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Abstract 

This dissertation comprises three papers on physician labor supply, food insecurity, and 

income inequality. My research broadly explores how public policies and government programs 

affect individual behavior and how effectively they alleviate inequality and poverty. 

Chapter 1 estimates the impact of a transitory reduction in hours during physicians’ early 

career on their long-term labor supply. I exploit the work-hour regulations that limit the 

maximum workweek by residents as the source of exogenous variation. The results show that 

exposure to the regulations significantly decreases practicing physicians’ labor supply by about 

four hours per week on average, with female physicians being more responsive to a given 

reduction in early career hours. Distributional results using a changes-in-changes model confirm 

that the regulations primarily affect the upper end of the work hours distribution. To reveal 

potential mechanisms of these effects, I find that the reform increases the probabilities of 

marriage and having a child, as well as the total number of children, for female physicians. In 

contrast, it does not have a significant impact on marriage and fertility outcomes for male 

physicians. These findings provide a better understanding of physicians’ hours of work in 

response to the reform over time and the role of gender with respect to labor supply behavior and 

family formation decisions. 

Chapter 2 studies the role of government programs in alleviating differential exposure to 

food insecurity. We provide a framework that conceptualizes how the Supplemental Nutrition 

Assistance Program (SNAP) could have differences in benefit levels across racial/ethnic groups. 

We decompose differences in SNAP benefit levels into three components: differences in 

eligibility, participation, and generosity. We then link the results to differences in food 

consumption to provide implications on food insecurity differentials. Our results reveal that 



 
 

SNAP has different pathways to reducing food insecurity for different populations. Among the 

three components, eligibility contributes the most to SNAP benefits for both blacks and 

Hispanics relative to whites. However, SNAP reduces differences in food consumption between 

blacks/Hispanics and whites by a modest amount, which is likely not enough to reduce the 

differences in the resource gaps between groups. We also provide an exploratory analysis of how 

changes to SNAP policy rules might affect differences in food insecurity across groups. Our 

results suggest that the automatic enrollment policy might be effective in ameliorating the 

disparities. 

Chapter 3 estimates the effects of trade liberalization on household income inequality and 

investigates whether trade liberalization or domestic reforms are the main influence factors of the 

rising inequality since 1980 in Taiwan, a middle-income open economy. We construct an 

empirical model by decomposing the sources of household disposable income in the quintile 

ratio. Using time-series data from 1980 to 2015 to estimate the long-run effect, we find that trade 

liberalization raises income inequality overall. When separating trade partners into OECD and 

non‐OECD countries, our results show that net exports to OECD countries increase inequality, 

whereas net exports to non-OECD countries insignificantly decrease inequality. Moreover, we 

provide evidence that domestic reforms, particularly technological progress in favor of skilled 

labor and industrial structural change, rather than trade liberalization, are the main driving forces 

of income inequality. 
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1.1 Introduction 

The recent expansion of the health care system and forecasts of physician shortage have 

made the issue of physician labor supply increasingly important. Over the last three decades, 

average hours worked by physicians have been falling in many developed countries, including 

the United States, Canada, and Australia, among others (Buske, 2004; Scott, 2006; Watson et al., 

2006; Crossley et al., 2009; Staiger et al., 2010). There has also been a dramatic change in the 

composition of the physician workforce, with the female share of medical students rising from 

around 25 percent in the 1970s to around 50 percent nowadays (Chen and Chevalier, 2012). 

Most research and policy debates have focused on physician supply at the extensive margin (the 

number of practicing physicians), whereas physician supply at the intensive margin (the amount 

of patient care hours or services provided by practicing physicians) has been understudied 

(Staiger et al., 2010). A better understanding of physicians’ hours of work decisions and gender 

differences is crucial for human resource planning purposes in the health care sector.  

An important determinant of individuals’ hours of work is their work experience in early 

career, but there is little evidence on its long-term consequences. Empirically, it is particularly 

difficult to identify sources of exogenous variation to test for causal effects of a transient change 

in labor supply. The work-hour regulations that limit the maximum hours worked by residents 

provide a plausibly exogenous shift in physicians’ early career hours. 

To become a practicing physician in the U.S., an individual must complete three to seven 

years of residency training after college and medical school, and then obtain medical licensure to 

practice medicine. Traditionally, long hours are a component of residency training, yet they may 

contribute to sleep deprivation which compromises patient safety. In order to reduce potential 

harm due to overwork of residents, the Accreditation Council for Graduate Medical Education 
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(ACGME) imposed regulations that restrict the average hours worked by residents to 80 hours 

per week and enforce standards for their duty hours in 2003. A large number of studies have 

examined the effects of the ACGME regulations on patients’ safety and health outcomes, as well 

as residents’ education and well-being (Philibert et al., 2013; Bolster and Rourke, 2015); yet the 

impacts on physicians’ labor market outcomes have not been thoroughly explored in the 

literature. To my knowledge, the only paper that uses the ACGME regulations as a natural 

experiment to estimate the effects of early career hours is Wasserman (2018), which focuses on 

changes in specialty choice across gender. 

This paper investigates whether the reform affects physicians’ hours of work after they 

complete residency and do not face the hours constraints anymore. Using monthly data from the 

1989-2017 Current Population Survey (CPS), my primary empirical strategy exploits the cohort-

time variation in exposure to the ACGME regulations. As a result of the reform, the mean 

resident hours per week decrease by 10.03 for males and 6.87 for females. Using a difference-in-

differences model with cohort and year fixed effects, the estimates suggest that exposure to the 

reform during residency significantly decreases mean hours worked after residency by about four 

hours per week, and the effects are not statistically different between male and female 

physicians. When taking the effects of the reform on resident hours by gender into account, a 

given reduction in hours during residency decreases post-residency hours significantly more for 

females than for males. 

Since the policy limits the maximum workweek by residents, it should primarily affect 

those who would have worked more than 80 hours per week during residency in the absence of 

the regulations. To account for this disproportionate impact at the upper end of the hours 

distribution, I use a changes-in-changes (CIC) approach proposed by Melly and Santangelo 
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(2015), which estimates unconditional treatment effects of the whole distribution in the presence 

of covariates. Overall, the CIC estimates provide further evidence of the negative effects of the 

reform on long-term labor supply and show that such negative effects become stronger when 

moving towards the upper tail of the distribution for both male and female physicians. The 

greater impact among those with the longest hours confirms that the reform primarily affects the 

upper end of the hours distribution. 

As well-documented in the literature related to physician labor supply, gender differences 

in hours of work may be attributable to child-rearing (e.g., Sasser, 2005; Wang and Sweetman, 

2013; Wasserman, 2018), which suggests a potential mechanism of the above long-term effects. 

To guide our understanding about the presence of this mechanism in this context, I further 

examine how the reform affects male and female physicians’ marriage and fertility decisions. 

The results show that the reform increases the probabilities of marriage and having a child, as 

well as the total number of children, for female physicians. In contrast, it has little impact on 

marriage and fertility outcomes for male physicians. These findings are consistent with previous 

studies and provide strong evidence on gender differences in family formation decisions in 

response to a policy that reduces time requirements during the prime childbearing years. 

A potential mechanism for the negative impact of the reform on male physicians’ long-

term labor supply is through human capital accumulation. Residency can be thought of as on-the-

job training to enhance physicians’ skills and productivity. If physicians invest more hours 

during residency, they may gain more skills and have higher returns to work after residency, 

which increases their subsequent hours of work. The literature finds that the ACGME reform 

reduces continuity of care and educational continuity for residents in surgical specialties, and 

these losses lead to negative consequences for residents’ professional development and 
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preparedness for practice (Feanny et al., 2005; Vidyarthi et al., 2006; McBurney et al., 2008; 

Nakayama et al., 2009; Philibert et al., 2013). Since surgical specialties have substantially more 

males than females, male physicians experience a greater reduction in human capital during 

residency. As a result, the reform decreases their return to work rates after residency, which 

causes them to work fewer hours later in life. The negative impact of the reform on long-term 

labor supply for male physicians may be explained by this potential mechanism. 

This paper has three main contributions to the existing literature. First, it exploits the 

work-hour regulations on residents to identify the effects of a reduction in early career hours on 

long-term labor supply. The findings aid our understanding of physicians’ hours of work in 

response to the reform over time. Second, this paper explores gender differences in labor supply 

behaviors, along with marriage and fertility decisions as potential mechanisms. With the 

composition of the physician workforce changing dramatically, especially the increasing 

participation of females, a better understanding of how males and females respond to policy 

changes can suggest ways to orient policies more effectively. Third, this paper contributes to the 

research on dynamics of labor supply, for which it is often difficult to find a plausible 

identification strategy. This analysis provides important implications for broader economic 

theory with respect to intertemporal labor supply.  

The rest of the paper is structured as follows. Section 2 provides background on the 

physician work-hour regulations in the United States. Section 3 discusses the conceptual 

framework. Section 4 describes the data and shows the effectiveness of the regulations. Section 5 

presents the empirical strategy, the identification, and the mean and distributional estimated 

results. Section 6 addresses potential mechanisms of the effects. Section 7 concludes. 
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1.2 Physician Work-Hour Regulations in the United States 

Medical residency training traditionally requires lengthy work hours, but there was no 

regulation limiting the number of hours that could be assigned to a resident physician in the 

United States until the late 1980s. The public and the medical education establishment started to 

be aware of and to investigate the consequences of overwork by residents after the death of an 

18-year-old college freshman, Libby Zion, in 1984. As a result of the investigation, New York 

State adopted the recommendations by the committee that evaluated the training and supervision 

of physicians in the state, and enacted the Libby Zion Law in 1989. The law forbade residents in 

New York State hospitals to work more than 80 hours per week or 24 consecutive hours. It was 

the first regulation in the nation that restricted hours worked by residents. However, most 

residency programs in New York were found in violation of the law ten years after its 

implementation (Wasserman, 2018), and thus the law was likely not adequately enforced. 

In June 2002, the Accreditation Council for Graduate Medical Education (ACGME) 

granted preliminary approval to similar regulations for all residents working in accredited 

medical training institutions in the U.S.,1 and the regulations were implemented in July 2003 

(Philibert et al., 2002). With the aim to improve patient safety by reducing fatigue-related 

medical errors made by residents, the ACGME’s standards consist of (1) a maximum of 80 hours 

worked per week, averaged over one month; (2) a 24-hour limit on continuous duty with an 

additional six hours allowed for patient transfer, administration, and didactic lectures; (3) one 

day in a week free of all medically related duties; (4) a limit on call frequency; (5) a 10-hour rest 

period between duty periods or work shifts; (6) a maximum workweek of 88 hours allowed for 

                                                           
1 All of the residency programs for doctors with a Doctor of Medicine (MD) degree and a majority of the programs 

for doctors with a Doctor of Osteopathic Medicine (DO) degree in the United States are ACGME-accredited. 

Following the proposal of the ACGME reform, the American Osteopathic Association (AOA) also adopted similar 

work-hour requirements. 
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programs in some specialties with a sound educational rationale and the approval of the 

Residency Review Committee. In order to comply with the policy, many residency programs 

changed rotation schedules, decreased call frequency, and replaced resident services with care by 

physician extenders (Philibert et al., 2009). With monitoring through program audits and 

periodic surveying of residents, penalties for non-compliance with the regulations included 

residency program probation and potential loss of accreditation.2  

In 2008, the ACGME proposed minor revisions to the duty hour standards in response to 

the recommendations of the Institute of Medicine (IOM). The changes were made to a 16-hour 

limit on continuous duty for first-year residents. Residents in their second year and beyond 

followed the 24-hour limit with a reduction in additional hours for hand-offs from six hours to 

four hours. No changes were made to the 80-hour limit and call frequency. These new standards 

went into effect in July 2011. Though these standards were designed to improve patient safety by 

reducing residents’ fatigue, they had also led to unintended negative consequences on residents’ 

attainment of clinical skills. In March 2017, the ACGME further announced a policy change 

which raised the maximum number of consecutive hours from 16 to 24 hours for first-year 

residents, and this new standard went into effect in July 2017 (Asch et al., 2017). 

There is an extensive literature on the effects of the ACGME regulations on residents’ 

well-being and learning, as well as patients’ safety and health outcomes. Most of the literature 

compares the outcomes before and after the reform in 2003 and uses observational cohort 

analysis from a single site, multiple sites, or national databases. Overall, the findings suggest that 

residents’ well-being is improved between the pre- and post-2003 time periods. Many studies 

                                                           
2 According to the investigation one year after the reform, five percent of the 2,235 programs that ACGME reviewed 

were found in violation of one of the standards. From the survey of 25,176 residents, 3.3 percent reported working 

more than 80 hours per week during the past four weeks. 
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show that residents’ fatigue has decreased since the implementation of the reform (Gopal et al., 

2005; Barrack et al., 2006; Hutter et al., 2006; Martini et al., 2006; Landrigan et al., 2008; 

Philibert et al., 2013), and some studies find that physicians are having more children, spending 

more time to attend family events, and leading less stressful lives since 2003 (Karamanoukian et 

al., 2006; Jones and Jones, 2007). However, the effects on residents’ educational outcomes, 

patients’ safety, and their health outcomes vary across studies, and some of these effects are 

different between medical and surgical specialties.3 

Despite numerous studies on the reform, little is known about its effects on physicians’ 

employment patterns in the long run. To my knowledge, the only paper directly related to labor 

supply effects of the ACGME regulations is Wasserman (2018), which focuses on changes in 

residents’ specialty choice. She finds that female physicians are more likely to enter a specialty 

when the specialty reduces its time requirements due to the reform, but there is little change in 

specialty entry response among male physicians. While the regulations reduce physicians’ early 

career hours, the question of interest is whether their long-term labor supply decisions are 

affected or not. The following analysis estimates the effects of the reform on physicians’ post-

residency hours of work, as a measure of long-term labor supply, and addresses potential 

mechanisms of the effects. 

 

1.3 Conceptual Framework 

To link this short-term policy to longer-term impact on labor supply, there are several 

distinct features of physician career paths that need to be taken into account. A physician needs 

to complete three to seven years of residency training after college and medical school, and then 

                                                           
3 See Philibert et al. (2013) and Bolster and Rourke (2015) for a systematic literature review. 
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obtain medical licensure to practice medicine. Residency programs are typically run by hospitals 

and have a limited number of residency slots each year. Residents are paid on an annual basis, 

which is largely funded by the government, and there is little difference in resident salary across 

specialties. Since residents are forced to work a set of hours, their labor supply can be considered 

as perfectly inelastic within specialties. Therefore, physicians are likely to have less leisure time 

during residency because they are constrained to work more hours than they would otherwise 

choose. Despite the number of hours worked during residency, their average hours typically 

decrease after completing the training. The wage increases dramatically after residency as most 

practicing physicians make considerably more than resident salary, and post-residency salary 

varies largely across specialties. 

Since residents’ hours of work are constrained by institutional rules regulating labor time 

and effort provision, the intertemporal substitution hypothesis with time separable utility does 

not fit in this context. Alternatively, a theoretical hypothesis that can be used to explain the long-

term labor supply effect is the neoclassical model with non-separable utility (Fehr and Goette, 

2007). Holding the wage constant, this model predicts that an increase in a worker’s effort in the 

previous period causes a higher disutility of labor in the following period, which decreases the 

worker’s labor supply. Since the ACGME reform causes an anticipated transitory reduction in 

physicians’ labor supply in early career without changing their wage and lifetime wealth, it 

decreases their disutility of effort during residency. Subsequently, it will increase their labor 

supply after residency, based on the prediction of this model. 

An opposite theoretical hypothesis is the “persistence hypothesis” which states that 

individuals’ work experience in early career is a major determinant of subsequent labor supply 

due to human capital accumulation, change in family commitments, and taste for work, among 
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others (Clark and Summers, 1982). On human capital grounds, those who work more tend to 

accumulate more human capital, which in turn increases the return to work relative to leisure in 

the future (Heckman and Willis, 1979; Freeman, 1980; Clark and Summers, 1982). Those with a 

lack of work experience, on the other hand, may develop family commitments which reduce the 

return to work relative to staying outside of the labor force (e.g., Mincer and Polachek, 1974; 

Polachek, 1975; Becker, 1985, Gronau, 1988; Angrist and Evans, 1998; Sasser, 2005; Goldin, 

2014; Kleven et al., 2018). In addition, individuals’ taste for work could be affected by prior 

work experience according to habit formation effects (Clark and Summers, 1982; Clark, 1999).  

This hypothesis suggests that a short-term reduction in physicians’ early career hours 

tends to persist after residency. Intuitively, human capital accumulated through residency 

experience affects labor supply in the future. If physicians invest more hours during residency, 

they may gain more skills and have higher returns to work after residency, which increases their 

subsequent hours of work. The literature finds that the work-hour limits reduce continuity of care 

and educational continuity for residents (Feanny et al., 2005; Vidyarthi et al., 2006; McBurney et 

al., 2008; Nakayama et al., 2009), and these losses lead to negative consequences for residents’ 

professional development and preparedness for practice, especially in surgical specialties 

(Philibert et al., 2013). Since there are substantially more male physicians in surgical specialties, 

they experience the greatest reduction in resident hours as well as human capital accumulation. 

As a result, the reform decreases their return to work rates after residency, which causes them to 

work fewer hours later in life. 

Other potential mechanisms pertain to family formation decisions. Since the work-hour 

regulations affect residency training, which occurs during the prime childbearing years, 

physicians would plan the timing of marriage and fertility relative to their residency. 
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Theoretically, the regulations alter the labor market conditions for residents and thus change their 

opportunity cost of time factored into the fertility transition. Previous research has shown that the 

reform results in physicians having more children, spending more time to attend family events, 

and leading less stressful lives (Karamanoukian et al., 2006; Jones and Jones, 2007). 

Consequently, these changes in family commitments may decrease their labor-force attachment 

and keep them from developing further their careers. 

The dynamic impact of children on labor market outcomes also greatly depends on 

spousal income (Goldin, 2014). In two-income households, if their partner is doing well 

financially, they may feel more comfortable pulling back on their hours. As such, physicians 

with higher-earnings spouses have a lower opportunity cost of career interruptions (Sarma et al., 

2011). According to the AMA Masterfile, nearly 40 percent of physicians marry another 

physician or health care professional. In addition, most of the female physicians are married to 

male physicians, while the reverse is not true (Sasser, 2005). With higher-earnings physician 

spouses, who also work long hours, new physician mothers face more binding constraints on 

hours and a lower opportunity cost of career interruptions. Therefore, they are more likely to 

reduce their post-residency hours than male physicians, who are less likely to have physician 

spouses. In Section 6, I provide empirical evidence on the mechanisms pertaining to marriage 

and fertility across gender. 

Overall, the neoclassical model with non-separable utility predicts that the ACGME 

regulations decrease physicians’ disutility of work during residency and thus increase their labor 

supply in the long run. In contrast, the persistence hypothesis suggests that the regulations reduce 

resident hours and at the same time lower the opportunity cost of work time, especially for those 

who would have worked more than the work-hour limits in the absence of the reform. This could 
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lead to less human capital, more family commitments, and habit formation effects for those 

exposed to the reform, and thus results in a reduction in hours worked over time. From the above 

discussion, the potential impact of the ACGME regulations on long-term labor supply is 

ambiguous due to the contradicting effects between these two hypotheses; therefore, empirical 

evidence is needed to better understand physicians’ employment patterns. As it will be presented 

in Section 5, my empirical results are consistent with the persistence hypothesis and suggest that 

the short-run reduction in labor supplied persists even when physicians are not bound by the 

work-hour limits. 

 

1.4 Data and the Effectiveness of the Reform 

1.4.1 Data Construction and Summary Statistics 

This analysis uses data from the monthly Current Population Survey (CPS) between 1989 

and 2017. Administered by the U.S. Census Bureau, the monthly CPS is a household-based 

survey which selects a nationally representative sample and contains a large amount of 

demographic and employment information. To identify physicians in the CPS, I restrict the 

sample to the civilian non-institutional population who hold an advanced degree and reported 

their occupation as a “physician or surgeon.” 

Whether a physician was exposed to the work-hour regulations is based on the year of 

residency training, but such information is not available in the CPS. Inspired by Staiger et al. 

(2010), I identify physicians as residents if they were younger than 35 and use the year of birth 

as a proxy for exposure to the ACGME regulations.4 Physicians who could have been potentially 

                                                           
4 According to the 2007 AMA Physician Masterfile data, which is the primary source of physician workforce data in 

the U.S., Staiger et al. (2010) point out that 97% of hospital-based physicians younger than 35 were residents. 

However, not all residents were trained in a hospital-based program, and thus using age 35 to identify residency 

status might lead to a potential source of bias. This problem is addressed in Section 5.3. 
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subjected to the regulations were born after 1968 (i.e., those who worked as a resident after 

2003), and they are categorized as the treatment group. For physicians trained in New York, 

although they might have been potentially exposed to similar regulations, the Libby Zion Law, 

most residency programs in New York were found in violation of the law (Wasserman, 2018). In 

addition, I use the CPS Annual Social and Economic Supplement (ASEC) data to test whether 

there was a significant decrease in resident hours around the implementation of the law in 1989.5 

Figure 1.1 shows that the average hours worked by residents remained fairly stable around 1989 

and changed little through the 1980s and 1990s, suggesting that the law was inadequately 

enforced.6 On the other hand, the average hours worked by residents decreased sharply following 

the imposition of the work-hour limits in 2003, demonstrating that the ACGME regulations 

effectively led to hours cut. Therefore, the central variation in the empirical analysis below 

comes from the cohort-time variation in exposure to the 2003 ACGME reform. 

According to the U.S. Department of Health and Human Services, more than 95 percent 

of the physicians graduated from medical school after age 26. In addition, by the end of the 

sample period in 2017, the oldest possible age that the treatment group can achieve is 48. 

Therefore, the analysis focuses on physicians aged 26 to 48 with non-missing values for weekly 

hours worked.7 The analysis sample comprises 70,868 physicians. It is worth noting that this 

                                                           
5 The monthly CPS does not provide the hours worked variable before 1989, which is the main reason why the 

analysis period starts from 1989. 
6 I also look at the trend for New York only and find no significant change in hours worked by residents around 1989 

either. However, the sample size of New York physicians in the ASEC is very small (around 30 observations per 

year on average), and thus it is not informative enough. 
7 The measure of hours worked is based on the self-reported hours in the previous week in the monthly CPS. An 

alternative measure is the usual number of hours per week (over an unspecified time period), but it is not available 

until 1994 in the monthly data. I chose the former for the analysis since it has a relatively shorter-term recall and is 

available for a longer period of time. Note that the hours worked measure is top-coded at 99 hours prior to 1994; 

however, there are only 690 observations (about 1%) in the sample at the top-coded value of 99 before 1994. 



14 

 

selected group are at their prime working and childbearing ages, which helps understand the role 

of job flexibility in the work-family interface. 

Table 1.1 shows the summary statistics of this analysis sample. The mean age of the 

sample is 37.61, and approximately 66 percent of the subjects are male. The average hours 

worked per week is 54.62 (standard deviation = 18.37). With respect to gender differences, male 

physicians tend to be slightly older and have smaller proportion of the treated population due to 

the increasing female share of physicians in recent decades. In addition, male physicians work 

about seven hours more than their female counterparts, and they have a higher rate of marriage 

and have more children on average. With respect to differences by treatment status, the treatment 

group is older and comprises more females. The average hours worked per week is 54.40 for the 

treatment group and 54.89 for the control group. 

There are many advantages of using the monthly CPS data for this analysis. First, it 

provides repeated cross-sectional observations over a longer time period than any other 

comparably sized dataset that includes physicians’ information. This is particularly useful for 

analyzing the effects on lifecycle patterns. The large enough sample also helps conduct analyses 

separately by subpopulations and run robustness tests using different regression specifications. 

Second, the CPS includes important demographic characteristics and employment information. 

These variables matter for identification because they allow us to account for dynamic changes 

in the composition of the physician workforce that might cause potential imbalances in the 

demographic characteristics between the treatment and control groups. Third, the CPS data are 

more up-to-date than the American Medical Association (AMA) Physician Masterfile in terms of 

physicians’ employment information and can be used as a benchmark dataset on physician labor 

supply (Staiger et al., 2009). Fourth, it is widely conjectured that residents’ self-reported hours 
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from the ACGME monitoring data may underestimate hours worked due to the desire to protect 

residency programs or pressure from residency program directors (Landrigan et al. 2006; 

Szymczak et al. 2010; Fargen and Rosen, 2013). The CPS data, collected by non-ACGME 

researchers, limit the potential for this type of misreporting. 

Nevertheless, the CPS lacks physician-specific information regarding residency training 

and specialty choice. Therefore, I cannot directly identify the treatment status and analyze some 

of the other interesting labor market outcomes. In addition, the information on income is top-

coded in the CPS for confidentiality reasons. More than 85 percent of the sample analyzed here 

has top-coded values or missing values in weekly earnings at ages 35 to 48.8 For these reasons, it 

is difficult to provide direct evidence on how the regulations change physicians’ earnings 

profiles over time. 

 

1.4.2 First Stage: The Effectiveness of the Reform 

To assess the effectiveness of the regulations for the analysis, I plot the trends in hours 

worked by resident and non-resident physicians using the analysis sample in Figure 1.2. Prior to 

2003, residents were not exposed to the work-hour limits. As shown, the average hours worked 

per week by residents remained high through 2002 and then declined sharply after the 

preliminary approval of the ACGME reform in 2002 and its implementation in 2003. The 

average resident hours per week decreased from 63 in 2002 to 58 in 2004. This sharp decline 

after the introduction of the reform provides evidence that the regulations were enforced. 

On the contrary, such plummet was not found in the work hours trend of nonresident 

physicians since they were not restricted by the regulations. Instead, their hours worked have 

                                                           
8 Total weekly earnings are top-coded at $1923 prior to 1997 and $2885 since 1998. For hourly wages, more than 90 

percent of the physicians in the CPS have missing values. 
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gradually trended downward since the 1990s. This trend can be largely explained by the aging of 

the physician population and the increasing proportion of female physicians, who practice fewer 

hours than their male counterparts on average (Crossley et al., 2009; Staiger et al., 2010; Sarma 

et al., 2011, Wang and Sweetman, 2013). Staiger et al. (2010) also point out other possible 

factors that drive the downward trend of hours worked by practicing physicians, such as the 

decrease in physician fees since the early 1990s, developments among both public and private 

payers in the 1990s, and improvements in physician productivity due to technology. In addition, 

the rapid growth in care by hospitalists in the late 1990s and the early 2000s (Kuo et al., 2009) 

and the HMO penetrations in the 1990s (Zhan et al., 2004) may also be attributed to the 

decreasing hours worked by practicing physicians. 

Figure 1.3 compares the trends in hours worked between physicians who were exposed to 

the regulations and those who were not. As a result of the reform, the treatment group 

(physicians born after 1968) worked fewer hours per week than the control group (physicians 

born before 1968) during residency (ages 26 to 34). Interestingly, the difference in hours worked 

between the treatment and control groups still remained even when physicians were not 

constrained by the work-hour limits after residency (above age 35), showing a persistent decline 

in hours worked. Compared to physicians, there is no persistent and significant difference in 

hours worked between the younger and older cohorts for the other professions that also make a 

fairly high salary and require an advanced degree (e.g., lawyers and dentists), as shown in Figure 

1.A1 in the Appendix. This comparison provides additional evidence on the substantial impact of 

the reform on physician labor supply. 

In addition to visual evidence, I estimate the effect of the reform on resident hours for the 

full sample and by gender. Since residency programs must comply with all the work-hour 
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standards, they should be considered as a whole when interpreting the estimated effects. The 

empirical specification is as follows: 

Y𝑖 = 𝛽0 + 𝛽1Exposed𝑖 + 𝑋𝑖𝛽2 + 𝛼𝑐 + 𝛼𝑡 + 𝛼𝑠 + 𝜀𝑖,                                  (1) 

where Y𝑖 is the weekly hours worked by physician i aged 26 to 34. Exposed𝑖 is a dummy 

variable indicating exposure to the ACGME regulations during residency training, which equals 

1 for physicians born after 1968 and 0 for physicians born before 1968. 𝑋𝑖 is a set of covariates 

including age, gender, and race/ethnicity. 𝛼𝑐, 𝛼𝑡, and 𝛼𝑠 denote cohort, year, and state fixed 

effects, respectively. The estimates of 𝛽1 identify the effects of the reform on resident hours and 

are shown in the first row of Table 1.2. As a result of the reform, the mean resident hours per 

week significantly decreased by 8.38 overall, which supports the effectiveness of the ACGME 

reform. Analyzing by gender, the reform reduced the mean resident hours per week by 10.03 for 

males and 6.87 for females.9 

 

1.5 The Impact on Long-Term Labor Supply 

1.5.1 Difference-in-Differences Approach 

A fundamental challenge in interpreting the pattern shown in Figure 1.3 as causal is that 

the cohort variation that identifies differences in exposure to the regulations is time-series in 

nature. Omitted variables that are correlated with changes in labor supply and the exposure, and 

                                                           
9 This effect is smaller among females than among males for two reasons. First, there are fewer female physicians 

whose hours were capped by the regulations. In my analysis sample, only the top 20 percent of the female control 

group exceeds 80 hours worked per week. Wasserman (2018) also shows that females were less likely to choose the 

most time-intensive specialties where the hours worked by residents were more than 80 hours per week before the 

reform. Hence, the majority of the female physicians were not primarily affected by the reform, and the mean 

estimate of the effect on resident hours is attenuated. Second, females are found to enter more time-intensive 

specialties as a result of the reform, whereas there is little change in males’ specialty choice (Wasserman, 2018). If 

females change their specialty choice in response to the reform, they are also potentially altering their residency 

hours towards longer hours. This behavioral change increases mean hours worked by female residents and balances 

out the effect on resident hours which were originally designed to reduce hours worked. 
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other secular trends that affect physician hours, might explain this pattern as well, resulting in an 

identification problem. To tackle this problem and identify the causal impact, I begin by the 

baseline difference-in-differences approach using the cohort-time variation in exposure to the 

ACGME regulations. Since the reform affects residents trained after 2003, the strategy is to 

compare the change in hours worked from residency to post-residency between the treatment and 

control groups. The regression framework of the baseline model is as follows: 

Y𝑖𝑐𝑡 = 𝛽0 + 𝛿1Exposed𝑐 + 𝛿2Post𝑡 + 𝛿3(Exposed𝑐 ∙ Post𝑡) + 𝜀𝑖𝑐𝑡,                  (2) 

where i indexes physicians, c indexes birth cohorts, and t indexes years. The outcome variable 

Y𝑖𝑐𝑡 is the weekly hours worked by physicians. Similar to the definition in Equation (1), 

Exposed𝑐 is an indicator of exposure to the ACGME regulations during residency training. 

Post𝑡 is an indicator of completing residency in year t, which equals 1 for physicians aged 35-48 

and 0 for physicians aged 26-34. 𝛿3 is the coefficient of interest. To identify it as the casual 

impact, the treatment and control groups are assumed to have the same trends in hours worked 

over time in the absence of the regulations. 

Figure 1.4 shows the trends in post-residency hours between the treatment and control 

groups after the implementation of the 2003 ACGME reform. There does not seem to be a 

significant difference between groups over time. However, it is unclear from this figure 

regarding the role of the reform since there are some factors that affect labor supply and also 

correlate with exposure to the regulations, as suggested by the summary statistics in Table 1.1. In 

particular, the control group consists of older physicians, who are likely to work fewer hours per 

week, whereas the treatment group consists of more female physicians, who are likely to work 

less than their male counterparts. 
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To account for potential imbalances in the demographic characteristics between the 

treatment and control groups, I control for pre-treatment baseline observables. I also expand the 

model by including cohort and year fixed effects to control for additional unobserved factors. 

Compared to the inclusion of the two indicators, Exposed𝑐 and Post𝑡, these fixed effects flexibly 

span the cohort-time variation. The empirical specification can be written as: 

Y𝑖𝑐𝑡 = 𝛽0 + 𝛼𝑐 + 𝛼𝑡 + 𝛽1(Exposed𝑐 ∙ Post𝑡) + 𝑋𝑖𝑐𝑡𝛽2 + 𝛼𝑠 + 𝜀𝑖𝑐𝑡.                  (3) 

𝑋𝑖𝑐𝑡 is a set of pre-determined demographic controls including age, gender, and race/ethnicity. 𝛼𝑐 

reflects fixed effects for birth cohorts, and 𝛼𝑡 reflects fixed effects for the calendar year in which 

they are observed. The cohort fixed effects control for differences across cohorts in the outcome 

variable, and the year fixed effects control for any general time trends in the outcome variable, 

picking up some of those possible factors that drive the long-term secular decline in physician 

work hours mentioned in Section 4.2. I also add a set of state dummies 𝛼𝑠 to control for any 

time-invariant unobservables that affect the outcome variable across states. In particular, it 

accounts for the state differences in the institutional design features, such as state-specific 

licensing requirements. I do not include controls which may cause potential endogeneity with 

respect to labor supply (e.g., family formation and practice setting). The coefficient 𝛽1 identifies 

the treatment effect by contrasting the hours worked from residency to post-residency between 

physicians who were exposed to the regulations and those who were not. 

Previous studies have documented differences in labor market outcomes between male 

and female physicians (e.g., Rizzo and Blumenthal, 1994; Sasser, 2005; Rizzo and Zeckhauser, 

2007; Wang and Sweetman, 2013; Wasserman, 2018). In addition, my regression results (shown 

in Section 5.2) also indicate that gender has a significant impact on long-term labor supply. In 
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addition to the analysis on the full sample, I also estimate the effects by gender to explore 

whether the ACGME regulations affect male and female physicians differently. 

The key identifying assumption in Equation (3) is the so-called parallel trends 

assumption, that is, the evolution of hours worked between the treatment and control groups 

(conditional on observed variables) is the same over time in the absence of the reform. This 

analysis has several advantages in meeting this condition. First, the ACGME regulations were 

enacted in order to reduce fatigue-related medical errors made by residents. The motivation and 

the nature of this policy make it unlikely to be correlated with other policies that affect physician 

labor supply or costs of childrearing. Second, the sample is fairly homogeneous with respect to 

skills and other traits. Since this analysis is based on a profession that has highly competitive 

entry requirements, rigorous educational standards, and very specialized training, the general 

concern about unobserved heterogeneity across individuals or cohorts is considerably 

diminished. Since the model includes cohort and year fixed effects, and a set of demographic 

controls, the estimated effects on the outcome variables can be attributed to changes in hours 

worked during residency training within cohorts over time. 

 

1.5.2 Estimated Mean Effects 

Table 1.3 shows the estimation results using the baseline difference-in-differences model, 

specified in Equation (2), for the overall sample and by gender. Each cell contains the mean 

hours worked for its subgroup of the sample. For the overall sample shown in Panel A, the 

residency versus post-residency difference in hours is 9.07 for the treatment group and 7.15 for 

the control group. Thus, the treatment group worked 1.93 less hours per week than the control 

group from residency to post-residency. With a standard error of 0.87, it is statistically different 
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from zero at the 5 percent level. The analysis by gender is shown in Panels B and C. Among 

male physicians, the treatment group decreases weekly hours worked by 1.09 (or 2.26 percent) 

more than the control group, but the estimate is statistically insignificant. Among female 

physicians, the treatment group decreases weekly hours worked by 1.63 (or 2.90 percent) more 

than the control group. 

Controlling for observed demographic differences between groups and the cohort and 

year fixed effects, the preferred estimates of the long-term labor supply effects using Equation 

(3) are shown in Table 1.4. Columns (1) and (2) display the results for the full sample, without 

and with the inclusion of demographic controls, respectively. The first row reports the estimated 

coefficients of interest. The estimate in Column (2) implies that the reform decreases physicians’ 

mean hours worked at ages 35 to 48 by 4.28 hours per week, which is a statistically significant 

7.99 percent decrease over the control group mean of 53.59 hours. Columns (3) to (6) show the 

estimates by gender. The results indicate that the regulations reduce both male and female 

physicians’ long-term hours worked by about four hours per week on average, and the effects are 

not statistically different across gender (p-value = 0.67). These findings are robust to the 

inclusion of the covariates. The next six rows in Columns (2), (4), and (6) report the estimated 

coefficients of the demographic characteristics on long-term hours worked. Among all three 

columns, the average hours worked decrease significantly with age, and as shown in Column (2), 

gender seems to have a large and significant impact on post-residency hours, with males working 

more than females by 7.09 hours per week. 

Since men tend to enter specialties that require longer hours worked, there are more male 

physicians whose hours were capped by the regulations. To obtain the effects of a given 

reduction in hours during residency on subsequent labor supply, I take into account the effects of 
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the reform on resident hours and divide the reduced form coefficients in Columns (2), (4), and 

(6) by their corresponding first-stage estimates. For the full sample, a reduction in hours during 

residency decreases labor supply at ages 35 to 48 by 0.51 hours per week on average (standard 

error = 0.02). Analyzing by gender, a reduction in hours during residency results in a decrease of 

0.39 hours (standard error = 0.02) for males and 0.65 hours (standard error = 0.05) for females 

after residency.10 Although female physicians in general were less likely to be restricted by the 

work-hour limits, these findings suggest that females are more responsive to a given reduction in 

early career hours caused by the reform, and this gender difference is statistically significant at 

the 1 percent level. 

There are a few observations with likely unreliable self-reported hours in the data.11 To 

address this concern and reduce the impact of possibly spurious outliers, I repeat the analysis 

using winsorized and trimmed hours worked at the 1% and 99% levels, as well as the 5% and 

95% levels, as alternative outcome variables. Winsorizing at the 1% and 99% levels sets the 

bottom 1% to the 1th percentile and the top 1% to the 99th percentile. Without discarding the 

extreme values, the winsorization method still takes those values into account and treats them as 

if respondents reveal certain information on their hours worked. The estimated effects using 

these alternatives are very similar to the results shown above.12 

 

1.5.3 Potential Threats to Identification 

Although the inclusion of control variables and the homogeneity of the physician 

workforce ameliorate potential threats from unobserved confounders, there may still be at least 

                                                           
10 These estimates are obtained by -4.28/-8.38 = 0.51 for the full sample, -3.96/-10.03 = 0.39 for males, and -4.45/-

6.87 = 0.65 for females. 
11 The maximum of self-reported hours worked is 192 in the data, which is obviously exaggerated. 
12 The results are available upon request. 
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two other concerns regarding the identification. The first problem pertains to the year-of-birth 

proxy for treatment status. Ideally, I would use the year of residency to identify individual 

exposure to the ACGME reform, but the CPS does not contain such information. This may result 

in misclassifications of the treatment and control groups. The second problem pertains to any 

remaining unobserved heterogeneity of exposure to the regulations with respect to labor supply. I 

discuss below these identification issues and how I attempt to assess them. 

First, using age 35 to identify residency status is a potential source of bias. Depending on 

the medical specialty, the length of residency training ranges from three to seven years.13 This 

leads to some variation in the age that a physician can complete residency.14 There are two 

possible misclassifications of the treatment status: (1) physicians who were born after 1968 and 

completed residency training before 2003, and (2) physicians who were born before 1968 and 

completed residency training after 2003. In the first case, the treatment group contains non-

treated individuals; in the second case, the control group contains treated individuals. As a 

consequence, the magnitude of the estimated effects would be underestimated in both cases. 

To assess the effects of potential misclassifications, I estimate three alternative 

specifications which reclassify the treatment and control groups with tighter year-of-birth 

windows, and the age proxies for residency status are also adjusted accordingly. Since the main 

analysis uses physicians born before and after 1968 as the control and treatment groups, 

respectively, the alternative specifications adjust the year-of-birth proxies for the treatment status 

as follows: (1) the treatment (control) group consists of physicians born after 1969 (before 1967); 

                                                           
13 For example, internal medicine, general surgery, and neurosurgery require three, five, and seven years of training, 

respectively. 
14 Nearly all physicians graduate from medical school after age 26. With a minimum of three years for residency 

training, the earliest possible age to complete residency is 29. Similarly, with a maximum of seven years for 

residency training and allowing a gap of five years at some point, the oldest possible age to complete residency is 

likely to be 38. 
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(2) the treatment (control) group consists of physicians born after 1970 (before 1966); (3) the 

treatment (control) group consists of physicians born after 1971 (before 1965). When using 

tighter year-of-birth windows for the treatment status, there should be less misclassification; 

however, it discards non-negligible amount of observations. As shown in Table 1.A1 in the 

Appendix, the results using these alternative treatment and control groups are similar to the main 

results. 

Second, there may still exist some unobserved factors that cause nonrandom selection of 

individuals into the physician workforce following the implementation of the reform. It could be 

that the reform changed the pool of applicants and entrants into the medical profession in 

dimensions not captured by the admission criteria and observed characteristics, but are relevant 

to the labor market. Specifically, given the decline in hours requirements during residency, 

individuals who prefer balanced lifestyles would be induced to enroll in medical school. These 

unobserved preferences are correlated with a priori disposition toward fewer hours worked at 

later ages, which would lead to a decrease in the average hours worked by physicians over time. 

As a result, the magnitude of the negative effects of the reform on long-term labor supply would 

be overstated. 

To assess whether the effects are driven by this selection bias, I estimate an alternative 

specification, taking as the treatment group physicians who already entered medical school at the 

time of the reform but were trained under the new regulations during residency. Given that the 

ACGME regulations were approved in 2002 and that the fresh college graduates in 2002 were 

born in 1979-1980, I restrict my sample to the 1941-1980 cohorts and re-estimate the effects. 

Since there may be some physicians enrolling in medical school few years after college, I also 

restrict the sample to the 1941-1978 cohorts and the 1941-1976 cohorts to test the robustness of 
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my results. As shown in Table 1.A2 in the Appendix, the key estimates are robust to these 

alternative specifications, suggesting that the likelihood of this self-selection confounding the 

results is not considerable. 

Although unobserved heterogeneity seems less applicable to physicians who have been 

through highly competitive admission process and invested many years in formal training 

beyond college with the completion of medical school and residency training, the above 

robustness check suggests that remaining unobservable heterogeneity is not a significant 

concern. Other empirical studies also find no evidence of reduced hours worked driven by 

unobserved preferences for balanced lifestyles among younger physician cohorts (Crossley et al., 

2009; Staiger et al., 2010; Sarma et al., 2011). 

 

1.5.4 Distributional Effects 

According to the ACGME work-hour standards, the regulations should primarily affect 

residents who would have worked more than the work-hour limits (e.g., 80 hours per week) in 

the absence of the reform. This naturally leads to a disproportionate impact on those at the upper 

tail of the hours distribution. As shown in Table 1.A3 in the Appendix, only those above the 75th 

percentile among the control group aged 26-34 (unaffected residents) work over 80 hours per 

week. The estimated mean impacts may be attenuated by the other part of the distribution and 

incompletely reveal the effects on those affected. 

To identify the heterogeneous impacts across the hours distribution, I use a changes-in-

changes (CIC) model following Athey and Imbens (2006) and Melly and Santangelo (2015) that 

extends the model to include covariates. The CIC framework relaxes the parallel trends 

assumption and provides unconditional treatment effects of the whole distribution. The estimated 



26 

 

quantile treatment effects provide evidence on what would happen to the overall hours 

distribution in the long run if there is a policy regulating the maximum workweek during 

residency. I estimate the CIC effects for 17 quantile values, q = {0.1, 0.15, …, 0.85, 0.9}, and 

their bootstrapped 95-percent confidence intervals with 1,000 replications, controlling for age, 

gender, race/ethnicity, and cohort and year fixed effects. 

Figure 1.5 shows the CIC estimates for the full sample (Panel A) and by gender (Panels B 

and C). In general, the effects become negative and stronger when moving towards the upper end 

of the work hours distribution. As shown in all three panels, the quantile treatment effects are not 

statistically different from zero between the 10th and the 70th quantiles, and the effects become 

negative and larger than the mean estimates at the top of the distribution. This finding confirms 

that the reform primarily affects those with the longest hours of work. For the full sample, the 

estimates above the 80th quantile are statistically different from zero and remain stable at around 

-5.36. For male physicians, the estimates above the 75th quantile are statistically significant and 

have an average level of -8.47. For female physicians, the estimates are imprecisely estimated, 

but overall negative and hovering around -5.11 for those above the 70th quantile (except for the 

80th quantile). At the extreme upper tail of the distribution (the 90th quantile), the magnitudes of 

the effects for male and female physicians are similar. 

There are two potential reasons why the effects are greater for males than for females at 

most of the upper quantiles. First, since hours worked by male physicians at the upper quantiles 

are more likely to be capped by the regulations, the reform reduces their long-term labor supply 

more than their female counterparts. Second, more female physicians enter the most time-

intensive specialties as a result of the reform, whereas there is little change in specialty choice by 

male physicians (Wasserman, 2018). If more female physicians enter long-hours specialties in 
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response to the reform, they are also potentially altering their residency hours and increasing 

hours worked after residency. The link between changes in specialty choice and hours worked 

provides a potential explanation and mechanism for the gender difference in the effects of the 

reform on the distribution of hours worked.15 

 

1.6 Mechanisms 

The work-hour regulations reduce physicians’ early career hours and at the same time 

lower the opportunity cost of work time. As discussed in Section 3, this could lead to less human 

capital, more family commitments, and change in taste for work for the treatment group. 

Therefore, the reform results in a negative impact on physicians’ long-term labor supply. Since 

the regulations affect residency training, which occurs during the prime childbearing years, the 

mechanisms pertaining to marriage and fertility decisions are particularly of interest. Various 

studies suggest that home production is disproportionately undertaken by females even within 

this highly skilled profession (e.g., Sasser, 2005; Wang and Sweetman, 2013; Wasserman, 2018). 

Women may choose the specialty and work environment that are family friendly, and avoid jobs 

with long hours and greater career advancement possibilities. Wang and Sweetman (2013) show 

that married female physicians work fewer hours per week than both their married male 

counterparts and their unmarried female counterparts. The impact of children on women’s labor 

market outcomes is large and persistent, whereas there is little evidence on such impact on men.  

The CPS data allow us to learn about the presence of marriage and fertility mechanisms 

in the context of the ACGME reform and whether there are gender differences in these 

                                                           
15 There are two caveats of these estimated quantile treatment effects. First, the existence of point masses in the 

hours worked data might contaminate the effects, and thus the results must be evaluated with caution. Second, 

whether men or women are more responsive to a given reduction in resident hours across the hours distribution is 

unknown without knowing the corresponding distributional effects of the reform on resident hours. 
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mechanisms. I use the following regression framework to investigate the impact of exposure to 

the regulations on male and female physicians’ marriage and fertility outcomes:  

Y𝑖 = 𝛽0 + 𝛽1Exposed𝑖 + 𝑋𝑖𝛽2 + 𝛼𝑡 + 𝛼𝑠 + 𝜀𝑖.
16                                            (4) 

When examining the marriage mechanism, I use binary indicators of marriage and divorce for 

physicians between ages 26 and 48 as the outcome variables. For the effects on fertility 

decisions, I examine two outcomes: (1) fertility at the extensive margin, which is an indicator of 

having at least one child; (2) fertility at the intensive margin, which is the total number of 

children (completed fertility).17 By contrasting these outcomes between physicians who were 

exposed to the regulations and those who were not, the estimates of 𝛽1 show the effects of 

interest. The identification is based on the selection-on-observables assumption; that is, there is 

no unobserved factor that affects both outcomes (marriage and fertility) and treatment (exposure 

to the reform). This assumption plausibly holds since the reform is not correlated with other 

policies that would affect physicians’ marriage and childrearing. The set of control variables and 

the homogeneity of the physician workforce also make the identification assumption more 

plausible to be satisfied. 

Table 1.5 shows the effects of the work-hour regulations on the likelihoods of marriage 

and divorce between ages 26 and 48, controlling for demographic characteristics (age, gender, 

and race/ethnicity), year fixed effects, and state fixed effects. Columns (1) and (2) show the 

results using the full sample, and Columns (3) to (6) present the effects by gender. The estimated 

                                                           
16 Note that this is not a difference-in-differences model. Contrary to hours of work, there is little variability in 

marriage and fertility outcomes during residency, and most of the variability comes from the post-residency period. 

Instead of using a difference-in-differences model which contrasts the outcomes from residency to post-residency 

between groups, I use the regression framework specified in Equation (4) to capture the overall effect of the reform 

on marriage and fertility outcomes. 
17 According to the National Association for Public Health Statistics and Information Systems, completed fertility is 

defined as the number of children to a person by the end of a woman’s childbearing years, 15 to 44 years old, the 

latest age at which people typically have their last child. 



29 

 

coefficients of interest, shown in the first row, suggest that the reform significantly increases the 

probability of marriage by 9.2 percentage points and slightly decreases the probability of divorce 

by 1.5 percentage points for female physicians. Conversely, there is no significant impact on 

male physicians’ marriage and divorce rates. These estimates suggest that marriage decisions 

made by females are more sensitive to the work-hour regulations than those made by males. 

Table 1.6 presents the estimated effects of the regulations on physicians’ fertility between 

ages 26 and 48. Columns (1), (3), and (5) show the effects on fertility at the extensive margin for 

the full sample and by gender. The estimates suggest that the reform increases the probability of 

having a child for female physicians by 9 percentage points, which is statistically significant at 

the 5 percent level. However, the reform does not affect the probability of having a child for 

male physicians. Columns (2), (4), and (6) show the estimated effects on completed fertility. The 

results also suggest a substantial gender difference. Exposure to the regulations leads to a 

significant increase of 0.2 children for female physicians, but it does not affect the total fertility 

of male physicians.18 In addition, I estimate the effects for physicians aged 26-34 and 35-48 

separately, as shown in Table 1.A5 in the Appendix. These estimates provide suggestive 

evidence on how the reform changes the timing of marriage and fertility beyond the total impact 

of the reform. The results indicate that the reform increases the marriage and fertility outcomes 

in the post-residency period more than those during residency, but they are not statistically 

different from each other. 

To sum up, I find substantial gender differences in both marriage and fertility decisions in 

response to the reform. The regulations raise the likelihood of marriage and have positive and 

significant effects on fertility at both the extensive and intensive margins for female physicians. 

                                                           
18 The estimation results using probit and logit models for the binary outcomes of marriage and fertility are similar 

to the above results, as shown in Table A4 in the Appendix. 
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On the contrary, the regulations have little impact on marriage and fertility outcomes for male 

physicians. During the childbearing years, these effects for females may result in a potentially 

supply shift that accounts for at least some of the decrease in their long-term labor supply. As 

discussed in Section 3, most female physicians are married to physician spouses, who are likely 

to have high earnings and work long hours. As the marriage and fertility rates increase for female 

physicians due to the reform, they likely face greater household obligations and more binding 

constraints on hours with a lower opportunity cost of career interruptions. As a result, this 

situation would lead them to work fewer hours, more regular schedules, and generally more 

conducive to combining career and family. The estimated results in this section provide 

empirical evidence to support potential mechanisms of females’ labor supply responses to a 

policy that reduces time requirements during the prime childbearing years. Changes in family 

commitments likely account for females’ greater responsiveness to a given reduction in hours. 

These findings are also consistent with previous studies on gender differences in the relationship 

between childbearing and labor market outcomes (e.g., Mincer and Polachek, 1974; Polachek, 

1975; Becker, 1985, Gronau, 1988; Angrist and Evans, 1998; Sasser, 2005; Wang and 

Sweetman, 2013; Goldin, 2014; Kleven et al., 2018; Wasserman, 2018). 

 

1.7 Conclusions 

This paper estimates the impact of the work-hour regulations that limit the maximum 

hours worked by residents on physicians’ long-term labor supply. As a result of the 2003 

ACGME reform, the mean resident hours per week significantly decrease by 10.03 for males and 

6.87 for females. Exploiting the cohort-time variation in exposure to the reform, I contrast the 

hours worked from residency to post-residency between the treatment and control groups using a 
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difference-in-differences approach. The results suggest that the reform significantly reduces 

mean hours worked after residency by about four hours per week for both male and female 

physicians. When taking the effects of the reform on resident hours into consideration, women 

seem to be more responsive to a given reduction in early career hours caused by the reform. 

The heterogeneous impacts across the hours distribution are revealed by a changes-in-

changes model. The estimated quantile treatment effects show that the reform does not have a 

statistically significant impact on those below the 70th quantile of the hours distribution. When 

moving towards the upper tail of the distribution, the effects become significantly negative and 

larger than the mean estimates, which confirms that those at the upper end of the distribution are 

primarily affected by the reform. Since hours worked by male physicians are more likely to be 

capped by the regulations, the reform reduces their long-term labor supply more than their 

female counterparts at the upper quantiles. However, at the extreme upper tail of the distribution, 

the magnitudes of the effects for male and female physicians are similar. 

To reveal potential mechanisms of the effects uncovered on long-term labor supply, I 

examine how the regulations affect physicians’ marriage and fertility outcomes across gender. 

The empirical evidence suggests substantial gender differences in marriage and fertility choices 

in response to the reform that reduces work time requirements during the prime childbearing 

years. It indicates that changes in family commitments could be potential mechanisms for 

females’ long-term labor supply effects. On the other hand, since there are substantially more 

male physicians in surgical specialties that suffer the greatest reduction in hours due to the 

reform, they may experience detrimental effects on their professional development and 

preparedness for practice. The mechanism of human capital accumulation might potentially 
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account for males’ long-term labor supply effects, although I am not able to explore this 

mechanism empirically. 

With increasing participation of females in the physician workforce and limited evidence 

on long-term labor supply responses to a reduction in early career hours, the physicians’ hours of 

work decisions and potential gender differences are substantive issues for human resource 

policies in the health care sector. With respect to the effects of the reform on long-term labor 

supply, the reduction of four hours per week among practicing physicians in younger cohorts 

does not seem small. Policy makers may need to take into account changes in the amount of 

patient care hours or services provided by practicing physicians when addressing the projected 

supply of healthcare. With respect to gender differences in marriage and fertility decisions, the 

results indicate that less time requirements may help women plan the timing of marriage and 

fertility relative to their residency. Since residency training occurs during the prime childbearing 

years, and nowadays almost half of the medical students are women, developing workplace 

policies to accommodate pregnancy and childbearing is important for the medical profession. 

Future research may consider using other physician surveys that include information on earnings 

and other dimensions of physicians’ labor market outcomes. In particular, dynamic changes in 

earnings profiles caused by the regulations can give important insight into labor supply behavior. 

The findings can also provide direct evidence of the resulting effects on the gender wage gap.  
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Figure 1.1: Average Hours Worked per Week by Residents, 1976-2017, Using the ASEC Data 

 

 

 

Figure 1.2: Average Hours Worked per Week, 1989-2017 
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Figure 1.3: Age-Hours Profiles by Treatment Status 

 

 

 

Figure 1.4: Average Hours Worked per Week by Treatment Status 
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Figure 1.5: Changes-in-Changes Estimates 

A. Full Sample 

 
B. Male 

 

C. Female 

Notes: These figures show the changes-in-changes estimates of the reform on long-term labor supply for seventeen 

quantile values, controlling for age, gender, and race/ethnicity. Dotted lines provide bootstrapped pointwise 95-

percent confidence intervals for quantile treatment effects with 1,000 replications.  
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Table 1.1: Summary Statistics 

 All 
Gender Treatment Status 

Male Female Treatment Control 

Age 
37.608 

(6.228) 

38.090 

(6.209) 

36.672 

(6.159) 

34.192 

(5.262) 

40.219 

(5.606) 

Male 
0.660 

(0.474) 
  

0.575 

(0.494) 

0.731 

(0.444) 

White 
0.697 

(0.459) 

0.721 

(0.448) 

0.651 

(0.477) 

0.623 

(0.485) 

0.757 

(0.429) 

Black 
0.059 

(0.235) 

0.047 

(0.211) 

0.083 

(0.275) 

0.068 

(0.253) 

0.050 

(0.219) 

Hispanic 
0.057 

(0.231) 

0.057 

(0.233) 

0.055 

(0.229) 

0.063 

(0.244) 

0.054 

(0.226) 

Asian 
0.181 

(0.385) 

0.169 

(0.375) 

0.204 

(0.403) 

0.239 

(0.426) 

0.134 

(0.340) 

Other race 
0.006 

(0.077) 

0.005 

(0.073) 

0.007 

(0.083) 

0.006 

(0.079) 

0.006 

(0.074) 

Married 
0.757 

(0.429) 

0.783 

(0.412) 

0.706 

(0.456) 

0.694 

(0.461) 

0.806 

(0.395) 

Number of children 
1.318 

(1.290) 

1.439 

(1.335) 

1.083 

(1.163) 

0.980 

(1.183) 

1.579 

(1.312) 

Family Size 
3.193 

(1.565) 

3.335 

(1.599) 

2.919 

(1.459) 

2.820 

(1.479) 

3.477 

(1.570) 

Weekly hours worked 
54.616 

(18.373) 

56.974 

(17.645) 

50.033 

(18.887) 

54.404 

(18.527) 

54.886 

(18.217) 

Exposure 
0.438 

(0.496) 

0.380 

(0.486) 

0.551 

(0.497) 
  

Observations 70,868 46,784 24,084 27,061 41,495 

Notes: Table reports means and standard deviations (in parentheses), weighted using sampling weights. The sample 

includes physicians aged 26-48 in the monthly CPS between 1989 and 2017. The treatment group includes physicians 

born after 1968, and the control group includes physicians born before 1968. 
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Table 1.2: The Impact of the Reform on Resident Hours 

Outcome: 

Hours worked at ages 26-34 
All Male Female 

Exposed 
-8.384*** 

(0.952) 

-10.029*** 

(1.392) 

-6.868*** 

(2.080) 

Age 
-2.039*** 

(0.095) 

-1.837*** 

(0.131) 

-2.367*** 

(0.190) 

Male 
4.501*** 

(0.541) 
  

Black 
-0.895 

(0.743) 

-2.695* 

(1.464) 

0.542 

(0.976) 

Hispanic 
0.317 

(0.910) 

0.460 

(1.062) 

0.480 

(1.311) 

Asian 
-2.813*** 

(0.614) 

-2.850*** 

(0.620) 

-2.559** 

(1.074) 

Other race 
4.841* 

(2.610) 

4.428 

(4.738) 

4.182 

(3.219) 

Cohort FEs Yes Yes Yes 

Year FEs Yes Yes Yes 

State FEs Yes Yes Yes 

Observations 22,708 13,615 9,093 

Notes: The dependent variable is weekly hours worked at ages 26 to 34. White is the omitted group for race/ethnicity 

variables. Data are weighted using CPS sampling weights. Cluster-robust standard errors by cohort are in parentheses. 

Significance at the 10%, 5%, 1% levels is indicated with 1, 2, 3 asterisks respectively. 
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Table 1.3: Difference-in-differences Estimates of the Impact on Long-Term Labor Supply 

 
Ages 26-34 

(Residency) 

Ages 35-48 

(Post-Residency) 
Difference (%) 

A. Full Sample 

Treatment group 58.420 49.346 -9.074 (-15.532%) 

Control group 60.733 53.586 -7.147 (-11.768%) 

Difference -2.313 -4.240  

Difference-in-differences 

[Standard Error] 
  

-1.927 (-3.764%) 

[0.872]** 

B. Male 

Treatment group 60.089 52.462 -7.627 (-12.693%) 

Control group 62.635 56.098 -6.537 (-10.437%) 

Difference -2.546 -3.636  

Difference-in-differences 

[Standard Error] 
  

-1.089 (-2.256%) 

[1.046] 

C. Female 

Treatment group 56.238 44.927 -11.311 (-20.113%) 

Control group 56.235 46.557 -9.678 (-17.210%) 

Difference 0.003 -1.630  

Difference-in-differences 

[Standard Error] 
  

-1.633 (-2.903%) 

[1.167] 

Notes: The sample includes physicians aged 26-48 in the monthly CPS between 1989 and 2017. The treatment group 

includes physicians born after 1968, and the control group includes physicians born before 1968. Data are weighted 

using CPS sampling weights, and the standard errors are clustered by cohort. Significance at the 10%, 5%, 1% levels 

is indicated with 1, 2, 3 asterisks respectively. 
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Table 1.4: Estimation Results of the Impact on Long-Term Labor Supply 

Outcome: 

Hours worked 

All Male Female 

(1) (2) (3) (4) (5) (6) 

Exposed*Post 
-4.385*** 

(0.916) 

-4.281*** 

(0.901) 

-4.034*** 

(0.877) 

-3.961*** 

(0.868) 

-4.476*** 

(1.275) 

-4.445*** 

(1.274) 

Age  
-0.631*** 

(0.061) 
 

-0.574*** 

(0.066) 
 

-0.741*** 

(0.089) 

Male  
7.086*** 

(0.434) 
    

Black  
0.014 

(0.585) 
 

-0.525 

(1.047) 
 

0.571 

(0.644) 

Hispanic  
-0.191 

(0.516) 
 

-0.441 

(0.643) 
 

0.474 

(1.061) 

Asian  
-2.270*** 

(0.374) 
 

-2.627*** 

(0.456) 
 

-1.698*** 

(0.573) 

Other race  
3.959*** 

(1.463) 
 

3.907 

(2.375) 
 

4.265*** 

(1.530) 

Cohort FEs Yes Yes Yes Yes Yes Yes 

Year FEs Yes Yes Yes Yes Yes Yes 

State FEs No Yes No Yes No Yes 

Observations 68,556 68,556 45,453 45,453 23,103 23,103 

Notes: The sample includes physicians aged 26-48 in the monthly CPS between 1989 and 2017. White is the omitted 

group for race/ethnicity variables. Data are weighted using CPS sampling weights. Cluster-robust standard errors by 

cohort are in parentheses. Significance at the 10%, 5%, 1% levels is indicated with 1, 2, 3 asterisks respectively.  
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Table 1.5: The Impact of the Reform on Marriage and Divorce 

 
All Male Female 

Married Divorced Married Divorced Married Divorced 

 (1) (2) (3) (4) (5) (6) 

Exposed 
0.050*** 

(0.017) 

-0.002 

(0.006) 

0.028 

(0.018) 

0.007 

(0.008) 

0.092*** 

(0.022) 

-0.015* 

(0.008) 

Age 
0.019*** 

(0.001) 

0.004*** 

(0.0004) 

0.019*** 

(0.001) 

0.003*** 

(0.0004) 

0.018*** 

(0.002) 

0.005*** 

(0.001) 

Male 
0.039*** 

(0.011) 

-0.026*** 

(0.004) 
    

Black 
-0.151*** 

(0.022) 

0.0003 

(0.009) 

-0.134*** 

(0.030) 

0.004 

(0.012) 

-0.167*** 

(0.027) 

-0.004 

(0.010) 

Hispanic 
-0.007 

(0.016) 

0.010 

(0.009) 

-0.005 

(0.017) 

0.018 

(0.013) 

-0.009 

(0.028) 

-0.008 

(0.010) 

Asian 
0.039*** 

(0.011) 

-0.026*** 

(0.004) 

0.021 

(0.015) 

-0.022*** 

(0.004) 

0.068*** 

(0.017) 

-0.032*** 

(0.007) 

Other race 
-0.071 

(0.043) 

-0.016 

(0.011) 

0.011 

(0.048) 

-0.010 

(0.015) 

-0.196*** 

(0.064) 

-0.030* 

(0.017) 

Year FEs Yes Yes Yes Yes Yes Yes 

State FEs Yes Yes Yes Yes Yes Yes 

Observations 68,556 68,556 45,453 45,453 23,103 23,103 

Notes: The sample includes physicians aged 26-48 in the monthly CPS between 1989 and 2017. The dependent 

variable are indicators of being married or divorced on the timing of the survey. White is the omitted group for 

race/ethnicity variables. Data are weighted using CPS sampling weights. Cluster-robust standard errors by cohort are 

in parentheses. Significance at the 10%, 5%, 1% levels is indicated with 1, 2, 3 asterisks respectively.  
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Table 1.6: The Impact of the Reform on Fertility Decisions 

 
All Male Female 

Extensive Intensive Extensive Intensive Extensive Intensive 

 (1) (2) (3) (4) (5) (6) 

Exposed 
0.026 

(0.021) 

0.039 

(0.043) 

-0.004 

(0.019) 

-0.048 

(0.047) 

0.090** 

(0.034) 

0.202*** 

(0.059) 

Age 
0.034*** 

(0.002) 

0.092*** 

(0.004) 

0.032*** 

(0.002) 

0.091*** 

(0.004) 

0.039*** 

(0.003) 

0.092*** 

(0.005) 

Male 
0.034*** 

(0.011) 

0.195*** 

(0.030) 
    

Black 
-0.107*** 

(0.022) 

-0.253*** 

(0.059) 

-0.151*** 

(0.032) 

-0.337*** 

(0.092) 

-0.050** 

(0.025) 

-0.157** 

(0.065) 

Hispanic 
-0.032* 

(0.018) 

-0.114** 

(0.044) 

-0.014 

(0.019) 

-0.060 

(0.052) 

-0.064** 

(0.029) 

-0.203*** 

(0.067) 

Asian 
0.016 

(0.011) 

-0.078** 

(0.030) 

0.005 

(0.014) 

-0.118*** 

(0.041) 

0.035* 

(0.018) 

-0.014 

(0.040) 

Other race 
-0.048 

(0.047) 

-0.173 

(0.130) 

-0.001 

(0.057) 

-0.057 

(0.185) 

-0.117** 

(0.057) 

-0.356** 

(0.146) 

Year FEs Yes Yes Yes Yes Yes Yes 

State FEs Yes Yes Yes Yes Yes Yes 

Observations 68,556 68,556 45,453 45,453 23,103 23,103 

Notes: The sample includes physicians aged 26-48 in the monthly CPS between 1989 and 2017. The dependent 

variables are: (1) fertility at the extensive margin: an indicator of having at least one child and (2) fertility at the 

intensive margin: the number of children on the time of the survey. White is the omitted group for race/ethnicity 

variables. Data are weighted using CPS sampling weights. Cluster-robust standard errors by cohort are in parentheses. 

Significance at the 10%, 5%, 1% levels is indicated with 1, 2, 3 asterisks respectively.  
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Appendix 

Figure 1.A1: Age-Hours Profiles by Cohort 

A. Physicians 

 

B. Lawyers, judges, magistrates, and other judicial workers 

 

C. Dentists
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Table 1.A1: Estimation Results of the Impact on Long-Term Labor Supply 

– Using Tighter Year-of-Birth Windows for Treatment and Control Groups 

Treatment Control Eq. (3), no controls Eq. (3), controls Observations 

All     

After 1968 Before 1968 -4.385*** 

(0.916) 

-4.281*** 

(0.901) 
68,556 

 (Main analysis) 

After 1969  Before 1967 
-5.073*** 

(1.317) 

-5.080*** 

(1.229) 
57,856 

After 1970  Before 1966 
-5.296*** 

(1.260) 

-5.301*** 

(1.378) 
48,087 

After 1971  Before 1965 
-5.030** 

(2.154) 

-4.850** 

(2.391) 
39,436 

Male     

After 1968 Before 1968 -4.034*** 

(0.877) 

-3.961*** 

(0.868) 
45,453 

 (Main analysis) 

After 1969  Before 1967 
-4.741*** 

(1.200) 

-4.646*** 

(1.208) 
38,767 

After 1970  Before 1966 
-5.494*** 

(1.276) 

-5.379*** 

(1.305) 
32,502 

After 1971  Before 1965 
-4.789*** 

(1.602) 

-4.465*** 

(1.562) 
27,066 

Female     

After 1968 Before 1968 -4.476*** 

(1.275) 

-4.445*** 

(1.274) 
23,103 

 (Main analysis) 

After 1969  Before 1967 
-5.205*** 

(1.768) 

-5.142*** 

(1.752) 
19,089 

After 1970  Before 1966 
-4.613** 

(2.148) 

-4.596** 

(2.118) 
15,585 

After 1971  Before 1965 
-4.957 

(4.267) 

-4.955 

(4.262) 
12,370 

Notes: Each cell contains an estimate of the effect on post-residency hours. Cluster-robust standard errors by cohort 

are in parentheses. Data are weighted using CPS sampling weights. Significance at the 10%, 5%, 1% levels is indicated 

with 1, 2, 3 asterisks respectively. Three alternative specifications are used to test the robustness of the results. The 

treatment status (defined by year of birth) and residency status (defined by age) associated with each row are as 

follows, where the first one is used in the main analysis. 

(1) Treatment: born after 1968; Control: born before 1968. Residency: ages 26-34; Post-residency: ages 35-48. 

(2) Treatment: born after 1969; Control: born before 1967. Residency: ages 26-33; Post-residency: ages 36-48. 

(3) Treatment: born after 1970; Control: born before 1966. Residency: ages 26-32; Post-residency: ages 37-48. 

(4) Treatment: born after 1971; Control: born before 1965. Residency: ages 26-31; Post-residency: ages 38-48. 
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Table 1.A2: Estimation Results of the Impact on Long-Term Labor Supply 

– Excluding Nonrandom Selection into Treatment 

 Eq. (3), no controls Eq. (3), controls Observations 

All    

1941-1991 Cohorts 

(Main analysis) 

-4.385*** 

(0.916) 

-4.281*** 

(0.901) 
68,556 

1941-1980 Cohorts 
-5.043*** 

(0.718) 

-4.929*** 

(0.692) 
62,819 

1941-1978 Cohorts 
-5.492*** 

(0.773) 

-5.434*** 

(0.745) 
60,461 

1941-1976 Cohorts 
-5.948*** 

(0.835) 

-5.909*** 

(0.803) 
57,485 

Male    

1941-1991 Cohorts 

(Main analysis) 

-4.034*** 

(0.877) 

-3.961*** 

(0.868) 
45,453 

1941-1980 Cohorts 
-4.294*** 

(0.895) 

-4.186*** 

(0.889) 
42,471 

1941-1978 Cohorts 
-4.660*** 

(0.954) 

-4.523*** 

(0.946) 
41,272 

1941-1976 Cohorts 
-4.677*** 

(1.029) 

-4.575*** 

(1.020) 
39,620 

Female    

1941-1991 Cohorts 

(Main analysis) 

-4.476*** 

(1.275) 

-4.445*** 

(1.274) 
23,103 

1941-1980 Cohorts 
-5.767*** 

(1.101) 

-5.741*** 

(1.099) 
20,348 

1941-1978 Cohorts 
-6.442*** 

(1.198) 

-6.449*** 

(1.197) 
19,189 

1941-1976 Cohorts 
-7.556*** 

(1.292) 

-7.556*** 

(1.289) 
17,865 

Notes: Each cell contains an estimate of the effect on hours worked after residency. Cluster-robust standard errors by 

cohort are in parentheses. Data are weighted using CPS sampling weights. Significance at the 10%, 5%, 1% levels is 

indicated with 1, 2, 3 asterisks respectively. 
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Table 1.A3: Percentiles of the Distribution of Weekly Hours Worked 

 
Observations 

Mean 

(SD) 

Percentiles of the distribution 

 5 10 25 50 75 90 95 

All, ages 26-34          

  Treatment group 14,919 
58.420 

(19.078) 
32 40 40 60 72 80 90 

  Control group 7,789 
60.733 

(20.159) 
32 40 47 60 75 90 99 

All, ages 35-48          

  Treatment group 12,142 
49.346 

(16.471) 
24 32 40 50 60 70 80 

  Control group 33,706 
53.586 

(17.493) 
25 35 40 50 60 80 84 

Male, ages 26-34          

  Treatment group 8,215 
60.089 

(18.566) 
36 40 45 60 75 80 95 

  Control group 5,400 
62.635 

(19.302) 
40 40 50 60 80 94 99 

Male, ages 35-48          

  Treatment group 7,011 
52.462 

(16.123) 
32 40 40 50 60 75 80 

  Control group 24,827 
56.098 

(16.807) 
34 40 45 55 65 80 85 

Female, ages 26-34          

  Treatment group 6,704 
56.238 

(19.516) 
28 36 40 55 70 80 90 

  Control group 2,389 
56.235 

(21.398) 
23 30 40 52 70 90 99 

Female, ages 35-48          

  Treatment group 5,131 
44.927 

(15.940) 
20 25 40 40 52 65 75 

  Control group 8,879 
46.557 

(17.459) 
20 24 40 45 60 70 80 

Notes: Table reports means, standard deviations (in parentheses), and percentiles of weekly hours worked, weighted 

using sampling weights. The sample includes physicians aged 26-48 in the monthly CPS between 1989 and 2017. The 

treatment group includes physicians born after 1968, and the control group includes physicians born before 1968. 
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Table 1.A4: The Impact of the Reform on Marriage and Fertility Decisions 

 All Male Female 

Married 

Probit 
0.050***  

(0.015) 

0.029* 

(0.016) 

0.089*** 

(0.021) 

Logit 
0.050*** 

(0.016) 

0.030* 

(0.018) 

0.089*** 

(0.021) 

Divorced 

Probit 
-0.001 

(0.006) 

0.006 

(0.008) 

-0.012* 

(0.007) 

Logit 
-0.002 

(0.007) 

0.005 

(0.009) 

-0.012* 

(0.007) 

Fertility 

(Extensive) 

Probit 
0.026 

(0.020) 

0.001 

(0.017) 

0.080** 

(0.035) 

Logit 
0.028 

(0.020) 

0.005 

(0.017) 

0.081** 

(0.036) 

Notes: The sample includes physicians aged 26-48 in the monthly CPS between 1989 and 2017. The independent 

variables include exposure to the regulations, age, gender, race/ethnicity, year fixed effects, and state fixed effects. 

Data are weighted using CPS sampling weights. Cluster-robust standard errors by cohort are in parentheses. 

Significance at the 10%, 5%, 1% levels is indicated with 1, 2, 3 asterisks respectively. The effects is based on the 

average marginal effects using probit and logit models. 
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Table 1.A5: The Impact of the Reform on Marriage and Fertility Decisions 

 All Male Female 

Married 

Ages 26-34 
0.011 

(0.030) 

-0.032 

(0.045) 

0.069 

(0.050) 

Ages 35-48 
0.044** 

(0.011) 

0.022* 

(0.012) 

0.087*** 

(0.027) 

Divorced 

Ages 26-34 
0.005 

(0.009) 

0.015 

(0.018) 

-0.006 

(0.008) 

Ages 35-48 
0.0003 

(0.006) 

0.006 

(0.009) 

-0.009 

(0.011) 

Fertility 

(Extensive) 

Ages 26-34 
-0.040 

(0.034) 

-0.074** 

(0.033) 

0.013 

(0.049) 

Ages 35-48 
0.021 

(0.017) 

-0.001 

(0.018) 

0.066* 

(0.034) 

Fertility 

(Intensive) 

Ages 26-34 
-0.060 

(0.074) 

-0.112 

(0.074) 

0.027 

(0.095) 

Ages 35-48 
-0.005 

(0.057) 

-0.081 

(0.061) 

0.133 

(0.083) 

Notes: The sample includes physicians aged 26-48 in the monthly CPS between 1989 and 2017. The independent 

variables include exposure to the regulations, age, gender, race/ethnicity, year fixed effects, and state fixed effects. 

Data are weighted using CPS sampling weights. Cluster-robust standard errors by cohort are in parentheses. 

Significance at the 10%, 5%, 1% levels is indicated with 1, 2, 3 asterisks respectively. 
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2.1 Introduction 

Food insecurity is a serious and persistent problem in the United States, and the 

prevalence of food insecurity varies considerably among households with different demographic 

and socioeconomic characteristics (Coleman-Jensen et al., 2018). As shown in Figure 2.1, black- 

and Hispanic-headed households perennially have substantially higher rates of food insecurity 

(e.g. 21.8% and 18% in 2017, respectively) than white-headed households (8.8% in 2017).19 

Previous studies have shown that the health outcomes associated with food insecurity are related 

to children’s long-term cognitive and non-cognitive skills that affect human capital investments 

(e.g., Alaimo et al., 2001; Currie, 2006; Currie, 2009; Almond et al., 2011) and ultimately adult 

earnings (e.g., Currie, 2009; Ratcliffe, 2015; Bellani and Bia, 2016). Therefore, differential 

exposure to food insecurity early in life has the potential to heighten and preserve economic 

inequality. In addition, food insecurity is a likely contributing factor to the disadvantage of those 

relevant subgroups (e.g., blacks, Hispanics, and immigrants) (e.g., Ratcliffe, 2015; Coleman-

Jensen et al., 2016). These groups have received considerable attention from policymakers and 

academics since some of them have higher rates of poverty and use of public programs at rates 

greater than the majority populations (e.g., Currie, 2003; Jensen, 2002; Ratcliffe, 2015). 

The Supplemental Nutrition Assistance Program (SNAP, formerly known as the Food 

Stamp Program) is the largest food-assistance program in the U.S. While it is designed to 

alleviate food insecurity, the program also serves to mitigate the consequences of poverty. Many 

studies have addressed how SNAP lowers food insecurity overall (e.g., Wilde and Nord, 2005; 

Gundersen, et al. 2011; Ratcliffe et al., 2011), but little is known about how SNAP mitigates 

differences in food insecurity exposure by race/ethnicity and other demographic characteristics. 

                                                           
19 The measure of food insecurity captures household access to food, which may be different from actual nutrition 

intake. 
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Our previous study (Flores-Lagunes et al., 2018) finds that SNAP does not have a significant 

impact on group differences in food insecurity exposure but has potentially different pathways to 

affect food insecurity for different populations. 

This paper aims to provide a closer examination of the role of SNAP on differential 

exposure to food insecurity. We develop a sequential framework that helps understand how 

policy rules that are not designed to take into consideration group membership, such as race and 

ethnicity, can yet have different effects across groups. We decompose the differences in SNAP 

benefit levels across racial/ethnic groups into three components: (1) the eligibility component – 

the proportion of households that are eligible for SNAP; (2) the participation component – the 

propensity to enroll in SNAP among eligible households; (3) the generosity component – the 

magnitude of SNAP benefits that eligible and participating households receive. Since policy 

makers are ultimately interested in differences in food consumption and food insecurity 

exposure, we show that differences in SNAP benefit levels can be linked to differences in food 

consumption through a factor of proportionality given by the marginal propensity to consume 

food (MPCF) out of SNAP benefits. The relative importance of differences in eligibility, 

participation, and generosity obtained by our decomposition remain the same regardless of 

whether we are looking at SNAP benefit levels or food consumption outcomes. 

We use data from the December Current Population Survey (CPS) between 2003 and 

2016, along with its Food Security Supplement (FSS), and impute SNAP eligibility and benefits 

for the analysis sample. We decompose group differences in SNAP benefits into the three 

components described above. Our main findings are as follows. First, we show that differences 

in the proportion of being eligible alone can explain a substantial part of the total difference in 

the mean benefits for both black-white and Hispanic-white differentials. Second, participation 
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leads to an upward shift of the benefit levels for blacks, but it has little impact for Hispanics. In 

contrast, the generosity component increases Hispanics’ SNAP benefits, but it is negligible for 

blacks. Third, combining our results with the estimated MPCF out of SNAP benefits in Hastings 

and Shapiro (2018), SNAP reduces the food consumption gaps between blacks/Hispanics and 

whites by a modest amount, which is likely not enough to reduce the differences in the resource 

gaps between groups. 

We also provide an exploratory analysis of how changes to SNAP policy rules might 

affect differences in food insecurity across groups by examining three counterfactual policy 

scenarios. The first scenario is constant transfer, which provides all participants the same amount 

of SNAP benefits. The second scenario involves automatic enrollment, which makes all eligible 

households automatically enroll in the SNAP program. The third scenario is universal eligibility, 

which makes all households become eligible for SNAP.  Among these policy counterfactuals, 

automatic enrollment raises both blacks’ and Hispanics’ benefit levels relative to whites the 

most. The constant transfer policy slightly increases benefits for blacks relative to whites, but it 

substantially lowers the differences in benefit levels between Hispanics and whites, compared to 

the baseline decomposition. Universal eligibility has little impact on the differences between 

blacks and whites, as well as Hispanics and whites. Overall, our results suggest that, among the 

three exploratory policy scenarios, the automatic enrollment policy may be the most effective in 

alleviating differences in exposure to food insecurity across racial and ethnic groups. 

Overall, this paper contributes to our broader understanding of policies designed to 

reduce poverty in several ways. First, we uncover the pathways through which SNAP may have 

on the existing heterogeneity in exposure to food insecurity over the demographic groups under 

consideration. Second, we provide a framework that conceptualizes how a color-blind program, 
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like SNAP, could have differences in benefit levels across groups and affect inequality. The 

structural model developed in this paper allows us to parse out different components of the 

program and tell what would happen to inequality when a policy change occurs. Third, this 

technique can be applied to other social programs and can help policy makers target policies 

more effectively to alleviate social and economic inequality.20 

The rest of the paper is structured as follows. Section 2 provides background on the 

Supplemental Nutrition Assistance Program (SNAP). Section 3 describes the model used to 

decompose differences in SNAP benefit levels and shows how it can be linked to differences in 

food consumption. Section 4 describes the data. Section 5 presents descriptive statistics and 

results. Section 6 concludes and discusses future work. 

 

2.2 Background 

In 2017, about 15 million households were food insecure in the U.S., including 5.8 

million with “very low” food security (Coleman-Jensen et al., 2018). The main policy lever 

against exposure to food-related hardship in the U.S. is the Supplemental Nutrition Assistance 

Program (SNAP, formerly known as the Food Stamp Program). In fiscal year 2017, SNAP 

provided benefits to 20.8 million households at a cost of $68 billion, which is much larger than 

any other food and nutrition assistance programs such as Women Infants and Children (WIC), 

the National School Lunch Program (NSLP), and the School Breakfast Program (USDA, 2019). 

In addition, SNAP is the most universal and unrestricted food-assistance program: virtually 

available to all households that meet the financial and nonfinancial eligibility criteria. 

                                                           
20 For instance, our decomposition analysis can be used to investigate how states’ economic and policy environments 

shape the educational disparities in mortality rates over time, as found in Montez et al. (forthcoming). 
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To be eligible for SNAP, a typical household must meet three financial criteria, while 

households with a disabled member or a member whose age is 60 or above face less stringent 

criteria. The criteria are: (1) gross monthly income does not exceed l30 percent of the poverty 

line (or 165 percent of the poverty line for households with an elderly or disabled member); (2) 

net monthly income is at or below the poverty line, where net income is calculated as gross 

income minus allowable deductions (including a 20 percent deduction from gross income, a 

standard deduction, a deduction for households incurring expenses in the care of their children 

and/or disabled dependents, a medical deduction for expenses, and a shelter deduction for costs 

above 50% of a household’s net income, computed before the shelter deduction and capped 

except for elderly or disabled households); (3) countable assets are no more than $2,250 (or 

$3,250 for households with an elderly or disabled member). Besides these three main criteria, 

able-bodied adults without dependents are limited to receiving benefits for 3 months out of each 

36-month period if they do not meet certain work requirements. 

SNAP provides monthly benefits to eligible households to purchase food items at SNAP-

authorized retailers with an electronic benefit transfer (EBT) card.21 The monthly SNAP benefit 

amount is the maximum SNAP allotment, varied by household size, less 30 percent of a 

household’s net monthly income, and the benefit amount is subject to a minimum amount.22 In 

fiscal year 2017, the average benefit level was about $254 per household per month (USDA, 

2019). To receive SNAP benefits, program applicants must provide required documentation and 

                                                           
21 Since June of 2004, all States have implemented the Electronic Benefits Transfer (EBT) system. 
22 Note that the poverty line is nonlinearly related to household size and composition. The USDA adjusts the income 

eligibility standards, the deductions, and the maximum allotments at the beginning of each fiscal year, which takes 

effect from October 1st of the previous year to September 30th of the current year. The changes are based on 

changes in the cost of living.  These parameters are the same for all states in the continental U.S. but different for 

Alaska and Hawaii. 
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participate in an interview. After initial eligibility, recipients must be recertified every 6 to 24 

months. 

Coleman-Jensen et al. (2018) points out that the rates of food insecurity are higher than 

the national average for certain populations.23 In particular, blacks and Hispanics have 

substantially higher rates of food insecurity than whites over time (Figure 2.1).24 Using data from 

Oklahoma, Nam et al. (2015) also shows that whites experience significantly lower incidence of 

food insecurity than the minority groups (African Americans, American Indians, and Hispanics). 

To better understand the differential exposure to food insecurity, our previous study (Flores-

Lagunes et al., 2018) uses the Oaxaca-Blinder decomposition to assess the contribution of 

different factors to the observed group differences in food insecurity incidence and severity by 

race, ethnicity, and immigrant status. These factors are an “endowment component,” attributable 

to group differences in observable household characteristics, and a “structural component,” 

attributable to group differences in the structure linking the observable household characteristics 

to food insecurity. Our finding is suggestive of the heterogeneity in the relative importance of the 

factors (endowment and structure) contributing to the observed differences in food insecurity 

exposure across these demographic groups.  

How does SNAP affect the inequality in food insecurity exposure? Unlike other food and 

nutrition programs (e.g., WIC and NSLP), SNAP is universal in the sense that it is not targeted at 

specific demographic groups; i.e., it is blind to race and ethnicity. However, different 

racial/ethnic groups might have different household characteristics and participate in SNAP at 

                                                           
23 For example, black- and Hispanic-headed households, low-income households, single-headed households with 

children. 
24 Note that this is based on all households in the U.S. Similarly, Flores-Lagunes et al. (2018) shows that blacks and 

Hispanics have substantially higher rates of food insecurity than whites using the target population in our analysis, 

which will be introduced in Section 2.4. 
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different rates, which results in different SNAP receipt and benefit levels. For instance, one 

possible explanation to the disparate patterns in food insecurity among the groups analyzed is 

that they may participate in SNAP at different rates. Therefore, SNAP could potentially have 

different pathways to affect food insecurity for different populations. Motivated by this, we 

further take a closer examination of the role played by SNAP and the potentially different 

determinants of program participation across groups.  

 

2.3 Decomposition of SNAP 

To understand the role of SNAP on differential exposure to food insecurity over the 

demographic groups under consideration, we decompose group differences in SNAP benefit 

levels into three components: (1) the eligibility component – the proportion of households that 

are eligible for SNAP; (2) the participation component – the propensity to enroll in SNAP among 

eligible households; (3) the generosity component – the magnitude of SNAP benefits that 

eligible and participating households receive. 

 

2.3.1 Baseline model 

We consider a population with two non-overlapping subgroups indexed by 𝑔 ∈ {0,1}. Let 

0 denotes the population of whites, and 1 denotes the population of blacks. To fix ideas, we start 

with the simplest case of the decomposition analysis, with binary indicators of SNAP eligibility 

and generosity. For any household in group g, we observe a binary variable for eligibility, 𝐿𝑔, 

where 𝐿𝑔 = 1 if a household is eligible for SNAP, and  𝐿𝑔 = 0 if a household is not eligible for 

SNAP. Among eligible households, we observe whether eligible households take up their SNAP 

benefits or not, captured by a dummy variable 𝑇𝑔. It equals 1 if a household is enrolled in SNAP, 
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and 0 otherwise. For those who participate in SNAP, some of them qualify for a high amount of 

SNAP benefits, 𝑌, while others qualify for a low amount of benefits which, for the purposes of 

this example, we set it to 
𝑌

2
. Let 𝐻𝑔 be an indicator of receiving the high amount, which equals 1 

if a participating household receives the high amount, and 0 otherwise. Therefore, the expected 

value of SNAP benefits for group g can be calculated as: 

𝐸[𝑌𝑔] = 𝑃𝑟(𝐿𝑔 = 1) ∙ 𝑃𝑟(𝑇𝑔 = 1|𝐿𝑔 = 1) ∙ [𝑃𝑟(𝐻𝑔 = 0|𝐿𝑔 = 1, 𝑇𝑔 = 1) ∙
𝑌

2
+

𝑃𝑟(𝐻𝑔 = 1|𝐿𝑔 = 1, 𝑇𝑔 = 1) ∙ 𝑌]. 

The difference in the mean SNAP benefit levels between groups is 

∆𝑌= 𝐸[𝑌|𝑔 = 1] − 𝐸[𝑌|𝑔 = 0]. 

We can decompose this overall difference into the following three components related to 

SNAP: 

(1) Eligibility: the group difference in the proportions of households that are eligible. To obtain 

this, we calculate the counterfactual expected outcome where group 1 has the same eligibility 

rate as group 0: 

𝐸[𝑌𝐶1|𝑔 = 1] = 𝑃𝑟(𝐿0 = 1) ∙ 𝑃𝑟(𝑇1 = 1|𝐿1 = 1) ∙ [𝑃𝑟(𝐻1 = 0|𝐿1 = 1, 𝑇1 = 1) ∙
𝑌

2
+

𝑃𝑟(𝐻1 = 1|𝐿1 = 1, 𝑇1 = 1) ∙ 𝑌]. 

The contribution of eligibility to the overall difference is equal to 

∆𝐿= 𝐸[𝑌|𝑔 = 1] − 𝐸[𝑌𝐶1|𝑔 = 1], 

where the two terms on the right-hand side are the same except for the part corresponding to 

the eligibility component. As is clear from the above, the contribution of this component will 

disappear if group 1 and group 0 have the same proportion of households being eligible for 

SNAP. 
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(2) Participation: he group difference in the participation rates. To obtain this, we calculate the 

counterfactual expected outcome where group 1 has the same eligibility and take-up rates as 

group 0: 

𝐸[𝑌𝐶2|𝑔 = 1] = 𝑃𝑟(𝐿0 = 1) ∙ 𝑃𝑟(𝑇0 = 1|𝐿0 = 1) ∙ [𝑃𝑟(𝐻1 = 0|𝐿1 = 1, 𝑇1 = 1) ∙
𝑌

2
+

𝑃𝑟(𝐻1 = 1|𝐿1 = 1, 𝑇1 = 1) ∙ 𝑌]. 

The contribution of participation to the overall difference (∆𝑇) is equal to 

𝐸[𝑌𝐶1|𝑔 = 1] − 𝐸[𝑌𝐶2|𝑔 = 1], 

where everything is equal except for the part corresponding to participation component. 

(3) Generosity: the group difference in the proportions of households who qualify for the high 

amount. To obtain this, we calculate the counterfactual expected outcome where group 1 has 

the same amount of benefits as group 0: 𝐸[𝑌|𝑔 = 0], and the contribution of generosity to 

the overall difference (∆𝐺) is equal to 

𝐸[𝑌𝐶2|𝑔 = 1] − 𝐸[𝑌|𝑔 = 0]. 

∆𝐺 will become zero if group 1 and group 0 receive the same amount of SNAP benefits. 

Altogether, the three group differences add up to the overall difference, that is, ∆𝑌= ∆𝐿 +

∆𝑇 + ∆𝐺. Since the eligibility and generosity components are based on predetermined and 

known policy rules of the SNAP program, group differences in these two components are 

deterministic and entirely due to differences in the composition of these groups. 

 

2.3.2 Numerical Example 

We use the following numerical example to illustrate how this decomposition works. 

Suppose the high amount of SNAP benefits (𝑌) is equal to 500 dollars per month. For 

households in group 1, 50 percent are eligible for SNAP, among which 50 percent enroll and a 
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fraction of 0.3 qualify for the high amount of benefits. For households in group 0, 30 percent are 

eligible for SNAP, among which 60 percent enroll and one-fourth qualify for the high amount of 

benefits. The above information is summarized in Table 2.1. 

Hence, the expected SNAP benefits for group 1 is equal to 

𝐸[𝑌|𝑔 = 1] = 0.5 × 0.5 × (0.7 × 250 + 0.3 × 500) = 81.25, 

and the expected SNAP benefits for group 0 is equal to 

𝐸[𝑌|𝑔 = 0] = 0.3 × 0.6 × (0.75 × 250 + 0.25 × 500) = 56.25. 

The overall difference in the average SNAP benefits is ∆𝑌= 𝐸[𝑌|𝑔 = 1] − 𝐸[𝑌|𝑔 = 0] = 25, 

which means that blacks receive 25 dollars more of SNAP benefits per month than whites on 

average. 

Using the counterfactual expected outcomes, we can calculate the contributions of 

eligibility, participation, and generosity to the overall difference. First, the contribution of 

eligibility is equal to 

∆𝐿= 81.25 − 0.3 × 0.5 × (0.7 × 250 + 0.3 × 500) = 32.5. 

Second, the contribution of participation is equal to 

∆𝑇= 0.3 × 0.5 × (0.7 × 250 + 0.3 × 500) − 0.3 × 0.6 × (0.7 × 250 + 0.3 × 500) = −9.75. 

Third, the contribution of generosity is equal to 

∆𝐺= 0.3 × 0.6 × (0.7 × 250 + 0.3 × 500) − 56.25 = 2.25. 

Based on this example, the decomposition of the overall difference in SNAP benefit levels 

between groups shows that the three components contribute to the black-white differential 

differently, with the eligibility component being somewhat more important than the other two. 

The participation component contributes a negative effect to the overall difference. Altogether, 

these three components sum up to the overall difference: 
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∆𝐿 + ∆𝑇 + ∆𝐺= 32.5 − 9.75 + 2.25 = 25. 

In addition to the decomposition, this model also allows us to evaluate counterfactual 

policy scenarios. We consider the following three scenarios: (1) constant transfer: assuming all 

the SNAP participants receive the high amount of 500 dollars per month; i.e., 𝑃𝑟(𝐻𝑔 =

1|𝐿𝑔 = 1, 𝑇𝑔 = 1) = 1; (2) automatic enrollment: assuming all eligible households enroll in 

SNAP; i.e., 𝑃𝑟(𝑇𝑔 = 1|𝐿𝑔 = 1) = 1; (3) universal eligibility: assuming all households are 

eligible for SNAP; i.e., 𝑃𝑟(𝐿𝑔 = 1) = 1. Table 2.2 shows the calculated effects of changes in 

SNAP policy rules on group differences in SNAP benefits and the three components, in 

comparison with the baseline result shown in Column (1). As seen in Columns (2)-(4), automatic 

enrollment increases the average benefit level of blacks relative to whites the most, and this is 

mostly attributable to the participation component. Constant transfer also raises the average 

benefit level of blacks, in which the eligibility and participation components have contradicting 

effects, with the former outweighs the latter. In contrast, universal eligibility decreases SNAP 

benefits of blacks relative to whites, and this is mainly attributable to the participation 

component. 

 

2.3.3 General Setting 

In this section, we discuss more formally and generally the conditions required for this 

decomposition to work. Fortin et al. (2011) show that standard decomposition methods, such as 

Oaxaca and Blinder, rely on the assumption of ignorability. Ignorability essentially imposes that, 

conditional on the value of observable characteristics, the distribution of potential outcomes is 

independent of the treatment status. Here, we impose a modified version of this ignorability 

assumption. 
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Let 𝑌(1) be the potential value of the SNAP benefit a household receive if the household 

belongs to group 1, and 𝑌(0) be the counterfactual value of the SNAP benefit that the household 

could have receive if the household were to belong to group 0. Let 𝑋 be the variables that 

unequivocally determine both eligibility and generosity of the program. Our key assumption is 

then: 

𝑌(1) = 𝑌(0)|𝑇, 𝐿, 𝑋. 

This assumption essentially restricts eligibility and benefit levels to be invariant to group 

membership. That is, conditional on eligibility and participation, SNAP benefits are not different 

between groups. This assumption can be easily verified by a casual look at the program rules. 

Imposing this condition allows us to bypass the need to identify the structural component of 

standard decompositions since this component is trivially equal to zero. That is, all of the 

differences in 𝐸[𝑌|𝐺 = 𝑔] between groups must be accounted by composition effects. 

As argued by Fortin et al. (2011), the structural component of a decomposition exercise 

can be thought as a treatment effect (of group membership on the outcome), and the composition 

effect reflects differences in the distribution of predetermined characteristics between groups. 

Imposing the assumption above, we immediately obtain the result that the structural component, 

the treatment effect of group membership on SNAP benefit levels, is zero. Thus, if any 

differences in average benefit levels are observed between groups, this must be entirely 

accounted by their differences in the distribution of (𝑇, 𝐿, 𝑋). It is useful to write the joint 

distribution of (𝑇, 𝐿, 𝑋) using the factorization formula: 

𝑓(𝑡, 𝑙, 𝑥) = 𝑓(𝑥)Pr[𝐿 = 𝑙|𝑋 = 𝑥]Pr[𝑇 = 𝑡|𝐿 = 𝑙, 𝑋 = 𝑥]. 

It is important to note that if 𝑋 includes all characteristics that affect eligibility, then Pr[𝐿 =

𝑙|𝑋 = 𝑥] becomes degenerate; that is, it must be either zero or one. In addition, we know that 𝑇 
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is zero whenever 𝐿 is zero and that 𝑌 is zero unless 𝑇 and 𝐿 are one. Since the deterministic 

function of (𝑇, 𝐿, 𝑋), 𝑌(𝑇, 𝐿, 𝑋), is degenerate, we obtain: 

𝑌(𝑇, 𝐿, 𝑋) = 𝑇(𝐿(𝑋))𝐿(𝑋)𝑚(𝑋), 

given a known function 𝑚(𝑋). Therefore, the expected value of the SNAP benefit for 

households in group 𝑔 is 

𝐸[𝑌|𝐺 = 𝑔] = Pr[𝐿 = 1|𝐺 = 𝑔] Pr[𝑇 = 1|𝐿 = 1, 𝐺 = 𝑔] 𝐸[𝑌|𝐿 = 1, 𝑇 = 1, 𝐺 = 𝑔], 

where Pr[𝐿 = 1|𝐺 = 𝑔] = Pr[𝑋 ∈ 𝐴|𝐺 = 𝑔], where 𝐴 is the set of values of 𝑋 that determine 

the eligibility of a household. It is relevant to note also that the set 𝐴 is not indexed by 𝑔, that is, 

eligibility thresholds are the same regardless of group membership. For the third term in the 

equation above, we have that 

𝐸[𝑌|𝐿 = 1, 𝑇 = 1, 𝐺 = 𝑔] = ∫ 𝑌(1,1, 𝑥)𝑓(𝑥|𝐿 = 1, 𝑇 = 1, 𝐺 = 𝑔)𝑑𝑥, 

which can be re-written as ∫ 𝑓(𝑥|𝐿 = 1, 𝑇 = 1, 𝐺 = 𝑔)𝑚(𝑥)𝑑𝑥. 

To sum up, the overall difference in the observed SNAP benefit levels between groups 

can be decomposed into three components: 

∆𝑌= ∆𝐿 + ∆𝑇 + ∆𝐺 , 

where 

∆𝐿= (Pr[𝐿 = 1|𝐺 = 1] − Pr[𝐿 = 1|𝐺 = 0]) Pr[𝑇 = 1|𝐿 = 1, 𝐺 = 1] 𝐸[𝑌|𝐿 = 1, 𝑇 = 1, 𝐺 = 1]; 

∆𝑇= Pr[𝐿 = 1|𝐺 = 0]( Pr[𝑇 = 1|𝐿 = 1, 𝐺 = 1] − Pr[𝑇 = 1|𝐿 = 1, 𝐺 = 0]) 𝐸[𝑌|𝐿 = 1, 𝑇 =

1, 𝐺 = 1]; 

∆𝐺= Pr[𝐿 = 1|𝐺 = 0] Pr[𝑇 = 1|𝐿 = 1, 𝐺 = 0] (𝐸[𝑌|𝐿 = 1, 𝑇 = 1, 𝐺 = 1] −

𝐸[𝑌|𝐿 = 1, 𝑇 = 1, 𝐺 = 0]). 

Each of these differences captures the mean effect of a counterfactual experiment conducted in 

group 1 that changes the respective distribution of the component to their corresponding 
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counterpart in group 0 while holding everything else constant. For example, ∆𝐿 answers the 

counterfactual question of how average SNAP benefit levels would change if group 1 were to 

have the same eligibility rates as group 0 while maintaining fixed the likelihood of participating 

in the program and also the average level of transfers that they are entitled to. Similarly, ∆𝑇 

answers the counterfactual question of how average SNAP benefit levels would change if, on top 

of having the same eligibility rates as group 0, we also were to apply the same likelihood of 

participating in the program as households in group 0. Finally, the term ∆𝐺 answers the question 

of how average SNAP benefit levels would change if, on top of having the same eligibility rates 

and participation rates as group 0, we were to entitle households in group 1 to the same levels of 

average benefits that households in group 0 are entitled to. These three components, differences 

in eligibility rates, participation rates, and average benefit levels by construction add to the 

overall difference between groups. In this sense, this decomposition exercise is completely 

atheoretical. 

 

2.3.4 Linkage to Differential Exposure to Food Insecurity 

So far, we undertake a close to mechanical exercise to understand the average difference 

in SNAP benefit levels between groups. The limitation of this approach is that the outcome of 

interest is a deterministic function of household characteristics. Moreover, policy makers are 

ultimately interested in differences in food consumption and food insecurity exposure. 

Differences in SNAP benefits across groups are only of interest to the extent that these 

differences can trace out the differences in food consumption and food insecurity exposure. In 

this section, we argue that the decomposition exercise above can help inform policy makers 
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about the outcomes that are of interest, such as food consumption, even if the object of the 

decomposition is limited to SNAP benefits. 

Assume that food consumption (𝐶) is related to SNAP benefits and other household 

characteristics according to the following equation: 

𝐶𝑖𝑔 = 𝛽𝑖𝑔𝑌𝑖𝑔 + 𝜃𝑋𝑖𝑔 + 𝜀𝑖𝑔. 

This equation states that food consumption is a function of household characteristics (𝑋𝑖𝑔), the 

level of SNAP benefits that a household receives (𝑌𝑖𝑔), and their propensity to consume out of 

SNAP benefits (𝛽𝑖𝑔), which we allow to vary across households and groups. 

Under the assumption that the error term is mean independent of the observed 

characteristics in the regression, taking the differences of average food consumption levels 

across groups and adding and subtracting a couple of terms, we obtain: 

∆𝐸[𝐶] = 𝛽1∆𝐸[𝑌] + ∆𝛽𝐸[𝑌0] + 𝜃∆𝑋 + ∆𝐶𝑜𝑣(𝛽, Y). 

This equation looks almost identical to the standard Oaxaca-Blinder decomposition, except for 

the last term. The last term accounts for the potential differences in the covariance between the 

propensity to consume out of SNAP benefits and the benefit levels themselves between groups. 

This term can be safely ignored if (1) 𝐶𝑜𝑣(𝛽𝑖, 𝑌𝑖) is zero for both groups, which must happen if 

SNAP benefits are constant, (2) propensity to consume out of SNAP is constant among members 

of the same group, (3) these covariances are the same regardless of group membership, or (4) 𝛽𝑖 

and 𝑌𝑖 are independent.25 

Under the assumption that the last term is zero, group differences in SNAP benefit levels 

that we decompose before will affect differences in food consumption through a factor of 

                                                           
25 It is possible that 𝛽𝑖 is decreasing with 𝑌𝑖; i.e., MPCF out of SNAP is low when the benefit level is high. We can 

still take care of this case by estimating the covariance between 𝛽𝑖 and 𝑌𝑖. 
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proportionality given by the marginal propensity to consume food (MPCF) out of SNAP 

benefits, which is a parameter that has been the object of study in the previous literature. In 

particular, the relative importance of differences in eligibility, take-up, and generosity obtained 

by our decomposition must remain the same regardless of whether we are looking at SNAP 

benefit levels or food consumption outcomes.  

Previous studies have examined what proportion of SNAP receipts are infra-marginal. 

For instance, Hoynes and Schanzenbach (2009) find that the MPCF out of food stamps is 0.16 

for all non-elderly and 0.30 for female-headed households; Bruich (2014) suggests that the 

MPCF out of food stamps is 0.3; Hastings and Shapiro (2018) use administrative data and casual 

inference approaches and show that the MPCF out of SNAP benefits is 0.5 to 0.6, which is larger 

than the MPCF out of cash. In Section 5, we use the result from Hastings and Shapiro (2018), as 

it is the most recent and reliable study, to link our decomposition results of differences in SNAP 

benefit levels to differences in food consumption.26 

 

2.4 Data 

We analyze data from the December Current Population Survey (CPS) between 2003 and 

2016, along with the Food Security Supplement (FSS). These data are nationally representative 

of the U.S. population and include sufficient information on household characteristics that allow 

us to conduct the decomposition analysis. The unit of observation for the analysis is at the 

household level. Households are included in the sample if the reference person is above 15 years 

old. We focus on households with incomes below 185 percent of the poverty line or that report 

being short of money for food. These are the target population being asked about food insecurity 

                                                           
26 It is worth noting that different groups might have different levels of MPCF out of SNAP benefits. We assume that 

they are the same across groups in this paper. 
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questions and SNAP participation in the FSS. It is important to note that his target population is 

more economically disadvantaged and more food-insecure than the general population. 

Since SNAP eligibility information is not available in the CPS, we impute program 

eligibility for each household using the data on household income and family composition. To 

obtain adequate information on earnings, we read in the Outgoing Rotation Group (ORG) files in 

January-March each year and match the December data to the appropriate ORG.27 The match 

may fail because of identifier errors (due to migration, mortality, non-response, and recording 

errors), inconsistencies in respondents’ basic demographic attributes (race, age, or gender), or 

incomplete information on the key variables. Overall, a total of 160,065 respondents within the 

scope of our study have complete information on earnings and family income after matching the 

FSS to the ORG. 

We collect the eligibility standards every year from the USDA to impute SNAP 

eligibility for our sample with the following five steps. First, we use information on weekly 

earnings to pass through the gross and net monthly income tests. Second, the categorical family 

income variable is used to further screen out certain ineligible households. Third, we employ 

different income eligibility standards for disabled and elderly (age 60 or older) respondents. 

Fourth, we rule out immigrants who have lived in the U.S. for less than five years as they are 

ineligible. Fifth, households are eligible if they reported participating in SNAP.28 Note that the 

December CPS-FSS does not track all of the information needed to identify eligible households. 

For instance, we lack information on households’ assets, expenses related to medical and shelter 

                                                           
27 For respondents in the December CPS, the ORG is split into December-March CPS surveys. We use CPS identifiers 

to match households across survey months of January-March. 
28 Among our imputed ineligible households, 6.68 percent (10,698 out of 160,065) of them are shown participating in 

SNAP, which could be due to misreporting or the lack of information to identify eligibility. We thus consider these 

households as eligible. 
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deductions, SSI and TANF receipt, and whether there is a disabled or elderly member in the 

household other than the respondent. We assume that all types of income other than self-reported 

earnings and family income are zero.  

Our imputed eligibility seems fairly reasonable. Compared to those documented in the 

USDA reports (e.g., Wolkwitz, 2008; Cunnyngham, 2018), the take-up rates (see Figure 2.2) 

have similar trends across demographic groups and over time periods. The program shows a 

countercyclical pattern, increasing in take-up rates notably in the Great Recession. The reduction 

in take-up rates after 2013 is consistent with the fact that, in November 2013, all SNAP benefits 

were reduced when temporary increases in the American Recovery and Reinvestment Act 

expired. In addition, the take-up rates are much lower for eligible elderly adults (age 60 or older) 

than their counterparts. However, the take-up rates vary substantially across studies, which is 

mainly due to different data, methodology, and analysis samples used.29 

Since information on SNAP benefit receipt is available in the December CPS, we can 

further impute the amount of benefits for those who participate in SNAP using the annual benefit 

standards from the USDA. Our analysis is based on the imputed benefit levels since there are 

several major problems with the self-reported SNAP benefits in the CPS. First, the self-reported 

values seem to have a rounding problem. There are clear spikes in the density at benefit amounts 

divisible by 100. Second, the SNAP benefits are top-coded in the CPS (the top code is $450 

before 2011 and $700 in 2011 and after). Third, there are a number of participants refused, didn’t 

know, or didn’t response their SNAP benefit amounts. 

                                                           
29 Our estimated participation rates lie between those in Cunnyngham (2018) and Gundersen et al. (2018). The 

USDA reports collect administrative data from the SNAP Quality Control data to get information on SNAP 

participation, along with the data from the CPS Annual Social and Economic Supplement to generate SNAP 

eligibility (e.g., Cunnyngham, 2018). Compared with their estimates, our take-up rates seem to be low, but the 

pattern is pretty similar. Previous studies have pointed out that SNAP participation is somewhat underreported in 

survey data (Gundersen and Kreider, 2008; Cunnyngham, 2018). In addition, the USDA sample is different from our 

sample. 
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2.5 Results 

2.5.1 Descriptive Statistics 

Table 2.3 describes the summary statistics for the analysis sample by race and ethnicity. 

As shown in Panel A, whites have substantially higher monthly earnings and family income than 

blacks and Hispanics on average. Using whites as the reference group, blacks have higher 

proportions of females and immigrants, and they are less likely to be married and more likely to 

be unemployed and live in metropolitan areas. On the other hand, Hispanics have higher 

proportions of males and immigrants, and they are more likely to be married, unemployed, and 

live in metropolitan areas. Both blacks and Hispanics have larger family size with more own 

children than whites. In terms of educational attainment, blacks and Hispanics have less years of 

schooling relative to whites. There are also some geographical variation across groups. Blacks 

are more likely to live in the Midwest, Middle Atlantic, and South Atlantic regions, whereas 

Hispanics are more likely to live in the West and West South Central regions. 

Panel B shows the descriptive statistics of the three SNAP components by subgroup. 

Among the analysis sample, blacks and Hispanics are substantially more likely to be eligible for 

SNAP. The proportions of households that are eligible are 23 percent for whites and 41 percent 

for both blacks and Hispanics. Among the eligible households, blacks have the highest take-up 

rate (62 percent), followed by whites (49 percent) and Hispanics (42 percent). Figure 2.2 also 

shows that blacks constantly have the highest take-up rate, followed by whites and Hispanics. 

Conditional on participation, Hispanics receive the highest amount of SNAP benefits on average 

(404 dollars per month). Blacks receive an average benefit level of 334 dollars per month, which 

is also significantly higher than the amount that whites receive (314 dollars per month). 
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Panel C displays the descriptive statistics of food-related outcomes by subgroup. With 

respect to food consumption, blacks spend significantly smaller amounts on food than whites, 

whereas Hispanics spend more than whites. With respect to food insecurity exposure, we look at 

two measures of food-related hardship as in Flores-Lagunes et al. (2018): incidence, the binary 

measure which captures whether households are food insecure; and severity, based on a 

continuous measure, the Rasch scale score, in the FSS. The results indicate that blacks and 

Hispanics suffer from food insecurity more than whites. The outcomes are similar to our 

previous study, except for the difference in the Rasch score between Hispanics and whites, which 

may be due to different sample used in the two analyses. 

 

2.5.2 Decomposition Results 

Table 2.4 presents the results of our decomposition and potential outcomes of changes in 

the SNAP policy rules. Row by row, we report estimates of the overall difference (∆𝑌) and the 

contributions from the eligibility (∆𝐿), participation (∆𝑇), and generosity (∆𝐺) components. For 

the decomposition by race and ethnicity, we regard non-Hispanic whites as the reference group. 

We first consider the estimates from the main decomposition specified in section 3. Column (1) 

shows that blacks and Hispanics overall receive 32.73 and 37.48 dollars more than whites from 

the SNAP program per month, respectively. Using the estimated results of the MPCF out of 

SNAP benefits from Hastings and Shapiro (2018), SNAP increases food consumption by 16.37 

to 19.64 dollars per month for blacks, and by 18.74 to 22.49 dollars per month for Hispanics, 

compared to whites. Differences in the proportion of being eligible alone can explain a 

substantial part of the overall differences in the mean benefits for both black-white and Hispanic-

white differentials. In addition, differences in take-up rates lead to upward shift of the benefit 
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levels and food consumption for blacks, but it has little impact for Hispanics. In contrast, the 

generosity component increases Hispanics’ benefit level, but it is negligible for blacks. 

To understand the magnitude of these differences in reducing food insecurity 

differentials, we use information on the reported resource gap to assess perceived food assistance 

shortcomings. There are two questions we use to capture the resource gap in the FSS: (1) how 

much additional money needed to meet weekly basic household food needs; (2) how much less 

money could be spent and still meet basic household food needs. Combining these two, we 

create a variable that measures the amount deviating from a default level of food spending to be 

food secure. Consistent with the food insecurity differentials, the average resource gaps are 

larger for blacks and Hispanics relative to whites, and both of the differences in average resource 

gaps are substantial. Black households reported having 89.97 dollars less per month than white 

households, and Hispanic households reported having 58.12 dollars less per month. Together 

with the decomposition results, SNAP reduces the food consumption gaps between 

blacks/Hispanics and whites by a modest amount, which is likely not enough to reduce the 

differences in the resource gaps between groups. However, it is important to note that there are 

two major caveats of this measure. First, there are a lot of missing values in the two variables 

used to crease the resource gap measure. Second, these self-reported amounts are subject to 

personal interpretation and potential mismeasurement.  

In order to shed light on the extent to which SNAP may affect differences in transfer 

amounts across demographic groups, we then consider three scenarios that vary SNAP policy 

rules, similar to Section 3.2. The first scenario provides every participant the same amount of 

SNAP benefits, 250 dollars per month. The second scenario involves automatic enrollment, that 
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is, all eligible households automatically enroll in the SNAP program. The third scenario is 

universal eligibility, which let all households become eligible for SNAP.  

As seen in Table 2.4, the most effective way to reduce differences in food insecurity 

through SNAP is the automatic enrollment policy. Under this scenario, the SNAP benefit levels 

increase the most for both blacks and Hispanics relative to whites. Without the effect of 

differences in take-up rates, the eligibility component largely increases the benefit levels for 

more disadvantaged groups. On the other hand, the constant transfer policy slightly increases 

SNAP benefits of blacks relative to whites, but it lowers the differences in SNAP benefits 

between Hispanics and whites, compared to the baseline decomposition. Universal eligibility has 

little impact on the differences between blacks and whites, as well as Hispanics and whites. If 

anything, it slightly decreases the black-white differential but increases the Hispanic-white 

differential. Since the relative importance of the three components on differences in benefit 

levels are indicative of their relative importance on differences in food consumption, we would 

expect that the automatic enrollment policy is the most effective in alleviating differences in food 

consumption and exposure to food insecurity. 

 

2.6 Conclusion 

Food insecurity varies greatly by race and ethnicity, and the disparities in food insecurity 

have been a persistent problem in the U.S. This study attempts to uncover the pathways through 

which SNAP may have on the existing heterogeneity in exposure to food insecurity. We develop 

a sequential framework that decomposes differences in SNAP benefit levels across racial/ethnic 

groups into three components: differences in eligibility, participation, and generosity. We then 
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link the results to differences in food consumption through the MPCF out of SNAP benefits to 

provide implications on food insecurity differentials. 

Our results suggest that differences in eligibility attribute to a substantial part of the 

overall difference in SNAP benefit levels for both black-white and Hispanic-white differentials. 

On the other hand, differences in participation increase the benefit levels for blacks but have 

little impact for Hispanics. The generosity component is in reverse. It increases Hispanics’ 

benefit levels but is negligible for blacks. Combining our results with the estimated MPCF out of 

SNAP benefits in Hastings and Shapiro (2018), SNAP reduces the differences in food 

consumption between blacks/Hispanics and whites by a modest amount, which is likely not 

enough to reduce the differences in the resource gaps between groups. To investigate potential 

effects of changes in SNAP policy rules on differences in benefit levels, we then carry out 

policy-relevant counterfactual analysis. Among the three policies under consideration, we find 

that automatic enrollment may be the most effective in alleviating differences in exposure to 

food insecurity across racial and ethnic groups. Overall, our results suggest that maintaining 

SNAP eligibility and increasing program take-up are critical for disadvantaged populations. 

There are several future directions to take this work. First, the exploratory analysis carves 

out the contours of the problem, and subsequent studies can investigate the effects of more 

realistic policies. For instance, our model can be used to study the effects of the controversial 

policy proposal that raises work requirements for SNAP beneficiaries. Since this policy is likely 

to overwhelmingly hurt the poor who seek hunger relief through SNAP, it would be useful to 

know to what extent and through which pathways it may exacerbate inequality in food 

insecurity. In addition, there are a variety of state-based program policies that are worth 
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exploring.30 Our model can help investigate which policy levers can reduce the disparities more 

effectively. Second, future research can look at other dimensions of inequality in food insecurity 

exposure. For instance, Coleman-Jensen et al. (2018) finds that rates of food insecurity are 

substantially higher for certain populations, such as single-headed households with children and 

households located in South Census Region. Also, Cunnyngham (2018) shows that take-up of 

SNAP is disproportionately low among the elderly; in 2016, only 45 percent of eligible elderly 

enrolled in SNAP, compared to 85 percent overall. In the presence of potential behavioral biases, 

understanding how government programs mitigate the consequences of food insecurity and 

evaluating the welfare impact of various interventions can help policy makers orient policies 

more effectively and, ultimately, alleviate social and economic inequality. 

 

  

                                                           
30 One example can be examining the dynamic nature of State operational policies on Broad-Based Categorical 

Eligibility (BBCE). 
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Figure 2.1: Food Insecurity by Race/Ethnicity, 2003-2017 

 

               Source: USDA, Economic Research Service. 

 

 

Figure 2.2: SNAP Participation Rates, 2003-2014 
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Table 2.1: Setup of the Numerical Example of the SNAP Decomposition 

 𝑃𝑟(𝐿𝑔 = 1) 𝑃𝑟(𝑇𝑔 = 1|𝐿𝑔 = 1) 𝑃𝑟(𝐻𝑔 = 1|𝐿𝑔 = 1, 𝑇𝑔 = 1) 

𝑔 = 1 (blacks) 0.5 0.5 0.3 

𝑔 = 0 (whites) 0.3 0.6 0.25 

 

 

 

Table 2.2: Results of the Numerical Example of SNAP Decomposition 

 Baseline 

(1) 

Constant Transfer 

(2) 

Auto Enrollment 

(3) 

Universal Eligibility 

(4) 

Overall difference 25 35 68.75 -25 

Decomposition:     

Eligibility 32.5 50 65 0 

Participation -9.75 -15 0 -32.5 

Generosity 2.25 0 3.75 7.5 
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Table 2.3: Descriptive Statistics by Race and Ethnicity 

A. Socioeconomic Characteristics 

 
White, non-

Hispanic 

Black, non-

Hispanic 
Hispanic 

Difference: 

Black-White 

Difference: 

Hispanic-White 

Monthly Earnings 
2311.088 

(5.984) 

2031.322 

(11.459) 

1861.316 

(8.195) 

-279.766*** 

(14.616) 

-449.772*** 

(12.076) 

Age 
38.006 

(0.046) 

37.902 

(0.101) 

35.121 

(0.075) 

-0.104     

(0.115) 

-2.885***  

(0.096) 

Male 
0.480   

(0.002) 

0.402   

(0.004) 

0.549   

(0.003) 

-0.078*** 

(0.004) 

0.069***    

(0.004) 

Immigrant 
0.037   

(0.001) 

0.116   

(0.002) 

0.569   

(0.003) 

0.079*** 

(0.003) 

0.532***    

(0.003) 

Married 
0.473   

(0.002) 

0.317   

(0.004) 

0.500   

(0.003) 

-0.156*** 

(0.004) 

0.027***    

(0.004) 

Unemployed 
0.031   

(0.001) 

0.047   

(0.002) 

0.040   

(0.001) 

0.016*** 

(0.002) 

0.009***    

(0.001) 

Household Head 
0.519   

(0.002) 

0.581   

(0.004) 

0.456   

(0.003) 

0.062*** 

(0.004) 

-0.063***   

(0.004) 

Number of Own 

Children 

0.923   

(0.004) 

1.062   

(0.010) 

1.277   

(0.008) 

0.139*** 

(0.010) 

0.354***    

(0.009) 

Family Size 
2.962   

(0.005) 

3.132   

(0.013) 

3.845   

(0.012) 

0.170*** 

(0.013) 

0.883***    

(0.012) 

Metropolitan Area 
0.698   

(0.002) 

0.858   

(0.003) 

0.888   

(0.002) 

0.159*** 

(0.003) 

0.189***    

(0.002) 

      

Education      

12 grades or less 
0.112   

(0.001) 

0.152   

(0.003) 

0.401   

(0.003) 

0.040*** 

(0.003) 

0.288***    

(0.003) 

High school degree 
0.348   

(0.002) 

0.378   

(0.004) 

0.316   

(0.003) 

0.029*** 

(0.004) 

-0.032***   

(0.003) 

Some college or 

Associate's degree 

0.334   

(0.002) 

0.329   

(0.004) 

0.207   

(0.003) 

-0.005     

(0.004) 

-0.127***   

(0.003) 

Bachelor's degree 
0.152   

(0.001) 

0.101   

(0.002) 

0.061   

(0.001) 

-0.050*** 

(0.003) 

-0.091***   

(0.002) 

Master's degree or 

above 

0.053   

(0.001) 

0.039   

(0.001) 

0.015   

(0.001) 

-0.014*** 

(0.002) 

-0.038***   

(0.001) 

      

Family Income      

Less than $10,000 
0.075   

(0.001) 

0.135   

(0.003) 

0.092   

(0.002) 

0.060*** 

(0.003) 

0.018***    

(0.002) 

$10,000 to $19,999 
0.146   

(0.001) 

0.202   

(0.003) 

0.205   

(0.003) 

0.055*** 

(0.003) 

0.059***    

(0.003) 

$20,000 to $29,999 
0.187   

(0.001) 

0.214   

(0.003) 

0.236   

(0.003) 

0.027*** 

(0.003) 

0.049***    

(0.003) 

$30,000 to $39,999 
0.152   

(0.001) 

0.150   

(0.003) 

0.189   

(0.002) 

-0.002     

(0.003) 

0.037***    

(0.003) 
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$40,000 to $49,999 
0.106   

(0.001) 

0.084   

(0.002) 

0.100   

(0.002) 

-0.022*** 

(0.002) 

-0.006***   

(0.002) 

$50,000 to $59,999 
0.085   

(0.001) 

0.061   

(0.002) 

0.060   

(0.001) 

-0.024*** 

(0.002) 

-0.025***   

(0.002) 

$60,000 to $74,999 
0.090   

(0.001) 

0.060   

(0.002)    

0.048   

(0.001) 

-0.030*** 

(0.0020 

-0.041***   

(0.002) 

$75,000 to $99,999 
0.078   

(0.001) 

0.039   

(0.001) 

0.035   

(0.001)   

-0.039*** 

(0.002) 

-0.043***   

(0.001) 

$100,000 to $149,999 
0.048   

(0.001) 

0.026   

(0.001) 

0.018   

(0.001) 

-0.022*** 

(0.001) 

-0.030***   

(0.001) 

$150,000 or more 
0.017   

(0.000) 

0.009   

(0.001) 

0.005   

(0.000) 

-0.007*** 

(0.001) 

-0.011***   

(0.001) 

      

Census Region      

New England 
0.120   

(0.001) 

0.037   

(0.001) 

0.042   

(0.001) 

-0.084*** 

(0.002) 

-0.079***   

(0.002) 

Middle Atlantic 
0.076   

(0.001) 

0.087   

(0.002) 

0.075   

(0.002) 

0.011*** 

(0.002) 

-0.002        

(0.002) 

East North Central 
0.136   

(0.001) 

0.114   

(0.002) 

0.060   

(0.001) 

-0.021*** 

(0.003) 

-0.076***   

(0.002) 

West North Central 
0.166   

(0.001) 

0.063   

(0.002) 

0.050   

(0.001) 

-0.103*** 

(0.002) 

-0.116***   

(0.002) 

South Atlantic 
0.141   

(0.001) 

0.374   

(0.004) 

0.137   

(0.002)  

0.234*** 

(0.004) 

-0.004        

(0.002) 

East South Central 
0.060   

(0.001) 

0.103   

(0.002) 

0.013   

(0.001) 

0.043*** 

(0.002) 

-0.047***   

(0.001) 

West South Central 
0.077   

(0.001)  

0.139   

(0.003) 

0.184   

(0.002) 

0.062*** 

(0.003) 

0.107***     

(0.003) 

Mountain 
0.129   

(0.001) 

0.031   

(0.001) 

0.165   

(0.002) 

-0.098*** 

(0.002) 

0.036***    

(0.003) 

Pacific 
0.094   

(0.001) 

0.051   

(0.002) 

0.275   

(0.003) 

-0.043*** 

(0.002) 

0.181***    

(0.003) 

Observations 90,924 17,255 25,662   
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B. SNAP Components 

 White Black Hispanic 
Difference: 

Black-White 

Difference: 

Hispanic-White 

Eligibility 
0.234 

(0.001) 

0.410 

(0.004) 

0.411 

(0.003) 

0.176*** 

(0.004) 

0.177***   

(0.003) 

Conditional on eligibility 

Take-up 
0.487 

(0.003) 

0.617 

(0.006) 

0.424 

(0.005) 

0.130*** 

(0.007) 

-0.063***   

(0.006) 

Conditional on take-up 

Benefits (self-reported) 
257.738 

(1.580) 

260.137 

(2.393) 

272.719 

(2.324) 

2.399       

(2.894) 

14.982*** 

(2.850) 

Benefits (imputed) 
314.172 

(2.562) 

334.005 

(4.080) 

404.200 

(4.178) 

19.832*** 

(4.718) 

90.028*** 

(4.680) 

Cash-on-hand for food relative to basic food needs 

Total food cash 
1.260 

(0.149) 

-21.232 

(0.434) 

-13.269 

(0.328) 

-22.492*** 

(0.394) 

-14.529*** 

(0.331) 

Food cash without SNAP 

benefits 

-25.981 

(0.371) 

-83.526 

(1.196) 

-58.403 

(0.863) 

-57.545*** 

(1.006) 

-32.422*** 

(0.837) 

 

C. Food-related Outcomes 

 White Black Hispanic 
Difference: 

Black-White 

Difference: 

Hispanic-White 

Food consumption      

Total expenditures on 

food last week 

135.310 

(0.331) 

118.253 

(0.779) 

140.004 

(0.649) 

-17.058*** 

(0.837) 

4.694***    

(0.714) 

Usual expenditures on 

food per week 

120.280 

(0.265) 

108.271 

(0.638) 

130.322 

(0.554) 

-12.009*** 

(0.672) 

10.041***    

(0.580) 

Food insecurity      

Binary indicator 
0.259 

(0.001) 

0.383 

(0.004) 

0.353 

(0.003) 

0.124*** 

(0.004) 

0.094***    

(0.003) 

Rasch score 
4.221 

(0.012) 

4.519 

(0.024) 

4.271 

(0.019) 

0.297*** 

(0.027) 

0.050**      

(0.023) 

Note: This table reports means and standard deviations (in parentheses) for the analysis samples in the CPS-FSS 

between 2003 and 2016. We focus on households with incomes below 185 percent of the poverty line or that report 

being short of money for food (the target population of the FSS).  
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Table 2.4: Estimated Results of the SNAP Decomposition 

 
Baseline 

(1) 

Constant Transfer 

(2) 

Auto Enrollment 

(3) 

Universal Eligibility 

(4) 

A. Black-White 

Overall difference 32.733 35.362 51.392 31.730 

Decomposition:     

Eligibility 26.315 21.992 68.584 0 

Participation 8.072 13.370 0 -1.861 

Generosity -1.654 0 -17.192 33.592 

B. Hispanic-White 

Overall difference 37.477 16.238 88.443 39.447 

Decomposition:     

Eligibility 27.760 11.694 88.615 0 

Participation 2.229 4.544 0 -41.379 

Generosity 7.487 0 -0.171 80.826 
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3.1 Introduction 

Since the 1980s, income inequality has increased in most countries, and over the same 

time period, trade liberalization has taken place rapidly. A natural question is whether trade 

liberalization leads to the rising inequality. According to the Stolper-Samuelson (S-S) theorem 

(Stolper and Samuelson, 1941), international trade raises the relative wage of skilled workers and 

deteriorates income inequality in developed countries, whereas it increases the relative wage of 

unskilled workers and improves income inequality in developing countries. However, the 

estimation results are mixed either using a cross-country model (e.g., Savvides, 1998; Barro, 

2000; Reuvny and Li, 2003; Milanovic, 2005; IMF, 2007; Dreher and Gaoton, 2008) or an 

individual country model (e.g., Beyer et al., 1999; Chen and Hsu, 2001; Galiani and Sanguinetti, 

2003; Mah, 2003; Herault, 2007; Kumar and Mishra, 2008; Sato and Fukushige, 2009; Mcnabb 

and Said, 2013; Lai et al., 2019), and thus the S-S theorem does not seem to be supported by 

empirical evidence. 

Rather than trade liberalization, some studies show that domestic reforms (such as 

technological progress and financial liberalization) might be the main driving force of income 

inequality, particularly in developing countries (e.g., Goldberg and Pavcnik, 2007; IMF, 2007). 

Previous research has explored the effects of economic freedom on income inequality using a 

cross-country model, where economic freedom can be measured by a composite index 

constructed with many policy components, such as international trade, government regulations, 

and taxation (Berggren, 1999; Carter, 2006). However, these empirical results are also unclear 

(e.g., Berggren, 1999; Scully, 2002; Carter, 2006; Bergh and Nilsson, 2010). It is worth noting 

that the findings using a cross-country model may not be applicable to an individual country. 

Furthermore, using the composite index to measure economic freedom cannot reveal the impact 
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of a specific policy on income inequality (Carter, 2006). Thus, a more thorough policy analysis 

in an individual country setting is needed. 

This paper aims to estimate the effects of trade liberalization on household income 

inequality and to investigate whether trade liberalization or domestic reforms are the leading 

factors of the rising inequality since 1980 in Taiwan. Following the globalization trends, Taiwan 

adopted trade liberalization policy in the early 1980s. Since then, the degree of trade openness 

(the share of exports plus imports to GDP) has substantially increased from an average of 85.4% 

in the 1980s to above 100% after the 2000s. Trade expansion has led to economic growth in 

Taiwan. For example, the average income per capita was only US$4,129.9 in the 1980s, but it 

exceeded US$20,000 in 2011 and reached US$23,131 in 2015.31 On the other hand, household 

income inequality has also increased over time. For example, the quintile ratio of household 

disposable income, which is the relative disposable income of the highest 20% to the lowest 20% 

income households, rose from 4.2 in 1980 to above 6.0 after 2001. 

In addition to external trade liberalization, the Taiwanese government has implemented 

various domestic reforms since 1980. We focus on four of the reforms that may influence income 

inequality: (i) financial liberalization in the 1980s and two financial reforms in the 2000s; (ii) the 

expansion of higher education since 1985; (iii) the amendments to industrial development 

policies that encourage investment in capital assets and research and development (R&D); (iv) 

large increases in social welfare and social insurance expenditures since the 1990s. The goals of 

these reforms were to attain a better functioning economy, to stimulate economic growth, or to 

meet political needs. Nevertheless, they may also have affected income inequality and had a 

                                                           
31 National Development Council, R.O.C. (Taiwan), Taiwan Statistical Data Book, 2016. 



88 

 

larger impact than trade liberalization (Behrman et al., 2003; IMF, 2007; Goldberg and Pavcnik, 

2007). 

Based on the Heckscher-Ohlin (H-O) model, previous studies using a cross-country 

model all dichotomize the countries of interest into developed and developing countries. 

However, many economies, such as Taiwan and some OECD countries (e.g., Mexico, Turkey, 

Chile, Latvia, Greece, Poland, and Hungary), should be considered as a middle-income open 

economy (MIOE). They simultaneously trade with both more- and less-developed countries, and 

the trade effects from one side may offset the other, resulting in a small or even insignificant 

overall effect on income inequality. Compared to many advanced OECD countries, Taiwan is a 

MIOE in terms of its income per capita.32 Departing from the conventional approach, Chen and 

Hsu (2001) regard Taiwan as a MIOE and separately estimate the effects of net exports to OECD 

countries and those to non-OECD countries on wage differentials in Taiwan. To provide a 

complete picture of the trade effects on inequality in a MIOE, we also distinguish the effects of 

net exports between OECD and non-OECD countries. 

We use the quintile ratio of household disposable income to measure income inequality. 

To assess the effects of trade liberalization and domestic reforms on inequality, we construct an 

empirical model based on decomposition of the sources of household disposable income in the 

quintile ratio to capture possible influence factors. The model includes factors of trade 

liberalization and domestic reforms as explanatory variables, and thus it allows us to analyze the 

relative importance of each factor.  

                                                           
32 The income per capita in terms of 2015 US dollars is 23,131 in Taiwan, which is substantially smaller than some 

OECD countries, such as the US (56,070), Germany (45,780), United Kingdom (43,700), France (40,530), and 

Japan (38,780), according to Taiwan Statistical Data Book (2016) and World Development Indicators, World Bank. 
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Using time-series data from 1980 to 2015, we conduct a cointegration test to estimate the 

effects of various influence factors on income inequality. Our main findings are as follows. First, 

net exports to OECD countries significantly increase inequality, whereas net exports to non-

OECD countries insignificantly decrease inequality. Overall, trade liberalization increases 

inequality in Taiwan. Second, among domestic reforms, government expenditures on social 

welfare and social insurance reduce inequality. On the other hand, technological progress biased 

toward skilled labor, industrial structural change, and financial market reforms increase 

inequality. Third, by calculating the long-run mean impacts to evaluate the contribution of each 

influence factor, we find that technological progress and industrial structural change are the main 

driving forces of the rising inequality in Taiwan. 

This paper contributes to the literature in several ways. First, we jointly estimate the 

impacts of trade liberalization and domestic reforms in an attempt to explain the rising trend in 

income inequality in Taiwan. This approach better identifies the influence factors of income 

inequality in an individual country setting. Second, we investigate the case of Taiwan to provide 

some empirical evidence on the effects of trade with more- and less-developed countries in a 

MIOE. Third, we construct an empirical model to assess possible influence factors of household 

income inequality, and this framework can be applied to other studies on inequality. Fourth, our 

results provide policy implications for some countries, particularly developing countries, which 

endeavor in various reforms to promote economic growth but at the same time suffer from the 

deterioration of income distribution. 

This paper is organized as follows. Section 2 discusses the findings in the literature. 

Section 3 provides background on income inequality, policy changes in trade liberalization, and 

domestic reforms in Taiwan. Section 4 demonstrates the empirical model based on quintile ratio 



90 

 

decomposition, and Section 5 presents the results. Section 6 concludes and discusses the 

implications of these results. 

 

3.2 Literature Review 

The two main theories used in the literature to study the effects of international trade on 

income distribution are the H-O theory and the S-S theorem. According to the H-O theory and 

following the comparative advantage principle, developed countries, which are relatively 

abundant in skilled labor, export skilled-labor-intensive products to developing countries and 

import unskilled-labor-intensive products from them. On the other hand, developing countries, 

which are relatively abundant in unskilled labor, export unskilled-labor-intensive products to 

developed countries and import skilled-labor-intensive products from them. By the S-S theorem, 

an expansion in net exports in a developed (developing) country increases the relative demand 

for skilled (unskilled) labor, which increases (decreases) the relative wage of skilled labor. This 

in turn causes income inequality to rise (fall) in a developed (developing) country, ceteris 

paribus. 

A number of studies have estimated the effects of trade liberalization on income 

inequality, but the results are mixed, with some being inconsistent with the prediction of the S-S 

theorem. For instance, using a cross-country model, Barro (2000) and Milanovic (2005) find that 

trade openness decreases inequality in high-income countries but increases inequality in low-

income countries. Savvides (1998) shows that trade openness raises inequality in less-developed 

countries, while the effect is statistically insignificant in developed countries. Reuveny and Li 

(2003) and IMF (2007) demonstrate that economic globalization improves inequality in both 

developed and developing countries. In addition to economic globalization, Dreher and Gaoton 
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(2008) also consider social and political globalization. They find that globalization exacerbates 

inequality, particularly in OECD countries, but there is no consistent effect in less-developed 

countries.  

The empirical results using an individual country model are also mixed. Wood (1997) 

finds that trade opening in the 1960s and 1970s in East Asian countries decreases wage 

differentials between skilled and unskilled workers, but trade opening in the 1980s in Latin 

American countries increases wage differentials. Several studies also show that trade openness 

widens wage differentials in Latin American countries, e.g., Chile (Beyer et al., 1999), Mexico 

(Hanson and Harrison, 1999), and Argentina (Galiani and Sanguinetti, 2003). In terms of Asian 

countries, Mah (2003) finds that trade liberalization does not have a significant impact on 

income inequality in Korea, but Sato and Fukushige (2009) show that economic globalization 

reduces income inequality in Korea in both the short run and the long run. Kumar and Mishra 

(2008) investigate the 1991 trade liberalization reforms in India, and Mcnabb and Said (2013) 

examine trade liberalization policy since the mid-1980s in Malaysia. Both studies find that trade 

liberalization decreases wage differentials between skilled and unskilled workers. As pointed out 

by Goldberg and Pavcnik (2007), there is limited evidence that supports the conventional S-S 

theorem based on previous studies on the trade effects in developing countries. 

In the case of Taiwan, Chan et al. (1999) find a positive and significant effect of net 

exports on wage differentials between skilled and unskilled labor. When distinguishing the 

effects among trade partners, Chen and Hsu (2001) show that net exports to OECD countries 

increase wage differentials, whereas net exports to non-OECD countries decrease wage 

differentials. On the other hand, Lai et al. (2019) suggest that trade openness leads to a decrease 

in income inequality overall.  
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Regarding the effects of economic liberalization policies on income inequality, the 

empirical results are also inconclusive. Using a cross-country model and a composite index to 

measure economic freedom, Berggren (1999) finds a positive relationship between economic 

freedom and equality, which is mainly attributed to trade liberalization and financial 

deregulation. Scully (2002) also shows that economic freedom promotes income inequality. In 

contrast, Carter (2006) and Bergh and Nilsson (2010) suggest that economic freedom increases 

inequality, especially in rich countries. Behrman et al. (2003) investigate the effects of six 

economic policy changes on wage differentials in 18 Latin American countries and find that 

liberalization policy changes together have a disequalizing effect in the short run. This is due to 

the impact of financial market reform, capital account liberalization, and tax reform; however, 

trade openness has no significant effect on wage differentials. As mentioned earlier, the results of 

a cross-country model may not be applicable to an individual country, and the usage of the 

composite index to measure economic freedom cannot reveal the effect of a specific reform on 

inequality. 

There are several reasons why the effects of trade on income inequality are inconsistent 

or statistically insignificant in the literature. First, previous studies do not distinguish the trade 

effects between different types of trade partners. In fact, many countries are MIOEs trading with 

both developed and developing countries, and the effects from one side may conflict and offset 

the other, resulting in a small or even insignificant total effect on income inequality. Since 

Taiwan is a MIOE, we split Taiwan’s trade partners into OECD and non-OECD countries and 

separately estimate their effects on income inequality, similar to Chen and Hsu (2001). Second, 

the mixed results could be due to differences in the selection of domestic (control) variables. 
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Nevertheless, there is no standard empirical model from which domestic variables could be 

drawn (Carter, 2006). 

For the purpose of this study, we decompose the quintile ratio based on the sources of 

household disposable income to directly capture possible influence factors of inequality. Instead 

of using ordinary least squares (OLS) estimation, as most of the literature does, we conduct a 

cointegration test to estimate the long-run effects of the influence factors on income inequality. 

Since trade liberalization and domestic reforms gradually take place, the effects on inequality 

take time to develop and may persist for a long period of time. It is more applicable to estimate 

the long-run impact with time-series data. Moreover, from the econometric point of view, the 

variables considered in our model are all integrated of degree one, I(1). Using OLS estimation 

with the first-differenced values may suffer from over-differencing problem and result in biased 

estimates. With the cointegration test, we can obtain reliable estimates of the long-run effects. 

 

3.3 Income Inequality, Trade Liberalization, and Domestic Reforms 

3.3.1 Household Income Inequality 

We use data from the Report on the Survey of Family Income and Expenditure (RSFIE), 

issued annually by the Directorate-General of Budget, Accounting and Statistics (DGBAS), 

Executive Yuan of Taiwan. The RSFIE is the only official data source of family income and 

expenditure, as well as income inequality.33 There are two main indicators of income inequality 

reported by the DGBAS: the quintile ratio and the Gini coefficient. As shown in Figure 3.1, these 

two indicators have very similar trends. The quintile ratio was 4.17 in 1980, reached the peak of 

                                                           
33 The DGBAS conducts a survey each year to obtain family income and expenditure from 13,600-16,400 families 

in Taiwan. This survey started from 1964, but it was carried out on a two-year basis prior to 1972. The sampling rate 

is about 2-4‰ of the entire population. 
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6.39 in 2001, and remained stable at around 6.10 afterwards. Similarly, the Gini coefficient was 

0.28 in 1980, reached the peak of 0.35 in 2001, and then remained stable at around 0.34. 

We use the quintile ratio of household disposable income to measure income inequality 

since it is the most commonly used indicator in Taiwan. The quintile ratio is defined as the ratio 

of disposable income of the highest 20% to the lowest 20% income households. We consider 

inequality in disposable income at the household level because government transfer payments on 

social welfare and social insurance in Taiwan are based on household income. As will be 

discussed later, those payments are relevant to inequality through income redistribution effects. 

By decomposing the sources of household disposable income in the quintile ratio, we construct 

an empirical model that captures possible influence factors of income inequality. 

Besides trade liberalization and domestic reforms, differences in household 

characteristics may also affect income inequality. Table 3.1 shows three differences in household 

characteristics between the highest 20% income (the fifth quintile) and the lowest 20% income 

(the first quintile) households: the number of persons per household, the number of persons 

employed per household, and the educational attainment of economic household heads. Along 

with economic development and social structural change, the average number of persons per 

household and the average number of persons employed per household have gradually decreased 

in both the first and fifth quintiles since 1980. However, the ratio of the number of persons 

employed per household of the fifth quintile to that of the first quintile has increased from 1.82 in 

1980 to 5.04 in 2015. As the difference in the number of persons employed between the highest- 

and lowest-income households becomes larger, the household income differential may also 

increase, causing income inequality to rise.34 

                                                           
34 In Section 4, we provide more details about the influence of the number of persons employed per household on 

income inequality. 
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Regarding the percentage of economic household heads with a bachelor’s degree or 

higher, the fifth quintile always has a higher rate than the first quintile. Typically, higher 

educational attainment leads to higher earnings, and thus household income of the fifth quintile 

should be higher. Nevertheless, the massive expansion in higher education in Taiwan since the 

1990s has decreased the difference in educational attainment between the highest- and lowest-

income households. As shown in Table 3.1, the percentages of economic household head with a 

bachelor’s degree or higher in both the first and the fifth quintile households have risen rapidly, 

but the ratio of the two percentages has gradually declined from 16.20 in 1980 to 7.89 in 2015. 

This implies that the expansion of higher education may reduce household income inequality. In 

Table 3.2, we summarize changes in trade liberalization policy and four domestic reforms in 

Taiwan since the 1980s, and further discuss them in the following subsections. 

 

3.3.2 Trade Liberalization 

During the early stages of economic development, trade policy in Taiwan was associated 

with foreign exchange control policy due to the shortage in foreign exchange. In the early 1980s, 

Taiwan’s trade surplus substantially increased, and a large amount of foreign exchange reserves 

were accumulated. As a result, the major trade partners, particularly the U.S., required Taiwan to 

reduce trade barriers and appreciate the New Taiwan (NT) dollar. The Taiwanese government 

subsequently implemented trade liberalization policy. 

This policy includes two main components. First, it relaxed foreign exchange control in 

1987 and adjusted the exchange rate system from a fixed to a managed floating system in 1989. 

Second, the policy reduced the import tariff and relaxed controls on exports and imports. Since 

the mid-1980s, Taiwan started to lower its import tariff rate (tariff revenues/total value of 



96 

 

imports) from an average of 7.5%. In 2002, Taiwan became a member of the World Trade 

Organization (WTO), and the average tariff rate substantially declined to the current level of 

around 1.5%. In addition, the bilateral trade with China has greatly expanded since the 1990s. 

Taiwan allowed indirect trade with China in 1993,35 and it further allowed direct trade in 2002.  

As shown in Figure 3.2, the ratio of total net exports ( NX ) to GDP (Y ) has a hump-

shape. It increased from about zero to a peak of 20% in 1986 and then declined to below 5% in 

the 1990s. It slightly increased again after 2010. This trend indicates that trade liberalization in 

the mid-1980s led to a more rapid growth in imports than in exports. Since Taiwan is a MIOE, 

we split the total net exports into net exports to OECD countries and those to non-OECD 

countries. The ratio of net exports to OECD countries to GDP ( /ONX Y ) dramatically decreased 

after the mid-1980s and became negative (trade deficit) after 1992. In contrast, the ratio of net 

exports to non-OECD countries to GDP ( /NONX Y ) remained positive (trade surplus) and 

increased over time. The increase in /NONX Y  was relatively large in the early 1990s and 2000s, 

which is mainly due to trade with China. As will be discussed later, /ONX Y  and /NONX Y  

have different effects on income inequality. 

 

3.3.3 Industrial Development Policy: Structural Change and Technological Progress 

In the process of economic development, the Taiwanese government endeavored to 

promote industrial development via legislation. There were three industrial statutes: (i) Statute 

for the Encouragement of Investment (SEI) from 1960 to 1990, (ii) Statute for Upgrading 

Industry (SUI) from 1991 to 2009, and (iii) Statute for Industrial Innovation (SII) after 2010. 

                                                           
35 Due to the special relationship across the Taiwan straits, Taiwanese firms were only allowed to conduct transit 

trade with China through Hong Kong. 
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These three statutes, the so-called “Industrial Constitution” in Taiwan, dominated industrial 

investment and contributed to technological progress.  

Tax encouragement was the main policy tool of these three statutes, in particular the five-

year exemption of profit-seeking enterprises income tax for the industries or firms that met the 

encouragement requirements. However, these three statutes targeted different types of industries 

and firms. The earliest statute, SEI, focused on promoting capital investment of productive 

industries. It implemented encouragement on specific industries and adjusted the categories of 

the encouraged industries based on the stage of economic development. For example, it 

increased encouragement for investment in the newly strategic industries (information, 

electricity, and machinery) in the 1980s. The second statute, SUI, aimed at upgrading industries; 

therefore, it changed from the previous “industry species” encouragement to “function species” 

encouragement, and only a few former enterprises were still included.36 The function species 

encouragement included investment expenditures in automatic equipment, R&D, and labor force 

development. The encouragement applied to all enterprises, including small and medium 

enterprises, and in particular the service business. The third statute, SII, was designed to enhance 

industrial innovation and continue the function species encouragement. However, only R&D 

expenditure remained on the list, and all the industry species encouragement was eliminated. The 

SII applied to all enterprises, businesses, and inviable assets.  

The tax encouragement of these three statutes led to two apparent changes in industrial 

development in Taiwan. The first one includes changes in industrial structure and employment 

structure. In the 1960s and 1970s, the industrial sector grew rapidly, and beginning in the 1980s 

                                                           
36 For example, several important technology enterprises (newly formed industries such as communication, 

information, semiconductor, etc.) and the venture capital enterprise were involved in 1990, but only the newly 

strategic industries remained in 2000. 
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it moved toward high-technology manufacture. After the late 1980s, the service sector began to 

thrive and surpass the industrial sector. As of 2015, the share of the product value in GDP was 

63.17% in the service sector and 35.13% in the industrial sector. Because the service sector 

absorbed more employees, changes in industrial structure also led to structural change in the 

labor market. As shown in Figure 3.3a, the number of employees in the industrial sector ( INDEMP

) was larger than that in the service sector ( SEREMP ) before 1988. Since then, SEREMP  has 

exceeded INDEMP , and the ratio of SEREMP / INDEMP  has increased substantially. The percentage 

of the number of sectoral employees to the number of total employees in 2015 was 59.02% in the 

service sector and 36.03% in the industrial sector, resulting in a ratio ( /SER INDEMP EMP ) of 1.64. 

Noticeably, /SER INDEMP EMP  has remained stable at around 1.64 since 2002, implying that the 

industrial structure and the distribution of the number of employees between these two sectors 

have become stable. 

The second apparent change includes rapid capital accumulation and technological 

progress. The earliest SEI was helpful for accumulating capital, and the function species 

encouragement of SUI and SII since 1991 stimulated R&D investment. All three statutes 

enhanced industrial technology progress. Following Lawrence and Slaughter (1993), Chan et al. 

(1999), Chen and Hsu (2001), Mcnabb and Said (2013), and Lai et al. (2019), we use the total 

factor productivity index (TFP ) in the service and industrial sectors to measure technological 

progress.37 As shown in Figure 3.3b, TFP  has constantly increased since the 1980s.  

 

                                                           
37 Several measures of technological change have been used in the literature. For instance, besides the total factor 

productivity ( TFP ), others also use the share of information and communication technology capital (
ICTK ) in the 

total capital stock (IMF, 2007), the ratio of 
ICTK  flow to GDP (Asteriou et al., 2014), and the ratio of expenditure on 

R&D to sales (Berman et al., 1994).  
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3.3.4 Reforms in Higher Education 

Over the past five decades, the higher education system in Taiwan has undergone 

substantial changes. In 1968, the compulsory education was extended from 6 years (primary 

school) to 9 years (junior high school). According to the Education Statistics from the Ministry 

of Education (MOE), the net enrollment rate of junior high school for the population aged 12-14 

was 97.82% in the 2015 academic year. Traditionally, the MOE imposed strict restrictions on the 

establishment of new universities and college enrollment in order to maintain the quality of 

higher education. Driven by the need for more-educated workers to help economic development 

and by people’s desire to attend higher education, the MOE relaxed the restrictions on 

establishment of universities in 1985.38 The number of higher education institutions has begun to 

increase since 1987. The total number of universities and colleges increased from 28 in 1985 to 

127 in 2000 and 158 in 2015. In the 1990s, the number of people who have a bachelor’s degree 

or higher also increased substantially, from 191,752 in the 1985 academic year to 647,920 in the 

2000 academic year. It further increased to 1,332,245 in the 2015 academic year, in which the 

net enrollment rate of universities and colleges for the population aged 18-21 was 70.86%.  

We define employees aged 15 and above who have a bachelor’s degree or higher (higher 

education) as skilled workers ( CLS ) and those with a junior high school degree or lower 

(mandatory education) as unskilled workers ( MLS ).39 We use the ratio of /C MLS LS  to represent 

the relative supply of skilled and unskilled workers. As shown in Figure 3.3c, /C MLS LS  was 

only 0.15 in 1980. It increased rapidly in the 1990s, and CLS  began to exceed MLS  in 2004, with 

                                                           
38 See Gindling and Sun (2002) for a detailed description of higher education planning in Taiwan. 
39 The minimum working age is 15 in Taiwan. Following Chan et al. (1999) and Lai et al. (2019), we do not consider 

the employees with a senior high school degree (both general and vocational) because workers with a senior high 

school degree may work in high-skilled, mid-skilled, and low-skilled occupations. We are unable to identify who are 

skilled and who are unskilled labor within this group.  
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/C MLS LS  being 1.08. Since 2011, /C MLS LS  has been larger than 2. Overall, the expansion of 

higher education in Taiwan increased the relative supply of skilled labor since the mid-1990s. 

 

3.3.5 Financial Market Reforms 

The financial market in Taiwan was under strict control until the government adopted 

liberalization and globalization policies in the 1980s. The key policy changes were (i) allowing 

domestic banks to open more branches and allowing foreign banks to set branches in 1984, (ii) 

liberalizing bank interest rates and allowing banks to determine their own interest rates for 

deposits and loans in 1989, and (iii) approving 15 new banks to set up in 1991.40 However, these 

policies resulted in violent competition among banks and deteriorated the earnings ratio and non-

performing loan ratio of banks. 

To improve the financial quality of banks, the government implemented the first financial 

reform in 2002 and proposed the “two-five-eight plan,” i.e., lowering the non-performing loan 

ratio of banks to below 5% within two years and maintaining the capital adequacy ratio of banks 

at above 8%. Since the number of existing banks was still large after the 2002 reform, the second 

financial reform was implemented in 2004 in order to increase the earnings ratio by reducing the 

number of banks. The main objectives were to (i) decrease the number of public-owned financial 

institutions from 12 to 6 by the end of 2005 and (ii) reduce the number of financial holdings 

corporations from 14 to 7 by the end of 2006. Although the number of domestic banks has 

diminished, these objectives have not been completely achieved.  

Following IMF (2007) and Lai et al. (2019), we measure the degree of financial 

development using the ratio of credit to the private sector provided by commercial banks and 

                                                           
40 After that, the number of banks largely increased. 
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other financial institutions (CREDIT ) to GDP ( /CREDIT Y ). As shown in Figure 3.3d, 

financial liberalization largely expanded private credit in the 1980s, but /CREDIT Y  was 

contracted in the mid-1990s. It then increased again after the 2002 and 2004 financial reforms. 

 

3.3.6 Changes in Social Welfare and Social Insurance policies 

The transfer payments between the government and households include three parts: taxes, 

social welfare, and social insurance, which all have income redistribution effects. Before 1990, 

the majority of transfer payments in Taiwan were (i) individual income tax and (ii) compulsory 

social insurances for the military, government officials, teachers, workers, and farmers. As 

political democratization took place in the 1990s, the President, Legislators of the central 

government, and local leaders (mayors, council members, etc.) were all changed to direct 

election.41 In order to win the support of voters, the major political parties in the campaigns 

usually proposed to increase social welfare expenditures, causing the government expenditures to 

rise. In addition, there were two compulsory social insurances implemented subsequently: 

National Health Insurance (NHI) in 1995 and National Pension Insurance (NPI) in 2008. Both of 

them have increased government spending, particularly the premium subsidies to low-income 

families.  

Previous studies on the effects of taxes and transfer payments indicate that taxes have 

little income redistribution effect due to the relatively stable tax system in Taiwan. On the other 

hand, the large increases in social welfare and social insurance expenditures since the 1990s are 

more important in terms of reducing income inequality (Jao, 2000; Cheng and Lee, 2010). 

Therefore, we include the ratio of government social welfare and social insurance expenditures (

                                                           
41 For example, the 1992 legislator’s election, the 1993 county mayoral election, the 1994 governor’s election, and 

the 1996 presidential election. 
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SWEXP ) to government budget ( GB ) ( /SWEXP GB ) as one of the influence factors of 

household income inequality. As shown in Figure 3.3e, /SWEXP GB  was about 4-7% in the 

1980s and rose rapidly in the 1990s, exceeding 12% after the implementation of NHI in 1995 

and increasing to around 20% after 2012. 

 

3.4 Empirical Model 

Based on the sources of household disposable income (YD ), we decompose the quintile 

ratio ( YDR ) to capture the influence factors of inequality and construct the empirical model to 

estimate their effects on YDR . 

According to the RSFIE, household disposable income includes payroll income, 

entrepreneurial income, property income, net transfer income, and miscellaneous receipts. We 

combine entrepreneurial income and property income as capital income, extract government net 

transfer income from net transfer income,42 and let all other receipts as others. Therefore, 

household disposable income (YD ) becomes the sum of payroll income (W ), capital income ( A

), government net transfer income ( GT ), and others, and YD  can be written as follows: 

YD W A GT Others    .                                                              (1) 

Payroll income is the main source of household income, followed by capital income.43 Although 

the share of government net transfer income is relatively small, it is included as an influence 

factor due to its income redistribution. In the following analysis, we ignore other miscellaneous 

receipts since they have negligible shares in household income. 

                                                           
42 Net transfer income includes net transfer payments from individuals, government, benefit of social insurance, 

enterprises, and abroad.  
43 In 2015, payroll income and capital income accounted for 56.98% and 23.38% of the total household income, 

respectively. 
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By definition, YDR  is the relative income of the highest 20% to the lowest 20% 

households. Using Eq. (1), YDR  can be expressed as: 

H H H H

YD L L L L

YD W A GT
R

YD W A GT

 
 

 
,                                                           (2) 

where superscripts H and L denote the highest- and lowest-income households, respectively. 

YDR  in Eq. (2) can be decomposed into the following: 

L L L

YD W W A A GT GTR R R R     ,                                                            (3) 

where /H L

WR W W , /H L

AR A A , and /H L

GTR GT GT , representing inequalities in W , A , 

and GT  between the highest- and lowest-income households, respectively; 

 /L L L L L

j j W A GT    , where , ,j W A GT , representing the shares of LW , LA  and LGT in 

LYD  of the lowest-income households, respectively. Using Eq. (3), we further examine the 

influence factors of WR , AR , and GTR  to construct our empirical model.44 

 

3.4.1 Influence Factors of WR  

Household payroll income is equal to the household average wage rate ( w ) multiplied by 

the number of persons employed per household ( N ), i.e., W w N  . WR  can thus be expressed 

as: 

/ / /H L H L H L

WR W W w w N N   ,                                                (4) 

                                                           
44 Using a similar approach as Eq. (3), Tsaur (1996) finds that increases in WR  and AR  are the main sources of 

household income inequality in Taiwan. However, Tsaur (1996) does not analyze the influence of government net 

transfer payments on inequality ( GTR ). Changes in L

j  are very small in all years so the influences on inequality are 

negligible. 
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where /H Lw w  denotes the ratio of the average wage rate of the highest-income to that of the 

lowest-income households; /H LN N  denotes the ratio of the number of persons employed per 

household of the highest-income to that of the lowest-income households. From Eq. (4), an 

increase in /H LN N  or /H Lw w  will raise WR . Figure 3.4 shows that both /H LN N  and /H Lw w  

have been greater than one and rising since 1980, causing WR  and YDR  to increase. Since 

changes in /H LN N  are likely to be exogenous as they are due to changes in economic and 

social structure, changes in /H Lw w  are what needs to be explained. 

/ >1H Lw w  in all years implies that the average quality of labor is higher among the 

highest-income households. As demonstrated by Table 3.1, the highest-income households have 

a higher percentage of economic household heads with a bachelor’s degree or higher than the 

lowest-income households do. Since workers with a bachelor’s degree or higher are defined as 

skilled labor, the employed persons in the highest-income (lowest-income) households are more 

likely to be skilled (unskilled) labor. In general, the wage rate of skilled labor is higher than the 

wage rate of unskilled labor; therefore, >H Lw w . 

In addition, the increasing trend in /H Lw w  implies that the wage differential between 

skilled and unskilled workers ( /s uw w ) has increased over time. Changes in /s uw w  depend on 

changes in the relative supply of and the relative demand for skilled labor. If the increase in the 

relative demand is larger than the increase in the relative supply, /s uw w  will rise. We follow 

Johnson (1997), Chan et al. (1999), and Chen and Hsu (2001) to specify the determination of 

/s uw w .  

We consider an economy in the H-O framework with two types of labor: skilled and 

unskilled, where both types of labor are necessary in production. There are two types of 
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technology in production, 1A  and 2A , where 1A  is more skilled-labor-intensive than 2A . Given 

the level of physical capital, the technology level, and the market wage rates, firm i , where i = 1 

and 2, will choose the two types of labor to produce output. By minimizing firm’s labor costs, we 

can obtain the conditional demands for skilled and unskilled labor. By aggregating the 

economy’s conditional demands, and given the aggregate supplies of skilled and unskilled labor, 

we can solve for the equilibrium wage rates for both types of labor. The equilibrium relative 

wage between skilled and unskilled labor can thus be written as: 

 1 2 1 2/ / , / , /s s

s u s uw w f N N A A Y Y .                                                  (5) 

The above equation shows that /s uw w  is determined by (i) the relative supply of skilled labor (

/s s

s uN N ) and (ii) the relative demand for skilled labor, which is influenced by the relative 

technology level ( 1 2/A A ) and the relative demand for skilled-labor-intensive output ( 1 2/Y Y ).  

In our empirical analysis, we use /C MLS LS  as a proxy for /s s

s uN N  to represent the 

relative supply of skilled labor, and we use TFP  as a proxy for 1 2/A A  to reflect the domestic 

technological progress bias. Regarding the relative demand for output ( 1 2/Y Y ), we use the ratio 

of net exports to GDP ( /NX Y ) and the ratio of employees in the service sector to those in the 

industrial sector ( /SER INDEMP EMP ) as proxies.45 The influence factors of /s uw w  will affect 

/H Lw w , and thus the latter can be expressed as: 

                                                           
45 The demands for domestic products consist of domestic demands and net exports (net foreign demands). Since 

domestic demands for traded goods are relatively stable, /NX Y  can be used as a proxy for changes in the demand 

composition, as well as changes in the relative demand for skilled labor (Chan et al., 1999; Chen and Hsu, 2001). In 

addition, the increase in /SER INDEMP EMP  indicates that the product value of the service sector grows faster than the 

industrial sector. Since the service sector is more skilled-labor-intensive than the industrial sector, such change in 

industrial structure implies an increase in the relative domestic demand for skilled-labor-intensive service products 

and hence in the relative demand for skilled labor (Mincer, 1993; Chan et al., 1999). 
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 / / , , / , /H L

C M SER INDw w f LS LS TFP NX Y EMP EMP .                          (6) 

Substituting Eq. (6) into Eq. (4), the possible influence factors of WR  can be written as follows:  

 / , , / , / , /H L

W W C M SER INDR R LS LS TFP NX Y EMP EMP N N .                     (7) 

 

3.4.2 Influence Factors of AR    

The financial market development in a country not only stimulates economic growth but 

also improves income inequality by helping the poor to increase income through financial loans 

(Beck et al., 2007; Agnello et al., 2012). On the contrary, if the financial market is not well 

developed, a larger share of financial flows might disproportionately accrue to those with higher 

endowments and income. People who are already better-off are more able to invest in 

human/physical capital and further increase their income. As a result, financial deepening may 

adversely affect income inequality (IMF, 2007). Following IMF (2007), we use the ratio of 

/CREDIT Y  to represent the degree of financial development, which affects household capital 

income. The influence factor on AR  can be expressed as follows: 

 /A AR R CREDIT Y .                                                                 (8) 

 

3.4.3 Influence Factors of GTR    

Government transfer payments lead to redistribution of household income and have a 

negative relationship with income inequality (Bulir, 2001; Scully, 2002). As mentioned earlier, 

the large increases in social welfare and social insurance expenditures are the main factors that 

cause income redistribution and changes in GTR  in Taiwan since the 1990s (Jao, 2000; Cheng 
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and Lee, 2010). Thus, we include the ratio of government expenditures on social welfare and 

social insurance to government budget ( /SWEXP GB ) as the influence factor of GTR :  

 /GT GTR R SWEXP GB .46                                                              (9) 

 

3.4.4 Empirical Model and Expected Effects 

Substituting Eqs. (7)-(9) into Eq. (3), we can obtain all the possible influence factors of 

YDR . Using a linear functional form, our empirical model can be written as: 

0 1 1 2 3/ / /YD SER IND C MR NX Y TFP EMP EMP LS LS          

4 5 6 1/ / /H LN N CREDIT Y SWEXP GB       ,                           (10) 

where 
1  is the error term. For simplicity, we omit time subscript t  in the equation. Based on Eq. 

(10), we discuss the expected effects of each explanatory variable on YDR  as follows. 

According to the S-S theorem, trade liberalization ( /NX Y ) improves income inequality 

in developing countries and deteriorates inequality in developed countries. However, the 

empirical results of previous studies are mixed and often inconsistent with the prediction of the 

S-S theorem. Moreover, since Taiwan is a MIOE, we expect an ambiguous sign for 1 . 

If technological progress (TFP ) biases toward skilled labor, i.e., the relative technology 

level ( 1 2/A A ) in Eq. (5) increases, the relative wage of skilled labor and income inequality both 

increase. In contrast, if TFP  biases toward unskilled labor, the relative wage of skilled labor and 

income inequality both decrease (Johnson, 1997). From Figure 3.3b, TFP  has increased 

                                                           
46 Both the expenditures on social welfare and total government expenditures increase over time, with the former 

growing faster than the latter. 
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substantially over time in Taiwan since 1980, so 1 0   ( 1<0 ) implies that TFP  biases toward 

skilled (unskilled) labor and raises (reduces) YDR . 

As shown in Figure 3.3a, the change in industrial structure (i.e., the service sector 

growing more rapidly than the industrial sector) results in an increase in /SER INDEMP EMP  over 

time. In addition, the service sector employs more skilled labor than the industrial sector (Chan 

et al., 1999). These result in an increase in relative demand for skilled labor, and thus we expect 

a positive effect of /SER INDEMP EMP  on YDR  ( 2 0  ). 

Increasing prevalence in education can improve income inequality (Bourguignon, 1994; 

Birdsall et al., 1995; Savvides, 1998). From Figure 3.3c, the massive expansion in higher 

education since the 1990s in Taiwan contributes to a dramatic increase in the relative supply of 

skilled labor ( /C MLS LS ), which reduces the relative wage of skilled labor as well as income 

inequality (Chan et al., 1999; Chen and Hsu, 2001; Gindling and Sun, 2002; Vere, 2005; Lai et 

al., 2019). Moreover, the expansion in higher education lowers the differential in the number of 

persons with a bachelor’s degree or higher between the highest- and lowest-income households 

(Table 3.1). Therefore, we expect 3<0 . 

The greater the difference in the number of persons among households, the more unequal 

the household income distribution will be (Kuznets, 1981). Figure 3.4 shows that /H LN N  has 

steadily increased over time, although the number of persons employed per household has 

gradually declined in Taiwan since 1980 (Table 3.1). We expect WR  and YDR  to increase and 

4 >0 . 

Financial market development ( /CREDIT Y ) may improve or deteriorate income 

distribution between rich and poor families (Greenwood and Jovanovic, 1990; Beck et al., 2007; 
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IMF, 2007). From Figure 3.3d, the financial market reforms in Taiwan have led to a substantial 

expansion in /CREDIT Y  since the 1980s. If 5 >0 , the result implies that high-income 

households get more advantage from the financial reforms ( AR  and YDR  increase); conversely, if 

5 <0 , the result suggests that low-income households get more advantage ( AR  and YDR  

decrease). 

Government transfer payments to households can improve income inequality through 

redistribution effects (Bulir, 2001; Scully, 2002). Since the 1990s, Taiwanese government has 

increased social welfare and social insurance expenditures, making /SWEXP GB  to rise 

substantially (Figure 3.3e). This results in significant income redistribution effects (Jao, 2000; 

Cheng and Lee, 2010); i.e., GTR  and YDR  decrease. Thus, we expect 6 <0 . 

As emphasized earlier, Taiwan is a MIOE trading with both OECD and non-OECD 

countries. Net exports to OECD countries and to non-OECD countries may have opposite effects 

on income inequality and offset each other. To account for this, we split /NX Y  into /ONX Y  

and /NONX Y , and modify Eq. (10) to: 

0 1O O 1 1 2/ + / /YD NO NO SER INDR NX Y NX Y TFP EMP EMP         

3 4 5 6 2/ / / /H L

C MLS LS N N CREDIT Y SWEXP GB         ,   (11) 

where the additional subscripts O and NO of coefficient 1  represent OECD and non-OECD 

countries, respectively. 

According to the S-S theorem, /ONX Y  decreases YDR  in a less-developed country, 

whereas /NONX Y  increases YDR  in a more-developed country. Coefficients 1O  and 1NO  are 

expected to be negative and positive, respectively. On the other hand, trading with developed 
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countries may lead to technology transfer to a less-developed country (e.g., Lau and Wan, 1991). 

Learning new technology requires skilled labor, so net exports to OECD countries may increase 

the demand for skilled labor and raise YDR  in a MIOE. At the same time, commodities produced 

and exported to non-OECD countries require more unskilled labor. Trading with non-OECD 

countries may decrease YDR , In this case, we expect 1O  to be positive and 1NO  to be negative. 

Overall, the signs of 1O  and 1NO  depend on whether the effect via comparative advantage or 

the effect via technology transfer dominates. 

 

3.5 Empirical Results 

3.5.1 Data, Unit Root Test, and Methodology 

We use time-series data from 1980 to 2015 for our empirical analysis. Table 3.A1 in 

Appendix B summarizes the variables used, their definitions, data sources, and summary 

statistics.47 We first conduct unit root tests with drift (  ) on all the variables, using the ADF test 

(Dickey and Fuller, 1979) and the PP test (Phillips and Perron, 1988). Table 3.3 shows that all 

variables (except for /C MLS LS ) contain a unit root, I(1).48 For /C MLS LS , both tests indicate 

that it is integrated of order two, I(2). By taking the first difference,  /C MLS LS , it becomes 

I(1). 

If all the variables have a unit root but form a stationary linear combination, these 

variables are said to be cointegrated. To test for cointegration, we apply the Engle-Granger two-

                                                           
47 There are several caveats worth mentioning. First, some of the variables rely on proxies; however, these are the 

most commonly used measures in the literature and government reports. Second, it is likely that the high-income and 

low-income households are affected by the price changes differently. Using the same deflator may result in an 

upward bias of the effects on inequality. 
48 Both the ADF and PP tests fail to reject the null of unit root in level but reject the null in first difference. 
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step method (Engle and Granger, 1987), as suggested by Campbell and Perron (1991). The two 

steps are as follows: (i) use OLS regression to estimate the model and obtain the long-run 

equilibrium relationship; (ii) use the ADF test to check for stationarity of the obtained regression 

residuals. The null hypothesis in the second step is that the variables are not cointegrated, i.e., the 

residuals are not stationary. The rejection of the null implies that the variables are cointegrated. 

Otherwise, there is no long-run equilibrium relationship between the variables. Beyer et al. 

(1999) also use this method to estimate the long-run effects of trade liberalization on wage 

inequality in Chile. 

We estimate Eqs. (10) and (11) using  /C MLS LS  instead of /C MLS LS  to meet the 

requirement of the cointegration test; that is, all variables should have the same integration order, 

I(1). By observing the trend in the quintile ratio ( YDR ) in Figure 3.1, we add three dummy 

variables to the model: 01D , 09D , and 0215D . 01D  is equal to 1 for 2001, and 0 otherwise; 

09D  is equal to 1 for 2009, and 0 otherwise; 0215D  is equal to 1 for 2002 to 2015, and 0 

otherwise. 01D  is used to capture the dot-com bubble in 2001, and 09D  is used to capture the 

financial crisis in 2009. Both events led to economic recessions in Taiwan and increased YDR . 

0215D  is used to capture the structural change in YDR  from 2002 to 2015. As shown in Figure 

3.1, YDR  remained fairly stable from 2002 to 2015, unlike the previous rising trend. Such 

structure change is likely to be related to the industrial structure. As shown in Figures 3.3a and 

3.4, the distribution of the number of employees in the labor market ( /SER INDEMP EMP ) and the 

ratio of household average wage rate ( /H Lw w ) have both remained stable since 2002. 

 

3.5.2 Estimation Results 
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Table 3.4 reports the estimation results of Eqs. (10) and (11), where the last row shows 

the outcomes of the cointegration tests on the residuals ( 1̂ , 2̂ ). The ADF statistics (  ) in these 

two equations reject the null of no cointegration, indicating that YDR  and all the explanatory 

variables are cointegrated. Hence, the estimated coefficients represent the long-run effects of the 

explanatory variables on YDR . The coefficients of 01D  and 09D  are both positive and 

statistically significant. This suggests that the employed persons of the lowest-income 

households (unskilled labor) were more likely to lose jobs in the 2001 and 2009 recessions, 

causing YDR  to rise. The dummy variable 0215D  has a positive and statistically significant 

coefficient, which implies that YDR  does not change much since the industrial structure remains 

stable during this time period. 

Considering the effects of trade liberalization on income inequality, we show that /NX Y  

has a positive and statistically significant effect on YDR , which is consistent with the findings in 

Chan et al. (1999) and Chen and Hsu (2001).49 When distinguishing the effects between 

/ONX Y  and /NONX Y  on YDR , we find that /ONX Y  has a positive and statistically significant 

effect, whereas the effect of /NONX Y  is negative and statistically insignificant.50 Overall, our 

results show that trade liberalization increases income inequality in the long run, and it is mainly 

attributed to net exports to OECD countries. As a MIOE, Taiwan is less skilled-labor-intensive 

than most OECD countries and more skilled-labor-intensive than most non-OECD countries. 

Based on the S-S theorem, net exports to OECD countries decrease the relative wage of skilled 

labor as well as income inequality. On the other hand, net exports to non-OECD countries 

                                                           
49 They find a positive effect of /NX Y on the relative wage of skilled labor in Taiwan. 
50 The signs of the effects of /ONX Y  and /NONX Y  on 

YDR  are the same as those obtained by Chen and Hsu 

(2001), which uses the relative wage of skilled labor as the outcome variable. 
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increase the relative wage of skilled labor and deteriorate income inequality. Therefore, our 

results are different from the prediction using the S-S theorem.  

Why are the trade effects of /ONX Y  and /NONX Y  inconsistent with the S-S theorem? 

As Chen and Hsu (2001) point out, the products exported to OECD countries are among the most 

complicated varieties in Taiwan. Net exports to OECD countries could increase relative demand 

for skilled labor for two reasons. First, through learning-by-doing, trading with more-developed 

countries helps upgrade the technology level and thus increases the demand for skilled labor 

(e.g., Chuang, 1998). Second, according to the capital accumulation-outsourcing hypothesis 

(Feenstra and Hanson, 1996, 1997), developing countries upgrade the range of intermediate 

inputs that they produce and export through outsourcing of multinationals, which increases their 

demand for skilled labor. While more skilled workers are employed in the sectors that export to 

OECD countries, there are fewer skilled workers available to the sectors that export to non-

OECD countries. In fact, exports to non-OECD countries (e.g., China) are usually more 

unskilled-labor-intensive products in Taiwan, thereby demanding more unskilled labor. 

Unfortunately, there is no data available for classifying the composition of exports to and 

imports from OECD and non-OECD countries in Taiwan. To get a sense of the composition, we 

use data from three major trade partners of Taiwan in 1998 and 2010. These include two OECD 

countries (the U.S. and Japan) and one non-OECD country (China). As shown in Table 3.5, these 

three countries together accounted for more than 45% of total exports and imports in Taiwan. In 

both years, the shares of skilled-labor-intensive products in exports to the U.S. (73.7% and 

77.9% in 1998 and 2010, respectively) and Japan (62.3% and 73.6%) were higher than those to 

China (39.0% and 59.6%). Similarly, the shares of skilled-labor-intensive products in imports 

from the U.S. (66.0% and 62.5%) and Japan (78.9% and 76.8%) were much higher than those 
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from China (9.0% and 19.0%). Among the items of exports and imports, machinery and 

electrical equipment are predominant. In both years, exports of machinery and electrical 

equipment as a share of exports to the U.S. (58.7% and 55.7%) and Japan (46.4% and 53.8%) 

were much higher than those to China (10.0% and 38.7%). More noticeably, the shares of 

machinery and electrical equipment in imports were 40.8% and 39.3% from the U.S. and 51.6% 

and 43.8% from Japan; however, none of them were imported from China. These findings 

suggest that Taiwan imported skilled-labor-intensive machinery and electrical equipment from 

technologically advanced countries. They were used to produce skill-labor-intensive products 

and were mainly exported to OECD countries. This skill composition is consistent with the 

learning model (e.g., Pissarides, 1997) and tends to increase the relative wage of skilled workers 

(Chen and Hsu, 2001). 

In contrast, Taiwan seemed to import unskilled-labor-intensive products from developing 

countries and export more unskilled-labor-intensive products to non-OECD countries. Indeed, 

the increase in net exports to non-OECD countries since the 1990s were largely attributed to 

growing trade with China. The large foreign direct investment (FDI) in China in the past decades 

was mainly due to cheaper unskilled labor in China, and most technology was less-advanced. 

Accompanied with FDI, the Taiwanese multinationals also imported less-advanced intermediates 

from Taiwan to produce products for sales in China. As a result, an increase in net exports to 

China raised the relative demand for unskilled labor in Taiwan and decreased income inequality, 

which is in line with the finding from non-OECD countries. 

In terms of the effects of other explanatory variables on YDR , the sign and statistical 

significance of the coefficients are the same between Eqs. (10) and (11), and their magnitudes are 

close. This suggests that the estimated effects of these variables are robust. Technological 
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progress (TFP ) has a positive and statistically significant effect on YDR  ( 1  is around 0.04), 

which is consistent with Chan et al. (1999) and Lai et al. (2019). IMF (2007) argues that 

technological progress biased toward skilled labor is the most important cause of the 

deterioration of income inequality in both developed and developing countries. Our results also 

suggest that changes in industrial development policy since 1980, which leads to technological 

progress biased toward skilled labor, is an important factor of YDR .  

The effect of /SER INDEMP EMP  on YDR  is positive and statistically significant ( 2  is 

around 1.5), as expected. This indicates that faster growth in the service sector relative to the 

industrial sector since the late 1980s absorbs more employees and in turn increases the relative 

demand and the relative wage of skilled labor (Chan et al., 1999),51 resulting in an increase in 

YDR . The massive expansion in higher education since the 1990s increases the relative supply of 

skilled labor. We find that  /C MLS LS  has a negative effect on YDR , but it is statistically 

insignificant.52 The effect of /H LN N  on YDR  is negative but statistically insignificant.53 As 

demonstrated in Figure 3.1, the quintile ratio ( YDR ) remained relatively stable after 2002. 

However, Figure 3.4 shows that /H LN N  kept increasing while /H Lw w  became stable and then 

declined after 2014. These trends imply that the main influence factor on inequality in household 

payroll income ( WR ) is /H Lw w  but not /H LN N . 

The financial market development ( /CREDIT Y ) has a positive and statistically 

                                                           
51 Mincer (1993) also finds that the rising trend in service employment reflects more demand for skilled labor, which 

can partly explain the educational wage differential in the US. 
52 This is consistent with the finding in Chen and Hsu (2001), which shows a statistically insignificant negative 

effect on the relative wage of skilled labor, as well as the finding in Lai et al. (2019), which shows a negative effect 

on income inequality. 
53 Lai et al. (2019) also find an statistically insignificant effect of /H LN N  on YDR . 
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significant effect on YDR  ( 5  is around 0.6). With the implementation of several financial 

reforms in Taiwan since the early 1980s, our results show that the high-income households seem 

to gain more advantage from those reforms, and adversely affect income inequality. Finally, we 

find that /SWEXP GB  has a negative and statistically significant effect on YDR  ( 6  is about -

3.7), which is consistent with previous studies and the expectation. This result suggests that the 

large increases in social welfare and social insurance expenditures indeed lead to income 

redistribution effects and reduce income inequality. 

There are two key takeaways based on the results in Table 3.4. First, trade liberalization 

overall raises income inequality, which is mainly attributed to net exports to OECD countries. 

Second, among the domestic reforms, technological progress in favor of skilled labor, change in 

industrial structure, and financial market reforms, all increase inequality. Although the massive 

expansion in higher education increases the relative supply of skilled labor, it does not have a 

significant effect on inequality. Increases in social welfare and social insurance expenditures help 

reduce inequality. 

 

3.5.3 Robustness Analysis 

We assess the robustness of the results by estimating the following alternative 

specifications. First, we separately analyze the effects of exports and imports to ensure the 

robustness of the combined effects of net exports on YDR . The results are shown in Columns (1) 

and (2) of Table 3.6. In Column (1), we find a positive effect of total exports ( /X Y ) and a 

negative effect of total imports ( /M Y ), which is consistent with the previous result that the 

effect of /NX Y  on YDR  is positive. In Column (2), we further estimate the effects of exports and 

imports with OECD countries ( /OX Y , /OM Y ) and those with non-OECD countries ( /NOX Y , 
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/NOM Y ). As shown, the effect of /OX Y  is positive and statistically significant, whereas the 

effect of /OM Y  is negative but statistically insignificant. These two effects coincide with the 

skill composition of exports to and imports from OECD countries in Table 3.5. Since Taiwan 

exports skilled-labor-intensive products to OECD countries and imports skilled-labor-intensive 

products from OECD countries, YDR  would be increased by /OX Y  but decreased by /OM Y . 

Altogether, the effects of /OX Y  and /OM Y  support the positive and statistically significant 

effect of /ONX Y  on YDR  in Table 3.4. On the other hand, both exports and imports with non-

OECD countries ( /NOX Y  and /NOM Y ) have negative effects on YDR , but they are statistically 

insignificant. Since the magnitude of the coefficient of /NOX Y  (0.9836) is a greater than the 

coefficient of /NOM Y  (0.3416) in absolute terms, this can explain why the combined effect of 

/NONX Y  is negative but statistically insignificant in Table 3.4. Overall, the separate effects of 

exports and imports in Table 3.6 are consistent with the effects of net exports in Table 4. In 

addition, the results of all the other variables are robust. 

Second, we use the Gini coefficient ( YDG ) as an alternative indicator of income inequality 

and re-estimate Eqs. (10) and (11). The results are shown in Columns (3) and (4) of Table 3.6.54 

Since YDG  has a value between 0 and 1 (where 0 denotes absolute equality, and 1 denotes 

absolute inequality), the magnitudes of the estimated coefficients would be different from those 

in Table 3.4. Regarding the effects of trend, both /NX Y  and /ONX Y  have a positive and 

statistically significant effect, whereas /NONX Y  has a positive but statistically insignificant 

                                                           
54 We only report the estimated coefficients with their signs and statistical significance to save space. The detailed 

results are available upon request. 
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effect. These trade effects are consistent with the finding in Table 3.4, which suggests that trade 

liberalization overall increases inequality and that the effect is mainly attributed to net exports to 

OECD countries. With respect to domestic reforms, TFP  and /SER INDEMP EMP  have a positive 

and statistically significant effect, and /SWEXP GB  has a negative and statistically significant 

effect. The effect of  /C MLS LS  is still insignificant, although its sign changes from negative 

to positive. The effect of /CREDIT Y  is still positive but becomes statistically insignificant, 

suggesting that the financial reforms may not be as influential as other reforms. In general, the 

results using YDG  as an indicator of inequality are consistent with the results in Table 3.4. 

 

3.5.4 Contributions to Income Inequality 

Since the explanatory variables are measured in different units (ratio, index, percentage, 

etc.), we cannot directly assess the contributions of each variable to income inequality from the 

estimated coefficients in Table 3.4. To address this issue, we use the results in Table 3.4 (the 

marginal long-run effect on YDR ) and the mean values in Table 3.A1 to calculate the long-run 

mean effect of the following six variables that have a statistically significant effect on YDR : 

/NX Y , /ONX Y , TFP , /SER INDEMP EMP , /CREDIT Y  and /SWEXP GB . With these mean 

effects, we can evaluate the relative importance of trade liberalization and domestic reforms on 

YDR  during the sample period. 

As shown in Table 3.7, the total net exports have a positive long-run effect on YDR . A 

one percentage point increase in /NX Y  leads to a 1.4516 percent increase in YDR , ceteris 

paribus. However, its long-run mean impact on YDR  was only 0.0994. Noticeably, /ONX Y  had 
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a positive long-run effect on YDR  (1.7321), but its long-run mean impact was negative (-0.0113). 

This is because Taiwan has trade deficits with OECD countries since 1990 (with a mean value of 

-0.65%), which reversely leads to a decrease in inequality. 

Technological progress has the largest long-run mean effect on YDR , which is about 3.73. 

/SER INDEMP EMP  has the second largest long-run mean effect, and /CREDIT Y  also contributes 

to the rising inequality with a long-run mean effect of 0.71. Among domestic reforms, only 

/SWEXP GB  decreases income inequality, but it is less influential compared to the other 

domestic reforms that increase YDR . 

Based on the results in Tables 3.4 and 3.7, we can conclude that trade liberalization 

overall raises household income inequality in Taiwan from 1980 to 2015, and this adverse effect 

is mainly due to net exports to OECD countries. However, since trade liberalization leads to 

trade diversion, causing trade deficits with OECD countries that in turn reducing inequality, the 

overall impact of trade liberalization on inequality is relatively small. Considering all the 

influence factors of income inequality, we show that domestic reforms, particularly technological 

progress in favor of skilled labor, industrial structure change, and financial reforms, are the main 

influence factors of the rising inequality.  

 

3.6 Concluding Remarks 

This study estimates the effects of trade liberalization and domestic reforms on income 

inequality in Taiwan from 1980 to 2015. We construct an empirical model by decomposing the 

sources of household income in the quintile ratio. Since there are many MIOEs that 

simultaneously trade with more- and less-developed countries, it is important to distinguish the 

trade effects between these two types of trade partners. We investigate the case of Taiwan and 
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separately estimate of the effects of net exports to OECD and non-OECD countries on income 

inequality. We also examine the contributions of various influence factors to the rising 

inequality. 

Our results suggest that trade liberalization overall increases inequality, but the long-run 

mean impact is relatively small. Domestic reforms, such as technological progress in favor of 

skilled labor, change in industrial structure, and financial reforms, have negative and larger 

impacts on inequality than trade liberalization, indicating that they might be the main influence 

factors of inequality.  

Our findings on the trade effects of OECD and non-OECD countries diverge from the 

prediction of the Stolper-Samuelson theorem. We show that the negative effects of trade 

liberalization on inequality are mainly resulted from trade with OECD countries. Although net 

exports to OECD countries increase inequality, trade diversion due to liberalization leads to trade 

deficits with OECD countries and in turn decreases the overall impact on inequality in the long 

run. Our paper highlights the importance of distinguishing between trade partners, which might 

be one possible reason for the mixed results in the literature.  

Similar to Taiwan, many developing countries have endeavored in capital accumulation 

and technological progress in order to promote economic growth and increase income levels. 

Accompanied with economic growth, industrial structure has also changed over time, in 

particular the rapid growth of the service sector. We demonstrate that both technological 

progress in favor of skilled labor and the growth of the service sector increase the relative 

demand for skilled labor, and they substantially increase income inequality. Although the 

government increases social welfare and social insurance transfer payments to low-income 
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families, their effects on inequality are limited. In the process of economic development, our 

study shows that economic growth and income equality seem to be an inevitable trade-off.  
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Figure 3.1: Quintile Ratio and Gini Coefficient 

                         

  

Source: RSFIE, DGBAS, ROC (Taiwan). 

 

 

Figure 3.2: Ratios of Net Exports to GDP 

 

 

Note: /NX Y  denotes the ratio of total net exports to GDP; /ONX Y  denotes the ratio of net exports to 

OECD countries to GDP; /NONX Y  denotes the ratio of net exports to non-OECD countries to GDP. 

Source: AREMOS Databank, Taiwan Economic Data Center. 
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Figure 3.3: Trends of the Related Variables of Domestic Reforms 

(a) /SER INDEMP EMP                          (b) TFP  (2010=100) 

 

(c) /C MLS LS                                 (d) /CREDIT Y  (%) 

 

(e) /SWEXP GB  (%) 

 

Note: The horizontal axis in all panels denotes the calendar year (1980-2015). The vertical axis in each panel denotes 

the corresponding variable shown. /SER INDEMP EMP  denotes the ratio of the number of employees in the service sector 

to the number of employees in the industrial sector. TFP  denotes the total factor productivity index in industrial and 

service sectors. /C MLS LS  denotes the ratio of the number of employees with a bachelor’s degree or higher to those 

with mandatory education or below. /CREDIT Y  denotes the ratio of credit (loans and discounts) to the private sector 

by monetary institutions to GDP. /SWEXP GB  denotes the ratio of social welfare and social insurance expenditures 

to government budget. More details about these variables are in Table A1 in Appendix B. 
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Figure 3.4: Ratio of the Number of Persons Employed and Average Wage Rate Differential 

between Highest- and Lowest-Income Households 

 

Note: /H LN N  denotes the ratio of the number of persons employed, and /H Lw w denotes the average wage 

rate differential. Household average wage rate ( w ) = household payroll income (W )/the number of persons 

employed per household ( N ).  

Source: Household payroll income and the number of persons employed per household are from the RSFIE, 

DGBAS. 
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Table 3.1: Average Number of Persons Employed Per Household and Household Head 

Educational Attainment of First and Fifth Quintiles 

Household characteristics 1st quintile 5th quintile Ratio 

Number of persons per household (person) 

1980 3.62 5.80 1.60 

1990 2.70 5.09 1.89 

2000 1.99 4.65 2.34 

2015 1.71 4.21 2.46 

Number of persons employed per household (person) 

1980 1.46 2.65 1.82 

1990 1.06 2.59 2.44 

2000 0.68 2.41 3.54 

2015 0.46 2.32 5.04 

Percentage of economic household heads with a bachelor’s degree or higher (%) 

1980 1.23 19.93 16.20 

1990 1.81 25.53 14.10 

2000 2.63 30.42 11.57 

2015 5.72 45.14 7.89 

Source: RSFIE, DGBAS, ROC (Taiwan). 
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Table 3.2: Summary of Trade Policy Changes and Domestic Reforms in Taiwan 

Policies 1980s 1990s 2000s~ 

Trade liberalization:   

 1984: adopt trade 

liberalization policy  

1993: allow indirect 

trade with China  

2002: allow direct trade 

with China 

 1987: relax foreign 

exchange control 

 2002: become a member of 

WTO 

 1989: implement 

managed floating 

exchange rate 

system  

  

Domestic reforms:   

Industrial development 1960~1990: Statute for 

the Encouragement 

of Investment (SEI) 

1991: Statute for 

Upgrading Industry 

(SUI) 

2010: Statute for Industrial 

Innovation (SII) 

Higher education  1985: allow 

establishment of new 

universities/colleges  

1990s: expand the 

number of 

universities and 

college students 

2000s: further increase the 

number of universities 

and college students 

Financial market  1984: allow domestic 

banks to set more 

branches and foreign 

banks to set branches 

in Taiwan 

1991: approve the set-up 

of 15 new banks  

2002: first financial reform 

2004: second financial 

reform 

 1989: liberalize interest 

rates of banks 

  

Social welfare and 

social insurance  

 1990s: increase 

spending on social 

welfare 

2008: implement National 

Pension Insurance 

(NPI) 

  1995: implement 

National Health 

Insurance (NHI) 
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Table 3.3: Unit Root Tests 

Variable 
ADF test  PP test 

Level 1st difference  Level 1st difference 

YDR  -1.6392(0) -7.0157***(0)  -1.9887(8) -7.5083***(8) 

/NX Y   -2.1147(0) -4.7989***(0)  -2.5119(8) -4.7166***(8) 

/ONX Y   -1.0175(0) -4.3307***(0)  -1.3046(8) -4.2162***(8) 

/NONX Y   -1.3752(0) -7.0371***(0)  -1.4433(8) -8.5193***(8) 

TFP   -1.0947(0) -4.9315***(0)  -1.0742(8) -4.9808***(8) 

/H LN N  0.3109(0) -7.1021***(0)  1.3769(8) -8.5317***(8) 

/SER INDEMP EMP
 
 

-1.5435(0) -4.8385***(0)  -1.4474(8) -4.9557***(8) 

/C MLS LS  -0.5569(5) 0.0365(4)  8.0075(8) -0.7059(8) 

 /C MLS LS   0.2359(4) -4.7517***(3)  -0.5676(8) -10.7930***(8) 

/CREDIT Y   -2.0804(1) -3.4408**(0)  -1.6347(8) -3.4988**(8) 

/SWEXP GB   -1.0157(0) -5.1741***(2)  -0.8279(8) -6.4625***(8) 

Note: Figures in the parentheses following test statistics   denote lag periods ( p ); for ADF test, p  is chosen by 

Schwarz Information Criterion (SIC) (max p =8); for PP test, p = 8. Critical values of 1%, 5%, and 10% significant 

levels for ADF test are -3.64, -2.96, and -2.62, respectively; those for PP test are -3.65, -2.95, and -2.62, respectively. 

***, **, and * denote significance in 1%, 5%, and 10% levels, respectively. 
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Table 3.4: Cointegration Tests and Estimations 

Dependent Variable: YDR  

 Eq. (10)  Eq. (11) 

Explanatory Variables coefficient s.e.  coefficient s.e. 

Const. 0.1982 0.9136  -0.1734 0.9686 
/NX Y  1.4516*** 0.4420    

/ONX Y     1.7321*** 0.5069 

/NONX Y      -0.3284 1.6587 

TFP  0.0366** 0.0148  0.0414** 0.0153 

/SER INDEMP EMP  1.5227*** 0.3270  1.4805*** 0.3277 

 /C MLS LS  -0.2276 1.0060  -0.4065 1.0141 

/H LN N  -0.1382 0.0985  -0.1505 0.0986 

/CREDIT Y  0.5052** 0.2283  0.6348** 0.2553 
/SWEXP GB  -3.6800*** 1.2234  -3.6915*** 1.2177 

01D  0.8092*** 0.1170  0.8188*** 0.1168 
09D   0.1943* 0.1126  0.2147* 0.1135 
0215D   0.2949** 0.1161  0.3922** 0.1449 

Adj. 
2R   0.9846  0.9848 

Durbin-Watson stat. 2.1953  2.2667 

Obs. 36  36 

Residual ADF stat. (  ) -6.3678***(0)  -6.6153***(0) 

Note: Figures in the parentheses following residual ADF test statistics (
 ) denote lag periods ( p ) and are chosen 

by SIC (max p =8); critical values of 1%, 5%, and 10% significant levels are -5.2812, -4.7101, and -4.4309, 

respectively (Phillips and Quliaris, 1990). ***, **, and * denote significance in 1%, 5%, and 10% levels, 

respectively. 
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Table 3.5: Composition of Exports and Imports of Major Trade Partners (Unit: %) 

 1998  2010 

 U.S. Japan China  U.S. Japan China 

Share in Taiwan’s total exports  26.6 8.4 17.9  11.5 6.6 28.0 

Share in Taiwan’s total imports  18.0 25.8 3.9  10.1 20.7 14.3 

Share of skilled-labor-intensive 

products in exports  

73.7 62.3 39.0  77.9 73.6 59.6 

Share of skilled-labor-intensive 

products in imports  

66.0 78.9 9.0  62.5 76.8 19.0 

Share of machinery and electrical 

equipment in exports  

58.7 46.4 10.0  55.7 53.8 38.7 

Share of machinery and electrical 

equipment in imports  

40.8 51.6 0.0  39.3 43.8 0.0 

Note: Following Chen and Hsu (2001), we classify machinery and electrical equipment, chemicals, transportation 

equipment, and basic metals and articles thereof as skilled-labor-intensive products. 

Source: The shares of Taiwan’s total exports and imports in 1998 are from Taiwan Statistical Data Book (for the US 

and Japan), Cross-Strait Economic Statistics Monthly (for China), and Chen and Hsu (2001). Data in 2010 are from 

Taiwan Statistical Data Book (2016). 
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Table 3.6: Robustness Tests 

Dependent Variable  YDR   YDG  

Explanatory Variables  (1) (2)  (3) (4) 

Const. 0.0902 -0.3185 0.1304*** 0.1229*** 
/X Y  1.1324§    
/M Y   -1.4753***    

/OX Y   1.5704**   

/OM Y   -0.2308   

/NOX Y   -0.9836   

/NOM Y   -0.3416   

/NX Y    0.0636***  

/ONX Y     0.0692*** 

/NONX Y     0.0276 

TFP  0.0425** 0.0460*** 0.0013** 0.0014*** 

/SER INDEMP EMP  1.3798*** 0.9417** 0.0738*** 0.0729*** 

 /C MLS LS  -0.1256 -0.1722 0.0157 0.0121 

/H LN N  -0.1389 -0.1274 -0.0074* -0.0076* 

/CREDIT Y  0.4160† 0.7072** 0.0057 0.0083 
/SWEXP GB  -3.5528*** -2.7806** -0.1348*** -0.1351*** 

01D  0.8207*** 0.9257*** 0.0200*** 0.0202*** 
09D   0.1895§ 0.2662** 0.0010 0.0014 
0215D   0.3340** 0.6008*** 0.0025 0.0044 

Adj. 
2R   0.9842 0.9865 0.9838 0.9840 

Durbin-Watson stat. 2.2140 2.4038 1.9816 1.9798 

Obs. 36 36 36 36 

Residual ADF stat. (  ) -6.4548***(0) -7.1956***(0) -5.7556***(0) -5.7606***(0) 

Notes: See Table 4. § and † represent 11% and 14% significance levels, respectively. Note that all the newly added 

variables ( /X Y  , /M Y  , /OX Y  , /OM Y  , /NOX Y  , /NOM Y  , YDG  ) have a unit root, I(1), which meets the 

requirement of a cointegration test. As shown in the last row, all the residual ADF tests reject the null of no 

cointegration, suggesting that 
YDR   and 

YDG   both have a long-run equilibrium relationship with their explanatory 

variables. 
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Table 3.7: Long-Run Mean Impacts on Income Inequality 

Explanatory variable Marginal effect Mean Long-run mean effect 

/NX Y   1.4516 0.0685 0.0994 

/ONX Y  1.7321 -0.0065 -0.0113 

TFP  0.0414 89.9973 3.7259 

/SER INDEMP EMP  1.4805 1.3491 1.9973 

/CREDIT Y   0.6348 1.1117 0.7057 

/SWEXP GB  -3.6915 0.1239 -0.4574 
Note: The long-run marginal effects are from Table 4, and the mean values are from Table A1. 
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Appendix 

Table 3.A1: Variable Definition, Source, and Summary Statistics 

Variable Definition Source Mean S.D. 

YDR   
Quintile ratio, i.e., ratio of 

disposable income share of the 

highest 20% to that of the 

lowest 20% households 

Report on the Survey of 

Family Income and 

Expenditure, DGBAS, 

Executive Yuan, 

Taiwan (2016) 

5.4349 0.6944 

/NX Y  Ratio of total net exports to 

GDP  

AREMOS Taiwan 

Economical Statistical 

Databank, Taiwan 

Economic Data Center 

0.0685 0.0434 

/ONX Y  Ratio of net exports to OECD 

countries to GDP  

AREMOS Taiwan 

Economical Statistical 

Databank  

-0.0065 0.0670 

/NONX Y  Ratio of net exports to non-

OECD countries to GDP  

AREMOS Taiwan 

Economical Statistical 

Databank 

0.0750 0.0415 

TFP  Total factor productivity index 

in industrial and service sectors, 

2010=100 

Trends in Multifactor 

Productivity (various 

years) 

89.9973 8.8843 

/H LN N  
Ratio of the number of 

employed persons per 

household of the highest 20% to 

that of the lowest 20% 

households 

Report on the Survey of 

Family Income and 

Expenditure, DGBAS, 

Executive Yuan, 

Taiwan (various years) 

3.2081 0.9559 

/SER INDEMP EMP  Ratio of the number of 

employees in the service sector 

to the number of employees in 

the industrial sector 

Yearbook of Manpower 

Survey Statistics, 

DGBAS, Executive 

Yuan, Taiwan (various 

years) 

1.3491 0.2767 

/C MLS LS  
Ratio of the number of 

employees with a bachelor’s 

degree or higher to those with 

mandatory education or lower 

AREMOS Taiwan 

Economical Statistical 

Databank  

0.8918 0.7655 

/CREDIT Y  Ratio of credit (loans and 

discounts) to the private sector 

by monetary institutions to 

GDP  

Financial Statistics 

Monthly, Taiwan 

District, ROC, The 

Central Bank of China 

(Taiwan) (various 

years) 

1.1117 0.3164 

/SWEXP GB  Ratio of social welfare and 

social insurance expenditures to 

government budget. Because of 

lack of data for 1980, data on 

1981 is used as a proxy. 

National Statistics, 

Republic of China 

(Taiwan) 

0.1239 0.0518 
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