
Syracuse University Syracuse University

SURFACE SURFACE

Dissertations - ALL SURFACE

December 2018

Efficient machine learning: models and accelerations Efficient machine learning: models and accelerations

Zhe Li
Syracuse University

Follow this and additional works at: https://surface.syr.edu/etd

 Part of the Engineering Commons

Recommended Citation Recommended Citation
Li, Zhe, "Efficient machine learning: models and accelerations" (2018). Dissertations - ALL. 989.
https://surface.syr.edu/etd/989

This Dissertation is brought to you for free and open access by the SURFACE at SURFACE. It has been accepted for
inclusion in Dissertations - ALL by an authorized administrator of SURFACE. For more information, please contact
surface@syr.edu.

Fully connected
 layers }

Pooling Layers
Convolutional layers

Input layers

Output
 layers

Figure 1.4: General DCNN architecture.

pixel in a feature map, takes a set of inputs and corresponding filter weights to

calculate their inner-products.

2) After extracting features using convolution, a subsampling step can be ap-

plied to aggregate statistics of these features to reduce the dimensions of data

and mitigate over-fitting issues. This subsampling operation is realized by a

pooling neuron in pooling layers, where different non-linear functions can be ap-

plied, such as max pooling, average pooling, and L2-norm pooling. Among

them, max pooling is the dominating type of pooling in state-of-the-art DC-

NNs due to the higher overall accuracy and convergence speed. The activa-

tion functions are non-linear transformation functions, such as Rectified Lin-

ear Units (ReLU) f (x) = max(0, x), hyperbolic tangent (tanh) f (x) = tanh(x) or

f (x) = |tanh(x)|, and sigmoid function f (x) = 1
1+e−x . Among them, the ReLU

function is the dominating type in the (large-scale) DCNNs due to i) the lower

complexity for software implementation; and ii) the reduced vanishing gradi-

ent problem [37]. These non-linear transformations are conducted somewhere

before the inputs of the next layer, ensuring that they are within the range of

[−1, 1]. Usually, a combination of convolutional neurons, pooling neurons and

activation functions forms a feature extraction block (FEB) to extract high-level

12

g

i

h

f o

ct-1gt

it ft

Re
cu

rre
nt

Pr
oj

ec
tio

n

In
pu

t

xt
ct

ot

yt-1

mt

O
ut

pu
t

Memory Block
Cell

Figure 1.5: An LSTM based RNN architecture.

abstraction from the input images or previous low-level features.

3) A fully connected layer is a normal neural network layer with its inputs

fully connected with its previous layer. Each fully connected neuron calculates the

inner-product of its inputs and corresponding weights.

1.5.3 Recurrent Neural Networks based Automatic Speech

Recognition

Long short-term memory (LSTM)

Modern large scale Automatic Speech Recognition (ASR) systems take advan-

tage of LSTM-based RNNs as their acoustic models. An LSTM model consists

of large matrices which is the most computational intensive part among all

the steps of the ASR procedure. We focus on a representative LSTM model

presented in [109] whose architecture is shown in Figure 1.5. An LSTM-

based RNN accepts an input vector sequence X = (x1; x2; x3; ...; xT) (each of xt

is a vector corresponding to time t) with the output sequence from last step

YT−1 = (y0; y1; y2; ...; yT−1) (each of yt is a vector). It computes an output sequence

13

1-

h zr

ct
ct-1

xt

rt zt

ct
~

Figure 1.6: A GRU based RNN architecture.

Y = (y1; y2; y3; ...; yT) by using the following equations iteratively from t = 1 to

T :

it = σ(Wixxt + Wiryt−1 + Wicct−1 + bi), (1.8a)

ft = σ(W f xxt + W f ryt−1 + W f cct−1 + b f), (1.8b)

gt = σ(Wcxxt + Wcryt−1 + bc), (1.8c)

ct = ft � ct−1 + gt � it, (1.8d)

ot = σ(Woxxt + Woryt−1 + Wocct + bo), (1.8e)

mt = ot � h(ct), (1.8f)

yt = Wymmt, (1.8g)

where symbols i, f, o, c, m, and y are respectively the input gate, forget gate,

output gate, cell state, cell output, and projected output [109]; the � operation

denotes the point-wise multiplication, and the + operation denotes the point-

wise addition. The W terms denote weight matrices (e.g. Wix is the matrix

of weights from the input vector xt to the input gate), and the b terms denote

bias vectors. Please note Wic, W f c, and Woc are diagonal matrices for peephole

connections [36], thus they are essentially a vector. As a result, the matrix-vector

multiplication like Wicct−1 can be calculated by the � operation. σ is the logistic

activation function and h is a user defined activation function. Here we use

14

hyperpolic tangent (tanh) activation function as h.

In the above equations, we have nine matrix-vector multiplications (exclud-

ing peephole connections which can be calculated by �). In one gate/cell,

W∗xxt + W∗ryt−1 can be combined/fused in one matrix-vector multiplication by

concatenating the matrix and vector as W∗(xr)[xT
t , yT

t−1]T . Furthermore, the four

gate/cell matrices can also be concatenated and calculated through one matrix-

vector multiplication as W(i f co)(xr)[xT
t ,yT

t−1]T . In this way, we can compute the

above equations with only two matrix-vector multiplications, i.e. W(i f co)(xr)

[xT
t ,yT

t−1]T and Wymmt.

Gated recurrent units (GRU)

The GRU is a variation of the LSTM as introduced in [20]. It combines the for-

get and input gates into a single “update gate”. It also merges the cell state

and hidden state, and makes some other changes. The architecture is shown in

Figure 1.6. Similarly, it follows equations iteratively from t = 1 to T :

zt = σ(Wzxxt + Wzcct−1 + bz), (1.9a)

rt = σ(Wrxxt + Wrcct−1 + br), (1.9b)

c̃t = h(Wc̃xxt + Wc̃c(rt � ct−1) + bc̃), (1.9c)

ct = (1 − zt) � ct−1 + zt � c̃t (1.9d)

where symbols z, r, c̃, c are respectively the update gate, reset gate, reset state,

and cell state; the � operation denotes the point-wise multiplication, and the +

operation denotes the point-wise addition. The W terms denote weight matrices

(e.g. Wzx is the matrix of weights from the input vector xt to the reset gate). σ is

the logistic activation function and h is a user defined activation function. Here

15

we use tanh activation function as h. Note that a GRU has two gates (update

and reset), while an LSTM has three gates (input, forget, output). GRUs do not

have the output gate that is present in LSTMs. Instead, the cell state is taken as

the output. The input and forget gates are coupled by an update gate z, and the

reset gate r is applied directly to the previous cell state.

In the above set of equations, we have six matrix-vector multiplications. In

the reset and update gates, W∗xxt+W∗cct−1 can be combined/fused in one matrix-

vector multiplication by concatenating the matrix and vector as W∗(xc)[xT
t , cT

t−1]T .

Furthermore, the reset and update gate matrices can also be concatenated and

calculated through one matrix-vector multiplication as W(rz)(xc)[xT
t , cT

t−1]T . In this

way, we compute the above equations with three matrix-vector multiplications,

i.e. W(rz)(xc)[xT
t , cT

t−1]T , Wc̃xxt, and Wc̃c(rt � ct−1).

1.6 Contributions

This thesis studies the inference acceleration for modern machine learning mod-

els with high accuracy performance. We investigate three computing paradigms

to explore the efficient machine learning model acceleration. The organization

and contributions of this thesis are concluded as the following.

1. Cogenet confabulation based models on the text recognition system have

been investigated and optimized in [77, 98, 99] to offer the state-of-the-

art quality. In Chapter 2, we used Chinese language sentence completion

problem as a case study to describe our exploration on the cogent confab-

ulation based text recognition models. The exploration and optimization

16

of the cogent confabulation based models have been conducted through

various comparisons.

2. In Chapter 3, we develop a multi-processing system for cogent confabula-

tion models on sentence completion problems [78]. We propose a parallel

framework for the confabulation recall algorithm. The parallel implemen-

tation reduced runtime, improve the recall accuracy by breaking the fixed

evaluation order and introducing more generalization, and maintain a bal-

anced progress in status update among all neurons. A lexicon scheduling

algorithm was presented to further improve the model performance.

3. In Chapter 4, the Stochastic Computing (SC) based efficient inference

framework for the deep convolutional neural networks (DCNNs) are de-

signed [104, 79, 70]. We firstly describe how we apply the stochastic com-

puting paradigm to DCNNs followed by a detailed partitioning of DCNN

components [71, 136, 72]. The joint optimizations among the DCNN com-

ponents are discussed from the perspective of SC [103, 80, 76, 75]. Finally

we propose the hardware-level optimization on the complete SC based

system. The synthesis results have shown that our proposed framework

achieves remarkable low hardware cost and low power and energy con-

sumption. The comparisons with latest peer works are provided.

4. In Chapter 5, we introduced the structured matrices based acceleration of

the neural network. Inspired by previous work [18], we propose block-

circulant matrices [140] based weight matrices formatting, where a weight

matrix is partitioned into several blocks each of which is a circulant ma-

trix. A circulant matrix can be represented using a single vector so that the

matrix is compressed. In this way, the compression of the weight matrix is

controllable. With the help of Fourier Transform based equivalent compu-

17

