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Abstract 
 

 

The objective of this dissertation is to illustrate that computational electromagnetics can 

be used to improve the accuracy and efficiency of antenna pattern measurements.  

This can be accomplished in many different ways, such as moving a single probe over 

the measurement plane to generate accurate planar near field to far field transformation 

methodology over the classical Fourier based modal expansion methods. Also, one can use 

an array of probes instead of moving a single probe over the measurement plane to 

eliminate the inaccuracy of a mechanical movement of the probe antenna over a large 

planar surface and make the measurement methodology more accurate and efficient. 

Another unique feature of this methodology is that as long as the sizes of the measurement 

planes are chosen to be approximately equal to or larger than the size of the actual source 

plane of the antenna under test, one is guaranteed to obtain the accurate results.  

In addition, other two approaches are proposed which under some conditions to further 

increase the efficiency of the whole processes of the methodology. For example, for a 

linearly polarized antenna, performance is often described in terms of its principal E-plane 

and H-plane patterns. If that is the goal, then one can use a planar dipole probe array to 

measure the near field over a sector and then use that to obtain the far field pattern along 

principal planes with engineering accuracy and so precision mechanical measurement 

gadgets will not be required and thus minimizing the cost and speeding up the measurement 

process. Another scenario is that the near field data contain complex numbers, and it’s very 

difficult to measure the complex data, especially for high frequency applications, say at M, 



 
 

  

V and W-bands. One can still obtain acceptable far field results by using the amplitude 

only data of the near field measurements, which significantly reduced the workload of the 

measurements, hence increased the efficiency.  

The whole methodology is accomplished by solving for the equivalent magnetic current 

over a plane near the original source antenna under test and then employing the Method of 

Moments approach to solve for the equivalent magnetic currents on this fictitious surface. 

The two components of the equivalent currents can be solved independently from the two 

components of the measured electric fields. The resultant method of moments matrix 

equation can be solved very efficiently and accurately by using the iterative conjugate 

gradient method enhanced through the incorporation of the Fast Fourier Transform 

techniques. In all these approaches, there is no need to incorporate probe correction unlike 

in the existing approaches, no need to satisfy the Nyquist sampling criteria and a super 

resolution can be achieved in the solution of the equivalent magnetic current to predict the 

operation of the antenna. Also, the presence of evanescent fields does not make this 

methodology unstable unlike the Fourier based techniques.  

Sample numerical results are presented to illustrate the potential of a novel planar near 

field to far field transformation for the planar near field measurement technique. 
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1 INTRODUCTION 

The source reconstruction method (SRM) is a recent computational technique 

developed for antenna diagnostics and for carrying out near-field (NF) to far-field (FF) 

transformation [1]-[13]. The SRM is based on the application of the electromagnetic 

Equivalence Principle [17], in which one establishes an equivalent current distribution that 

radiates the same fields as the actual currents induced in the antenna under test (AUT). The 

knowledge of the equivalent currents allows the determination of the antenna radiating 

elements, as well as the prediction of the AUT-radiated fields outside the equivalent 

currents domain. The unique feature of the novel methodology has been illustrated that it 

has the potential to resolve equivalent currents that are smaller than half a wavelength in 

size, thus providing super-resolution.  Furthermore, the measurement field samples can be 

taken at field spacing greater than half a wavelength, thus going beyond the classical 

sampling criteria. These two distinctive features are possible due to the incorporation of 

computational techniques into antenna measurement techniques thereby enhancing their 

accuracy and efficiency. In this methodology the unknowns are approximated by a 

continuous basis and, secondly, through the use of the analytic free space Green’s function 

which is quite easy to compute numerically [17]-[20]. The latter condition also guarantees 

the inevitability of the electric field operator and provides a stable solution for the currents 

even when evanescent waves are present in the measurements. In addition, the use of the 

iterative conjugate gradient (CG) method in solving the ill-conditioned matrix equations 

can also be implemented [21]-[24]. Four different near field measurement approaches are 

presented to illustrate the accuracy and efficiency of the proposed methodology. 
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2 DEVELOPMENT OF THE PROPOSED 

METHODOLOGY 

The earliest near-field to far-field transformation methodologies are based on the model 

expansion method which use the measured near field data to calculate the coefficients of 

the wave functions [1]-[4]. The wave functions are expanded in terms of planar, cylindrical 

and spherical forms from the radiated fields of the antenna under test. The modeling and 

calculations are difficult to carry out sometimes. For the near-field antenna measurements, 

it started by using ideal probes scanning on arbitrary surfaces and ended up with arbitrary 

probes scanning on planar, cylindrical, and spherical surfaces [5]. The equivalent magnetic 

current approach is a widely used alternate method to calculate far field from near field 

data [6]-[13]. Based on the equivalent principle [17], this method uses the near-field data 

to determine an equivalent magnetic current source on a fictitious planar surface that 

encompasses the antenna under test, and under certain approximations, the magnetic 

currents will produce the same field as the antenna under test in the region of interest. In 

our work, the equivalent current approach of computing far fields from the near fields 

measured by different approaches. Using a single probe antenna measurement has been 

discussed without incorporating probe correction [6]. The introduction of a measurement 

probe appears to have minimal mutual effects between the AUT and the probe as shown in 

[7][8]. We further pointed out that the size of the measurement plane chosen to be close to 

or larger than the size of the actual source plane of the antenna under test, our NF-FF 

approach provides acceptable results [9]. Under some circumstance, two efficient 

approaches are proposed, the first one is measuring the near field over a sector and then 
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using that to obtain the far field pattern along principal planes with engineering accuracy 

[10] and the other one is that the accurate far filed pattern can be obtained efficiently by 

using the amplitude only data of the square dipole array measurement [11]. 
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3 PHILOSOPHY OF THE COMPUTATIONAL 

METHODOLOGY 

3.1 Brief Introduction of the Uniqueness Theorem and the 

Equivalence Principle  

Uniqueness theorem and Equivalence Principle are important to solving complex 

problems, Equivalence Principle tells us what information is needed to obtain the solution 

and Uniqueness theorem makes sure that a solution is the only solution[17]. 

Uniqueness Theorem:  

A field in some region is uniquely specified by the sources within the region plus any 

one of the following three:  

① the tangential components of 𝐸ത over the boundary 

② the tangential components of 𝐻ഥ over the boundary 

③ the tangential components of 𝐸ത  over part of the boundary and the tangential 

components of 𝐻ഥ over the rest of the boundary. 

Equivalence Principle: 

Let electromagnetics sources contained in a volume V bounded by surface S with 

outward normal 𝑛ො to be the original problem as shown in Fig.  3.1. The fields 𝐸ത 𝑎𝑛𝑑 𝐻ഥ 

exterior to S can be found by removing sources in V and placing the following current 

densities on S: 
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 𝐽௦
ഥ  = 𝑛ො × 𝐻ഥ(𝑠)     𝑜𝑛 𝑆 (3-1) 

 𝑀௦
തതതത = 𝐸ത(𝑠) ×  𝑛ො    𝑜𝑛 𝑆 (3-2) 

where 𝐻ഥ(𝑠) 𝑎𝑛𝑑 𝐸ത(𝑠) are the fields produced by the original sources and evaluated at the 

surface S as shown in Fig.  3.2. 

 

Fig.  3.1. Original problem. 

 

Fig.  3.2. The equivalent problem with both 𝐽 ̅𝑎𝑛𝑑 𝑀ഥ  produces the same field exterior to 

S as do the original sources. 

In above, we used both the tangential components of 𝐸ത and 𝐻ഥ over the boundary, which 

gives us infinitely many equivalent currents as far as the external region is concerned. 

 𝐸ത, 𝐻ഥ 

S 

 𝑛ො 

 𝐸ത, 𝐻ഥ 

𝑆𝑜𝑢𝑟𝑐𝑒𝑠 

 𝐸ത, 𝐻ഥ 

Zero Fields 

S 
 𝐽 ̅

 𝑀ഥ  

 𝑛ො 
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According to Uniqueness Theorem, we can further simplify the equivalent problem that 

only the tangential components of 𝐸ത as shown in Fig.  3.3 or tangential components of 𝐻ഥ 

as shown in Fig.  3.4 are needed to determine the field. Our equivalent problems can be 

found in terms of only magnetic currents or only electric currents which makes the 

problems much easier to solve due to only one kind of equivalent current exist in the 

problem.  

 

Fig.  3.3. Equivalent magnetic currents with an electric conductor. 

 

Fig.  3.4. Equivalent electric currents with a magnetic conductor. 

 𝐸ത, 𝐻ഥ 

Zero 

S 

 𝑀௦
തതതത =  𝐸ത × 𝑛ො 

 𝑛ො 

Electric conductor 

 𝐸ത, 𝐻ഥ 

Zero 

S 𝐽௦
ഥ  = 𝑛ො ×  𝐻ഥ 

 𝑛ො 

Magnetic conductor 
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3.2 Modeling of Antenna Measurement System 

In our antenna measurement circumstances, we consider an arbitrary shaped antenna 

radiating into free space with the aperture of the antenna being a plane surface (assumed 

for simplicity but this assumption can be relaxed), which separates the total space into two: 

left-half (Region I) and right-half (Region II) spaces as shown in Fig.  3.5.  

 

Fig.  3.5. Original Problem of antenna measurement. 

For the antenna measurements purpose, we are interested in the radiation performance 

of the antenna, which means we are more interested in the Region II. Here we define 

Region I to be our Region of No Interest (RNI), and Region II to be our Region of Interest 

(ROI).   By applying the Equivalence Principle, here we chose the equivalent magnetic 

approach [6]-[13] as shown above in Fig.  3.3. We postulate the electromagnetic fields in 

x 

Test 

(𝜀,  µ) (𝜀,  µ) 

z 

Region I (RNI) Region II (ROI) 
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the RNI to be zero and place a PEC (perfect electric conductor) on the x-y plane (as shown 

in Fig.  3.6). The PEC plane is supposed to be infinite extent can be thought of as closed at 

infinity. 

 

Fig.  3.6. Equivalent Problem. 

We can further assume for the general case that the tangential component of the 

electrical field on the PEC is zero except over 𝑆, and then 𝑀ഥ  exist only on 𝑆 as shown in 

Fig.  3.6. Then applying the image theory, the equivalent magnetic current 𝑀ഥ  is obtained 

as 

 𝑀ഥ = 2𝐸ത × 𝑛ො  𝑜𝑛 𝑆 (3-3) 

x 

(𝜀,  µ) 

𝐽 ̅= 0 

𝑀ഥ =  𝐸ത × 𝑛ത 

𝐸ത =  𝐻ഥ = 0 𝐸ത =  𝐸ത(𝑀ഥ) 

𝐻ഥ =  𝐻ഥ(𝑀ഥ) 

(𝜀,  µ)  

z 

Region I (RNI) Region II (ROI) 
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where now 𝑀ഥ  radiates into free space. 𝑀ഥ   is determined from the measured electric field 

components. For computational purposes the measurement plane and hence the source 

plane has to be truncated to a finite region 𝑆. The fields decay almost exponentially on 

this plane as we go away from the radiating aperture, thereby one can truncate the surface 

without introducing any significant error in this approximation. 

Now, the far fields can easily be obtained from the measured electric near field via the 

equivalent magnetic current approach. Furthermore, 

 𝐸ത௦ =  𝐸ത(𝑀ഥ) (3-4) 

where 𝐸ത௦ is the measured electric near field, and 𝑀ഥ   is the equivalent magnetic current 

that exists on 𝑆. After we find 𝑀ഥ  we can calculate the far field. 
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4 FORMULATION OF THE INTEGRAL EQUATIONS 

4.1 Near-Field Measurement System 

The near-field measurements are assumed to be performed over a planar surface which 

is parallel with the source plane as shown in Fig.  4.1.[6]-[13] 

 

Fig.  4.1. Near-field measurement. 

The source plane (𝑆) is assumed to be a rectangular surface in the x-y plane with the 

dimensions 𝑤௫ and 𝑤௬. The distance between the source plane and the measurement plane 

is d. The x and y components of the electric field of the points on the measurement plane 

are usually measured to calculate the equivalent magnetic current on the source plane.  

 

𝑆 

𝑤௫/2 

−𝑤௫/2 

−𝑤௬/2 

𝑤௬/2 

�̅� − �̅�ᇱ 

�̅�ᇱ

P 

x 

z 

y 

d 
�̅� 

Measurement Plane 
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4.2 Near-Field Formulations  

The electric field at any point P can be found from 

 𝐸ത(�̅�) = − ∬ [𝑀ഥ(�̅�ᇱ) × ∇ᇱ𝑔(�̅�, �̅�ᇱ)]
ௌబ

d𝑠ᇱ (4-1) 

where 𝐸ത(�̅�) is the electric field at an arbitrary located observation point �̅�, 𝑀ഥ(�̅�ᇱ) is the 

equivalent magnetic current at the source point �̅�ᇱ, ∇ᇱ is the gradient operator according to 

the primed variables (sources), and 𝑔(�̅�, �̅�ᇱ) is the three-dimensional free space Green’s 

function, and 𝑘 is the free space wave number. 

 𝑔(�̅�, �̅�ᇱ) =
షೕೖబ|ೝഥషೝഥᇲ|

ସగ|̅ି̅ᇲ|
 (4-2) 

Because 𝑀ഥ  is a 2-D current sheet,  

 𝑀ഥ(�̅�ᇱ) =  𝑎ො௫𝑀௫ + 𝑎ො௬𝑀௬ (4-3) 

we can get 

 𝐸ത(�̅�) = − ∬ ൣ(𝑎ො௫𝑀௫ + 𝑎ො௬𝑀௬) × ∇ᇱ𝑔(�̅�, �̅�ᇱ)൧
ௌబ

𝑑𝑠′ (4-4) 

where, 

 ∇ᇱ𝑔(�̅�, �̅�ᇱ) =   𝑎ො௫
డ൫̅,̅ᇲ൯

డ௫ᇲ
+ 𝑎ො௬

డ൫̅,̅ᇲ൯

డ௬ᇱ
+ 𝑎ො௭

డ൫̅,̅ᇲ൯

డ௭ᇱ
  (4-5) 

Substitute (4-5) into (4-4), 

 𝐸ത(�̅�) = − ∬ ቄ(𝑎ො௫𝑀௫ + 𝑎ො௬𝑀௬) × ቂ𝑎ො௫
డ൫̅,̅ᇲ൯

డ௫ᇲ
+ 𝑎ො௬

డ൫̅,̅ᇲ൯

డ௬ᇱ
+ 𝑎ො௭

డ൫̅,̅ᇲ൯

డ௭
ቃቅ

ௌబ
𝑑𝑠′  

  (4-6) 
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 𝐸ത(�̅�) = − ∬ ቄ𝑎ො௭𝑀௫
డ൫̅,̅ᇲ൯

డ௬ᇲ
− 𝑎ො௬𝑀௫

డ൫̅,̅ᇲ൯

డ௭ᇲ
− 𝑎ො௭𝑀௬

డ൫̅,̅ᇲ൯

డ௫ᇲ
+ 𝑎ො௫𝑀௬

డ൫̅,̅ᇲ൯

డ௭ᇱ
ቅ

ௌబ
𝑑𝑠′ 

  (4-7) 

Rearranging the components, 

 𝐸ത(�̅�) = − ∬ ቄ𝑎ො௫𝑀௬
డ൫̅,̅ᇲ൯

డ௭ᇱ
− 𝑎ො௬𝑀௫

డ൫̅,̅ᇲ൯

డ௭ᇲ
+ 𝑎ො௭𝑀௫

డ൫̅,̅ᇲ൯

డ௬ᇲ
− 𝑎ො௭𝑀௬

డ൫̅,̅ᇲ൯

డ௫ᇲ
ቅ

ௌబ
𝑑𝑠′  

  (4-8) 

 𝐸ത(�̅�) = −𝑎ො௫ ∬ ቄ𝑀௬
డ൫̅,̅ᇲ൯

డ௭ᇲ
ቅ

ௌబ
𝑑𝑠ᇱ + 𝑎ො௬ ∬ ቄ𝑀௫

డ൫̅,̅ᇲ൯

డ௭ᇲ
ቅ

ௌబ
𝑑𝑠′ − 𝑎ො௭ ∬ ቄ𝑀௫

డ൫̅,̅ᇲ൯

డ௬ᇲ
−

ௌబ

𝑀௬
డ൫̅,̅ᇲ൯

డ௫ᇲ
ቅ 𝑑𝑠′  

  (4-9) 

We can obtain the three components of the electric field as follows, 

 𝐸௫ =  − ∬ 𝑀௬
డ൫̅,̅ᇲ൯

డ௭ᇲௌబ
𝑑𝑠′ (4-10) 

 𝐸௬ =  ∬ 𝑀௫
డ൫̅,̅ᇲ൯

డ௭ᇲௌబ
𝑑𝑠′ (4-11) 

 𝐸௭ =  − ∬ ቄ𝑀௫
డ൫̅,̅ᇲ൯

డ௬ᇲ
− 𝑀௬

డ൫̅,̅ᇲ൯

డ௫ᇲ
ቅ 𝑑𝑠′

ௌబ
 (4-12) 

where, 

 R =  |�̅� − �̅�ᇱ| = ඥ(𝑥 − 𝑥′)ଶ + (𝑦 − 𝑦′)ଶ + (𝑧 − 𝑧′)ଶ (4-13) 

 
డ൫̅,̅ᇲ൯

డ௭ᇲ
=  

డ

డ௭ᇲ
൬

షೕೖหೝഥషೝഥᇲห

ସగ|̅ି̅ᇲ|
൰ =

డ

డ௭ᇲ
ቀ

షೕೖೃ

ସగோ
ቁ  (4-14) 

 
డ൫̅,̅ᇲ൯

డ௭ᇲ
=  

ି
ങೃ

ങᇲషೕೖೃோିషೕೖೃ ങೃ

ങᇲ

ସగோమ
=

ିோିଵ

ସగோమ

డோ

డ௭ᇲ
𝑒ିோ (4-15) 
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డோ

డ௭ᇲ
 =  

ି(௭ି௭ᇱ)

ඥ(௫ି௫ᇱ)మା(௬ି௬ᇱ)మା(௭ି௭ᇱ)మ
=  

ି(௭ି௭ᇱ)

ோ
 (4-16) 

 
డ൫̅,̅ᇲ൯

డ௭ᇲ
=  

ோାଵ

ସగோమ

(௭ି௭ᇱ)

ோ
𝑒ିோ (4-17) 

Substitute(4-17) into (4-10) & (4-11), 

 𝐸௫ =  − ∬ 𝑀௬
ோାଵ

ସగோమ

௭ି௭ᇲ

ோ
𝑒ିோ𝑑𝑠ᇱ =  − ∬ 𝑀௬

షೕೖೃ

ସగோమ
(𝑗𝑘 +

ଵ

ோ
)(𝑧 − 𝑧ᇱ)𝑑𝑠ᇱ (4-18) 

 𝐸௬ =  ∬ 𝑀௫
ோାଵ

ସగோమ

௭ି௭ᇲ

ோ
𝑒ିோ𝑑𝑠ᇱ =  ∬ 𝑀௫

షೕೖೃ

ସగோమ
(𝑗𝑘 +

ଵ

ோ
)(𝑧 − 𝑧ᇱ)𝑑𝑠ᇱ (4-19) 

Similarly,  

 𝐸௭ =  − ∬ ቄ𝑀௫
డ൫̅,̅ᇲ൯

డ௬ᇲ
− 𝑀௬

డ൫̅,̅ᇲ൯

డ௫ᇲ
ቅ 𝑑𝑠ᇱ =  − ∬ ቄ𝑀௫

ோାଵ

ସగோమ

(௬ି௬ᇱ)

ோ
𝑒ିோ −

𝑀௬
ோାଵ

ସగோమ

(௫ି௫ᇱ)

ோ
𝑒ିோቅ 𝑑𝑠ᇱ   (4-20) 

Equation (4-18) and (4-19) show that the integral equation is a decoupled one with respect 

to the two components of the magnetic currents. So, the following two integral equations 

can be solved separately. 

 𝐸௫ =  −𝐺𝑀௬  (4-21) 

  𝐸௬ =  𝐺𝑀௫ (4-22) 

where,  

 𝐺 =  ∬
షೕೖೃ

ସగோమ
(𝑗𝑘 +

ଵ

ோ
)(𝑧 − 𝑧ᇱ)

ௌబ
𝑑𝑠ᇱ (4-23) 

We can obtain the equivalent magnetic current 𝑀௫ and 𝑀௬ on the source plane by using 

the x and y components of the measured electric near fields 𝐸௦,௫(�̅�) and 𝐸௦,௬(�̅�).  
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4.3 Far-Field Formulations  

After we obtained the 𝑀௫ and 𝑀௬ on the source plane, we want to calculate the far field 

radiated by the equivalent magnetic currents on the source plane[14][15] as shown in Fig.  

4.2. 

 

Fig.  4.2. Far-field system. 

For far-field observations R can most commonly be approximated by  

 𝑅 ≅ 𝑟 − 𝑟ᇱcosΨ (4-24) 

where Ψ is the angle between the vectors �̅� and �̅�ᇱ. Geometrically the approximation of 

(4-24) assumes that the vectors 𝑅ത and �̅� are parallel.  

In our case, the potential function �̅� generated by electric current 𝐽 ̅is zero, because 𝐽 ̅is 

zero, and the potential function 𝐹ത generated by the magnetic currents 𝑀ഥ  can be written as 

Ψ

𝑆 

𝑤௫/2 

−𝑤௫/2 

−𝑤௬/2 

𝑤௬/2 

𝑅ത 

�̅�ᇱ

x 

z 

y 

�̅� 
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 𝐹ത =  
ఢ

ସగ
∬ 𝑀ഥ௦ௌబ

షೕೖೃ

ோ
 𝑑𝑠ᇱ  (4-25) 

Substitute (4-24) into (4-25), 

 𝐹ത ≅  
ఢ

ସగ
∬ 𝑀ഥ௦ௌబ

షೕೖ(ೝషೝᇲౙ౩ಇ)


 𝑑𝑠ᇱ (4-26) 

 𝐹ത =
ఢషೕೖೝ

ସగ
∬ 𝑀ഥ௦ௌబ

𝑒ᇲୡ୭ୱஏ 𝑑𝑠ᇱ (4-27) 

 𝐹ത =
ఢషೕೖೝ

ସగ
𝐿ത (4-28) 

where 

 𝐿ത = ∬ 𝑀ഥ௦ௌబ
𝑒ᇲୡ୭ୱஏ𝑑𝑠ᇱ (4-29) 

In the far-field only the 𝜃 and 𝜑 components of the fields are dominant, we have 

 𝐻ഥ 𝐹 ≅  −𝑗𝜔𝐹ഥ  (4-30) 

 𝐸തி =  −η𝑎ො × 𝐻ഥி =  𝑗𝜔η𝑎ො × 𝐹ത (4-31) 

From (4-30) and (4-31) we can obtain all components of the fields in the spherical 

coordinate due to the equivalent magnetic currents, 

 𝐻  ≅ 0 (4-32) 

 𝐻ఏ  ≅ −𝑗𝜔𝐹ఏ (4-33) 

 𝐻ఝ  ≅ −𝑗𝜔𝐹ఝ (4-34) 

 𝐸  ≅ 0 (4-35) 

 𝐸ఏ  ≅ −𝑗𝜔η𝐹ఝ (4-36) 
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 𝐸ఝ  ≅ +𝑗𝜔η𝐹ఏ (4-37) 

Combine (4-28), (4-29) with (4-32) to (4-37), all components of the fields can be written 

as 

 𝐻  ≅ 0 (4-38) 

 𝐻ఏ  ≅ −
షೕೖೝ

ସగ

ഇ


 (4-39) 

 𝐻ఝ  ≅ −
షೕೖೝ

ସగ

ക


 (4-40) 

 𝐸  ≅ 0 (4-41) 

 𝐸ఏ  ≅ −
షೕ

ସగ
𝐿ఝ (4-42) 

 𝐸ఝ  ≅ +
షೕೖೝ

ସగ
𝐿ఏ (4-43) 

where 𝐿ఏ and 𝐿ఝ by applying the rectangular-to-spherical component transformation (4-44) 

on (4-29), 

 ቌ

𝑎ො௫

𝑎ො௬

𝑎ො௭

ቍ =  ൭
𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑 𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜑 −𝑠𝑖𝑛𝜑
𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜑 𝑐𝑜𝑠𝜑

𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃 0

൱ × ቌ

𝑎ො

𝑎ොఏ

𝑎ොఝ

ቍ  (4-44) 

which is, 

 𝐿ത = ∬ 𝑀ഥ௦ௌబ
𝑒ᇲୡ୭ୱஏ 𝑑𝑠ᇱ =  ∬ ൫𝑎ො௫𝑀௫ + 𝑎ො௬𝑀௬൯

ௌబ
𝑒ᇲୡ୭ୱஏ 𝑑𝑠ᇱ (4-45) 

Then we have, 
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 𝐿ത =  ∬ ൣ൫𝑎ො𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑 + 𝑎ොఏ𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜑 − 𝑎ොఝ𝑠𝑖𝑛𝜑൯𝑀௫ + (𝑎ො𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑 + 𝑎ොఏ𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜑 +
ௌబ

𝑎ොఝ𝑐𝑜𝑠𝜑)𝑀௬൧ 𝑒ᇲୡ୭ୱஏ 𝑑𝑠ᇱ   

  (4-46) 

𝐿ത =  ∬ ൣ𝑎ො൫𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑𝑀௫ + 𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑𝑀௬൯ + 𝑎ොఏ൫𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜑𝑀௫ + 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜑𝑀௬൯ +
ௌబ

𝑎ොఝ(−𝑠𝑖𝑛𝜑𝑀௫ + 𝑐𝑜𝑠𝜑𝑀௬)൧ 𝑒ᇲୡ୭ୱஏ 𝑑𝑠ᇱ   

  (4-47) 

finally, we obtain 𝐿ఏ and 𝐿ఝ as 

 𝐿ఏ =  ∬ ൣ𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜑𝑀௫ + 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜑𝑀௬൧
ௌబ

𝑒 ᇲୡ୭ୱ  𝑑𝑠ᇱ (4-48) 

 𝐿ఝ =  ∬ ൣ−𝑠𝑖𝑛𝜑𝑀௫ + 𝑐𝑜𝑠𝜑𝑀௬൧
ௌబ

𝑒ᇲୡ୭ୱ  𝑑𝑠ᇱ (4-49) 

also,  

 𝑑𝑠ᇱ = 𝑑𝑥ᇱ𝑑𝑦ᇱ (4-50) 

and, 

 cosΨ =  �̅�ᇱ ∙ 𝑎ො =  (𝑎ො௫𝑥ᇱ + 𝑎ො௬𝑦ᇱ) ∙ (𝑎ො௫𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑 + 𝑎ො௬𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑 + 𝑎ො௭𝑐𝑜𝑠𝜃) (4-51) 

 cosΨ= 𝑥ᇱ 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑 + 𝑦ᇱ𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑 (4-52) 

every component in the calculation of 𝐸ఏ and 𝐸ఝ is in terms of 𝜃 and 𝜑, which means the 

far-field 𝐸ఏ(𝜃, 𝜑) and 𝐸ఝ(𝜃, 𝜑) can be obtained from the equivalent magnetic current 𝑀ഥ௦ 

as shown above.  
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5 FORMULATION OF MATRIX EQUATIONS FROM 

THE INTEGRAL EQUATIONS 

The concept of near-field to far-field transformation is first to measure 𝐸௫ 𝑎𝑛𝑑 𝐸௬ in the 

near-field, and then solve for 𝑀௫ 𝑎𝑛𝑑 𝑀௬ on the equivalent plane and calculate the radiated 

far-field 𝐸ఏ 𝑎𝑛𝑑 𝐸ఝ accordingly. The question left is how to solve for 𝑀௫ 𝑎𝑛𝑑 𝑀௬ from 

the integral equations we derived above in (4-21) and (4-22) 

 𝐸௫ =  −𝐺𝑀௬  (5-1) 

  𝐸௬ =  𝐺𝑀௫ (5-2) 

where,  

 𝐺 =  ∬
షೕ

ସగோమ
(𝑗𝑘 +

ଵ

ோ
)(𝑧 − 𝑧ᇱ)

ௌబ
𝑑𝑠ᇱ (5-3) 

Here we use Method of Moment (MOM)[18]-[20] procedure to transform the E-field 

integral equations (5-1) and (5-2) into matrix equations, so that they can be numerically 

calculated using the computer.  

 

 

 

 



19 
 

 
 

5.1 Discrete Formulation of the Source Plane 

First, for the above description, the source plane (𝑆) is assumed to be a rectangular one 

in the x-y plane with extensions −𝑤௫/2 ≤ 𝑥ᇱ ≤ 𝑤௫/2 and −𝑤௬/2 ≤ 𝑦ᇱ ≤ 𝑤௬/2 as shown 

in Fig.  5.1.  

 

Fig.  5.1. Discretization of the source plane. 

The source plane is divided into 𝑀 ∙ 𝑁  equally spaced rectangular patches with 

dimensions Δ𝑥ᇱ and Δ𝑦ᇱ 

 Δ𝑥ᇱ =  𝑤௫/𝑀 (5-4) 

 Δ𝑦ᇱ =  𝑤௬/𝑁 (5-5) 

The center of the 𝑖, 𝑗௧ patch 𝑥
ᇱ and 𝑦

ᇱ are given by 

 x
ᇱ =  −

௪ೣ

ଶ
−

∆௫ᇲ

ଶ
+ 𝑖∆𝑥ᇱ  (5-6) 

𝑆 

𝑤௫/2 

−𝑤௫/2 

−𝑤௬/2 

𝑤௬/2 

x 

z 

y 

𝑀 

𝑁 
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 y
ᇱ =  −

௪

ଶ
−

∆௬ᇲ

ଶ
+ 𝑗∆𝑦ᇱ  (5-7) 

Then, a point matching procedure at the center of each patch is chosen, both 𝑀௫ 𝑎𝑛𝑑 𝑀௬ 

are approximated by equally spaced two-dimensional pulse basis functions 

 𝑀௫(𝑥ᇱ, 𝑦ᇱ) =  ∑ ∑ 𝛼
ே
ୀଵ

ெ
ୀଵ Π(𝑥ᇱ, 𝑦ᇱ) (5-8) 

 𝑀௬(𝑥ᇱ, 𝑦ᇱ) =  ∑ ∑ 𝛽
ே
ୀଵ

ெ
ୀଵ Π(𝑥ᇱ, 𝑦ᇱ) (5-9) 

where 𝛼 and 𝛽 are the unknown amplitudes of the x and y directed magnetic currents, 

respectively on the 𝑖, 𝑗௧  patch, and Π(𝑥ᇱ, 𝑦ᇱ) is the two-dimensional pulse basis function 

of the 𝑖, 𝑗௧  patch and defined as 

 Π(𝑥ᇱ, 𝑦ᇱ)   =

⎩
⎨

⎧1    𝑖𝑓 𝑥
ᇱ −

௫ᇲ

ଶ
≤ 𝑥ᇱ ≤ 𝑥

ᇱ +
௫ᇲ

ଶ
  

           𝑦
ᇱ −

௬ᇲ

ଶ
≤ 𝑦ᇱ ≤ 𝑦

ᇱ +
௬ᇲ

ଶ

0                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (5-10) 
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5.2 Discrete Formulation of the Measurement Plane 

The measurement plane is assumed to be a rectangular one in the x-y plane with 

extensions −𝑙௫/2 ≤ x ≤ 𝑙௫/2 and −𝑙௬/2 ≤ y ≤ 𝑙௬/2 as shown in Fig.  5.2.  

 

Fig.  5.2. Discretization of both source plane and measurement plane. 

It is also assumed that the measured electric near-fields are known at discrete points on 

the measurement plane, which is also divided into 𝑀 ∙ 𝑁  equally spaced rectangular 

patches with dimensions Δ𝑥 and Δ𝑦,  

 Δ𝑥 =  𝑙௫/𝑀 (5-11) 

 Δ𝑦 =  𝑙௬/𝑁 (5-12) 

The center of the 𝑖, 𝑗௧ patch 𝑥 and 𝑦 are given by 

𝑆 

𝑤௫/2 

−𝑤௫/2 

−𝑤௬/2 

𝑤௬/2 

x 

z 

y 

𝑀 

𝑁 

�̅� − �̅�ᇱ 

�̅�ᇱ
�̅� 

P 

d 

𝑀 

𝑁 

Measurement Plane 

−𝑙௬/2 

𝑙௬/2 

−𝑙௫/2 

𝑙௫/2 



22 
 

 
 

 x =  −
ೣ

ଶ
−

∆௫

ଶ
+ 𝑖∆𝑥  (5-13) 

 y =  −


ଶ
−

∆௬

ଶ
+ 𝑗∆𝑦  (5-14) 

Then, a point matching procedure at the center of each patch is chosen, both 𝐸௫ 𝑎𝑛𝑑 𝐸௬ 

are approximated by equally spaced two-dimensional pulse basis functions 

 𝐸௫(𝑥, y) =  ∑ ∑ 𝛾
ே
ୀଵ

ெ
ୀଵ Π(𝑥, y) (5-15) 

 𝐸௬(𝑥, y) =  ∑ ∑ 𝛿
ே
ୀଵ

ெ
ୀଵ Π(𝑥, y) (5-16) 

where 𝛾 and 𝛿 are the measured x and y directed electric fields, respectively on the 𝑖, 𝑗௧  

patch, and Π(x, y) is the two-dimensional pulse basis function of the 𝑖, 𝑗௧   patch and 

defined as 

 Π(x, y)   = ൞

1    𝑖𝑓 𝑥 −
௫

ଶ
≤ x ≤ 𝑥 +

௫

ଶ
  

           𝑦 −
௬

ଶ
≤ y ≤ 𝑦 +

௬

ଶ

0                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (5-17) 
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5.3 Discrete Formulation of the Integral Equations 

Substituting (5-8), (5-9) and (5-15), (5-16) into (5-1), (5-2) and utilizing point matching 

procedure, the following two decoupled matrix equations are obtained,  

 

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

𝐸௦,௫(1,1)

𝐸௦,௫(1,2)

⋮
𝐸௦,௫(1, 𝑁)

𝐸௦,௫(2,1)

𝐸௦,௫(2,2)

⋮
𝐸௦,௫(2, 𝑁)

⋮
⋮

𝐸௦,௫(𝑀, 𝑁)⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

=  −𝐺 ×

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

𝑀௬(1,1)

𝑀௬(1,2)

⋮
𝑀௬(1, 𝑁)

𝑀௬(2,1)

𝑀௬(2,2)

⋮
𝑀௬(2, 𝑁)

⋮
⋮

𝑀௬(𝑀, 𝑁)⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

  (5-18) 

 

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

𝐸௦,௬(1,1)

𝐸௦,௬(1,2)

⋮
𝐸௦,௬(1, 𝑁)

𝐸௦,௬(2,1)

𝐸௦,௬(2,2)

⋮
𝐸௦,௬(2, 𝑁)

⋮
⋮

𝐸௦,௬(𝑀, 𝑁)⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

=  𝐺 ×

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

𝑀௫(1,1)
𝑀௫(1,2)

⋮
𝑀௫(1, 𝑁)

𝑀௫(2,1)
𝑀௫(2,2)

⋮
𝑀௫(2, 𝑁)

⋮
⋮

𝑀௫(𝑀, 𝑁)⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

  (5-19) 

where 𝐸௦,௫ ,  𝐸௦,௬ , 𝑀௫ and 𝑀௬ are all 𝑀 ∙ 𝑁 by 1 matrix. G is the moment matrix for the 

planar scanning case, the explicit expressions for G is given by 

 𝐺, = ∬
షೕೖబೃ

ସగோమஐ
(𝑧 − 𝑧ᇱ) ቂ𝑗𝑘 +

ଵ

ோ
ቃ 𝑑𝑠ᇱ  (5-20) 

where Ω is the area of the 𝑙௧ patch, and R is the distance between the 𝑘௧ field point (�̅�) 

and 𝑙௧ source point (�̅�′), 𝑑𝑠ᇱ = 𝑑𝑥′ ∙ 𝑑𝑦′. There are 𝑀 ∙ 𝑁 patches on the source plane and 
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𝑀 ∙ 𝑁 patches on the measurement plane, which makes the G matrix to be a 𝑀 ∙ 𝑁 by 𝑀 ∙

𝑁 matrix as follows,  

⎝

⎜
⎜
⎜
⎜
⎜
⎛

G(1_1,1_1) 𝐺(1_1,1_2) ⋯ 𝐺(1_1,1_𝑁) 𝐺(1_1,2_1) ⋯ 𝐺(1_1,2_𝑁) ⋯ 𝐺(1_1, 𝑀_𝑁)
G(1_2,1_1) 𝐺(1_2,1_2) ⋯ 𝐺(1_2,1_𝑁) 𝐺(1_2,2_1) ⋯ 𝐺(1_2,2_𝑁) ⋯ 𝐺(1_2, 𝑀_𝑁)

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
G(1_N, 1_1) 𝐺(1_𝑁, 1_2) ⋯ 𝐺(1_𝑁, 1_𝑁) 𝐺(1_𝑁, 2_1) ⋯ 𝐺(1_𝑁, 2_𝑁) ⋯ 𝐺(1_𝑁, 𝑀_𝑁)
G(2_1,1_1) 𝐺(2_1,1_2) ⋯ 𝐺(2_1,1_𝑁) 𝐺(2_1,2_1) ⋯ 𝐺(2_1,2_𝑁) ⋯ 𝐺(2_1, 𝑀_𝑁)

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
G(2_N, 1_1) 𝐺(2_N, 1_2) ⋯ 𝐺(2_N, 1_𝑁) 𝐺(2_N, 2_1) ⋯ 𝐺(2_N, 2_𝑁) ⋯ 𝐺(2_N, 𝑀_𝑁)

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
G(𝑀_𝑁, 1_1) 𝐺(𝑀_𝑁, 1_2) ⋯ 𝐺(𝑀_𝑁, 1_𝑁) 𝐺(𝑀_𝑁, 2_1) ⋯ 𝐺(𝑀_𝑁, 2_𝑁) ⋯ G(𝑀_𝑁, 𝑀_𝑁)⎠

⎟
⎟
⎟
⎟
⎟
⎞

 

  (5-21) 

where G(1_1,1_1) represent the G expression between the 1,1௧  patch on the source plane 

and the 1,1௧  patch on the measurement plane, G(1_1,1_2) represent the G expression 

between the 1,1௧   patch on the source plane and the 1,2௧  patch on the measurement 

plane, etc.  
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6 SOLUTION FOR THE MATRIX EQUATIONS       

6.1 Method Choosing  

The remaining problem is how to solve equation (5-18) and (5-19) to calculate 𝑀௫ and 

𝑀௬ from 𝐸௦,௫ ,  𝐸௦,௬. They are both result in the same type of problem as follows, 

 𝐴𝑋 = 𝑌 (6-1) 

where A is the coefficient matrix G, X is the column matrix of the unknowns to be 

determined, and Y is the column matrix of the measured fields. To solve this type of 

equation, there are many methods to choose from[18]-[26]. For example, direct methods, 

including Cramer’s rule, LU-Decomposition and Gaussian Elimination, which are good 

options when the sizes of the matrices are small. For systems with the large matrices, the 

round-off errors and truncation errors build up in direct methods and the elimination 

procedures become very time consuming. To reduce the effect of round-off error, iterative 

methods are good alternatives to rectify this problem. There are many kinds of iterative 

methods. Linear iterative methods include Gauss’ Method, Jacobi’s Method, Seidel’s 

Method, Back and Forth Seidel Method, SOR Techniques, etc. Non-linear iterative 

methods include Steepest Descent Method and Conjugate Gradient Method (CGM). The 

advantage of Non-linear iterative methods over linear iterative ones is faster convergence 

making non-linear iterative methods very useful when the sizes of the matrices are large. 

Hence, we choose to use a Non-linear iterative method to solve these matrix equations. 

Specifically we choose the Conjugate Gradient Methods because a Fourier Transform may 

be utilized to evaluate some terms further accelerating the speed of calculation.  
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6.2 Procedures of Conjugate Gradient Method 

The Conjugate Gradient Method[20]-[24] starts with an initial guess 𝑋ଵ and computes 

 𝑅ଵ =  𝑌ଵ − 𝐴𝑋ଵ  (6-2) 

 𝑃ଵ = 𝐴∗𝑅ଵ  (6-3) 

For i = 1 ,2, … let 

 𝑎 =  
‖∗ோ‖మ

‖‖మ
  (6-4) 

 Xାଵ = 𝑋 + 𝑎𝑃  (6-5) 

 𝑅ାଵ =   𝑅 − 𝑎𝐴𝑃  (6-6) 

 𝑏 =
‖∗ோశభ‖మ

‖∗ோ‖మ
  (6-7) 

 𝑃ାଵ = 𝐴∗𝑅ାଵ + 𝑏𝑃  (6-8) 

where 𝐴∗ is the conjugate transpose of A.  

Most of the computational cost in CGM occurs in the calculation of 𝐴𝑃 and 𝐴∗𝑅ାଵ. 

These two calculations have to be performed inside a loop which needs to be carried out 

many times. This is the most time-consuming part if we multiply them directly.  
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6.3 Brief Introduction of Toeplitz Matrix 

Any n by n matrix of the form  

 𝐴 =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

𝑎 𝑎ିଵ 𝑎ିଶ ⋯ ⋯ 𝑎ି(ିଵ)

𝑎ଵ 𝑎 𝑎ିଵ ⋱ ⋮

𝑎ଶ 𝑎ଵ ⋱ ⋱ ⋱ ⋮

⋮ ⋱ ⋱ ⋱ 𝑎ିଵ 𝑎ିଶ

⋮ ⋱ 𝑎ଵ 𝑎 𝑎ିଵ

𝑎ିଵ ⋯ ⋯ 𝑎ଶ 𝑎ଵ 𝑎 ⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

 (6-9)  

is a Toeplitz Matrix[21]. If the 𝑖, 𝑗௧ element of A is denoted 𝐴,, then we have  

 𝐴, =  𝐴ାଵ,ାଵ = 𝑎ି (6-10) 

Here we use a third order Toeplitz matrix as an example to show how to use FFT 

algorithm to accelerate the calculation.  

 ൭

𝑎 𝑎ିଵ 𝑎ିଶ

𝑎ଵ 𝑎 𝑎ିଵ

𝑎ଶ 𝑎ଵ 𝑎

൱ × ൭

𝑥

𝑥ଵ

𝑥ଶ

൱ = ൭

𝑦

𝑦ଵ

𝑦ଶ

൱ = ൭

𝑎𝑥 + 𝑎ିଵ𝑥ଵ + 𝑎ିଶ𝑥ଶ

𝑎ଵ𝑥 + 𝑎𝑥ଵ + 𝑎ିଵ𝑥ଶ

𝑎ଶ𝑥 + 𝑎ଵ𝑥ଵ + 𝑎𝑥ଶ

൱  (6-11) 

in the equation (6-11), we obtained the result from the direct multiplication, also we can 

take the convolutional variation 𝐴  of the original matrix A and take convolutional 

variation 𝑋 of the original vectors X as follows, 

 𝐴 =  {𝑎ିଶ 𝑎ିଵ 𝑎 𝑎ଵ 𝑎ଶ} (6-12) 

 𝑋 =  {𝑥 𝑥ଵ 𝑥ଶ 0 0} (6-13) 
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By taking the convolution of 𝐴 and 𝑋, we can find that the direct multiplication result of 

the original matrix A and the original vectors X which yields  𝑦 𝑦ଵ 𝑦ଶ, obtained in the 

convolution result,  

 𝐴 ∗ 𝑋 = {𝑎ିଶ𝑥 𝑎ିଶ𝑥ଵ + 𝑎ିଵ𝑥 𝑦 𝑦ଵ 𝑦ଶ 𝑎ଵ𝑥ଶ + 𝑎ଶ𝑥ଵ 𝑎ଶ𝑥ଶ}  (6-14) 

here, we use the question mark to represent the elements which we are not interested and 

𝜃 represent a truncation operator which selects the elements we are interested in. 

 𝐴 ∗ 𝑋 = {? 𝑦 𝑦ଵ 𝑦ଶ ?}  (6-15) 

 𝐴 ∗ 𝑋 = 𝜃{? 𝑦 𝑦ଵ 𝑦ଶ ?} = 𝜃{𝑌} = {𝑦 𝑦ଵ 𝑦ଶ}  (6-16) 

According to the  convolution theorem, the Fourier transform of a convolution of 

two signals is the pointwise product of their Fourier transforms, which means 

 𝐴 ∗ 𝑋 =  𝐹ିଵ{𝐹(𝐴)𝐹(𝑋)}  (6-17) 

where F denotes the discrete Fourier Transform, 𝐹ିଵ denotes the inverse discrete Fourier 

Transform. Hence, we can use FFT to accelerate the calculation if the matrix has the 

Toeplitz structure. 
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6.4 Block Toeplitz Matrix 

Back to our original problem, we want to accelerate the calculation of 𝐺𝑃 and 𝐺∗𝑅ାଵ 

which occurs in every iteration. These calculations can be very efficiently carried out under 

some specific conditions. If the dimension and discretization of the source plane and the 

measurement plane are chosen to be the same, the resultant G matrix is Block Toeplitz 

matrix. The structure of the matrix can be exploited by noting that a Fourier Transform 

may be utilized to evaluate the terms in the following CGM, which is called Conjugate 

Gradient Method and Fast Fourier Transform (CGFFT)[21]-[23]. 

Our G matrix is a function of R which is the distance between the 𝑘௧ field point (�̅�) 

and 𝑙௧ source point (�̅�′). Here we choose a very basic and simple case to illustrate the 

problem as shown in Fig.  6.1. 

 

Fig.  6.1. Example of Block Toeplitz Matrix. 
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We make 𝑙௫ = 𝑤௫  and 𝑙௬ = 𝑤௬  , 𝑀 = 2 𝑎𝑛𝑑 𝑁 = 3  for both source plane and 

measurement plane, which means the dimension and discretization of the source plane and 

the measurement plane are chosen to be the same. 

The G Matrix generated in this example is  

 

⎝

⎜
⎜
⎛

𝐺(1_1,1_1) 𝐺(1_1,1_2) 𝐺(1_1,1_3) 𝐺(1_1,2_1) 𝐺(1_1,2_2) 𝐺(1_1,2_3)

𝐺(1_2,1_1) 𝐺(1_2,1_2) 𝐺(1_2,1_3) 𝐺(1_2,2_1) 𝐺(1_2,2_2) 𝐺(1_2,2_3)
𝐺(1_3,1_1) 𝐺(1_3,1_2) 𝐺(1_3,1_3) 𝐺(1_3,2_1) 𝐺(1_3,2_2) 𝐺(1_3,2_3)

𝐺(2_1,1_1) 𝐺(2_1,1_2) 𝐺(2_1,1_3) 𝐺(2_1,2_1) 𝐺(2_1,2_2) 𝐺(2_1,2_3)
𝐺(2_2,1_1) 𝐺(2_2,1_2) 𝐺(2_2,1_3) 𝐺(2_2,2_1) 𝐺(2_2,2_2) 𝐺(2_2,2_3)

𝐺(2_3,1_1) 𝐺(2_3,1_2) 𝐺(2_3,1_3) 𝐺(2_3,2_1) 𝐺(2_3,2_2) 𝐺(2_3,2_3)⎠

⎟
⎟
⎞

 

  (6-18) 

we can easily find that  

 𝐺(1_1,1_2) = 𝐺(1_2,1_3)  ≠ 𝐺(1_3,2_1) ≠ 𝐺(2_1,2_2) = 𝐺(2_2,2_3)  (6-19) 

which indicates that G matrix is not a Toeplitz matrix, but it there’s still some special 

structure of this matrix, we can treat this 𝑀 ∙ 𝑁 by 𝑀 ∙ 𝑁 matrix as a M by M matrix and 

each element in this matrix is a N by N matrix.  

In this example is G is a 2 by 2 Matrix with 4 elements A, B, C, D 

 𝐺 =  ቀ
𝐴 𝐵
𝐶 𝐷

ቁ (6-20) 

where 

 A = ቌ
𝐺(1_1,1_1) 𝐺(1_1,1_2) 𝐺(1_1,1_3)

𝐺(1_2,1_1) 𝐺(1_2,1_2) 𝐺(1_2,1_3)
𝐺(1_3,1_1) 𝐺(1_3,1_2) 𝐺(1_3,1_3)

ቍ (6-21) 
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 𝐵 =  ቌ

𝐺(1_1,2_1) 𝐺(1_1,2_2) 𝐺(1_1,2_3)

𝐺(1_2,2_1) 𝐺(1_2,2_2) 𝐺(1_2,2_3)
𝐺(1_3,2_1) 𝐺(1_3,2_2) 𝐺(1_3,2_3)

ቍ (6-22) 

 𝐶 = ቌ

𝐺(2_1,1_1) 𝐺(2_1,1_2) 𝐺(2_1,1_3)

𝐺(2_2,1_1) 𝐺(2_2,1_2) 𝐺(2_2,1_3)
𝐺(2_3,1_1) 𝐺(2_3,1_2) 𝐺(2_3,1_3)

ቍ (6-23) 

 𝐷 = ቌ

𝐺(2_1,2_1) 𝐺(2_1,2_2) 𝐺(2_1,2_3)

𝐺(2_2,2_1) 𝐺(2_2,2_2) 𝐺(2_2,2_3)
𝐺(2_3,2_1) 𝐺(2_3,2_2) 𝐺(2_3,2_3)

ቍ (6-24) 

A = D, if we treat the N by N matrices A, B, C, D as the elements in the G matrix, G does 

have the Toeplitz structure, and every single element A, B, C, D does have the Toeplitz 

structure, we call this kind of matrix Block Toeplitz Matrix.  

Similarly, we can exploit the block Toeplitz structure of the matrix G, and the two terms 

can be computed using FFT. This would have a tremendous saving in computational time.                           

 𝐺𝑃 =  𝐹ିଵ{𝐹(𝐺)𝐹(𝑃
)}  (6-25) 

 𝐺ᇱ𝑅ାଵ = 𝑓𝐹ିଵ{𝐹(𝐺)𝐹(𝑅ାଵ
ᇱ)}ᇱ  (6-26) 

where F denotes the two-dimensional discrete Fourier Transform, 𝐹ିଵ denotes the two-

dimensional inverse discrete Fourier Transform, 𝐺 is the convolutional variation of the 

original matrix G, 𝑃
 and 𝑅ାଵ

 are the convolutional variations of the original vectors 𝑃 

and 𝑅ାଵ, respectively, and ′ denotes complex transpose.  
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7 ANALYSIS OF SINGLE PROBE AND PROBE ARRAY 

MEASUREMENTS 

7.1 Objective and Unique Features 

The objective of this analysis is to illustrate that by moving a single probe over the 

measurement plane to generate enhanced accuracy in planar near field to far field 

transformation[6] than over the classical Fourier based modal expansion methods. It is also 

illustrated that this method provides reliable results for cases when the conventional 

method fails. The case when the actual source plane and the measurement plane are 

approximately equal in size. Also, in this approach there is no need to incorporate probe 

correction, unlike in the existing approaches. In addition, a methodology can be designed 

where one can use an array of probes[7][8] instead of moving a single probe over the 

measurement plane, thus improving the accuracy and efficiency of the measurements. In 

the use of the probe array there is also no need to perform probe correction. For this 

proposed methodology even though there is no need to satisfy the Nyquist sampling criteria 

in the measurement plane, a super resolution can be achieved in the solution of the 

equivalent magnetic current. Also, the presence of evanescent fields in the measurements 

do not make this methodology unstable unlike in the conventional Fourier based 

techniques. The advantage of choosing a probe array for measurement is that it can 

eliminate the inaccuracy of mechanical movement of the probe antenna over a large planar 

surface and can make the measurement methodology very efficient. This is more important 

particularly for measurements carried out in the high frequencies, say at M, V and W-
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bands. Also, one can obtain all the near field measurement information at once, thus 

making the entire measurement procedure very time-efficient and simple. 

7.2 Implementation of the Single Probe and Probe Array 

Measurements 

To compare the influence of the single probe and probe array measurements, there are 

two groups of measurements. The near-field measurements are performed over a square 

surface which is parallel with the source plane as shown in Fig.  7.1. The source plane (𝑆) 

is assumed to be a square surface in the x-y plane with the dimensions 𝑤 × 𝑤. The distance 

between the source plane and the measurement plane is d.  

 

Fig.  7.1. Near field Measurement Structure. 
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For the first case, we use a 0.1 𝜆 length Hertzian Dipole to estimate the sampled electric 

fields at 0.2 𝜆 separation on the planar surface. The dipole is terminated in a 50Ω load and 

the voltage across the load is measured. We consider the dipole x-directed and obtain the 

values of the voltage (𝑉௫) at the center point of the dipole at each measurement point P. 

Then the dipole is rotated to be y-directed and obtain the values of the voltage (𝑉௬) at the 

center of the dipole at each measurement point P.  

For the second case, we replace the single probe antenna by an array of 0.1 𝜆 dipoles all 

terminated in 50 Ω loads and separated from each other by 0.2𝜆. First, the array dipoles are 

all x-directed to obtain the center voltage matrix [𝑉௫]. Then they are rotated to be y-directed 

to obtain the center voltage matrix ൣ𝑉௬൧.  

Because the voltage V at the center of the dipole is proportional to the electric field 𝐸ത 

at that point. We can use the voltages induced at the center points of the dipoles to estimate 

the near field data. From that estimated near field data, the equivalent magnetic currents 

(𝑀௫,𝑀௬) on the source plane can be calculated. By using that equivalent magnetic currents, 

we calculate the far field. In the end, we compare the final far field results obtained from 

using the two methods with the results from an electromagnetic analysis code called 

HOBBIES[27]. 
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7.3 Example7.1: Numerical results of choosing Horn 

antenna to be the AUT. 

A 2𝜆 by 2𝜆 pyramidal horn antenna is used as the antenna under test. A fictitious planar 

surface in the x-y plane of dimensions 3𝜆 by 3𝜆 is used to form a planar magnetic current 

sheet. On the surface of the equivalent magnetic currents 𝑀௫ and 𝑀௬ are placed into 15×15 

current patches. The near fields are sampled on a planar surface with same dimension and 

same discretization to enable the use of CGFFT. The distance between the source plane 

and the scanning plane is 3𝜆.  

Fig.  7.2 shows the x-directed single probe measurement system. Fig.  7.3 shows the 

side view of the structure by using x-directed single probe as an example. Fig.  7.4 shows 

the x-directed probe array measurement structure. Fig.  7.5 shows the side view of the 

structure by using the x-directed probe array as an example. The red lines show the size of 

𝑆 coincides with the size of measurement plane.  
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Fig.  7.2.  x-directed single probe. 

 

Fig.  7.3. x-directed single probe (side view). 
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Fig.  7.4. x-directed probe array. 

 

Fig.  7.5. x-directed probe array (side view). 

 

𝑆 

𝑆 



38 
 

 
 

The simulated results for the two methods we mentioned, and the analytic results are 

shown in Fig.  7.6 and Fig.  7.7. Fig.  7.6 shows the normalized absolute value of the electric 

far field for 𝜑 = 0° in the dB scale. Fig.  7.7 shows the normalized absolute value of the 

electric far field for 𝜑 = 90° in dB scale.  

 

Fig.  7.6. E total when phi=0 (dB Scale). 

 

Fig.  7.7. E total when phi=90 (dB Scale). 
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Theta here is defined as the angle from x axis to z axis and phi is the angle from the x 

axis to the y axis. This implies, phi equals 0° cut is the x-z plane and phi equals 90° is the 

y-z plane. Theta equals 0° means +x direction and theta equals 180° means -x direction. 

The solid lines show the analytic results obtained using HOBBIES, dashed lines show the 

single probe measurement results and dotted lines show the probe array measurement 

results.  

We can see both methods we discussed above provide acceptable results. These results 

indicate that not incorporating probe correction into the measurement has little effect on 

the accuracy of the final result. Hence this methodology is much simpler and more accurate 

than the classical modal based planar near-field to far-field transformation.  
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7.4 Example7.2: Numerical results of choosing Horn array 

to be the AUT 

For the next example, the antenna under test is made more complicated. We choose 16, 

1.5 𝜆 by 2 𝜆 pyramidal horn antennas to form a 4 by 4 horn antenna array as the antenna 

under test.  Each horn is separated from each other by 3 𝜆. A fictitious planar surface in the 

x-y plane of dimensions 10 𝜆 by 10 𝜆 is used to form a planar magnetic current sheet. On 

the surface of the equivalent magnetic currents 𝑀௫  and 𝑀௬  divided into 50×50 current 

patches, are assumed. The near fields are sampled on a planar surface of the same 

dimensions and discretized to enable use of CGFFT. The distance between the source plane 

and the scanning plane is 3𝜆. 

Fig.  7.8 shows the x-directed single probe measurement system. Fig.  7.9 shows the 

side view of the structure by using a x-directed single probe as an example. Fig.  7.10 shows 

the side view of the x-directed probe array measurement structure. Fig.  7.11 shows the 

side view of the structure by using x-directed probe array as an example. The red lines 

show the size of 𝑆 coincides with the size of measurement plane.  
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Fig.  7.8. A x-directed single probe. 

  

Fig.  7.9. A x-directed single probe (side view). 
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Fig.  7.10. A x-directed probe array. 

 

Fig.  7.11. A x-directed probe array (side view). 
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Calculated results provided by the two methods from the measured data and the 

analytical far field results are shown in Fig.  7.12 and Fig.  7.13. Fig.  7.12 shows the 

normalized absolute value of the electric far field for 𝜑 = 0° in dB scale. Fig.  7.13 shows 

the normalized absolute value of the electric far field for 𝜑 = 90° in dB scale.  

 

Fig.  7.12. Etotal when phi = 0° (dB Scale). 

 

Fig.  7.13. Etotal when phi = 90° (dB Scale). 
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Theta here is defined as the angle from the x axis to the z axis and phi is the angle from 

the x axis to the y axis. The solid lines show the analytic results obtained using HOBBIES, 

dashed lines show the single probe measurement results and dotted lines show the probe 

array measurement results.  

For both methods, namely use of a single probe or an array of probes in the measurement 

provide acceptable results. There are several observations that can be made from the 

results. First, the effect of mutual coupling between the probe and the array under test has 

little effect on the final result. Even when a probe array is used it looks like the effect of 

mutual coupling is still not a big problem. The other strength of this approach is that even 

though the size of the measurement plane barely covers the actual physical size of the 

antenna array, one can still obtain reliable results from 30° to 150°. Also, this 

computational methodology is quite fast and accurate. Finally, using this methodology the 

measurement plane can be deformed to any arbitrary shape and the Nyquist sampling 

criteria is not relevant for the measurement plane unlike in the Fourier transform based 

classical planar near-field to far-field transformation. 
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7.5 Example7.3: Numerical results of choosing Yagi 

antenna to be the AUT. 

For the third example a single three element Yagi-Uda antenna is selected as the antenna 

under test to illustrate the accuracy of this methodology. This antenna has a wide beam. 

Both the single probe method and the use of a probe array is used as samplers of the near 

field without any probe correction. The three-element Yagi-Uda antenna as shown is Fig.  

7.14 consist of a driven element of length L = 0.47 𝜆, a reflector of length 0.482 𝜆, and a 

director of length 0.442 𝜆.They are all spaced 0.2 𝜆 apart. The radius of the wire structure 

for all cases is 0.00425 𝜆.  

 

Fig.  7.14. A three-element Yagi-Uda antenna. 
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A fictitious planar surface in the x-y plane of dimensions 5 𝜆  by 5 𝜆  is used to 

approximate the equivalent source which is going to radiate the same fields in the desired 

region as the original antenna. On this surface equivalent magnetic currents 𝑀௫ and 𝑀௬ are 

applied. These two current components are discretized into 25×25 current patches. The two 

planar components of the near fields are measured on a planar surface of the same 

dimensions and are discretized to an equivalent value as of the same size as the equivalent 

current sources so as to make possible to use the CGFFT method to solve these large 

systems of equations using modest computational resources and using minimal CPU time. 

The distance between the source plane and the measurement plane is assumed to be 3𝜆. 

The measurement methodology for this Yagi-Uda antenna is quite similar to the 

measurement system used for the horn antenna as described in Example 7.1.  

 

 

Fig.  7.15. Etotal when phi = 0° (dB Scale). 
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Fig.  7.16. Etotal when phi = 90° (dB Scale). 

The calculated results of the two methods described earlier are used to generate the far 

field along with the use of an accurate numerical electromagnetic analysis tool called 

HOBBIES so as to assess the accuracy for the computed results obtained by the proposed 

methods. All the three results are presented in Fig.  7.15 and Fig.  7.16. Fig.  7.15 shows 

the normalized absolute value of the electric far field for 𝜑 = 0° in a dB scale. Fig.  7.16 

shows the normalized absolute value of the electric far field for 𝜑 = 90° in the dB scale. 

Theta here is defined as the angle from x axis to z axis and phi is the angle from the x axis 

to the y axis, which implies phi equals 0° cut is the x-z plane and phi equals 90° cut is the 

y-z plane. Theta equals 0° means +x direction and theta equals 180° means ─x direction. 

The solid lines show the analytic results obtained using HOBBIES, dashed lines show the 

single probe measurement results and the dotted lines show the probe array measurement 

results. We can see both methods we discussed above provides acceptable results further 

emphasizing that probe correction has little impact on this novel measurement procedure. 
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7.6 Example7.4: Numerical results of choosing Yagi array 

to be the AUT. 

For the final example, we deal with an antenna array under test. The array consists of 9 

Yagi-Uda antennas to form a 3 by 3 antenna array as the antenna under test.  Each element 

of the Yagi-Uda array has been described in example 7.3 and they are separated from each 

other by 2 𝜆 . A fictitious planar surface in the x-y plane of dimensions 5𝜆 by 5𝜆 is used to 

form a planar magnetic current sheet to approximate the fields that will be generated by the 

actual array in the desired region. On this surface, the applied equivalent magnetic currents 

𝑀௫ and 𝑀௬ are divided into 25×25 current patches to approximate the measured electric 

fields on the measurement plane. The measurement plane is assumed to have the same size 

as that of the equivalent planar surface on which the magnetic currents are applied so as to 

be able to use the CGFFT method to solve the matrix equations containing the complex 

amplitudes of the unknown currents. The distance between the source plane and the 

measurement plane is 3𝜆. 

Fig.  7.17 shows the x-directed single probe measurement system. Fig.  7.18 shows the 

side view of the structure by using a x-directed single probe as an example. Fig.  7.19 shows 

the x-directed probe array measurement set up. Fig.  7.20 shows the side view of the 

structure by using a x-directed probe array as an example. The red lines show the size of 

𝑆 coincides with the size of measurement plane.  
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Fig.  7.17. A x-directed single probe. 

 

Fig.  7.18. A x-directed single probe (side view). 
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Fig.  7.19. A x-directed probe array. 

  

Fig.  7.20. A x-directed probe array (side view). 
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The calculated results for the far field obtained by the two methods described in this 

paper, namely sliding a single probe and using a probe array along with the results 

computed by a numerical electromagnetics code HOBBIES invoking the electric field 

integral equation in Fig.  7.21 and Fig.  7.22. Fig.  7.21 shows the normalized absolute 

value of the electric far field for  𝜑 = 0° in a dB scale. Fig.  7.22 shows the normalized 

absolute value of the electric far field for 𝜑 = 90° in a dB scale.  

 

  

Fig.  7.21. Etotal when phi = 0° (dB Scale). 
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Fig.  7.22. Etotal when phi = 90° (dB Scale). 

Theta here is defined as the angle from the x axis to the z axis and phi is the angle from 

the x axis to the y axis. This implies that phi equals 0 cut is the x-z plane and phi equals 90 

is the y-z plane. Theta equals 0 implies +x direction and theta equals 180 implies ─x 

direction. The solid lines show the analytic results obtained using HOBBIES, dashed lines 

show the single probe measurement result and the dotted lines show the results from the 

probe array measurement.  

We can see both methods we discussed above provides acceptable results and that probe 

correction is not at all a requirement for this methodology. In this case, acceptable results 

are obtained from 40° to 140°. For the classical approach of planar modal expansion, it will 

not have been possible to solve this problem for the given data as in this case the source 

and the measurement planes are of the same size! 
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8 THE INFLUENCE OF THE SIZE OF SQUARE DIPOLE 

PROBE ARRAY MEASUREMENT ON THE 

ACCURACY OF NF-FF PATTERN  

8.1 Objective and Necessity of the Analysis 

In the previous chapters, we already showed that both single probe and probe array 

methods can provide acceptable results and that probe correction is not at all a requirement 

for the methodology. We also pointed out that compared to the single probe method, the 

probe array method is much more time-efficient and simple. The objective of this chapter 

is to illustrate the influence of the size of the measurement plane on the accuracy of the far 

field pattern result using the near field square dipole probe array measurement to far field 

transformation approach[9]. Compared to the classical Fourier based modal expansion 

methods, square dipole probe array method provides reliable results for cases when the 

conventional method fails for the case when the actual source plane and the measurement 

plane are approximately equal in size. Also, in this approach there is no need to incorporate 

probe correction unlike in the existing approaches. In addition, the methodology of using 

probe array instead of moving a single probe over the measurement plane improved the 

accuracy and efficiency of the whole process. We expect that the larger the size of the 

measurement plane, the more accurate the result. The question is what the relation between 

the accuracy and the size of the measurement plane is so we can make a smart choice to 

get accurate results efficiently. Sample numerical results are presented to illustrate how 
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accurate it can be and what the relation between the size of the near field measurement 

plane and the accuracy of the final result is. 

8.2 Implementation Procedure 

The near-field measurements are performed over a square surface which is parallel with 

the source plane as shown in Fig.  8.1. The source plane (𝑆) is assumed to be a square 

surface in the x-y plane with the dimensions from 𝑤ௌ  × 𝑤ௌ to 𝑤  ×  𝑤 . The distance 

between the source plane and the measurement plane is d.  

 

Fig.  8.1. Near field measurement structure of different sizes. 
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As we mentioned, we use 0.1  𝜆  length Hertzian Dipole array of different sizes to 

estimate the sampled electric fields at certain separations on the measurement planar 

surfaces (for those antennas under test with complicated structures, we are going to show 

the results with different separations as shown in Example 8.2 and Example 8.4). The 

dipole probes are all terminated in 50 Ω loads and the voltages across the loads are 

measured.  

First the array of dipoles are all x-directed to obtain the value of the voltage matrix [𝑉௫] 

across the loads. Then they are rotated to be y-directed to obtain the voltage matrix ൣ𝑉௬൧. It 

is estimated that the voltage V at the center of the dipole is proportional to the electric field 

𝐸ത at that point. We can normalize the voltages induced at the center points of the dipoles 

and use that information to estimate the values for the sampled near field data. From that 

estimated near field data, the equivalent magnetic currents (𝑀௫,𝑀௬) on the source plane 

can be calculated and used to calculate the far field. In the end, we compare the final far 

field results obtained from using different sizes of measurement planes with the results 

from an electromagnetic analysis code called HOBBIES [27] and analyze the relation 

between the size and the accuracy. Here we define a relative error as follows,  

      𝑒 =  ∑ (𝐸௧௬ − 𝐸)
ଶఏୀଵ଼°

ఏୀ°                          (8-1) 

where, e is the relative error, 𝐸௧௬  is the theoretical far field result simulated by 

HOBBIES at one cut, and 𝐸  is the result obtained from the NF-FF approach we 

mentioned above at the same cut. 
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8.3 Example 8.1: Numerical results of choosing Horn 

antenna to be the AUT. 

A 2 𝜆 by 2 𝜆 pyramidal horn antenna is used as the antenna under test. The distance 

between the source plane and the scanning plane is 3 𝜆. In this case the size of the actual 

source plane of the antenna under test is 2 𝜆 by 2 𝜆. 

The number of the measurement dipoles starts from 4 by 4 and end up with 100 by 100. 

In order to keep the symmetry, we increase the number of dipoles on each side by a factor 

of 2 at a time, and we chose the separation between dipoles in both directions to be 0.2 𝜆. 

Which means the measurement plane start from the dimensions of 0.8 𝜆 by 0.8𝜆  to 20 𝜆 

by 20𝜆. On the surface of the equivalent magnetic currents 𝑀௫ and 𝑀௬ are placed into same 

dimensions and discretized to enable the use of CGFFT. 

       Fig.  8.2. shows the 10 by 10 x-directed probe array with 0.2 𝜆 separations in both 

directions structure as an example. Fig.  8.3 shows the side view of the structure by using 

the 10 by 10 x-directed probe array with 0.2 𝜆 separations in both directions as an example.  
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Fig.  8.2. 10 by 10 x-directed probe array with 0.2 𝜆 separations in both directions. 

 

Fig.  8.3. 10 by 10 x-directed probe array with 0.2 𝜆 separations in both directions (side 

view). 
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The simulated results for all the sizes of the measurement planes from 0.8 𝜆 by 0.8𝜆  to 

20 𝜆 by 20𝜆  mentioned above and the analytic results for the far fields are shown in Fig.  

8.4 and Fig.  8.5.  

 

Fig.  8.4. Etotal when phi = 0° (dB Scale) for all sizes of the measurement planes from 

0.8 𝜆 by 0.8𝜆  to 20 𝜆 by 20𝜆 with 0.2 𝜆 separations in both directions. 

 

Fig.  8.5. Etotal when phi = 90° (dB Scale) for all sizes of the measurement planes from 

0.8 𝜆 by 0.8𝜆  to 20 𝜆 by 20𝜆 with 0.2 𝜆 separations in both directions. 
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Theta here is defined as the angle from x axis to z axis and phi is the angle from the x 

axis to the y axis. This implies, phi equals 0° cut is the x-z plane and phi equals 90° is the 

y-z plane. The solid blue lines show the analytic results obtained using HOBBIES, dashed 

red lines show the results obtained using different sizes of square dipole probe array 

measurement.  

As we can see from Fig.  8.4 and Fig.  8.5 that most of the dashed red lines are acute 

respect to the solid blue line, and a little portion of the dashed red lines are inaccurate. It’s 

necessary for us the analyze the relation between the relative error we mentioned above 

and the size of the measurement plane. The relations are shown in Fig.  8.6 and Fig.  8.7. 

Fig.  8.6 shows the relative error at different sizes of measurement planes with 0.2 λ 

separations in both directions for phi = 0° and Fig.  8.7 shows the relative error at different 

sizes of measurement planes with 0.2 λ separations in both directions for phi = 90°.  

 

Fig.  8.6. Relative error at different sizes of measurement planes with 0.2 𝜆 separations 

in both directions (phi = 0°). 
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Fig.  8.7. Relative error at different sizes of measurement planes with 0.2 𝜆 separations 

in both directions (phi = 90°). 

After we observe the relative error plots of both cuts, we can easily find that it goes 

down close to zero after the size of the measurement larger than 2 𝜆.  

Notice that 2 𝜆 is also the size of the actual source plane of the antenna under test. Also, 

the far field results obtained from the sizes of measurement planes which are larger than 

2 𝜆 are as shown in Fig.  8.8 and Fig.  8.9. Fig.  8.8 shows the normalized absolute value 

of the electric far field for  𝜑 = 0° in a dB scale for all sizes of the measurement planes 

from 2 𝜆 by 2 𝜆  to 20 𝜆 by 20𝜆 with 0.2 𝜆 separations in both directions. Fig.  8.9 shows 

the normalized absolute value of the electric far field for  𝜑 = 0° in a dB scale for all sizes 

of the measurement planes from 2 𝜆 by 2 𝜆  to 20 𝜆 by 20𝜆 with 0.2 𝜆 separations in both 

directions. We can see that all the inaccurate red dashed lines disappear and only the 

accurate ones left. We can see that after the size of the measurement plane chosen to be 

larger than the size of the actual source plane of the antenna under test, our NF-FF approach 

provides acceptable results. 
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Fig.  8.8. Etotal when phi = 0° (dB Scale) for all sizes of the measurement planes from 

2 𝜆 by 2 𝜆  to 20 𝜆 by 20𝜆 with 0.2 𝜆 separations in both directions. 

 

Fig.  8.9. Etotal when phi = 0° (dB Scale) for all sizes of the measurement planes from 

2 𝜆 by 2 𝜆  to 20 𝜆 by 20𝜆 with 0.2 𝜆 separations in both directions.  
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8.4 Example 8.2: Numerical results of choosing Horn array 

to be the AUT. 

For the next example, the antenna under test is made more complicated. We choose 16, 

1.5 𝜆 by 2 𝜆 pyramidal horn antennas to form a 4 by 4 horn antenna array as the antenna 

under test.  Each horn is separated from each other by 3 𝜆. The distance between the source 

plane and the scanning plane is 3𝜆. In this case the size of the actual source plane of the 

antenna under test is 10.5 𝜆 by 11 𝜆. 

We did 3 different groups of measurements:  

Group 1: The number of the measurement dipoles starts from 4 by 4 and end up with 

100 by 100. In order to keep the symmetry, we increase the number of dipoles on each side 

by a factor of 2 at a time, and we chose the separation between dipoles in both directions 

to be 0.2 𝜆. Which means the measurement plane start from the dimensions of 0.8 𝜆 by 

0.8𝜆  to 20 𝜆 by 20𝜆. On the surface of the equivalent magnetic currents 𝑀௫ and 𝑀௬ are 

placed into same dimensions and discretized to enable the use of CGFFT. 

Group 2: The number of the measurement dipoles starts from 4 by 4 and end up with 50 

by 50. In order to keep the symmetry, we increase the number of dipoles on each side by a 

factor of 2 at a time, and we chose the separation between dipoles in both directions to be 

0.4 𝜆. Which means the measurement plane start from the dimensions of 1.6 𝜆 by 1.6 𝜆  to 

20 𝜆 by 20𝜆. On the surface of the equivalent magnetic currents 𝑀௫ and 𝑀௬ are placed into 

same dimensions and discretized to enable the use of CGFFT. 
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Group 3: The number of the measurement dipoles starts from 4 by 4 and end up with 40 

by 40. In order to keep the symmetry, we increase the number of dipoles on each side by a 

factor of 2 at a time, and we chose the separation between dipoles in both directions to be 

0.5 𝜆. Which means the measurement plane start from the dimensions of 2 𝜆 by 2𝜆  to 20 𝜆 

by 20𝜆. On the surface of the equivalent magnetic currents 𝑀௫ and 𝑀௬ are placed into same 

dimensions and discretized to enable the use of CGFFT. 

Fig.  8.10. shows the 50 by 50 x-directed probe array with 0.2 𝜆 separations in both 

directions structure as an example. Fig.  8.11 shows the side view of the structure by using 

the 50 by 50 x-directed probe array with 0.2 𝜆 separations in both directions as an example.  

 

Fig.  8.10.  50 by 50 x-directed probe array with 0.2 𝜆 separations in both directions. 
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Fig.  8.11.  50 by 50 x-directed probe array with 0.2 𝜆 separations in both directions 

(side view). 

The simulated results for measurement group 1 where all the sizes of the measurement 

planes are from 0.8 𝜆 by 0.8𝜆  to 20 𝜆 by 20𝜆 with 0.2 𝜆 separations in both directions 

which we mentioned above and the analytic results for the far fields are shown in Fig.  8.12 

and Fig.  8.13 as an example. Where Fig.  8.12 shows the normalized absolute value of the 

electric far field for 𝜑 = 0° in the dB scale. Fig.  8.13 shows the normalized absolute value 

of the electric far field for 𝜑 = 90° in the dB scale. Theta here is defined as the angle from 

x axis to z axis and phi is the angle from the x axis to the y axis. This implies, phi equals 

0° cut is the x-z plane and phi equals 90° is the y-z plane. The solid blue lines show the 

analytic results obtained using HOBBIES, dashed red lines show the results obtained using 

different sizes of square dipole probe array measurement.  
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Fig.  8.12. Etotal when phi = 0° (dB Scale) for all sizes of the measurement planes from 

0.8 𝜆 by 0.8𝜆  to 20 𝜆 by 20𝜆 with 0.2 𝜆 separations in both directions. 

 

 

Fig.  8.13. Etotal when phi = 90° (dB Scale) for all sizes of the measurement planes from 

0.8 𝜆 by 0.8𝜆  to 20 𝜆 by 20𝜆 with 0.2 𝜆 separations in both directions. 

As we can see from Fig.  8.12 and Fig.  8.13 that most of the dashed red lines are acute 

respect to the solid blue line, and some portion of the dashed red lines are inaccurate. It’s 
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necessary for us the analyze the relation between the relative error we mentioned above 

and the size of the measurement plane. The relations are shown in Fig.  8.14 and Fig.  8.15.  

 

Fig.  8.14. Relative error at different sizes of measurement planes with 0.2 𝜆 , 0.4 𝜆 , 0.5 

𝜆 separations in both directions (phi = 0°). 

 

Fig.  8.15. Relative error at different sizes of measurement planes with 0.2 𝜆 , 0.4 𝜆 , 0.5 

𝜆 separations in both directions (phi = 90°). 
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After we observe the relative error plots of both cuts, we can easily find that it goes 

down close to zero after the size of the measurement larger than 10 𝜆. The remarkable point 

is that the relative error goes down close to zero for all the 3 groups of measurements with 

different separations (0.2 𝜆 , 0.4 𝜆 , 0.5 𝜆) at about the same size of measurement plane. 

Notice that 11 𝜆 is about the size of the actual source plane of the antenna under test. Also, 

the far field results obtained from the sizes of measurement planes with 0.2 𝜆 separations 

in both directions which are larger than 10 𝜆 are as shown in Fig.  8.16 and Fig.  8.17. The 

far field results obtained from the sizes of measurement planes with 0.4 𝜆 separations in 

both directions which are larger than 10 𝜆 are as shown in Fig.  8.18 and Fig.  8.19. The far 

field results obtained from the sizes of measurement planes with 0.5 𝜆 separations in both 

directions which are larger than 10 𝜆 are as shown in Fig.  8.20 and Fig.  8.21. We can see 

that all the inaccurate red dashed lines disappear and only the accurate ones left.  

 

Fig.  8.16. Etotal when phi = 0° (dB Scale) for all sizes of the measurement planes from 

10 𝜆 by 10𝜆  to 20 𝜆 by 20𝜆 with 0.2 𝜆 separations in both directions. 
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Fig.  8.17. Etotal when phi = 90° (dB Scale) for all sizes of the measurement planes from 

10 𝜆 by 10𝜆  to 20 𝜆 by 20𝜆 with 0.2 𝜆 separations in both directions. 

 

Fig.  8.18. Etotal when phi = 0° (dB Scale) for all sizes of the measurement planes from 

10 𝜆 by 10𝜆  to 20 𝜆 by 20𝜆 with 0.4 𝜆 separations in both directions. 
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Fig.  8.19. Etotal when phi = 90° (dB Scale) for all sizes of the measurement planes from 

10 𝜆 by 10𝜆  to 20 𝜆 by 20𝜆 with 0.4 𝜆 separations in both directions. 

 

 

Fig.  8.20. Etotal when phi = 0° (dB Scale) for all sizes of the measurement planes from 

10 𝜆 by 10𝜆  to 20 𝜆 by 20𝜆 with 0.5 𝜆 separations in both directions. 
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Fig.  8.21. Etotal when phi = 90° (dB Scale) for all sizes of the measurement planes from 

10 𝜆 by 10𝜆  to 20 𝜆 by 20𝜆 with 0.5 𝜆 separations in both directions. 

 

We can see that after the size of the measurement plane chosen to be close to or larger 

than the size of the actual source plane of the antenna under test, our NF-FF approach 

provides acceptable results. 
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8.5 Example 8.3: Numerical results of choosing Yagi 

antenna to be the AUT. 

For the third example a single three element Yagi-Uda antenna is selected as the antenna 

under test to illustrate the accuracy of this methodology. This antenna has a wide beam. 

The three-element Yagi-Uda antenna as shown is Fig.  8.22 consist of a driven element of 

length L = 0.47 𝜆, a reflector of length 0.482 𝜆, and a director of length 0.442 𝜆.They are 

all spaced 0.2 𝜆 apart. The radius of the wire structure for all cases is 0.00425 𝜆. The 

distance between the source plane and the measurement plane is assumed to be 3𝜆. In this 

case the size of the actual source plane of the antenna under test is around 0.5 𝜆 line source. 

The measurement methodology for this Yagi-Uda antenna is quite similar to the 

measurement system used for the horn antenna as described in Example 8.1. 

 

Fig.  8.22. A three-element Yagi-Uda antenna. 

The number of the measurement dipoles starts from 4 by 4 and end up with 100 by 100. 

In order to keep the symmetry, we increase the number of dipoles on each side by a factor 



72 
 

 
 

of 2 at a time, and we chose the separation between dipoles in both directions to be 0.2 𝜆. 

Which means the measurement plane start from the dimensions of 0.8 𝜆 by 0.8𝜆  to 20 𝜆 

by 20𝜆. On the surface of the equivalent magnetic currents 𝑀௫ and 𝑀௬ are placed into same 

dimensions and discretized to enable the use of CGFFT.  

The simulated results for all the sizes of the measurement planes from 0.8 𝜆 by 0.8𝜆  to 

20 𝜆 by 20𝜆  mentioned above and the analytic results for the far fields are shown in Fig.  

8.23 and Fig.  8.24. Where Fig.  8.23 shows the normalized absolute value of the electric 

far field for 𝜑 = 0° in the dB scale. Fig.  8.24 shows the normalized absolute value of the 

electric far field for 𝜑 = 90° in the dB scale. Theta here is defined as the angle from x axis 

to z axis and phi is the angle from the x axis to the y axis. This implies, phi equals 0° cut 

is the x-z plane and phi equals 90° is the y-z plane. The solid blue lines show the analytic 

results obtained using HOBBIES, dashed red lines show the results obtained using different 

sizes of square dipole probe array measurement.  

 

Fig.  8.23. Etotal when phi = 0° (dB Scale) for all sizes of the measurement planes from 

0.8 𝜆 by 0.8𝜆  to 20 𝜆 by 20𝜆 with 0.2 𝜆 separations in both directions. 
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Fig.  8.24. Etotal when phi = 90° (dB Scale) for all sizes of the measurement planes from 

0.8 𝜆 by 0.8𝜆  to 20 𝜆 by 20𝜆 with 0.2 𝜆 separations in both directions. 

As we can see from Fig.  8.23 and Fig.  8.24 that all most all the dashed red lines are 

acute respect to the solid blue line. It’s also necessary for us the analyze the relation 

between the relative error we mentioned above and the size of the measurement plane. The 

relations are shown in Fig.  8.25 and Fig.  8.26. After we observe the relative error plots of 

both cuts, all the errors are very small. We can easily find that they are all close to zero 

after the size of the measurement larger than or equal to 0.8 𝜆. Notice that 0.5 𝜆 is also the 

size of the actual source plane of the antenna under test.  
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Fig.  8.25. Relative error at different sizes of measurement planes with 0.2 𝜆 separations 

in both directions (phi = 0°). 

 

Fig.  8.26. Relative error at different sizes of measurement planes with 0.2 𝜆 separations 

in both directions (phi = 90°). 

We can see that after the size of the measurement plane chosen to be larger than the size 

of the actual source plane of the antenna under test, our NF-FF approach provides 

acceptable results.  
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8.6 Example 8.4: Numerical results of choosing Yagi array 

to be the AUT. 

For the final example, we deal with an antenna array under test. The array consists of 9 

Yagi-Uda antennas to form a 3 by 3 antenna array as the antenna under test.  Each element 

of the Yagi-Uda array has been described in example 8.3 and they are separated from each 

other by 2 𝜆. The distance between the source plane and the measurement plane is 3𝜆. In 

this case the size of the actual source plane of the antenna under test is 4.5 𝜆 by 4 𝜆. 

We did 3 different groups of measurements:  

Group 1: The number of the measurement dipoles starts from 4 by 4 and end up with 

100 by 100. In order to keep the symmetry, we increase the number of dipoles on each side 

by a factor of 2 at a time, and we chose the separation between dipoles in both directions 

to be 0.2 𝜆. Which means the measurement plane start from the dimensions of 0.8 𝜆 by 

0.8𝜆  to 20 𝜆 by 20𝜆. On the surface of the equivalent magnetic currents 𝑀௫ and 𝑀௬ are 

placed into same dimensions and discretized to enable the use of CGFFT. 

Group 2: The number of the measurement dipoles starts from 4 by 4 and end up with 50 

by 50. In order to keep the symmetry, we increase the number of dipoles on each side by a 

factor of 2 at a time, and we chose the separation between dipoles in both directions to be 

0.4 𝜆. Which means the measurement plane start from the dimensions of 1.6 𝜆 by 1.6 𝜆  to 

20 𝜆 by 20𝜆. On the surface of the equivalent magnetic currents 𝑀௫ and 𝑀௬ are placed into 

same dimensions and discretized to enable the use of CGFFT. 
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Group 3: The number of the measurement dipoles starts from 4 by 4 and end up with 40 

by 40. In order to keep the symmetry, we increase the number of dipoles on each side by a 

factor of 2 at a time, and we chose the separation between dipoles in both directions to be 

0.5 𝜆. Which means the measurement plane start from the dimensions of 2 𝜆 by 2 𝜆  to 20 𝜆 

by 20𝜆. On the surface of the equivalent magnetic currents 𝑀௫ and 𝑀௬ are placed into same 

dimensions and discretized to enable the use of CGFFT. 

Fig.  8.27. shows the 24 by 24 x-directed probe array with 0.2 𝜆 separations in both 

directions structure as an example. Fig.  8.28. shows the side view of the structure by using 

the 24 by 24 x-directed probe array with 0.2 𝜆 separations in both directions as an example.  

 

Fig.  8.27.  24 by 24 x-directed probe array with 0.2 𝜆 separations in both directions. 
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Fig.  8.28.  24 by 24 x-directed probe array with 0.2 𝜆 separations in both directions 

(side view).  

The simulated results for measurement group 1 where all the sizes of the measurement 

planes are from 0.8 𝜆 by 0.8𝜆  to 20 𝜆 by 20𝜆 with 0.2 𝜆 separations in both directions 

which we mentioned above and the analytic results for the far fields are shown in Fig.  8.29 

and Fig.  8.30 as an example. Where Fig.  8.29 shows the normalized absolute value of the 

electric far field for 𝜑 = 0° in the dB scale. Fig.  8.30 shows the normalized absolute value 

of the electric far field for 𝜑 = 90° in the dB scale. Theta here is defined as the angle from 

x axis to z axis and phi is the angle from the x axis to the y axis. This implies, phi equals 

0° cut is the x-z plane and phi equals 90° is the y-z plane. The solid blue lines show the 

analytic results obtained using HOBBIES, dashed red lines show the results obtained using 

different sizes of square dipole probe array measurement.  
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Fig.  8.29. Etotal when phi = 0° (dB Scale) for all sizes of the measurement planes from 

0.8 𝜆 by 0.8𝜆  to 20 𝜆 by 20𝜆 with 0.2 𝜆 separations in both directions. 

 

 

Fig.  8.30. Etotal when phi = 90° (dB Scale) for all sizes of the measurement planes from 

0.8 𝜆 by 0.8𝜆  to 20 𝜆 by 20𝜆 with 0.2 𝜆 separations in both directions. 

As we can see from Fig.  8.29 and Fig.  8.30 that most of the dashed red lines are acute 

respect to the solid blue line, and some portion of the dashed red lines are inaccurate. It’s 
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necessary for us the analyze the relation between the relative error we mentioned above 

and the size of the measurement plane. The relations are shown in Fig.  8.31 and Fig.  8.32.  

 

Fig.  8.31. Relative error at different sizes of measurement planes with 0.2 𝜆 , 0.4 𝜆 , 0.5 

𝜆 separations in both directions (phi = 0°). 

 

Fig.  8.32. Relative error at different sizes of measurement planes with 0.2 𝜆 , 0.4 𝜆 , 0.5 

𝜆 separations in both directions (phi = 90°). 
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After we observe the relative error plots of both cuts, we can easily find that it goes 

down close to zero after the size of the measurement larger than 5 𝜆. The remarkable point 

is that the relative error goes down close to zero for all the 3 groups of measurements with 

different separations (0.2 𝜆 , 0.4 𝜆 , 0.5 𝜆) at about the same size of measurement plane. 

Notice that 5 𝜆 is also about the size of the actual source plane of the antenna under test. 

Also, the far field results obtained from the sizes of measurement planes with 0.2  𝜆 

separations in both directions which are larger than 5 𝜆 are as shown in Fig.  8.33 and Fig.  

8.34. The far field results obtained from the sizes of measurement planes with 0.4  𝜆 

separations in both directions which are larger than 4.8 𝜆 are as shown in Fig.  8.35 and 

Fig.  8.36. The far field results obtained from the sizes of measurement planes with 0.5 𝜆 

separations in both directions which are larger than 5 𝜆 are as shown in Fig.  8.37 and Fig.  

8.38. We can see that all the inaccurate red dashed lines disappear and only the accurate 

ones left.   

 

Fig.  8.33. Etotal when phi = 0° (dB Scale) for all sizes of the measurement planes from 

5 𝜆 by 5 𝜆  to 20 𝜆 by 20𝜆 with 0.2 𝜆 separations in both directions. 
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Fig.  8.34. Etotal when phi = 90° (dB Scale) for all sizes of the measurement planes from 

5 𝜆 by 5 𝜆  to 20 𝜆 by 20𝜆 with 0.2 𝜆 separations in both directions. 

 

Fig.  8.35. Etotal when phi = 0° (dB Scale) for all sizes of the measurement planes from 

4.8 𝜆 by 4.8 𝜆  to 20 𝜆 by 20𝜆 with 0.4 𝜆 separations in both directions. 
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Fig.  8.36. Etotal when phi = 90° (dB Scale) for all sizes of the measurement planes from 

4.8 𝜆 by 4.8𝜆  to 20 𝜆 by 20𝜆 with 0.4 𝜆 separations in both directions. 

 

Fig.  8.37. Etotal when phi = 0° (dB Scale) for all sizes of the measurement planes from 

5 𝜆 by 5 𝜆  to 20 𝜆 by 20𝜆 with 0.5 𝜆 separations in both directions. 
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Fig.  8.38. Etotal when phi = 90° (dB Scale) for all sizes of the measurement planes from 

5 𝜆 by 5 𝜆  to 20 𝜆 by 20𝜆 with 0.5 𝜆 separations in both directions. 

We can see that after the size of the measurement plane chosen to be larger than the size 

of the actual source plane of the antenna under test, our NF-FF approach provides 

acceptable results. 
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9 A FAST AND EFFICIENT METHODOLOGY FOR 

DETERMINING THE FAR FIELD PATTERNS OF AN 

ANTENNA ALONG PRINCIPAL PLANES USING A 

PROBE ARRAY  

9.1 Objective and Unique Features  

The objective of this chapter is to illustrate that using a rectangular planar dipole probe 

array to sample the near field of an AUT can be used to calculate the far field principal 

plane patterns efficiently. The solution methodology with measurement data over certain 

planar cuts not covering the entire equivalent planar surface as shown in Fig.  9.1 and Fig.  

9.2.  Performance of a linearly polarized antenna is often described in terms of its principal 

E-plane and H-plane patterns. If that is the goal, then we want to explore this possibility of 

measuring the near field over a sector and then using that to obtain the far field pattern 

along principal planes with engineering accuracy. As presented earlier we would like to 

use a dipole planar probe array to accomplish this goal and so precision mechanical 

measurement gadgets will not be required and thus minimizing the cost and speeding up 

the measurement process. The unique feature of this procedure is that it is not necessary to 

cover the entire frontal surface of the AUT. Also, compensation of mutual coupling is not 

required for the measurements between the elements of the dipole array. This provides a 

fast and efficient methodology to determine the E-plane and H-plane far field patterns of 

the antenna using partial data. Conventional classical Fourier based methods cannot 
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provide any meaningful results under the present conditions. The current methodology 

requires placing the probe array over two rectangular planes near the original antenna 

source individually and measuring the two components of the electric fields and employing 

the Method of Moments approach to solve for the equivalent magnetic currents on some 

fictitious planes located in front of the AUT. For this proposed methodology there is no 

need to satisfy the Nyquist sampling criteria in the measurement plane, and super resolution 

can be achieved in the solution of the equivalent magnetic current.  
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9.2 Implementation of the Methodology Over a Sector 

A dipole array is used for the measurement plane which consist of 0.1 𝜆 length dipoles 

all terminated in 50 Ω loads and separated from each other by 0.2𝜆  to estimate the sampled 

electric fields at 0.2 𝜆 separation on the rectangular measurement planar surfaces. To carry 

out the measurements of the near field the following steps were conducted. 

First, as shown in Fig.  9.1, we make all the dipoles in the array to be x-directed and 

obtain the value of [𝑉௫ଵ] across the loads. Then, keep the size of the array to be the same 

and rotate each dipole by 90 degree to be y-directed and obtain the value of ൣ𝑉௬ଵ൧ across 

the loads. It is estimated that the voltages V obtained at the center of the dipoles is 

proportional to the electric field 𝐸ത at that point. From that estimated near field data, the 

equivalent magnetic currents (𝑀௫ଵ,𝑀௬ଵ) on the source plane can be calculated. By using 

that partial information on the equivalent magnetic currents, we calculate the far field 

which is expected to provide the x-z cut. 
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Fig.  9.1.  Planar scanning for x-z plane. 

Next, as shown in Fig.  9.2, we make all the dipoles in the array to be x-directed and 

obtain the value of [𝑉௫ଶ] across the loads. Then, keep the size of the array to be the same 

and rotate each dipole by 90 degree to be y-directed and obtain the value of ൣ𝑉௬ଶ൧ across 

the loads. Again, it is estimated that the voltage V at the center of the dipole is proportional 

to the electric field 𝐸ത at that point. The voltages induced at the center points of the dipoles 

provide an estimate for the sampled near field data. From that estimated near field data, the 

equivalent magnetic currents (𝑀௫ଶ,𝑀௬ଶ) on the source plane can be calculated. By using 

that equivalent magnetic currents, we calculate the far field which is expected to be 

accurate in the y-z cut.  
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These two sets of measurements are used to find the equivalent magnetic currents on 

the source plane. Using these limited number of observation points and a short region for 

the equivalent magnetic current the computed far field along some principal planes can be 

obtained as illustrated next. 

 

Fig.  9.2.  Planar scanning for y-z plane. 

The comparisons of the E-plane and the H-plane patterns are calculated using both the 

fictitious source and measurements over a planar slice of space covering a portion of the 

antenna under test. The assumed two principal source and the measurement planes are a 

slice of the planar space as described in the following examples.   
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9.3 Example 9.1: Numerical results of choosing Horn to be 

the AUT. 

Consider a 2𝜆 by 2𝜆 pyramidal horn antenna under test whose principal plane patterns 

are desired in a quick way with engineering accuracy. To generate the patterns first 

measurements are made using a probe array and are illustrated by the following sequence 

of calculations. 

Step 1: The probe array in this case consists of an array of Hertzian Dipoles of 0.1 𝜆 

length and are all terminated by 50 Ω loads. The individual elements in the array are 

separated from center to center along x-direction by 0.2 λ and also along the y–direction 

by the same amount. So, the spacing between the two linear probe arrays in the y-direction 

is 0.2 λ. The induced voltages in the terminated loads are used to estimate the sampled 

electric fields on a planar slice of the principal measurement planes formed by the probe 

array.  

First, we make all the dipoles to be x-directed and choose the dimensions of the 

measurement array to be 2.7𝜆 by 0.2𝜆, which means 28 dipoles (14 × 2 dipoles) in total are 

considered as placed in Fig.  9.3. The voltages across the dipoles are now measured to 

obtain the Matrix [𝑉௫ଵ]. They are now used to estimate the unknown magnetic currents on 

the source plane. The source plane is of the size 2.8𝜆 by 0.4𝜆 . It consists of 28 square 

patches of size 0.2 λ each.  
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Fig.  9.3. x-directed rectangular probe array (step1). 

Next, all the dipoles are considered to be y-directed. The measurement plane in this case 

is of size 2.6𝜆 by 0.3𝜆 to calculate the other component of the magnetic current placed on 

the same source plane as shown in Fig.  9.4, which implies that the measurements are 

carried oud using 28 dipoles (14 × 2 dipoles) placed as shown in Fig.  9.4. The size of the 

source plane is the same as in the previous case. The measured voltages across the 

terminated loads of the dipoles are used to obtain the Matrix ൣ𝑉௬ଵ൧. The separation between 

the source plane and the measurement plane is 3 λ as shown in Fig.  9.5.  
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Fig.  9.4. y-directed rectangular probe array (step1). 

 

Fig.  9.5. x-directed probe array (side view of step1). 



92 
 

 
 

The CGFFT method is used to calculate the two components of the magnetic currents 

on the source plane of dimensions 2.8𝜆  by 0.4𝜆 . This yields two components of the 

magnetic currents 𝑀௫ଵ and 𝑀௬ଵ which consist of 14×2 current patches. The far field is now 

calculated in this principal plane using these two sets of magnetic currents.  Fig.  9.6 

provides the principal plane pattern for this case. The pattern is accurate from 60° to 120°. 

The classical near field to far field transformation will not provide any result for this set of 

measurements.  

 

Fig.  9.6. E total when phi=0 (dB Scale) as in step1. 

Step 2: To obtain the pattern for the other cut, we place a rectangular dipole array with 

0.1 𝜆 length Hertzian Dipole all terminated in 50 Ω loads and separated from each other in 

both directions by 0.2𝜆  to estimate the sampled electric fields on the measurement plane. 

So, the rectangular measurement plane is rotated by 90 degree when compared to that in 

Step 1, as shown in Fig.  9.7 and Fig.  9.8.  

First, we make all the dipoles in the probe array to be x-directed and choose the 

dimensions of the array to be 0.3𝜆 by 2.6𝜆, which means 28 dipoles (2 × 14 dipoles) in 

0 20 40 60 80 100 120 140 160 180
-40

-35

-30

-25

-20

-15

-10

-5

0

E
total

 / phi=0

theta

 

 

Analysis

CGFFT



93 
 

 
 

total as shown in Fig.  9.7. The voltages across the dipoles are measured to obtain the 

Matrix [𝑉௫ଶ].  

 

Fig.  9.7. x-directed rectangular probe array (step2). 

Next, we make all the dipoles to be y-directed as shown in Fig.  9.8. The dipole array is 

now of size 0.2𝜆 by 2.7𝜆 as shown. The source plane in both cases are of the same size of 

0.4𝜆  by 2.8𝜆.  Measure the voltages across the 28 dipoles to obtain the matrix ൣ𝑉௬ଶ൧ 

estimating the near fields from the antenna under test and projected on the probe array.  
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Fig.  9.8. y-directed rectangular probe array (step2). 

The equivalent magnetic current plane is chosen to be of the same dimensions and 

discretized to enable the use of CGFFT. The equivalent magnetic currents 𝑀௫ଶ and 𝑀௬ଶ 

are first calculated and then they are used to obtain the far field pattern as shown in Fig 11. 

It is seen that by placing the equivalent magnetic current over a planar sector covering only 

a portion of the plane across which the far field pattern is to be computed can provide 

results of engineering accuracy. The other interesting point is that the mutual coupling 

between the measurement dipoles is not taken into account in the entire procedure and yet 

the predictions are quite accurate. 
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Fig.  9.9. E total when phi=90 (dB Scale) of step 2. 

The simulated results for the two steps we mentioned above, and the analytic results are 

shown in Fig.  9.6 and Fig.  9.9 for the two principal plane cuts. Fig.  9.6 shows the 

normalized absolute value of the electric far field for 𝜑 = 0° in the dB scale for step 1. Fig.  

9.9 shows the normalized absolute value of the electric far field for 𝜑 = 90° in dB scale of 

step 2. Theta is defined as the angle from x axis to z axis and phi is the angle from the x 

axis to the y axis. This implies, phi equals 0° cut is the x-z plane (E-plane) and phi equals 

90° is the y-z plane (H-plane). Theta equals 0° means +x direction and theta equals 180° 

means ─x direction. The blue lines show the analytic results obtained by using HOBBIES, 

red lines show the rectangular probe array simulated results using the probe array data as 

the starting point over a sector.  This presents a possibility of obtaining a quick solution of 

engineering accuracy in a short time for the two principal planes of the antenna under test. 
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9.4 Example 9.2: Numerical results of choosing Horn array 

to be the AUT. 

For the next example, the antenna under test is made more complicated. We choose 16, 

1.5𝜆 by 2𝜆 pyramidal horn antennas to form a 4 by 4 array as the antenna under test.  Each 

horn antenna is separated from each other by 3 𝜆.  

We follow the two steps as outlined before.  

Step 1: Put a rectangular dipole array of 0.1 𝜆 length Hertzian dipoles all terminated in 

50 Ω loads and separated from each other in both directions by 0.2𝜆  to estimate the 

sampled electric fields at 0.2 𝜆 separation on the rectangular measurement plane.  

First, make all the measurement dipoles in the probe array to be x-directed and choose 

the dimensions of the array to be 9.9𝜆 by 1.4𝜆, which means 400 dipoles (50 × 8 dipoles) 

in total are considered as shown in Fig.  9.10. Measure the voltages across the dipoles to 

obtain the Matrix [𝑉௫ଵ]. 

Secondly, make all the dipoles to be y-directed and chose the dimensions of the array to 

be 9.8𝜆 by 1.5𝜆, which means 400 dipoles (50 × 8 dipoles) in total as shown in Fig.  9.11. 

Measure the voltages across the dipoles to obtain the Matrix ൣ𝑉௬ଵ൧. The distance between 

the source plane and the measurement plane is shown in Fig.  9.12.  
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Fig.  9.10. x-directed rectangular probe array (step1). 

 

Fig.  9.11. y-directed rectangular probe array (step1). 
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Fig.  9.12. x-directed probe array (side view of step1). 

The equivalent magnetic current plane is chosen to be 10𝜆 by 1.6𝜆  and use the CGFFT 

described earlier to find the magnetic currents on the source plane for this set of 

measurement data in an efficient and accurate way. This implies that the equivalent 

magnetic currents 𝑀௫ଵ and 𝑀௬ଵ are placed into 50 × 8 current patches. From the computed 

equivalent magnetic currents 𝑀௫ଵ and 𝑀௬ଵ the far field pattern for the principal plane is 

shown in Fig.  9.13. Even though all the peaks are located at the same position the peak 

value is off. 

 

 



99 
 

 
 

 

Fig.  9.13. E total when phi=0 (dB Scale) of step1. 

Step 2: Next, put a rectangular dipole array with 0.1  𝜆  length Hertzian Dipole all 

terminated in 50 Ω loads and separated from each other in both directions by 0.2𝜆  to 

estimate the sampled electric fields at 0.2 𝜆 separation on the rectangular measurement 

plane. This time, the rectangular measurement plane is rotated by 90 degree compared to 

that in Step 1, as shown in Fig.  9.14 and Fig.  9.15. The distance between the source plane 

and the measurement plane are all chosen to be 3𝜆, as shown in Fig.  9.12. 

First, make all the dipoles to be x-directed and choose the dimensions of the array to be 

1.5𝜆 by 9.8𝜆, which means 400 dipoles (8 x 50 dipoles) in total as shown in Fig.  9.14. 

Measure the voltages across the dipoles to obtain the Matrix [𝑉௫ଶ].  

Secondly, make all the dipoles to be y-directed and choose the same dimensions of the 

array to be 1.4𝜆 by 9.9𝜆, which means 400 dipoles (8 × 50 dipoles) in total as shown in 

Fig.  9.15. Measure the voltages across the dipoles to obtain the Matrix ൣ𝑉௬ଶ൧.  
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Fig.  9.14. x-directed rectangular probe array (step2). 

 

Fig.  9.15. y-directed rectangular probe array (step2). 
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The equivalent magnetic current plane is chosen to be 1.6𝜆 by 10𝜆 consisting of 400 

square patches of dimensions 0.2𝜆  . The CGFFT method is now used to compute the 

equivalent magnetic currents 𝑀௫ଶ and 𝑀௬ଶ that are placed into 8×50 current patches. From 

the equivalent magnetic currents 𝑀௫ଶ and 𝑀௬ଶ the far field pattern in the other principal 

plane is calculated as shown in Fig.  9.16. 

 

Fig.  9.16. E total when phi=90 (dB Scale) of step2. 

The simulated results for the two steps we mentioned above, and the analytic results are 

shown in Fig.  9.13 and Fig.  9.16.  Fig.  9.13 shows the normalized absolute value of the 

electric far field for 𝜑 = 0°  in the dB scale of step1. Fig.  9.16 shows the normalized 

absolute value of the electric far field for 𝜑 = 90° in dB scale of step2.  The blue lines 

show the analytic results obtained by using HOBBIES, red lines show the rectangular probe 

array measurement results.  
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9.5 Example 9.3: Numerical results of choosing Yagi 

antenna to be the AUT. 

For the third example a single three element Yagi-Uda antenna is selected as the antenna 

under test to illustrate the results obtained using this methodology. The three-element Yagi-

Uda antenna is shown in Fig.  9.17 which consist of a driven element of length L = 0.47 𝜆, 

a reflector of length of 0.482 𝜆, and a director of length 0.442 𝜆.They are all spaced 0.2 𝜆 

apart. The radius of the wire structure for all cases is 0.00425 𝜆.  

 

Fig.  9.17. A three-element Yagi-Uda antenna. 

The measurement methodology for this Yagi-Uda antenna is quite similar to the 

measurement system used for the horn antenna as described in Example 9.1.  

Step 1: Put a rectangular dipole array with 0.1 𝜆 length Hertzian Dipole all terminated 

in 50 Ω loads and separated from each other in both directions by 0.2𝜆  to estimate the 

sampled electric fields at 0.2 𝜆 separation on the rectangular measurement plane.  
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First, make all the dipoles to be x-directed and chose the dimensions of the array to be 

1.7𝜆 by 0.4𝜆, which translates to 27 dipoles (9 × 3 dipoles) in total. Measure the voltages 

across the dipoles to obtain the Matrix [𝑉௫ଵ].  

Secondly, make all the dipoles to be y-directed and chose the same dimensions of the 

array to be 1.6𝜆 by 0.5𝜆, which means 27 dipoles (9 x 3 dipoles) in total. Measure the 

voltages across the dipoles to obtain the Matrix ൣ𝑉௬ଵ൧.  

The source plane over which the magnetic current is employed is of size 1.8𝜆  by 0.6𝜆 

implying that it contains 27 square patches over which the magnetic current is applied 

resulting in 𝑀௫ଵ and 𝑀௬ଵ of size 9×3 current patches. The equivalent magnetic current is 

now solved for using CGFFT. The equivalent magnetic currents 𝑀௫ଵ and 𝑀௬ଵ are used to 

obtain the far field pattern as shown in Fig.  9.18.  

 

Fig.  9.18. E total when phi=0 (dB Scale) of step1. 

Step 2: Now, orient the rectangular dipole array with 0.1 𝜆 length Hertzian Dipole all 

terminated in 50 Ω loads and separated from each other in both directions by 0.2𝜆  to 
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estimate the sampled electric fields at 0.2 𝜆 separation on the rectangular measurement 

plane. This time, the rectangular measurement plane is rotated by 90 degree compared to 

that in Step 1.  

First, make all the dipoles to be x-directed and chose the dimensions of the array to be 

0.5𝜆 by 1.6𝜆, which means 27 dipoles (3 x 9 dipoles) in total. Measure the voltages across 

the dipoles to obtain the Matrix [𝑉௫ଶ].  

Secondly, make all the dipoles to be y-directed and chose the same dimensions of the 

array to be 0.4𝜆 by 1.7 𝜆, which means 27 dipoles (3 x 9 dipoles) in total. Measure the 

voltages across the dipoles to obtain the Matrix ൣ𝑉௬ଶ൧.  

The equivalent magnetic current plane on the source plane of 0.6𝜆 by 1.8𝜆 containing 

27 square current patches are used and the magnetic current on them is solved using the 

CGFFT method for  𝑀௫ଶ and 𝑀௬ଶ. Using the equivalent magnetic currents 𝑀௫ଶ and 𝑀௬ଶ 

the far field pattern is shown in Fig.  9.19. 

 

Fig.  9.19. E total when phi=90 (dB Scale) of step 2. 
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The simulated results for the two steps we mentioned above, and the analytic results are 

shown in Fig.  9.18 and Fig.  9.19. Fig.  9.18 shows the normalized absolute value of the 

electric far field for 𝜑 = 0° in the dB scale of step 1. Fig.  9.19 shows the normalized 

absolute value of the electric far field for 𝜑 = 90° in dB scale of step 2.  The blue lines 

show the analytic results obtained by using HOBBIES, red lines show the rectangular probe 

array measurement results.  
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9.6 Example 9.4: Numerical results of choosing Yagi Array 

to be the AUT. 

For the final example, we deal with a 3 by 3 array of Yagi-Uda antennas. Each element 

of the Yagi-Uda array has been described in example 9.3 and they are separated from each 

other by 2 𝜆 .  

Step 1: Put a rectangular dipole array with 0.1 𝜆 length Hertzian Dipole all terminated 

in 50 Ω loads and separated from each other in both directions by 0.2𝜆  to estimate the 

sampled electric fields at 0.2 𝜆 separation on the rectangular measurement plane.  

First, make all the dipoles to be x-directed and chose the dimensions of the array to be 

4.9𝜆 by 0.4𝜆, which means 75 dipoles (25 x 3 dipoles) in total as shown in Fig.  9.20. 

Measure the voltages across the dipoles to obtain the Matrix [𝑉௫ଵ]. 

Secondly, make all the dipoles to be y-directed and chose the probe array to be of size 

4.8𝜆 by 0.5𝜆, which means 75 dipoles (25 x 3 dipoles) in total as shown in Fig.  9.21. 

Measure the voltages across the dipoles to obtain the Matrix ൣ𝑉௬ଵ൧. The measurement plane 

is 3 λ away from the source plan as shown in Fig.  9.22. 

The equivalent magnetic current on the selected source plane is of size 5𝜆 by 0.6𝜆 

consisting of 75 square patches. The CGFFT method is then used to solve for the currents 

𝑀௫ଵ and 𝑀௬ଵ of size 25×3 current patches. These equivalent magnetic currents 𝑀௫ଵ and 

𝑀௬ଵ are used to compute the far field pattern as shown in Fig.  9.23. 
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Fig.  9.20. x-directed rectangular probe array (step1). 

 

Fig.  9.21. y-directed rectangular probe array (step1). 
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Fig.  9.22. x-directed probe array (side view of step1). 

 

Fig.  9.23. E total when phi=0 (dB Scale) of step 1. 
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Step 2: Now place a rectangular dipole array with 0.1  𝜆 length Hertzian Dipole all 

terminated in 50 Ω loads and separated from each other in both directions by 0.2𝜆  to 

estimate the sampled electric fields. This time, the rectangular measurement plane is 

rotated by 90 degree compared to that in Step 1, as shown in Fig.  9.24 and Fig.  9.25. 

First, make all the dipoles to be x-directed and chose the dimensions of the array to be 

0.5𝜆 by 4.8𝜆, which means 75 dipoles (3 × 25 dipoles) in total as shown in Fig.  9.24. 

Measure the voltages across the dipoles to obtain the Matrix [𝑉௫ଶ].  

Secondly, make all the dipoles to be y-directed and chose the same dimensions of the 

array to be 0.4𝜆 by 4.9𝜆, which means 75 dipoles (3 × 75 dipoles) in total as shown in Fig.  

9.25. Measure the voltages across the dipoles to obtain the Matrix ൣ𝑉௬ଶ൧.  

The equivalent magnetic current plane is chosen to be to be 0.6𝜆 by 5𝜆 . The CGFFT 

method is now used to calculate the equivalent magnetic currents 𝑀௫ଶ and 𝑀௬ଶ of size 

3×25 current patches. The equivalent magnetic currents 𝑀௫ଶ  and 𝑀௬ଶ  are now used to 

calculate the far fields as shown in Fig.  9.26. 
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Fig.  9.24. x-directed rectangular probe array (step2). 

 

Fig.  9.25. y-directed rectangular probe array (step2). 
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Fig.  9.26. E total when phi=90 (dB Scale) of step 2. 

The simulated results for the two steps we mentioned above, and the analytic results are 

shown in Fig.  9.23 and Fig.  9.26. For the two principal plane patterns. Fig.  9.23 shows 

the normalized absolute value of the electric far field for 𝜑 = 0° in the dB scale of step 1. 

Fig.  9.26 shows the normalized absolute value of the electric far field for 𝜑 = 90° in dB 

scale of step 2.  The blue lines show the analytic results obtained by using HOBBIES, red 

lines show the rectangular probe array measurement results. 
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10  USE AMPLITUDE ONLY DATA TO ENHANCE THE 

EFFICIENCY OF NF-FF METHOD 

10.1 Objective and Necessity 

In previous approaches, the near fields data are always complex numbers, it’s very 

difficult to measure the complex data, especially in the high frequency cases, say at M, V 

and W-bands. The objective of this chapter is to show that we can still obtain acceptable 

far field results by using the amplitude only data of the near field measurements[28]-[33]. 

The square dipole array is an efficient option for near field amplitude measurement. This 

measurement is accomplished by putting the square dipole array at two different distances 

to the AUT and measure the amplitudes of the voltages of the dipoles of the array at these 

two measurement planes. Start with an initial guess of the phase information and after 

enough iterations to get the correct phases, we can obtain the final far field result. In every 

iteration, we need to solve the equivalent magnetic current over a plane near the original 

source antenna under test and then employ the Method of Moments approach to solve for 

the equivalent magnetic currents on this fictitious surface. Unlike in existing methods, the 

use of the probe array does not require probe correction. For this proposed methodology 

even though there is no need to satisfy the Nyquist sampling criteria in the measurement 

plane, a super resolution can be achieved in the solution of the equivalent magnetic current. 

Sample numerical results are presented to illustrate the accurate transformed far field result 

calculated from the near field measurement of amplitude data only.  
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10.2 Implementation of the Methodology 

In this approach, instead of measuring the complex voltages [𝑉௫]&ൣ𝑉௬൧, the near-field 

amplitude only measurements are performed over two planar surfaces which are both 

parallel with the source plane as shown in Fig.  10.1. The source plane ( 𝑆 ), the 

measurement plane 1 (𝑃ଵ ) and the measurement plane 2 ( 𝑃ଶ ) are all assumed to be 

rectangular surfaces in the x-y plane with the same dimensions 𝑤 by 𝑤.  

 

 

Fig.  10.1.  Two planes measurement. 
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The amplitude of voltages measured on 𝑃ଵ are called [𝐴ଵ௫]&ൣ𝐴ଵ௬൧ (where we did the 

similar things to the general methods, we first make the dipoles in the array to be all x-

directed  and then also rotated the dipoles of the array to be all y-directed), the distance 

between 𝑆  and 𝑃ଵ  is called 𝑑ଵ . The amplitude of voltages measured on 𝑃ଶ  are called 

[𝐴ଶ௫]&ൣ𝐴ଶ௬൧, the distance between 𝑆 and 𝑃ଶ is called 𝑑ଶ. And then we made an initial 

guess of the phases on 𝑃ଵ to be 0, so the voltages  [𝑉ଵ௫]&ൣ𝑉ଵ௬൧ on 𝑃ଵ are assumed to be 

 [𝑉ଵ௫] =  ൣ𝐴ଵ௫ ∗ 𝑒൧      (10-1) 

 ൣ𝑉ଵ௬൧ = ൣ𝐴ଵ௬ ∗ 𝑒൧ (10-2) 

according to these guessing voltages  [𝑉ଵ௫]&ൣ𝑉ଵ௬൧ , we can further calculate 𝑀௫
ଵ & 𝑀௬

ଵ 

(where the number on the right corner represent the number of iterations) on the equivalent 

source plane, of course this equivalent magnetic currents are not accurate enough to 

represent the source, but we can use this 𝑀௫
ଵ & 𝑀௬

ଵ to calculate the complex voltages on 𝑃ଶ, 

again, this is also not the accurate solution, but we had already measured the correct 

amplitudes of the voltages on 𝑃ଶ ([𝐴ଶ௫]&ൣ𝐴ଶ௬൧) and calculated the phases ([𝜑ଶ௫]&[𝜑ଶ௬]) 

which are much closer to the real values than the initial guess. So, we combine the 

measured amplitudes ([𝐴ଶ௫]&ൣ𝐴ଶ௬൧) and the calculated phases ([𝜑ଶ௫]&[𝜑ଶ௬]) to represent 

the voltages on the 𝑃ଶ, which is as follows,  

 [𝑉ଶ௫] = [𝐴ଶ௫ ∗ 𝑒ఝమೣ] (10-3) 

 ൣ𝑉ଶ௬൧ = [𝐴ଶ௬ ∗ 𝑒ఝమ] (10-4) 

by using this [𝑉ଶ௫]&ൣ𝑉ଶ௬൧, we can obtain new equivalent magnetic currents 𝑀௫
ଶ & 𝑀௬

ଶ on 

𝑆, which are more accurate to represent the source. Then, we can keep doing this to update 
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the phases of the voltages on 𝑃ଵby combing the  measured amplitudes([𝐴ଵ௫]&ൣ𝐴ଵ௬൧) and 

the calculated phases ([𝜑ଵ௫]&[𝜑ଵ௬]) to get the new voltages  [𝑉ଵ௫]&ൣ𝑉ଵ௬൧ on 𝑃ଵ , keep 

following this procedure and iterate enough times, we can obtain the accurate enough 

equivalent magnetic current on the source plane to calculate the far field. In the end, we 

compare the final far field results obtained from using the presented method with the results 

from an electromagnetic analysis code HOBBIES. 
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10.3 Example 10.1: Numerical results of choosing Horn 

antenna to be the AUT. 

A 2 𝜆 by 2 𝜆 pyramidal horn antenna is used as the antenna under test.  

The near-field amplitude only measurements are first performed over the measurement 

plane 1 (𝑃ଵ) and then performed over the measurement plane 2 (𝑃ଶ) by using an array of 

15 by 15 0.1 𝜆 dipoles all terminated in 50 Ω loads and separated from each other by 0.2 𝜆 

in both directions. The two planar surfaces  𝑃ଵ 𝑎𝑛𝑑 𝑃ଶ are both parallel with the source 

plane (𝑆), as shown in Fig.  10.2 and Fig.  10.3. Fig.  10.2 shows the x-directed probe 

array measurement structure. Fig.  10.3 shows the side view of the structure by using the 

x-directed probe array as an example. 

 

Fig.  10.2. x-directed probe array. 
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Fig.  10.3.  x-directed probe array(side view). 

In this case, 𝑆, 𝑃ଵ and 𝑃ଶ are all rectangular surfaces in the x-y plane with the same 

dimensions 3𝜆 by 3𝜆. On 𝑆, the equivalent magnetic currents 𝑀௫ and 𝑀௬ are placed into 

15×15 current patches and 𝑃ଵ&𝑃ଶ are same discretized to enable the use of CGFFT. The 

distance between 𝑆 and 𝑃ଵ is 2 𝜆, and the distance between 𝑆 and 𝑃ଶ is 3 𝜆. Then we can 

obtain the far field results by using the method mentioned above from the amplitude only 

data measured on  𝑃ଵ 𝑎𝑛𝑑 𝑃ଶ.  

The simulated results for the method mentioned above and the analytic results for the 

far fields are shown in Fig.  10.4 and Fig.  10.5. Fig.  10.4 shows the normalized absolute 

value of the electric far field for 𝜑 = 0° in the dB scale. Fig.  10.5 shows the normalized 

absolute value of the electric far field for 𝜑 = 90° in the dB scale.  

 

𝑃ଶ 

𝑃ଵ 



118 
 

 
 

 

Fig.  10.4. Etotal when phi = 0° (dB Scale). 

 

Fig.  10.5. Etotal when phi = 90° (dB Scale). 

The blue lines show the analytic results obtained using HOBBIES, the red lines show 

the amplitude only data of probe array measurement results. We can see the method 

discussed above provides acceptable results. These results indicate that by utilizing only 

the amplitude of the complex data and not incorporating probe correction into the 

measurement have little effect on the accuracy of the final result.  
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10.4 Example 10.2: Numerical results of choosing Horn 

Array to be the AUT. 

For the next example, the antenna under test is made more complicated. We choose 16, 

1.5 𝜆 by 2 𝜆 pyramidal horn antennas to form a 4 by 4 horn antenna array as the antenna 

under test.  Each horn is separated from each other by 3 𝜆.  

The near-field amplitude only measurements are first performed over the measurement 

plane 1 (𝑃ଵ) and then performed the measurement plane 2 (𝑃ଶ) by using an array of 40 by 

40 0.1 𝜆 dipoles all terminated in 50 Ω loads and separated from each other by 0.5 𝜆 in both 

directions. The two planar surfaces  𝑃ଵ 𝑎𝑛𝑑 𝑃ଶ are both parallel with the source plane (𝑆), 

as shown in Fig.  10.6 and Fig.  10.7. Fig.  10.6 shows the x-directed probe array 

measurement structure and Fig.  10.7 shows the side view as an example. 

 

Fig.  10.6. x-directed probe array. 
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Fig.  10.7. x-directed probe array(side view). 

In this case, 𝑆, 𝑃ଵ and 𝑃ଶ are all rectangular surfaces in the x-y plane with the same 

dimensions 20𝜆 by 20𝜆. On 𝑆, the equivalent magnetic currents 𝑀௫ and 𝑀௬ are placed 

into 40×40 current patches and 𝑃ଵ&𝑃ଶ are same discretized to enable the use of CGFFT. 

The distance between 𝑆 and 𝑃ଵ is 2 𝜆, and the distance between 𝑆 and 𝑃ଶ is 3 𝜆. Then we 

can obtain the far field results by using the method mentioned above from the amplitude 

only data measured on  𝑃ଵ 𝑎𝑛𝑑 𝑃ଶ.  

The simulated results for the method mentioned above and the analytic results for the 

far fields are shown in Fig.  10.8 and Fig.  10.9. Fig.  10.8 shows the normalized absolute 

value of the electric far field for 𝜑 = 0° in the dB scale. Fig.  10.9 shows the normalized 

absolute value of the electric far field for 𝜑 = 90° in the dB scale.  

𝑃ଵ 

 

𝑃ଶ 
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Fig.  10.8. Etotal when phi = 0° (dB Scale). 

 

Fig.  10.9. Etotal when phi = 90° (dB Scale). 

The blue lines show the analytic results obtained using HOBBIES, the red lines show 

the amplitude only data of probe array measurement results. We can see the method 

discussed above provides acceptable results. These results indicate that only by utilizing 

the amplitude of the complex data and not incorporating probe correction into the 

measurement have little effect on the accuracy of the final result.   
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10.5 Example 10.3: Numerical results of choosing Yagi 

antenna to be the AUT. 

For the third example a single three element Yagi-Uda antenna is selected as the antenna 

under test to illustrate the accuracy of this methodology. This antenna has a wide beam. 

The three-element Yagi-Uda antenna as shown in Fig.  10.10 consist of a driven element 

of length L = 0.47 𝜆, a reflector of length 0.482 𝜆, and a director of length 0.442 𝜆.They 

are all spaced 0.2 𝜆 apart. The radius of the wire structure for all cases is 0.00425 𝜆.  

 

Fig.  10.10. A three-element Yagi-Uda antenna. 

The measurement methodology for this Yagi-Uda antenna is quite similar to the 

measurement system used for the horn antenna as described in Example 10.1. The near-

field amplitude only measurements are first performed over the measurement plane 1 (𝑃ଵ) 

and then performed the measurement plane 2 (𝑃ଶ) by using an array of 25 by 25 0.1 𝜆 

dipoles all terminated in 50 Ω loads and separated from each other by 0.2  𝜆  in both 

directions. The two planar surfaces  𝑃ଵ 𝑎𝑛𝑑 𝑃ଶ are both parallel with the source plane (𝑆).  
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In this case, 𝑆, 𝑃ଵ and 𝑃ଶ are all rectangular surfaces in the x-y plane with the same 

dimensions 5𝜆 by 5𝜆. On 𝑆, the equivalent magnetic currents 𝑀௫ and 𝑀௬ are placed into 

25×25 current patches and 𝑃ଵ&𝑃ଶ are same discretized to enable the use of CGFFT. The 

distance between 𝑆 and 𝑃ଵ is 2 𝜆, and the distance between 𝑆 and 𝑃ଶ is 3 𝜆. Then we can 

obtain the far field results by using the method mentioned above from the amplitude only 

data measured on  𝑃ଵ 𝑎𝑛𝑑 𝑃ଶ.  

The simulated results for the method mentioned above and the analytic results for the 

far fields are shown in Fig.  10.11 and Fig.  10.12. Fig.  10.11 shows the normalized 

absolute value of the electric far field for 𝜑 = 0° in the dB scale. Fig.  10.12 shows the 

normalized absolute value of the electric far field for 𝜑 = 90° in the dB scale.  

 

Fig.  10.11. Etotal when phi = 0° (dB Scale). 
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Fig.  10.12. Etotal when phi = 90° (dB Scale). 

Theta here is defined as the angle from x axis to z axis and phi is the angle from the x 

axis to the y axis. This implies, phi equals 0° cut is the x-z plane and phi equals 90° is the 

y-z plane. The blue lines show the analytic results obtained using HOBBIES, the red lines 

show the amplitude only data of probe array measurement results. 

We can see the method discussed above provides acceptable results. These results 

indicate that only by utilizing the amplitude of the complex data and not incorporating 

probe correction into the measurement have little effect on the accuracy of the final result.  
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10.6 Example 10.4: Numerical results of choosing Yagi 

Array to be the AUT. 

For the final example, we deal with an array consists of 9 Yagi-Uda antennas to form a 

3 by 3 antenna array as the antenna under test.  Each element of the Yagi-Uda array has 

been described in example 10.3 and they are separated from each other by 2 𝜆.  

The near-field amplitude only measurements are first performed over the measurement 

plane 1 (𝑃ଵ) and then performed the measurement plane 2 (𝑃ଶ) by using an array of 40 by 

40 0.1 𝜆 dipoles all terminated in 50 Ω loads and separated from each other by 0.5 𝜆 in both 

directions. The two planar surfaces  𝑃ଵ 𝑎𝑛𝑑 𝑃ଶ are both parallel with the source plane (𝑆), 

as shown in Fig.  10.13 and Fig.  10.14. Fig.  10.13 shows the x-directed probe array 

measurement structure and Fig.  10.14 shows the side view as an example. 

 

Fig.  10.13.  x-directed probe array. 
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Fig.  10.14. A x-directed probe array (side view). 

In this case, 𝑆, 𝑃ଵ and 𝑃ଶ are all rectangular surfaces in the x-y plane with the same 

dimensions 20𝜆 by 20𝜆. On 𝑆, the equivalent magnetic currents 𝑀௫ and 𝑀௬ are placed 

into 40×40 current patches and 𝑃ଵ&𝑃ଶ are same discretized to enable the use of CGFFT. 

The distance between 𝑆 and 𝑃ଵ is 2 𝜆, and the distance between 𝑆 and 𝑃ଶ is 3 𝜆. Then we 

can obtain the far field results by using the method mentioned above from the amplitude 

only data measured on  𝑃ଵ 𝑎𝑛𝑑 𝑃ଶ.  

The simulated results for the method mentioned above and the analytic results for the 

far fields are shown in Fig.  10.15 and Fig.  10.16. Fig.  10.15 shows the normalized 

absolute value of the electric far field for 𝜑 = 0° in the dB scale. Fig.  10.16 shows the 

normalized absolute value of the electric far field for 𝜑 = 90° in the dB scale.  

 

𝑃ଶ 

 
𝑃ଵ 

 



127 
 

 
 

 

Fig.  10.15. Etotal when phi = 0° (dB Scale). 

 

Fig.  10.16. Etotal when phi = 90° (dB Scale). 

The blue lines show the analytic results obtained using HOBBIES, the red lines show 

the amplitude only data of probe array measurement results. We can see the method 

discussed above provides acceptable results. These results indicate that only by utilizing 

the amplitude of the complex data and not incorporating probe correction into the 

measurement have little effect on the accuracy of the final result.   
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11 CONCLUSIONS AND FUTURE WORK 

A comparison was made between the calculated antenna patterns of two measurement 

systems by moving a single probe across the entire measurement plane as opposed to using 

a probe array to equivalently scan the entire surface of the measurement plane just once. 

For the results presented, both systems can obtain accurate results for the far field.  

And if we take accuracy of mechanical movement of the probe antenna over a large 

planar surface into account, probe array measurement system would be more accurate. 

Also, probe array measurement can obtain all the information at once makes it to be more 

efficient than the single probe system. Hence, probe array measurement system is an 

accurate and efficient option to do the NF-FF transformation. The relation between the size 

of the square dipole probe array and the accuracy of the NF-FF pattern was analyzed, we 

found that as long as the sizes of the measurement planes are chosen to be approximately 

equal to or larger than the size of the actual source plane of the AUT, the accurate results 

can be obtained.  

Also, for the efficiency consideration, two efficient approaches were introduced. The 

first approach of using a dipole planar probe array to measure the near field over a sector 

to obtain the far field pattern along principal planes was shown to increase the efficiency 

without sacrificing much accuracy. And another approach of making use of the amplitude 

only data of the near field measurements to predict the far field within engineering accuracy 

was also shown to speed up the measurements under high frequency environments. The 

remarkable point to note is that in this novel methodology probe correction is not deemed 

necessary according to all the results presented.  
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For the future work, as the rapid development of science and technology, I could apply 

new algorithm of solving the equations or try some other measurement systems to further 

increase the accuracy and efficiency of antenna pattern measurements. 
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