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ABSTRACT 
 

This study examines variables that may be useful in predicting accounting misstatements. 

Using a database of Accounting and Auditing Enforcement Release information and building on 

recent models and methodology, I separate the observations by industry to determine the firm 

and financial statement variables that are most useful in predicting the firms within specific 

industries that may have accounting misstatements. I also extend the previous models to 

determine the significant variables in predicting not only which firms may have misstatements, 

but also the account(s) in which a misstatement is likely to have occurred. These models use 

information that is readily available in the financial statements, making them useful to auditors, 

regulators, and other users of financial statements. Finally, I examined the consistency of the 

predictive variables over several time periods. 

My findings suggest that several variables that were found to be significant in a 

generalized model in previous literature lack significance in more specialized models and that 

some variables that were found to have no significance in a generalized model in previous 

literature do have significance in more specialized models. Specifically, the variables “soft 

assets” and “issue” appear to be the most consistent predictors of misstatements across 

industries, accounts, and time.  

 

Keywords: accounting misstatements; fraud prediction; AAER; misstating industries; misstated 

accounts 
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1. INTRODUCTION 

Throughout the last two decades, accounting researchers have attempted to develop 

methods to predict and detect financial statement misstatements due to error or fraud. Seminal 

research on this topic has found that using simple financial ratios can allow interested financial 

statement users to predict misstating firms with some accuracy (Beneish, 1999; Bayley and 

Taylor, 2007). Further research has found financial variables that are significant in predicting 

misstating firms, although the calculation of the variables is more complex (Dechow, Ge, 

Larson, and Sloan, 2011). Both approaches to the prediction of misstating firms involve the 

creation and use of a scoring system to assign the likelihood that an individual firm may be 

misstating its financial statements. In addition, both approaches address the prediction of 

misstating firms, but do not extend further to more specialized prediction models that include a 

specification of the firms’ industry, nor do they extend further to identify the individual 

account(s) that may be misstated.  

To date, no research has attempted to create a more accurate measurement of the 

likelihood of misstatement beyond an overall assessment at the firm level. There is a lack of 

subsequent research designed to provide greater ability to predict misstating firms by drilling 

down by industry, and similarly, there is a lack of research which aims to predict which 

account(s) may be misstated by firms identified as likely to misstate.  

Beasley, Carcello, Hermanson, and Neal (2010) find that misstatements are clustered in 

certain industries, indicating the importance of considering the industry in which a firm is 

operating. Consideration of industry risk and account-level risk is noted specifically in PCAOB 

Accounting Standard 2110 (AS 2110). Paragraphs 04 through 09 of AS 2110 note that the 

industry in which a firm is operating should be taken into consideration when assessing risk and 

that the auditor should obtain an understanding of the firm and the industry and environment in 
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which it operates. Specifically, paragraph 05 notes that “risks of material misstatement can arise 

from a variety of sources,” including the firm’s industry and environment. Paragraphs 59 through 

64 of AS 2110 go into further detail about the auditor’s requirement to assess the risk of material 

misstatement, noting in particular the need to assess account- and assertion-level risks. AS 2110 

requires that the auditor identify significant accounts and the possible sources of potential 

significant misstatements within each identified account. 

Since recent scoring models provide a reasonable level of accuracy in predicting 

misstatements, it follows that using similar techniques to create scoring models specific to 

certain industries and individual accounts can potentially result in models with even greater 

power for misstatement prediction. This study attempts to determine the variables significant to 

the prediction of misstating firms by industry, and also determine the variables significant to the 

prediction of individual misstated accounts, thus filling the gap in the literature while adding to 

the information available to investors, creditors, regulators, and auditors. 

To identify the variables significant in the prediction of misstating firms within industries 

and accounts, I follow the methodology used in Dechow et al. (2011). I first obtain Accounting 

and Auditing Enforcement Release (AAER) data, described fully in Dechow et al. (2011). The 

dataset that I work with for this paper expands the data timeframe (1980 to 2002) from that of 

Dechow et al. (2011) to include more current evidence on misstatements (1980 to 2008).  

Next, I determine the variables that are likely to have predictive value for each of the 

selected industries and accounts. Because these variables are based on publicly available 

financial statement data, this increases the accessibility to financial statement users. In particular, 

this study focuses on predicting the likelihood of misstatement in the most frequently misstated 

industries and accounts. In studies performed for the Committee of Sponsoring Organizations of 
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the Treadway Commission (COSO), Beasley, Carcello, and Hermanson (1999) and Beasley, 

Carcello, Hermanson, and Neal (2010) note that during both the period 1987 through 1997 and 

the period 1998 through 2007, the industries with the greatest frequency of misstated financial 

statements included computer hardware/software, other manufacturing, financial service 

industries, healthcare and health products, retailers and wholesalers, and other service providers. 

In addition, Beasley et al. (1999) and Beasley et al. (2010) find that the most frequently 

misstated accounts for the time periods 1987 through 1997 and 1998 through 2007 remained the 

same: revenue, inventory, accounts receivable, property, plant, and equipment, and liabilities and 

expenses.1 In addition, an analysis of the AAER data showed that the computers, durable 

manufacturers, services, and retail industries were the top four most frequently misstated 

industries during the period 1980 to 2008. All other industries had less than 60 misstated firm 

years across the 29-year period studied in this paper. Accordingly, this study focuses on the 

industries and accounts that are most likely to involve materially misstated financial statements. 

An analysis of the selected industries and accounts will offer the greatest value to those assessing 

the information risk within the financial statements. As other industries and accounts are much 

less represented as having misstatements in the financial statements, analysis on these remaining 

industries and accounts would offer minimal incremental value. 

Using logistic regressions based on misstating firms within these selected industries and 

logistic regressions based on the most frequently misstated accounts, I determine the variables 

that are significant to misstatement prediction within these industries and accounts. Based on a 

sample of 1,297 firms that were issued at least one AAER between 1982 and 2012, I find that the 

percentage change in soft assets (soft assets are defined as total assets less property, plant, and 

                                                           
1 The COSO report does not break out specific liability or expense accounts. 
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equipment and cash) and the issuance of securities during the fiscal year is consistently 

significant in the prediction of misstatements within industries and accounts. In addition, I find 

that leverage and the existence of operating leases are significant in the prediction of misstating 

firms within the computer hardware and software industry, where these variables were not 

significant in a generalized model in previous literature. For the retail industry, change in same 

store sales, a newly tested variable, is found to be significant. For the service industry, I find no 

variables to be significant that were not significant in a generalized model, although some 

variables significant in a generalized model were not significant in the service-specific model. 

I also find that several variables that were previously found to be useful in a general 

misstatement prediction model do not hold their significance when utilized in models of 

predicting misstatement by industry. For the computer hardware and software industry, these 

variables include rsst accrual, change in inventory, percent change in cash sales, percent change 

in return on assets, and abnormal change in employees.2 For the retail industry, these variables 

include rsst accrual, percent change in inventory, percent change in cash sales, percent change in 

return on assets, abnormal change in employees, and change in operating leases. For the service 

industry, these variables include rsst accrual, percent change in receivables, percent change in 

return on assets, abnormal change in employees, and change in operating leases.  

With regard to prediction models for misstated accounts, I find that change in inventory, 

soft assets, the existence of a lease, and the issuance of securities during the year were significant 

predictors of misstatements in all three studied accounts. In addition, I find that the change in 

receivables and change in operating leases were predictors of misstatements in the revenue and 

accounts receivable accounts, but not for the inventory account.  

                                                           
2 See Appendix A for a definition of all variables.  
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To test the stability of the models, I use the prediction models over subperiods of the full 

sample. Many predictors of misstatements tend to remain consistent across time periods, whether 

for all industries and accounts or for industry- and account-specific prediction models.  

This paper contributes to the accounting literature by being the first to determine the most 

relevant variables in the prediction of financial statement misstatements within specific 

industries and accounts. While other research has provided generalized misstatement prediction 

methodologies, none have drilled down to create predictions specific to industry or account. By 

utilizing industry- or account-specific predictive variables and models, creditors, investors, 

regulators, and auditors may be able to predict with greater power and accuracy which firms may 

be more likely to have misstated their financial statements and which accounts may be more 

likely to have been misstated. This study finds that some variables from a general model may be 

useful predictors in most industry- and account-specific misstatement models, while finding that 

other variables that were not previously included in or found significant in a general model do 

have predictive value in some industry-specific and account-specific models. These differences 

from a generalized model from prior literature indicate that greater predictive accuracy is 

possible through the use of variables tailored to each industry-specific and account-specific 

model. 

The remainder of this paper continues as follows: Section 2 reviews prior literature, 

Section 3 discusses the motivation and hypotheses, Section 4 describes the data used in this 

study, Section 5 delineates the empirical results, and Section 6 concludes the paper and offers 

avenues for future research.  
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2. BACKGROUND 

2.1  Fraud Risk Factors 

Identifying factors that can help predict fraud has long been a topic of interest to auditing 

standard setters and academic researchers. For example, SAS 82 (AICPA 1997) provided 

auditors with examples of fraud risk factors that could be used to help predict fraud.  Five years 

later, this standard was replaced by SAS 99 (AICPA 2002) which incorporates the fraud triangle 

of opportunities, incentives, and attitudes/rationalization.3 Early research attempted to identify 

factors associated with fraud firms. For example, Beasley (1997) found that the proportion of 

independent board members is lower for firms that experience financial fraud compared to a 

matched sample of non-fraud firms. Farber (2005) and Abbott, Parker, and Peters (2004) 

similarly find that fraud firms have poor governance compared to non-fraud firms.  

 These studies look at corporate governance as one dimension of firms that engage in 

fraudulent financial reporting. In contrast, other studies use multivariate prediction models that 

attempt to comprehensively investigate the characteristics of firms that engage in financial 

reporting fraud. 

 

2.2  Early Misstatement Prediction Models 

Academic research has described several approaches to predict misstating or at-risk 

firms, beginning with Altman’s Z-score (1968), continuing with Beneish’s M-score (1999) and 

more recently, through Dechow et al.’s F-score (2011). Different approaches and data sources 

have been used throughout prior literature, but no previous study has broached the realm of 

                                                           
3 The current AICPA standard is AU-C 240 and is largely consistent with SAS 99.  
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going beyond the prediction of misstating firms and into the prediction of misstating firms by 

industry or accounts that a firm may be misstating.  

Altman (1968) wrote a seminal paper in this area, stemming from his observation that 

academicians and practitioners find differing analytical methods more useful in the analysis of 

financial performance of businesses. Practitioners preferred the use of ratio analysis while 

academicians preferred the use of statistical techniques. While his study’s focus was to “bridge 

the gap” between statistical analysis and ratio analysis, it is convenient that Altman analyzed the 

prediction of business bankruptcy. In this study, Altman used a small, matched sample of firms: 

those that had declared bankruptcy and those that had not. Altman combined the use of ratio and 

statistical analyses by using multiple discriminant analysis (MDA) to create a model to predict 

the likelihood that a firm declares bankruptcy. The use of MDA allowed Altman to analyze 

twenty-two financial ratios of interest at the same time to determine the financial ratios that, 

together, most accurately predicted whether a firm would declare bankruptcy. He found that 

considering the following ratios together resulted in a more accurate prediction model than 

considering several ratios independently: 1. Working capital/Total assets; 2. Retained 

earnings/Total assets; 3. Earnings before interest and taxes/Total assets; 4. Market value 

equity/Book value of total debt; and 5. Sales/Total assets.  

The prediction model Altman arrived at considers the predictive value of each of these 

five ratios and weights them accordingly, using their coefficient estimates. By multiplying a 

firm’s ratios by the corresponding coefficients and adding the results of each product, Altman 

arrived at a Z-score: the indicator of the probability of a firm declaring bankruptcy. He 

determined the Z-score above which about 95% of firms would declare bankruptcy as well as the 

Z-score below which no firm in the sample declared bankruptcy. He referred to the area between 
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these two Z-scores as the “zone of ignorance,” or in other words, the prediction of bankruptcy for 

firms with a Z-score falling into this area was less certain. Altman also found that his prediction 

model could accurately predict the occurrence of bankruptcy up to two years prior to the 

declaration, with diminishing accuracy for longer periods. In summary, Altman’s Z-score model 

claimed 95% accuracy in the year prior to the bankruptcy and 72% accuracy two years prior to 

the bankruptcy. The Z-score model’s accuracy decreases to less than 50% when attempting to 

predict bankruptcy three to five years prior to the bankruptcy. 

While Altman was not the first to use multiple discriminant analysis in the financial or 

business setting, he was instrumental in using MDA to combine two useful methods of analysis 

to create a prediction model that is generally accessible to both practitioners and academicians. 

Approaches similar to his methodology have been used in subsequent misstatement studies, 

notably Beneish (1999) and Dechow et al. (2011), as well as in this dissertation. 

Beneish (1999) used indices of eight financial ratios to create a model to predict the 

likelihood that a firm manipulated its earnings. Beneish selected 49 firms identified by AAERs 

as earnings manipulators and an additional 25 firms identified by media outlets as earnings 

manipulators, for a total of 74 firms that had manipulated their earnings at some point between 

the years of 1982 and 1992. The manipulators were compared to 2,332 non-manipulator firms 

matched with the manipulator firms based on industry and year. For each firm, he calculated the 

following eight financial statement ratio indices by comparing year t to year t-1: 1. Days sales in 

receivables; 2. Gross margin; 3. Asset quality; 4. Sales growth; 5. Depreciation; 6. Sales, general, 

and administrative expenses; 7. Leverage; and 8. Total accruals to total assets. Using an 

unweighted probit estimate to determine the significance of these indices, he found that days 

sales in receivables, gross margin, asset quality, sales growth, and total accruals to total assets 
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offered usefulness in the prediction of an earnings manipulation firm. Even though three of the 

eight tested variables were found to lack significance, Beneish included all of the variables in his 

prediction model. Like Altman (1968), Beneish added the products of the coefficient estimates 

and the corresponding ratios for each firm to arrive at the M-score. This resulted in about 50% 

accuracy in the prediction of earnings manipulation firms. Beneish found no major difference in 

the model’s predictive accuracy resulting from the removal of the non-significant variables and 

adjusting the coefficient estimates.  

The five significant variables found in Altman (1968) and the five significant variables 

found in Beneish (1999) have some similarities. Components of several of the variables include 

sales, total assets, current assets, current liabilities, and certain components of equity. 

To determine the usefulness of ratio analysis as a method for identifying misstatements, 

Kaminski, Wetzel, and Guan (2004) tested twenty-one simple ratios, similar to those used in an 

auditor’s analytical procedures, that can be derived directly from financial statements. The study 

selected 79 misstating firms as identified in AAERs issued between 1982 and 1999 (fiscal years 

analyzed spanned from 1975 to 1999) and matched the firms to similar, non-misstating firms. A 

longitudinal study of these twenty-one ratios was conducted, spanning three years prior to and 

three years subsequent to the fraud year. In univariate and multivariate analyses, sixteen of the 

twenty-one ratios were statistically significant for at least one of the seven years studied. 

However, only three of the ratios were significant for three consecutive years: fixed assets to 

total assets, total liabilities to total assets, and working capital to total assets. No ratios were 

consistently significant throughout the sample period.  

Kaminski and Wetzel (2004) conducted a longitudinal examination of ten financial ratios 

on 30 matched-pair firms using chaos theory. None of the ratios exhibited stable behavior and 
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they did not find any difference among the dynamics of these ratios for fraudulent and 

nonfraudulent firms. 

A prediction model based on the significant ratios in Kaminski et al. (2004) resulted in 

misclassification of fraud firms between 58 and 98 percent of the time. Because of these results, 

the authors conclude that ratio analysis is not a reliable method of fraud firm identification. This 

study may have been impacted by a changing economic environment, as the study required a 

seven-year span for each misstating firm. The study stretched into the late 1990s, a time in which 

several major financial statement frauds were just starting to come to light. The effect of these 

frauds may have skewed the results of the ratio analysis in some fashion. Despite the conclusion 

by the authors, when used in conjunction with more complex ratios and/or accrual analysis, ratio 

analysis does appear to have some useful predictive validity (Altman 1968, Beneish 1999, 

Bayley and Taylor 2007, Dechow et al. 2011). 

Bayley and Taylor (2007) note the same disconnect between practice and academia that 

Altman (1968) did, noting further that most earnings management literature subsequent to Jones 

(1991) follows the Jones or Modified Jones models, making incremental changes to the model in 

an attempt to find a more precise model of identifying overstated earnings. Bayley and Taylor 

believe that too much focus has been placed on avoiding Type I errors where the avoidance of 

Type II errors should be the greater focus. In normative terms, it is better to predict that a non-

misstating firm has misstated their financial statements than to predict that a misstating firm has 

not misstated their financial statements. 

Bayley and Taylor (2007) contend and find that using a simpler measure of accruals in 

conjunction with simple ratio analysis will have more power in identifying earnings 

manipulation than prior iterations of the Jones model. Using a sample of 129 earnings 
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manipulators identified by AAERs as having manipulated their earnings between 1991 and 2003, 

the study matched each of these firms with five non-manipulators (the control group) and used 

logit analysis to determine the significant variables among six ratio indices. Bayley and Taylor 

use the same methodology as Altman (1968) and Beneish (1999) by multiplying the coefficient 

estimates by the corresponding accruals and ratios for each firm to arrive at an EM-score. 

Univariate logistic regressions found that the operating accrual magnitude, sales index, 

accruals index, and inventory index were significant in the identification of earnings 

manipulation. The sales index is a measure of the reported net revenue compared to an estimate 

of unmanipulated net revenue. Unmanipulated net revenue is calculated using the change in the 

accounts receivable to net revenue ratio over time. The accruals index is a measure of earnings 

manipulation and is calculated using the current value of deflated operating accruals, lagged total 

assets, and the lagged current value of deflated operating accruals.  The inventory index is a 

measure of earnings manipulation using inventory accounting techniques. This index is 

calculated using the current inventory to net revenue ratio and the lagged inventory to lagged net 

revenue ratio.  

Multivariate logistic regressions found that operating accrual magnitude and the sales 

index were the only significant variables in earnings manipulation identification. Operating 

accrual magnitude is calculated as the sum of earnings before extraordinary items and 

depreciation and amortization expense, less cash flow from operations, scaled by total assets. 

The sales index is calculated by dividing net revenue by the estimate of non-manipulated net 

revenue. Bayley and Taylor (2007) compared the power of their EM-score model to the power of 

four other models based on the Jones model used in prior research (Dechow and Sweeney, 1995; 

Dechow et al., 2003), and found that the EM-score model has more power than the other four 
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models, with about 65% classification accuracy. As a result, the authors recommended that 

future research in this field focus more on models that combine simple accrual calculations with 

other financial statement ratios while putting less focus on discretionary accrual models. 

 

2.3  Non-Financial Measures in Fraud Prediction 

The usefulness of non-financial measures as predictors of revenue fraud was studied by 

Brazel et al. (2009). The authors hypothesized that the difference between the year-over-year 

change in any non-financial measure and year over year change in revenue would be larger for 

fraud firms than for non-fraud firms. It was expected that the firms committing financial 

statement fraud would manipulate the financial data, but not the non-financial data that is made 

public, not always in the financial statements, but in other data sources. Non-financial data was 

hand-collected through searches of 10Ks, Proquest, Lexis/Nexis, Google, and other available 

resources. The authors identified their fraud sample using the AAERs in the Beasley et al. (1999) 

COSO report from 1987 to 1997, by conducting their own search of AAERs from 1998 to 2007, 

and by searching media sources for additional fraud cases. The final fraud sample consisted of 50 

fraud firms, with fraud years ranging from 1994 to 2002. The fraud firms were each matched 

with one of their closest non-fraud competitors. Brazel et al. (2009) created a generalized 

variable to measure the difference between revenue growth (or reduction) and the growth (or 

reduction) of any non-financial measure (NFM):  

 Capacity Difft = (Revenuet – Revenuet-1) – (NFMt – NFMt-1) 
    Revenuet-1        NFMt-1 

 
As an example, the study used employee growth as a single non-financial measure: 

  
Employee Difft = (Revenuet – Revenuet-1) – (Employeest – Employeest-1) 

    Revenuet-1   Employeest-1 
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 Using 18 control variables selected based on their use in prior literature (including 

leverage, Altman Z-score, and total accruals), the study calculated the difference between the 

means of each control variable as well as Capacity Diff and Employee Diff (Capacity Diff is 

calculated as the average of all of the non-financial measures that were available for each 

matched pair). In addition to a few control variables, the study found that both Capacity Diff and 

Employee Diff were significantly larger for the fraud firms than for the matched non-fraud firms, 

indicating that the Capacity Diff and Employee Diff both have discriminatory power in the 

detection of financial statement fraud. Finally, a logistic regression was run with Employee Diff 

as the independent variable of interest. Again, in addition to a few control variables, Employee 

Diff was significant to the detection of financial statement fraud.  

 The results of the Brazel et al. (2009) study indicate that similar to some financial 

measures and ratios, non-financial measures can be useful in the detection of financial statement 

fraud. This study was also able to establish benchmarks that can be used by those analyzing a 

firm’s non-financial measures, which were generalized and not industry-specific, to determine 

the likelihood of financial statement fraud. The authors recognize that some of the firms 

committing financial statement fraud may in fact also fraudulently adjust the applicable non-

financial measures, especially as time goes on, as the methods of fraud have a tendency to 

change over time. On a related note, many of the available non-financial data are firm-provided 

and not independently confirmed, which may have a negative effect on the reliability and 

usefulness of the non-financial measures. Finally, the authors question whether there may be a 

lead or a lag in the data, meaning that for example, a decrease in the number of employees may 

occur at the same time, before, or after revenue decreases. The introduction of non-financial 
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measures into a misstatement prediction model introduces a slew of topics for future research, 

and more so as the non-financial data becomes more readily available. 

 Cohen et al. (2012) studied the availability of several non-financial measures gathered via 

corporate reporting of this data. Using a sample of ten firms in each of five industries, Cohen 

searched available data sources, including mandatory filings, websites, fact sheets, press releases, 

etc., for firm-provided information on six leading indicators of long-term value (future cash 

flows). In particular, Cohen et al. (2012) searched for information regarding market share, 

quality rankings, customer satisfaction, employee satisfaction, employee turnover, and 

innovation. The research found that there is great variability of reporting of these non-financial 

measures. Some firms may provide a significant amount of non-financial information while 

others provide very little. Whether a firm discloses certain non-financial information is also 

dependent on the size of the firm and the industry in which it operates.  

The study found that of the six measures studied, the most frequently disclosed measures 

were market share and innovation, and the most frequently used non-financial disclosure sources 

were corporate websites and mandatory filings. This study highlights a potential selection bias: 

firms may choose to voluntarily disclose positive non-financial information while opting not to 

disclose negative non-financial information. In addition, the non-financial data provided by firms 

can be withdrawn from sources like corporate websites at any time. As a result, the authors note 

that a net benefit may result from the institution of mandatory disclosure and/or assurance by 

independent external auditors. The study included a sample size of 50 firms, and the results of 

this study indicate that finding reliable information reported on a consistent basis is unlikely. At 

this point in time, most non-financial information would need to be hand-collected, which is 
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prohibitive, and the accuracy of the information found may not be reliable, as similarly noted by 

Brazel et al. (2009). 

  

2.4  Recent Misstatement Prediction Models 

Brazel et al. (2015) surveyed 194 nonprofessional investors who had traded individual 

stocks within the previous 12 months to determine relationships between investor perception of 

the prevalence of financial statement fraud, investor use of financial statement information, 

investors’ conducting of their own fraud risk assessments, and investor use of red flags that could 

indicate fraud. The study found that the investors who use financial statement information and 

believe that financial statement fraud is prevalent also find it important to conduct their own 

fraud risk assessments. In addition, the study found that of those investors who conduct their 

own fraud risk assessments, they consider SEC investigations, pending litigation, violations of 

debt covenants, and management turnover as useful indicators of financial statement fraud. Three 

of the four noted red flags are non-financial measures, indicating that moderately sophisticated 

users of financial statements tend to find non-financial measures to be useful indicators of the 

risk of fraud, and make investing decisions based on their risk assessment. Brazel et al. (2015) 

also noted that some financial and non-financial measures were not considered important in the 

risk assessment decisions by the surveyed investors. Those measures include company size and 

age, need for external financing, and auditor quality (Big 4 vs non-Big 4 auditor). 

Dechow et al. (2011) agree with the recommendation made by Bayley and Taylor (2007) 

to move toward models that combine a simple accrual calculation with other financial statement 

ratios, and created a model that includes the modified Jones model of discretionary accruals and 

performance-matched discretionary accruals, as well as working capital accruals. They also use a 



16 
 

 
 

measure of accruals similar to working capital accrual, but included changes in long-term 

operating assets and long-term operating liabilities, as well as numerous financial and non-

financial measures. Ultimately, Dechow et al. (2011) found that of the accruals variables tested, 

only the working capital accruals modified to include changes in long-term operating assets and 

long-term operating liabilities was significant in the prediction of misstating firms.  

Dechow et al. (2011) reviewed all of the available AAERs (at that time) for companies 

cited for violating GAAP and created another scoring model for assessing the likelihood that any 

particular public company may be materially misstating its financial statements. The Dechow et 

al. (2011) prediction model (hereafter referred to as the Dechow model) uses information 

available in financial statements and from other sources (i.e., company websites for the number 

of employees and other nonfinancial measures, although it appears that the data for the Dechow 

model variables was obtained from COMPUSTAT and CRSP) in order to calculate specific 

variables used in the prediction model. 

Using AAERs from 1982 to 2005, Dechow et al. (2011) collected information about 

firms that were found by the Securities and Exchange Commission (SEC) to have intentionally 

manipulated their annual financial statements. After determining the misstating firms based on 

AAER issuance, the Dechow et al. (2011) study analyzed several financial variables and ratios 

that were calculated using information taken from the financial statements, including two non-

financial measures. The variables analyzed were broken down into the following categories 

(number of variables): accrual quality (9), performance (5), nonfinancial measures (2), off-

balance-sheet information (4), and market-related incentives (8). The non-financial measures 

included were abnormal change in employees and abnormal change in order backlog. I note the 

abnormal change in employees variable in particular because the Dechow et al. (2011) study 
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calculates this variable differently than Brazel et al. (2009). Dechow et al. (2011) calculates this 

variable as: 

 ch_emp = (Employeest – Employeest-1) – (Total Assetst – Total Assetst-1)  
       Employeest-1   Total Assetst-1   

No explanation was offered for their use of total assets, rather than the total revenue 

measure used in the Brazel et al. (2009) calculation. While the study did find the abnormal 

change in employees to be statistically significant, it is unclear if this variable’s significance 

would increase or decrease if total revenues was used. Brazel et al. (2009) indicate that the 

number of employees is a measure of capacity for production of earnings, with the understanding 

that as capacity for production of earnings decreases, earnings (revenue) should decrease as well, 

and to a similar extent. The Dechow et al. (2011) calculation of this variable, using total assets 

instead of revenue, does not necessarily offer the same expected correlation. In addition to the 

number of employees, total assets is also a measure of capacity (as the number of production 

facilities decreases, so does the capacity for production of earnings, for example). The two 

measures both measure capacity for production for earnings, as opposed to measuring the 

capacity for production of earnings against actual reported earnings.  

By running a series of logistic regressions on the variables, Dechow et al. (2011) found 

that 11 of the 28 tested variables were significant in the prediction of misstating firms; four in the 

accrual quality category; two in the performance category; one in the non-financial measures 

category; one in the off-balance-sheet category; and three in the market-related incentives 

category. The significance of these variables within their categories speaks to the opportunity 

and motivation involved when intentionally manipulating the financial statements; because 

accruals are subjective, they offer a greater opportunity to engage in earnings management, and 

meeting performance goals and a firm’s participation in accessing the debt market provides the 
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incentive behind earnings management. The significant variables are indicators providing insight 

into the likelihood that a firm has manipulated their financial statements. This finding 

corroborates the concept of the fraud triangle: that fraud is more likely to occur when there are 

pressures/motivation, opportunity, and rationalization present (Bell and Carcello, 2000; Rezaee, 

2005; Hogan et al., 2008; Trompeter et al., 2013). 

After determining the significant variables, the Dechow et al. (2011) study moved on to 

the second stage of their paper by developing a prediction model that assigns each significant 

variable (as determined in the first stage of their paper) a relative weight or value in predicting 

misstated financial statements. Combining those weights and the variable values for each firm-

year, the model assigns each firm-year an F-score, indicating the probability that the financial 

statements associated with any particular firm-year are misstated.  

 The Dechow model uses an F-score of 1.4 as an indicator: over half of the misstated 

firms (as indicated by the AAERs) had an F-score of 1.4 or greater. The study also found that the 

F-scores for misstating firms increased in the years leading up to the misstated firm-year and 

decline after the misstatement firm-year. 

The Dechow model appears to be reasonably accurate in predicting fraud firms (with 

accuracy of up to 69%), even taking into account the self-selection limitations imposed by the 

AAER issuance decisions made by the SEC (Aghghaleh, Mohamed, and Rahmat, 2016). How 

the SEC selects a firm to investigate for misstated financial statements is not public knowledge, 

although the investigation process may be initiated by firm-initiated restatements, media 

accusations or concerns about misstatements, or reports by whistleblowers. Because the SEC 

cannot and does not investigate and cite all firms that have manipulated their financial 

statements, there are an unknown number of firm years that are materially misstated but not 
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reported as such through the issuance of an AAER. These firms and firm-years are included with 

the non-misstating firms in the data, instead of with the misstating firms, thus skewing the data to 

an unknown degree. A firm-year with an F-score below 1.4 may have actually manipulated the 

financial statements, but without being cited for such through an AAER, this firm would be 

included with the non-misstating firms. It is impossible to determine which firms fall into this 

problem area. Even though reliance on the SEC’s investigations and AAERs can result in some 

errors in the data, AAERs are still considered to be a reasonable source for research data, as 

evidenced by their use by Beneish (1999), Brazel et al. (2009), Dechow et al. (2011), and many 

other researchers. 

 

2.5  Prevalence of Misstatements 

The Committee of Sponsoring Organizations of the Treadway Commission (COSO) 

commissioned a study of fraudulent financial statement occurrences, as cited by the SEC through 

AAERs. In the study titled “Fraudulent Financial Reporting: 1987 – 1997; An Analysis of U.S. 

Public Companies,” Beasley et al. (1999) reviewed AAERs issued between January 1, 1987 and 

December 31, 1997, finding nearly 300 companies that were cited for the violation of Rule 

10(b)-5 of the 1934 Securities Exchange Act or Section 17(a) of the 1933 Securities Act during 

that time frame. These two rules/sections were selected because they are the primary anti-fraud 

provisions related to financial statement reporting. Of these 300 firms, the authors randomly 

selected a sample of 204 firms to study further. The study examined specific characteristics 

pertaining to the company and to the management of the firms in the sample, finding trends and 

similarities (and in some instances, no trends or similarities) among the misstating firms. The 

findings of this study included details about the nature of the misstating firms, the nature of the 
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control environments, the nature of the frauds, issues related to the external auditor, and 

consequences for the companies and individuals involved in the frauds.  

Many of the characteristics noted by the Beasley et al. (1999) study could be of interest to 

researchers attempting to predict or detect fraud, but there are a few characteristics that are 

particularly interesting with respect to this study. First is the finding that some misstating 

companies were experiencing losses or were near break-even prior to the fraud. This indicates 

that a company’s financial distress may be a precursor to a misstatement, supporting the use of 

the Altman Z-score as a predictor of misstatements. Second, Beasley et al. (1999) found that 

misstatements were most prevalent in the computer hardware and software, “other” 

manufacturing, and financial service industries, with these industries making up 35% of the 

financial statement frauds in the sample. Healthcare and health products, retailers and 

wholesalers, and “other” service providers comprised an additional 23% of the fraud companies 

in the sample. This may indicate that firms in these industries may be the most likely to misstate 

their financial statements, or it may indicate that the SEC focused their attention on these 

industries more than on others during the period 1987-1997. A limitation of this and other studies 

using AAERs as a data source is that this is an unknown: whether more fraud is perpetrated in 

any particular industry or whether the SEC places more of a focus on any particular industry. 

Third, the Beasley et al. (1999) study found that the misstatement of assets was the most frequent 

misstatement type within the sample, with revenue and net income misstatements following 

close behind. 

The average misstatement of assets was nearly $40 million while the average 

misstatement of revenue and net income was nearly $10 million and about $16 million, 

respectively. Beasley et al. (1999) found that the asset accounts that were most frequently 
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misstated were inventory, accounts receivable, and property, plant, and equipment. Fourth and 

finally, it is interesting to note the methods in which assets and revenue were frequently 

misstated. To overstate assets, the companies in the sample recorded fictitious assets or assets not 

actually owned by the company or capitalized items that should have been expensed. To 

overstate revenues, the companies in the sample recorded fictitious revenues or recorded revenue 

prematurely. Additional methods of misstatement were not available to the authors. Data 

detailing fraud methods or techniques may be useful in future research. 

Following some very high-profile and very costly financial statement frauds that came to 

light immediately after the release of the initial COSO-sponsored report, COSO commissioned a 

second study of fraudulent financial statement occurrences, covering AAERs issued between 

January 1, 1998 and December 31, 2007. In this study, Beasley et al. (2010) updated the findings 

from the previous study and noted the differences and similarities between the two time periods.  

The authors noted that several large company and large dollar frauds occurred in 2001 

and 2002 (including Enron and WorldCom), which caused a drastic departure from the mean 

fraud size from the previous study. In this updated study, the review of AAERs found 347 

companies that were cited for the violation of Rule 10(b)-5 of the 1934 Securities Exchange Act 

or Section 17(a) of the 1933 Securities Act during that time frame. Instead of taking a sample of 

these alleged fraud firms as was done in the prior study, the authors obtained detailed 

information regarding each of these 347 firms and their associated frauds, examining the same as 

well as additional characteristics pertaining to the company and management that were studied 

previously. The findings of this study included details about the occurrences of financial 

statement fraud, management’s tone at the top, the nature of the frauds, the role of the board of 

directors, related party transactions, auditor considerations, and consequences for individuals and 
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firms engaged in fraud. Beasley et al. (2010) places a greater emphasis on corporate governance 

than was addressed in Beasley et al. (1999). 

The findings in Beasley et al. (2010) are extensive, covering a multitude of topics that are 

interesting to fraud researchers, although a few items from the study are of particular interest to 

this study. First, the authors noted several motivating factors that were discussed by the SEC in 

the AAERs. Some of the most commonly cited reasons for committing financial statement fraud 

include meeting analyst expectations, meeting internal targets, concealing the company’s 

deteriorating financial position, and meeting targets for management bonus payouts. Not all 

AAERs discussed the motivation behind the frauds, so the authors did not tally the frequency of 

each motivation. Some of these motivations could be studied empirically in the future, if the 

required data becomes available (e.g., meeting internal targets). Second, Beasley et al. (2010) 

found that, consistent with the previous study, misstatements were most prevalent in the 

computer hardware and software, “other” manufacturing, and healthcare and health products 

industries, with these industries making up 51% of the financial statement frauds in this new time 

period. Retailers and wholesalers, “other” service providers, and telecommunications comprised 

an additional 23% of the fraud companies. Third, the Beasley et al. (2010) study found that 

improper revenue recognition overtook the overstatement of assets as the most frequent 

misstatement type within the time period. 

The mean misstatement of revenue was $455 million, up from a mere $10 million in the 

previous study. The mean misstatement of assets was $227 million, up from just $40 million in 

the earlier time period, indicating the potential importance of analyzing AAERs separately for 

the two time periods. These significant fluctuations are due mainly to the much larger size of the 

firms cited for financial statement fraud in the most recently studied time period. Beasley et al. 
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(2010) found that the asset accounts that were most frequently misstated continued to be 

inventory, accounts receivable, and property, plant, and equipment.   

Fourth and finally, it is interesting to note the methods frequently used to misstate 

revenue and assets. To overstate revenues, the companies recorded fictitious revenues or 

recorded revenue prematurely. In the updated COSO report, Beasley et al. (2010) outlined the 

specific techniques used to overstate revenue, including sham sales, conditional sales, bill and 

hold transactions, improper cutoff of sales, and unauthorized shipments, among others. To 

overstate assets, the companies in this later time period continued the trend of recording fictitious 

assets or assets not actually owned by the company or capitalizing items that should have been 

expensed. No additional detail or techniques regarding the misstatement of assets were provided. 

The Beasley et al. (1999) and Beasley et al. (2010) studies indicate that the most 

frequently misstated account is revenue, followed by assets, particularly inventory, accounts 

receivable, and property, plant, and equipment. In response to concerns that firms accelerated 

revenue to meet earnings targets, the SEC issued Staff Accounting Bulletin 101 (SAB 101) in 

1999.  Altamuro, Beatty, and Weber (2005) find that firms affected by SAB 101 used revenue to 

manage earnings in the period prior to adoption of SAB 101. Callen, Robb, and Segal (2008) 

find that firms that have losses are valued based on the level and growth of revenue, and are 

more likely to manipulate revenue in violation of GAAP. Marquardt and Wiedman (2004) find 

that firms issuing equity manage revenue upward. Bonner, Palmrose, and Young (1998) find that 

auditors are more likely to be sued in cases on enforcement actions involving fictitious revenue 

or premature revenue recognition. 

The frequency with which the revenue account is used to perpetrate fraud/misstatements 

is so significant that SAS 99 (now AU-C 240) requires that auditors presume the existence of a 
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fraud risk related to improper revenue recognition. While auditors may consider fraud risk in 

other accounts, revenue is the only account in which auditors are required to specifically 

consider the risk of fraudulent reporting. The characteristics noted by Beasley et al. (1999) and 

Beasley et al. (2010) may be developed into variables useful in the prediction of financial 

statement fraud (financial distress) or to further focus the attention of research (fraud industries, 

fraud accounts, and fraud methods). 

The focus of this paper is to rely on financial and non-financial data that is readily 

available and to determine any significant trends or associations in the data that are useful in the 

prediction of misstating firms by incorporating industry, and useful in the prediction of misstated 

accounts.  
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3. HYPOTHESIS DEVELOPMENT 

3.1  Prediction Models by Industry 

Both the Beneish (1999) and Dechow et al. (2011) models were somewhat successful in 

identifying misstatement firms. Building upon these models, it is possible to use methodology 

similar to that used by Dechow et al. (2011) to extend the model to specific industries.  This is 

important because the Beasley et al. (1999) and Beasley et al. (2010) studies indicate that 

fraudulent financial reporting is more likely to occur in certain industries: computer hardware 

and software, “other” manufacturing, financial service, healthcare and health products, retailers 

and wholesalers, “other” service providers, and telecommunications. These findings were 

corroborated in the Dechow et al. (2011) analysis indicating that the computer, durable 

manufacturing, retail, and services industries were the most frequently cited for misstatements in 

AAERs. Dechow et al. (2011) also noted that three industries in particular were over-

represented, as compared to the percentage of industry makeup in the COMPUSTAT database. 

In order of over-representation, those industries are computer hardware and software, retail, and 

services. As such, I selected these three industries to analyze in order to determine the variables 

most significant in predicting financial statement misstatements, based on industry. 

The industry in which a firm operates has been found to be an important factor not just in 

the frequency of misstatements, but also in the likelihood of litigation, whether against the firm 

or the auditor, following a misstatement (Bonner et al., 1998; Francis, Philbrick, and Schipper, 

1994). Palmrose (1988) found that auditor litigation following a client misstatement occurs most 

frequently within the technology and financial services industries. 

I expect that the industry distinction as developed in this research may result in finding 

some variables that have more predictive power for one industry than for another. In fact, it may 

be possible that a variable with no significant predictive power in one industry will have highly 
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significant predictive power in another industry. This potential difference may be due to 

industry-specific characteristics. For instance, a variable that incorporates inventory may prove 

to be significant in the prediction of fraud for the retail industry, but may not be significant at all 

in the prediction of fraud for the service industry. By including or omitting certain variables from 

the prediction models, the prediction models restricted by industry may provide greater 

predictive ability than a more generalized model. The variable restrictions based on industry will 

allow the assessment of the effectiveness of the models in providing more accurate within-

industry predictions, which motivates the first hypothesis: 

  
H1: Prediction models individualized by industry will result in greater ability to 

predict misstating firms.  

 

3.2  Prediction Models by Account 

Similar to the extension of industry-specific models, the previous prediction models can 

be extended to go beyond prediction of misstated firms to predict misstated accounts. Prior 

literature has shown that the most frequently misstated accounts have consistently been revenue, 

inventory, and accounts receivable (Beasley et al., 1999, Beasley et al., 2010). As such, I 

selected these three accounts to analyze in order to determine the variables most significant in 

predicting misstated accounts. In addition, AU-C 240 requires auditors to presume a fraud risk 

related to revenue (AICPA 2002). And finally, consistent with Beasley et al. (1999) and Beasley 

et al. (2010), Bonner et al. (1998) found that of the firms that were issued an AAER by the SEC, 

the misstated accounts that most frequently resulted in litigation were revenue and assets, 

although the individual misstated asset accounts that often led to litigation were not specified. 
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Based on the differing characteristics of each account, I expect that some variables will 

be significant in the prediction of fraud in one account while those same variables will have no 

significance in the prediction of fraud in other accounts. I expect that since the revenue and 

accounts receivable accounts are closely related, these two accounts may have similar findings: 

both accounts may include and exclude the same variables from the final prediction models. On 

the other hand, I expect that variables that incorporate inventory will be significant in the 

prediction of the inventory account being misstated, but perhaps not significant, or at least not to 

the same degree, for other misstated accounts. This motivates the second research hypothesis: 

  
H2: Prediction models developed at the account level will help predict misstated    

accounts. 

 

3.3  Consistency of Predictive Variables 

The Dechow et al. (2011) and Beneish (1999) models were developed using 

different variables and over different time periods. Very little is known about the stability 

of these models over time. Beasley et al. (1999) and Beasley et al. (2010) found similar 

trends across two different time periods. The same industries continued to be some of the 

most frequently cited for fraudulent financial statements and the same accounts continued 

to be some of the most frequently misstated. However, Kaminksi et al. (2004) did not 

find any ratios that were consistent predictors of fraud. These longitudinal results 

motivate the third research hypothesis: 

 
H3: Predictive variables, whether specific to industry or account, will remain the 

same over time.   
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Based on the Beasley et al. (1999) and Beasley et al. (2010) findings of similar 

misstatement-firm characteristics over time, I expect that the methodology for predicting 

misstated financial statements will remain stable across a longitudinal study of predictive 

variables. For example, I expect that if soft assets is a significant predictive variable in one time 

period, it will continue to be a significant predictive variable across most or all other studied time 

periods.  
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4. SAMPLE SELECTION 

4.1  Data Source 

Using data collected by Dechow (see full description of initial sample in Dechow et al., 

2011), I use AAERs issued by the SEC to indicate firms that the SEC cited for financial 

statement misstatements. The AAERs document both intentional and unintentional GAAP 

violations by a public company and serve as the best proxy for misstatements. The instances of 

intentional deceit often result in the SEC’s citation of Section 17(a) of the Securities Act of 1933 

or Rule 10(b)-5 of the Securities Exchange Act of 1934, provisions enacted to specifically 

prohibit the inclusion or omission of information to fraudulently promote the purchase of a 

firm’s stock by investors. Other potential data sources are available, including firms being sued 

by shareholders, firms with Sarbanes-Oxley Act internal control violations, and firms that have 

restated their financial statements. All of these data sources, including AAERs, are subject to the 

problem of selection bias. When it comes to selection bias in AAERs, I assume that the chance 

for Type I error (marking a non-misstating firm as a misstater) is very low, as the firms have 

been thoroughly investigated by the SEC. This is an advantage over a database of firms that have 

endured litigation initiated by the stockholders. For example, admission of guilt is rarely issued 

by accused firms, so it is difficult to assess which of these firms were misstating versus non-

misstating. I conclude that the use of AAERs is advantageous over other available data sources, 

as has been done in previous research (Dechow et al., 2011; Beneish 1999; Kaminski 2004; 

Bayley and Taylor 2007; Brazel et al., 2009; Beasley et al., 1999; Beasley et al., 2010). 

 

4.2  Timing of Misstatements 

I start with the AAER data previously collected as described in Dechow et al. (2011). The 

AAER dataset includes all AAERs from the first AAER (AAER 1, released on May 17, 1982) 
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through AAER 2261 (released on June 10, 2005). My initial sample was selected from this initial 

data. I created an expanded sample selected from additional AAER data collected by Dechow. 

This additional data includes AAER 2262 through AAER 3403 (released on August 31, 2012). 

The data is comprehensive, listing the cited firms, quarters and years of misstatement, 

misstatement accounts, etc.  

Although I am unable to precisely reconcile the AAERs and firm-years that Dechow et 

al. (2011) used, the differences are minor. To provide more up-to-date analyses, I expand the 

time frame and consequently the number of AAERs that are included in the sample. A recent 

version of the Dechow data includes records through AAER 3403, which are releases dating 

through August 31, 2012. In this paper I run dual analyses: the first including only the AAERs 

included in the Dechow et al. (2011) study, and the second including the available AAER 

records through August 31, 2012. A second longitudinal study is also run, diving the 

misstatement-years into three decade-based time periods. These longitudinal analyses serve to 

provide evidence regarding the consistency of the model across time periods. In other words, the 

dual analyses show the consistency of the models across time periods to provide evidence on 

whether the characteristics of misstating firms have changed over time, and whether a prediction 

model can remain static over time or should be fluid, changing over time as the characteristics of 

misstating firms change. 

Table 1 Panel A shows that there are 2,261 AAERs in the initial data set, however 74 

AAERs are missing. An AAER may be missing for any number of reasons. Per Dechow et al. 

(2011), many of these AAERs were missing (19), intentionally omitted (11), did not involve 

specific company names (41), or were missing from the data set without a specified reason (3). 



31 
 

 
 

The expanded data set includes an additional 1,142 AAERs, of which 75 are missing for 

unspecified reasons, for a total of 3,254 AAERs in the expanded data set.  

Panel B of Table 1 shows the distribution of AAERs by year. There were a large number 

of AAERs issued during years 2000-2004 and 2006-2009. These time frames coincide with the 

financial statement misstatements resulting in Sarbanes-Oxley regulations and the 2008 financial 

crisis, respectively. The number of AAERs for 2012 is significantly less than recent years 

because 2012 includes data for a partial year. 

Table 1 Panel C shows that each firm may have more than one AAER, and conversely, 

each AAER may refer to more than one firm. For the initial and expanded samples, 41% and 

43% of firms were issued just one AAER, respectively. One firm, Enron, was issued 24 AAERs 

by the cutoff date of the initial sample and 46 AAERs by the cutoff date of the expanded sample. 

Table 1 Panel C indicates 896 and 1,297 firms were cited by the SEC based on the 2,187 and 

3,254 AAERs, by respective sample. 

Table 2, Panels A and B show the number of misstating firms in each year for both the 

initial sample and the expanded sample, respectively. Panel A shows that the highest 

concentration of misstating firms centered around 1999 and 2000, the time-period immediately 

preceding the Sarbanes-Oxley legislation. Panel B shows that the highest concentration of 

misstating firms continues to be centered around 1999 and 2000, extending into 2001 and 2002 

as well. In addition, the total number of misstating firms for 1999-2002 (as well as other years, to 

a lesser extent) increased with the expanded sample; adding in AAERs from 2005-2012 added a 

total of 633 misstating firms to the expanded sample compared to the initial sample. Since 

AAERs are issued after (sometimes years after) a misstatement occurs, this significant expansion 

of the initial sample is expected. 
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5. RESEARCH DESIGN AND EMPIRICAL RESULTS 

5.1  Variables Analyzed 

Closely following the Dechow model, I analyzed variables relating to accruals, financial 

performance, non-financial measures, and off-balance sheet information. Prior literature has 

shown that simple accrual calculations can have value in the prediction of misstatements. As a 

result, I include numerous variables calculated to measure the quality of accruals as well as 

changes in certain financial measures that can be manipulated through estimates (receivables, 

inventory, and soft assets, for example). Performance variables are used to determine if a firm 

may be motivated to misstate the financial statements because of worsening performance by 

manipulating other information in the financial statements (a leading indicator), or if these 

variables may themselves be manipulated as a way to hide worsening performance (a lagging 

indicator).  

Non-financial measures are emerging as a new avenue to explore with regard to their 

predictive ability. A misstating firm may focus on manipulating the financial data to hide poor 

performance, but making corresponding manipulations of non-financial measures may be 

overlooked. For example, a firm may manipulate revenue, showing a large increase over the 

prior year, but fail to also manipulate the reported number of employees during the year, a non-

financial measure that often corresponds to a firm’s revenue. Finally, operating leases are often 

used by misstating firms to finance purchases of property, plant and equipment without showing 

a debt directly on the balance sheet. Therefore, the simple use of operating leases, or perhaps 

more importantly, the increased use of operating leases may be indicators of misstated financial 

statements. Appendix A offers a description of how each variable is calculated. All variables 

previously used in Dechow et al. (2011) are calculated in this paper using the same methods as in 
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Dechow et al. (2011). The data used in the calculation of each variable was obtained from 

COMPUSTAT. 

 

5.2  New Variables Analyzed 

As previously noted, the Dechow model and the Brazel model vary in their calculation of 

abnormal change in employees. This study tests each measure of the abnormal change in the 

number of employees to determine whether each is useful in the prediction of fraud, and which 

provides more predictive usefulness. The EMP DIFF variable used in Brazel et al. (2009) is 

calculated in this paper using the same method as in Brazel et al. (2009). See Appendix A for the 

calculation method for this and all variables. 

 For all industries, receivables as a percentage of total sales (rect_sales) is examined as a 

potentially significant variable in the prediction of fraud firms. Sales on account are more easily 

manipulated than cash sales, so I expect that as this ratio increases and/or increases as compared 

to other firms within the same industry, the likelihood of fraud will also increase. As total sales 

change year to year, we would expect the percent of those sales that are made on account to 

remain about the same. In addition, I would expect this ratio for any given firm-year to be 

comparable to the same ratio for other firm-years within the same industry. This paper examines 

anomalies in this ratio to determine if this variable is a reliable predictor of fraud.  

 For the computer and retail industries in particular, I examine the year-over-year change 

in total sales (ch_sales) and the change in receivables as a percentage of the change in total sales, 

expecting that as the percent change in total sales increases and as the percent change in 

receivables compared to the percent change in total sales increases, the likelihood of fraud also 

increases. By comparing these ratios for any particular firm-year to the same ratios for the 



34 
 

 
 

industry as a whole, I can calculate abnormal changes in sales as compared to the industry. I 

expect that as abnormal changes in sales increase, so does the likelihood of fraud. Similarly, I 

expect that as abnormal changes in receivables to total sales increases, the likelihood of fraud 

does as well. These variables were selected for the computer hardware and software industry 

because many sales within this industry are business to business transactions, in which the 

purchases may be made on account, affecting the trade receivables account.  

 For the retail industry, several additional new variables based on sales are introduced. 

Some data specific to the retail industry can be obtained via COMPUSTAT: sales per square foot 

of retail space, sales per retail store, and same store sales (sss; this data item presents the sales 

figures only for the same store locations that existed in the prior year). From this data, I calculate 

change in sales (ch_sales), change in same store sales (ch_sss), change in net sales per square 

foot (ch_net_sales_sqft), and change in net sales per retail store (ch_net_sales_stores). I compare 

these variables for each firm-year to the corresponding variables for all firms within the industry, 

by year. I expect that large year-over-year and large abnormal changes as compared to the 

industry will be indicative of misstatement. These variables were selected specifically for the 

retail industry because the underlying data is specific to the retail industry; the retail industry is 

the only industry in which data on sales by store, by number of stores, or by retail square foot is 

collected and recorded. In addition, the number of stores and the number of retail square feet are 

considered nonfinancial measures. If a financial misstatement is made, comparison to a related 

nonfinancial measure may result in anomalies that could signal a potential misstatement.  

It is important to note that the data for these variables was very limited in COMPUSTAT; 

very few retail firm-years, relatively, have this data. As a result, the N for these regressions is 

very small, relative to the entire data set. In order to run the required regressions, the missing 
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data were imputed statistically. A second item to note regarding the sales data for the retail 

industry is that the sales data presented in sales per square foot, sales per store, and same store 

sales does not agree to the sales data that is used to calculate other variables in this paper. While 

the data used to calculate the variables differs between these retail variables and all other general 

variables in which a sales figure is used, the reliability of the data is not impacted. The new retail 

variables all use the same sales figure and are therefore comparable.  

 The service industry is greatly varied with respect to the types of firms included. As a 

result, no new variables beyond rect_sales and rect_sales_indservices were added to the model.  

 

5.3  Analysis of Misstating Firm-Years 

I compare the misstated firm-years to all firm-years listed in COMPUSTAT between 

1971 and 2003 (initial sample), and between 1971 and 2011 (expanded sample). While there 

were some AAERs issued for early and recent firm-years, I excluded firm-years with fewer than 

ten in any particular year. This means that for the initial sample, firm-years 1971 through 1979 

and 2003 were excluded. For the expanded sample, firm-years 1971 through 1979 and 2009 

through 2011 were excluded. COMPUSTAT data contained about 213,000 firm-years between 

1980 and 2008. I reduced the number of firm-years in the data first by removing the firm-years 

with no total assets reported (none reported, as opposed to $0 reported), and then by removing 

the firm-years associated with banks and insurance (SIC codes 6000-6999). Any remaining 

duplicate firm-years were also removed from the COMPUSTAT data. Finally, outliers were 

removed from the data after individual review. The remaining data consist of 145,199 (181,696) 

total firm-years, of which 834 (1068) are misstatement firm-years for the initial (expanded) 

samples. For the computer hardware and software industry, 19,213 (25,491) firm-years are 

included in the data, of which 244 (328) are initial (expanded) misstatement firm-years. For the 
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retail industry, 10,725 (12,907) firm years are included in the data, of which 59 (76) are initial 

(expanded) misstatement firm years. Finally, for the services industry, 17,981 (22,412) firm-

years are included in the data, of which 109 (149) are initial (expanded) misstatement firm years. 

In order to determine the variables significant in predicting misstatement by industry, I 

used a dummy with a value of 1 indicating a misstatement in any given firm-year, 0 if no 

misstatement. To indicate misstated accounts, I used a dummy with a value of 1 to indicate 

misstatement in each of the revenue, accounts receivable, and inventory accounts, 0 if no 

misstatement in each of the three accounts. The logistic model used in each of the base 

regressions (prior to adding in the new variables) is:  

 

Misstating Firm-Year = wc_acc + rsst_acc + ch_rec + ch_inv + soft_assets + 

ch_cs + ch_cm + ch_roa + ch_fcf + tax + ch_emp (EMP DIFF) + leasedum + 

oplease + issue + cff + leverage + bm + ep 

 

5.4  Prediction Models by Industry 

In order to determine the variables significant in predicting misstatement when restricting 

by industry, I selected three frequently misstating industries to analyze: computer hardware and 

software, retail, and services.  Using only the firm-years within each of the three industries 

selected, I ran separate logistic regressions for each industry. Tables 3 and 4 show the results by 

initial and expanded sample and by industry. The first set of results in each table reports the 

results of the Dechow model applied to all industries for each time period and is the same across 

each panel. The second set reports the results of the Dechow model applied to observations in the 

specific industry. The third model is the Dechow model plus added variables applied to the 
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industry. Table 3 reports results for the initial sample period of 1980-2002, and Table 4 reports 

the results for the full sample period 1980-2008. 

The logistic analysis of the computer hardware and software industry found that for both 

the initial and expanded samples, ch_rec, soft_assets, leasedum, oplease, issue, and leverage 

were significant in predicting a misstated firm-year (Tables 3 and 4, Panel A). These results 

differ from those in the Dechow model run on all industries; while Dechow et al. (2011) found 

rsst_acc, ch_inv, ch_cs, ch_roa, and ch_emp significant, these variables are not significant for 

the computer hardware and software industry. On the other hand, leasedum and leverage are 

significant for the computer hardware and software industry, but were not found to be significant 

in the Dechow model run on all industries. None of the new variables analyzed were found to be 

significant, indicating that none of the new variables for the computer hardware and software 

industry are useful predictors of misstatements. While no new variables were significant for this 

industry, it is interesting to note that there are some differences in variables that are useful for 

fraud prediction in general, as compared to fraud prediction in this industry alone, especially the 

importance of leverage in the prediction of fraud in the computer hardware and sales industry.   

Tables 3 and 4 Panel B shows the regression results for the retail industry. I removed 

firm-years with SIC codes between 5000 and 5190 from the industry analysis, as those codes are 

for various wholesalers, as opposed to retail operations that involve selling directly to customers. 

The logistic analysis of the retail industry found that for both the initial and expanded samples, 

only soft assets and issue were significant in predicting a misstated firm-year, prior to adding the 

new variables to the regression. After adding the new variables to the regression, ch_sss and 

ch_rec were found to be significant. These results differ from those in the Dechow model run on 

all industries; while Dechow et al. (2011) found rsst_acc, ch_inv, ch_cs, ch_roa, ch_emp, and 
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oplease significant, these variables were not significant in a regression specific to the retail 

industry. In addition, ch_rec was not a significant predictor of misstatement for retail firms until 

new variables were added to the regression. In that case, ch_rec was significant, as was ch_sss, a 

new variable. Interestingly, change in receivables was positively associated with misstating 

firms, suggesting the existence of misstated revenue. However, the change in same store sales 

was negatively associated with misstating firms, possibility indicating financial distress. No 

other new variables were found to be significant for the retail industry. However, the explanatory 

power of the model with added variables was higher than the Dechow model alone.  

The logistic analysis of the service industry (Tables 3 and 4 Panel C) found that for both 

the initial and expanded samples, ch_inv, soft assets, ch_cs, leasedum, and issue were the 

significant variables in predicting a misstated firm-year. As with the other industries, these 

results differ from those in the Dechow model run on all industries. Dechow et al. (2011) found 

rsst_acc, ch_rec, ch_roa, and ch_emp to be significant, although those variables are not 

significant when restricted to firms in the service industry. Neither of the two new variables were 

significant for the service industry. It is interesting to note that the power of the models increases 

when restricted to service firms, as opposed to all firms. R-squared increases from 0.042 (0.040) 

to 0.051 (0.055) when adding the restriction to service firms only in the initial (expanded) 

sample. This may mean that misstated firm-years within the service industry could be predicted 

more accurately than firms in other industries.  

I ran each model twice: once using the variable ch_emp, found significant in Dechow et 

al. (2011), and once using the variable EMP_DIFF, found significant in Brazel et al. (2009). 

Running these two variables separately eliminated any collinearity that would have been present 

had both variables been run in the models simultaneously. In all industry and account models and 
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in both the initial, expanded, and decade-based time periods in this study, neither ch_emp nor 

EMP_DIFF were found to be significant predictors of misstating firms, though EMP_DIFF 

usually outperformed ch_emp. This finding is unexpected, suggesting that changes in employees 

is not a significant predictor of misstatements. Further research will be required to reconcile the 

differences between this study and prior literature. It may also be interesting to determine if other 

non-financial variables found significant in Brazel et al. (2009) will be found to be useful 

predictors of misstatement when included in models such as those employed in this study. 

After finding the significant variables for each industry and sample, I ran final 

regressions inclusive of only the significant variables. Without exception, the R-squared 

decreased from that of the third models in each panel, although for the services industry, the R-

squared remained above that of the original Dechow model. This result is promising; for the 

service industry, at least, the significant variables found in this study offer better predictive 

ability than the Dechow model. 

 I note that the variables soft_assets and issue were highly significant across all three 

industries. This may indicate that these variables could be the most useful predictors of 

misstatement, regardless of industry. Soft_assets is a measure of assets that could be manipulated 

through management estimates (accounts receivable and the allowance for doubtful accounts, for 

example), as a percentage of total assets. Because of the opportunity to manipulate soft assets, it 

is expected that such a variable could be a consistent indicator of misstatement. Issue is a dummy 

variable indicating whether or not the firm issued securities during the firm-year. This is 

essentially a measure of a firm’s need for capital, which could be raised alternatively through 

debt. This measure could indicate the firm’s expansion or the firm’s distress. In either event, 
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raising capital through stock issuance is shown to be a reliable indicator of misstatement across 

all three industries. 

 Beasley et al. (1999) and Beasley et al. (2010) compiled misstatement information for the 

years 1987 to 1997 and 1998 to 2007, respectively, finding in part that computer hardware and 

software, retail, and service industries were among the most frequently cited for fraudulent 

financial statement reporting. Dechow et al. (2011) include similar findings as part of that study. 

Models to predict misstatements by firms within these specific industries could improve 

information for financial statement users, and this study finds evidence indicating that some 

industry-specific models outperform a more generalized prediction model. Noting the small 

number of misstating firm-years in the samples relative to the number of non-misstating firm-

years in the samples, the lack of meaningful change in the R-squared for the models may be due 

to lack of power. For example, the sample representing the computer hardware and software 

industry includes misstating firm-years that make up just 1.3 percent of the total sample. For the 

retail and service industries, the misstating firm-years make up less than one percent of the total 

sample. Future research may consider using a matched sample approach to determine the most 

meaningful variables for use in misstatement prediction models. 

 I analyzed variance inflation factors (VIF) to determine whether the results were 

impacted by multicollinearity due to the added variables. VIFs exceeding 10, indicating 

potentially harmful collinearity, were present only in the retail model, in which rect_sales and 

rect_sales_indretail were highly correlated. To address this issue, I ran the retail regressions 

including only one of these two variables at one time. The panels for the retail industry model 

show the variable coefficients and p-values using rect_sales in the model. 
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5.5  Prediction Models by Account 

In order to determine the variables significant in predicting misstatement by account, I 

used a dummy to indicate a misstatement in any given account, noting that a misstatement firm-

year can have misstatements in multiple accounts. I ran separate logistic regressions for each 

account following the same base model used for the industry regressions. While additional 

accounts were cited by the SEC, I focus only on revenue, inventory, and accounts receivable, 

which are the most frequently misstated accounts. Table 5 Panels A through C show the results 

of the regressions by misstated account.  

The logistic analysis of the revenue account found that across all time periods, ch_rec, 

soft_assets, and issue were significant (Table 5 Panel A). Similar to the findings in the industry 

analyses, the secondary period for the revenue account failed to show significance for ch_inv, 

leasedum, and oplease, even though these three variables were significant for the initial and “all 

years” time periods. The R-squared values for the revenue account analysis are higher than the 

base model run across all years and all accounts, indicating that a revenue-only analysis may be a 

more powerful predictor of misstatement than the generalized model. 

The logistic analysis of the accounts receivable account found that across all time 

periods, ch_rec and soft_assets were significant (Table 5 Panel B). With the exception of the 

secondary time period, ch_inv, leasedum, oplease, and issue were significant. These results are 

very similar to the results for the revenue account, including the higher R-squared for all time 

periods except for the secondary period, when compared to the analysis across all years and all 

misstatement accounts.  

Finally, the logistic analysis of the inventory account found that ch_inv and soft_assets 

were significant in predicting a misstatement across all time periods (Table 5 Panel C). 
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Leasedum and issue were significant in all time periods except for the secondary time period. 

Interestingly, ch_rec and oplease were found to be significant in the revenue and accounts 

receivable analyses but not in the inventory analysis. Since the inventory models outperform the 

generalized model across all years and all accounts, this may indicate that misstatement in the 

inventory account can be more accurately predicted than misstatements in the generalized model.  

I analyzed variance inflation factors (VIF) to determine if the results were impacted by 

multicollinearity due to the added variables. For the account-specific models, there were no VIFs 

exceeding 10, indicating the absence of potentially harmful collinearity.  

 

5.6  Longitudinal Study of Predictive Variables 

 I initially selected three time periods over which to analyze the consistency of the 

variables found to be significant predictors of financial statement misstatements. The initial time 

period of 1980 through 2002 coincides with the time period used in Dechow et al. (2011). The 

secondary period of 2003 through 2008 extends from the end of the initial time period through 

the end of the available AAER data. The time period of 1980 through 2008 encompasses both 

the initial and secondary time periods to get an overall picture of the significant predictive 

variables. Table 6 shows the results of the longitudinal study of predictive variables, for all 

industries as well as for and the three industries analyzed, individually.  

A logistic regression model inclusive of all industries (Table 6 Panel A) found that 

ch_rec, soft_assets, leasedum, and issue were significant across all three time periods, often 

maintaining the same level of significance and similar coefficients across the time periods, as 

well. The analysis of the secondary time period found that while ch_inv and ch_cm were 

significant in the initial and “all years” periods, they were not significant in the secondary period. 
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The opposite is true of cff and leverage; these two variables were significant in the secondary 

time period but not in the initial or “all years” periods.  

 For the computer hardware and software industry (Table 6 Panel B), only the variable 

“issue” was a significant predictor across all time periods. The secondary time period found 

ch_rec, soft_assets, leasedum, oplease, and leverage to be not significant, even though these 

variables were significant in the initial and “all years” time periods. The variables cff and 

rect_sales_indcomp were significant predictors in the secondary period even though they were 

not significant in the other two time periods.  

 Table 6 Panel C shows that for the retail industry, only soft_assets was significant across 

all three time periods. Ch_rec, issue, and ch_sss were significant across the initial and “all years” 

periods but were not significant for the secondary period. There were no variables significant in 

the secondary period but not in the remaining time periods.  

Finally, Table 6 Panel D shows that for the services industry soft_assets and issue were 

significant across all three time periods, while ch_inv, ch_cs, and leasedum were significant 

across all time periods except for the secondary time period. There were no variables significant 

in the secondary period but not in the remaining time periods. The variables soft_assets and issue 

were most consistently significant across the time periods and all industries, indicating that these 

two variables in particular may be the most reliable predictors of misstatements for any given 

industry and any given time period. 

The findings of this first longitudinal study showed consistency between the initial and 

“all year” periods with regard to the variables that were found to be significant predictors of 

misstatement. The differences across time periods lay solely with the secondary time period, 

whether the secondary time period showed some variables only significant in that time period or 
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significant in every other time period except for the secondary period. Some of the differences in 

significant variables across time periods may be a result of the difference in the amount of time 

included in the time periods; the initial time period consists of 23 years while the secondary time 

period consists of only 6 years. The disparity between the time periods may not allow for enough 

data in the secondary time period to be comparable to the initial time period. 

To allow for more a more consistent comparison of the variables over time, I conducted 

the second portion of the longitudinal study using time periods based on natural decades. Using 

the periods 1980-1989, 1990-1999, and 2000-2008, I am able to more reliably determine the 

variables that are consistently significant across time. The third decade analyzed is short by one 

year as that is the final year of data available. These time periods presented a statistical challenge 

at times, however, with very few misstatement firm-years included an any given decade, 

especially when also restricted by industry or account. There were some regressions that would 

not run when using a logistic regression, but I found that using a backward stepwise logistic 

regression helped to alleviate the problems encountered when using a logistic regression. 

Therefore, I used the backward stepwise logistic regression for all models in this second portion 

of the longitudinal study. 

Table 7 and Table 8 show the longitudinal results of regressions by industry and by 

account, with time periods arranged by decade instead of by initial and expanded samples. Table 

7 Panel A and Table 8 Panel A show the results of all industries and all accounts, by decade. The 

findings show that ch_rec, ch_inv, soft_assets, leasedum, and issue were the most consistent 

predictors of misstatements across all three time periods, without regard for industry or misstated 

account.  
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Table 7 Panel B shows that for the computer hardware and software industry, ch_rec, 

soft_assets, and leasedum were the most consistent predictors of misstatement across time. As 

this industry engages in a significant amount of business to business sales, it is expected that 

trade receivables may make up a large portion of the sales, so it makes sense that abnormal 

changes in trade receivables is a consistent predictor of misstatements for this industry. It follows 

that the ratio of soft assets to total assets is also a consistent predictor of misstatements for the 

computer hardware and software industry, since trade receivables are included as a soft asset. 

Other soft assets may include inventory, supplies, prepaids, and goodwill, many of which can be 

manipulated and still pass a reasonability test. The existence of an operating lease obligation is 

the third and final consistent predictor of misstatements for the computer hardware and software 

industry, and like the first two predictors, is also related to assets. An operating lease will not 

result in the associated asset being included on the balance sheet like a capital lease would. If a 

firm within this industry has an operating lease obligation, the likelihood of misstatement 

increases.  

For the retail industry (Table 7 Panel C), there were no consistent predictors of 

misstatement across time. This may be due in part to the small number of misstating firm-years 

within the retail industry, with only 9 in the first period, 31 in the second period, and 36 in the 

third period, for a total of just 76 misstating firm years across three decades. Another factor to 

consider is the changing “storefront” of the retail industry. With online sales making up an 

increasing percentage of total retail sales as compared to sales made in brick-and-mortar stores, 

measures such as same store sales, sales per number of stores, and sales per square foot of retail 

space will likely become irrelevant within the retail industry. In the future, perhaps measures 

such as sales per transaction or sales per website hit may replace the obsolete measures. 
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For the services industry (Table 7 Panel D), soft_assets and issue were the most 

consistent predictors of misstatements. I note that the change in receivables variable is not a 

consistent predictor of misstatement for this industry even though it is consistent across all time 

periods in the general model. This makes sense as sales transactions on account are less frequent 

in the services industry: often payment is due before or at the time that services are rendered. The 

soft assets ratio is a consistent predictor, however. It is likely that assets other than cash, 

receivables, and PP&E account for the significance of this variable. Finally, the issuance of 

securities during the year is a consistent predictor of misstatement for the services industry. The 

issuance of securities may indicate a cash shortage or the need for funding to allow for growth. If 

a company is looking to grow, there may be incentive to manipulate or misstate the financial 

statements to make the company appear to be in a better position than it actually is. 

For the revenue account, Table 8 Panel B shows that ch_rec, ch_inv, soft_assets, and 

issue were the most reliable predictors of misstatements. Similar results were found for the 

misstatements in the accounts receivable account (Table 8 Panel C), with the exception that the 

issue variable was not found to be consistently significant for accounts receivable. It was 

expected that the same variables that were significant predictors of the revenue account would 

also be significant predictors for the accounts receivable account, as the two accounts are so 

closely linked: revenue transactions are frequently completed on account, and in the event that 

revenue is intentionally overstated by creating false sales transactions, the accounts receivable 

account is usually overstated as well. It follows that change in receivables would be a consistent 

predictor of misstatements in both the revenue and accounts receivable account, and as 

receivables are a soft asset, the ratio of soft assets to total assets being a consistent predictor of 

misstatements makes sense as well.  
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Table 8 Panel D addresses predictors of misstatements in inventory. Following the 

rationale from the prior paragraph for revenue and accounts receivable, changes in inventory and 

soft assets were consistent predictors of misstatement.  

 Anecdotally, anomalies in inventory often coincide with anomalies in receivables and in 

the soft assets ratio. For example, if a false sale of a physical good is recorded, revenue will be 

overstated, accounts receivable will likely be overstated, and if inventory is not manipulated as 

well, the inventory account will likely be abnormally low or high, compared to the prior year in 

which no misstatements were made. In addition, intentional misstatements in the inventory 

account often must be hidden by maintaining or increasing the total amount of the misstatement 

in each subsequent year. As a result of revenue misstatements touching so many different 

accounts, it makes sense to see that abnormal changes in inventory and an abnormal soft assets 

ratio are consistent predictors of misstatement for the revenue, accounts receivable, and 

inventory accounts. 

Compared to the general model of all industries, only the longitudinal model for the 

services industry consistently matched or outperformed the general model, as evidenced by the 

R-squared values (Table 7 Panel D). In addition, the revenue model and the inventory model 

consistently matched or outperformed the general model of all misstated accounts (Table 8 Panel 

B and Table 8 Panel D, respectively).  

The results of the analyses of time periods by decade coincide with the results of the 

analyses of the time periods of “initial” versus “expanded,” corroborating the finding that many 

predictive variables are consistent across time periods, regardless of how the time periods are 

delineated.  
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6. CONCLUSIONS AND DISCUSSION 

In this study, I used Accounting and Auditing Enforcement Release (AAER) data 

compiled by Dechow et al. (2011) to test variables for their ability to predict misstating firm-

years within the computer hardware and software, retail, and service industries. I separated the 

firm-years into the initial and expanded samples based on the time period used in Dechow et al. 

(2011) and recently available data. Using 181,696 firm-years, I tested variables previously 

included in a general model, adding an alternative variable for abnormal changes in the number 

of employees.  

I then analyzed the firm-years within the computer hardware and software, retail, and 

service industries. For each of these industries, I tested the variables from the general model, and 

then added new, previously untested variables to the industry models.  

Based on these general and industry-specific models, I found that two measures of 

abnormal changes in the number of employees were not significant predictors of misstatement, 

even though previous research did find them to be significant in general prediction models. I also 

found that for the retail industry, the added variable “change in same store sales” was a 

significant predictor of misstatement, and this industry-specific model had more explanatory 

power than the general model. The industry-specific models for the computer hardware and 

software industry and the service industry did not identify additional new significant variables, 

and did not have greater explanatory power than the general model.  

I also found that some variables that Dechow et al. (2011) found to be significant 

predictors of misstatements in a general model were not significant in the industry-specific 

models tested. In contrast to this, I also found that some variables that were not previously found 
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to be significant predictors in a general model were significant predictors in some industry-

specific models.  

 The greater explanatory power of the retail-specific model may be helpful to auditors in 

the planning stage of the audit, during which time the risk of misstatement is assessed and 

responses to that risk are determined. For audit clients within the retail industry, this model could 

assist the auditor in determining if a client presents a greater risk of misstatement. Similarly, 

government investigators could use this industry-specific model as a method of determining 

high-risk firm-years and select firm-years for review based in part on this assessment. Of course, 

creating industry-specific models with high explanatory power for more industries will be ideal 

and may be an avenue for future research. 

 This study also found that across all industries and across all time periods, soft_assets and 

issue are the most reliably significant and likely the most useful predictors of misstatement. 

Several other variables are significant across the initial and “all years” time periods. The 

secondary time period is much shorter than the initial time period, which may be a factor in the 

inconsistency of the significance of these other variables. 

 Further, I analyzed the variables in the base model to determine which, if any, are 

significant in the prediction of misstated accounts, looking specifically at the revenue, accounts 

receivable, and inventory accounts. I tested the models across the initial, secondary, and “all 

years” time periods to determine if the significant predictor variables changed over time. I found 

that in all three models, ch_inv, soft_assets, leasedum, and issue were significant, although the 

significance often lacked in the secondary time period. Ch_rec and oplease were significant in 

the revenue and accounts receivable models, but were not significant in the inventory model. All 

three models outperformed the generalized model, indicating that the account-specific models 
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may predict a misstated account with more precision and power than the generalized 

misstatement model. I also analyzed the models across decade-based time periods, finding 

similar results to those found in the first portion of the longitudinal study. 

This study is limited first by the data. In investigating and issuing AAERs, the SEC does 

not catch all instances of misstatement. Some misstatements may be small enough to fly under 

the radar and not be caught by the SEC, and at the same time, the SEC cannot investigate every 

firm that is determined to be of higher risk. This selection bias by the SEC may have a 

significant impact on the accuracy of the prediction models, with the potential for many false 

positives: firms determined to be high-risk but not found to have misstated financial statements.  

 This study is also limited by the small number of misstating firm-years, as compared to 

the relatively large number of non-misstating firm-years. This disparity may result in low power 

for each of the models. Future research may benefit from running similar models to determine 

significant predictors of misstatement, using a matched sample approach. This approach may 

eliminate the power issue and more precisely determine the indicators of financial statement 

misstatements.  

Finally, future research may include the further study of the significant predictive 

variables over time: are the predictors of misstatements static, or are they fluid and change as 

fraud methods and industry trends change? Do the coefficients change over additional time 

periods? Using similar statistical analyses to predict the method used to misstate the financial 

statements (channel stuffing or bill-and-hold, for example) may also be an interesting area for 

future research.  
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Table 1 
Sample Description 

 

Panel A: Sample selection of Accounting and Auditing Enforcement Releases (AAERs) 
Number of AAERs       

AAER No. 1 - No. 2261 from May 1982 to June 2005 
            

2,261   
Less: missing AAERs              (74)  
  Total AAERs for initial sample period                                     2,187  
AAER No. 2262 - No. 3403 from June 2005 through August 2012             1,142  
Less: missing AAERs                   (75) 
   Total AAERs for added period               1,067  
Total sample of AAERs                  3,254  

 

 

 

Panel B: Frequency of AAERs by year       
AAER 

release date 
Number 

of AAERs Percentage 
AAER 

release date 
Number of 

AAERs Percentage 
1982 2 0.1 1998 85 2.6 
1983 16 0.5 1999 111 3.4 
1984 28 0.9 2000 142 4.4 
1985 35 1.1 2001 125 3.8 
1986 39 1.2 2002 209 6.4 
1987 51 1.6 2003 237 7.3 
1988 37 1.1 2004 209 6.4 
1989 38 1.2 2005 187 5.8 
1990 35 1.1 2006 171 5.3 
1991 61 1.9 2007 214 6.6 
1992 78 2.4 2008 146 4.5 
1993 76 2.3 2009 172 5.3 
1994 120 3.7 2010 117 3.6 
1995 107 3.3 2011 111 3.4 
1996 121 3.7 2012 43 1.3 
1997 134 4.1    

   Total 3254       100.0 
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Panel C: Frequency of AAERs by firm - initial and expanded samples 

Number of  
AAERs for 
each firm 

 Initial Sample  Expanded Sample 

  
Number 
of firms 

Percent 
of firms   

Number 
of firms 

Percent 
of firms 

1  371 41.4  561 43.3 
2  234 26.1  310 23.9 
3  108 12.1  155 12.0 
4  70 7.8  102 7.9 
5  40 4.5  62 4.8 
6  32 3.6  30 2.3 
7  14 1.6  20 1.5 
8  10 1.1  21 1.6 
9  3 0.3  7 0.5 

10  6 0.7  9 0.7 
11  2 0.2  4 0.3 
12  2 0.2  1 0.1 
13  1 0.1  5 0.4 
14  0 0.0  3 0.2 
15  0 0.0  1 0.1 
16  0 0.0  1 0.1 
17  0 0.0  1 0.1 
18  0 0.0  1 0.1 
20  1 0.1  1 0.1 
15  1 0.1  0 0.0 
24  1 0.1  0 0.0 
25  0 0.0  1 0.1 
46  0 0.0  1 0.1 

Total  896 100.0  1297 100.0 
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Table 2 
Frequency of Misstating Firms by Calendar Year 

 
 

Panel A: Distribution of misstated firm years - initial sample 

Year 
Firm- 
years Percentage Year 

Firm-
years Percentage 

1971 1 0.11 1987 24 2.75 
1972 1 0.11 1988 27 3.09 
1973 1 0.11 1989 43 4.92 
1974 2 0.23 1990 34 3.89 
1975 2 0.23 1991 45 5.15 
1976 1 0.11 1992 48 5.49 
1977 1 0.11 1993 42 4.81 
1978 4 0.46 1994 35 4.00 
1979 9 1.03 1995 37 4.23 
1980 17 1.95 1996 39 4.46 
1981 23 2.63 1997 45 5.15 
1982 31 3.55 1998 57 6.52 
1983 25 2.86 1999 72 8.24 
1984 25 2.86 2000 68 7.78 
1985 17 1.95 2001 39 4.46 
1986 30 3.43 2002 21 2.40 

   2003 8 0.92 
   Total 874 100.00 
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Panel B: Distribution of misstated firm years - expanded sample 

Year 
Firm-
years Percentage Year 

Firm-
years Percentage 

1971 1 0.07 1991 46 3.05 
1972 1 0.07 1992 49 3.25 
1973 1 0.07 1993 44 2.92 
1974 2 0.13 1994 39 2.59 
1975 2 0.13 1995 42 2.79 
1976 1 0.07 1996 46 3.05 
1977 1 0.07 1997 64 4.25 
1978 4 0.27 1998 83 5.51 
1979 9 0.60 1999 111 7.37 
1980 17 1.13 2000 130 8.63 
1981 24 1.59 2001 123 8.16 
1982 32 2.12 2002 106 7.03 
1983 26 1.73 2003 92 6.10 
1984 26 1.73 2004 71 4.71 
1985 18 1.19 2005 56 3.72 
1986 31 2.06 2006 33 2.19 
1987 26 1.73 2007 28 1.86 
1988 27 1.79 2008 11 0.73 
1989 43 2.85 2009 4 0.27 
1990 34 2.26 2010 2 0.13 

   2011 1 0.07 
   Total 1507    100.00 
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 Table 3 
Regression Results by Industry: 1980 – 2002 

 
Panel A: Computer Hardware and Software               
  Dechow Model - All Ind. Dechow Model - CH&S Dechow Model PLUS - CH&S 
Variable Coefficient p-value   Coefficient p-value   Coefficient p-value   
Intercept -7.8641 0.0000 *** -7.4841 0.0000 *** -7.4785 0.0000 *** 
wc_acc -0.0182 0.3755 

 
-0.0767 0.4646 

 
-0.0735 0.5034 

 

rsst_acc 0.0176 0.1873 
 

0.0548 0.1494 
 

0.0521 0.1787 
 

ch_rec 1.2916 0.0000 *** 1.3065 0.0024 ** 1.5880 0.0012 ** 
ch_inv 1.0549 0.0009 *** 0.8364 0.2077 

 
0.8963 0.1891 

 

soft_assets 1.7432 0.0000 *** 1.3629 0.0000 *** 1.3450 0.0000 *** 
ch_cs -0.0008 0.0368 * 0.0000 0.9887 

 
0.0008 0.8094 

 

ch_cm -0.0007 0.0004 *** 0.0004 0.9203 
 

0.0004 0.9165 
 

ch_roa -0.0027 0.4335 
 

-0.0121 0.6038 
 

-0.0105 0.6942 
 

ch_fcf 0.0000 0.8457 
 

0.0000 0.9904 
 

0.0000 0.9867 
 

tax -0.1274 0.6460 
 

-0.2485 0.2787 
 

-0.2667 0.2477 
 

ch_emp 0.0004 0.8354 
 

0.0017 0.8435 
 

0.0015 0.8685 
 

EMP DIFF -0.0034 0.4805 
 

-0.0043 0.5809 
 

-0.0014 0.9170 
 

leasedum 0.6373 0.0000 *** 0.7398 0.0108 * 0.7456 0.0107 * 
oplease -0.2640 0.1217 

 
-0.6698 0.0019 ** -0.6667 0.0020 ** 

issue 1.2533 0.0000 *** 1.6566 0.0001 *** 1.6470 0.0001 *** 
cff 0.0094 0.7486 

 
-0.1499 0.2625 

 
-0.1342 0.3219 

 

leverage -0.0020 0.8879 
 

0.1136 0.0008 *** 0.1136 0.0008 *** 
bm -0.0008 0.6178 

 
-0.0002 0.9406 

 
-0.0002 0.9407 

 

ep 0.0007 0.4115 
 

0.0206 0.1318 
 

0.0202 0.1447 
 

rect_sales 
      

0.0423 0.9235 
 

rect_sales_indcomp 
      

-0.0048 0.9710 
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ch_sales 
      

-0.0305 0.3832 
 

ch_sales_indcomp 
      

-0.0025 0.9322 
 

ch_rect_ch_sales 
      

-0.0341 0.2674 
 

ch_rect_ch_sales_indcomp 
     

0.0006 0.6401 
 

          

Misstating firm-years 
 

       834  
  

      244  
  

      244  
 

Nonmisstating firm-years 144,365       18,969       18,969      
145,199  

  
 19,213  

  
 19,213  

 
          

R-Squared 
 

    0.042  
  

   0.038  
  

   0.039  
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Panel B: Retail                    
  Dechow Model - All Ind. Dechow Model - Retail Dechow Model PLUS - Retail 
Variable Coefficient p-value   Coefficient p-value   Coefficient p-value   
Intercept -7.8641 0.0000 *** -6.6803 0.0000 *** -6.5899 0.3173 

 

wc_acc -0.0182 0.3755 
 

-0.4847 0.5807 
 

-0.6117 0.4682 
 

rsst_acc 0.0176 0.1873 
 

0.3566 0.4412 
 

0.4230 0.3428 
 

ch_rec 1.2916 0.0000 *** 2.3056 0.0846 
 

3.4247 0.0339 * 
ch_inv 1.0549 0.0009 *** 0.5348 0.6777 

 
0.2973 0.8172 

 

soft_assets 1.7432 0.0000 *** 1.3204 0.0369 * 1.6847 0.0137 * 
ch_cs -0.0008 0.0368 * 0.0007 0.9132 

 
0.0006 0.9283 

 

ch_cm -0.0007 0.0004 *** 0.0002 0.9598 
 

0.0010 0.9384 
 

ch_roa -0.0027 0.4335 
 

-0.6807 0.0917 
 

-0.7147 0.0617 
 

ch_fcf 0.0000 0.8457 
 

0.0217 0.1485 
 

0.0228 0.1405 
 

tax -0.1274 0.6460 
 

-0.3028 0.6934 
 

-0.2928 0.7232 
 

ch_emp 0.0004 0.8354 
 

0.0176 0.0969 
 

0.0162 0.2258 
 

EMP DIFF -0.0034 0.4805 
 

-0.0238 0.1120 
 

-0.0198 0.2654 
 

leasedum 0.6373 0.0000 *** -0.4471 0.4084 
 

-0.5450 0.3211 
 

oplease -0.2640 0.1217 
 

0.4829 0.5446 
 

0.3113 0.6720 
 

issue 1.2533 0.0000 *** 1.2434 0.0444 * 1.2595 0.0445 * 
cff 0.0094 0.7486 

 
0.3395 0.3604 

 
0.3631 0.3242 

 

leverage -0.0020 0.8879 
 

-0.0155 0.8907 
 

-0.0029 0.9800 
 

bm -0.0008 0.6178 
 

-0.0141 0.4738 
 

-0.0118 0.5465 
 

ep 0.0007 0.4115 
 

0.0081 0.4878 
 

0.0104 0.2727 
 

rect_sales 
   

    
 

-10.3373 0.0577 
 

rect_sales_indretail 
      

0.5808 0.0762 
 

ch_sales 
      

-0.0324 0.6916 
 

ch_sales_indretail 
      

0.0252 0.4404 
 

sss 
      

-0.0886 0.3670 
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sss_indretail 
      

0.0951 0.3623 
 

ch_sss 
      

-0.2719 0.0007 *** 
ch_sss_indretail 

      
-0.0651 0.2260 

 

ch_net_sales_sqft 
      

1.6252 0.9382 
 

ch_net_sales_sqft_indretail 
     

-0.4148 0.2885 
 

net_sales_stores 
      

0.0000 0.9325 
 

net_sales_stores_indretail 
      

-0.3200 0.9580 
 

ch_net_sales_stores 
      

8.6217 0.4096 
 

ch_net_sales_stores_indretail 
     

0.1595 0.4421 
 

          

Misstating firm-years 
 

       834 
  

        59  
  

        59  
 

Nonmisstating firm-years 144,365      10,666       10,666      
145,199  

  
10,725  

  
 10,725  

 
          

R-Squared 
 

 0.042  
  

   0.034  
  

   0.057  
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Panel C: Services                   
  Dechow Model - All Ind. Dechow Model - Services Dechow Model PLUS - Services 
Variable Coefficient p-value   Coefficient p-value   Coefficient p-value   
Intercept -7.8641 0.0000 *** -8.0140 0.0000 *** -7.9681 0.0000 *** 
wc_acc -0.0182 0.3755 

 
-0.0104 0.8805 

 
-0.0114 0.8720 

 

rsst_acc 0.0176 0.1873 
 

0.0148 0.6738 
 

0.0158 0.6437 
 

ch_rec 1.2916 0.0000 *** 0.8342 0.1514 
 

0.8196 0.1600 
 

ch_inv 1.0549 0.0009 *** 2.0068 0.0083 ** 2.0093 0.0082 ** 
soft_assets 1.7432 0.0000 *** 1.7099 0.0000 *** 1.7111 0.0000 *** 
ch_cs -0.0008 0.0368 * -0.0009 0.0185 * -0.0009 0.0181 * 
ch_cm -0.0007 0.0004 *** -0.0003 0.6920 

 
-0.0003 0.6863 

 

ch_roa -0.0027 0.4335 
 

-0.0054 0.8198 
 

-0.0056 0.8095 
 

ch_fcf 0.0000 0.8457 
 

0.0000 0.8620 
 

0.0000 0.8548 
 

tax -0.1274 0.6460 
 

0.5835 0.1671 
 

0.5836 0.1664 
 

ch_emp 0.0004 0.8354 
 

-0.0004 0.8839 
 

-0.0004 0.8864 
 

EMP DIFF -0.0034 0.4805 
 

-0.0032 0.7256 
 

-0.0032 0.7264 
 

leasedum 0.6373 0.0000 *** 0.7988 0.0263 * 0.7964 0.0277 * 
oplease -0.2640 0.1217 

 
0.0444 0.9038 

 
0.0434 0.9062 

 

issue 1.2533 0.0000 *** 1.2761 0.0028 ** 1.2706 0.0029 ** 
cff 0.0094 0.7486 

 
0.0185 0.7554 

 
0.0182 0.7612 

 

leverage -0.0020 0.8879 
 

0.0308 0.2583 
 

0.0308 0.2583 
 

bm -0.0008 0.6178 
 

-0.0008 0.7761 
 

-0.0008 0.7765 
 

ep 0.0007 0.4115 
 

0.0037 0.5616 
 

0.0037 0.5617 
 

rect_sales 
      

-0.0864 0.6936 
 

rect_sales_indservices 
      

0.0366 0.6569 
 

          

Misstating firm-years 
 

      834  
  

     109  
  

      109  
 

Nonmisstating firm-years 144,365       17,872       17,872    
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145,199  

  
 17,981  

  
 17,981  

 
          

R-Squared 
 

0.042 
  

0.051 
  

0.051 
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Table 4 
Regression Results by Industry: 1980 – 2008 

 
Panel A: Computer Hardware and Software             
  Dechow Model - All Ind. Dechow Model - CH&S Dechow Model PLUS - CH&S 
Variable Coefficient p-value   Coefficient p-value   Coefficient p-value   
Intercept -7.8690 0.0000 *** -7.1813 0.0000 *** -7.0397 0.0000 *** 
wc_acc -0.0090 0.5372 

 
-0.0120 0.8562 

 
-0.0113 0.8689 

 

rsst_acc 0.0080 0.3484 
 

0.0230 0.2755 
 

0.0227 0.2491 
 

ch_rec 1.3071 0.0000 *** 1.1311 0.0051 ** 1.3365 0.0027 ** 
ch_inv 0.8998 0.0023 ** 0.9244 0.1421 

 
1.0573 0.1034 

 

soft_assets 1.6666 0.0000 *** 1.0998 0.0000 *** 1.0763 0.0001 *** 
ch_cs -0.0007 0.0828 

 
0.0003 0.8828 

 
0.0009 0.7544 

 

ch_cm -0.0005 0.0018 ** -0.0001 0.9075 
 

-0.0001 0.9188 
 

ch_roa -0.0009 0.8087 
 

-0.0028 0.9004 
 

-0.0015 0.9373 
 

ch_fcf 0.0000 0.8409 
 

0.0000 0.7869 
 

0.0000 0.7896 
 

tax -0.0119 0.9691 
 

-0.2104 0.4250 
 

-0.2362 0.3706 
 

ch_emp 0.0007 0.7755 
 

0.0018 0.8195 
 

0.0015 0.8440 
 

EMP DIFF -0.0037 0.4002 
 

-0.0044 0.5594 
 

-0.0009 0.9425 
 

leasedum 0.6594 0.0000 *** 0.6618 0.0095 ** 0.6544 0.0107 * 
oplease -0.1790 0.1681 

 
-0.3067 0.0299 * -0.3051 0.0323 * 

issue 1.3276 0.0000 *** 1.6426 0.0000 *** 1.6325 0.0000 *** 
cff -0.0416 0.4435 

 
-0.2757 0.0480 * -0.2507 0.0755 

 

leverage -0.0202 0.2566 
 

0.0919 0.0064 ** 0.0919 0.0062 ** 
bm -0.0006 0.5955 

 
-0.0020 0.8187 

 
-0.0020 0.8136 

 

ep 0.0006 0.4155 
 

0.0233 0.0715 
 

0.0230 0.0765 
 

rect_sales 
      

-0.4349 0.4097 
 

rect_sales_indcomp 
     

0.1310 0.3171 
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ch_sales 
      

-0.0201 0.5757 
 

ch_sales_indcomp 
     

-0.0164 0.6623 
 

ch_rect_ch_sales 
     

-0.0273 0.3367 
 

ch_rect_ch_sales_indcomp 
    

-0.0003 0.6133 
 

          

Misstating firm-years    1,068  
  

    328  
  

     328  
 

Nonmisstating firm-years 180,628       25,163       25,163      
181,696  

  
 25,491  

  
 25,491  

 
          

R-Squared 
 

0.040 
  

0.031 
  

0.032 
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Panel B: Retail                   
  Dechow Model - All Ind. Dechow Model - Retail Dechow Model PLUS - Retail  
Variable Coefficient p-value   Coefficient p-value   Coefficient p-value   
Intercept -7.8690 0.0000 *** -7.1460 0.0000 *** -6.7719 0.0057 ** 
wc_acc -0.0090 0.5372 

 
-0.1575 0.6707 

 
-0.2372 0.5385 

 

rsst_acc 0.0080 0.3484 
 

0.1161 0.7509 
 

0.1910 0.6148 
 

ch_rec 1.3071 0.0000 *** 1.4549 0.2139 
 

2.7648 0.0432 * 
ch_inv 0.8998 0.0023 ** -0.2423 0.8200 

 
-0.6180 0.5656 

 

soft_assets 1.6666 0.0000 *** 1.7418 0.0016 ** 2.1187 0.0003 *** 
ch_cs -0.0007 0.0828 

 
0.0012 0.8814 

 
0.0011 0.8943 

 

ch_cm -0.0005 0.0018 ** 0.0003 0.9540 
 

0.0022 0.8501 
 

ch_roa -0.0009 0.8087 
 

0.0140 0.7203 
 

0.0151 0.7164 
 

ch_fcf 0.0000 0.8409 
 

0.0001 0.8208 
 

0.0001 0.8515 
 

tax -0.0119 0.9691 
 

0.0529 0.9449 
 

0.1645 0.8413 
 

ch_emp 0.0007 0.7755 
 

0.0182 0.0918 
 

0.0185 0.1578 
 

EMP DIFF -0.0037 0.4002 
 

-0.0261 0.0784 
 

-0.0241 0.1623 
 

leasedum 0.6594 0.0000 *** -0.3883 0.4179 
 

-0.4610 0.3435 
 

oplease -0.1790 0.1681 
 

0.1986 0.7363 
 

0.1516 0.8100 
 

issue 1.3276 0.0000 *** 1.5233 0.0120 * 1.4944 0.0137 * 
cff -0.0416 0.4435 

 
0.0916 0.5571 

 
0.1060 0.5326 

 

leverage -0.0202 0.2566 
 

-0.0093 0.9165 
 

0.0086 0.9203 
 

bm -0.0006 0.5955 
 

-0.0175 0.2584 
 

-0.0179 0.2456 
 

ep 0.0006 0.4155 
 

0.0081 0.3614 
 

0.0089 0.3002 
 

rect_sales 
      

-6.9577 0.1195 
 

rect_sales_indretail 
     

0.2965 0.2644 
 

ch_sales 
      

-0.0246 0.6332 
 

ch_sales_indretail 
     

0.0205 0.3536 
 

sss 
      

0.0067 0.8758 
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sss_indretail 
      

0.0121 0.7177 
 

ch_sss 
      

-0.1136 0.0446 * 
ch_sss_indretail 

     
-0.0021 0.0671 

 

ch_net_sales_sqft 
     

-2.7117 0.7722 
 

ch_net_sales_sqft_indretail 
    

-0.0123 0.8731 
 

net_sales_stores 
     

0.0000 0.9471 
 

net_sales_stores_indretail 
     

0.2699 0.8988 
 

ch_net_sales_stores 
     

3.8992 0.6324 
 

ch_net_sales_stores_indretail 
    

-0.0011 0.9901 
 

          

Misstating firm-years    1,068  
  

        76  
  

        76  
 

Nonmisstating firm-years 180,628       12,831       12,831      
181,696  

  
 12,907  

  
 12,907  

 
          

R-Squared 
 

0.040 
  

0.029 
  

0.040 
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Panel C: Services                 
  Dechow Model - All Ind. Dechow Model - Services Dechow Model PLUS - Services  
Variable Coefficient p-value   Coefficient p-value   Coefficient p-value   
Intercept -7.8690 0.0000 *** -8.2619 0.0000 *** -8.1747 0.0000 *** 
wc_acc -0.0090 0.5372 

 
-0.0072 0.8419 

 
-0.0083 0.8048 

 

rsst_acc 0.0080 0.3484 
 

0.0078 0.7671 
 

0.0090 0.7117 
 

ch_rec 1.3071 0.0000 *** 0.8810 0.0923 
 

0.8780 0.0972 
 

ch_inv 0.8998 0.0023 ** 1.8147 0.0048 ** 1.8231 0.0047 ** 
soft_assets 1.6666 0.0000 *** 1.7519 0.0000 *** 1.7585 0.0000 *** 
ch_cs -0.0007 0.0828 

 
-0.0009 0.0190 * -0.0009 0.0182 * 

ch_cm -0.0005 0.0018 ** -0.0002 0.7593 
 

-0.0002 0.7495 
 

ch_roa -0.0009 0.8087 
 

-0.0007 0.9322 
 

-0.0005 0.9464 
 

ch_fcf 0.0000 0.8409 
 

0.0000 0.8805 
 

0.0000 0.8453 
 

tax -0.0119 0.9691 
 

0.4033 0.3245 
 

0.4117 0.3143 
 

ch_emp 0.0007 0.7755 
 

-0.0001 0.9820 
 

-0.0001 0.9844 
 

EMP DIFF -0.0037 0.4002 
 

-0.0031 0.6925 
 

-0.0031 0.6928 
 

leasedum 0.6594 0.0000 *** 1.0239 0.0036 ** 1.0092 0.0043 ** 
oplease -0.1790 0.1681 

 
-0.0759 0.8339 

 
-0.0737 0.8396 

 

issue 1.3276 0.0000 *** 1.3849 0.0004 *** 1.3725 0.0005 *** 
cff -0.0416 0.4435 

 
-0.0097 0.9102 

 
-0.0116 0.8959 

 

leverage -0.0202 0.2566 
 

0.0272 0.3181 
 

0.0275 0.3133 
 

bm -0.0006 0.5955 
 

-0.0009 0.7205 
 

-0.0009 0.7200 
 

ep 0.0006 0.4155 
 

0.0041 0.4654 
 

0.0041 0.4660 
 

rect_sales 
      

-0.1693 0.2639 
 

rect_sales_indservices 
     

0.0662 0.1845 
 

          

Misstating firm-years     1,068  
  

      149  
  

      149  
 

Nonmisstating firm-years 180,628       22,263       22,263    
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181,696  

  
 22,412  

  
 22,412  

 
          

R-Squared 
 

0.040 
  

0.054 
  

0.055 
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Table 5 
Regression Results by Account: Various Sample Periods 

Panel A: Revenue                 
  Initial Period   Secondary Period   All Years   
Variable Coefficient p-value   Coefficient p-value   Coefficient p-value   
Intercept -8.5156 0.0000 *** -8.5415 0.0000 *** -8.5192 0.0000 *** 
WC_acc -0.0201 0.4559 

 
-0.0054 0.8886 

 
-0.0099 0.5957 

 

rsst_acc 0.0182 0.3305 
 

0.0079 0.7504 
 

0.0078 0.4793 
 

ch_rec 1.8262 0.0000 *** 1.8949 0.0009 *** 1.7980 0.0000 *** 
ch_inv 1.2944 0.0007 *** 0.9153 0.3685 

 
1.2141 0.0006 *** 

soft_assets 2.1755 0.0000 *** 2.1266 0.0000 *** 2.1631 0.0000 *** 
ch_cs -0.0002 0.8933 

 
0.0001 0.9633 

 
-0.0001 0.9480 

 

ch_cm 0.0000 0.9884 
 

0.0000 0.9740 
 

0.0000 0.9914 
 

ch_roa -0.0027 0.5833 
 

-0.0017 0.8906 
 

-0.0008 0.8601 
 

ch_fcf 0.0000 0.8990 
 

0.0000 0.9032 
 

0.0000 0.8978 
 

tax -0.0443 0.9169 
 

0.1714 0.7811 
 

0.0246 0.9510 
 

ch_emp 0.0003 0.8781 
 

0.0018 0.7429 
 

0.0007 0.8001 
 

EMP DIFF -0.0011 0.7534 
 

-0.0047 0.7028 
 

-0.0016 0.6653 
 

leasedum -0.5022 0.0004 *** -0.3481 0.3095 
 

-0.4848 0.0002 *** 
oplease -0.4308 0.0044 ** -0.0502 0.9019 

 
-0.2687 0.0248 * 

issue 1.6002 0.0000 *** 1.7150 0.0037 ** 1.6112 0.0000 *** 
cff -0.0017 0.9702 

 
-0.3071 0.1676 

 
-0.0304 0.6056 

 

leverage 0.0048 0.6602 
 

-0.0617 0.2869 
 

0.0002 0.9882 
 

bm -0.0013 0.5922 
 

-0.0002 0.9001 
 

-0.0008 0.6369 
 

ep 0.0008 0.4779 
 

0.0004 0.8549 
 

0.0007 0.4907 
 

          

Misstating firm-years 452  
  

      115  
  

       567  
 

Nonmisstating firm-years 144,747       36,382      181,129      
145,199  

  
 36,497  

  
181,696  

 



68 
 

 
 

          

R-Squared     0.053  
  

   0.045  
  

    0.050  
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Panel B: Accounts Receivable               
  Initial Period   Secondary Period   All Years   
Variable Coefficient p-value   Coefficient p-value   Coefficient p-value   
Intercept -9.211 0.000 *** -9.430 0.000 *** -9.1151 0.0000 *** 
WC_acc -0.004 0.954 

 
-0.003 0.969 

 
-0.0030 0.9416 

 

rsst_acc 0.006 0.925 
 

0.005 0.913 
 

0.0034 0.9050 
 

ch_rec 1.775 0.000 *** 2.169 0.010 * 1.8135 0.0000 *** 
ch_inv 1.644 0.003 ** 0.485 0.782 

 
1.4556 0.0055 ** 

soft_assets 2.838 0.000 *** 1.762 0.006 ** 2.5505 0.0000 *** 
ch_cs 0.000 0.873 

 
0.000 0.951 

 
-0.0002 0.8863 

 

ch_cm 0.000 0.863 
 

0.000 0.992 
 

-0.0001 0.9450 
 

ch_roa -0.001 0.909 
 

-0.002 0.926 
 

-0.0015 0.8747 
 

ch_fcf 0.000 0.958 
 

0.000 0.961 
 

0.0000 0.9964 
 

tax -0.036 0.959 
 

0.326 0.616 
 

0.1301 0.8330 
 

ch_emp 0.001 0.899 
 

0.002 0.810 
 

0.0011 0.8377 
 

EMP DIFF -0.007 0.418 
 

-0.003 0.855 
 

-0.0061 0.4489 
 

leasedum -1.143 0.000 *** -0.478 0.376 
 

-1.0232 0.0001 *** 
oplease -0.665 0.001 ** -0.157 0.716 

 
-0.3757 0.0023 ** 

issue 0.882 0.004 ** 1.927 0.058 
 

0.9997 0.0005 *** 
cff -0.052 0.659 

 
-0.302 0.377 

 
-0.0520 0.6586 

 

leverage 0.009 0.466 
 

0.004 0.948 
 

0.0089 0.4962 
 

bm -0.001 0.831 
 

0.000 0.932 
 

-0.0005 0.8241 
 

ep 0.001 0.747 
 

0.000 0.903 
 

0.0006 0.7224 
 

          

Misstating firm-years        170  
  

        49  
  

       219  
 

Nonmisstating firm-years 145,029       36,448      181,477      
145,199  

  
 36,497  

  
181,696  

 
          

R-Squared     0.061  
  

   0.036  
  

    0.053  
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Panel C: Inventory                 
  Initial Period   Secondary Period   All Years   
Variable Coefficient p-value   Coefficient p-value   Coefficient p-value   
Intercept -9.5466 0.0000 *** -9.0654 0.0000 *** -9.8284 0.0000 *** 
WC_acc -0.0196 0.8345 

 
0.0016 0.9869 

 
-0.0076 0.8793 

 

rsst_acc 0.0220 0.7359 
 

-0.0029 0.9672 
 

0.0078 0.8321 
 

ch_rec 0.6142 0.3521 
 

0.7043 0.6398 
 

0.6469 0.2860 
 

ch_inv 2.7418 0.0000 *** 2.3589 0.0257 * 2.6931 0.0000 *** 
soft_assets 2.8786 0.0000 *** 3.3098 0.0003 *** 2.9801 0.0000 *** 
ch_cs -0.0001 0.9553 

 
-0.0003 0.9224 

 
-0.0001 0.9360 

 

ch_cm -0.0005 0.5516 
 

0.0001 0.9358 
 

-0.0003 0.6443 
 

ch_roa -0.0029 0.7542 
 

-0.0047 0.7457 
 

-0.0030 0.7537 
 

ch_fcf 0.0000 0.9729 
 

0.0000 0.9985 
 

0.0000 0.9199 
 

tax 0.0531 0.9588 
 

0.3066 0.7929 
 

0.1470 0.8664 
 

ch_emp 0.0003 0.9341 
 

0.0031 0.7764 
 

0.0009 0.8898 
 

EMP DIFF -0.0070 0.4914 
 

-0.0097 0.7137 
 

-0.0071 0.4620 
 

leasedum -0.8413 0.0064 ** -0.7533 0.3095 
 

-0.7885 0.0055 ** 
oplease -0.1339 0.8232 

 
-0.1250 0.8445 

 
-0.1299 0.7614 

 

issue 0.8706 0.0129 * 15.9879 0.9684 
 

1.0992 0.0016 ** 
cff -0.2709 0.3918 

 
-0.9547 0.0771 

 
-0.4921 0.0941 

 

leverage 0.0073 0.6745 
 

0.0065 0.9237 
 

0.0071 0.6810 
 

bm -0.0007 0.8578 
 

-0.0001 0.9522 
 

-0.0006 0.8382 
 

Ep 0.0007 0.7550 
 

0.0005 0.8962 
 

0.0007 0.7403 
 

          

Misstating firm-years        124  
  

        31  
  

       155  
 

Nonmisstating firm-years 145,075       36,466      181,541      
145,199  

  
 36,497  

  
181,696  

 
          

R-Squared     0.057  
  

   0.057  
  

    0.059  
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Table 6 
Regression Results by Industry: Various Sample Periods 

Panel A: All Industries                 
  Initial Period   Secondary Period   All Years   
Variable Coefficient p-value   Coefficient p-value   Coefficient p-value   
Intercept -7.8641 0.0000 *** -7.9391 0.0000 *** -7.8690 0.0000 *** 
wc_acc -0.0182 0.3755 

 
-0.0046 0.8924 

 
-0.0090 0.5372 

 

rsst_acc 0.0176 0.1873 
 

0.0060 0.7884 
 

0.0080 0.3484 
 

ch_rec 1.2916 0.0000 *** 1.6562 0.0011 ** 1.3071 0.0000 *** 
ch_inv 1.0549 0.0009 ** 0.2083 0.8149 

 
0.8998 0.0023 ** 

soft_assets 1.7432 0.0000 *** 1.4322 0.0000 *** 1.6666 0.0000 *** 
ch_cs -0.0008 0.0368 

 
-0.0001 0.9096 

 
-0.0007 0.0828 

 

ch_cm -0.0007 0.0004 *** -0.0002 0.7845 
 

-0.0005 0.0018 ** 
ch_roa -0.0027 0.4335 

 
-0.0019 0.8622 

 
-0.0009 0.8087 

 

ch_fcf 0.0000 0.8457 
 

0.0000 0.8750 
 

0.0000 0.8409 
 

tax -0.1274 0.6460 
 

0.2448 0.5205 
 

-0.0119 0.9691 
 

ch_emp 0.0004 0.8354 
 

0.0014 0.7413 
 

0.0007 0.7755 
 

EMP DIFF -0.0034 0.4805 
 

-0.0049 0.6179 
 

-0.0037 0.4002 
 

leasedum 0.6373 0.0000 *** 0.6801 0.0126 * 0.6594 0.0000 *** 
oplease -0.2640 0.1217 

 
-0.0838 0.7718 

 
-0.1790 0.1681 

 

issue 1.2533 0.0000 *** 1.6989 0.0000 *** 1.3276 0.0000 *** 
cff 0.0094 0.7486 

 
-0.4987 0.0109 * -0.0416 0.4435 

 

leverage -0.0020 0.8879 
 

-0.1061 0.0230 * -0.0202 0.2566 
 

bm -0.0008 0.6178 
 

-0.0002 0.8761 
 

-0.0006 0.5955 
 

ep 0.0007 0.4115 
 

0.0003 0.8275 
 

0.0006 0.4155 
 

          
Misstating firm-years        834  

  
        234  

  
     1,068  

 

Nonmisstating firm-years 144,365       36,263      180,628      
145,199  

  
   36,497  

  
 181,696  

 
          

R-Squared 
 

    0.042  
  

     0.041  
  

     0.040  
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Panel B: Computer Hardware and Software             
  Initial Period   Secondary Period   All Years   
Variable Coefficient p-value   Coefficient p-value   Coefficient p-value   
Intercept -7.4785 0.0000 *** -5.4039 0.0000 *** -7.0397 0.0000 *** 
wc_acc -0.0735 0.5034 

 
0.0173 0.9010 

 
-0.0113 0.8689 

 

rsst_acc 0.0521 0.1787 
 

0.0597 0.3335 
 

0.0227 0.2491 
 

ch_rec 1.5880 0.0012 ** -0.0201 0.9871 
 

1.3365 0.0027 ** 
ch_inv 0.8963 0.1891 

 
2.4508 0.2204 

 
1.0573 0.1034 

 

soft_assets 1.3450 0.0000 *** 0.5822 0.2545 
 

1.0763 0.0001 *** 
ch_cs 0.0008 0.8094 

 
0.0012 0.9060 

 
0.0009 0.7544 

 

ch_cm 0.0004 0.9165 
 

-0.0007 0.9307 
 

-0.0001 0.9188 
 

ch_roa -0.0105 0.6942 
 

-0.0129 0.7762 
 

-0.0015 0.9373 
 

ch_fcf 0.0000 0.9867 
 

0.0000 0.7507 
 

0.0000 0.7896 
 

tax -0.2667 0.2477 
 

2.8600 0.0586 
 

-0.2362 0.3706 
 

ch_emp 0.0015 0.8685 
 

-0.0048 0.8461 
 

0.0015 0.8440 
 

EMP DIFF -0.0014 0.9170 
 

0.0186 0.8871 
 

-0.0009 0.9425 
 

leasedum 0.7456 0.0107 * 0.0612 0.9085 
 

0.6544 0.0107 * 
oplease -0.6667 0.0020 ** 0.8874 0.4370 

 
-0.3051 0.0323 * 

issue 1.6470 0.0001 *** 1.7190 0.0233 * 1.6325 0.0000 *** 
cff -0.1342 0.3219 

 
-0.9319 0.0155 * -0.2507 0.0755 

 

leverage 0.1136 0.0008 *** -0.0388 0.7442 
 

0.0919 0.0062 ** 
bm -0.0002 0.9407 

 
-0.0001 0.9623 

 
-0.0020 0.8136 

 

ep  0.0202 0.1447 
 

0.0927 0.1341 
 

0.0230 0.0765 
 

rect_sales 0.0423 0.9235 
 

-3.6664 0.0530 
 

-0.4349 0.4097 
 

rect_sales_indcomp -0.0048 0.9710 
 

0.8782 0.0300 * 0.1310 0.3171 
 

ch_sales -0.0305 0.3832 
 

0.0321 0.8434 
 

-0.0201 0.5757 
 

ch_sales_indcomp -0.0025 0.9322 
 

-0.1296 0.4528 
 

-0.0164 0.6623 
 

ch_rect_ch_sales -0.0341 0.2674 
 

-0.0464 0.7321 
 

-0.0273 0.3367 
 

ch_rect_ch_sales_indcomp 0.0006 0.6401 
 

-0.0007 0.3469 
 

-0.0003 0.6133 
 

          

Misstating firm-years       244  
  

        84  
  

      328  
 

Nonmisstating firm-years 18,969         6,194       25,163      
19,213  

  
   6,278  

  
 25,491  
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R-Squared 
 

   0.039  
  

   0.041  
  

   0.032  
 

 

 

  



74 
 

 
 

Panel C: Retail                   
  Initial Period   Secondary Period   All Years   
Variable Coefficient p-value   Coefficient p-value   Coefficient p-value   
Intercept -6.5899 0.3173 

 
-6.8318 0.0007 *** -6.7719 0.0057 ** 

wc_acc -0.6117 0.4682 
 

-0.1767 0.8118 
 

-0.2372 0.5385 
 

rsst_acc 0.4230 0.3428 
 

0.1417 0.8449 
 

0.1910 0.6148 
 

ch_rec 3.4247 0.0339 * 2.7788 0.5915 
 

2.7648 0.0432 * 
ch_inv 0.2973 0.8172 

 
-2.4167 0.3142 

 
-0.6180 0.5656 

 

soft_assets 1.6847 0.0137 * 3.9120 0.0035 ** 2.1187 0.0003 *** 
ch_cs 0.0006 0.9283 

 
0.0739 0.8158 

 
0.0011 0.8943 

 

ch_cm 0.0010 0.9384 
 

0.0401 0.7142 
 

0.0022 0.8501 
 

ch_roa -0.7147 0.0617 
 

0.0129 0.8398 
 

0.0151 0.7164 
 

ch_fcf 0.0228 0.1405 
 

0.0000 0.9023 
 

0.0001 0.8515 
 

tax -0.2928 0.7232 
 

3.7818 0.5915 
 

0.1645 0.8413 
 

ch_emp 0.0162 0.2258 
 

-0.0048 0.8394 
 

0.0185 0.1578 
 

EMP DIFF -0.0198 0.2654 
 

0.2128 0.4513 
 

-0.0241 0.1623 
 

leasedum -0.5450 0.3211 
 

-0.0191 0.9872 
 

-0.4610 0.3435 
 

oplease 0.3113 0.6720 
 

-0.1633 0.8593 
 

0.1516 0.8100 
 

issue 1.2595 0.0445 * 16.3932 0.9944 
 

1.4944 0.0137 * 
cff 0.3631 0.3242 

 
0.0551 0.8761 

 
0.1060 0.5326 

 

leverage -0.0029 0.9800 
 

0.0037 0.9687 
 

0.0086 0.9203 
 

bm -0.0118 0.5465 
 

-0.0572 0.5443 
 

-0.0179 0.2456 
 

ep 0.0104 0.2727 
 

0.2224 0.4239 
 

0.0089 0.3002 
 

rect_sales -10.3373 0.0577 
 

-12.5698 0.5571 
 

-6.9577 0.1195 
 

rect_sales_indretail 0.5808 0.0762 
 

0.0663 0.9490 
 

0.2965 0.2644 
 

ch_sales -0.0324 0.6916 
 

-0.0003 0.9993 
 

-0.0246 0.6332 
 

ch_sales_indretail 0.0252 0.4404 
 

-0.1013 0.5702 
 

0.0205 0.3536 
 

sss -0.0886 0.3670 
 

0.0518 0.4134 
 

0.0067 0.8758 
 

sss_indretail 0.0951 0.3623 
 

0.0107 0.8048 
 

0.0121 0.7177 
 

ch_sss -0.2719 0.0007 *** 0.0465 0.6141 
 

-0.1136 0.0446 * 
ch_sss_indretail -0.0651 0.2260 

 
-0.0010 0.4032 

 
-0.0021 0.0671 

 

ch_net_sales_sqft 1.6252 0.9382 
 

-2.1285 0.8741 
 

-2.7117 0.7722 
 

ch_net_sales_sqft_indretail -0.4148 0.2885 
 

-0.0030 0.9680 
 

-0.0123 0.8731 
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net_sales_stores 0.0000 0.9325 
 

0.0000 0.8739 
 

0.0000 0.9471 
 

net_sales_stores_indretail -0.3200 0.9580 
 

0.0845 0.8757 
 

0.2699 0.8988 
 

ch_net_sales_stores 8.6217 0.4096 
 

-0.8218 0.9564 
 

3.8992 0.6324 
 

ch_net_sales_stores_indretail 0.1595 0.4421 
 

-0.0020 0.9870 
 

-0.0011 0.9901 
 

          

Misstating firm-years         59  
  

        17  
  

        76  
 

Nonmisstating firm-years  10,666        2,165       12,831      
 10,725  

  
  2,182  

  
 12,907  

 
          

R-Squared 
 

     
0.057  

  
     

0.106  

  
     

0.040  
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Panel D: Services                 
  Initial Period   Secondary Period   All Years   
Variable Coefficient p-value   Coefficient p-value   Coefficient p-value   
Intercept -7.9681 0.0000 *** -7.3652 0.0000 *** -8.1747 0.0000 *** 
wc_acc -0.0114 0.8720 

 
0.0206 0.7700 

 
-0.0083 0.8048 

 

rsst_acc 0.0158 0.6437 
 

-0.0167 0.7065 
 

0.0090 0.7117 
 

ch_rec 0.8196 0.1600 
 

1.8674 0.1641 
 

0.8780 0.0972 
 

ch_inv 2.0093 0.0082 ** 1.9682 0.1626 
 

1.8231 0.0047 ** 
soft_assets 1.7111 0.0000 *** 1.7161 0.0125 * 1.7585 0.0000 *** 
ch_cs -0.0009 0.0181 * -0.0053 0.6159 

 
-0.0009 0.0182 * 

ch_cm -0.0003 0.6863 
 

-0.0001 0.9922 
 

-0.0002 0.7495 
 

ch_roa -0.0056 0.8095 
 

-0.0030 0.8534 
 

-0.0005 0.9464 
 

ch_fcf 0.0000 0.8548 
 

0.0000 0.9950 
 

0.0000 0.8453 
 

tax 0.5836 0.1664 
 

-0.5733 0.8405 
 

0.4117 0.3143 
 

ch_emp -0.0004 0.8864 
 

0.0005 0.9532 
 

-0.0001 0.9844 
 

EMP DIFF -0.0032 0.7264 
 

-0.0035 0.7959 
 

-0.0031 0.6928 
 

leasedum 0.7964 0.0277 *  xxxx xxxx 
 

1.0092 0.0043 ** 
oplease 0.0434 0.9062 

 
-0.4558 0.5942 

 
-0.0737 0.8396 

 

issue 1.2706 0.0029 ** 2.1036 0.0498 * 1.3725 0.0005 *** 
cff 0.0182 0.7612 

 
-0.7090 0.1399 

 
-0.0116 0.8959 

 

leverage 0.0308 0.2583 
 

-0.0086 0.9125 
 

0.0275 0.3133 
 

bm -0.0008 0.7765 
 

-0.0013 0.8098 
 

-0.0009 0.7200 
 

ep 0.0037 0.5617 
 

0.0111 0.6528 
 

0.0041 0.4660 
 

rect_sales -0.0864 0.6936 
 

-1.1444 0.3400 
 

-0.1693 0.2639 
 

rect_sales_indservices 0.0366 0.6569 
 

0.2865 0.2698 
 

0.0662 0.1845 
 

          

Misstating firm-years       109  
  

        40  
  

      149  
 

Nonmisstating firm-years  17,872        4,391       22,263      
 17,981  

  
  4,431  

  
 22,412  

 
          

R-Squared 
 

  0.051  
  

  0.066  
  

  0.055  
 

Note: For the variable leasedum, “xxxx” indicates that estimation failed when the model included this variable. To allow the 
regression to run, I removed the leasedum variable. 
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 Table 7 
Regression Results by Industry: Decade-Based Time Periods 

Panel A: All Industries                       
  1980 - 1989   1990 - 1999   2000 - 2008   All Years   
Variable Coefficient p-value   Coefficient p-value   Coefficient p-value   Coefficient p-value   
Intercept -7.6769 0.0000 *** -7.9239 0.0000 *** -7.7409 0.0000 *** -7.9005 0.0000 *** 
ch_rec 2.0088 0.0001 *** 1.5411 0.0000 *** 1.3178 0.0002 *** 1.2635 0.0000 *** 
ch_inv 1.6706 0.0031 ** 1.2204 0.0095 ** 0.9624 0.0664 

 
0.8679 0.0030 ** 

soft_assets 1.9193 0.0000 *** 1.6426 0.0000 *** 1.4858 0.0000 *** 1.6889 0.0000 *** 
ch_cs     

 
    

 
-0.0009 0.0651 

 
-0.0007 0.0812 

 

ch_cm     
 

-0.0007 0.0003 *** 
   

-0.0005 0.0018 ** 
tax 1.8343 0.0381 *     

    
    

 

leasedum     
 

0.7936 0.0000 *** 0.5805 0.0005 *** 0.6638 0.0000 *** 
oplease     

 
    

 
-0.2243 0.0776 

 
    

 

issue 0.6189 0.0208 * 1.1826 0.0000 *** 1.7981 0.0000 *** 1.3139 0.0000 *** 
cff     

 
    

 
-0.4089 0.0010 **     

 
             

Misstating firm-years 148 
  

404 
  

516 
  

1,068 
 

Nonmisstating firm-yrs 54,447 
  

68,345 
  

57,836 
  

180,628     
54,595 

  
68,749 

  
58,352 

  
181,696 

 
             

R-Squared 
 

0.041 
  

0.044 
  

0.040 
  

0.040 
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Panel B: Computer Hardware and Software                   
  1980 - 1989   1990 - 1999   2000 - 2008   All Years   
Variable Coefficient p-value   Coefficient p-value   Coefficient p-value   Coefficient p-value   
Intercept -6.8799 0.0000 *** -6.2734 0.0000 *** -5.8441 0.0000 *** -5.8806 0.0000 *** 
ch_rec 1.7596 0.0405 * 1.5612 0.0042 ** 

   
1.0924 0.0035 ** 

ch_inv     
 

2.3002 0.0116 * 
   

1.0762 0.0730 
 

soft_assets 3.5047 0.0016 ** 1.0318 0.0120 * 0.9415 0.0056 ** 1.0723 0.0000 *** 
leasedum -0.8707 0.0319 * 1.2373 0.0153 * 1.3482 0.0096 ** 0.8913 0.0004 *** 
oplease     

 
    

 
-0.2880 0.0779 

 
-0.3162 0.0251 * 

cff     
 

    
 

-0.4422 0.0400 * 
   

leverage     
 

0.0885 0.0187 * 
   

0.0869 0.0059 **              

Misstating firm-years 29 
  

128 
  

171 
  

328 
 

Nonmisstating firm-yrs 5,192 
  

9,763 
  

10,208 
  

25,163 
 

  
5,221 

  
9,891 

  
10,379 

  
25,491 

 
             

R-Squared 
 

0.058 
  

0.032 
  

0.019 
  

0.018 
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Panel C: Retail                        
  1980 – 1989   1990 - 1999   2000 - 2008   All Years   
Variable Coefficient p-value   Coefficient p-value   Coefficient p-value   Coefficient p-value   
Intercept -6.7538 0.0000 *** -6.7108 0.0000 *** -21.203 0.991 

 
-7.5584 0.0000 *** 

ch_rec 7.0520 0.0026 ** 
      

    
 

soft_assets     
 

2.6953 0.0025 ** 
   

1.7980 0.0008 *** 
tax -65.6836 0.0000 ***     

    
    

 

ch_emp     
 

0.0318 0.0254 * 
   

0.0205 0.0509 
 

EMP DIFF     
 

-0.0901 0.0038 ** 
   

-0.0288 0.0500 
 

oplease 2.0498 0.0729 
 

    
    

    
 

issue     
 

    
 

16.744 0.993 
 

1.4697 0.0128 * 
bm -0.2037 0.0035 **     

    
    

 

ch_sales_indretail    
 

0.0209 0.0611 
    

    
 

ch_sss     
 

    
    

-0.1077 0.0519 
 

ch_sss_indretail     
 

    
    

-0.0020 0.0765 
 

             

Misstating firm-years 9 
  

31 
  

36 
  

76 
 

Nonmisstating firm-yrs 4,177 
  

5,114 
  

3,540 
  

12,831     
4,186 

  
5,145 

  
3,576 

  
12,907 

 
             

R-Squared 
 

0.263 
  

0.043 
  

0.024 
  

0.028 
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Panel D: Services                        
  1980 – 1989   1990 - 1999   2000 - 2008   All Years   
Variable Coefficient p-value   Coefficient p-value   Coefficient p-value   Coefficient p-value   
Intercept -6.2333 0.0000 *** -7.8473 0.0000 *** -9.3545 0.0000 *** -8.2240 0.0000 *** 
ch_rec 2.3867 0.0424 * 1.2895 0.0620 

    
    

 

ch_inv 2.5703 0.0651 
 

    
 

2.1147 0.0030 ** 1.8143 0.0029 ** 
soft_assets     

 
1.7571 0.0030 ** 1.3945 0.0021 ** 1.7671 0.0000 *** 

ch_cs     
 

    
 

    
 

-0.0009 0.0139 * 
tax 8.8924 0.0002 ***     

    
    

 

leasedum     
 

    
 

2.3936 0.0177 * 1.0070 0.0038 ** 
issue     

 
1.7279 0.0169 * 1.9282 0.0081 ** 1.4266 0.0003 ***              

Misstating firm-years 17 
  

49 
  

83 
  

149 
 

Nonmisstating firm-years 6,209 
  

8,794 
  

7,260 
  

22,263     
6,226 

  
8,843 

  
7,343 

  
22,412 

 
             

R-Squared 
 

0.063 
  

0.045 
  

0.067 
  

0.052 
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Table 8 
Regression Results by Account: Decade-Based Time Periods 

Panel A: All Accounts                       
  1980 - 1989   1990 - 1999   2000 - 2008   All Years   
Variable Coefficient p-value   Coefficient p-value   Coefficient p-value   Coefficient p-value   
Intercept -7.6769 0.0000 *** -7.9239 0.0000 *** -7.7409 0.0000 *** -7.9005 0.0000 *** 
ch_rec 2.0088 0.0001 *** 1.5411 0.0000 *** 1.3178 0.0002 *** 1.2635 0.0000 *** 
ch_inv 1.6706 0.0031 ** 1.2204 0.0095 ** 0.9624 0.0664 

 
0.8679 0.0030 ** 

soft_assets 1.9193 0.0000 *** 1.6426 0.0000 *** 1.4858 0.0000 *** 1.6889 0.0000 *** 
ch_cs     

 
    

 
-0.0009 0.0651 

 
-0.0007 0.0812 

 

ch_cm     
 

-0.0007 0.0003 *** 
   

-0.0005 0.0018 ** 
tax 1.8343 0.0381 *     

    
    

 

leasedum     
 

0.7936 0.0000 *** 0.5805 0.0005 *** 0.6638 0.0000 *** 
oplease     

 
    

 
-0.2243 0.0776 

 
    

 

issue 0.6189 0.0208 * 1.1826 0.0000 *** 1.7981 0.0000 *** 1.3139 0.0000 *** 
cff     

 
    

 
-0.4089 0.0010 **     

 
             

Misstating firm-years 148 
  

404 
  

516 
  

1,068 
 

Nonmisstating firm-yrs 54,447 
  

68,345 
  

57,836 
  

180,628 
 

  
54,595 

  
68,749 

  
58,352 

  
181,696 

 
             

R-Squared 
 

0.041 
  

0.044 
  

0.040 
  

0.040 
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Panel B: Revenue                        
  1980 - 1989   1990 - 1999   2000 - 2008   All Years   
Variable Coefficient p-value   Coefficient p-value   Coefficient p-value   Coefficient p-value   
Intercept -8.3564 0.0000 *** -9.4985 0.0000 *** -8.7613 0.0000 *** -9.0105 0.0000 *** 
ch_rec 2.5898 0.0000 *** 2.1983 0.0000 *** 1.5686 0.0001 *** 1.7604 0.0000 *** 
ch_inv 1.7560 0.0095 ** 1.7983 0.0012 ** 

   
1.2023 0.0006 *** 

soft_assets 1.9272 0.0001 *** 1.9011 0.0000 *** 2.2681 0.0000 *** 2.1652 0.0000 *** 
tax 2.2024 0.0172 *     

    
    

 

leasedum -0.3888 0.0872 
 

0.9575 0.0004 *** 0.4017 0.0672 
 

0.4905 0.0002 *** 
oplease     

 
    

 
-0.2608 0.0463 * -0.2672 0.0205 * 

issue 1.0533 0.0088 ** 1.7311 0.0000 *** 1.7966 0.0000 *** 1.6083 0.0000 *** 
cff     

 
    

 
-0.2852 0.0606 

 
    

 
             

Misstating firm-years 91 
  

211 
  

265 
  

567 
 

Nonmisstating firm-yrs 54,504 
  

68,538 
  

58,087 
  

181,129 
 

  
54,595 

  
68,749 

  
58,352 

  
181,696 

 
             

R-Squared 
 

0.053 
  

0.061 
  

0.047 
  

0.050 
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Panel C: Accounts Receivable                      
  1980 - 1989   1990 - 1999   2000 - 2008   All Years   
Variable Coefficient p-value   Coefficient p-value   Coefficient p-value   Coefficient p-value   
Intercept -8.6062 0.0000 *** -10.9017 0.0000 *** -9.4663 0.0000 *** -10.1416 0.0000 *** 
ch_rec 2.7340 0.0082 ** 2.1587 0.0000 *** 1.3035 0.0238 * 1.7574 0.0000 *** 
ch_inv 3.1654 0.0008 *** 2.2027 0.0029 ** 

   
1.4249 0.0060 ** 

soft_assets     
 

3.3563 0.0000 *** 2.1824 0.0000 *** 2.5597 0.0000 *** 
leasedum 0.9017 0.0989 

 
1.3493 0.0093 ** 0.6439 0.0692 

 
1.0259 0.0001 *** 

oplease     
 

    
 

-0.3128 0.0083 ** -0.3619 0.0020 ** 
issue     

 
0.7220 0.0917 

 
1.4280 0.0053 ** 1.0000 0.0005 ***              

Misstating firm-years 26 
  

81 
  

112 
  

219 
 

Nonmisstating firm-yrs 54,569 
  

68,668 
  

58,240 
  

181,477 
 

  
54,595 

  
68,749 

  
58,352 

  
181,696 

 
             

R-Squared 
 

0.046 
  

0.081 
  

0.037 
  

0.053 
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Panel D: Inventory                       
  1980 - 1989   1990 - 1999   2000 - 2008   All Years   
Variable Coefficient p-value   Coefficient p-value   Coefficient p-value   Coefficient p-value   
Intercept -10.6788 0.0000 *** -10.4771 0.0000 *** -9.9863 0.0000 *** -10.6626 0.0000 *** 
ch_inv 2.6892 0.0010 ** 2.4521 0.0134 * 3.1853 0.0000 *** 2.5406 0.0000 *** 
soft_assets 3.3592 0.0004 ** 2.7439 0.0001 *** 3.0271 0.0000 *** 3.0515 0.0000 *** 
leasedum     

 
1.6556 0.0222 *     

 
0.8144 0.0040 ** 

issue 1.2119 0.0985 
 

    
 

1.5824 0.0090 ** 1.0647 0.0021 ** 
cff     

 
    

 
-0.7821 0.0080 **     

 
             

Misstating firm-years 31 
  

49 
  

75 
  

155 
 

Nonmisstating firm-yrs 54,564 
  

68,700 
  

58,277 
  

181,541     
54,595 

  
68,749 

  
58,352 

  
181,696 

 
             

R-Squared 
 

0.061 
  

0.048 
  

0.064 
  

0.057 
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Appendix A 
Variable Calculations  

        

Variable Abbreviation 
Pred 
sign   Calculation 

Misstatement flag misstate N/A  1 if misstatement firm-year    
 

 

Accruals quality related variables 
WC accruals wc acc + 

 

((Δ current assets - Δ cash) - (Δ current 
liabilities - Δ debt in current liabilities - Δ 
taxes payable)) / average total assets 

RSST accruals rsst acc + 

 

(Δ WC accruals + Δ ((total assets - current 
assets - investments and advances) - (total 
liabilities - current liabilities - long term 
debt)) + Δ ((short term investments + long 
term investments) - (long term debt + debt 
in current liabilitites + preferred stock))) / 
average total assets 

Change in receivables ch rec + 
 

Δ accounts receivable / average total 
assets 

Change in inventory ch inv +  Δ inventory / average total assets 
% Soft assets soft assets -  (total assets - PP&E - cash) / total assets    

 
 

Performance variables 
% Change in cash 
sales 

ch cs - 

 

((sales - Δ accounts receivable)t - (sales - 
Δ accounts receivable)t-n) / (sales - Δ 
accounts receivable)t-n 

% Change in cash 
margin 

ch cm - 

 

(1 - ((cost of goods sold - Δ inventory + Δ 
accounts payable) / ((sales - Δ accounts 
receivable))t - (1 - ((cost of goods sold - Δ 
inventory + Δ accounts payable) / ((sales - 
Δ accounts receivable)))t-n) / (1 - ((cost of 
goods sold - Δ inventory + Δ accounts 
payable) / ((sales - Δ accounts 
receivable))t-n 

Change in return on 
assets 

ch roa + 

 

(earnings / average total assets)t - 
(earnings / average total assets)t-n 

Change in free cash 
flows 

ch fcf - 

 

Δ (earnings - RSST accruals) / average 
total assets 

Deferred tax expense tax +  deferred tax expenset / total assetst-n    
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Nonfinancial variables 
Abnormal change in 
employees 

ch_emp - 

 

(((# employees)t - (# employees)t-n) / (# 
employees)t-n) - (((total assets)t - (total 
assets)t-n) / (total assets)t-n) 

Abnormal change in 
employees 

EMP DIFF - 

 

(((revenue)t - (revenues)t-n) / (revenue)t-n) - 
(((# employees)t - (# employees)t-n) / (# 
employees)t-n)    

 
 

Off-balance-sheet variables 
Existence of 
operating leases 

leasedum + 

 

1 if future operating lease obligations > 0 

Change in operating 
leases 

oplease + 

 

(Δ Σ(present value of future operating 
lease obligations)) / average total assets    

 
 

Market-related variables 
Issuance of securities issue +  1 if securities issued during the year 
New financing raised cff + 

 
amount of financing raised / average total 
assets 

Leverage leverage +  long-term debt / total assets 
Book to market bm -  equity / market value 
Earnings to price ep -  earnings / market value    

 
 

New variables – all industries 
Receivables to total 
sales 

rect sales + 

 

total receivables / sales 

Receivables to total 
sales, compared to 
industry 

rect sales ind + 

 

(rect sales (firm-year) - rect sales 
(industry-year)) /  rect sales (industry-
year) 

   
 

 

Computer hardware and software variables 
% Change in total 
sales 

ch sales + 

 

(salest - salest-1) / salest-1 

% Change in total 
sales, compared to 
industry 

ch sales ind + 

 

(ch sales (firm-year) - ch sales (industry-
year)) / ch sales (industry-year) 

% Change in 
receivables to % 
change in sales 

ch rect ch 
sales 

+ 

 

((total receivablest - total receivablest-1) / 
total receivablest-1) - ((salest - salest-1) / 
salest-1) 

% Change in 
receivables to % 
change in sales, 
compared to industry 

ch rect ch 
sales ind 

+ 

 

(ch rec ch sales (firm-year) - ch rec ch 
sales (industry-year)) / ch rec ch sales 
(industry-year) 
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Retail variables 
  

 
 

% Change in total 
sales 

ch sales + 

 

(salest - salest-1) / salest-1 

% Change in total 
sales, compared to 
industry 

ch sales ind + 

 

ch sales (firm-year) - ch sales (industry-
year) 

Same store sales sss +  Data obtained via COMPUSTAT 
Same store sales, 
compared to industry 

sss ind + 

 

sss (firm-year) - sss (industry-year) 

% Change in same 
store sales 

ch sss + 

 

(ssst - ssst-1) / ssst-1 

% Change in same 
store sales, compared 
to industry 

ch sss ind + 

 

ch sss (firm-year) - ch sss (industry-year) 

% Change in sales to 
square feet retail 
space 

ch net sales 
sqft 

+ 

 

((net sales / sqft)t - (net sales / sqft)t-1) / 
(net sales / sqft)t-1 [net sales / sqft provided 
by COMPUSTAT] 

% Change in sales to 
square feet retail 
space, compared to 
industry 

ch net sales 
sqft ind 

+ 

 

ch net sales sqft (firm-year) - ch net sales 
sqft (industry-year) 

% Change in sales to 
number of retail 
stores 

ch net sales 
stores 

+ 

 

((net sales / average retail stores)t - (net 
sales / average retail stores)t-1) / (net sales / 
average retail stores)t-1 

% Change in sales to 
number of retail 
stores, compared to 
industry 

ch sales 
stores ind 

+ 

 

ch net sales stores (firm-year) - ch net 
sales stores (industry-year) 
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