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Pound-Drever-Hall locking allows for the extraction of an error signal at maximum trans-
mitted power. Maximum transmitted power occurs when the optical cavity has a length that
is an integer multiple of the input beam wavelength. This matching of the cavity length to
the input beam wavelength is the resonance condition required and can be seen in Figure 8.

The optical powers incident on the photodiodes in Figure 7 are plotted in Figure 8 as the
cavity length is swept. An error signal cannot be extracted from power alone near resonance
since any deviation results in a power drop as can be noticed by the cavity length sweep in
Figure 8. Figure 8 illustrates how a decrease in power does not reveal any information about
which direction the piezo-electric transducer needs to change the length of the cavity so that
it remains on resonance. Taking a derivative of the cavity length sweep would reveal a useful
error signal, but it would require time domain variations which would cause unwanted power
fluctuations.

Near resonance, the reflected phase has the correct function shape for an error signal as
seen in Figure 8, but power-measuring photodiodes cannot measure phase alone. This is
where the Pound-Drever-Hall locking technique comes into play. Pound-Drever-Hall sensing
extracts an error signal from the reflected phase by adding sidebands to the input beam then
measuring the optical power in reflection and finally demodulating. Demodulating allows
for the beat between the transmitted carrier and reflected sidebands to be measured.

The Pound-Drever-Hall schematic is shown in 7 and error signal it generates is seen in
Figure 9. The reflected power will carry the phase information which can be extracted as
described in detail by Eric D. Black [19]. A brief investigation of the Pound-Drever-Hall
locking technique will reveal useful insight into how wavefront sensing works since the error

signal is extracted from phase terms.






34

I"H#$%&" ($)*+,%-$.$/0"1$

A

Y
4

1amod

pI=id

aseyd

Figure 13 : A '5 mode converter is shown. Transverse slices are shown as a LGy, bullsye mode passes
through. Power, field and phase are shown. Note that power is the amplitude squared of the field. Also note
that the phase only takes two values which are 0 and 180 shown in navy blue and yellow respectively. As
a higher order LGy, mode passes through the telescope you can see that the power in the outer ring gets
transferred to diagonal lobes in the first half. The second half of the propagation shows that the power in
the inside gets divided and moves towards the edges.
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In order to describe the mode converter in more detail it must also be understood that
both Hermite-Gaussian and Laguerre-Gaussian modes form a complete orthogonal basis and
hence can describe any mode as a linear combination of their basis elements. We can then
say that any one Lagurre-Gauss mode can be described with a number of Hermite-Gauss

modes and vise versa. In general,

ILGy,) = Z Z |HG o) (HG | LGy ) (4.1)
n=0 m=0
and o -
|HG ) = Z Z |LG,,) (LG HG ) (4.2)
=0 p=0

It should also be noted that the mode converter does not provide a means of mode
order transformation. This changing of basis preserves the mode order and hence N =
2p + |l| = n + m in their respective coordinates. This leads to the very important fact that
the mode mismatching Laguerre-Gauss bullseye mode must be composed of second order
Hermite-Gauss modes.

This is a brief introduction to the working parts of the mode converter, its history, and
its current understanding. I will now introduce the qualitative understanding which in my

opinion gives better intuition.
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4.1.1 How a 7 Mode Converter Works Qualitatively

A pictorial understanding of the 7 mode converter can be gained by decomposing higher order
modes into their Hermite-Gauss basis constituents and individually passing them through
a mode converter. Examining higher order Hermite-Gauss constituents will reveal a link
between Laguerre-Gauss and 45° rotated Hermite-Gauss modes.

First we should note that passing a higher order Hermite-Gauss mode through a mode
converter that has cylindrical lenses aligned along the vertical or horizontal axis will undergo
no structural change as seen in Figure 14 and Figure 15. Figures 14 and 15 also show how

there is a sign flip in only one axis, the axis aligned with the focusing element.

| Output | 2

E % B

Real part of Output

HG,,

Figure 14 : Passing a HG5y through a mode converter. The top left and top right images are representative

of optical power before and after the mode converter. This mode has no focusing along the higher order
mode axis. Notice that the mode passes through unaffected by the mode converter.
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If we pass a Hermite-Gauss mode through a mode converter along the cylindrical lens
focusing axis then we will see exactly a sign flip as depicted in Figure 15. This sign flip
occurs because of two reasons: The 7 mode converter causes the focusing axis to accumulate
5 bhase and since this is a second order beam the resulting phase accumulation is multiplied
by 2 resulting in 7. Converting this ¢ total phase accumulation via the Euler Identity

i

e'™ = —1, we can see that the focusing axis gets a sign flip.

| Qutput | 2
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Figure 15 : Passing a HGgo through a mode converter. The top left and right images are representative of

optical power before and after the mode converter. This mode has focusing along its higher order mode axis.
This time there is exactly a sign flip after passing through the mode converter. This sign flip can be noted
in the field image as all the light regions become dark after the mode converter.

Lets hold the results of these images in our memory while we finish describing the beam

decomposition since we will need it to connect it all together in the end.
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where d is the separation between the lenses, and zg,, 2r, are the Rayleigh ranges for the
x- and y- Gaussian beam profile. Simplifying this expression by multiplying the numerator

and denominator by the complex conjugate and taking the imaginary part leads to

—ZRx _  TRRy (4 9)
@2 2y .
4 Rz 4 Ry

After distributing, factoring like terms, and simplifying we arrive at

d2
—— = ZRz ' %Ry- (410)
4
Arranging all the terms on the left hand side
d d
. = 1. (4.11)
2231« QZRy

Since ultimately shifting the Gouy phase in one axis will produce the desired mode
conversion I will write this condition in terms of Gouy phase. This can be achieved by

using the well known equation for Gouy phase A¢ = arctan(Z) or = = tan(A¢). To

ZR

choose the correct value for z, remember that this condition is after the beam propagates

to the second cylindrical lens. Since this is a symmetric case where the distance from the

beam waist to each cylindrical lens is %, where d is the length of the telescope, z = %l.
d

This allows us to write Gouy phase as 57— = tan(A¢). One more thing to consider is

that this expression for Gouy phase is for a symmetric beam. Since we are considering
the horizontal and vertical axis separately, the Gouy phase contribution for each axis is
Ap = (n+m+1)(A¢y + Apy)/2 + (n — m)(Ap, — Ag,)/2 from Beijersbergen [24]. For
Ag, we have Ad, = ¢,(d) — ¢p,(—d) = 2arctan(-%) and similarly for A¢p,. Substituting

ZRx

this Gouy phase expression into 4.11 we get
tan A9 tan % =1 (4.12)
Using A¢, — A¢, = 7, this second condition is equivalent to cos % =0, or
Ad, = %” , A, = g (4.13)

Finally, since tan § = \/§1+ - and tan %’r = \/51_ o, we get for the cylindrical focal length f of

both lenses and the lens separation d

<0
f:1+\/% . d=+2f, (4.14)

2
W4

1= is the Rayleigh range of the incoming beam (no lens in y-direction).

where 2 = 2y =
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A.1.2 Comparison to sensing with a bulls-eye detector

We use the term bull’s-eye photo-diode (BPD) for a photodiode with a center segment of
radius 7, and additional outer segments arranged in a ring around the central segment.
Typically there are three outer segments to still get alignment information from the detector
(see figure 25, right side).

When sensing mode mismatch with a BPD, matching the center segment radius r to the
Gaussian Beam spot size w via w = v/2r maximizes the mode-mismatch small signal sensing
gain, because at that radius the LGy, mode has a node. However, for this choice we find
that any residual length fringe deviation will couple directly into the mode-mismatch error

signal because
(HGoo| BPD|HGpo) =1 —2e™! & 0.2642 # 0, (A.68)

where BPD is equal to 1 on the central segment (z*+y? < r), and -1 on the outer segments
(z? + y* > r). This coupling can be reduced to zero by choosing ' = w0.51n2 as central
segment radius, at the cost of some optical gain (see below). Either way though the BPD
has to be matched in size to the Gaussian beam. This often makes adjusting the sensing
Gouy phase of a BPD a bit awkward, since it is not possible to simply slide the detector
across the optical axis. Furthermore, the amount of clipping on the bull’s-eye photo-diode
is set at the time of manufacturing by the size of the outer ring segments.

In contrast, a quadrant photo-diode (QPD) placed after a 7 mode-converter has none
of these beam size constraints. Instead, the reference beam size is set by the choice of
the mode-converter through equation 4.14, and can be changed by replacing the cylindrical
lenses. The QPD can be moved freely to optimize the sensing Gouy phase and clipping,
while any residual length fringe deviation does not couple to first order, since for a well

centered beam we find

(HGo| QPD |HG o) = 0. (A.69)

Here we chose QPD = sign(z? — y?).

A.2 Signal Gain for Sensing Mode-Mismatch

A.2.1 Perturbation expansion

/
Since we want to sense a mode-mismatched Gaussian beam HG{; with beam parameter ¢/,

we can expand this beam in the unperturbed basis (q) as

|HGE) = e7 /1 — |e2 |[HGY,) + €| LGE,) + O(2), (A.70)
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where & denotes the imaginary part and e encodes the waist size change Awy and waist

displacement Az of the Gaussian beam via

g A A
_ 479 _ 2% 5% (A.71)
q—q° wo 2zR

€

Equation A.70 includes enough O(€?) such that the power coupling is accurately given to
2nd order by
[ (HGo| [HGG) P = 1~ |el* + O(¢*). (A.72)

A.2.2 Small Signal Gain for PDH Sensing

To calculate the small signal gain for a mode-sensing scheme we need the matrix element
v = (HGo| BPD|LGy) = —2¢ ¥ a2 —0.7358 %%, (A.73)

where ¢ is the Gouy phase at the BPD. Here the central element radius of the BPD is
r=w/ V/2. For a BPD with central segment radius ' = wv/0.51n 2 the numerical pre-factor
drops to —In(2) ~ —0.6931. See section A.1.2 for a discussion.

The equivalent matrix element for a QPD, after converting the LG, mode into a HG15™ ™
mode, is

. 2 .
Yo = (HGuw| QPD |[HG ™) = - e*'? = 0.6366 2. (A.74)

If we use this approach to sense the matching of a cavity (beam parameter ¢') to its
input beam using the Pound-Drever-Hall (PDH) approach, we will use an up-front RF phase
modulation (modulation index I') with a sideband frequency that is not resonant in the

cavity. The Gaussian beam reflected from this cavity has the structure
P ) it )
Win) = ‘HG00>C + 9 ’HG00>+ + 9 |HGG)— 4+ O(7), (A.75)

where the indices C, + and — indicate carrier, upper and lower sideband. We can sense this
beam with either a BPD or a QPD behind a mode-converter, and demodulate the signal’s I
quadrature. We find in first order of I and e

[ = PT'S(ve), (A.76)

where P is the power on the photo diode, I' is the modulation index, & denotes the imaginary
part, v is the matrix from equation A.73 or A.74, and ¢ is defined through equations A.70,
ATL, AT2.
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A.3 Transverse Mode Spacing to Thermal Lens Focal Length
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This script was used to calculate the thermal lens focal length from a transverse mode spacing

measurement of an optical cavity.

% Using transverse mode spacing to measure focal power

Y%RoCITM = 0.33; % meters

RoCETM = 0.50; % meters

L_cav = 0.791; % Cavity length [meters]

% Measured cavity length 0.791 +-—0.001 (measured 8/25/2016)
RT _cav = L_cavx2; % Round trip [meters]|

cav_lengths=0.010;

L1 = cav_lengths; % Distance from IC to lens [meters]
L2 = L_cav — L1; % distance from OC to lens [meters]|
c = 299792458; % Speed of light [meters/second]
FSR_cav = ¢/RT_cav; % [Hz]

%% Solving the eigen value problem for the focal length

f L = —19; % focal length in meters.

% Modify f_L value until fTM shift matches measurement
MEITM = [1,0;—-2/RoCETM,1];
s_.ETM _to_lens = [1,L1;0,1];
M_lens = [1,0,;—1/f. L, 1];
s_ ITM_to_lens = [1,L2;0,1];
MITM = [1,0;—2/RoCITM,1];

M_cav_Round_trip = MITMx*xs_ITM _to_lens*M _lensxs_ ETM _to_lens ...

MEIM*xs_ETM _to_lens*M _lensxs_ITM _to_lens;
m_eig = eig(M_cav_Round_trip);
m_anglel = angle(m_eig(1));
FIM. spacing = FSR_cavxm_anglel /(2% pi)
FIM. focal_length = f_L

A.4 MATLAB Cavity Function calculate2MirrorCavity

This function was created by Stefan Ballmer and was used to estimate the optical power

expected on each wavefront sensor.
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function [ cav | = calculate2MirrorCavity (cav,T1,RoC1,T2,RoC2,L,
delta ,Pin,lambda0,c)

WSS T o

% Calculates various cavity characteristics.

% Syntax:

% cav = calculate2MirrorCavity (cav,T1,RoC1,T2,RoC2,L, delta ,Pin,
lambda0,c) ;

% or

% cav = calculate2MirrorCavity ( cav );

WSS T o

% Required arguments:

% cav : struct to be filled out. Intead of additional
parameters

% cav can contain fields with the same name.

WSS T o

% Required arguments or fields of input argument cav:

% T1, RoC1 : power transmission fraction and Radius of
Curvature

% of input mirror

% T2, RoC2 : power transmission fraction and Radius of
Curvature

% of 2nd mirror

% L . (one—way) cavity length

% delta : cavity detuning

% Pin : input power

% lambda0 : Wave length of the light

% c . speed of light

WSTTSST o

% Alternative fields of input argument cav:

% detuneFreq : = delta/2/pi, instead of delta

% detuneRatio : = delta/gamma, instead of delta or detuneFreq

% LRT . = 2xL, instead of L

%

WIS STTT o
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% Note:

%

0y
0

%
%0
%

0y
0

if

if

if

if

if
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Input arguments always have priority over fields of cav
SIS TT o
% Default values for some input arguments when omitted:
Pin = 1 Watt
lambda0 = 1.064e—6 m
c = 299792458 m/s
delta or
detuneFreq or
detuneRatio no detuning is calculated
SIS T o
% Stefan Ballmer, sballmer@syr.edu, 2012/02/18
YITSSTT T
TITSSTT T
% Get parameters form cav if necessary (delta has special
treatment )
Texist (T [ var’), if isfield (cav, ' T1") | T1 =cav.Tl;
end; end;
“exist ('RoCl", "var '), if isfield (cav, 'RoCl"), RoCl=cav.RoCl;
end; end;
Texist (T2 [ var’), if isfield (cav,’T2") | T2 =cav.T2;
end; end;
Texist ('RoC27 ) var '), if isfield (cav, 'RoC2"), RoC2=cav.RoC2;
end; end;
Texist (L7 ,var '), if isfield (cav, L") , L =cav.L;
end; end;
Texist('Pin’ [ var’), if isfield (cav, Pin’) | Pin =cav.Pin;

if

if

if

end; end;

“exist (lambda0’, var ) if isfield (cav, lambda0 ") ,lambda0=cav .

lambda0 ;
Texist (¢’

end; end;

Y

end; end;

‘var '), if isfield (cav, '¢’) , ¢ =cav.c;
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75
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7

78

79

80

81

82

83

0y

defined

if “exist(’'T1" |’ var’

if “exist( 'RoCl’, var’

if “exist (T2 | ’var’

if “exist( RoC2’, var’

if exist ('L, var’),
cav.L=L;
cav.L.RT=Lx*2;

elseif isfield (cav, LRT’
L=cav.L.RT/2;
cav.L=L;

else error(’Cavity length

end;

if “exist(’'Pin’ ,var
input power

if “exist(’lambdal’ |’ var
length

if “exist(’c’ ,var

Light speeds

YITSSTT o

% assign shorthands
1 =L;

R1=RoC1;

R2=RoC2;

refll =sqrt(1-T1);
transl=sqrt (T1);
refl2 =sqrt(1-T2);
trans2=sqrt (T2);

YIS T T o

% Calculate the g—factors
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o error checks and alternate inputs, set default values if not

error ('T1 must be specified ’); end;

error ( 'RoCl must be specified’); end;
error (T2 must be specified’); end;

error ( 'RoC2 must be specified’); end;

(
(
(
(

needs to be specified’);
"), Pin =1; end;% [Watt],
"), lambda0 =1.064e—6; end;% [m|, Wave

), ¢ =299792458; end;% [m/s |

Y
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gl = 1-1/R1;
g2 = 1-1/R2;
g = glxg2;

WITIIIISo
% Calculate beam spot size
zl = (1-1"2/R2)/(14+R1/R2—2x1/R2);
22 — (1-1"2/R1)/(1+R2/R1-2%1/R1) ;
if not(isinf(R1))

zZR = sqrt ((R1 — z1) * z1);
elseif not(isinf(R2))

zZR = sqrt ((R2 — 22) * 2z2);

else

p.cavity.zR = inf;
end
w0 = sqrt( lambda0/pi x zR);
wl = w0 % sqrt(1+(z1/zR)"2);
w2 = w0 * sqrt(14+(z2/zR)"2);

YISSTTTSITTo
% Calculate the FSR
FSR = c¢/(2x1);

% Calculate the transverse mode spacing
fracTM = acos(sign(gl)*xsqrt(gl*g2)) / pi;
fT™M = FSRxfracTM ;

YITSSTTTSo

% Calculate the Power Build—up on resonance
powerBuildup = (transl/(1—refllx*refl2))"2;
% Calculate the Finesse and cavity pole

% old formula, only valid for refl2=1: finesse
pi/2;
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powerBuildup x

finesse = pi/2/asin((1—refll*refl2)/(2xsqrt(refll*refl2)));
pole = FSR/(2*pi)*(1—refllxrefl2) /(refllxrefl2);

gamma = 2xpikxpole;
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135

136

137

138

139

140

141

142

143

144

145

146

147
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WSTSTST o
% Calculate
)

HWHMpower =
FWHMpower =
% Calculate
TRANS =
REFL =
WSS T o

% Calculate
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the HWHM and FWHM of power (i.e. calculate a frequency

FSR/(2xpi)*acos(l—(1—refllxrefl2) 2/(2«refllxrefl2));
HWHMpower * 2 ;

the Transmitted and Reflected Power
powerBuildup * trans2 " 2;

( transl "2xrefl2 /(1—refllxrefl2) — refll )"2;

the Intra—cavity , reflected & transmitted power (on

resonance )

power
powerTRANS
powerREFL
WSTTSST o
% Calculate

radPressure

= powerBuildup * Pin;
= TRANS x Pin;
= REFL x Pin;

the DC Radiation pressure on resonance

= 2/c x power;

% Now do the detuned calculations

YISSTTTSITTo
% First get

all the detuning parameters

if exist(’'delta’, var’)

detuneRatio = delta/gamma;
detuneFreq = delta/(2xpi);

doDet

= true;

elseif isfield (cav, delta’)

delta

= cav.delta;

detuneRatio = delta /gamma;
detuneFreq = delta/(2xpi);

doDet

= true;

elseif isfield (cav, detuneFreq’)

detuneFreq = cav.detuneFreq;
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delta = detuneFreq#*(2%pi);
detuneRatio = delta/gamma;
doDet = true;

elseif isfield (cav, detuneRatio’)
detuneRatio = cav.detuneRatio;
delta = gammaxdetuneRatio;
detuneFreq = delta/(2xpi);
doDet = true;

else
disp(’'No detuning specified ’);
doDet = false;

end

WSSTSST o

% Now, first if necessary, complete the detuning cav input

parameters

if doDet
cav.delta = delta; % Cavity detuning
cav.detuneFreq = detuneFreq; % Cavity detuning frequency
delta /2/pi
cav.detuneRatio = detuneRatio; % Cavity detuning ratio
delta /gamma
end
if doDet
WSTSTST o
% Calculate the round trip phase
phase_RT = delta/FSR;
WSTTSST o
% Calculate the detuned field and power Build—up
fieldBuildup_d = transl/(l1—refll*refl2xexp(—1lixphase RT));
powerBuildup_.d = abs(fieldBuildup_-d) "2;
WSTTSST o
% Calculate the transmitted and reflected field and power
trans_d = fieldBuildup_d % exp(—1lixphase RT/2) % trans2;
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209

210

end

TRANS.d = abs(trans_d)."2;
refl_.d = fieldBuildup_d=xexp(—1lisphase RT)xrefl2xtransl —

refll ;

REFL.d = abs(refl_d) "2;

WSS T T o

% Calculate the Intra—cavity ,

detuned)

power_d

powerTRANS.d =
= REFL.d % Pin;

powerREFL_d
TITSSTT T

reflected & transmitted power (

powerBuildup_d % Pin;

TRANS.d % Pin;

% Calculate the DC Radiation pressure (detuned)

radPressure.d = 2/c % power_d;

YIS T T o

% Fill in the data

Y%cav
Y%cav
%Cav
Y%cav
cav.
cav.
cav.
cav.
cav
cav
cav
cav
cav
cav

cav.

S

.T1
.RoC1
.T2
.RoC2

g

gl
g2
zl

.72
w0
.wl
W2
.FSR
ATM

fracTM

pacing

= T1;
= R1;
= T2;
= R2;
= g3

= gl;
= 82;
= zl;
= 72

= w0;
= wl;
= wW2;
= FSR;
= fTM;
= fracTM;

% Mirror

% Mirror

1
1
% Mirror 2
2

% Mirror

%
%

07
0

%
%0
%

07
0

%
%0
%

07
0

Cavity g—factor

Mirror 1 g—factor

Mirror 2 g—factor

Distance of mirror 1 to waist
Distance of mirror 2 to waist
Beam waist at focus

Beam waist at Mirror 1

Beam waist at Mirror 2

Free Spectral Range
Transverse Mode Spacing

Fractional Transverse Mode
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219

220
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222

223

224

225

226

227

228

229

230

231

232

233

234

cav.finesse

cav .gamma
.pole

. HWHMpower
. FWHMpower

onR . name

cav

cav

cav

onR . powerBuildup

onR . TRANS
(on res.)
onR .REFL
on res.)
onR . power
Watt |
onR . powerTRANS
Watt |
onR . powerREFL
]
onR.radPressure
on res.)
cav.onRes
if doDet
parameters:
dtu.name

dtu.delta

= gamma;

= pole;

= HWHMpower ;
= FWHMpower ;

"Cavity data on resonance’;

dtu.detuneFreq
/2/pi
dtu.detuneRatio
delta /gamma
dtu.phase_ RT
detuning
dtu.fieldBuildu
dtu. trans
dtu. refl
dtu.powerBuildu

finesse; %

%

powerBuildup; %

= TRANS:; %
REFL; %
power ; %
powerTRANS:; %
powerREFL ; %
radPressure; %
onR;

WIS

o Cavity Finesse

% Cavity line width

Cavity pole

Power

Power

Power

% HWHM frequency (HM of power)
% FWHM frequency (FM of power)

Y

build —up on resonance
transmission coefficient

reflection coefficient (

Intra—cavity power (on res.) |

Transmitted power (on res.) |

Reflected power (on res.)

Radiation pressure in Newton (

"Cavity data with

= delta; %
= detuneFreq; %
= detuneRatio; %
= phase_RT; %
p = fieldBuildup_d; %
= trans_d; %
= refl_d; %
p = powerBuildup_d; %

% all on resonance values

Now all the detuned

fixed detuning’;
Cavity detuning

detuning frequency delta
Cavity detuning ratio

Round trip phase due to
field coef
Transmitted field

Reflected field coef

Intra—cavity power coef

Intra—cavity

coef
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235 dtu .TRANS = TRANS; % Transmitted power coef

236 dtu.REFL = REFL.d; % Reflected power coef

237 dtu.power = power_d; % Intra—cavity power [Watt]

238 dtu.powerTRANS = powerTRANS d; % Transmitted power [Watt]

239 dtu.powerREFL = powerREFL_d; % Reflected power [Watt]

240 dtu.radPressure = radPressure_.d; % Radiation pressure in
Newton

241 cav.detun = dtu; % all detuned values

212 end

243

2aa WSS T o
25 % Fill in the data description

o 1f isfield (cav, 'u’), u = cav.unit; end;

a7 if isfield (cav, 'd’), d = cav.desc; end;

245 U. L = 'm’; d.L = ’Cavity length’;

20 u.L_RT = 'm’; d.LRT = ’Round trip cavity length’;

250 U. g =17, d.g = ’Cavity g—factor’;

251 U. gl = '1"; d.gl = "Mirror 1 g—factor’;

252 . g2 ="1"7; d.g2 = ’Mirror 2 g—factor’;

253 .71 = 'm’; d.zl = ’'Distance of mirror 1 to waist’;

254 .72 ‘m’; d.z2 = ’'Distance of mirror 2 to waist’;

255 1. W0 = 'm’; d.w0 "Beam waist at focus’;

256 U. W1 = 'm’; d.wl = ’'Beam waist at Mirror 17;

257 U . W2 = 'm’; d.w2 = ’'Beam waist at Mirror 27;

255 1. FSR = 'Hz’; d.FSR = ’'Free Spectral Range’;

250 u.fIM = 'Hz’; d.fTM = ’Transverse Mode Spacing’;

260 U . fracTM ='1"7; d.fracTM= ’Fractional Transverse Mode
Spacing ’;

261 U. finesse = '1"7; d.finesse="Cavity Finesse

262 U . gamma = "2xpixHz’;d.gamma = ’Cavity line width’;

263 1. pole = 'Hz’; d.pole = "Cavity pole’;

264+ u.HWHMpower = "Hz ' ; d .HWHMpower="HWHM frequency (HM of power)’

I
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265 U . FWHMpower = "Hz ', d .FWHMpower="FWHM frequency (FM of power)’
;

266 Cav.unit = u; cav.desc= d;

267 Cav.noprint = {’LRT’,’ delta’, detuneFreq’, detuneRatio’};

s cav.nodescent = { onRes’};

269

o0 clear ('u’,d’);

or1 u. powerBuildup = "17; d.powerBuildup = "Power build—up on
resonance

a2 1. TRANS =17, d . TRANS = ’Power transmission
coefficient (on res.)’;

213 U . REFL =17 d . REFL = ’Power reflection
coefficient (on res.)’;

274 1. pOWer = "Watt’; d.power = ’Intra—cavity power (on
res.) ’;

ors u.powerTRANS = "Watt’; d.powerTRANS = "Transmitted power (on
res.) ’;

276 1. powerREFL = "Watt’; d.powerREFL = ’Reflected power (on
res.) ’;

o7 u.radPressure = 'Newton ;d.radPressure = "Radiation pressure (on
res.) ’;

278 cav.onRes.unit = u; cav.onRes.desc = d;

279

0 1f doDet WITTTI Now all the detuned
parameters:

281 clear ('u’,’d’);

282 u.delta ="2xpixHz’;d.delta ="Angular detuning frequency’

283 u.detuneFreq ='Hz'; d.detuneFreq ='Detuning frequency ’;

284 u.detuneRatio ="1"; d.detuneRatio =" Cavity Detuning Ratio

delta /gamma’;
285 u.phase RT ='rad’; d.phase RT =’Round trip phase due

to detuning’;



286

287

288

290

291

292

293

294

295

296

298

299

300

301

end

end

u.fieldBuildup="1";

coef’;

u.trans ="1";
coef ’;

u.refl =’1";

Y

u.powerBuildup="1";

coef ’;
u . TRANS ="1";
coef’;
u.REFL ="1";
u.power ="Watt ’;
u.powerTRANS ="Watt’;
u.powerREFL  ="Watt ",
u.radPressure ="Newton ;

cav.detun.unit=u;
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d.fieldBuildup="Intra—cavity field

d.trans ="Transmitted field

d.refl ="Reflected field coef’

d.powerBuildup="Intra—cavity power

d . TRANS ="Transmitted power
d.REFL ="Reflected power coef’
d.power =’'Intra—cavity power’;
d.powerTRANS ='Transmitted power’;
d.powerREFL  ="Reflected power’;
d.radPressure ="Radiation pressure’;

cav.detun.desc= d;

cav.detun.noprint = {’ fieldBuildup ', "trans’, 'refl '

powerBuildup ’, "TRANS’

, 'REFL’ };
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