp1.3 plasmid was double digested with BglII, to release the 1.3 kb 
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fragment containing the ProtamineB promoter, and ScaI, to cut the pJET2.1 vector into 

two pieces to prevent it from simply religating into the vector without an insert. The 

pBS/GAL#10 plasmid was also cut with BglII, to open it up so that the ProtBp fragment 

could be inserted, and treated with Shrimp Alkaline Phosphatase (SAP) to prevent it from 

simply religating back together without any insert.  In this experiment, the 1.3 kb. BglII 

fragment could insert in either orientation and so colonies were screened by PCR for 

those that had the insert in the proper orientation.  For this, we used primers ProtBPsense 

and GAL2as.  Because our initial screening of dozens of colonies failed to identify a 

clone with the insert we changed our approach to allow us to efficiently screen hundreds 

of colonies. In this approach we picked several hundred colonies and created Master 

Plates with a numbered grid of colonies for testing. These colonies were picked and 

pooled in groups of ten or more for growing up in TB/Amp. Plasmid DNA was then 

extracted from each pooled culture and used as template for PCR. Pooled samples that 

gave the correct size PCR product were identified and the corresponding colonies from 

the Master Plate were then individually grown up and tested by PCR to identify the 

correct clone. The DNA was also checked by restriction enzyme analysis to confirm its 

correct structure. In this way, clone pBS/ProtBp-GAL was identified (Figure 6). 

 The final step of this cloning procedure was to cut out the 4.5 kb ProtBp-GAL 

fusion gene fragment from pBS/ProtBp-GAL using FseI and ligate that into the unique 

FseI cloning site of the transformation vector pBac3xP3-EGFPaf (Horn and Wimmer, 

2000). Again, we used the Master Plate/pooled colonies approach to screen hundreds of 

colonies, using the PCR primers GFPsense and ProtBpas, to identify positive colonies. 

The positive candidate clone was then checked by additional PCR reactions using primer 
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pairs GFPs and GFPas, ProtBpsense and ProtBpantisense, and GAL1s and GAL2as, as 

well as restriction digest analysis. The clone pBac3xP3EGFP/ProtBp-GAL was 

confirmed to be correct and was used for subsequent germline transformation 

experiments (Figure 7). 

Creation of Transgenic Flies Carrying the ProtB-GAL4 Driver 

Next step was to carry out the germline transformation to introduce the ProtBp-

GAL construct into the genome of D. melanogaster. The transformation vector, 

pBacEGFPaf, carries sequences from the piggyback transposon that causes random 

insertion into the genome catalyzed by the piggyback transposase enzyme. The 

pBac3xP3EGFP/ProtBp-GAL plasmid DNA was co-injected with another helper 

plasmid, hspΔSst, which carries the piggyback transposase gene. Pre-blastoderm embryos 

from w1118 white-eyed stock were injected with the DNA mixture. Surviving larvae were 

grown into G0 adults. The G0 males and females were crossed with w1118 mates and the 

G1 offspring were screened for the presence of the pBac3x3P-EGFP/ProtBp-GAL 

transgene detectable by fluorescent green-eyes (resulting from the eye-specific 3x3P-

EGFP marker). These flies were individually crossed to w1118 mates, and subsequently 

made homozygous to establish stable stocks. 

Approximately 2,000 embryos were injected resulting in about 150 surviving G0 

adults. Among the G1 progeny five transformants were identified: 1A, 6A, 6B, 10A, and 

10B. The chromosomal linkage of these transgenes was determined by segregation 

analysis. Transgenes 6A and 6B were determined to be X-linked, since green-eyed males 

when crossed with white-eyed females produced all green daughters and all white-eyed 
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sons (Figure 8). The other transgenes were found to be autosomally linked since these 

crosses yielded both green-eyed and white-eyed sons and daughters. 

The chromosomal linkage of these autosomal transgenes (1A, 10A, and 10B) 

were determined by first crossing them to a double mutant strain, w1118; CyO/+; TM3, 

Sb/TM6B, Tb. This strain displays two phenotypes, curly wings and stubble hairs, when 

crossed with the transgenic fly the trait restored indicates the chromosome that the 

transgene is located on. The w1118/Y; CyO/*; TM3, Sb/* males were collected and crossed 

to w1118 females. In all three cases the transgene was seen to be linked to chromosome 2 

since all green-eyed offspring were straight winged (did not carry the CyO balancer) 

while all white-eyed offspring were curly winged (CyO) (Figure 9). 

Testing the ProtBp-GAL Driver for Testis-specific Expression 

 The next step of this project was to test these ProtBp-GAL4 drivers to see if they 

could drive expression of a reporter such as Green Fluorescent Protein (GFP) in the 

expected testis-specific manner. The first approach was to make use of an existing UAS-

GFP reporter line that was available from the Bloomington Stock Center. This UAS 

reporter, called P{w+, UAS-GFP.nls} (stock #4776) has the coding region of GFP fused 

to a nuclear localization signal so that the expressed GFP protein is concentrated into the 

nucleus for easier visualization. Each of the five ProtBp-GAL4 driver lines was crossed 

to P{w+, UAS-GFP.nls} and the resulting F1 hybrids were examined for testis-specific 

GFP expression. Males were aged for three days, and then testes were dissected out in 

PBS, fixed in 4% formaldehyde, washed and mounted in 10% glycerol. They were then 

examined under the fluorescent microscope for GFP signal. In all cases, no green 

fluorescence was detected.  As a positive control, we also crossed the P{w+, UAS-
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GFP.nls} reporter line to a constitutively expressed GAL4 (e.g., tubulin-GAL4, 

Bloomington Stock #5138). In this case, the F1 flies showed broad GFP expression in 

most if not all tissues examined. 

 Because of these negative results, we sought to test other reporters that might be 

more sensitive to detection of low levels of GAL4 expression. Two additional GFP 

reporters were identified from the literature and stocks obtained from the Bloomington 

Stock Center (Pfeiffer, et al., 2010).  One of these is designated P{10xUAS, mCD8-

GFP}att2 (stock #32184).  It has two features that make it potentially more sensitive than 

the P{w+, UAS-GFP.nls} reporter. First, it has 10 copies of the UAS sequence that can 

bind GAL4 and activate transcription of the GFP reporter gene. Second, the GFP coding 

region is tagged with the mouse mCD8 marker that will localize the GFP to the cell 

surface where it might be more easily detected. The second reporter stock is P{10xUAS-

IVS-myr-GFP}att2 (stock #32197). It also has 10 copies of the UAS sequence, and it also 

has sequences corresponding to an intron (IVS) that is thought to assist transport of the 

mRNA out of the nucleus leading to more efficient translation and higher levels of the 

GFP protein (Pfeiffer, et al., 2010). In this reporter, the GFP is also tagged with a 

sequence from the nuclear myristoyl protein that targets it to the nucleus. We crossed five 

ProtBp-GAL4 driver lines to both of these improved reporters and examined testes of the 

F1 hybrids for GFP signal but, again, there was no detectable GFP fluorescence (not 

shown). 

 Given the negative results with these GFP reporters, we decided to use a different 

reporter that is based on a histochemical staining method instead of fluorescence. That is, 

we obtained the P{UAS-lacZ, Exel} reporter from Bloomington (stock #8529) which 
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expresses the E. coli lacZ gene, encoding beta-galactosidase, under the control of the 

UAS regulatory sequence. Tissues expressing this enzyme can be stained with the 

chromogenic substrate X-Gal (5-Bromo-4-Chloro-3-Indolyl β-D-Galactopyranoside) that 

turns blue in the presence of beta-galactosidase. We crossed our five driver lines with 

P{UAS-lacZ, Exel} mates and collected the F1 males. Testes and other tissues were 

dissected from adult males, fixed and stained with X-Gal overnight. These were then 

examined for blue stain using light microscopy.  While there was some blue staining in 

the gut, there was no testis staining. Moreover, the gut staining was also observed in the 

negative controls (i.e., males that did not carry the ProtBp-GAL4 driver constructs).  

 

Table 2: Injected Fly Data 

Flies Embryos 

Injected 

Surviving G0 Adults G1 Transformants Chromosomal 

Linkage 

~2,000 150 1A Chromosome 2 

-------------------------- -------------------------- 6A X Chromosome 

-------------------------- -------------------------- 6B X Chromosome 

-------------------------- -------------------------- 10A Chromosome 2 

-------------------------- -------------------------- 10B Chromosome 2 

 

 

Construction of the Ubiquitin-GAL4 Driver 

 As a positive control an Ubiquitin-GAL4 driver was developed using a similar 

strategy as the ProtamineB-GAL4 driver. Ubiquitin is a protein expressed in virtually 
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every tissue of eukaryotic organisms. It is involved in controlled destruction of proteins. 

Since Ubiquitin is expressed in all tissues it is ideal for use as a positive control.  

 The first step was to isolate the Ubiquitin upstream region. For this, we chose to 

use the promoter from the polyubiquitin gene, Ubi-63E (Lee, et al, 1988), which is 

constitutively expressed throughout development. An existing plasmid, pBacUbn1s-GFP 

(ref), was used as a starting point. The Ubiquitin upstream region was amplified via PCR 

with the primers Ubprom3B and Ubprom5BF (Fig 10). Next the Ubiquitin upstream 

region was ligated into the blunted pJET2.1-cloning vector. The PCR primers, 

Ubprom3B and, Ubprom5BF were designed to include BglII sites to allow subcloning 

into the BglII site upstream of the GAL4 coding region of pBS/GAL4#10, and a 5’ FseI 

site so that the Ubprom-GAL4 fragment could be subsequently cloned into the 

transformation vector pBac3xP3-EGFPaf. High fidelity polymerase was used in this PCR 

reaction, and the result was confirmed using gel electrophoresis. Colonies from ligation 

plate were picked and grown overnight in TB/Amp and plasmid DNA was purified by 

miniprep. DNA was digested using BglII to confirm plasmid size with two bands 3.0 Kb 

and 2.0 Kb. This plasmid was referred to as pJET2.1/Ubprom2.0.  

Next, the 2.0 Kb BglII fragment of pJET2.1/Ubprom2.0 was cloned into the BglII 

site of the pBS/GAL#10.  To accomplish this, the pJET2.1/Ubprom2.0 plasmid was 

double digested with BglII, to release the 2.0 kb fragment containing the Ubiquitin 

promoter, and PstI, to cut the pJET2.1 vector into two pieces to prevent it from simply 

religating into the vector without an insert. The pBS/GAL#10 plasmid was also cut with 

BglII, to open it up so that the Ubprom fragment could be inserted, and treated with 

Shrimp Alkaline Phosphatase (SAP) to prevent it from simply religating back together 
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without any insert.  In this experiment, the 2.0 kb BglII fragment could insert in either 

orientation and so colonies were screened by PCR for those that had the insert in the 

proper orientation. For this, we used primers Ubprom5BF and GAL2as. This time we 

skipped right to screening hundreds of colonies with the master plate and PCR method 

described previously. Colonies that were positively identified by PCR were also checked 

with several restriction enzyme digests. Using this method clone pBS/Ubprom-GAL4#3 

was identified (Figure 11). 

Lastly, the 5.2 kb Ubprom-GAL fusion gene fragment from pBS/Ubprom-

GAL4#3 fragment was cut out using FseI and ligating that into the unique FseI cloning 

site of the transformation vector pBac3xP3-EGFPaf (Horn and Wimmer, 2000). Again, 

we used the Master Plate/pooled colonies approach to screen hundreds of colonies, using 

the PCR primers GFPsense and Ubprom3B, to identify positive colonies. The positive 

candidate clone was then checked by additional PCR reactions using primer pairs GFPs 

and GFPas, Ubprom3B and Ubprom5BF, and GAL1s and GAL2as, as well as restriction 

digest analysis. The clone pBac3xP3EGFP/Ubprom-GAL4 was confirmed to be correct 

and was used for subsequent germline transformation experiments (Figure 12). 

Germline Transformation of the Ubprom-GAL4 Construct 

 We attempted to create transgenic lines containing the constitutive Ubiquitin-

GAL4 driver but have not been successful, to date.  This far, we have injected 

approximately 1,500 w1118 embryos with pBac3xP3-EGFP/Ubprom-GAL4 plus the pBac-

hsp Sst helper plasmid, resulting in about 150 G0 surviving adults. Male and female G0 

flies were crossed in groups of about 10 pairs and several thousand G1 offspring were 



 

 

26 

scored for green fluorescent eyes, indicating successful transformation.  Unfortunately, 

no green-eyed flies were found.  

 

DISCUSSION 

 

 The purpose of this study was to develop a new genetic tool that could be used to 

better understand the genetic mechanisms controlling spermatogenesis in Drosophila. 

Specifically, we sought to create novel GAL4 lines that would drive expression of UAS-

controlled target constructs in the late stages of spermatogenesis. These GAL4 “drivers” 

could be used to either (1) overexpress specific genes of interest (by crossing them to 

UAS-GOI transgenic lines), or (2) knockdown expression of the GOI (by crossing them 

to UAS-GOI RNAi hairpin transgenic lines), in a sperm specific manner.  By examining 

the phenotypic effects of these manipulations on the functional role of the GOI in sperm 

development or function could be inferred.  For example, if knocking down expression of 

a candidate GOI results in abnormal sperm, it can be assumed that the GOI plays an 

important role in spermatogenesis, and the nature of the abnormality might provide clues 

as to what its specific role is. 

 The construct to test this system was created by inserting the ProtamineB 

promoter region upstream of the GAL4 coding region. The ProtamineB gene encodes a 

sperm-specific chromosomal protein that is highly expressed during the later stages of 

spermatogenesis. As spermiogenesis proceeds, histone-containing nucleosomes are 

removed and replaced by Protamine proteins which results in a more tightly condensed 

chromatin structure and a shutdown of most, if not all, transcriptional activity.  Because 
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of this highly specific spermatogenic expression pattern we chose to use the ProtamineB 

gene’s promoter region to create a sperm-specific GAL4 driver. 

 To create the construct the GAL4 coding region was subcloned into the 

appropriate vector from an existing plasmid, and 1.3 kb of the ProtamineB upstream 

region was amplified and inserted in front of GAL4. This ProtBpromoter-GAL4 fusion 

gene was then subcloned into a transformation vector that allowed for its introduction 

into the D. melanogaster genome.  Five ProtBpromoter-GAL4 transgenic lines were 

identified and the chromosomal linkage of the transgene integration in each line was 

determined by genetic mapping.  

 The five ProtBpromoter-GAL4 driver lines were crossed to UAS reporter strains 

to check for testes specific expression. Four different reporter strains were used. Initial 

tests involved crosses with a standard UAS-GFP reporter in which the GFP protein 

contained a nuclear localization signal and whose expression was controlled by one copy 

of the UAS upstream activation sequence. Unfortunately, there was no detectable 

expression of the GFP in testes of flies carrying this reporter and any of the five ProtB-

GAL4 drivers. To potentially increase the sensitivity of the system, we also tested two 

other GFP reporters. Both of these contained 10 copies of the UAS sequence that 

theoretically should increase the transcriptional response to the ProtB-GAL4 activator. 

One of these had the GFP tagged with a nuclear localization signal and the other had GFP 

tagged with a signal that localizes the protein to the cell surface. In spite of these 

improvements to the UAS reporter, there was still no detectable expression of the GFP 

reporter when crossed to the five ProtB-GAL4 driver lines. Finally, we tested a different 

UAS reporter that carried the E. coli lacZ coding region. Expression of this reporter could 
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be monitored by staining testes with the chromogenic substrate X-gal. It was thought that 

this might allow for more sensitive detection of GAL4 driven expression since the 

staining reaction could be extended over several hours and thus might detect lower levels 

of expression that can be detected by GFP fluorescence.  But, unfortunately, even with 

this reporter there was no indication that the ProtB-GAL4 drivers were effective at 

driving sperm-specific expression of the UAS target. 

 One explanation for these negative results is that the ProtBpromoter-GAL4 

transgenes were not being expressed for some reason. Although we never directly tested 

GAL4 expression in our lines, for example by immunostaining testes with anti-GAL4 

antibodies, we assume that GAL4 is being expressed because the same 1.3 kb 

ProtamineB upstream promoter region has been shown to drive robust expression of a 

GFP-tagged ProtamineB sequence in several transgenic lines (e.g., Manier, et al., 2010).  

It seems unlikely that this same sequence would fail to drive transcription of the GAL4 

coding sequence in our ProtBpromoter-GAL4 constructs.  Another possible reason why 

our driver construct is not effective would be if there was some type of chromosomal 

position effect that is silencing the transgene, which had been inserted into a region of the 

genome that is not compatible with high levels of testes-specific transcription. While this 

type of chromosomal position effect gene silencing is known to occur in Drosophila 

(Castronuevo and Martin, 2002), it is relatively uncommon. Moreover, because we have 

tested five independently derive transformed lines it is highly unlikely that all of them 

would exhibit this effect on expression.  Another explanation for our negative results 

would be that the ProtBpromoter-GAL4 driver is working fine, but that there is 

something wrong with the UAS reporter. However, we used four different UAS reporters, 
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containing different numbers of UAS sequences, different subcellular localization 

signals, and two different reporter proteins (i.e., GFP and β-galactosidase).  This rules out 

the possibility of a defective reporter line or detection method.  One likely explanation 

for the failure of the ProtB-promoter-GAL4 driver to activate detectable expression of the 

UAS-reporters is suggested by previous results with another testis-specific driver, beta-

Tubulin85D-GAL4 (Cooper-White, 2012). That is, they report the failure of this testis-

specific driver as possibly being related to the late spermatogenic expression of the driver 

relative to the shutdown of transcription that occurs as the histones are replaced by 

protamines and chromosomes condense.  This author suggests that there is probably 

insufficient time for the GAL4 protein to accumulate to levels that can adequately 

activate the UAS target gene transcription before all transcriptional activity ceases.  If 

this were the explanation, then one way around this would be to construct a driver that is 

expressed earlier in spermatogenesis, or ubiquitously, so that there is enough time for the 

GAL4 protein to accumulate and activate the UAS target. 

 It was for this reason that we created the Ubiquitin-GAL4 construct. The 

Ubiquitin upstream region was cloned in front of the GAL4 coding region. This fragment 

was then subcloned into the transformation vector and injected into eggs in the same 

manner as the Protamine B-GAL4 construct was. Unfortunately, despite injecting over 

one thousand flies, and screening thousands more, no green-eyed transformants have yet 

been found.   

 A future direction of this research is to use a gene driver that is expressed in an 

earlier stage of spermatogenesis than Protamine B. The genes controlling proteasome 

function are promising targets due to their expression in the spermatocyte stage, and 
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importance in cellular differentiation (Belote and Zhong, 2009). Studies of testis-specific 

proteasome genes have suggested that Prosα3T would be a good candidate for creating a 

testis-specific driver since its expression occurs at the primary spermatocyte stage, earlier 

than the time when ProtamineB is expressed (Ma, et al., 2002). The creation of a plasmid 

construct with GAL4 coding region downstream of the Prosα3T promoter region has 

been initiated, however this work is currently incomplete. Another approach is to use a 

gene driver that is constitutively expressed, such as ubiquitin. However, this may produce 

undesirable off target effects within the fly making this system ineffective.
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FIGURES 

 

  

Figure 1: Spermatogenesis (Taken from Fuller, 1998). Shows division and 

differentiation from stem cells to mature sperm cell
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Figure 2: UAS/GAL4 System Overview (Taken from Johnson, 2002). A 

representation of the set up of our experiment. GAL4 is cloned under the tissue specific 

genomic enhancer (Protamine B). Upon crossing with a UAS-Reporter fly (UAS-GFP) 

expression will be driven by the GAL4 protein in the offspring. 
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Figure 3: UAS-RNAi System Overview (Taken from Yamamoto-Hino and Goto, 

2013). A representation of how a UAS-RNAi expression system would be set up. A 

hairpin RNA can be created by putting a gene and its inverse sequence back to back. 

Upon transcription the complementary base pairs will bind and form double stranded 

RNA (dsRNA) which is then recognized by the RNAi pathway and degraded
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Figure 4: Creation of pBS/GAL4 plasmid. Digestion of the existing pBS/Pros25-GAL4 

plasmid with the restriction enzyme BglII yields the GAL4 coding region in the pBS 

plasmid upon dilution and relegation. Restriction sites are indicated by vertical lines.
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Figure 5: Amplification of ProtamineB upstream region via PCR and cloning into 

pJET2.1 plasmid vector. The ProtamineB upstream region was amplified by primers 

ProtBPs and ProtBPas (represented by block arrows). The amplified region was then 

cloned into the pJET2.1 plasmid. 
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Figure 6: Creation of pBS/ProtB-GAL4 plasmid. The pieces from Figures 4 and 5 

were combined into the pBS vector via ligation.
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Figure 7: Cloning ProtB-GAL4 fragment into 3xP3/EGFPaf transformation vector. 

The ProtB/GAL4 fragment was removed from the pBS vector via restriction enzyme 

digest with FseI and cloned into the fly transformation vector pB3xP3-EGFPaf.
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Figure 8: Sex linkage of transgenes 6A and 6B. Experimental determination of sex 

chromosome linkage of transgenes. * = inserted pBac3x3P-EGFP/Protbp-GAL4 

transgene.
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Figure 9: The 1A, 10A, and 10B transgene map to chromosome 2. Experimental 

determination of somatic chromosome linkage of transgenes. * = transgene insert in 1A, 

10A, and 10B. 
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Figure 10: Amplification of Ubiquitin Upstream Region. In similar fashion to the 

ProtamineB steps, the upstream region of the Ubiquitin gene was amplified via PCR with 

primers UbProm5BF and UbProm3B.
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Figure 11: Creation of pBS/Ubiquitin-GAL4 plasmid. The GAL4 plasmid from Figure 

4 was ligated with the amplified Ubiquitin region from Figure 8 to yield the pBS/UbP-

GAL4 plasmid.
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Figure 12: Cloning UbP-GAL4 fragment into 3xP3/EGFPaf transformation vector. 

The UbP/GAL4 fragment was removed via digestion with FseI and inserted into the fly 

transformation vector pB3xP3-EGFPaf.
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