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Abstract  

Condensed phases in the environment are often chemically complex. Reactivity can differ 

significantly depending on the physical state (i.e. solid or liquid) and composition. Many 

laboratory studies that investigate reaction kinetics in condensed phases are done under 

simplified conditions that do not accurately reflect the complexity found in the environment. I 

have measured photolysis rate constants of the aromatic pollutants toluene, ethylbenzene, 

xylenes (TEX) and anthracene under environmentally-relevant conditions in order to improve 

fate predictions. The photolysis kinetics of TEX in water, ice and at ice surfaces were 

investigated using environmentally-relevant wavelengths. Previously, photolysis has not been 

considered a viable degradation pathway for these compounds in the environment because their 

absorbance spectra in water does not overlap with wavelengths that reach the Earth’s surface. 

However, I observed photolysis in ice granules, suggesting direct photolysis could be an 

important removal pathway for TEX in snow-covered environments.  

   Sodium chloride (NaCl) and organic matter (OM) are common constituents of 

condensed phases in the environment. However, the combined effects of salt and organic matter 

on anthracene photolysis rate constants have previously not been investigated. Therefore, I 

measured anthracene photolysis rate constants in water, octanol, and phase-separated aqueous-

organic mixtures containing varying concentrations of sodium chloride. In aqueous-organic 

mixtures, anthracene photolysis rate constants were largely explained by a salting-out effect. 

However, these results are complicated by turbulence, as evidenced by different kinetics 

observed in stirred and stagnant mixtures. My results suggest that anthracene photolysis kinetics 

in the environment may not be well described by simple matrices.    
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1.1 Aromatic Pollutants in the Environment  

1.1.1 Production and Emission  

Aromatic pollutants are common atmospheric species. Some aromatic compounds are 

produced through biogenic processes, but many, such as benzene, toluene, ethylbenzene, xylenes 

(BTEX) and polycyclic aromatic hydrocarbons (PAHs), can be produced through anthropogenic 

processes. Such processes include fossil fuel extraction, combustion, production of consumer 

goods, landfills, and metal and steel processing.1–5 According to the U.S Environmental 

Protection Agency (USEPA), approximately 22,000 metric tons of BTEX and 30,000 metric tons 

of PAHs were emitted by anthropogenic sources in 2015.6–9 For BTEX, the most dominant 

sources are automobiles and industrial practices. Toluene, ethylbenzene and xylenes are common 

industrial solvents and cleaners. Industrial practices make up 5-10% of all BTEX emissions.5 

The rest primarily come from automobiles. In fact, 68% of the national benzene inventory comes 

from on-and-off road vehicles alone.10 Conventional gasoline typically consists of 20-30% 

BTEX.11,12 Automobiles are also a major source of PAHs, accounting for about 20% of total 

annual PAH emissions globally.1,7 Consequently, BTEX and PAHs are ubiquitous in the 

environment and can even be found in extremely remote areas such as the Arctic.  

1.1.2 Human and Environmental Health Effects of BTEX and PAHs  

The Clean Water Act of 1977 defined 16 PAHs as priority pollutants due to their toxicity 

and genotoxicity.13 Many PAHs are carcinogenic and their carcinogenicity tends to increase as 

their molecular weight increases.2 Lower molecular weight PAHs tend to exist in significantly 

higher concentrations in the gas phase whereas higher molecular weight PAHs tend to be bound 

to particulate matter in the air.4,14–16 Human exposure to PAHs primarily occurs through 

inhalation and ingestion.17,18 Exposure through inhalation is of particular concern because when 
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inhaled, PAHs are capable of entering the blood stream more easily.19,20 Upon exposure, PAHs 

are metabolized into PAH-DNA adducts which can interfere with metabolic processes and cause 

mutations that ultimately lead to cancer.2,18,21,22 PAH metabolites may also cause oxidative 

damage to macromolecules in the body by forming reactive oxygen species.23 Due to their 

lipophilicity, PAHs are also easily absorbed by the gastrointestinal tract when ingested and are 

distributed to fat cells which can result in bioaccumulation in the body.19 PAHs can undergo 

chemistry that results in products that are often more toxic than the parent compound.2,24,25 For 

example, a recent study that evaluated the photomutagenicity of 16 PAHs determined at least 6 

PAHs to be strongly photomutagenic, meaning they became significantly more mutagenic when 

exposed to UV light, and 5 PAHs to be weakly photomutagenic.26 When exposed to PAHs, 

humans are not only likely exposed to a mixture of different PAHs but these potentially more 

toxic products as well.  

Benzene, toluene, ethylbenzene and xylenes are also on the list of priority pollutants 

identified by the Clean Water Act.13 Benzene is classified as a category A carcinogen by the 

USEPA and its carcinogenicity, and particularly its link to leukemia, has been well studied.10,27,28 

Toluene, ethylbenzene and xylenes are classified as potential carcinogens and acute exposure to 

these compounds has been linked to central nervous system, pulmonary and renal toxicity.29 For 

example, prolonged exposure to toluene vapor has been shown to cause peripheral nerve 

damage.19,29 Long term exposure to ethylbenzene has resulted in kidney and liver tumors in rats 

as well as irreversible hearing damage.19,29,30 Xylenes have also been suggested to cause liver 

and kidney damage in humans exposed to high concentrations.19,29 Recently, it has been 

suggested that BTEX may be associated with reproductive health issues such as sperm 

abnormalities and reduced fetal growth.5,31 BTEX has also been suggested to have endocrine 
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disrupting properties.5 Other health effects of BTEX include nausea, dizziness, eye, ear and 

throat irritation, muscle weakness and loss of balance or coordination.19,29 Due to their relatively 

high vapor pressures, humans are primarily exposed to BTEX through inhalation.32 Once 

inhaled, BTEX is readily absorbed by the lungs and distributed to fat cells or metabolized to 

form oxidized products. Similar to PAHs, BTEX can also react in the environment to form 

products that are more toxic than the compounds themselves.24  

PAHs and BTEX do not only pose human health risks but ecological health risks as well. 

PAHs and BTEX have been implicated in altering bacteria diversity which can negatively affect 

plant health and growth.33 Some species of plants have exhibited adverse reactions when exposed 

to elevated concentrations of PAHs. For example, PAHs have been suggested to be associated 

with aging and chlorophyll degradation in spruce trees.34 PAHs and BTEX have also been 

observed to impact aquatic life. Zooplackton abundance was reported to decrease upon exposure 

to PAHs and PAHs have also been suggested to cause coral bleaching.35,36 Furthermore, BTEX 

has been shown to be toxic to certain algae species; it was reported to change morphology and 

decrease chlorophyll in Euglena gracilis algae.37  

1.2 Fate of PAHs and BTEX in the Environment  

1.2.1 Physical Fate/Partitioning/Transport  

Both PAHs and BTEX are non-polar, hydrophobic molecules. Octanol-water partition 

coefficients (Log Kow) for PAHs range from 3 to 7 while BTEX partition coefficients range from 

2 to 3.8 Consequently, both PAHs and BTEX prefer to associate with organic phases such as 

organic matter in surface waters or aerosols. Detectable amounts of both BTEX and PAHs have 

been observed in the aqueous phase as evidenced by several field studies which have detected 

PAHs and BTEX in various environmental waters.38–41 Henry’s law constants (Log Kaw) for 
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BTEX range from ~ -0.5 to -0.7 whereas constants for some PAHs span a much wider range of ~ 

-1 to -4.8,42 These values indicate favorable partitioning to water over air for both BTEX and 

PAHs but predict greater potential for PAHs to partition to water from air than BTEX.  

PAH and BTEX partitioning in the environment cannot be fully described from these 

values alone. This is because condensed phases in the environment often contain a variety of 

species which can affect partitioning. For many environmentally relevant matrices, experimental 

partition coefficients are not available.8 Thus, these values are often estimated using 

thermodynamic calculations.8,43 The singular effects inorganic salts have on the partitioning of 

organics has been well studied.8,44–46 Generally, partition coefficients between the aqueous phase 

and non-aqueous phase increase with increasing amount of salt for large, non-polar organics.8 

This phenomenon is commonly referred to as salting out. The magnitude of this effect depends 

on the compound and types of ions present.8,44 However, environmental condensed phases will 

usually contain a mixture of salts. Very few studies have investigated partition coefficients of 

organics in salt mixtures. Specifically, it is largely unknown whether the effects of multiple salts 

are additive.47 The salting out of naphthalene and toluene were found to increase when in the 

presence of a mixture of salts.47,48 But, the salting out of benzene was reported to decrease.49 

These findings illustrate the difficulties in predicting partition coefficients for organics in 

environmental condensed phases.   

There are numerous routes PAHs and BTEX may take to enter natural waters. Some of 

those routes include sewage runoff, wet/dry deposition, and leeching from soils.2,50–52 Both 

PAHs and BTEX are commonly adsorbed onto aerosols which can be washed out through 

precipitation and transferred to surface waters.11,53,54 Detectable amounts of BTEX (1 to 30 µg/L) 

have been observed in surface waters.55,56 Concentrations of low molecular weight PAHs (≤ 3 
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aromatic rings) in surface waters have been found up to hundreds of ng/L and higher molecular 

weight PAHs have been found up to ~ 30-50 ng/L.2,57–59 However, even higher concentrations 

have been observed in areas with significant fossil fuel production. Extremely high gas-phase 

mixing ratios (> 40 ppbv) for BTEX have been observed in a region with significant hydraulic 

fracturing activity; average ambient mixing ratios range from 1-10 ppbv.60,61 Total benzene and 

toluene emissions from this region were estimated to be 1-2 kg yr-1.61 Furthermore, elevated 

BTEX emissions/concentrations were observed in “produced water ponds” from the same 

region.62 “Produced water” is water that is coextracted along with natural gas or oil and is often 

stored in open ponds so that it can be removed via evaporation.62 These studies suggest hydraulic 

fracturing operations may be significant point sources for BTEX. Oil, gas, petroleum, solvent or 

fracking fluid spills are also very important transmission routes for PAHs and BTEX as a single 

event is capable of releasing extremely high concentrations of these compounds into the 

environment.63,64   

PAHs and BTEX can also be adsorbed onto ice and snow particles.65,66 This leads to the 

detection of both classes of compounds found in snowpacks or entrapped in ice.65–68 Multiple 

studies have detected concentrations of BTEX on the order of hundreds of µg/L in both rural and 

semirural snow packs.67,69,70 Concentrations of PAHs have been reported to range from 100 ng/L 

to several µg/L in urban snow packs.71–73 In the arctic, PAH concentrations of up to 100 ng/L 

have been reported.74,75 Thus, snow and ice melt are another route PAHs and BTEX can take to 

enter bodies of water. In fact, multiple studies have observed that organic contaminants in 

melting snowpacks will be transported to surrounding environments in short, concentrated 

pulses.76–78 This transfer is even more rapid in urban areas mostly covered with impervious 

surfaces.76  
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PAHs and BTEX can be found in remote regions of the world due to long range 

atmospheric transport. Long range atmospheric transport is typically facilitated by aerosols or 

other particles. Gas phase transport is possible at high altitudes but, at lower altitudes gaseous 

phase PAHs and BTEX tend to react quickly with OH radicals, and condensed phase or sorbed 

lifetimes are typically much longer than gaseous lifetimes.24,79,80 Consequently, both groups of 

compounds are regulated as part of the United Nations Economic Commission for Europe 

Convention on Long Range Transboundary Air Pollution.81 When sorbed to particles, PAHs and 

BTEX may undergo chemical reactions that will affect their lifetimes. Thus, understanding their 

chemical fate in these systems is important to understanding their long-range transport potential 

and overall fate in the environment.  

1.2.2 Photochemical Fate 

1.2.2.1 Direct Photolysis 

 Direct photolysis refers to a compound undergoing a transformation after absorbing 

light.8 Direct photolysis is an important sink for PAHs in the environment but is not considered a 

major sink for BTEX. This is because absorption spectra of BTEX do not overlap with the 

wavelengths of sunlight that reach the Earth’s surface.82 BTEX absorb strongly between 240-260 

nm in condensed phases and < 200 nm in the gas phase.8,24,82 However, solar wavelengths shorter 

than ~290 nm are typically filtered out by stratospheric ozone and therefore do not reach the 

Earth’s surface.24 Thus, BTEX was not believed to be able to undergo direct photolysis in the 

environment. However, recent research has suggested that benzene is able to undergo direct 

photolysis when on ice surfaces.82 This is attributed to benzene exhibiting a red-shift in its 

absorbance spectrum when on the ice surface.82 The direct photolysis of BTEX on ice surfaces 

will be discussed in greater detail in Chapter 3.  
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 PAHs are able to undergo direct photolysis in both the gas phase and condensed phase. 

Typically, photolysis occurs more rapidly in condensed phases than the gas phase.2,24 The 

proposed mechanisms for PAH photolysis in aqueous solution include direct ionization or 

reaction with molecular oxygen.83–85 Direct ionization has been reported to not be an important 

pathway for PAHs at the Earth’s surface due to photons with wavelengths < 290 nm required for 

this pathway to occur.83 Therefore, molecular oxygen likely plays an important role in the 

degradation of some PAHs, though its exact mechanist role is unknown. Currently the two 

proposed mechanisms involving molecular oxygen are reaction of triplet state PAH (Scheme 1) 

or electron transfer (Scheme 2).83,85 It is important to note that not all PAHs will react via the 

same photolysis mechanism. For example, the PAHs pyrene and benzo[a]pyrene react via a 

singlet state whereas anthracene reacts primarily through the triplet state.84 Furthermore, some 

PAH photolysis kinetics do not show a dependence on O2, suggesting an alternative 

mechanism.83 

Scheme 1: Proposed reaction of triplet state PAH with oxygen (adapted from Reference 83). 

PAH 
hυ
→  PAH∗ →1 PAH∗3 + O2 →

3 [ PAH∗3 − O2] →  Product
3  

Scheme 2: Proposed reaction of singlet state PAH with oxygen (adapted from Reference 83).  

PAH 
hυ
→ PAH∗ + O2

−e−

→  31 PAH.+ + O2
− + H2O

−H+

→  Product 

The local environment can greatly affect reaction kinetics. Solvent polarity has been 

shown to have a significant effect on PAH photolysis rate constants, with photolysis rate 

constants increasing as solvent polarity increases.86–89 Different photolysis products in organic 

solvents than aqueous solvents have also been reported, suggesting that the reaction mechanisms 
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may differ between condensed phases.24,90,91 The products formed from the direct photolysis of 

PAHs include aldehydes, quinones and other oxygenated products.2,8,25 For example, the 

products of anthracene photolysis are primarily oxidized derivatives of anthracene.8,24,92 The 

main product of anthracene photolysis in both polar and apolar solvents is 9,10-anthraquinone 

(Figure 1.1).24,92 However, photodimer products that have not been found in polar solvents have 

been found in apolar solvents.92 If the apolar solvent is purged of oxygen then the 9,10-

photodimer will become the major product formed (Figure 1.1).92 It is currently not well 

understood why these differences in products are observed. It has been suggested that the 

solvent’s hydrogen donor potential may play a role, but this has not been thoroughly 

investigated.90,92    

 

Figure 1.1: Photolysis products for anthracene in aqueous solution (A) and purged, non-polar 

solution (B).  

Different photolysis rates have also been reported for BTEX and PAHs on several 

atmospheric surfaces compared to in aqueous solution, suggesting a different reaction 

mechanism there.82,85,87,93,94  The photolysis of PAHs on the surface of black carbon has been 

reported to almost negligible, with reported half-lives greater than 1,000 hours.95 Conversely, 
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some PAHs have been reported to photolyze more quickly on silica and alumina surfaces than in 

aqueous solution.95–99 The photolysis of PAHs and BTEX on ice surfaces will be discussed in 

more detail in section 1.3 and Chapter 3. However, it is important to note that some PAHs and 

benzene have been reported to photolyze more quickly on ice surfaces as well.93,94,100–104 Thus, it 

is evident that photolysis kinetics will depend on the physical and chemical properties of the 

substrate. Photolysis products will also depend on the properties of the substrate as evidence by 

studies which report different photolysis products for aromatic pollutants on surfaces than in 

solution.87,95,105 Products not observed from pyrene photolysis in aqueous solution were observed 

on silica surfaces.91,106 In another study, different photochemical products on ice than in aqueous 

solution were observed for chlorobenzenes and chlorophenols.105 One reason proposed as to why 

different products are observed is that there is greater aggregation of these compounds at the 

surface than in aqueous solution.95,105 However, competing mechanisms have been proposed for 

the same PAHs on silica surfaces and mechanisms on ice surfaces have not been extensively 

studied.96,106,107    

1.2.2.2 Indirect Photolysis  

 Indirect photolysis can be defined as a compound undergoing a transformation as the 

result of light absorption by another chemical in the system.8 With respect to the fate of organic 

contaminants, the most important indirect photolytic reactions are photosensitization and 

generation of highly reactive species. Photosensitization is an energy, electron or hydrogen 

transfer reaction that occurs as a result of light absorption by a chemical other than the analyte.8 

One of the most environmentally relevant photosensitized reactions is reaction with triplet state 

chromophoric dissolved organic matter (3CDOM*).108 In these reactions, CDOM is first excited 

to a short lived singlet state (1CDOM*) and then is converted to a longer lived triplet state 
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(3CDOM*).8 This excited triplet state molecule can then go on to react with PAHs, BTEX or 

other organic pollutants directly, or can produce reactive species including hydroxyl radicals 

(OH), singlet oxygen (1O2), hydrogen peroxide, ozone, carbonate, sulfate and nitrite radicals, and 

halogen radicals (Figure 1.2).8,109–112 All of these compounds can potentially react with PAHs or 

BTEX as well, often at faster rates than possible via direct photolysis.8  

 

Figure 1.2: Possible pathways for indirect photolysis of organic pollutant i with CDOM (adapted 

from Reference 8). 

1.3 Photolysis of PAHs and BTEX in Condensed Phases 

1.3.1 Overview 

Understanding chemical complexity and reactivity in condensed phases within the 

environment has been a major focus of environmental chemistry research. Condensed phases 
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include surface waters, aerosols, snow and ice to name a few. They are important chemical 

reactors with distinct chemical and physical properties. Consequently, reaction kinetics can vary 

significantly between different environments such as surface waters and snow, for 

example.82,85,102,105,113–123         

1.3.2 Water  

1.3.2.1 Overview 

Surface waters are important sinks for BTEX and PAHs. Comparatively, the aqueous 

chemistry of these compounds has been more studied than their snow and ice chemistry. 

However, much still remains to be known about the subject such as how different components of 

environmental waters will affect their kinetics. Natural waters contain many different 

components which can affect reaction kinetics and mechanisms. Some of these components 

include halides, organic matter, reactive oxygen species, bacteria and metals. Since photolysis is 

believed to be one of the most important reaction pathways, much of the discussion has been 

based on their photochemical fate. However, many studies on the subject have been carried out 

under simplified conditions that do not accurately reflect the complexity of the natural 

environment. Thus, much remains unknown about the photochemical fate of PAHs and BTEX in 

natural waters. 

1.3.2.2 Effects of Halides 

Halides such as chloride, bromide and iodide are common in surface waters. They are 

also commonly found in atmospheric particles such as cloud droplets and aerosols.124,125 

Chloride concentrations in seawaters average around 0.5 M. Bromide and iodide concentrations 

are generally much lower than chloride, with average bromide and iodide seawater 
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concentrations on the order of micromolar and nanomolar, respectively.126,127 In freshwater, 

lower concentrations are observed; typically freshwater chloride concentrations range from 

micromolar to millimolar.128 However, significantly high (> 6 M) chloride concentrations can be 

present in atmospheric particles.24,124  

Halides have been shown to have variable effects on the photolysis kinetics of some 

aromatic species. For some compounds, the rate constants have increased, some have decreased 

and some have exhibited no change.115,116,129–134 For example, work from our group showed that 

pyrene photolysis was unaffected by the presence of halides but anthracene photolysis rates 

increased.134 The mechanisms by which halides affect the photolysis of aromatic organics are not 

well understood. Proposed mechanisms include the production of hydroxyl radicals, enhanced 

intersystem crossing leading to enhanced singlet oxygen production, and the formation of 

halogen radicals.8,133,135 We determined that anthracene photolysis rates increased in the presence 

of halides due to enhanced singlet oxygen production.134  

1.3.2.3 Effects of Organic Matter 

 High organic matter concentrations can be present in natural waters. Organic matter is 

also often associated with aerosols, fog and rain droplets. The presence of OM can greatly affect 

PAH photolysis kinetics and mechanisms. However, the effect organic matter has on PAH 

photolysis kinetics will vary depending on the viscosity, polarity and type of organic matter. For 

example, McDow et. al. examined the photolysis rate of benz[a]anthracene in 10 different classes 

of organic solvents and observed significantly different rates.136 A number of studies have 

investigated the effects of viscosity and polarity on PAH photolysis. The presence of OM in 

some cases can result in a highly viscous mixtures or phases. For example, OM in secondary 

organic aerosols can be so highly viscous that some researchers describe it as an amorphous solid 
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rather than a liquid.137,138 The photochemical reaction rates of some atmospheric species have 

been reported to decrease with increasing viscosity.137–139 This decrease is largely attributed to 

the viscous solvent slowing or hindering molecular motion.138 However, when in the presence of 

a photosensitizer or radical precursor, the photodegradation rates of some nitro-PAHs were 

reported to increase when in highly viscous organic solvents.139 This effect was enhanced when 

the viscous solvent was polar as opposed to non-polar.139,140 In aqueous solution, 

benz[a]anthracene quantum yields were observed to decrease with increasing acetonitrile 

fraction.92 Several other studies have reported that some PAHs, including anthracene, photolyze 

more slowly in organic solvents than in aqueous solution.86–89 Work from our group suggests that 

this is due to polarity effects.86  

Organic matter is often classified as chromophoric (absorbs sunlight), or non-

chromophoric (does not absorb sunlight). Each type has unique effects on photolysis kinetics. 

Non-chromophoric organic matter can potentially suppress photolysis rates by affecting 

partitioning and polarity as described above. Chromophoric organic matter (COM) can enhance 

photolysis kinetics by acting as a photosensitizer or producing reactive oxygen species.94,141–143 

Chromophoric organic matter can be further classified into chromophoric dissolved organic 

matter (CDOM) or humic like substances (HULIS).144 Traditionally, HULIS refers to 

chromophoric organic matter that is found in aerosols or cloud droplets.145 CDOM refers to 

chromophoric organic matter found in surface waters.145 HULIS generally originates from 

terrestrial sources whereas CDOM originates from aquatic sources. HULIS can be further 

divided into three categories: fulvic acids, humic acids and humin.144–146 Fulvic acids are soluble 

in water at all pH levels whereas humic acids are not soluble in water with pH < 2.145 Humin is 

not soluble in water at any pH.145 These compounds have high molecular weights and contain a 
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variety of functional groups including (but not limited to): carboxylic acids, ketones, aldehydes, 

quinones, phenols and unsaturated hydrocarbons.144,146 Their exact structures are not known but 

their effects on the photochemical fate of aromatic pollutants in natural waters has been 

studied.147–150 These studies determined that fulvic acid and humic acid could have differing 

effects on photolysis kinetics. For example, phenol was reported to degrade more quickly in 

aqueous solutions containing humic acid than solutions containing fulvic acid.147 Furthermore, 

the effects are not the same for all compounds. Anthracene’s photolysis rate constant was 

observed to increase in the presence of fulvic acid.149 But, in the same study, the photolysis rate 

constants for 11 other PAHs were observed to be largely unchanged.149  

In some cases, organic matter can exist as a distinct phase such as sea surface microlayers 

or organic films coating the surface of inorganic or aqueous aerosols.89,151–154 Even a monolayer 

of immiscible OM on the surface can affect reactivity and partitioning. The reaction of 

anthracene with ozone was observed to be faster at air-water interfaces covered with a monolayer 

of 1-octanol than at pure air-water interfaces.155,156 Similarly, other studies have reported 

enhanced ozonation kinetics of aromatics at air-water interfaces containing organics such as 

chlorophyll.89,157,158 It is suggested that these faster reaction kinetics are due to enhanced uptake 

of ozone to the air-water interface. Several studies have observed an increase in uptake of ozone 

to the air-water interface when coated with a thin film of organic matter.155,157,158 Enhanced 

uptake of some PAHs to an air-water interface covered in a single monolayer of 1-octanol 

(compared to a pure water surface) has been observed as well.159 Due to their hydrophobicity, 

aromatic organic pollutants such as PAHs and BTEX are expected to preferentially partition to 

the organic phase in phase-separated aqueous-organic mixtures. Previous work in our group 

reports slower anthracene photolysis kinetics in phase-separated aqueous-octanol mixtures than 
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in aqueous solution.86 Therefore, the presence of even small amounts of organic matter in natural 

waters can significantly alter pollutant fate. 

1.3.2.4 Effects of Reactive Oxygen Species, Bacteria and Metals 

Species other than halides and organic matter, such as reactive oxygen species, bacteria 

and metals can affect pollutant fate in surface waters as well. The effects these species have on 

PAH and BTEX fate in condensed phases will not be discussed in detail in later chapters. 

However, they are involved in many important processes that determine organic pollutant fate. 

Therefore, they are worth briefly mentioning. Reactive oxygen species include singlet oxygen, 

hydrogen peroxide, superoxide, and hydroxyl radicals (OH). Numerous studies have reported 

increased degradation rates for a variety of aromatic pollutants when these species are 

present.8,24,141,160,161 Hydroxyl radicals are primarily formed through photolysis from precursors 

such as nitrate, nitrite, hydrogen peroxide, and CDOM.8,24 They react very quickly with aromatic 

organics in aqueous phases. Therefore, reactions involving OH are of particular interest to 

environmental chemistry. Hydroxyl radicals are also formed through Fenton chemistry. The 

Fenton reaction is the reaction of Fe(II) with hydrogen peroxide to produce Fe(III) and OH 

(Scheme 3, Reaction 1).8 This reaction is catalytic and will produce Fe(II) again through 

reduction of Fe(III) by hydrogen peroxide (Scheme 3, Reaction 2).8 Fenton chemistry occurs 

even in the absence of sunlight and is one of the most important sources of OH in waters during 

the night.162,163 However, the rate of the reaction is very slow without sunlight. Recent work from 

our group has shown that the rate of this reaction in the dark can be increased by up to a factor of 

6 when in the presence of Shewanella oneidensis, a species of iron reducing bacterial found in 

natural waters.163 In the same study, it was also demonstrated that this chemistry can result in 

rapid degradation of anthracene in the dark.163 This is not the first study to report bacteria-
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assisted degradation of organic pollutants; other species of bacteria can directly degrade organics 

as well.164,165 This illustrates the importance reactive oxygen species, metals and bacteria can 

have on aromatic pollutant fate in natural waters.   

Scheme 3: Dark Fenton Reaction (adapted from Reference 163). 

H2O2 + Fe
2+ → Fe3+ + OH + OH−           (1)  

 H2O2 + Fe
3+ → Fe2+ + HO2

•/O2
•− + H+   (2) 

1.3.3 Snow and Ice  

1.3.3.1 History of Snow Photochemistry 

Snow and ice chemistry remains poorly understood. For many years, snow and ice were 

believed to only act as physical sinks for atmospheric species and not play a significant role in 

chemistry. It was not until the 1980s, when it was discovered that the destruction of ozone in the 

atmospheric boundary-layer in the arctic could only be explained through photochemical 

reactions taking place in the snow pack and on the surfaces of aerosols, that ice and snow 

chemistry began to receive considerable attention.166,167 Following this discovery, numerous field 

campaigns and laboratory studies were conducted which largely focused on snow and ice 

chemistry.166,168–174 These studies yielded important observations about snow and ice chemistry’s 

impact on the composition of the atmospheric boundary-layer. The atmospheric boundary-layer 

is the layer of atmosphere just above the Earth’s surface. It is the layer most strongly influenced 

by the surface. The thickness of this layer will vary greatly depending on the temperature; it can 

range from several km during the warmer daytime to less than 1 km during the night (Figure 

1.3).175 A similar phenomenon is observed between hot climates and cold climates; more shallow 
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boundary layers are observed in arctic regions than hot, arid regions.175 Temperature is also one 

of the factors which determines the extent of mixing in this layer. In warmer climates, significant 

mixing can occur which aids in the dispersion and transportation of pollutants or other species 

emitted from the surface to other parts of the atmosphere.175 However, in cold, snow covered 

regions, little vertical mixing occurs, and the boundary layer is often very stable.166 

Consequently, species emitted from the snowpack are confined to the atmospheric boundary-

layer which can significantly affect the atmospheric chemistry observed there.166   

 

Figure 1.3: Illustration of the daily cycle of the atmospheric boundary-layer (adapted 

from Reference 175).  

In 2000, flux measurements taken in Summit, Greenland provided evidence that sunlit 

snowpacks are able to emit NOx, which explained the daily variation of NOx observed in the 

polar springs and summers.170 In another study, it was revealed that atmospheric OH 

concentrations in the south pole were 10 times higher than predicted by gas-phase models, 
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suggesting that snowpack chemistry played a significant role in the production of OH.173 

Concentrations of many other atmospheric compounds including but not limited to 

formaldehyde, acetaldehyde, acetone, nitrous acid (HONO), and peroxy radicals (HO2·) were 

much higher above the snowpack than predicted by models (Table 1.1).113,169,174 All of these 

compounds have significant influence on the atmospheric lifetimes of pollutants and the 

oxidizing capacity of the boundary layer.  

Table 1.1: Measured concentrations of gaseous species in April 2000 at Alert, Canada 

compared with values predicted by gas-phase chemistry models (adapted from Reference 166).    

Species 

Value measured over 

snow 

Value predicted based on gas-phase 

chemistry 

HCHO 200 pptv 70 pptv 

CH3CHO 80 pptv 40 pptv 

NOX 25 pptv 1 pptv 

HONO 20 pptv 1 pptv 

OH 0.03 pptv 0.003 pptv 

HO2 3.7 ppt 0.9 ppt 

O3 0.07 ppb 30-34 ppbv 

Hg0 0.02 pptv 0.17 pptv 

  

 The underlying chemistry and mechanisms associated with many of the observations 

described above are still not well understood to this day. However, since these observations were 

first made, there have been considerable advances in our understanding of snow and ice 

chemistry. Perhaps the most influential discovery was the role of snow and ice chemistry in the 

catalytic destruction of ozone. It is now recognized that the ozone depletion events observed 

during springtime in the arctic (which cause the large discrepancy between the predicted and 

measured ozone levels reported in Table 1.1) are due to halogen activation.24,115,166,169,176–179 

Halogen activation refers to when relatively inert halide salt ions are converted into reactive 
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halogen species.24 Concerning tropospheric ozone depletion events, bromide ions at ice surfaces 

are converted to Br2 according to Scheme 4.176,180 This is then released to the gas phase where it 

photolyzes to form reactive bromine atoms.176 The reactive bromine atoms can then go on to 

react with ozone to produce BrO, which can then be used to regenerate HOBr (Scheme 4).176,180 

Thus, tropospheric ozone is catalytically destroyed through this series of reactions. This 

discovery helped explain the ozone hole observed in the Antarctic about a decade earlier.24,176,181 

It is now widely accepted that stratospheric ozone destruction occurs through chlorine activation 

taking place on the ice surfaces which make up polar stratospheric clouds.24,107,144,166,181–183 

Together, these studies helped establish the snowpack as a complex chemical reactor as well as 

the field of atmospheric ice chemistry. 

Scheme 4: Bromine activation and destruction of ozone (adapted from Reference 180) 

HOBr + Br− + H+ →H2O + Br2      (1) 

Br2
hν
→2Br                                               (2) 

Br + O3 → BrO + O2                            (3) 

BrO + HO2 →HOBr + O2                   (4) 

1.3.3.2 Properties of Ice and Ice Surfaces 

Much of the lack of understanding of snow and ice chemistry stems from a lack of 

understanding of the chemical and physical properties of ice and ice surfaces. Reactions in ice 

can take place in pockets and veins of liquid water within the ice or on the ice surface.184 In bulk 

ice, solutes are believed to primarily exist in the pockets and veins of water.184–186 Therefore, 

reactivity in bulk ice has been reported to be similar to that in water.93,187,117 During the 
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formation of ice, solutes are excluded from the ice matrix during freezing, resulting in higher 

solute concentrations within these pockets and veins or at the surface.186,188 In some cases, this 

phenomenon can result in unique reactivity. For example, the enhanced reactivity of bromide 

with ozone at the air-ice interface has been attributed to freeze exclusion.189 Increased reactions 

rates were observed after freezing for some organics, such as p-nitroanisole (PNA) and pyridine, 

as well.102 However, freeze exclusion does not completely explain the reactivity observed at ice 

surfaces. Many compounds that have been deposited onto ice from the gas phase, and therefore 

did not undergo freeze exclusion, have been observed to have different reactivity.103 These 

findings suggest there are other factors which may influence reactivity at ice surfaces.  

  The ice surface consists of a disordered layer of water molecules referred to as the 

quasi-liquid layer (QLL).184,185 The existence of this disordered layer is not unique to ice; other 

solids such as metals and colloids also contain a disordered layer at their surface as dictated by 

thermodynamics.188 Many studies have attempted to elucidate the exact structure of the QLL but 

its structure and physical properties are still not completely clear. For example, the temperature 

dependence of the thickness is not well understood; different dependencies have been observed 

across multiple experiments.188 Other experiments have investigated properties such as its 

density and temperature of formation, all of which have produced conflicting results; the QLL 

was observed to begin formation at temperatures ranging from 113 to 259 K.190–192 These 

varying results illustrate that very little is known about the physical properties of the QLL.  
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Figure 1.4: Sketch of a cross section of ice near the air-ice interface (hydrogen and 

oxygen atoms not shown for clarity).  

Some researchers have treated the QLL to be like liquid water for the purpose of 

predicting reaction kinetics. Some atmospheric models treat ice as an inert solid covered by a 

layer of liquid water and treat all reactions as taking place in this layer. Thus, they assume that 

reactions which take place on ice surfaces are similar to those in water and some models utilize 

rate constants measured in aqueous solution to describe kinetics at ice surfaces.193,194 There are a 

number of reasons why this assumption may not be accurate. First, the ice surface is likely not 

completely coated by liquid.195 Work from our group has shown using Raman microscopy that 

even ice with high ionic strength (containing up to 0.6 M NaCl) is not completely wetted; the 

brine formed separate domains or channels on the surface.196 This suggests that the assumptions 

described above may not even accurately describe ice containing high amounts of solutes. 

Secondly, the idea that impurities only exist in this liquid layer is not valid. Rather, impurities in 

ice can be embedded into the crystal lattice, adsorbed onto the surface or exist in pockets and 

veins of liquid within the ice.184,186,195 As eluded to previously, the reactivity of impurities in ice 

will vary depending on their location within the ice.184,186,195 Therefore, the assumption that all 
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impurities reside in a liquid layer at the surface may not accurately describe the reactivity 

occurring. Thirdly, the assumption that light absorbing impurities are contained only in this 

liquid layer will likely result in inaccurate estimations of the actinic flux in snow.195 This is 

because light absorbing impurities will likely behave differently depending on their location 

within the snow or ice.195 Finally, there is now an emerging, large body of evidence that suggests 

the QLL is different than water. Some notable differences include: the electrical conductivity is 6 

times greater than that of water,197 its viscosity is significantly greater than supercooled water,198 

and the hydrogen bonding network present there is different from that of liquid and solid 

water.100 Furthermore, unlike liquid water, it is expected that the QLL properties will change 

across its depth.188 Consequently, reactivity at ice surfaces has been observed to differ 

significantly from that in liquid water.66,82,85,93,94,104,113,115,186,188,199 Thus, the assumption that 

kinetics at the air-ice interface can be described using aqueous kinetics is not well supported by 

evidence.195  

1.3.3.3 Photolysis of PAHs and BTEX in Snow and Ice  

Recently, considerable attention has been given to understanding the fate of organic 

pollutants, such as PAHs and BTEX, in snow and ice. One reason for this is because, as 

described previously, PAHs and BTEX are capable of long-range atmospheric transport and can 

be found in even highly remote regions such as the arctic. Seasonal variations in the snowpack 

can cause these compounds to contaminate surrounding environments, often in highly 

concentrated pulses.66,76–78  

 Some aromatic organic pollutants, such as some PAHs and benzene, have been observed 

to photolyze more quickly at ice surfaces than in liquid water.82,85,93,94,187,103,104,113 This rate 

enhancement is hypothesized to be due to unfavorable interactions at the ice surface resulting in 
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self-association.82,85,116,200 Molecular dynamic simulations suggest that aromatic compounds will 

self-associate when on ice surfaces.200 In some instances, this self-association has resulted in a 

red shift in the absorption spectra. For example, as described above, benzene is unable to absorb 

sunlight in water but when on the ice surface, it exhibits a red shift in its absorption spectrum 

which allows it to photolyze.82 For other compounds, shifts in their absorption spectra when on 

ice surfaces cannot fully explain the photolysis kinetics observed.85  

Overall, much remains to be known about the photolysis of aromatic pollutants on ice 

surfaces. Photolysis rate constants for these compounds in ice and on ice surfaces are difficult to 

predict due to reactivity differing greatly depending on the location of the compounds within the 

ice.66,85,104,186,195 For example, anthracene and benzene will react quickly with hydroxyl radicals 

when in aqueous solution and bulk ice, but when on the ice surface these compounds are 

unreactive towards hydroxyl radicals.104 Photolysis rate constants at ice surfaces have not been 

experimentally determined for a number of aromatic compounds, likely in part due to difficulties 

in probing the ice surface.100,195 Products formed from the photolysis of PAHs and benzene on 

ice surfaces are largely unknown but they are suggested to be more toxic than the parent 

compounds.82,85,113 Only one study has attempted to identify photolysis products for benzene on 

ice.82 The results of this study suggest the photolysis products of benzene on ice surfaces may 

have much higher molecular weights than benzene but their exact structures were not 

elucidated.82 Furthermore, few experiments have investigated the effects of solutes such as 

halides and organic matter on PAH photolysis kinetics at ice surfaces. Harmine photolysis on ice 

surfaces was suppressed when in the presence of sodium chloride or sodium bromide.116 

Anthracene photolysis on ice surfaces was also suppressed in the presence of both non-

chromophoric and chromophoric organic matter.93,94 This illustrates how little is known about 
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photochemistry of aromatic pollutants on ice surfaces in the presence of environmentally-

relevant solutes.   

1.4 Goals of Research  

 Most laboratory studies investigating the photochemical fate of PAHs and BTEX in the 

environment have been done under conditions that do not accurately reflect conditions found in 

the environment. Many studies utilize light sources with wavelengths that are not 

environmentally relevant. These studies utilize short wavelengths that are filtered out by ozone in 

the stratosphere and thus are not relevant to PAH photochemistry in the troposphere. 

Furthermore, most laboratory studies involving the fate of PAHs in waters have been done using 

deionized water. Water found in the environment is rarely pristine. Common constituents of 

natural waters are organic matter and halides. Very few studies have attempted to elucidate the 

effects organic matter and halides have on PAH photolysis kinetics, and fewer have investigated 

the effect multiple constituents have on PAH photolysis kinetics, even though halides and 

organic matter are commonly found together in the environment.  

In order to accurately predict pollutant fate in condensed phases, an understanding of how 

different environments affect reactivity is needed. Chapter 2 of this work investigates the 

combined effects of organic matter and sodium chloride on the photolysis kinetics of the PAH 

anthracene in liquid water. Chapter 3 of this work describes the photolysis kinetics of toluene, 

ethylbenzene and xylenes in water, ice, and at ice surfaces. The rate constants measured in these 

studies can be used in chemical fate models in order to improve their accuracy. Furthermore, the 

results of this work can be used to better predict the fate of these pollutants in the environment 

and consequently their effects on human health and water quality.   
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2.1 Abstract 

 Water in the environment is rarely pristine and often contains significant fractions of 

organic matter (OM) and halide salts. Understanding how reactivity varies in these complex 

environments is necessary to accurately predict pollutant fate. We measured photolysis kinetics 

of the polycyclic aromatic hydrocarbon (PAH) anthracene in aqueous, organic, and aqueous-

organic mixtures containing varying concentrations of sodium chloride (NaCl). In water, 

anthracene photolysis rate constants exhibited a non-linear dependence on NaCl concentration; 

as salt concentration increased, rate constants increased at low concentrations (up to 0.27 M), 

decreased at high concentrations (> 0.27 M and < 6.1 M) and then increased again at saturated 

concentrations (≥ 6.1 M). Conversely, a positive linear dependence was observed in octanol. In 

aqueous-organic mixtures, photolysis rate constants decreased with increasing salt concentration 

at low salt concentrations. At high NaCl concentrations, photolysis rate constants were 

independent of NaCl concentration in stagnant mixtures but depended positively on NaCl 

concentration in turbulent (stirred) mixtures. The effect of NaCl on photolysis kinetics in 

aqueous-organic mixtures appeared to be largely explained by salting out. Anthracene self-

association at solid salt surfaces may account for the increase in rate constants observed at high 

salt concentrations in all media. Other factors such as singlet oxygen production were determined 

not to be significant except in water at NaCl concentrations below 0.27 M. 

2.2 Introduction 

 Aromatic pollutants such as polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in 

the environment.1–4 They are pollutants of concern due to their toxicity and the fact that they 

often form more toxic products after degrading in condensed phases such as surface waters or 

aerosols.5 Photolysis is one of the most important degradation pathways for PAHs in condensed 

phases. Therefore, accurate photolysis kinetics are needed in order to predict their environmental 
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fate and health effects. Most laboratory studies have measured PAH photolysis kinetics in simple 

matrices such as deionized (DI) water or pure, organic solvents. However, these matrices do not 

reflect the complexity found in the environment. Kinetics can vary greatly depending on the 

phase and composition. Therefore, reaction kinetics measured under these simplified conditions 

may not be applicable to reactions which take place in the environment.  

The presence of organic matter (OM) can have a large impact on pollutant fate.6–9 Many 

condensed phases found in the atmosphere or environment contain a significant fraction of OM. 

OM has been shown to have a complex effect on PAH photolysis kinetics. For example, 

chromophoric OM, which can absorb light, can decrease photolysis rates by competitively 

absorbing photons or it can increase photolysis rates by acting as a photosensitizer or producing 

reactive species.9–14 Non-chromophoric organic matter can decrease photolysis rates by reducing 

local polarity; some PAHs have been reported to photolyze less rapidly in organic solvents than 

in water.8,15,16 To further complicate the matter, not all OM is miscible with water and its 

presence can result in phase-separated aqueous-organic mixtures, such as observed in some 

aerosols and at the surface of oceans.1,16–18 Due to their hydrophobicity, PAHs preferentially 

partition to the organic phase. However, small amounts remain in the aqueous phase which 

means they can potentially react in both phases.8,19 Previous work in our lab investigated PAH 

photolysis kinetics in immiscible aqueous-organic mixtures.8 Anthracene photolysis rate 

constants increased with increasing aqueous fraction in miscible and immiscible aqueous-organic 

mixtures.8 When the mixtures were stirred during photolysis (to mimic non-equilibrium 

conditions e.g. caused by mixing due to wave or wind action) the positive dependence on water 

fraction was much stronger. Photolysis in pure water in mixtures containing 25% water was as 

rapid as that in pure water; under stagnant conditions photolysis was much slower than in pure 



 

44 
 

water at aqueous fractions as high as 80%.8 Our results indicated that non-chromophoric OM, 

local polarity and perturbations in partitioning equilibria (e.g. caused by turbulence) can have a 

significant effect on PAH photolysis kinetics.  

Halide salts are also ubiquitous in the environment. They are common components of 

natural waters and aerosols. Halides can have variable effects on PAH photolysis kinetics. 

Photolysis rate constants for some aromatic species have been reported to increase in the 

presence of halides whereas rate constants for other species have been reported to decrease or 

show no change.20–25 Previous work in our lab measured photolysis rate constants of pyrene and 

anthracene in aqueous solutions containing chloride, bromide, and iodide.26 Pyrene photolysis 

kinetics were insensitive to the presence of halides, while anthracene photolysis rates increased 

with increasing halide concentration at low concentrations and decreased at high concentrations. 

The maximum rate constant observed (in the presence of 0.27 M NaCl) was a factor of 5 greater 

than that measured in DI water. It was determined that this rate enhancement was due to 

production of singlet oxygen.  

Many atmospheric aqueous phases, including sea surface microlayers and sea salt 

aerosols, contain both OM and halide salts. In fact, salt concentrations in aerosols can be much 

higher than those found in surface waters.5 As discussed above, both solutes can affect PAH 

photolysis kinetics in complex ways. It is not known whether these effects are additive. In this 

work, we measured photolysis rate constants of anthracene in aqueous, organic, and phase- 

separated aqueous-organic solutions with varying concentrations of sodium chloride. The results 

presented in this study will provide greater insight into the fate of anthracene in the environment 

and may improve chemical fate models of PAHs.     
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2.3 Experimental 

2.3.1 Sample Preparation 

 Solutions containing anthracene (Acros Organics, 99%) in 18 MΩ·cm deionized water or 

octanol (Acros Organics, 99%) were prepared weekly and allowed to stir overnight. For 

experiments in water and octanol, solid sodium chloride (NaCl, Fisher, ≥ 99.5%) was added 

directly to the solution. Aqueous-organic mixtures were prepared by combining octanol solutions 

containing anthracene with aqueous NaCl solutions. In some experiments, 3.5 µL furfuryl 

alcohol (FFA, Acros Organics, 98%) was added to the solution immediately prior to the 

experiment (for a final FFA concentration of 0.01 M). Final solutions had volumes of 4 mL and 

anthracene concentrations of 1 × 10-7 M. 

 For experiments performed under “turbulent” conditions, samples were stirred for at least 

two hours prior to photolysis as well as during photolysis. For “stagnant” experiments, samples 

were allowed to equilibrate for at least two hours prior to photolysis and were not stirred during 

photolysis. All samples were stored in the dark until the start of the experiment in order to 

prevent photolysis due to fluorescent lighting.  

2.3.2 Photolysis  

 Photolysis was performed as described in previous publications.8,26 To summarize, the 

output of a 150 W xenon arc was reflected off of a cold reflecting mirror and passed through a 

295 nm long pass cutoff filter before illuminating the sample. Homogenous solutions were 

contained in a 1 cm path length quartz cuvette, and immiscible mixtures were contained in a 17 

mm diameter 4 mL quartz bowl. In these experiments, the output of the lamp was reflected 90° 
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downwards on to the sample. The photon flux reaching the samples was previously determined 

to be (3.15 ± 0.08) × 1013 photons cm-2 s-1 using chemical actinometry.10   

 Photolysis rate constants were determined by measuring the change in anthracene 

fluorescence intensity as a function of irradiation time. Anthracene fluorescence spectra were 

acquired prior to irradiation and after every 4-10 minutes of irradiation up to 40 minutes. 

Fluorescence spectra were obtained with a Photon Technology International QuantaMaster 40 

fluorimeter. Samples were stirred in the fluorimeter while obtaining the fluorescence spectra to 

distribute anthracene evenly throughout the volume of the cuvette. Anthracene was excited at 

252 nm and emission was monitored at 380 nm. First order photolysis rate constants were 

calculated from the slope of the best fit line resulting from plotting the left side of equation 1 

against time, where I is the fluorescence intensity after time t, I0 is the fluorescence intensity at t 

= 0, and k is the first order rate constant (s-1).  

                                                             ln (
𝐼

𝐼0
) = −𝑘𝑡                                                                    (1) 

 In experiments involving immiscible mixtures, the sample was irradiated in a flat bottom 

quartz bowl. After a known time period the sample was transferred to a quartz cuvette, and a 

fluorescence spectrum was acquired as described above. The sample was then transferred back 

into the quartz bowl to undergo further irradiation. In turbulent experiments, the sample was 

stirred in the quartz bowl during both irradiation and analysis. In stagnant experiments, the 

sample was stirred while obtaining a fluorescence spectrum but was then allowed to equilibrate 

in the dark for at least 20 mins after being transferred to the quartz bowl and before irradiation 

resumed.  
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2.3.3 Singlet Oxygen 

Furfuryl alcohol was used as a singlet oxygen trap to determine singlet oxygen 

production rates. Samples containing FFA, anthracene, and NaCl were irradiated in 2 min 

intervals for up to 10 mins. After each interval, a 0.5 mL aliquot was removed and analyzed by 

HPLC to measure the concentration of 6-hydroxy-2,3-dihydro-6H-pyrano-3-one (“pyranone”), 

which is the product of the reaction of FFA with singlet oxygen.27 The yield of pyranone from 

this reaction is approximately 85%.26,27 Therefore, singlet oxygen production rates can be 

calculated according to equation 2:26 

                                                             
𝑑[1𝑂2]

𝑑𝑡
=
𝑑[𝑝𝑦𝑟𝑎𝑛𝑜𝑛𝑒]

𝑑𝑡
× 1.33                                             (2) 

 The HPLC used in these experiments was an isocratic Shimadzu Prominence-i LC-2030 

equipped with a UV detector and a C18 reverse-phase column (Restek, 150 mm × 4.6 mm, 5 μm 

particle size); the column temperature was maintained at 40 °C. The mobile phase was 50/50 

methanol/water with a 1 mL/min flow rate. A 1 µL injection volume was used. Pyranone was 

detected by monitoring absorbance at 219 nm.   

2.4 Results and Discussion 

2.4.1 Photolysis Kinetics in Aqueous Solution 

 Figure 2.1 shows anthracene photolysis rate constants in aqueous solution as a function of 

sodium chloride concentration. We have previously reported anthracene photolysis rate constants 

in aqueous solution containing up to 0.56 M NaCl.26 In the current study, anthracene photolysis 

kinetics were measured in aqueous solution containing up to 10 M NaCl, which is much higher 

than sodium chloride’s saturation limit in water (6.1 M).  
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Figure 2.1: First order photolysis rate constants for anthracene in aqueous solution as a function 

of sodium chloride concentration. The solid vertical line denotes sodium chloride’s saturation 

limit in water. Error bars represent the standard deviation of at least three trials. Data points at 

chloride concentrations lower than 1 M are from ref 27.  

 At relatively low NaCl concentrations (< 0.27 M), anthracene photolysis rates increased 

rapidly with increasing concentration; at higher NaCl concentrations (< 1 M), anthracene 

photolysis rates decreased. We have ascribed this to enhanced singlet oxygen production at low 

NaCl concentrations, and quenching of excited anthracene by NaCl at higher concentrations.26 

Extending the measurements to higher NaCl concentrations reveals two additional, distinct 

concentration regimes. First, the rate constant plateaus between 1 and 6 M NaCl at an average 

rate of 4.76 × 10-4 s-1 which is approximately a factor of 2 greater than the rate constant in the 

absence of NaCl. Then, at NaCl concentrations greater than the saturation limit (6.1 M), 
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anthracene photolysis rate constants increase up to at least 10 M NaCl (although much less 

rapidly than at very low NaCl concentrations). This may be due to the formation of excimeric 

anthracene. Anthracene’s photolysis rate constant in DI water has been reported to increase when 

excimers are present.10  It is possible that at NaCl concentrations greater than saturation, the 

extent in which anthracene self-associates increases due to a salting out effect. Another 

possibility is anthracene partitioning to solid NaCl surfaces. Anthracene has been shown to 

photolyze more rapidly on some surfaces than in solution. For example, anthracene photolyzes 

more quickly on ice surfaces and silica surfaces than in liquid water.7,10,28–30 This increase in rate 

when on surfaces is suggested to be due to anthracene self-association.7,10,28 The fact that we 

observe this linear dependence only when solid salt is present in solution (i.e., above the 

saturation limit) suggests that surface effects may contribute to the observed increase.  

 To determine whether singlet oxygen also plays a role in the positive rate constant 

dependence on NaCl observed at very high concentrations, we irradiated anthracene solutions 

containing 8 M NaCl and 10 mM FFA to determine 1O2 production rates. We measured a 1O2 

production rate of (2.9 ± 0.3) × 10-8 M s-1. In our previous study, 1O2 production rates lower than 

4 × 10-8 M s-1 resulted in anthracene photolysis rate constants smaller than 4 × 10-4 s-1.26 Despite 

the low 1O2 production rate in solutions containing 8 M NaCl in the current study, anthracene’s 

photolysis rate constant was 8 × 10-4 s-1, which is much larger than can be explained by 1O2 

production. We therefore conclude that singlet oxygen production is not primarily responsible 

for enhanced anthracene photolysis in saturated aqueous NaCl solutions. 

2.4.2 Photolysis Kinetics in Organic Solution 

Figure 2.2 shows anthracene photolysis rate constants in octanol as a function of sodium 

chloride concentration. Photolysis rate constants increased linearly with increasing sodium 
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chloride concentration. To determine the cause of this increase, we investigated the role of 

singlet oxygen and excimer formation. We did not observe any pyranone production in irradiated 

octanol solutions containing 1 M NaCl and 10 mM FFA, which suggests that there is negligible 

singlet oxygen production. We note that the slopes of the best fit lines of anthracene photolysis 

rate constants plotted as a function of NaCl concentration are similar in octanol and in saturated 

aqueous solution (6.49 × 10-5[Cl-] and 9.59 × 10-5[Cl-] respectively). Since NaCl is insoluble in 

octanol (and present primarily in solid form), the similar dependence of anthracene photolysis 

rate constants on NaCl concentration in octanol and in saturated aqueous solutions may suggest 

that the observed increase is due in part to reactions at salt surfaces.  

 

Figure 2.2: First order photolysis rate constants for anthracene in octanol as a function of sodium 

chloride concentration. The error bars represent the standard deviation for at least three trials. 

The dashed trace is the best fit line through the averaged data points. 
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2.4.3 Photolysis in Mixed Aqueous-Organic Solution  

 Table 2.1 shows anthracene photolysis rate constants in water, octanol, and water-octanol 

mixtures in the absence of salt. Anthracene’s photolysis rate constant in aqueous solution is 

approximately 11 times larger than in octanol, in agreement with previous work.8,31 Anthracene’s 

photolysis rate constant was 2.5 times greater in stagnant mixtures than in 100% octanol, and 6.5 

times greater in turbulent mixtures. We have previously shown that anthracene’s rate constant 

depends much more strongly on the fractional water content in turbulent aqueous-octanol 

mixtures than in stagnant mixtures.8 In stagnant mixtures containing 75% water, the rate constant 

was only 40% that measured in DI water. Conversely, in turbulent mixtures, photolysis rate 

constants reached those measured in DI water at aqueous fractions as low as 25% by volume. We 

have ascribed the faster photolysis in the turbulent mixtures to increased partitioning of 

anthracene to the aqueous phase.8 We note that stirring 100% octanol or 100% aqueous solutions 

had no effect on observed anthracene rate constants.  

Table 2.1: Anthracene photolysis rate constants in water, octanol, and aqueous-organic mixtures 

containing 80% v/v octanol  

 Medium Rate Constant (10-4 s-1) 

Water 2.2 ± 0.7 

Octanol 0.2 ± 0.1 

Stagnant Mixture  0.5 ± 0.2 

Turbulent Mixture  1.3 ± 0.4 

 

Figure 2.3 shows the effects of NaCl on anthracene photolysis kinetics in octanol and in 

80% octanol mixtures under stagnant and turbulent conditions. As the sodium chloride 

concentration increased, photolysis rate constants initially decreased in both stagnant and 
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turbulent aqueous-octanol mixtures. This may be due to an increase in the fraction of anthracene 

in the organic phase caused by salting out, since anthracene photolysis is significantly slower in 

octanol than in water. At NaCl concentrations greater than 0.5 M, different concentration 

dependences were observed for the turbulent and stagnant mixtures. No concentration 

dependence was observed in stagnant mixtures. The average rate constant under stagnant 

conditions at NaCl concentrations between 0.25 and 1.5 was (3 ± 1) × 10-5 s-1. This is larger than 

the rate constant measured in 100% octanol in the absence of NaCl ((2 ± 1) × 10-5 s-1) but is 

within experimental uncertainty. The turbulent mixture shows a positive NaCl concentration 

dependence above 0.5 M, similar to that observed in 100% octanol and 100% water at NaCl 

concentrations greater than the saturation limit. We hypothesize that stirring enables a greater 

amount of salt to partition to the organic phase, resulting in similar salt-PAH interactions as in 

pure octanol. Unlike in octanol, this increase appears to plateau at NaCl concentrations greater 

than ~1 M. As discussed above, almost all of the NaCl is in the aqueous phase. As the aqueous 

phase concentration increases, the organic phase concentration increases proportionally. 

However, at a nominal concentration of 1.22 M, the actual NaCl concentration in the aqueous 

phase (which makes up 20% of the total sample volume) will be 6.1 M (i.e., the aqueous phase 

will be saturated). Saturation of the aqueous phase may be responsible for the observed plateau 

in anthracene’s photolysis rate constant at nominal NaCl concentrations greater than 1.0 M. 
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Figure 2.3: First order anthracene photolysis rate constant in octanol and in 80% octanol 

mixtures under stagnant and turbulent conditions as a function of sodium chloride concentration. 

Error bars represent the standard deviation for at least three trials. Dashed and dotted traces are 

included to guide the eye. 

 We measured pyranone production rates in stirred mixtures containing 80% octanol and 1 

M NaCl to determine whether singlet oxygen contributed to the observed rate enhancement at 

high NaCl concentrations. We were unable to detect pyranone after 10 minutes of irradiation, 

which suggests that singlet oxygen does not account for the enhancement.  
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2.5 Atmospheric Implications 

The results of this work can be used to determine: (1) under what conditions it is 

appropriate to use rate constants measured in DI water to predict reactivity in atmospheric 

condensed phases; and (2) how changing the composition of atmospheric condensed phases will 

affect pollutant reactivity. With respect to the first point, we have previously shown that 

anthracene photolysis rate constants measured in DI water will overpredict (sometimes by more 

than an order of magnitude) rate constants in organic phases (or in aqueous-organic mixtures 

containing large organic fractions), and that rate constants measured in DI water will 

underpredict rate constants in aqueous solutions containing between 0.05 and 0.56 M NaCl (by 

up to a factor of 6, but closer to a factor of 2 at most Cl- concentrations).8,26 In this work, we 

show that kinetics measured in DI water will underpredict anthracene photolysis rate constants at 

even higher Cl- concentrations (up to at least 10 M). We note that photolysis kinetics of some 

other aromatic pollutants, such as pyrene, are not affected by Cl- (at least at concentrations lower 

than 0.56 M). The specific effects of Cl- on the photolysis kinetics of each pollutant of interest 

should therefore be considered. 

To illustrate the second point, we consider an atmospheric aerosol containing an aqueous 

core surrounded by an organic shell (Figure 2.4). For a recently emitted sea spray aerosol, the 

aqueous core will contain ~0.5 M Cl-. Anthracene in this aerosol will be partitioned primarily to 

the organic phase, and photolysis will be similar to that in an organic phase (that does not contain 

water or NaCl). If the NaCl concentration increases due to evaporation of water, anthracene’s 

photolysis rate constant will either increase (under turbulent or otherwise non-equilibrium 

conditions) or remain relatively unchanged (under equilibrium conditions). If the water 

evaporates completely, leaving a chloride-containing organic aerosol, the rate constant will be 
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larger than that in the aqueous-organic mixture but smaller than that in an aqueous aerosol in the 

absence of OM. The exact rate constant will depend on the chloride concentration. This 

simplified representation does not account for effects of other reactive processes such as indirect 

photolysis. 

 

Figure 2.4: Cartoon showing the predicted effects of water evaporation on anthracene photolysis 

rate constants in a phase-separated aqueous-organic aerosol containing NaCl. Aqueous and organic 

phases are represented by red and blue, and the turbulent aqueous-organic mixture is represented 

by red and blue stripes. The black dots represent chloride ions. Photolysis rate constants based on 

the measurements in this work are given as percentages of the rate constant measured in DI water 

(“% JH2O”). The arrows represent evaporation of water, notated as “-H2O”. 

  This work adds to our understanding of matrix effects in condensed-phase atmospheric 

photochemistry. It shows that solute effects can be non-linear, complex, and variable in different 

environments. Finally, it demonstrates the potential for fundamental, well-constrained 

experiments using well-defined multi-component systems to provide kinetic data that can 

improve predictions of pollutant fate in complex atmospheric condensed phases. 
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3.1 Abstract 

Benzene, toluene, ethylbenzene, and xylenes (BTEX) are important organic pollutants. 

These compounds do not undergo direct photolysis in natural waters because their absorbance 

spectra do not overlap with solar radiation at the Earth’s surface. Recent research has suggested 

that benzene is able to undergo direct photolysis when present at ice surfaces. However, the 

photolysis of toluene, ethylbenzene, and xylenes (TEX) at ice surfaces has not been investigated. 

Using fluorescence spectroscopy, photolysis rate constants were measured for TEX in water, in 

ice cubes, and in ice granules which reflect reactivity at ice surfaces. No photolysis was observed 

in water or ice cubes. Photolysis was observed in ice granules; rate constants were (4.5 ± 0.5) × 

10-4 s-1 (toluene), (5.4 ± 0.3) × 10-4 s-1 (ethylbenzene), and (3.8 ± 1.2) × 10-4 s-1 (xylenes). 

Photolysis of TEX molecules appears to be enabled by a red shift in the absorbance spectra at ice 

surfaces, although photosensitization may also occur. The results suggest that direct photolysis 

could be an important removal pathway for TEX in snow-covered environments.  

3.2 Introduction 

 Organic contaminants such as benzene, toluene, ethylbenzene and xylenes (BTEX) are of 

importance due to their potential health effects. For example, acute exposure to this class of 

compounds has been linked to central nervous system, pulmonary and urinary toxicity in humans 

and other mammals.1 Emission of BTEX into the environment is primarily through fossil fuel 

combustion. However, the concentrations of these compounds in the environment can 

significantly increase due to oil leaks, spills, and fracking fluid flowback or runoff.2,3  

 Snow packs have been investigated as a potential reservoir and reaction medium for 

organic pollutants. Multiple studies have detected VOCs such as BTEX in rural, semi-rural and 

arctic snow packs in concentrations on the order of hundreds of μg/L.4–6 In some rural snow 
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packs, toluene concentrations have been reported to be greater than 300 μg/L.4 Upon melting, 

these pollutants can eventually enter rivers, streams, oceans and even public water sources. Thus, 

the fate of these organic pollutants in snow packs are of importance. Several studies have 

examined the photolysis of aromatic species such as pesticides, chlorinated benzenes, and 

polycyclic aromatic hydrocarbons (PAHs) in ice and at ice surfaces.7–13 Such compounds are 

able to absorb in the actinic region (~290 – 400 nm) and therefore can undergo photolysis in 

aqueous solutions as well as snow and ice. Unlike these compounds, BTEX do not absorb 

strongly in this region. Figure 3.1 shows absorbance spectra for aqueous solutions of toluene, 

ethylbenzene, and xylenes (TEX) compared to the solar irradiance at the Earth’s surface in 

Syracuse, NY at noon in the winter; it is evident that the two spectra do not overlap. Therefore, 

photolysis is generally not considered to be a viable environmental degradation pathway for 

these pollutants.  
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Figure 3.1: Left y-axis: Absorbance spectra of 2 ×10-3 M aqueous toluene (red solid line), 

ethylbenzene (blue dotted line), and xylenes (green dashed line). Right y-axis: Solar irradiance 

(black dash-dotted line) in Syracuse, NY at 12:00 p.m. EST during midwinter as predicted by the 

TUV model.14 

 As with TEX, dilute benzene solutions do not absorb wavelengths longer than ~280 nm. 

However, Kahan and Donaldson demonstrated that benzene undergoes photolysis at ice surfaces 

when irradiated with simulated sunlight.15 They attributed this change in reactivity to a red shift 

in benzene’s absorbance spectrum at the air-ice interface leading to overlap with solar irradiance 

at the Earth’s surface. It is possible that TEX can also be photolyzed at ice surfaces; however, 

these reactions have yet to be investigated. In this work, we measure TEX photolysis kinetics at 

the air-ice interface in order to determine whether direct photolysis of TEX is possible. 

Understanding the photolysis kinetics of these compounds will provide greater insight into the 

fate of TEX in the environment.  

3.3 Experimental  

3.3.1 Sample Preparation  

 Solutions containing toluene (Aldrich, ≥ 99.5%), ethylbenzene (Acros, 99.8%) or mixed 

xylenes (Cole Palmer, 98.5%) in 18 MΩ·cm deionized water were prepared and allowed to stir 

overnight. Concentrations of the solutions were: 5.0 × 10-3 M (460 mg/L, toluene), 5.0 × 10-4 M 

(53 mg/L, ethylbenzene) and 5.0 × 10-4 M (53 mg/L, xylenes). Some experiments were also 

performed with 1 × 10-5 M (1 mg/L) ethylbenzene. Ice samples were prepared by freezing 5 mL 

aliquots in an ice cube tray (“ice cubes”). For some experiments, ice cubes were crushed into a 

powdery solid (“ice granules”) prior to photolysis. 
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3.3.2 Photolysis  

 Samples were irradiated with a 150 W xenon arc lamp. The light passed through a 295 

nm long-pass cut off filter and aluminum mesh that was used as a neutral density filter. The light 

was reflected downwards at a 90º angle, through a flat-bottom quartz dish filled with 25 mL of 

DI water which acted as an IR filter before reaching the sample. Aqueous samples were 

contained in a sealed 1 cm quartz cuvette, and frozen samples were contained in a stainless steel 

vessel connected to a recirculating chiller; the temperature within the vessel was maintained at -

15 ºC. Unpublished results from our lab show photon fluxes (between 290 nm and 400 nm) 

within each sample type of (2.8 ± 0.5) × 1013 photons cm-2 s-1 (water), (4.1 ± 0.4) × 1013 photons 

cm-2 s-1 (ice cubes), and (5.0 ± 0.8) × 1013 photons cm-2 s-1 (ice granules) using 2-

nitrobenzaldehyde actinometry.16,17 These fluxes are approximately three orders of magnitude 

lower than sunlight reaching the earth’s surface at noon during the winter, which is on the order 

of 1016 photons cm-2 s-1. Dark control experiments were conducted for each set of experimental 

conditions.  

 Photolysis kinetics were determined by measuring the change in TEX fluorescence 

intensity over irradiation time. Liquid samples were irradiated in 5 minute intervals for 40 – 50 

minutes. Ice cubes and granules were removed from the stainless steel vessel after a known 

irradiation time and transferred to a sealed jar where the sample was allowed to melt in the dark. 

Samples were irradiated in 3 or 5 minute intervals for up to 30 minutes. The melted samples 

were transferred to a capped, 1 cm quartz cuvette before analysis. All fluorescence 

measurements were obtained using a commercial fluorimeter. Excitation wavelengths of 250 nm 

(toluene), 262 nm (ethylbenzene), and 268 nm (xylenes) were used. The fluorescence intensity 

was monitored at 281 nm (toluene), 280 nm (ethylbenzene), or 288 nm (xylenes). Photolysis rate 
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constants were determined from the slope of the best fit line of the first order kinetics plot 

according to Equation 1, where I is the fluorescence intensity after time t, I0 is the fluorescence 

intensity at t = 0, and k is the first order rate constant (s-1).  

                                                              kt
I

I


0

ln                                                                       (1) 

3.3.3 Indirect photolysis 

 Toluene photolysis kinetics were measured in the presence of benzophenone, a 

photosensitizer, and different concentrations of rose bengal, a singlet oxygen source, in aqueous 

solution.18,19 Photolysis was initiated by the output of a 150 W xenon arc lamp equipped with a 

cold reflecting mirror to act as an IR filter. The photon flux reaching the sample in these 

experiments (between 290 and 400 nm) was (1.47 ± 0.04) × 1014 photons cm-2 s-1.20 For 

benzophenone experiments, the output of the lamp passed through a 295 nm long pass cut-off 

filter before reaching the sample contained in a 1 cm sealed quartz cuvette. For rose bengal 

experiments, a 480 nm long pass cut-off filter was used and the cold mirror was removed. 

Samples were irradiated in 5 minute intervals for 40 minutes. The toluene concentration in these 

experiments was 5.0 × 10-5 M (4.6 mg/L). Some samples also contained 1 × 10-6 M rose bengal, 

2 × 10-5 M rose bengal, or 2.5 × 10-5 M benzophenone. For all experiments, the change in 

toluene fluorescence intensity over irradiation time was monitored using the same procedure 

described above. Three trials for each mixture were performed and then analyzed to determine 

the first order rate constants. The photolysis kinetics of toluene were also measured in ice 

granules containing 5.0 × 10-5 M toluene and 2.5 × 10-5 M benzophenone.    
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3.3.4 Absorbance Spectra  

 Absorbance spectra of solutions containing 2.0 × 10-3 M toluene, ethylbenzene, and 

xylenes in 18 MΩ·cm deionized water were acquired in quartz cuvettes using a commercial UV-

Vis spectrometer.  

3.4 Results and Discussion  

Table 3.1 shows the average rate constants measured during irradiation of toluene, 

ethylbenzene, and xylenes in liquid water, ice cubes, and ice granules. Table 3.1 also includes the 

average rate constants measured during dark runs of ice granules and water where the xenon arc 

lamp was kept off throughout the experiment. As discussed previously, TEX molecules in 

aqueous solutions are not expected to photolyze due to their absorbance spectra not overlapping 

with sunlight at the Earth’s surface (Figure 3.1). However, a measurable loss of TEX was 

observed in aqueous solution. We attribute this to evaporative loss as opposed to photolysis due 

to the fact that fluorescence intensity decreased at similar rates in the dark.  

Table 3.1: Photolysis rate constants of TEX in water and in ice samples. The error represents the 

standard deviation about the mean for at least 3 trials. 

  Rate Constant (10-5 s-1) 

 Medium Toluene Ethylbenzene Xylenes 

Water 2.5 ± 1.0 3.7 ± 0.6 2.8 ± 1.4 

Water (dark) 1.7 ± 0.1 2.9 ± 0.4 4 ± 3 

Ice cubes - - - 

Ice granules 45 ± 5 54 ± 3 38 ± 12 

Ice granules 

(dark) - - - 
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 No loss in fluorescence intensity was observed when ice cubes containing TEX were 

irradiated (Table 3.1). Within bulk ice there exists pockets and veins of liquid water; solutes in 

ice are thought to be distributed between the ice surface and these liquid regions due to exclusion 

during freezing.21–24 Photolysis kinetics of other aromatic compounds in ice cubes have been 

reported to be more similar to kinetics in water than to those at ice surfaces.7–9 Since decreases in 

fluorescence intensity in water were likely due to evaporation as opposed to photolysis and all 

ice experiments were performed at -15 ºC, we did not expect to observe loss of TEX during 

irradiation in ice cubes.  

 The fluorescence measurements made in this study are not selective to ice surfaces. 

However, by crushing ice samples into fine granules, and thus increasing the surface-area-to-

volume ratio (SAV) of the samples, the fraction of solutes present at the surface increases.7,9 

Previous studies have shown that photolysis kinetics of aromatic compounds in ice samples with 

high SAV are comparable to those measured at ice surfaces.7,9,25 Therefore, the kinetics 

measured in ice granules are expected to be representative of kinetics at the air-ice interface. 

Loss of TEX fluorescence intensity was observed in ice granules (Table 3.1). Since no 

evaporative loss was observed in ice cubes, we ascribe all loss in ice granules to photochemical 

loss. This chemical loss was much more rapid than the evaporative loss observed in aqueous 

solution for all three compounds studied (by a factor of 15, on average). Figure 3.2 shows TEX 

emission intensity as a function of irradiation time in aqueous solution and in ice granules. A 

distinct decrease in fluorescence intensity in ice granules is observed over time. Dark controls 

did not produce any observable loss of fluorescence intensity for samples in ice granules (Table 

3.1). Furthermore, the reaction chamber was maintained at a constant temperature of –15 ºC so 
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the observed decay of TEX in ice granules is not likely due to sample heating or evaporation. 

These results suggest that TEX is able to undergo photolysis when exposed to solar radiation at 

ice surfaces.   

 

Figure 3.2: Plot of time-dependent decay of fluorescence intensity for toluene, ethylbenzene, 

and xylenes in aqueous solution and in ice granules. Solid traces are fits to the averaged data in 

the two media. 

Photolysis mechanisms of poorly-absorbing aromatic pollutants in ice and ice granules 

remain largely unknown.15,26 One possible explanation is that TEX undergo a red shift in their 

absorbance spectra at ice surfaces. Aromatic species are thought to self-associate at ice surfaces 

due to unfavorable interactions with water molecules.9,15,27,28 In fact, emission from benzene and 

other aromatic molecules attributed to excimers (i.e. self-associated molecules) has previously 
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been measured at ice surfaces using laser-induced fluorescence, and a red shift in benzene’s 

absorption spectrum has been suggested to be responsible for its ability to undergo photolysis at 

ice surfaces.15,25,28–30 We measured the photolysis kinetics of ethylbenzene in ice granules using 

different longpass cut-off UV filters to determine whether a red shift in its absorption spectrum 

could explain the observed photolysis. In the presence of a 305 nm filter, we measured a rate 

constant of (5.3 ± 1.7) × 10-4 s-1, which agrees with that measured with the 295 nm filter within 

our experimental uncertainty. In the presence of a 320 nm filter, however, no photolysis was 

observed. These results are consistent with a red shift in ethylbenzene’s absorption spectrum 

enabling photolysis at ice surfaces under illumination by solar radiation at Earth’s surface.  

TEX photolysis in the environment will likely occur at different rates than in the 

laboratory. Three major factors that will affect photolysis kinetics are photon flux, TEX 

concentration, and the presence of other solutes. Photon fluxes from sunlight at the Earth’s 

surface can be up to 3 orders of magnitude greater than those measured in our experiments. 

Photolysis rate constants may not scale linearly with photon flux, however. Nonlinear photon 

flux dependences have been reported for aromatic molecules, including benzene, in aqueous 

solution and at ice surfaces.7 If similar nonlinearities exist for TEX, linear extrapolations from 

photon fluxes in the laboratory to solar fluxes might significantly overestimate photolysis rates in 

the environment. It should also be noted that photon fluxes measured within or at the surface of a 

snowpack may not accurately reflect the photon flux at the location of the TEX molecules. A 

recent study reported that photon fluxes within ice granules (prepared similarly to those in our 

experiments) were approximately 50% greater than those in larger discs of ice, and 80% greater 

than those in aqueous solution.17 The photon fluxes we report were measured within each 

individual sample; we observe similar enhancements in ice cubes and ice granules.  
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The TEX concentrations used in this study ranged from 1 to 460 mg/L. These 

concentrations are greater than typical environmental concentrations, but are relevant to polluted 

regions. For example, TEX concentrations of 100 mg/L have been reported in contaminated 

groundwaters, and benzene and toluene mixing ratios greater than those in polluted megacities 

were recently measured in the air above snow near hydraulic fracturing operations.3,31 It is 

possible that TEX molecules will only be photolabile in highly contaminated snow, as self-

association at ice surfaces may not occur at low TEX concentrations. However, we measured 

identical ethylbenzene photolysis rate constants at concentrations of 1 mg/L and 53 mg/L, and 

red-shifted benzene spectra have been reported at ice surfaces at concentrations lower than 100 

μg/L; these observations suggest that self-association (and red-shifted spectra) will occur even at 

low TEX concentrations.15   

The effects of solutes on the photochemistry of aromatic pollutants in ice and at ice 

surfaces are not well known. Halide salts have been shown to suppress photolysis of the aromatic 

dye harmine at ice surfaces, likely by forming a liquid brine at the ice surface and causing 

photolysis to occur in aqueous solution.32 This suggests that TEX photolysis may be significantly 

suppressed in snow and ice with high salt concentrations such as sea ice. We have reported that 

PAH photolysis is slower in ice and at ice surfaces in the presence of the immiscible organic 

species octanol and decanol.9 The aromatics and the aliphatic organics are likely excluded to the 

same regions within the ice, resulting in a reaction environment that is more similar to octanol 

and decanol than to ice. In the presence of aliphatic species that do not actively participate in 

photochemistry (i.e. that do not absorb sunlight), we predict that TEX photolysis will be 

suppressed.    
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Many organic species commonly found in snow and ice do absorb sunlight, and can 

participate in photochemistry. We therefore investigated the possibility that indirect 

photochemical processes could contribute to the observed reactivity of TEX at ice surfaces. It 

has recently been shown that reactive oxygen species (ROS) and photosensitization may play 

important roles in the photodegradation of some organic pollutants in ice.18,26,33,34 We measured 

toluene photolysis kinetics in aqueous solution in the presence of rose bengal, a singlet oxygen 

source, and benzophenone, a photosensitizer, to determine whether indirect photochemistry is 

likely important to toluene’s chemical fate.18,19 The presence of rose bengal did not affect toluene 

photolysis kinetics in aqueous solution (kobs = (3.3 ± 0.6) × 10-5 s-1), suggesting that toluene is 

not reactive toward singlet oxygen. However, the presence of benzophenone resulted in 

enhanced toluene loss in both aqueous solution and ice granules, with observed rate constants of 

(6.7 ± 1.5) × 10-5 s-1 and (6.1 ± 0.7) × 10-4 s-1. Assuming that toluene does not react directly with 

benzophenone, the observed rate constants are the sum of the rate constants for evaporation and 

photosensitization (in water), and direct photolysis and photosensitization (in ice granules). We 

calculate photosensitization rate constants for toluene of (4.2 ± 1.8) × 10-5 s-1 and (1.7 ± 0.9) × 

10-4 s-1 in water and ice granules. The photosensitization rate constant in the ice granules is much 

greater than that in aqueous solution, likely due to higher local benzophenone concentrations 

resulting from freeze exclusion. However, photosensitization will be a more important chemical 

fate for toluene (and likely other BTEX molecules) in aqueous solution than at ice surfaces, since 

direct photolysis does not occur there. At ice surfaces, photosensitization may contribute to 

BTEX loss, but direct photolysis will likely be the dominant transformation process.  
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3.5 Environmental Implications 

We have demonstrated that toluene, ethylbenzene, and xylenes undergo photolysis at ice 

surfaces when exposed to simulated sunlight. Photolysis appears to be enabled by a red shift in 

the absorbance spectra of TEX at ice surfaces compared to in aqueous solution. Photolysis rates 

at ice surfaces may increase in the presence of photosensitizers. To our knowledge, photolysis 

initiated by sunlight has not been considered as a potential reaction pathway for TEX. This work 

will improve predictions of BTEX fate in snow-covered environments. This may become 

increasingly important in the Arctic, where human activity is expected to increase as shipping 

lanes open up due to a warming climate. It may also affect regions used for oil and gas 

extraction, where very high benzene and toluene mixing ratios have been measured.  

The effects of BTEX photolysis at ice surfaces on snow and air quality remain unknown; 

since this is largely a previously unconsidered mechanism, reaction products have not been 

investigated. Given that photolysis products of aromatic pollutants are often more toxic than the 

parent compounds, and that photolysis in ice can form products not observed in the aqueous 

phase, identification of BTEX photolysis products is an important endeavour.13,35,36 
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