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Abstract: 

We describe the search pipeline, called  PyCBC , used to identify gravitational wave candidates in              

Advanced LIGO's O1 search. We give an overall summary of the pipeline including a general               

layout and the methods for calculating the signal-to-noise ratio and the chi-squared statistic. We              

then give detailed explanations of removing noise transient before processing, called  gating ; the             

way to create a bank of template waveforms and the process of matched filtering these               

waveforms against the data; the chi-squared statistic's role in eliminating noise transients; the             

latest coincidence testing method, which requires candidates to be both nearly simultaneous and             

have the exact same parameters; and the method of translating a candidate's significance into a               

probability of being a true signal. We compare this pipeline to the one used in Initial LIGO's fifth                  

and sixth science runs and report a 40% increase in sensitive volume with no significant change                

to computational cost. 
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Executive Summary: 

Gravitational-wave physics is at the forefront of scientific exploration. Einstein’s theory           

of general relativity treats gravity as the warping of spacetime by the presence of mass. When                

mass accelerates, it creates ripples in spacetime. On September 14, 2015, and almost 100 years               

after Einstein first predicted their existence, the Laser Interferometer Gravitational-Wave          

Observatory (LIGO) directly observed the gravitational waves from a binary black hole merger,             

verifying a key prediction of general relativity. My capstone thesis describes the development             

and testing of a new search pipeline that was used to measure the significance of LIGO's first                 

detection. The discovery of the binary black hole source GW150914 is reported in "Observation              

of Gravitational Waves from a Binary Black Hole Merger" published in Physical Review Letters              

116 , 06110 2 (2016). Additional details of the search are described in the paper "GW150914:               

First results from the search for binary black hole coalescence with Advanced LIGO" which has               

been submitted to Physical Review D. 

Black holes are objects so massive that they warp spacetime into a singularity preventing              

even light from escaping their gravitational field. Gravitational waves are ripples in spacetime             

which carry information about changing gravitational fields out to far reaches of the universe. As               

two black holes or neutron stars orbit around each other, their gravitational fields warp              

spacetime. Information about the changing gravitational field of the source is carried away as              

gravitational waves. The goal of gravitational-wave astronomy is to use the information carried             

by gravitational waves to study the universe, just as we have used the information carried by                

light to study the universe for hundreds of years. 
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LIGO uses laser interferometry to detect minute changes in distances caused by            

gravitational waves passing through the Earth. The two LIGO detectors, which are located in              

Hanford, Washington and Livingston, Louisiana, are also sensitive to vibrations from the            

environment that cause noise in the detectors. The three main noise sources are seismic motion               

from the ground, thermal vibrations from within the detector, and noise due to the quantum               

nature of light itself. These noise sources can be a problem because the detectors are very                

sensitive, even sensitive enough to pick up the vibrations from waves crashing against the              

seashore hundreds of miles away. The expected amplitude of typical astrophysical           

gravitational-wave sources will be comparable to the amplitude of the detector noise. Because of              

this, noise sources can hide the signals of gravitational waves. To detect signals, LIGO has               

designed a sophisticated  search pipeline that can find gravitational waves buried in detector             

background noise. The purpose of a search pipeline is to identify gravitational-wave signals in              

the output of the detector network and to measure the significance of observed sources.  

The shape of the gravitational waves from binary black holes varies greatly depending on              

the masses of the black holes and how fast they are rotating. Since we do not know exactly what                   

the black holes look like in advance, the pipeline uses hundreds of thousands of different               

gravitational waveforms and compares each of them to the output of the detectors. These              

waveforms can last from a fraction of a second to several minutes. By using an operation called                 

the  matched filter , the pipeline checks every template waveform against every second of LIGO              

data to see if the data could contain any of the possible wave types and the  signal-to-noise ratio                  

( SNR ) that describes how likely it is that any given piece of data contains a signal. If the matched                   

filter returns a high number for a particular waveform at a certain time in the data, this time is                   

 

Sammy
iv



flagged as a  trigger and is considered to be a gravitational-wave candidate. The value of a                

trigger’s SNR is a measure of how loud the gravitational-wave candidate is. 

Loud noise sources in the detector may fool the matched filter by generating triggers with               

large SNR values, even if they are not due to gravitational waves. If the data contains a genuine                  

gravitational wave, the power of the data should be distributed in the same way as the power of                  

the theoretical waveform. The pipeline uses a   2 test to  compare the amount of power distributed                

in the detector data to the power distribution expected from the waveform. Noise transients, do               

not have the same power distribution and will return a large  
2

value. The trigger’s SNR is                 

divided by the value of the  
2

test to construct a  re-weighted SNR . The reweighted SNR reduces                 

the loudness of  triggers that look like noise compared to triggers that look more like signals. 

The theory of General Relativity predicts that gravitational waves travel at the speed of              

light and the Hanford and Livingston detectors are approximately 3000 kilometers apart. This             

means that gravitational waves should arrive at the detectors with a time difference of no more                

than 10 milliseconds. The pipeline thus performs a  coincidence test to reduce false identification              

of signals by requiring that a signal is seen in both detectors within the gravitational-wave travel                

time between the observatories. Signals that are see in coincidence as considered to be  candidate               

events that could be gravitational waves .  To measure the overall significance of a these candidate               

events, the pipeline computes the square root of the combined squares of the re-weighted SNR in                

each detector. This quantity is known as the detection statistic. The larger its value, the more                

likely a candidate is to be a gravitational wave. 

However, the value of the detection statistic does not give us the whole story. It does not                 

tell us the probability that a given event is real. To do this, the pipeline compares the re-weighted                  
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SNR of gravitational-wave candidates to that of background noise from the detector in order to               

determine their significance. Since we cannot turn off our gravitational wave sources and there is               

no theoretical model for the noise in the detectors, we must use  time shifts to estimate the                 

background data. In a time shift, data from one detector (and all of its resulting gravitational                

wave candidates and noise triggers) are shifted in time with respect to the other detector’s data.                

The pipeline then performs another round of coincidence testing. Any resulting coincidences            

cannot be gravitational waves, since they did not occur simultaneously in real time. By doing               

many of these time shifts, we can artificially create thousands of years’ worth of background data                

with just a few weeks of LIGO data. This allows us to estimate the  false-alarm rate of the search                   

as a function of the detection-statistic value; this is the rate at which noise produces candidate                

events with a given detection-statistic value. Finally, the candidate events are compared to this              

set of background noise and are determined to be statistically significant or not. 

After describing the new search pipeline, we present a comparison with the pipeline used              

in previous LIGO searches and found that the new pipeline was more sensitive, with no change                

to the cost. We test the pipeline’s sensitivity by using  injections which are fake signals that are                 

artificially added to the detectors’ data. By checking to see when the pipeline can pick out these                 

gravitational waves from the detector data, we can estimate to what volume of space the pipeline                

is sensitive. My analysis showed that the new pipeline was 40% more sensitive to low-mass               

binary systems (like binary neutron stars), with no significant change to the computational cost              

or the sensitivity to high-mass systems. This pipeline was used to identify and confirm LIGO’s               

first gravitational-wave detection, GW150914. 
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1. Introduction

The detection of the binary black hole merger GW150914 by the Laser Interferometer

Gravitational-wave Observatory (LIGO) has established the field of gravitational-

wave astronomy [1]. LIGO [2,3] will be joined by the VIRGO [4,5] and KAGRA [6]

detectors in the near future, forming an international network of gravitational-wave

observatories. Beyond the expected regular detections of binary black holes [7],

compact-object binaries containing a neutron star and a black hole or two neutron

stars are likely candidates for detection by this network in the coming years [8, 9].

In this paper, we describe a new search pipeline to detect gravitational waves

from compact-object binaries. The purpose of a search pipeline is to identify

gravitational-wave signals in the output of the detector network and to measure

the significance of observed sources. The pipeline described here, called PyCBC,

searches for gravitational waves from compact binary coalescences [10]. The methods

used directly descend from the pipelines [11–15] used to search for compact-object

binary coalescence with the the first-generation LIGO and Virgo detectors [16–24].

The pipeline has been re-written to incorporate new algorithms that improve the

sensitivity of the search and that reduce its computational cost. We provide a

complete description of the search pipeline, emphasizing the new developments that

have been made for the advanced-detector era. To demonstrate the use of the

pipeline, we show that by re-analyzing data from LIGO’s sixth science run that

the new pipeline can achieve a ⇠ 40% increase in sensitive volume to binary neutron

stars when compared to the pipeline used in the last LIGO-Virgo science run [24].

The results of using this pipeline in Advanced LIGO’s search for binary black holes

are presented in Ref [1] and described in detail in Ref. [25].

This paper is organized as follows: Section 2 provides an overview of the new

search pipeline and the methods used to detect gravitational waves from compact-

object binaries in LIGO data. Section 3 gives a description of the new developments

implemented in this pipeline. Section 4 compares the performance of the new pipeline

to that of the pipeline used in the sixth LIGO science run and Virgo’s second and

third science runs [24]. Finally, Section 5 summarizes our findings and suggests

directions for future improvements.

2. Search Pipeline Overview

The purpose of a search pipeline is to identify candidate signals in the detector

noise and provide a measure of their statistical significance. The amplitude of

many gravitational-wave sources will be comparable to the amplitude of the detector

noise. Even for loud sources, the statistical significance of candidate detections

must be empirically measured, since it is not possible to shield the detectors

from gravitational-wave sources and no theoretical model of the detector noise
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exists. If the detector noise contained only a stationary and Gaussian component,

matched filtering would be the optimal method of detecting these signals since

the gravitational-waveforms of compact-object binaries can be modeled using a

combination of analytical and numerical methods [26]. Futhermore, in this case the

the matched filter signal-to-noise ratio (SNR) would su�ce as a detection statistic

since its distribution in stationary, Gaussian noise is well known [27]. In practice, the

detector data contains non-stationary noise and non-Gaussian noise transients and

Figure 1 shows the additional steps that must be taken to mitigate false detections

and to assign a statistical significance to candidate signals. In this section, we provide

an overview of the methods used in the search pipeline.

In addition to possible signals, the calibrated strain signal from the detectors [28,

29] contains two classes of noise: (i) a primarily stationary, Gaussian noise component

from fundamental processes such as thermal noise, quantum noise, and seismic noise

coupling into the detector; and (ii) non-Gaussian noise transients of instrumental and

environmental origin [30]. To eliminate the worst periods of detector performance,

data quality investigations [31, 32] characterize detector data into three general

classes: (i) the data is suitable for astrophysical searches, (ii) the data is polluted

with enough noise that the data should be discarded without being searched, or

(iii) the data can be filtered, but candidate events that lie in intervals of poor data

quality should be discarded due to the presence of an instrumental or environmental

artifact. Data quality investigations are conducted both independently of the search

pipeline (by looking only at instrumental performance) and within the pipeline by

looking at the e↵ect of instrumental artifacts on the noise background of the search.

These investigations are very e↵ective at reducing the background; however noise

transients of unknown origin can still remain after vetoes are applied. In Section 3.1

we describe a new method of removing non-Gaussian noise transients by applying

a window to the detector data that zeroes out the data around the time of a noise

transient (called gating).

Since the waveform of the target signal is well modeled, the pipeline uses

matched filtering to search for these signals in detector noise. If the total mass

of a compact-object binary is lower than M . 12 M� [33, 34] and the angular

momenta of the compact objects (their spin) is small [35,36] (as is the case for binary

neutron stars), then the inspiral phase can be well modeled using the post-Newtonian

approximations (see e.g. Ref. [37] for a review). For high-mass and high-spin binaries,

analytic models tuned to numerical relativity can provide accurate predictions for

gravitational waves from compact binaries [38–42]. Since we do not a priori know

the parameters of gravitational waves in the data, a bank of template waveforms is

constructed that spans the astrophysical signal space [43–51]. The template bank

is constructed so that the loss in matched-filter SNR due to the discrete nature of

the bank is no more than ⇠ 3%. The exact placement of the templates depends

on the detector’s noise power spectral density. The pipeline described here places

3



Detector 1 
Data

Detector 2 
Data

Detector X 
Data... 

Average PSD over all 
detectors. Create template bank. 

Matched filter data 
with template bank. 
Threshold over SNR 

and cluster to 
generate triggers.

... 

Perform coincidence test in 
time and template parameters. 

Apply data quality vetoes.
Remaining triggers are 

foreground gravitational-wave 
candidates.

Calculate !2 test 
on SNR maxima 

and use to 
calculate 

reweighted SNR.

... 

Use time shifts to calculate the 
false-alarm rate of coincident 
triggers. Resulting triggers are 

background noise, used to 
estimate the significance
of foreground triggers.

Calculate !2 test 
on SNR maxima 

and use to 
calculate 

reweighted SNR.

Calculate !2 test 
on SNR maxima 

and use to 
calculate 

reweighted SNR.

... Apply gating 
veto windows to 

remove excursions 
in the data.

Apply gating 
veto windows to 

remove excursions 
in the data.

Apply gating 
veto windows to 

remove excursions 
in the data.

Matched filter data 
with template bank. 
Threshold over SNR 

and cluster to 
generate triggers.

Matched filter data 
with template bank. 
Threshold over SNR 

and cluster to 
generate triggers.

Figure 1. A flowchart indicating the di↵erent steps used in the search pipeline.
Data from the detectors are used to create an average power spectral density that is
used to place a bank of templates that cover the search parameter space (blue box).
Times when the detector data contain loud noise transients are removed, or vetoed.
The data from each detector is then matched filtered and triggers are generated by
thresholding and clustering the signal-to-noise ratio time series. A chi-squared test
is computed on the SNR maxima and the SNR is re-weighted by the value of the
chi-squared statistic to better distinguish between signal and noise (yellow boxes).
The pipeline determines which triggers survive time and template coincidence,
discarding triggers that lie in times of poor data quality (red box). The triggers
that pass the coincidence and data quality tests are labelled candidate events.
Finally, multiple time-shifts are used to generate a noise background realization
that is used to measure the significance of the candidate events (bottom box).
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templates using a single noise power spectral density, averaged over all of the time

and all detectors used in the search. The same template bank is used to construct

the matched filters for all detectors in the network. We describe the method used to

construct this template bank in Section 3.2.

The search computes the matched-filter SNR ⇢(t) for each template

independently in each detector. The matched filter consists of a weighted inner

product in the frequency domain used to construct the (squared) signal-to-noise

ratio, given by

⇢2(t) =
(s|hc)2

(hc|hc)
+

(s|hs)2

(hs|hs)
=

(s|hc)2 + (s|hs)2

(hc|hc)
, (1)

where hc and hs are the two orthogonal phases of the template h(t) and have the

same normalization, and

(s|h)(t) = 4Re

Z f
high

f
low

s̃(f)h̃⇤(f)

Sn(f)
e2⇡ift df. (2)

Here s̃(f) denotes the Fourier-transformed detector data, defined by

s̃(f) =

Z f
high

f
low

s(t)e�2⇡itfdt, (3)

and h̃(f) denotes the Fourier-transformed template waveform. Sn(f) is the one-sided

power spectral density of the detector noise. The frequency limits f
low

and f
high

are

determined by the bandwidth of the detector’s data. The search identifies the times

when the matched-filter SNR exceeds 5.5 one of the detector’s data set. The pipeline

then applies a clustering algorithm, which takes the largest value within a predefined

window of ⇢(t) and identifies maxima in the SNR time series. This process yields a list

of candidate signals, which are called triggers. The matched-filtering, thresholding

and clustering algorithms used are described in Section 3.3.

Triggers generated by matched filtering the data against the template bank are

subject to a chi-squared test that determines if the time-frequency distribution of

power in the data is consistent with the expected power in the matching template

waveform [13]. To construct this test, the template is split into p frequency bins

of equal power, and a matched filter ⇢l constructed for each of these bins. The �2

statistic is computed as

�2 = p
pX

l=1

"✓
⇢2

c

p
� ⇢2

c,l

◆
2

+

✓
⇢2

s

p
� ⇢2

s,l

◆
2

#
, (4)

where ⇢2

c and ⇢2

s are the two orthogonal phases of the matched filter. Previous

searches fixed the number of bins p. Lower-mass binary systems, such as binary

neutron stars, lose energy to gravitational waves more slowly than higher-mass

systems. Consequently, the waveforms of lower mass systems are longer, having
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more gravitational-wave cycles in the sensitive band of the detector. The pipeline

described here allows the number of bins to be specified as a function of the intrinsic

parameters of the template. This allows the search to use more bins in the chi-

squared test for longer templates, making the test more e↵ective. This pipeline

also uses a new computationally e�cient algorithm for computing the chi-squared

statistic, described in Section 3.4.

Large values of the chi-squared test indicate that a trigger is more likely to be

from a noise transient. For true signals, the reduced chi-squared, �2

r = �2/(2p � 2),

should be near unity. To suppress the matched-filter SNR of triggers caused by noise

transients, the matched-filter SNR is re-weighted [15,52] according to

⇢̂ =

(
⇢
.

[(1 + (�2

r)
3)/2]

1

6 , if �2

r > 1,

⇢, if �2

r  1.
(5)

The search requires that signals are observed with consistent parameters in the

detector network, as described in Section 3.5. To be considered a candidate event,

triggers must be observed with a time of arrival di↵erence less than or equal to

the gravitational-wave travel time between detectors, with an additional window to

account for uncertainty in the measurement of the time of arrival. The triggers must

also be observed with the same template in both detectors. Triggers that survive the

time and parameter coincidence test are referred to as candidate events.

The quadrature sum of the reweighted SNR ⇢̂ in each detector is the detection

statistic used to rank the likelihood that a trigger is due to a gravitational-wave

signal. To assign a statistical significance to detection candidates, the pipeline

measures the false-alarm rate of the search as a function of the detection-statistic

value ⇢̂c. Since it is not possible to isolate the detectors from gravitational waves, it

is impossible to directly measure the detector noise in the absence of signals. This,

together with the non-stationary and non-Gaussian nature of the noise, means that

the false-alarm rate of the search must be empirically measured. This is done by

applying a time-shift � to the triggers from one detector relative to another. The

minimum time o↵set is chosen to be larger than twice the coincident window. Triggers

that survive time-shifted coincidence tests represent coincidences due to noise alone

since genuine signals will not be time coincident in the background data set. Many

time shifts are used to create a large background data set that is used to measure the

background noise and estimate the search’s false-alarm rate. The false-alarm rate is

then used to assign a p-value to each candidate event as described in Section 3.6.

Di↵erent templates in the bank can respond to detector noise in di↵erent ways.

This means that the search background is not uniform across the template bank. To

maximize sensitivity and provide a better estimate of event significance, the search

sorts events—both the background and the event candidates—into di↵erent classes.

The search assigns a p-value to the event candidates by measuring their significance

against background events from the same class. To account for having searched
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multiple classes whose response is not completely independent [53], this significance

is decreased by a trials factor equal to the number of bins, n
bins

. This final value is

then used to determine the statistical significance of a candidate event. This process

is described in Section 3.6.

3. Pipeline Improvements

In this section we describe the methods and algorithms used in the PyCBC search

pipeline, which improves upon the ihope pipeline described in Ref. [15]. Section 3.1

describes a new method for identifying and removing non-Gaussian noise transients

from the data prior to filtering. Section 3.2 describes a new method for the

construction of template banks and the use of a single template bank in all detectors,

and for the entire duration of the search. Section 3.3 describes the improvements

made to the matched-filtering used in the new pipeline, including improvements to

the detector noise power-spectral density estimation and methods for identifying

maxima in the signal-to-noise ratio time series. Section 3.4 describes the new

algorithm for constructing the chi-squared signal-based veto used by the pipeline

and compares the computational cost of this algorithm to the implementation used

in the first-generation detector searches. The substantially reduced cost of our

implementation allows us to create a simpler topology which uses one stage of

matched filtering as opposed to the two stages used in Ref. [15]. The new topology

computes both the matched filter SNR and the chi-squared test before the coincidence

step, as shown in Figure 1. Section 3.5 describes the method that the pipeline uses

to determine if a signal is observed in coincidence in all the detectors in the network.

Section 3.6 describes the method that the pipeline uses to measure the significance

of detection candidates.

3.1. Removal of non-Gaussian noise

The input to the search pipeline consists of calibrated gravitational-wave strain

data [28], a list of the time intervals during which the detectors are operating

nominally (called science mode) and additional metadata describing the quality

of the detector data [31, 32]. Data-quality investigations examine the strain data

and the detectors’ environmental and control channels to identify times when

detector performance is degraded by noise of instrumental or environmental origin.

For periods of unstable detector operation, data can either be discarded from

the search before filtering or triggers can be discarded after filtering during the

coincidence step. Time intervals that are discarded are known as veto windows.

However, despite extensive detector characterization investigations, the data still

contain non-stationary and non-Gaussian noise which can a↵ect the astrophysical

sensitivity of the search. Although loud transients (or glitches) that survive data-
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Figure 2. The e↵ect of gating on a loud noise transient. Both lines show strain
data just prior to applying the Fourier transform for the frequency-domain matched
filter. The y-axis is rescaled so that the strain data around the transient is visible.
On this scale, the transient has a peak magnitude over 5,000. The blue line shows
the data before applying the Tukey window, the red line shows the data after.

quality investigations are suppressed by the chi-squared test, they can reduce search

sensitivity through two mechanisms: dead time due to the clustering algorithm and

ringing of the matched filter; both of these mechanisms are related to the impulse

response of the matched filter. In this section, we explain the origin of these features

and propose a new method for reducing their e↵ect on the search’s sensitivity.

The impulse response of the matched filter is obtained by considering a delta-

function glitch in the input data s(t) = �(t�tg), where tg is the time of the transient.

Although not all types of glitches are of this nature [54], many types of loud noise

transients can be approximated as s(t) = n(t)+�(t�tg). For example, Figure 2 shows

a typical loud transient glitch from LIGO’s sixth science run that behaves in this

way. For such a glitch, the matched-filter SNR given by Eq. (1) will be dominated

by

⇢2(t) ⇡ I2

c (tg � t) + I2

s (tg � t), (6)

where

Ic,s(tg � t) =

Z
h̃c,s(f)

Sn(f)
e2⇡if(tg�t) df (7)

is the impulse response of each of the two phases of the matched filter. This e↵ect is

illustrated in Figure 3 (left) which shows the result of filtering the glitch in Figure 2

8



through a template bank and generating triggers from the matched-filter SNR time

series. The black circles show the triggers generated by the ringing of the filter

due to the glitch. The largest SNR values occur close to the time of the glitch

and are due to the impulse response of the template h. The shoulders on either

side of this are due to the impulse response of the inverse power spectrum 1/Sn(f).

To ensure that the impulse response of the filter is of finite duration, the inverse

power spectral density is truncated to a duration of 16 seconds in the time domain

before filtering [14]. However, the length of the template can be on the order of

minutes, leading to very long impulse response times for the matched filter. This

leads to the two e↵ects described above: an excess of triggers around the time of the

glitch which can increase the noise background of the search and a window of time

containing multiple noise triggers that can make it di�cult to distinguish signal from

noise. Although the use of the chi-squared veto to construct the reweighted SNR

suppresses the significance of these triggers, it does not completely remove them from

the analysis. This is shown in Figure 3 (left) where the blue points show the triggers

that remain after calculating the reweighted SNR for each trigger and applying a

threshold of ⇢̂ > 5.5. It can be seen that the increased trigger rate around the time

of the glitch is still present.

The pipeline described here implements a new method of removing non-

stationary transients, called gating. Noise transients in the strain data are identified

and the data is then zeroed out prior to matched filtering. To zero the data, the

input data s(t) is multipled by a window function centered on the time of the peak. A

Tukey window is used to smoothly roll the data to zero and prevent discontinuities in

the input data. The e↵ect of this gating on the strain data is shown in Figure 2 where

the input data is zeroed for 1 s around the time of the glitch, with the window applied

for 0.5 s before and after this interval. The e↵ect on the triggers is shown in Figure 3

(right). The blue points show the triggers produced by the search when the windowed

data is filtered through the template bank. In addition to removing the loud triggers

with SNR ⇠ 1000 at the time of the glitch, gating removed the additional triggers

with SNR ⇠ 10 that are generated by the ringing of the filter before and after the

glitch. This improves search sensitivity by reducing the amount of data corrupted by

the glitch to only the windowed-out data, and reduces the overall noise background

by removing noise triggers that could possibly form coincident events.

This process requires the identification of the time of noise transients that will be

removed by gating. These times can be provided to the pipeline as a list generated by

a separate search for excess power in the input strain data (typically with a high SNR

threshold) [55,56]; this method was used in Ref. [1]. Alternatively, a list of times to

gate may be constructed internally by the pipeline (called auto-gating). To do this,

the pipeline measures the power spectral density of the input time series. The data

is Fourier transformed, whitened in the frequency domain, and then inverse Fourier

transformed to create a whitened time-series. The magnitude of the whitened strain
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Figure 3. Response of the search to a loud glitch. The matched-filter SNR of the
triggers generated is shown as a function of time. Black circles show the triggers
generated immediately after filtering without gating applied to the input data. Blue
triangles show the triggers that remain after the re-weighted SNR is computed for
each trigger and a threshold of ⇢̂ > 5.5 is applied. Although the significance of
these triggers is suppressed by the re-weighted SNR, many triggers still remain
which can increase the noise background of the search. The red crosses show the
triggers produced by the search after gating is applied to the input data. The
triggers caused by the glitch in the ±8 s around the transient have been removed.

data is computed and times exceeding a pre-determined threshold are identified.

The clustering algorithm of Ref. [14] is used to identify peaks that lie above the

threshold. These times are used as input to the gating algorithm with a window

of a pre-determined length applied centered on the peak time. The peak threshold,

clustering time window, and gating window length are empirically-tuned parameters

that are specified as input to the pipeline.

3.2. Template Bank Placement

The search pipeline takes a template bank as input which is used to search for signals

in the target parameter space using matched filtering [43–47]. The template bank

is constructed by specifying the boundaries of the target astrophysical space and

the desired minimal match; this is the fractional loss in matched-filter SNR caused

by the discrete nature of the bank. To determine the loss in matched-filter SNR

caused by di↵erences in the intrinsic parameters of two waveforms, a metric can be
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constructed (either analytically or numerically, depending on the type of template

used) that locally measures the fractional loss in matched-filter SNR for varying

intrinsic parameters of the templates [46]. This metric (and hence the template

placement) depends on the power spectral density of the detector noise. In this

section, we describe an improved method for constructing the power spectral density

used to place the bank.

Calculating the matched-filter SNR requires an estimate of the detector’s noise

power spectral denisity Sn(f). The frequency-domain correlation between the signal

s̃(f) and template h̃(f) is weighted by the inverse of the detector’s noise power

spectral density; this supresses the correlation in regions where the detector noise

is large [26]. The sensitivity of the LIGO and Virgo detectors varies with time,

and so the noise power spectral density used in the matched filter must track the

variation in the detector’s noise. This is achieved by periodically recomputing the

noise power spectral density during the observation period. To perform the matched

filter, detector data was divided into blocks that have a typical length of 2048 s, with

the power spectral density for the filter re-estimated on this timescale.

Previous searches also re-computed the noise power spectral density used to

place the template bank on the same time scale; separate template banks were

created for each detector, and the bank was re-placed every 2048 s. The pipeline

described here allows the use of a single template bank for all detectors and the

entire duration of the search. Creating a single, fixed bank for the entire duration

of the search requires averaging the detector’s noise power spectral density over

the full observation period and then using this globally averaged power spectral

density to place the template bank. We have explored several di↵erent methods to

create a single noise power spectral density valid for the duration of the analysis

period [57]. We find that the harmonic mean provides the best noise power spectral

density estimate for placing the template bank. Specifically, we measure the power

spectral density of the noise every 2048 seconds over the observation period using

the median method of Ref. [14] to construct Ns power spectra Sn. We then construct

the harmonic mean power spectral density defined by averaging each of the separate

fk frequency bins according to

Sharmonic

n (fk) = Ns

,
NsX

i=1

1

Si
n(fk)

. (8)

The use of the harmonic mean was motivated by Ref. [51] which shows that the

harmonic sum of the individual detector power spectral densities in a network yields

the same combined signal-to-noise ratio as a coherent analysis of the detector data.

We next average the power spectral densities computed for the two detectors to

create a single template bank that is used to construct the same template bank for

both detectors. In Section 4, we compare the sensititivity and the computational

cost of using a single template bank constructed with an averaged power spectral
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density and that of using regenerated template banks with shorter power spectral

density samples.

3.3. Matched Filtering

A core task of the search pipeline is to correlate the detector data against a bank

of template waveforms to construct the matched filter signal-to-noise ratio. The

matched filtering used in our search pipeline is based on the FindChirp algorithm

developed for use in the Initial LIGO/Virgo searches for gravitational waves from

compact binaries [14]. In this section we describe two improvements to the FindChirp

algorithm: changes to the noise power spectral density estimation and a new

thresholding and clustering algorithm that identifies maxima in the signal-to-noise

ratio.

The matched filter in Eq. 2 is typically written in terms of continuous quantities,

e.g. s(t), h(t), and Sn(f). In practice, the pipeline works with discretely sampled

quantities, e.g. sj ⌘ s(tj), where sj represents the value of s(t) at a particular time

tj. Similarly, Sn(fk) represents the value of the noise power spectral density at the

discrete frequency fk. The input strain data is a discretely sampled quantity with a

fixed sampling interval, typically �t = 1/4096 s. Fourier transforms are computed

using the Fast Fourier Transform (FFT) algorithm in blocks of length TB = 256 s.

For this block length, the number of discretely sampled data points in the input time-

series data sj is N = TB/�t = 256 ⇥ 4096 = 220. The discrete Fourier transform of

sj is given by

s̃k =
N�1X

j=0

sje
�2⇡ijk/N , (9)

where k = fk/(N�t). This quantity has a frequency resolution given by �f =

1/(N�t).

To construct the integrand of the matched filter, the discrete quantities h̃k, s̃k,

and Sn(fk) must all have the same length and frequency resolution. In the FindChirp

algorithm, this is enforced by coupling the computation of s̃k and Sn(fk). The power

spectral density is computed by averaging (typically) 15 blocks of s̃k, leading to a

large variance in the value of the estimate of the power spectral density. The impulse

response of the quantity 1/Sn(fk) when it is computed in this way is the same length

as the filter output. To prevent corruption of the filter due to wrap-around of the

FFT, the power spectral density must be truncated to a smaller length in the time

domain [14,58]. This truncation length is typically 16 s.

The pipeline described here implements an improved PSD estimation and

truncation algorithm. The computation of Sn(fk) and s̃k are decoupled, allowing

many more averages to be used to compute Sn(fk). The pipeline calculates the power

spectral density estimate using 16 s time-domain segments. For an input filter length

of 2048 s, this means that the power spectral density is computed by averaging 127
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blocks, rather than 16, leading to a much lower variance in the estimate. To ensure

that the power spectral density has the same resolution as the input data segments

s̃k, the computed Sn(f) is inverse Fourier transformed, zero-padded to the same

length as the input sj and then Fourier transformed into to the frequency domain.

This interpolates Sn(f) to the desired resolution. This method of constructing the

power spectral density also ensures that the non-zero length of Sn(f) in the time

domain is 16 s, and so additional truncation of the inverse power spectrum is not

necessary.

Once the matched-filter SNR time series ⇢2

j has been computed, the final step of

the filtering is to generate triggers. These are maxima where the signal-to-noise ratio

time series exceeds a chosen threshold value. For either signals or noise transients,

many sample points in the signal-to-noise ratio time series can exceed the signal-

to-noise ratio threshold, and so the pipeline must apply a clustering algorithm to

identify maxima. Since a real signal will have a single, narrow peak in the SNR

time series, we wish to keep only local maxima of the time series that exceed the

threshold.

The algorithm used in this pipeline divides the 256 seconds of signal-to-noise

ratio time series produced by each application of the filter into equal 1 s windows.

The search then locates the maximum of the time series within each window. As the

maximization within each window is independent from other windows, this allows the

clustering to be parallelized over the windows for e�ciency on multi-core processing

units. If the desired clustering window is greater than 1 second, then the resulting

list of maxima—potentially one for each window within the segment—is further

processed to reduce the number of maxima recorded: the candidate trigger in a

window is kept only if it has a higher signal-to-noise ratio than both the window

before and after it, ensuring that it is a local maximum in the signal-to-noise ratio

time series. This clustering algorithm is not only more computationally e�cient, but

also produces less dead time than the running maximization over template length

described in Ref. [14].

3.4. Signal-Based Vetoes

The chi-squared test introduced in Ref. [59] and developed in Ref. [13] has been shown

to be a powerful discriminant between signals and noise in searches for gravitational

waves from compact-object binaries. However, it can be computationally intensive to

calculate. Since the detection statistic ⇢̂c requires the computation of the reweighted

SNR given in Eq. 5, the pipeline must compute the chi-squared statistic for every

peak in the matched-filter SNR time series. In this section, we describe a more

computationally e�cient implementation of the chi-squared veto algorithm.

The search pipeline used in the initial LIGO-Virgo era computed the chi-squared

statistic for an entire filter segment. This is computationally expensive, as computing
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the matched-filter SNR for each of the p sub-templates increases the cost of the

search by a factor of p. Two methods were used in the initial LIGO-Virgo searches

to mitigate this cost: (i) the chi-squared test was only computed for an FFT block

length of TB = 256 s if any sample point in the matched-filter SNR exceeds the

trigger-generation threshold in SNR [14]; (ii) the chi-squared test was only computed

for templates that have one or more coincident triggers in an FFT block [15]. While

the second method can reduce the cost of computing the chi-squared test, this saving

is o↵set by the fact that the chi-squared test is needed to compute the re-weighted

SNR detection statistic for background triggers as well as triggers that are time-

coincident. The pipeline described here implements a significant optimization to the

chi-squared veto. This improved algorithm calculates the chi-squared test only at

the time samples corresponding to clustered triggers in the matched-filter SNR time

series. To do this, the pipeline uses an optimized integral over frequency, rather than

computing the FFT. If data-quality is poor and the number of triggers in an FFT

block is large, the FFT method becomes more e�cent. We quantify this cross-over

point below and the pipeline falls back to using the FFT method in this circumstance.

To compare the computational cost of the two methods, we consider the

calculation of the p matched-filters for the näıve chi-squared test implementation.

Computation of the ⇢2

l for each of the p bins requires an inverse complex FFT. For

a data set containing N sample points the number of operations is p ⇥ 5N log(N).

(Since the FFT dominates the operations count, we have neglected lower-order terms

that do not significantly contribute to the computational cost.) The pipeline only

needs calculate the chi-squared test at the peaks of the matched-filter SNR time

series. Since the SNR for any peak is already known, the additional information

needed to compute the chi-squared test in Eq. 4 is given by the right hand side of

�2 + ⇢2

p
[j] =

pX

l=1

⇢2

l [j], (10)

where [j] is the set of points in the matched-filter SNR time series where the chi-

squared statistic must be computed. The chi-squared statistic can be computed from

the kernel of the matched filter s̃(f)h̃(f)/Sn(f), which is stored when the matched-

filter SNR is computed. We denote the discrete version of this frequency-domain

quantity as q̃k, which contains N/2 + 1 complex numbers [58].

Suppose that the filter, thresholding, and clustering algorithms have identified

NP peaks in the matched-filter SNR time-series where the chi-squared statistic needs

to be computed. For the set of times of the peaks [j], we can re-write Eq. 10 as

�2 + ⇢2

p
[j] =

pX

l=1

0

@
kmax

lX

k=kmin

l

q̃ke
2⇡ijk/N

1

A
2

, (11)

where kmin,max

l denote the frequency boundaries of the p bins and are given by
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kmin,max

l = fmin,max

l /�f . If NP ⌧ N , then directly computing the chi-squared test at

each of the [j] points is more computationally e�cient than computing the ⇢2

l (t) time

series, as was done in Ref. [14]. We can further reduce the computational cost of the

chi-squared by considering the fact that the exponential term requires the explicit

calculation of e�2⇡ijk/N at

k
max

=
f
Nyquist

�f
=

1

2�t�f
=

N

2
(12)

points. This can be reduced to a single computation of the exponential term by pre-

calculating e2⇡ij/N once and then iteratively multiplying by this constant to obtain

the next term needed in the sum. To do this, we write Eq. 11 in the following form:

�2 + ⇢2

p
[j] =

pX

l=1

0

@
kmax

lX

k=kmin
l

q̃ke
2⇡ij/N(e2⇡ij/N)k�1

1

A
2

. (13)

This reduces the computational cost of each term in the sum to two complex

multiplications: one to multiply by the pre-computed constant e2⇡ij/N and one for

the multiplication by q̃. Computing the right hand side of Eq. 13 then requires the

addition of two complex numbers for each term in the sum. The total computational

cost to compute the chi-squared test for NP points is then 14k
max

⇥ NP = 7N ⇥ NP .

For small numbers of matched-filter SNR threshold crossings, this new algorithm

can be significantly less costly than calculating the chi-squared statistic using the

FFT method. However, if the number of threshold crossings NP is large, then the

FFT method will be more e�cient due to the log N term. The crossover point can

be estimated for p chi-squared bins as

Np =
p ⇥ 5N log(N)

14k
max

=
5

7
p log(N), (14)

although this equation is approximate because the computational cost of an FFT is

highly influenced by its memory access pattern. For a typical LIGO search where

N = 220, the new algorithm is more e�cient when the number of points at which

the �2 statistic must be evaluated is Np . 100. For real LIGO data, the number of

times that the �2 statistic must be evaluated is found to be less significant than this

threshold on average, and so this method significantly reduces the computational

cost of the pipeline. However, there are still periods of time where the data quality

is poor and the FFT method is more e�cient. Consequently, the pipeline described

here computes NP and uses either the single-trigger or FFT method, depending on

the threshold determined by Eq. 14.

Using one week of LIGO data from the S6 run, we find that the total cost of

the matched filtering stage of the pipeline when the FFT method is used to compute

the chi-squared test is 1430 CPU days. The new algorithm used by this pipeline
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reduces the computational cost to 500 CPU days. For comparison, the method of

computing the chi-squared test only for coincident triggers [15] costs 530 CPU days.

The new algorithm allows the pipeline to compute the chi-squared statistic for all

single-detector triggers and hence perform significantly more time-shifts to measure

the noise background. The pipeline described here also allows the number of bins p

in Eq. 4 to be a template-dependent quantity. We show in Sec. 4 that this can result

in an improvement in the search sensitivity, especially for low-mass systems which

spend many cycles in the detector’s sensitive band.

3.5. Coincidence Test

To reduce the rate of false signals, we require that a signal is seen with consistent

parameters in all of the detectors in the network. The pipeline enforces this

requirement by performing a conicidence test on triggers produced by the matched

filter. Triggers that pass this test are considered to be candidate events. Each single-

detector trigger is labeled with the time of the trigger and the intrinsic parameters of

the template that generated it. For a two detector network, signals must be seen in

both detectors within a 15 ms window. This includes 10 ms for the maximum time

it would take the wave to travel to both detectors and a 5 ms padding to account for

timing errors. Since the same waveform should be observed in both detectors, the

pipeline requires that the parameters of the best-fit template are consistent in the

network.

Previous searches used a metric-based coincidence test [60] that checked the

template parameters of triggers are su�ciently similar to each other, but did not

require that they are the same. This metric-based test was developed as previous

searches used di↵erent template banks in each detector to account for di↵erences

in the detector noise. Since the PyCBC pipeline uses the same template bank to

matched filter the data from each detector, it implements a stricter test, called

exact-match coincidence. In addition to the ±15 ms window on the trigger time

of arrival, the pipeline requires that the intrinsic parameters (masses and/or spins)

of the triggers in the two detectors are exactly the same. Triggers that survive

this test are considered conincident events. These candidates are then ranked by the

quadrature sum of the reweighted SNR in each detector. For a two-detector network,

this is simply

⇢̂c =
q

⇢̂2

1

+ ⇢̂2

2

. (15)

The extension of this coincidence test to more than two detectors is straightforward,

however here we only consider a two-detector network.

Unlike previous searches, no clustering is performed over the template bank on

the single-detector triggers prior constructing the coincidence. The new coincidence

requirement decreases the chance that triggers generated by noise transients will be

found in coincidence between detectors, as it is a stricter test than the metric-based
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coincidence test previously used. However, there is clustering over the template

bank after coincidence testing, as described in Section 3.6. The exact-match method

of testing for coincidence is useful in situations where there is no simple metric to

compare gravitational waveforms, as is the case with template waveforms for binaries

with spinning neutron stars or black holes [61].

3.6. Candidate Event Significance

The final step of the pipeline is to measure the false-alarm rate of the search as

a function of the detection statistic ⇢̂c. This is then used to assign a statistical

significance to candidate events. The false-alarm rate of the search depends on the

pipeline’s response to detector noise and must be measured empirically. The false-

alarm rate is measured using time shifts. Triggers from one detector are shifted in

time with respect to triggers from the second detector, and then the coincidence

step is re-computed to create a background data set that does not contain coincident

gravitational-wave signals. Under the assumptions that noise in the detectors is not

correlated and that gravitational-wave signals are sparse in the data set, this is an

e↵ective way to estimate the background. Repeating this procedure many times on a

su�ciently large interval of input data produces a large sample of the noise triggers.

This allows the pipeline to compute the false-alarm rate of the search as a function

of the detection statistic. Having computed the false-alarm rate of the search, each

candidate event in the coincident data set is assigned a p-value that measures its

significance. A candidate event’s p-value pb is the likelihood that one or more events

generated from noise could have a detection-statistic value as large or larger than

the candidate event itself. We describe this procedure below.

The observation time used in the search T
obs

is determined by two considerations.

The maximum length of the observation time is set by the requirement that the data

quality of the detectors should not change significantly during the search. If the

time-shifts mix data from periods of substantially di↵erent data quality (e.g. higher

than or lower than average trigger rates), the noise background may not be correctly

estimated. The minimum length of the observation time is set by the minimum false-

alarm rate necessary to claim the detection of interesting signals. For example, it

may be required that a candidate event occurs at a detection-statistic value at which

the false-alarm rate is less than one in ten thousand years. The smallest false-alarm

rate that the search can measure scales as ⇠ �/T 2

obs

, where � is the time-shift interval.

For example, in a two-detector search using time shifts of 0.2 seconds, approximately

five days of coincident data are su�cient to measure false-alarm rates of 1 in 104

years. Given that the duty cycle of the LIGO detectors is approximately 70%, this

means that the search typically operates on ⇠ 10 calendar days of data at a time.

Adjacent time can be added to measure the search backhround to lower false-alarm

rates if the quality of the data is stable over these times.
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Using the distribution of coincident noise events, we can calculate how many

background events, nb, are louder than a given candidate event. We can create a

map for each value of the re-weighted SNR ⇢̂c to the number of background events

nb(⇢̂c) that have a larger detection-statistic value than the candiate event. The

probability that any given candidate event has n⇤ or fewer noise background triggers

louder than it is

p(nb  n⇤|Ne = 1, Nb)0 =
1 + n⇤

Nb
, (16)

where Nb is the total number of background events and Ne is the number of candidate

events under consideration. We can think of this proceedure as comparing a candiate

event to the rank-ordered list of background events from the time-shifts. A candidate

event’s detection-statistic value can be greater than all of noise events, less than all

of the noise events, or lie in between two noise events. There are therefore n⇤ + 1

places where a given candidate event can lie in the list of background events. Thus,

the probability that the candidate event has at least one background event that is

louder is

p(� 1 above ⇢̂⇤
c |Ne = 1, Nb)0 =

1 + nb(⇢̂⇤
c)

Nb
. (17)

We wish to find the probability that that the events does not lie above this

threshold, which is given by 1 � [1 + nb(⇢̂⇤
c)] /Nb. We can then find the probability

that this is true for all candidate events happening by multiplying the individual

probabilities for each of the Ne events together, given by

p(� 1 above ⇢̂⇤
c |Ne, Nb)0 =

✓
1 � 1 + nb(⇢̂⇤

c)

Nb

◆Ne

. (18)

However, this requires that the candiate events are independent and single noise

transients can generate many triggers across the template bank. This can causes

a large number of coincident triggers to be generated which are not independent.

To prevent this, the pipeline implements a second stage of clustering on coincident

events to select the coincident event with the highest detection-statistic value within

a time window. The window size used for this clustering is an empirically tuned

parameter, typically 10 s. This clustering reduces the number of candidate events

and ensures that they are independent. Therefore the probability that at least one

of these Ne candidate events is louder than the background is then

p(� 1 above ⇢̂⇤
c |Ne, Nb)0 = 1 �

✓
1 � 1 + nb(⇢̂⇤

c)

Nb

◆Ne

. (19)

Since we do not know Nb and Ne before performing the analysis, we should treat these

event counts as stochastic variables. However, since there is such a large number of

background events, the statistical uncertainty on Nb is negligibly small. We expect

the number of background events for the amount of background time Tb analyzed to
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be roughly equal to the number of foreground events for the amount of the foreground

time analyzed, T :
Ne

T
⇡ Nb

Tb
. (20)

Under the assumption that the candidate events are all due to noise, we can model

Ne as a Poisson distribution with a mean of hNei0 = (T/Tb)Nb.

Since we would like to know the significance of a given ⇢̂⇤
c without its dependence

on the number of foreground events, we marginalize over Ne to rewrite the Eq. 19:

p(� 1 above ⇢̂⇤
c |Ne, Nb) =

X

Ne

p(� 1 above ⇢̂⇤
c |Ne, Nb)p(Ne|Nb). (21)

Since the pipeline assumes the null hypothesis and that foreground events are a

Poisson process that can be measured using the background events, we can find the

unknown probability p(Ne|Nb). Letting the Poisson rate of foreground events be µ,

then the probability of getting Ne events is

p(Ne|Nb) = µNe
exp(�µ)

Ne!
. (22)

Putting this into Eq. 21, we get

p(� 1 above ⇢̂⇤
c |Nb) =

X

Ne

(
1 �


1 � 1 + nb(⇢̂⇤

c)

Nb

�Ne
)

µNe
exp(�µ)

Ne!
. (23)

Since the sum of a Poisson distribution over all possible events,
P

Ne
µNe exp(�µ)

Ne!
, is

1, this simplifies to

p(� 1 above ⇢̂⇤
c |Nb) = 1 �

X

Ne

⇢
µ


1 � 1 + nb(⇢̂⇤

c)

Nb

��Ne exp(�µ)

Ne!
. (24)

Next, we multiply inside the summation by exp[�µ(1� 1+nb
Nb

)] exp[µ(1� 1+nb
Nb

)], which

is equivalent to multiplying by one. We can then simplify Eq. 24 to:

p(� 1 above ⇢̂⇤
c |Nb) = 1�

X

Ne

⇢
µ


1 � 1 + nb(⇢̂⇤

c)

Nb

��Ne exp
h
�µ(1 � (1+nb

Nb
))
i

Ne!
exp


�µ(1 + nb)

Nb

�

(25)

Setting µ̂ equal to µ[1 � (1 + nb)/Nb], we can see that we again have a sum of a

Poisson rate over all possible values:

p(� 1 above ⇢̂⇤
c |Nb) = 1 �

X

Ne

µ̂Ne
exp(�µ̂)

Ne!
exp


�µ(1 + nb)

Nb

�
. (26)

Thus, all but the last term in the sum total to one, resulting in

p(� 1 above ⇢̂⇤
c |Nb) = 1 � exp


�µ(1 + nb)

Nb

�
. (27)
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which can be rewritten in turn using the Poisson rate µ = T (Nb/Tb), giving

p(� 1 above ⇢̂⇤
c |Tb) = 1 � exp


�T (1 + nb)

Tb

�
. (28)

This equation thus gives the probability of a trigger having a louder background

event given the amount of background time analyzed.

To account for the search background noise varying across the target signal

space, candidate and background events are divided into three search classes based

on template length. The significance of candidate events is measured against the

background from the same class. This binning method prevents loud candidates in

one class from suppressing candidates in another class. For each candidate event,

we compute the p-value pb. This is the probability of finding one or more noise

background events in the observation time with a detection-statistic value above

that of the candidate event, which is defined by Eq. 28 as

pb = 1 � exp


�T (1 + nb(⇢̂c))

Tb

�
, (29)

where T is the observation time of the search, Tb is the background time, and nb(⇢̂c) is

the number of noise background triggers above the candidate event’s re-weighted SNR

⇢̂c [62]. To account for having searched multiple classes, the measured significance is

decreased by a trials factor equal to the number of classes [53].

The amount of time Tb in the background can vary for each time shift depending

on the gaps in data and how much of the detector’s data remains in coincidence after

being time-shifted. However, we do not explicitly calculate the total background time

by adding up the contribution from each time shift. Instead, we approximate Tb by

taking the total coincident time and noting that our analysis produces the same

triggers as a circular time-shift algorithm if there were no gaps between data. We

can then approximate the background time very accurately by Tb = T 2/�, where �

is the time-shift interval. In the case where the gaps between consecutive portions

of data are a multiple of the time-shift interval, this is not an approximation, but

will in fact give the exact amount of background time. This is evident since shifting

the data by a multiple of the time-shift interval would merely reassign which triggers

are associated with each time shift, but would not change the total population of

background triggers.

Two computational optimizations are applied when calculating the false-alarm

rate of the search. The implementation of the time-shift method used does not

require explicitly checking that triggers are coincident for each time shift successively.

Instead, the pipeline takes the triggers from a given template and calculates the

o↵set in their end times from a multiple of the time-shift interval. It is then

possible to quickly find the pairs of triggers that are within the coincidence window.

Furthermore, the number of background triggers is strongly dependent on the
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detection-statistic value. For Gaussian noise, the number of triggers will fall

exponentially as a function of ⇢̂c. At low detection-statistic values, it is not necessary

to store every noise event to accurately measure the search false-alarm rate as a

function of detection statistic. Instead, the pipeline is given a threshold on ⇢̂c and

a decimation factor d. Below this threshold the pipeline stores one noise event for

every d events, storing the decimation factor so that the false-alarm rate can be

correctly reconstructed. This saves disk space and makes access to the map between

detection statistic and false-alarm rate faster.

4. Comparison to Initial LIGO Pipeline

In this section, we compare the PyCBC search pipeline described in this paper to

the ihope pipeline used in the previous LIGO and Virgo searches for compact-object

binaries [15]. We focus on tuning and testing the pipeline to improve the sensitivity

to binary neutron star systems, although we note that use of the pipeline is not

restricted to these sources; an application of this pipeline to the search for binary

black holes in Advanced LIGO data is described in Refs. [1,25]. Section 4.1 describes

the method that we use to measure the sensitivity of this pipeline and Section 4.2

compares this sensitivity to that of the ihope pipeline. To compare this pipeline

with the ihope pipeline, we use two weeks of data from the sixth LIGO science run

and a template bank designed to search for compact-object binaries with component

masses between 1 and 12 M� and total mass m
1

+ m
2

 24 M�, as shown in Fig. 4.

We demonstrate that for binary neutron stars, this pipeline can achieve a volume

sensitivity improvement of up to ⇠ 40% over the ihope pipeline without reducing

the sensitivity to higher mass systems.

4.1. Measuring Search Sensitivity

As the primary metric of search sensitivity, we measure the sensitivity of the pipeline

by finding the sensitive volume, which is proportional to the number of detections a

pipeline will make per unit time at a given false-alarm rate, F . This is given by:

V (F) =

Z
✏(F ; r, ⌦,⇤)D(r, ⌦,⇤)r2drd⌦d⇤. (30)

Here, ⇤ contains the physical parameters of a signal (in this study, {m
1

, m
2

}),

D(r, ⌦,⇤) is the distribution of signals in the universe, and ✏ is the e�ciency of

the pipeline at detecting signals at a distance r, sky location ⌦, and the false-alarm

rate F .

We estimate the sensitive volume by adding to the data a large number of

simulated signals (injections). The detector data is re-analyzed with these simulated

signals added and, for each injection, the pipeline determines if a coincident trigger is

present within 1 s of the time of the injection. We measure the senstivity as a function
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of false-alarm rate by placing a threshold F⇤ on the false-alarm rate. We then count

the number of injections that have detection statistic value ⇢̂c larger than the value

corresponding to the threshold F⇤, as measured using the time-shift method. If a

candidate event is present above the threshold at the time of a simulated signal, the

pipeline records the simulated signal as found. If no trigger is present, the injection

is missed and does not contribute to the sensitive volume of the search.

At some distance r
max

, we expect that any signal with r > r
max

will be missed.

Likewise, within some distance r
min

we expect that nearly every signal will be found,

even at an extremely small (. 10�4/yr) false-alarm rate threshold. These bounds

depend on the physical parameters of a signal. Gravitational waves from more

massive systems have larger amplitudes and can thus be detected at greater distances

than less massive systems. To first order, if a binary with a reference chirp mass

M
0

= (m
1

m
2

)3/5/(m
1

+ m
2

)1/5 is detected at a distance r
0

, then a binary with

arbitrary chirp mass M will be detected with approximately the same reweighted

signal-to-noise ratio at a distance [63]

r = r
0

(M/M
0

)5/6. (31)

Then, for each injection having chirp mass Mi, we scale these reference distances via

Eq. 31, with M
0

= 1.4 · 2�1/5. If the spatial distribution of injections is uniform in

volume, this can result in an ine�cient injection set; the majority of the injections

will be at large distances and the e�ciency will not be well sampled in the region of

interest. We therefore then draw the distance uniformly between the bounds r
min,i

and r
max,i, creating an injection distribution D that is uniform in chirp-mass scaled

distance and isotropic in sky position and binary orientation.

Since the injection distribution D is known, the evaluation of the integral in

Eq. 30 may be calculated by the Monte Carlo method with importance sampling [64].

We approximate Eq. 30 as an average over the NI injections performed, given by

V (F) ⇡ 1

NI

NX

i=1

gi(F) ⌘ hg(F)i , (32)

where the sampling weight for injection i is given by

gi(F) =
4⇡

3

⇥
r3
min,i + 3r2i (rmax,i � r

min,i)✏̂(F ; Fi, ri, ⌦i,⇤i)
⇤
. (33)

Here, ✏̂ = 1 if Fi  F and 0 otherwise. The error in the estimate is of the intergal is

given by [64]

�V =

s
hg2i � hgi2

N
. (34)

To quantify the sensitive volume of the search pipeline, we select a compact-

object binary population with masses that are distributed uniformly in component
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mass with 1  m
1

, m
2

 7. We also restrict the total masses of binaries to be

 14 M�. Since we use data from the sixth LIGO science run, r
min

= 0.5 Mpc and

r
max

= 30 Mpc are reasonable bounds for a binary in which both component masses

are 1.4 M�.

4.2. Relative Search Sensitivity and Computational Cost

As a baseline for comparison with the new pipeline, we compute the sensitivity of the

ihope pipeline configured in the same way as was used in the S6/VSR2,3 search for

low-mass binaries [15]. We allow template banks to extend to a total mass of 25 M�,

as shown in Figure 4. Injections are generated at 3.5 PN order in the time domain

using the TaylorT4 approximant. In the ihope pipeline, template banks were placed

using a metric accurate to 1.5 post-Newtonian order [46] and the placement technique

of Ref. [47]. To track changes in the detector noise, these searches generated a new

power spectral density in each detector every 2048 seconds and used this updated

power spectral density to re-compute the template-space metric. For both template

placement and filtering, the power spectral density is computed by averaging 15

segments of length 256 s overlapped by 128 s using the median method of Ref. [14].

No gating is applied to the input data, and the clustering methods used in the

matched filter are the same as those used in Refs. [14,47]. A fixed number of p = 16

bins was used for the chi-squared test. Since di↵erent power spectral densities were

used in each detector, there is no guarantee that the parameters of the templates

are the same, so the metric-based coincidence methods were used to determine if the

same signal was observed in both detectors [60].

To compute the false-alarm rate of the search, the ihope pipeline is run in two

modes: the two-stage mode, described in Ref. [47] where the chi-squared test is only

computed for triggers that survive coincidence, and a single-stage mode, where the

chi-squared test is computed for all triggers using the original FindChirp algorithm.

The two-stage mode was the original operation mode of the ihope pipeline, but the

single-stage mode can measure the false-alarm rate of the search to lower values:

1 per 1000 years for the single-stage pipeline versus 1 per year for the two-stage

pipeline on one week of data. However, the computational cost of the single stage

pipeline without the improved methods described here is significantly higher than

the two-stage pipeline, as shown in Table 1.

For this comparison, the PyCBC pipeline is configured to use a bank placement

metric accurate to 3.5 post-Newtonian order [65] (the same order as the template

waveforms) using the placement methods described in Ref. [49]. The bank placement

metric is generated using a noise power spectral density that is averaged over both

detectors’ data during the observation time. The improved clustering and power

spectral density methods are used in the matched filter. Data is again analyzed in

2048 s blocks, but the power spectral density is computed by averaging 127 segments
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Figure 4. Mass-ranges for software injection, shown in the m1 � m2 mass-plane.
The template bank used to search for these injections is indicated by hatched
regions and the injection set by the red shaded region. The black dashed lines
show chirp masses of 3.48 M� and 7.2 M�, the boundaries between the mass bins
used. Triggers from templates with chirp masses larger than 6.1 M� are discarded
in post-processing.

Job Type Two-Stage ihope Single-Stage ihope PyCBC

Template Bank Generation 13.3 13.3 4.7

Matched filtering and �2 515.4 1431 515.5

Second Template Bank 0.1 - -

Coincidence Test 0.3 8.3 9.9

Total 529.1 1453 530.0

Table 1. The computational costs of di↵erent parts of the single-stage and two-
stage ihope search pipelines, and the new PyCBC pipeline. The costs are given in
CPU days.

of length 16 s, overlapped by 8 seconds. The number of chi-squared bins is allowed

to vary across the search space, with p = 100 bins used for templates with a chirp

mass M  1.74M� and p = 16 bins for templates with higher chirp mass. A

fixed 1 s clustering window is applied to the SNR time series to generate triggers.

Using the same template bank between detectors allows us to use the exact-match

coincidence test, described in Section 3.5. Two mass bins are used to estimate the

noise background: a bin for triggers with M  1.74M� and a second for triggers

with M  6.1M�. Templates outside these bins are ignored in the search. A 0.2 s

time-shift interval is used to measure the noise background of the search. This shows

that the computational cost of the new search is comparable to that of the two-stage
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search, even though the PyCBC pipeline can estimate the false-alarm rate of the

search to significantly lower values than the two-stage search.

Figures 5 and 6 illustrate the key results of this comparison for two representitive

weeks of LIGO S6 data. The upper plot shows the result for a week of data taken

from July 2010 and the lower plot for data taken from August 2010. The first week

had larger fluctuations in the overall sensitivity, but relatively few noise transients.

The latter had a consistent range but more glitches. Using these two di↵erent weeks

allows us to test how the pipelines work in these two di↵erent situations. The pink

(dotted) line (S6 Two Stage) shows the sensitive volume of the two-stage ihope

pipeline as a function of the search false-alarm rate. It can be seen that this line

terminates at a false-alarm rate of 1 event per year. This is the limit of the time-

shift algorithm used in the two-stage pipeline. Using the single-stage ihope pipeline,

where the chi-squared statistic is computed for all triggers, this line (blue, dashed)

can be extended to false-alarm rates of 1 in 1000 years. The PyCBC pipeline reaches

this false-alarm rate at substantially lower computational cost, as shown in Table 1.

Both figures shows that the sensitive volume of the new pipeline is equal to or better

than that of the ihope pipeline for all signals in both weeks of data. Figure 5 shows

that at a false-alarm rate of 1 in 100 years, the sensitivity improvement of the new

pipeline is 20% for the first week of data and 40% for the second week of data. These

sensitivity improvements are made without reducing the sensitivity to higer mass

systems, as shown in Figure 6. This result is consistent with tuning specifically for

binary neutron star systems and not binary black hole systems. A discussion for

tuning to high-mass systems can be found in Ref. [25].

5. Conclusions

In this paper we have presented a new pipeline to search for gravitational waves

from compact binaries using matched-filtering. The pipeline includes several

improvements to the search method beyond those used in the pipeline created for the

initial LIGO–Virgo science runs [13–15]. These improvements include: (i) gating to

mitigate the e↵ect of loud, non-Gaussian noise transients in the input data; (ii) the

ability to use a single, fixed template bank for the entire analysis created using the

harmonic mean of a large number of noise spectral density estimates; (iii) decoupling

of the matched filtering and noise power spectral density estimation to improve

the performance of the matched filter; (iv) a simpler, more e�cient algorithm for

identifying and clustering peaks in the matched-filter SNR time-series; (v) a more

computationally-e�cient implementation of the chi-squared veto that mitigates the

need for the two-stage pipeline topology described in Ref. [15]; (vi) the ability to set

the number of bins in the chi-squared veto as a function of the parameters of the

template; (vii) a stricter coincidence test that requires that a trigger is found with

exactly the same template in both detectors; and (viii) improvements to the time-
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Figure 5. These plots describe the sensitivity for low-mass binary systems (chirp
mass M  3.48M�). The x-axis is the significance at which injected signals can be
identified, while the y-axis is the averaged volume of space the detectors could
identify a simulated signal at that significance. The pink (dotted) line is the
sensitivity of the two-stage pipeline used in the S6, which could not determine
the significance of triggers below 6 per year. The blue (dashed) line is the analysis
using a reorganized version of this pipeline, called the single-stage pipeline. The red
(solid) line is the newest version of the pipeline, including a single fixed template
bank that uses a harmonically averaged power spectral density and the improved
�2 test. Notice that the old versions of the pipelines have much wider error bars
since the old format was unable to perform as many injections as the new pipeline
and thus cannot estimate the sensitivity as precisely. The top plot describes the
first week of data from July 2010 while the bottom plot is taken from an analysis
of data from August 2010.
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Figure 6. These plots describe the sensitivity for high-mass binary systems (chirp
mass M � 3.48M�). The x-axis is the significance at which injected signals can be
identified, while the y-axis is the averaged volume of space the detectors could
identify a simulated signal at that significance. The pink (dotted) line is the
sensitivity of the two-stage pipeline used in the S6, which could not determine
the significance of triggers below 6 per year. The blue (dashed) line is the analysis
using a reorganized version of this pipeline, called the single-stage pipeline. The red
(solid) line is the newest version of the pipeline, including a single fixed template
bank that uses a harmonically averaged power spectral density and the improved
�2 test. Notice that the old versions of the pipelines have much wider error bars
since the old format was unable to perform as many injections as the new pipeline
and thus cannot estimate the sensitivity as precisely. The top plot describes the
first week of data from July 2010 while the bottom plot is taken from an analysis
of data from August 2010.
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shift method used to measure the false-alarm rate of the search and assign a p-value

to candidate events. We have demonstrated that the improved methods allow up to

a ⇠ 40% improvement in sensitivity to binary neutron star sources when tested on

data from LIGO’s sixth science run [52]. The pipeline described here was used in the

LIGO Scientific Collaboration and the Virgo Collaboration’s search for binary black

holes in the first science run of Advanced LIGO [25] and to estimate the significance

of the binary black hole signal GW150914 [1].

Improvements to the astrophysical sensitivity of the PyCBC search pipeline

are ongoing. These developments include the extension of the pipeline to multiple

detectors, upgrades to the detection statistic to include signal amplitude and phase

consistency between detectors in the network and improvements to the measurement

of the false-alarm rate of the search by incorporating better methods to measure how

the search’s false-alarm rate varies across the template bank. Ongoing advancements

to the computational e�ciency include investigating changes to the FFT block size

and input data sample rate and the implementation of hierarchical search methods

in the matched-filter. The FFT engine used in this pipeline can be e�ciently used

on graphics processing units (GPUs) and work is ongoing to develop a fast, e�cient

GPU implementation of this pipeline. Results from these studies will be reported in

future publications.
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