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Abstract 

Membrane proteins are important in many biological functions such as cell-cell recognition, 

transport, and signaling; yet the study of these proteins is stunted due to their excessive aggregation 

in aqueous solutions. Detergents have been extensively exploited to mitigate this aggregation, and 

accomplish this by protecting the hydrophobic exterior of the membrane protein with their 

hydrophobic tails, while the polar heads of the detergents interact with the surrounding aqueous 

environment. Although detergents are of fundamental importance in many membrane protein studies, 

their selection is primarily done by trial and error screening. In this thesis, I will describe a method to 

utilize steady state fluorescence polarization to look at the desolvation of detergents from various 

membrane proteins. The overall goal is to create a methodology that can be employed broadly to map 

the kinetic fingerprints of various detergents with distinct membrane proteins. This map could 

potentially be used to build a model that would allow for the better selection and design of amphipols 

and detergents. Using this newly described florescence polarization anisotropy method, I examine the 

quantitative contributions of the adhesive protein-detergent and the cohesive detergent-detergent 

interactions for four beta barrel proteins in five distinct detergents. Further highlighting the 

generalizable nature of this method, I show the feasibility of this method by using two single pass 

alpha helical membrane proteins SELENOK and SELENOS. Next, we utilize real time kinetic reads 

of detergent desorption by describing two distinct phases of the desorption process. The kinetic reads 

allow the exploration of these interactions and the description of the inferred rate constants of 

association and dissociation of various detergent-protein complexes. Taken together, I will also 

explore the intricacies of these protein detergent complexes by describing their dependence on both 

the biophysical architecture of the membrane protein and the physiochemistry of the detergent itself.   
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1.1 Membrane Proteins : A Primer  

A defining feature of cells is the plasma membrane which separates the cell's internal 

contents from the surrounding environment [1].  These membranes are composed of both lipids 

and proteins, where the protein components are often the active units involved in a myriad of 

functions including signal transduction[1], transport [2] and enzymatic reactions[3], [4]. They are 

the gate keepers of the cell and as such, are extremely attractive targets in drug development.  

Membrane proteins currently represent 60% of drug targets but only ~1% of the solved protein 

structures [5].  

It was not until 1985 that Johann Deisenhofer solved the first crystal structure of a membrane 

protein: the photosynthetic reaction center from the bacterium Rhodopseudomonas [6]. 

Highlighting the importance of this work, Dr. Deisenhofer, along with Hartmut Michel and 

Robert Huber, was awarded the Nobel Prize in Chemistry in 1988. To build a bit of perspective 

on the hurdles of handling membrane proteins in biophysical assays, this first membrane protein 

structure was solved 27 years after the first soluble protein structure, myoglobin, was solved by 

Kendrew et al.[7]. Membrane proteins are difficult to study for many reasons, but it is almost 

ubiquitously understood that detergent selection and solubilization is a limiting factor. Some 

solubilization detergents can extract these proteins well from the membrane, but they may in turn 

reduce the stability and therefore deactivate the protein of interest. These complex relationships 

between structure, function, and handling ease seem to be at the crux of the membrane protein 

biophysics field [7]. 

Detergents are vital in all steps of membrane protein handling in the laboratory from 

solubilization, purification, and experimentation. Their structure and concentration is important 

to maintaining the functionality and solubility of membrane proteins when they are being 
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handled outside of a membrane[8]. Though the importance of detergents and membrane proteins 

is known, the selection of the proper detergent at the proper concentration for each membrane 

protein is still an exercise in trial and error[9]. 

1.2 A Narrative Introduction  

My work in membrane protein biophysics began in 2007, when I worked on 

characterizing mutations of alpha-hemolysin, with respect to its transport of various small 

peptides, at single molecule resolution [10][11].  Alpha-hemolysin is assembled in red blood 

cells[12], and after this assembly, becomes water soluble. This attribute makes alpha-hemolysin 

a favorite among single channel electrophysiologists, including myself and Dr. Movileanu [11], 

[13]. 

The fact that alpha-hemolysin is water soluble is not unique amongst membrane proteins 

in the nanopore field. As early as 2003, Dr. Hagan Bayley described a water soluble OmpG 

monomer [14]. Researchers strive to increase the solubility of nanopore sensors, as being water-

soluble imparts many very favorable attributes to a nanopore. Primarily, using a water-soluble 

sensor obviates the need for detergents to hold the nanopore in solution, which allows 

researchers to focus solely on designing experiments that can elucidate the fundamentals of 

transport physics. I would now like to admit that my experience with the alpha-hemolysin 

nanopore system spoiled me when it came to working with membrane proteins; I was under the 

naive impression that you can simply take a protein, add it to the reaction chamber, and data 

would come out.  

My third publication [15] was my first interaction with a membrane protein that needed 

solubilizing detergents. Fortuitously, this work was a collaboration with Bert Van Den Berg who 

is one of the world’s leading experts on beta-barrel crystallography. Dr. Van den Berg, at the 

time of this writing, is credited with solving all of the 16 known outer membrane carboxylate 
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channel (Occ) structures, as shown on the database of UC Irvine’s Dr. Stephen White (url: 

http://blanco.biomol.uci.edu/mpstruc/).   As I was receiving proteins from Dr. Van Den Berg the  

conditions for handling and studying the OccD channels were elucidated well before I received 

any proteins.  It was not until late 2011 that I had to start thinking about the nuances of 

detergents and how they interact with proteins. In the lab, I was genetically modifying the 

Ferrichrome outer membrane transporter/phage receptor (FhuA) Which was previously modified 

by Dr. Mohammad and Dr. Movileanu to make a large ion conducting nanopore [16] [17]. I was 

recombinantly expressing my modifications and purifying them in denatured conditions in 

inclusion bodies and refolding them in various detergents after simple affinity chromatography 

purification. It was at this time that I saw my first “puff” of precipitate when I added a newly 

created mutation to the refolding buffer. This precipitate appeared suddenly and was promptly 

removed by a short spin on the microcentrifuge, leaving, at best, nanograms of my protein of 

interest. This first experience with proteins falling out of solution spurned my interest in 

understanding and improving protein solubilization. I began reading and came across Dr. Paula 

Booth’s work on protein folding and detergent interactions[18]–[22]. Her work, amongst others, 

greatly influenced the trajectory of how I went about mitigating my protein precipitation issue 

and helped guide my thinking as I was making my first mutations in FhuA.  

As time went on, I became more aware that there seemed to be a lack of a quantitative 

readout to guide detergent selection, and the field was relying on an ineffective trial and error 

system. I was finding this to be very frustrating as I watched week after week of my efforts fall 

out of solution. I found no solace in the literature, as it seemed to indicate the best approach was 

to try many detergents and perhaps some of them would work. I continued to return to the 

problematic lack of a systematic method for determining what is driving the interfacial forces 

http://blanco.biomol.uci.edu/mpstruc/
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between various greasy proteins and detergents. I toiled for over a year to generate a manuscript 

describing the single channel characteristics of four genetically engineered pores[23] (Chapter 2 

of this thesis), hindered by the ineffective solubilization methods common for membrane protein 

field. As I was working primarily in the world of single molecule electrophysiology, one must 

wait until a channel inserts into the membrane before a recording can be made and functionality 

confirmed. As such, during this period, there were long wait times between the start of an 

experiment and a successful recording. However, I was unable to determine if these delays were 

caused by pores being lost due to unfavorable insertion kinetics, or a lack of solubility in the 

reaction chamber, or other non-determined errors on my part. This lack of understanding lead to 

the utilization of these wait times to explore the measurement of the protein detergent 

interaction.   

Handling membrane proteins in aqueous solutions is required for many applications in 

general biochemistry and biophysics. Outside of my desire to do single molecule 

electrophysiological recordings on my mutational work, it should be noted that membrane 

proteins are increasingly important in medicine. Currently, 60% of drugs in development target 

membrane proteins[24]  and although they represent 30% of the proteome, they account for only 

~1% of the solved protein structures[25]. It is commonly believed that one reason for the 

disparity in structural knowledge is these proteins are exceedingly difficult to handle in solution 

once their hydrophobic patches are exposed. In contrast, soluble proteins sequester their 

hydrophobic patches in the core region to stabilize their structure. Membrane proteins are 

stabilized inside the hydrophobic interior of the lipid membrane. Therefore, their hydrophobic 

regions are exposed to the milieu, allowing them to freely interact with the hydrophobic interior 

of the membrane. Dealing with this inside-out nature of the membrane protein in a laboratory 
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setting, where most systems and experiments on biological matter are carried out in aqueous 

environments, is usually mitigated by the addition of an amphiphilic compounds mixtures 

thereof. These compounds use their dual nature to coat the hydrophobic patches of the proteins 

while allowing water to interact with the hydrophilic regions to maintain solubility and structural 

integrity of the membrane proteins under study, while these proteins are displaced from their 

native lipid environments. In general, these amphiphilic molecules are lipids, detergents, bile 

acid salts, or amphipols[20]. The use of novel solubilization techniques including amphipols[26] 

or nanodiscs[27] usually require the addition of a solubilizing detergent as an intermediate steps, 

as does the extraction of membrane proteins from their native lipid environments[28] [29]. Due 

to the nearly ubiquitous usage of detergents in membrane protein handling, I decided to focus my 

thoughts and work on creating methods to further elucidate a detailed understanding of protein-

detergent complex (PDC) interactions. 

Though it is known that solubilizing agents are essential in much of membrane protein 

biophysics, I found no systematic, high throughput, quantitative method to understand the forces 

involved in these protein-detergent complex interactions. Trial and error screening methods are 

routinely employed in discovering what detergents are to be selected for functional or structural 

studies[20]. The poorly soluble nature of membrane proteins makes sensitive biophysical 

measurements of the PDC utilizing techniques difficult to perform, primarily because they 

become misfolded, aggregated, and heterogeneous when not in the proper detergent. Although 

this is true for elucidating the interfacial forces of the PDC, there are a multitude of examples 

where these techniques are used to study membrane protein structure, in general: SAXS[30], 

DSC [31], and NMR [32], [33]. 
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The trial and error selection of detergents is commonly accomplished simply by visually 

determining whether the protein remained in solution. This low-tech, stand-alone analysis is 

effective in the short term, but these experiments have no quantitative way to inform the 

researcher on what drives the interfacial forces of the PDC and are therefore not beneficial in 

accumulating new and useful information for future condition or reagent selection, drastically 

hindering long term success.  

 In this thesis, I set out to describe the creation of a semiquantitative method to describe 

the thermodynamic and kinetic description of the protein-detergent complex interactions using 

steady state fluorescence anisotropy.    

 

 

1.3 Introduction to Anisotropy  

Fluorescence polarization (FP) as an analysis technique is based on the finding that emission 

from a fluorophore excited by plane polarized light is depolarized by rotational diffusion of the 

molecule during the emission lifetime of the fluorophore. This theory was first described by 

Francis Perrin in 1926 [34]. FP can be used to determine shifts in molecular mass, as mass 

changes will alter the molecular rotation of the labeled molecule and therefore change the 

intensity of the FP readout in either the parallel or perpendicular channel. Below is the equation 

for FP denoted P for polarization. The equation for anisotropy is similar, with the only exception 

being that the intensity (I) horizontal in the denominator is multiplied by a factor of two. 

Therefore, the terms FP and fluoresce anisotropy (FA) can be used interchangeably, although 

they are slightly different mathematically.  
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 FIGURE 1 

It can be clearly seen in the above equation that concentration is not a factor as long as the 

fluorescent signal is within the limits of detection for the experimental instrument[35]. In 

general, a greater anisotropy signal is due to more light being emitted in the parallel intensity and 

therefore slower diffusion, which can then be related to a relatively larger hydrodynamic radius. 

This is useful in determining protein protein interactions (PPI) and their inhibitors in a high 

throughput manner. When associated, protein -protein complexes will be larger and therefore 

rotate slower than when the complex is disrupted by the addition of a molecule.  Upon 

disruption, the labeled species is free of its partner and will therefore be smaller and rotate faster, 

emitting more light in the perpendicular plane leading to a reduced anisotropy value [36], [37]. 

This ability to deduce the relative change in hydrodynamic radius, and the concentration 

independence of the readout, are at the heart of the following chapters, as we build a case for 

utilizing FA in determining and quantifying the interfacial forces of the protein-detergent 

complex.     
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ABSTRACT 

One persistent challenge in membrane protein design is accomplishing extensive modifications 

of proteins without impairing their functionality. A truncation derivative of the ferric 

hydroxamate uptake component A (FhuA), which featured the deletion of the 160-residue cork 

domain and five large extracellular loops, produced the conversion of a non-conductive, 

monomeric, 22-stranded β-barrel protein into a large-conductance protein pore. Here, we show 

that this redesigned β-barrel protein tolerates an extensive alteration in the internal surface 

charge, encompassing 25 negative charge neutralizations. By using single-molecule 

electrophysiology, we noted that a commonality of various truncation FhuA protein pores was 

the occurrence of 33% blockades of the unitary current at very high transmembrane potentials. 

We determined that these current transitions were stimulated by their interaction with an external 

cationic polypeptide, which occurred in a fashion dependent on the surface charge of the pore 

interior as well as the polypeptide characteristics. This study shows promise for extensive 

engineering of a large monomeric β-barrel protein pore in molecular biomedical diagnosis, 

therapeutics, and biosensor technology. 
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INTRODUCTION 

In many situations, global engineering of membrane proteins impairs their functionality and 

folding state, sometimes leading to unfolded structures [1]. One class of relatively robust 

membrane proteins is that of transmembrane β barrels, which are primarily found in the outer 

membrane (OM) of chloroplasts, mitochondria, and Gram-negative bacteria [2]. Their stiffness is 

determined by the presence of a barrel scaffold consisted of anti-parallel, paired β strands. The 

network of many hydrogen bonds between different β strands is the basis for this unique 

structural robustness. This feature was at the heart of many investigations in the perpetually rich 

area of the engineering of β-barrel membrane proteins [3–8]. 

 

Monomeric β-barrels may be used as sensing elements, which rely upon single-molecule 

detection [9–12]. The main advantage of the monomeric β barrel is the ease of genetic 

engineering or chemical modification of single-polypeptide pores and channels, thus avoiding 

further complications of the purifications steps for separating the targeted engineered or modified 

oligomer from other byproducts of the oligomerization reaction. One challenging prerequisite for 

using these monomeric β-barrels in single-molecule detection is obtaining a quiet single-channel 

electrical signature that is freed of current gating fluctuations [13], otherwise interfering with the 

analyte-induced current blockades resulted from single-molecule detection. Spontaneous 

fluctuations in β-barrel protein channels, pores, and porins have been extensively explored [7, 

14–21]. In general, these fluctuations are produced by conformational alterations of the large 

extracellular loops, which many times permanently or transiently fold back into the pore interior 

[7, 16]. 
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An example of a versatile monomeric β-barrel model for extensive engineering and structure-

function relationship studies is the outer membrane protein G (OmpG) from E. coli [22, 23], a 

14-stranded β-barrel containing seven extracellular loops. It was identified that the motions of 

loop L6 determined the gating fluctuations observed with the wild-type OmpG protein [9]. Later, 

other groups independently confirmed that indeed L6 is responsible for the intense gating 

activity of OmpG [7, 24]. Recently, OmpG was successfully used for the single-molecule 

detection of bulky proteins by employing chemically modified flexible tethers [11, 12]. 

 

In this paper, we present a detailed examination of the global engineering of ferric hydroxamate 

uptake component A (FhuA) [25, 26], a monomeric β-barrel OM protein of E. coli. This 714-

residue protein includes a large, 22-stranded barrel filled by an N-terminal, 160-residue cork 

domain located within the pore interior (Fig. 1A and Fig. 1B). The β strands are connected each 

other by 10 short β turns and 11 long extracellular loops (Supplementary Materials, Table S1, 

Fig. S1, Fig. S2). The internal cross-sectional surface of the barrel is elliptical with axis lengths 

of 26 and 39 Å, including the average length of the side chains. FhuA primarily functions as a 

transporter, facilitating the navigation of Fe3+, complexed by the siderophore ferrichrome, from 

the extracellular into periplasmic side [27]. In addition, it was determined that FhuA functions as 

a transporter for antibiotics, such as albomycin [28, 29] and rifamycin [30]. Remarkably, the 

transporter function of FhuA extends to receptor for colicin M and a number of bateriophages, 

including T1, T5, and ϕ80 [29]. 
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Figure 1. Homology molecular structures created by Swiss-model [60, 61] to visually 

compare the global mutational alterations of the β-barrel scaffold of FhuA with respect to 

wild-type FhuA (WT-FhuA). 

(A) Side view of the ribbon structure of the WT-FhuA protein [25, 26]; (B) Top view, from the 

extracellular side, of the ribbon structure of the WT-FhuA protein. In (A) and (B), the 160-

residue cork domain is illustrated in red; (C) FhuA ΔC/Δ5L encompassing complete deletion of 

the cork domain (ΔC) and the major deletions of five extracellular loops, L3, L4, L5, L10, and 

L11, which are marked by arrows; (D) The FhuA ΔC/Δ5L-25N derivative highlighting the 

location of 25 negative charge neutralizations, marked in red, with respect to FhuA ΔC/Δ5L; (E) 

FhuA ΔC/Δ7L-30N that has been obtained by additional four extracellular loop deletions with 

respect to the FhuA ΔC/Δ5L scaffold. This mutant contains 30 new positive charges with respect 

to FhuA ΔC/Δ5L. Additional negative charge neutralizations with respect to FhuA ΔC/Δ5L are 

marked in red, along with three additional lysine mutations in the β turns, out of which two are 

negative-to-positive charge reversals [62], which are marked in blue; (F) The superposition of 

the FhuA ΔC/Δ5L-25N scaffold, marked in red, and FhuA ΔC/Δ7L-30N, marked in blue, aligned 

and visualized by Chimera software package [63], highlighting the additional extracellular loop 

truncations of L4, L5, L7, and L8. All panels show the global FhuA derivatives from various 

angles for the sake of the clarity of specific details. Based on the X-ray crystal structure of FhuA 

[25, 26], the average luminal dimensions of FhuA ΔC/Δ5L were determined to be ~ 3.1 × 4.4 

nm, as measured from Cα to Cα. All homology structures of the globally mutated FhuA proteins 

were accomplished using FhuA PDB ID: 1FI1 [26]. 
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Here, we show that deletion of the entire cork domain (ΔC) and part of five extracellular loops, 

L3, L4, L5, L10, and L11 (ΔL5) of FhuA results in a protein pore that is amenable to modular 

global engineering (Fig. 1C;Supplementary Materials, Tables S2–S4, Fig. S3). FhuA ΔC/Δ5L 

was further redesigned by neutralizing 25 negative charges throughout the β turns, β strands, and 

extracellular loops (FhuA ΔC/Δ5L-25N; Fig. 1D). A common trait of both truncation FhuA-

based protein pores was the occurrence of uniform current transitions, whose amplitude was 

about 33% of the unitary current, among four long-lived sub-states at very high positive and 

negative transmembrane potentials of 180 mV. Subsequent deletion of extracellular loops, 

encompassing part of the already deleted loops L4 and L5, as well as additional two loop 

deletions L7 and L8 (FhuA ΔC/Δ7L-30N; Fig. 1E and Fig. 1F), produced a quiet electrical 

signature at positive potentials, but frequent, large-amplitude, and short-lived current blockades 

at negative potentials that were never observed with the other truncation FhuA mutants. 

 

Interestingly, we found that the 33% current blockades observed with FhuA ΔC/Δ7L-30N were 

stimulated by its interaction with a short, 23-residue cationic polypeptide at lower positive 

transmembrane potentials of ~120 mV. This phenomenon was also replicated with the more 

acidic FhuA ΔC/Δ5L protein pore interacting with other cationic polypeptides. Therefore, we 

concluded that not only a high transmembrane potential, but also the presence of a “polypeptide 

collider” within the pore interior “stimulates” the occurrence of the 33% current transitions. We 

postulated that not only an external polypeptide, but also an internal, fluctuating polypeptide 

loop activates these transitions at lower transmembrane potentials. In accord with this 

hypothesis, under these conditions we noted standard 33% current blockades with a redesigned 

β-barrel, FhuA ΔC/Δ5L-25N_ELP, featuring an extended elastin-like-polypeptide (ELP) loop 
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engineered within the central part of the barrel. This extensive engineering of truncated FhuA-

based protein pores demonstrates their modularity, allowing for further adaptations intended for 

the use in medical biotechnology, therapeutics, and biosensor arenas. 

 

MATERIALS AND METHODS 

  

2.1. Protein overexpression and purification under denaturing condition 

 

Details on cloning of various multi-site mutants, which were derived from fhua Δc/∆5l, are 

provided in Supplementary Materials. All proteins were expressed in E. coli BL21 (DE3). Cells, 

transformed with pPR-IBA1-fhua Δc/∆5l-6×His+, pPR-IBA1- fhua Δc/∆5l-25n-6×His+, pPR-

IBA1- fhua Δc/∆5l-25n_elp-6×His+, and pPR-IBA1- fhua Δc/∆7l-30n-6×His+ plasmids, were 

grown in 2X TY media at 37°C until OD600 ~0.7–0.8, at which time the protein expression was 

induced with 0.5 mM isopropyl β-D-1-thiogalactopyranoside (IPTG) and allowed to continue 

until the cell growth plateaued, as measured by OD600. Cells were harvested by centrifugation 

and the pellet was resuspended in the resuspension buffer (1X PBS, pH 8.0). The resuspended 

cells were lysed using a Microfluidizer, model 110L (Microfluidics, Newton, MA). The 

homogenate was centrifuged for 20 min at 4,000×g and 4°C. Inclusion bodies-containing pellets 

were resuspended in the inclusion body-cleaning buffer (1X PBS, 1% Triton X100, pH 8.0), 

homogenized using Potter-Elvehjem homogenizer (VWR, Bridgeport, NJ), and recentrifuged for 

30 min at 30,000×g and 4°C. This step was repeated three times. The final pellet was 

resuspended in denaturing buffer (10 mM potassium phosphate, 8 M urea, pH 8.0). The solution 

was subject to an additional 30 min-duration centrifugation at 30,000×g and 4°C to remove the 

insoluble materials. The final protein-containing solutions were filtered using 0.2 μM filters 
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(Thermo Fisher Scientific, Rochester, NY). The solubilized proteins were loaded onto a column 

packed with 2 ml of Ni+-NTA resin (Bio-Rad, Hercules, CA), which was equilibrated in 200 

mM NaCl, 10 mM potassium phosphate, 8 M urea, pH 8.0. The column was washed in two steps 

with 5 and 25 mM imidazole, respectively, in the same equilibrating buffer. The proteins were 

eluted with equilibrating buffer containing 350 mM imidazole in 5 ml fractions. SDS-PAGE was 

used to monitor the elution profile of pure proteins. 

 

The tag-free FhuA ΔC/5L protein, lacking the N-terminal, 33-residue signal polypeptide and the 

C-terminal, 6×His+ tag, named TL-FhuA ΔC/5L, was also transformed into the E. coli BL21 

(DE3) cells, which were grown and harvested as describe above. Cell lysates were centrifuged at 

1,800×g for approximately 15 min to separate the insoluble from the soluble proteins. The pellet 

was washed twice by resuspending it in washing buffer 1 (150 mM NaCl, 50 mM Tris, 1 mM 

ETDA, 2 M urea, pH 8.0) and centrifuging it for 20 min at 1,800×g and 4°C. Then, the resulting 

pellet was washed twice by resuspending it in washing buffer 2 (150 mM NaCl, 50 mM Tris, 1 

mM EDTA, 1% Triton X-100, pH 8.0) and centrifuging it for 20 min at 1,800×g and 4°C. This 

procedure was followed by additional two washes of the pellet with ddH20 and its centrifugation 

for 20 min at 1,800×g and 4°C. Finally, the pellet was denatured in the denaturing buffer (20 

mM Tris, 6 M urea, pH 8.0) and loaded onto the ion exchange column (Bio-Rad) equilibrated 

with the same denaturing buffer. Protein was eluted using a linear gradient of elution buffer (20 

mM Tris, 6 M urea, 1 M NaCl, pH 8.0). Collected fractions were analyzed on the SDS-PAGE gel 

for purity tests. Pure fractions were dialyzed against water. The final protein samples were 

lyophilized and stored at −80°C. 
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2.2. Refolding of FhuA ΔC/Δ5L, FhuA ΔC/Δ5L-25N, and FhuA ΔC/Δ7L-30N 

 

The modifications of the protocol for obtaining FhuA ΔC/Δ5L through rapid-dilution refolding 

has been previously described [10]. Briefly, the method of refolding for these proteins was 

adopted from the protocol developed by Arora and colleagues [31]. 40 μl of 6×His+-tag purified 

denatured protein was 50-fold diluted into a 1.5% n-Dodecyl-β-D-maltopyranoside (DDM) 

solution containing 200 mM NaCl, 10 mM sodium phosphate, pH 8.0. The diluted protein 

samples were left overnight at 23°C to complete the refolding process of proteins. Aggregated or 

misfolded proteins were removed by centrifugation at 16,000×g for 15 minutes. Samples were 

stored at −80°C in 50 μl aliquots. 

 

2.3. Refolding of FhuA ΔC/Δ5L-25N_ELP and TL-FhuA ΔC/Δ5L 

 

These particular constructs did not fare well with the rapid-dilution method, so that a slow-

dialysis method was employed to increase the yield and channel activity. 1 ml of urea-denatured 

protein FhuA ΔC/Δ5L-25N_ELP or TL-FhuA ΔC/Δ5L at a final concentration of ~50 μM was 

added to cellulose dialysis tubing (Sigma, St. Louis, MO) containing 1.5% DDM. The tubing 

was placed in a 5-liter beaker containing a buffer solution of 200 mM NaCl, 10 mM sodium 

phosphate, pH 8.0. The dialysis was carried out for 48 hours at 4°C changing the solution once at 

24 hours. The resulting protein-containing solution was spun at 16,000×g and 4°C to remove 

large insoluble aggregates. To further separate the monomeric protein from potentially misfolded 

or aggregated species, the supernatant was applied to a Superdex 200 size-exclusion 

chromatography column (GE Healthcare, Piscataway, NJ) equilibrated with 0.5% DDM in 200 
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mM NaCl, 10 mM sodium phosphate, pH 8.0. The proteins were eluted at the flow rate of 0.25 

ml/min and their elution was monitored by the absorbance at 280 nm. 

 

2.4. Single-channel electrical recordings on planar lipid bilayers 

 

Electrical recordings were carried out with planar bilayer lipid membranes (BLMs) [32, 33]. The 

two sides of the chamber, cis and trans (1.5 ml each), were separated by a 25 μm-thick Teflon 

septum (Goodfellow Corporation, Malvern, PA). An aperture in the septum, ~80 μm in diameter, 

was pretreated with hexadecane (Sigma-Aldrich, St. Louis, MO), which was dissolved in highly 

purified pentane (Fisher HPLC grade, Fair Lawn, NJ) at a concentration of 10% (v/v). A 1,2 

diphytanoyl-sn-glycero-phosphatidylcholine (Avanti Polar Lipids, Alabaster, AL) bilayer was 

formed across the aperture. For acquiring electrical recordings at single-channel resolution, the 

refolded engineered proteins were added to the cis chamber to a final concentration of ~0.1–0.3 

ng/μl. Current recordings were obtained by using a patch-clamp amplifier (Axopatch 200B, 

Axon Instruments, Foster City, CA), which was connected to Ag/AgCl electrodes through agar 

bridges. The cis chamber was grounded, so that a positive current (upward deflection) represents 

positive charge moving from the trans to cis side. A Precision T3500 Tower Workstation 

Desktop PC (Dell Computers, Austin, TX) was equipped with a DigiData 1322A A/D converter 

(Axon) for data acquisition. The signal was low-pass filtered with an 8-pole Bessel filter (Model 

900; Frequency Devices, Ottawa, IL) at a frequency of 10 kHz and sampled at 50 kHz, unless 

otherwise stated. For data acquisition and analysis, we used the pClamp9.2 and pClamp10.3 

software packages (Axon). Details on ion selectivity measurements with asymmetric buffer 

conditions [34, 35] are provided in Supplementary experimental methods.  
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RESULTS 

3.1. Rationale for global engineering of the FhuA scaffold 

 

A primary goal of this work was the conversion of the 714-residue, cork-filled FhuA protein into 

an open transmembrane pore that can maintain its functionality in a tractable mode upon global 

engineering (e.g. additional loop deletions, functional loop implementation, large modification of 

the protein surface charge). To achieve this goal, we have inspected the structural features of this 

protein [25, 26]. The extracellular loops L3, L4, L5, L10, and L11 are large and potentially 

flexible due to their random-coil structure. We determined that that extensive single-channel 

explorations of a multiple-truncation FhuA mutant encompassing the complete removal of the 

cork domain (C) as well as large deletions of the five above-mentioned extracellular loops, also 

called FhuA ΔC/Δ5L, revealed a quiet electrical signature over a broad range of conditions, 

including salt concentration (20 mM–4M), pH (2.8–11.0), and applied transmembrane potential 

(−160 to +160 mV) (Supplementary Materials, Table S4, Figs. S4–S7) [10]. As compared with 

our prior membrane protein redesign studies [5, 10], here we pursued the following three distinct 

goals: (i) to examine the impact of an extensive alteration in the surface charge of the pore 

interior on its biophysical traits. For this purpose, we redesigned and created FhuA ΔC/Δ5L-

25N, which encompassed 25 neutralizations of negatively charged residues located within the β-

turns, β-barrel part and extracellular loops. This truncation FhuA mutant features a much less 

acidic pore; (ii) to explore the effect of further truncation of the remaining large extracellular 

loops on the unitary conductance. In this way, we questioned whether the presence of remaining 

large extracellular loops contributes to the pore constriction. To accomplish this task, we 

redesigned and developed FhuA ΔC/Δ7L-30N, featuring the truncation of seven extracellular 
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loops and the implementation of 30 new positive charges. This truncation FhuA mutant included 

25 neutralizations of negatively charged residues, two negative-to-positive charge reversals, and 

one positive charge mutation of a neutral side chain. In this way, the pore interior of FhuA 

ΔC/Δ7L-30N was even less acidic than that of FhuA ΔC/Δ5L-25N; (iii) to investigate the effect 

of an engineered neutral polypeptide loop within the central part of the β-barrel on the stability of 

the open-state current. To conduct these measurements, we created the FhuA ΔC/Δ5L-25N_ELP 

protein pore, which included an elastin-like-polypeptide loop engineered within the central part 

of the β-barrel of the FhuA ΔC/Δ5L-25N scaffold. In addition, we redesigned and created a 

control truncation mutant, TL-FhuA ΔC/Δ5L, whose polypeptide tags at the N and C termini, 

namely the 33-residue signal polypeptide and 6-His+ tag, respectively, were deleted. In this way, 

we wanted to test whether the N- and C-terminal polypeptide tags do alter the occurrence of the 

33% current blockades observed with the other truncations FhuA mutants. 

 

3.2. Major charge neutralization of a β-barrel scaffold maintains the electrical quietness of 

the pore 

 

Here, we were interested in examining whether this β-barrel scaffold of FhuA can tolerate a large 

alteration in the surface charge within the pore interior. Remarkably, despite numerous charge 

neutralizations of FhuA ΔC/Δ5L-25N, this engineered protein pore exhibited closely similar 

single-channel electrical signature as compared to that of FhuA ΔC/Δ5L (Fig. 1D; 

Supplementary Materials, Table S5, Figs. S8–S10). This drastic change in the number of 

negative charges facing the pore interior produced a significant change in ionic selectivity, from 
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a permeability ratio (PK/PCl) of ~5.5 recorded with FhuA ΔC/Δ5L to ~0.60 observed with FhuA 

ΔC/Δ5L-25N under asymmetric conditions (Supplementary Materials). 

 

3.3. Voltage-induced gating of the engineered pores occurs in the form of uniform, 33% 

current transitions among four sub-states 

 

One striking commonality between FhuA ΔC/Δ5L and FhuA ΔC/Δ5L-25N is the display of 

voltage-induced current blockades at very high transmembrane potentials of 180 mV or greater 

and in 1 M KCl, 10 mM potassium phosphate, pH 7.4. The occurrence of fairly uniform, ~33% 

current blockades at highly elevated positive potentials for the two proteins is illustrated in Fig. 

2A and Fig. 2B. They were also noted at highly elevated negative potentials 

(SUPPLEMENTARY MATERIALS, Figs. S11–S12). In addition, such transitions occurring 

among the four long-lived sub-states were reversible. It should be noted that O1 is a fully open 

current sub-state, reflecting the unitary conductance, whereas O4 is a closed current sub-state, 

exhibiting a very small residual current in the range of 0–20 pA at a potential of +180 mV. 

Therefore, the O2 and O3 current sub-states are intermediate states connecting the fully open and 

closed sub-states. It is worth mentioning that all transitions only occurred among consecutive 

sub-states, i.e., between O1 and O2, between O2 and O3, and between O3 and O4. They 

exhibited durations in a broad time range, from tens of milliseconds to hundreds of seconds, 

spanning a timescale up to six orders of magnitude.  
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Figure 2. Representative current blockades observed with globally mutated FhuA 

derivatives at very high positive potentials. 

These discrete blockades show each ~33% reduction in the unitary conductance. (A) FhuA 

ΔC/Δ5L at +180 mV (n=10 distinct single-channel electrical recordings); (B) FhuA ΔC/Δ5L-

25N at +180 mV (n=2). The inset shows the O3 level by expanding the trace; (C) TL-FhuA 

ΔC/Δ5L at +160 mV (n=3). All single-channel electrical recordings were achieved in 1M KCl, 

10 mM potassium phosphate, pH 7.4. Single-channel electrical traces were low-pass Bessel 

filtered at 1.4 kHz. 
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One immediate question is whether the gating mechanism is impacted by the N- or C-terminus 

located near the periplasmic β turns of the protein (Fig. 1). This is especially reasoned by the 

additional polypeptides engineered at these termini. For example, FhuA ΔC/Δ5L was fused with 

the 33-residue signal polypeptide at the N-terminus and the 6×His+ tag at the C-terminus. FhuA 

ΔC/Δ5L-25N had only the 6×His+ tag at the C-terminus. Therefore, we redesigned and 

constructed an FhuA ΔC/Δ5L mutant lacking both terminal polypeptides, which was named TL-

FhuA ΔC/Δ5L. Interestingly, Fig. 2C demonstrates that TL-FhuA ΔC/Δ5L exhibited 33% 

current transitions among the four long-lived sub-states at an applied transmembrane potential of 

+160 mV. Such transitions were readily detectable among O1 ↔ O2 ↔ O3 at high negative 

potentials (Supplementary Materials, Fig. S13). Therefore, the polypeptides engineered at the N- 

and C-termini were not major perturbation factors on the stability of the open-state current of the 

FhuA ΔC/Δ5L protein pores. 

 

3.4. Extensive deletions of large extracellular loops impact the four sub-state dynamics of 

the pore at negative potential 

 

We wondered whether the remaining parts of extracellular loops might affect the four sub-state 

dynamics of the engineered FhuA ΔC/Δ5L derivatives. Therefore, we designed and constructed a 

multiple loop deletion mutant derived from FhuA ΔC/Δ5L-25N and characterized by further 

truncation of large loops L4, L5, L7, and L8, also named FhuA ΔC/Δ7L-30N (Fig. 1E, Fig. 

1F;Supplementary Materials, Tables S6–S8, Figs. S14–S16). Interestingly, FhuA ΔC/Δ7L-30N 

exhibited a quiet single-channel electrical signature up to +120 mV (Fig. 3A). In contrast to 

FhuA ΔC/Δ5L and FhuA ΔC/Δ5L-25N, FhuA ΔC/Δ7L-30N showed a distinctive single-channel 
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electrical signature at negative transmembrane potentials, which was decorated by frequent, 

large-amplitude transient current blockades (Fig. 3B). Remarkably, at −100 mV the amplitude of 

some of these current transitions (OL) was greater than 50% of that of the unitary current. These 

experiments also reveal the asymmetry of voltage-induced current gating of FhuA ΔC/Δ7L-30N 

with respect to the polarity of the applied transmembrane potential. This single-channel electrical 

signature consisted of small- (OS) and large- (OL) current amplitude blockades (n=3; Fig. 3C). 

The amplitude of these current transitions was clearly distinct from those typically displayed as 

33% current blockades observed with FhuA ΔC/Δ5L and FhuA ΔC/Δ5L-25N at positive and 

negative transmembrane potentials (Fig. 4). At very high negative potentials, greater than −120 

mV, the FhuA ΔC/Δ7L-30N protein pore became fairly unstable and noisy. 
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Figure 3. Representative single-channel electrical signature of FhuA ΔC/Δ7L-30N at a 

medium applied potential. 

 

(A) A representative single-channel electrical trace acquired with FhuA ΔC/Δ7L-30N at applied 

transmembrane potentials of +100 and −100 mV. Transient, large-amplitude current fluctuations 

were observed at negative potentials; (B) A snapshot of a single-channel channel electrical 

recording obtained at a negative potential of −100 mV. The 33% closures were absent at either 

positive or negative potentials; (C) All-point current amplitude histogram of the electrical trace 

acquired in (B). These traces are representative over a number of at least four distinct single-

channel electrical recordings. All single-channel electrical recordings were achieved in 1M KCl, 

10 mM potassium phosphate, pH 7.4. The other experimental conditions were similar to those 

reported in Fig. 2. 
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Figure 4. FhuA ΔC/Δ7L-30N shows a distinctive signature from the other truncation FhuA 

mutants. 

Current-amplitude histogram of the highly frequent current blockades observed with FhuA 

ΔC/Δ7L-30N at negative potentials. The current amplitudes were normalized to that value 

corresponding to the unitary current. All single-channel electrical recordings were achieved in 

1M KCl, 10 mM potassium phosphate, pH 7.4. The other experimental conditions were similar 

to those reported in Fig. 2. 
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3.5. The 33% current transitions are stimulated by the presence of an external polypeptide 

collider 

 

Remarkably, the dynamics of 33% current transitions was not only impacted by the value of 

applied transmembrane potential, but also by the interaction of FhuA ΔC/Δ7L-30N with a 

positively charged polypeptide. Fig. 5 illustrates the interaction of Syn B2, a 23-residue 

polypeptide carrying five Arg residues [36] with FhuA ΔC/Δ7L-30N at an applied potential of 

+120 mV. Fig. 5A shows a quiet signature of FhuA ΔC/Δ7L-30N. When 10 μ M Syn B2 was 

added to the trans side, brief transient current blockades, with dwell times τ1 = 0.2 ms and τ2 = 

2.45 ms, were recorded, indicating partitioning of Syn B2 into the pore interior (Fig. 

5B;Supplementary Materials, Fig. S16). No O2 → O3 current transitions were observed under 

these experimental conditions (n= 3). Interestingly, increasing the Syn B2 concentration at 20 

μM in the trans chamber determined an additional transition, O2 → O3, and also brief Syn B2-

induced current transitions reaching the O4 sub-state (Fig. 5C). 
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Figure 5. Discrete current blockades observed with FhuA ΔC/Δ7L-30N in the presence of 

Syn B2. 

(A) A representative single-channel electrical trace acquired with FhuA ΔC/Δ7L-30N; (B) 

Application of low concentrations of the Syn B2 polypeptide to the trans side caused a 33% 

current blockade; (C) Application of increased concentrations of the Syn B2 polypeptide 

produced an additional 33% current blockade over that noted with FhuA ΔC/Δ7L-30N alone. All 

single-channel electrical recordings were achieved in 1M KCl, 10 mM potassium phosphate, pH 

7.4. The other experimental conditions were similar to those reported in Fig. 2. 
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We questioned whether this Syn B2-induced current transition between the O2 and O3 sub-states 

is only specific to its complex interactions with FhuA ΔC/Δ7L-30N. Therefore, we executed 

single-channel electrical recordings with FhuA ΔC/Δ5L, which can readily undergo 33% current 

transitions at very high transmembrane potentials. It should be noted that a much stronger 

interaction between positively charged Syn B2 and the more acidic β-barrel scaffold of FhuA 

ΔC/Δ5L was expected, as compared to the Syn B2 - FhuA ΔC/Δ7L-30N binding interactions. In 

accord with this anticipation, Syn B2 produced brief and transient current blockades at even 

lower transmembrane potentials (Supplementary Materials, Fig. S17). For example, in a range of 

transmembrane potentials between +20 and +80 mV, the dwell time of Syn B2 within the pore 

interior of FhuA ΔC/Δ5L was between 0.08 and 0.18 ms. A biphasic voltage dependence of the 

dwell time or rate constant indirectly suggests that the relatively short Syn B2 polypeptide 

rapidly navigates across the pore interior of FhuA ΔC/Δ5L at potentials greater than a critical 

value [36–38]. The conspicuous lack of the 33% blockades might likely be determined by the 

rapid Syn B2 translocation. 

 

Therefore, we examined the interaction of larger cationic polypeptides with FhuA ΔC/Δ5L, 

which would exhibit an even stronger binding interaction. First, we conducted single-channel 

recordings involving a 55-residue nucleocapsid protein 7 (NCp7) [39], a protein biomarker of the 

HIV-1 virus. The formal charge of NCp7 is +9 [32, 40, 41]. The addition of 20 μM NCp7 to the 

trans side at a transmembrane potential of only +80 mV resulted in not only frequent, transient 

and brief current blockades with a duration of < 1 ms (n=3), but also 33% current transitions 

among long-lived sub-states, such as O1 → O2, O2 → O3, and O3 → O4 (Supplementary 

Materials, Fig. S18). It is worth noting that the amplitude of the brief transient current blockades 
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was closely similar to the 33% normalized amplitude of the current transitions between the 

above-mentioned sub-states. Similarly with that situation of the interactions between Syn B2 and 

FhuA ΔC/Δ7L-30N, we found that the probability of the NCp7-induced 33% current transitions 

in FhuA ΔC/Δ5L was strongly dependent on the concentration of the external polypeptide. For 

example, at +80 mV, the first O1 → O2 transition occurred after a period of 253 ± 1 s (n=2), 103 

± 2 s (n=3), and 9 ±13 s (n=5) when 200 nM, 5 μM, and 20 μM were added to the trans chamber, 

respectively. 

 

Moreover, we also inspected the interaction of the much larger pb2-Ba proteins [42] with FhuA 

ΔC/Δ5L. pb2-Ba consists of the N terminal region of the pre-cytochrome b2 (pb2) of varying 

length (indicated as number of residues in parenthesis) fused to the N-terminus of the small 

ribonuclease barnase (Ba). They feature a high positive charge located on the leading sequence 

pb2 [36]. Under experimental conditions similar to those involving NCp7, we were able to detect 

the 33% current blockades O1 → O2, O2 → O3, and O3 → O4 at a transmembrane potential of 

+80 mV when only 200 nM of pb2-Ba was added to the trans side (Supplementary Materials, 

Fig. S18). 
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3.6. The 33% current transitions are stimulated by the presence of an engineered 

polypeptide loop within the pore interior. 

 

Based on findings pertinent to the impact of an external polypeptide collider on the dynamics of 

the 33% current transitions in FhuA ΔC/Δ5L and FhuA ΔC/Δ7L-30N protein pores, we 

hypothesized that discrete 33% current transitions among long-lived “metastable” sub-states can 

also be stimulated by the presence of an endogenously engineered polypeptide within the pore 

interior. Therefore, we engineered an elastin-like-polypeptide (ELP) loop by replacing Arg115 in 

the 6th β-strand, which is near the central part of the native β-barrel scaffold. The sequence of 

the ELP was (VPGGG)10, and was supplemented by two flexible Gly-Ser-based linkers, thus 

totaling 65 residues for the entire engineered polypeptide. The newly made construct, named 

FhuA ΔC/Δ5L-25N_ELP, was extensively examined under similar conditions with the other 

truncation FhuA mutants. This polypeptide lacks charge, avoiding some strong electrostatic 

interactions with the barrel walls. In addition, ELP is expected to be in expanded conformation 

[43, 44], perhaps reaching the extracellular region of the pore. In excellent accord with our 

above-mentioned postulation, Fig. 6A presents typical 33% current blockades of FhuA ΔC/Δ5L-

25N_ELP occurring among all four long-lived sub-states at an applied transmembrane potential 

of −100 mV, a condition at which we have never noted such events with the FhuA ΔC/Δ5L-25N 

protein alone or with other truncation FhuA mutant. These 33% current transitions among long-

lived sub-states were fully reversible (Fig. 6B; Supplementary Materials, Fig. S19). 
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Figure 6. Representative 33% current blockades observed with FhuA ΔC/Δ5L-25N_ELP. 

(A) The transmembrane potential was −100 mV; (B) A short section of a typical single-channel 

electrical trace showing that the 33% current transitions observed with FhuA ΔC/Δ5L-N25_ELP 

were reversible. The transmembrane potential was −155 mV. These electrical traces are 

representative over a number of seven independent experiments. All single-channel electrical 

recordings were achieved in 1M KCl, 10 mM potassium phosphate, pH 7.4. The other 

experimental conditions were similar to those reported in Fig. 2. 
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3.7. Conserved single-channel signatures of the globally engineered FhuA protein pores. 

 

In this work, all globally mutated FhuA protein pores showed 33% current transitions, except 

FhuA ΔC/Δ7L-30N at negative transmembrane potentials. Another conserved property of these 

proteins is their close similarity in unitary conductance. In Fig. 7A, the current-voltage plot 

illustrates an almost linear profile with little deviations in single-channel current. Interestingly, 

although the probability of occurrence of discrete current transitions among the four long-lived 

sub-states depended on various factors, including the applied transmembrane potential, the 

concentration of the external polypeptide collider or the presence of an internally fluctuating 

polypeptide, their conductance amplitude, ~1.3 nS, was independent of the applied 

transmembrane potential (Fig. 7B). This finding suggests that these particular transitions 

observed with all explored globally engineered FhuA protein pores are produced by the same 

gating mechanism. 
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Figure 7. Conserved single-channel features of the truncation FhuA mutants. 

(A) The current-voltage relationship represented as average ± SD over at least three independent 

experimental determinations; (B) Voltage-induced current blockades with a normalized current 

amplitude of 33% are ubiquitous among all globally mutated FhuA proteins. Data represent 

normalized amplitude of the conductance of the current blockades from one discrete open sub-

state to the other with respect to open sub-state (O1) unitary conductance. All current blockades 

were ~1.3 nS in conductance or ~33% of the open sub-state (O1) unitary conductance. “*” stand 

for unavailable data, because we were not able to note such transitions in FhuA ΔC/7L-30N 

alone. All single-channel electrical recordings were achieved in 1M KCl, 10 mM potassium 

phosphate, pH 7.4. The other experimental conditions were similar to those reported in Fig. 2. 
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DISCUSSION 

In this work, we extensively investigated truncation FhuA mutants lacking the cork domain and 

significant parts of several large extracellular loops. The large negative charge neutralization 

demonstrated the ability to modulate ion selectivity of a 22-stranded β-barrel protein in a 

predictive manner, from a strongly cation-selective to a weakly anion-selective pore. More 

importantly, this ion selectivity change was accomplished without a significant perturbation of 

primary biophysical traits, such as the unitary conductance of the protein pore, the quietness of 

its single-channel electrical signature under a broad range of experimental conditions, as well as 

the occurrence of the symmetrical 33% current blockades at very high transmembrane potentials. 

 

The amplitudes of these 33% current blockades were not voltage dependent. Their occurrence 

was symmetric with respect to the polarity of the applied voltage, except those noted with FhuA 

ΔC/Δ7L-30N. Ample changes in extracellular loops encompassing additional five positive 

charges perturbed the energetic landscape of the protein pore at negative potentials. The O1 → 

O2 transitions were still detectable with FhuA ΔC/Δ7L-30N at lower positive potentials than 

those observed with FhuA ΔC/Δ5L-25N, indicating that this gating mechanism is independent of 

the absence of large extracellular loops L3, L4, L5, L7, L8, L10, and L11. These current 

transitions were independent of the protein alterations at the N and C termini, as demonstrated 

with a TL-FhuA truncation mutant, as well as extensive charge modifications within the pore 

interior and major deletions of the extracellular loops. We speculate that these current transitions 

resulted from potential breathing deformations of the overall architecture of the β-barrel 

embedded into the bilayer, such as stretching and compression. The phenomenon of breathing 

fluctuations [45, 46] underlying the gating process was recently proposed in the case of outer 
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membrane protein G (OmpG) of Escherichia coli, a monomeric, 14-stranded β-barrel [7] and 

voltage-dependent anion channel (VDAC) [46]. Interestingly, Geng and colleagues reported 

voltage-induced 33% gating blockades among long-lived sub-states occurring in the phi29 

connector protein channel [47]. A lack of crystallographic data of these truncation FhuA mutants 

precluded the obtaining of the molecular origin of the 3-fold nature of these current transitions 

among the four long-lived sub-states. One possibility would be that the surface molecular charge 

distribution throughout the pore interior features an almost 3-fold symmetry, so these current 

transitions in a 3-fold fashion are governed by strong electrostatic forces that span across the 

inner surface of the β barrel. We extensively examined the residue charge distribution within the 

β turns, β barrel, and undeleted extracellular loops and found a heterogeneous charge density 

throughout these regions of the protein, but without a 3-fold symmetry (Supplementary 

Materials, Fig. S20). The fact that FhuA ΔC/Δ5L_25N, which is characterized by 25 

neutralizations of negative charges within the pore interior, underwent 33% current blockades in 

a closely similar fashion with FhuA ΔC/Δ5L, strongly indicates that the charge density and 

distribution of β barrel is not a key player in such current transitions. It is also true that flexibility 

of the barrel depends on other factors, such as the hydrophobic interactions with the 

phospholipids of the bilayer as well as the side chains of the hydrophilic residues facing the pore 

interior. Therefore, it is unclear what are the dominant forces driving the pore structure in a “sub-

trimeric” conformation. 

 

It is conceivable that the duration of these “metastable” sub-states is modulated by transient 

pushing-pulling forces on the barrel wall. For example, an external polypeptide collider 

partitioning within the pore interior perturbed the system by transiently pushing the pore walls. 
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In contrast, an engineered polypeptide loop within the β barrel acted as an elastic spring pulling 

the walls through its conformational fluctuations [48]. At very high transmembrane potentials of 

~180 mV, these pushing-puling forces are amplified by the thickness, bending and stretching 

fluctuations of the lipid bilayer [49, 50]. 

 

To our knowledge, these extensive truncations and global modifications of FhuA are the largest 

ever of a 22-stranded β-barrel examined by single-channel electrical recordings. In contrast to 

large-truncation FhuA protein pores encompassing several loop deletions as well as cork 

removal, shorter deletion mutants of FhuA exhibited complex voltage-induced current gating 

even at low applied transmembrane potentials. For example, the truncation of the cork domain 

resulted in highly noisy FhuA ΔC single-channels [5, 51], which included frequent openings to a 

~2.5-nS conductance state. Interestingly, a truncation mutant of FhuA that featured the deletion 

of the cork domain, gating loop L4 and strand β7, showed a uniform 3.2-nS conductance open 

state decorated by brief 33% current blockades [5]. Currently, it is not clear whether these brief 

current transitions are generated by the same gating mechanism driving the 33% current 

blockades in the case of large-truncation FhuA pores. 

 

Surprisingly, the ELP loop-containing FhuA ΔC/Δ5L-25N showed insignificant change in the 

unitary conductance, but a voltage-induced gating activity at transmembrane potentials at which 

33% current blockades were never observed in either FhuA ΔC/Δ5L or FhuA ΔC/Δ5L-25N. 

These experiments also demonstrate the opportunity for engineering a functional polypeptide 

plug at a different location than that in FhuA ΔC/Δ5L-25N_ELP. Therefore, we postulate that 

there is no technical difficulty in permanent placing other stimuli-responsive polypeptides plugs 
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[52] in various locations, such as the N and C termini as well as within the extracellular side of 

the protein. That would create of new class of proteinaceous nanodevices for controlling the 

transport of various compounds through lipid membranes of capsules as a result of a change in 

an environmental, physical or chemical parameter, such as temperature, pH, local osmotic 

gradient, redox potential, or light. 

 

The relatively large size of the barrel, encompassing 22 anti-parallel β strands, provides 

prospects for the creation of protein nanovalves with relatively bulky polypeptide occlusions 

featuring different architectures [53]. If these developments would be coupled with extensive 

alterations of the surface charge of the β barrel, whose feasibility is demonstrated in this work, 

then such a generic protein nanovalve with controllable occlusions might be used in a broad 

range of arenas in medical biotechnology and therapeutics. As a matter of fact, not only FhuA 

[27, 54, 55], but also other outer membrane proteins, such as the PapC usher, a dimeric 24-

stranded β-barrel of E. coli [15, 20, 56, 57], has a gating cork domain that undergoes 

conformational transitions upon an external chemical stimulus. Thus, the functionality of 

globally engineered FhuA-based protein pores would rely on a closely related mechanism 

inspired by those existent in nature. Overall, with β-barrel adaptations and further development, 

such engineered polypeptide plugs can be explored as a controllable delivery mechanism. 

 

The 33% current transitions were also observed by interactions of cationic polypeptides with the 

interior of the globally engineered FhuA proteins when added to the trans side of the chamber. 

The frequency of these transitions was certainly dependent not only on the nature of the 

polypeptide, such as its length and charge, but also its concentration. If we take into account the 
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dimensions of the elliptical β barrel of FhuA excluding the cork domain, but including the side 

chains of the residues, such as the axis lengths a=26 Å and b=39 Å, as well as a minimum height, 

hmin=20 Å, and a maximum height, hmax=40 Å, then the calculated volume would have a value 

between 16,000 and 32,000 Å3. The molecular weight of the engineered ELP loop, including the 

flexible Gly-Ser linkers was 4.8 kDa. The effective concentration within the pore interior is 

[ELP] = 1/(NAVbarrel) [58], where NA is Avogadro’s number and Vbarrel is the internal 

volume of the β barrel. Under these conditions, the effective ELP concentration within the β 

barrel would be between 5.3 and 10.6 mM. This ELP concentration level is ~267 and ~533 times 

greater than the free concentration of Syn B2 producing the O2 → O3 transition in FhuA 

ΔC/Δ7L-30N, respectively. The fact that these current transitions also occurred within FhuA 

ΔC/Δ5L-25N_ELP at lower applied potentials, indicated that the cationic nature of the 

interacting polypeptide was just a requirement for its electrophoretic capture into the pore 

interior. This finding is consistent with a charge-independent pushing-pulling mechanism on the 

pore walls, as postulated above. 

 

Given the observed long-lived sub-states, O1, O2, O3, and O4, it is difficult to infer the 

quantitative nature of the activation free energies for the transitions from one sub-state to 

another. For events lasting tens of seconds or minutes, the acquisition time of such single-

channel electrical recordings would have to be in the order of several days. One possibility to 

address this challenge is to conduct these experiments at elevated temperatures [17, 59]. In this 

way, the activation free energies will decrease, shortening the duration of the time constants that 

correspond to all sub-states. This approach will reveal the most frequent transitions as well as the 

enthalpic and entropic contributions to all transition-rate constants governing these globally 
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engineered FhuA protein pores [33]. Drastic architectural modifications in the form of extensive 

deletions of extracellular loops and major modulation of the surface charge resulted in 

insignificant alterations of the single-channel conductance of these globally engineered FhuA 

protein pores, suggesting tractability and modularity features of this β-barrel scaffold, and in turn 

the feasibility to utilize this large redesigned protein pore in a wide range of applications. These 

characteristics will allow in the future obtaining conclusive and informative data pertinent to the 

perturbations of this β-barrel protein system. An absence of a significant change in the unitary 

conductance following extensive deletions in the extracellular loops implies that the constriction 

of these mutants does not seem to be created by the large extracellular loops folding back into 

the pore interior. 

 

In summary, we demonstrated the versatility of the native β-barrel scaffold of FhuA to global 

engineering, showing modularity to β turn, β barrel and extracellular loop engineering. New 

aspects of this work included the extensive truncation of a large, 22-stranded β barrel up to seven 

extracellular loops, drastic alteration in the surface negative charge neutralization, up to 30 new 

positive charges, and engineering of a neutral polypeptide loop within the pore interior. Heavily 

redesigned FhuA ΔC/Δ7L-30N exhibited a great disparity of the single-channel electrical 

signature between positive and negative transmembrane potentials. In this case, brief current 

blockades noted at negative potentials do not seem to fit within the confines of the gating 

mechanism responsible for 33% current fluctuations between the fourth long-lived and discrete 

current sub-states. With further development of such a truncation FhuA-based mutant, one can 

design and create a polarity-induced molecular switch, in which the redesigned FhuA protein is 

fully conductive at a positive potential, but closed at a negative potential. This study represents a 
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platform for future extensive engineering of FhuA for targeted applications in therapeutics and 

molecular biomedical technology. 
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SUPPLEMENTAL EXPERIMENTAL METHODS   

1. Cloning of multi-site mutants.  

The fhua Δc/Δ5l gene, lacking loops 3, 4, 5, 10, and 11, was constructed by GENEART (Regensburg, 

Germany) in the pMK-RQ plasmid flanked by EcoRI and XhoI restriction sites, but was previously 

mislabeled as fhua Δc/Δ4l [1, 2]. The fhua Δc/Δ5l-25n and fhua Δc/Δ7l-30n genes were synthesized by 

Integrated DNA Technologies (IDT, Coralville, IA) in pIDTSmart Amp vector. All genes contain a 3’ 

thrombin site and 6×His+ tag. The gene containing vector was transformed into Dh5  chemically-

competent cells from Invitrogen (Grand Island, NY). The transformed cells were grown in 5 ml of LB + 

amp and plasmid was extracted by Miniprep kit (Qiagen, Germantown, MD). The resulting DNA 

construct was subject to PCR using phosphorylated primers: 5’-ATC TCA GGT CTC TGC GCT TTA TTA GT-3’ 

and 5’-CAA GGT GGT CTC CAA TGC TGA AAG AA-3’ to add BsaI restriction sites and remove the 5’ signal 

peptide which directs the protein to the outer membrane. The PCR product was gel-purified using the 

MinElute gel purification kit (Qiagen). Restriction digest with BsaI (New England Biolabs, Ipswich, MA) of 

the purified PCR product and the expression vector pPR-IBA1 were performed for one hour at 37 C. 

Expression vector restriction digest product was gel-purified using the MinElute gel purification kit 

(Qiagen), while the restriction digest product of the gene was purified using the QiaQuick PCR 

purification kit (Qiagen). The resulting purified restriction products were ligated together in a 1:1 ration 

using T4 DNA ligase at 16°C overnight. Ligation products were then transformed into DH5α and selected 

for on AMP plates grown in LB + AMP Miniprep, as described above and verified by DNA sequencing. 

The fhua Δc/Δ5l-25n-elp gene was constructed by taking the fhua Δc/Δ5l-25n gene in the pPR-IBA1 

expression vector and adding SpeI and NheI restriction sites via inverse PCR [3] using phosphorylated 

primers 5’-ACC GTT CGT CAG AAT CTGACT AGT GCT GCC-3’and 5’- GGT GGC GCT AGC TTT GCC GAA AAT 

AAA ACC-3’. This resulted in the removal of arginine at position 116. The PCR product was gel purified, 

ligated, transformed, isolated, and then sent to the DNA sequencing test, as described above. The ELP 



58 
 

insert was synthesized by IDT in pIDTSmart Amp vector. The insert was flanked by SpeI and NheI 

restriction sites. The ELP-encoding insert was the following: ACT AGT GGT GGT GGG TCT GGT GTA CCC 

GGG GGA GGG GTT CCT GGT GGC GGA GTC CCC GGA GGG GGC GTA CCC GGT GGA GGC GTA CCA GGT 

GGC GGA GTT CCT GGT GGC GGA GTC CCC GGA GGG GGC GTA CCA GGT GGC GGA GTG CCG GGT GGT 

GGA GTA CCC GGT GGA GGG GTC GGA GGT TCA TCT GGG GCT AGC. This insert and the previously made 

fhua Δc/Δ5l-25n gene were cut using SpeI and NheI restriction enzymes for one hour at 37 C (New 

England Biolabs, Ipswich, MA). The resulting DNA construct was gel purified as described above. The cut 

and purified insert, as well as fhua Δc/Δ5l-25n gene were ligated and transformed into the DH5  cells. 

Colonies were isolated and miniprepes were performed. The resulting genes were verified by standard 

DNA sequencing.   

 

 2. Determination of the ionic selectivity.  

The ionic selectivity of FhuA ΔC/Δ5L and FhuA ΔC/Δ5L-25N was measured by the following 

steps [4, 5]. The proteins were reconstituted into a planar lipid bilayer in symmetrical solutions 

of 0.2 M KCl, 10 mM potassium phosphate, pH 7.4. Then, the trans chamber was adjusted to 1 

M KCl in the same buffer, after which the single-channel current (I) was then recorded versus 

the transmembrane potential (V) to determine the reverse potential (Vr). Here, the reversed 

potential is defined as the transmembrane potential that corresponds to a zero single-channel 

current recorded under the above asymmetrical conditions. Finally, the ion permeability ratio PK 

/PCl was calculated from the reverse potential (Vr) by employing the Goldman-Hodgkin-Katz 

equation [6]: 
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where a, F, R and T are the activity coefficient, the Faraday constant, the gas constant and the 

absolute temperature, respectively. 
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SUPPLEMENTAL DATA 

3. Sequence alignment of the globally mutated FhuA protein pores.  

 CLUSTAL 2.1 multiple sequence alignment. 

 

  

FhuA C/5L-25N  LKEVQFKAGTNSLFQTGFDFSDSLDDGGVYSYRLTGLARSANAQQKGSEQQRYAIAPAFT 60 

FhuA C/7L-30N  LKEVQFKAGTNSLFQTGFDFSDSLNKGGVYSYRLTGLARSAGSQQKGSEFQRYAIAPAFT 60 

FhuA C/5L   LKEVQFKAGTDSLFQTGFDFSDSLDDDGVYSYRLTGLARSANAQQKGSEEQRYAIAPAFT 60 

FhuA C       LKEVQFKAGTDSLFQTGFDFSDSLDDDGVYSYRLTGLARSANAQQKGSEEQRYAIAPAFT 60 

               **********:*************:..**************.:****** ********** 

 

 

FhuA C/5L-25N  WRPNNKTNFTFLSYFQNEPQTG------------------------NSGGS--TYSRNEK 94 

FhuA C/7L-30N       WRPNNKTNFTFLSYFQNEPQTG------------------------NSGGS--TYSRNEK 94 

FhuA C/5L        WRPDDKTNFTFLSYFQNEPETG------------------------NSEGS--TYSRNEK 94 

FhuA C       WRPDDKTNFTFLSYFQNEPETGYYGWLPKEGTVEPLPNGKRLPTDFNEGAKNNTYSRNEK 120 

               ***::**************:**                        *. ..  ******* 

            L3  
 

FhuA C/5L-25N  MVGYSFNHQFNDTFTVRQNLRFAENKTSQNSVYGNSEGSR-------------------- 134 

FhuA C/7L-30N  MVGYSFNHQFNGTFTVRQNLRFAENKTSQ--------GS--------------------- 125 

FhuA C/5L        MVGYSFDHEFNDTFTVRQNLRFAENKTSQNSVYGNSEGSR-------------------- 134 

FhuA C       MVGYSFDHEFNDTFTVRQNLRFAENKTSQNSVYGYGVCSDPANAYSKQCAALAPADKGHY 180 

               ******:*:**.*****************         *                      

            L4 
 

FhuA C/5L-25N        ---KYVVNDQKLQNFSVDTQLQSKFATGGINHTLLTGVDFMRMRNDINAWFGYNS----- 186 

FhuA C/7L-30N      --------DQKLQNFSVDTQLQSKFATGKINHTLLTGVDFMRMRND-----GYNS----- 167 

FhuA C/5L         ---KYVVDDEKLQNFSVDTQLQSKFATGDIDHTLLTGVDFMRMRNDINAWFGYNS----- 186 

FhuA C     LARKYVVDDEKLQNFSVDTQLQSKFATGDIDHTLLTGVDFMRMRNDINAWFGYDDSVPLL 240 

                      *:****************** *:***************     **:.      

   L4       L5 
 

FhuA C/5L-25N  ----------------GGSSGPYRILNKQKQTGVYVQDQAQWDKVLVTLGGRYDWADQES 230 

FhuA C/7L-30N    ----------------GGS-----ILNKQKQTGVYVQDQAQWNKVLVTLGGRYDWADQES 206 

FhuA C/5L      ----------------EGSSGPYRILNKQKQTGVYVQDQAQWDKVLVTLGGRYDWADQES 230 

FhuA C      NLYNPVNTDFDFNAKDPANSGPYRILNKQKQTGVYVQDQAQWDKVLVTLGGRYDWADQES 300 

                                 ..      ******************:***************** 

   L5  
 

FhuA C/5L-25N  LNRVAGTTNKRDDKQFTWRGGVNYLFGNGVTPYFSYSESFQPSSQVGKDGNIFAPSKGKQ 290 

FhuA C/7L-30N  LNRVAGTTNKRDDKQFTWRGGVNYLFGNGVTPYFSYSESFQSGQ-----------SKGKQ 255 

FhuA C/5L  LNRVAGTTDKRDDKQFTWRGGVNYLFDNGVTPYFSYSESFEPSSQVGKDGNIFAPSKGKQ 290 

FhuA C         LNRVAGTTDKRDDKQFTWRGGVNYLFDNGVTPYFSYSESFEPSSQVGKDGNIFAPSKGKQ 360 

               ********:*****************.*************:...           ***** 

     L7          
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Figure S1. This amino acid alignment involves a cork-deletion mutant of the native FhuA 

(FhuA ΔC) as well as three globally-mutated polypeptides FhuAC/5L, FhuA ΔC/5L-25N, 

and FhuA ΔC/7L-30N.  

 

The figure was generated using Clustal W 2.1. [7]. Conserved sites are marked with '*', ':', or '.' at 

the bottom of the sequences. An asterisk (*) shows locations which have a single, invariant 

residue. A colon (:) indicates conservation between groups of strongly similar properties (scoring 

> 0.5 in the Gonnet PAM 250 matrix). A period (.) points out conservation between groups of 

weakly similar properties (scoring ≤ 0.5 in the Gonnet PAM 250 matrix). The amino acid 

numbering does not include the first 160 residues in the sequence of the WT-FhuA protein, as 

they are part of the cork domain (ΔC) and removed in all FhuA derivatives explored in this work. 

FhuA C/5L-25N  YEVGVKYVPQGRPIVVTGAVYNLTKTNNLMANPQGSFFSVQGGEIRARGVEIEAKAALSA 350 

FhuA C/7L-30N  YEVGVKYVPQGRPIVVTGAVYNLTKT------------SGQSGEIRARGVEIEAKAALSA 303 

FhuA C/5L  YEVGVKYVPEDRPIVVTGAVYNLTKTNNLMADPEGSFFSVEGGEIRARGVEIEAKAALSA 350 

FhuA C   YEVGVKYVPEDRPIVVTGAVYNLTKTNNLMADPEGSFFSVEGGEIRARGVEIEAKAALSA 420 

               *********:.***************            * :.****************** 

          L8  

 

FhuA C/5L-25N  SVNVVGSYTYTDAEYTTNTTYKGNTPAQVPKHMASLWADYTFFDGPLSGLTLGTGGRYTN 410 

FhuA C/7L-30N  SVNVVGSYTYTDAEYTTNTTYKGNTPAQVPKHMASLWADYTFFDKPLSGLTLGTGGRYTN 363 

FhuA C/5L        SVNVVGSYTYTDAEYTTDTTYKGNTPAQVPKHMASLWADYTFFDGPLSGLTLGTGGRYTN 410 

FhuA C         SVNVVGSYTYTDAEYTTDTTYKGNTPAQVPKHMASLWADYTFFDGPLSGLTLGTGGRYTG 480 

                       *****************:************************** **************. 

 

FhuA C/5L-25N  S----------QGSYTVVDALVRYDLARVGMAGSNVALHVNSQGS--------------- 459 

FhuA C/7L-30N  S----------QGSYTVVDALVRYNLARVGMAGSNVALHVNSQGS--------------- 412 

FhuA C/5L        S----------EGSYTVVDALVRYDLARVGMAGSNVALHVNSEGS--------------- 459 

FhuA C         SSYGDPANSFKVGSYTVVDALVRYDLARVGMAGSNVALHVNNLFDREYVASCFNTYGCFW 540 

                       *           ************:****************.  .   **:.   :   

    

         L10              L11                                 
           

 

FhuA C/5L-25N  ----PVVATATFPFLLPRGSHHHHHH------ 467 

FhuA C/7L-30N  ----PVVATATFPFLVPRGSHHHHHH------ 420 

FhuA C/5L        ----QVVATATFRFLVPRGSHHHHHH------ 467 

FhuA C         GAERQVVATATFRF 554 

                      *:.::          

 

             L11 
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All amino acid identifications are done with respect to the presented alignment shown here. The 

methionine created from the start codon is intentionally left out of this alignment and the 

subsequent numbering schemes presented in the Tables S2, S5, S6, and S7. This is done for 

clarity as the methionine is either before the first leucine in the above sequences or it is in the N-

terminal, 33-amino acid signal polypeptide. Its residue sequence is the following: 

MARSKTAQPKHSLRKIAVVVATAVSGMSVYAQA  

Residues marked in green indicate loop deletions in FhuA ΔC/5L and FhuA ΔC/5L-25N. FhuA 

ΔC/Δ5L was constructed by deleting the cork domain (ΔC) as well as the large loops L3, L4, L5, 

L10 and L11. The amino acid sequence of the cork domain is the following: 

AVEPKEDTITVTAAPAPQESAWGPAATIAARQSATGTKTDTPIQKVPQSISVVTAEEMAL

HQPKSVKE 

ALSYTPGVSVGTRGASNTYDHLIIRGFAAEGQSQNNYLNGLKLQGNFYNDAVIDPYMLE

RAEIMRGP VSVLYGKSSPGGLLNMVSKRPTTEP These loops were replaced by the peptide 

linker sequence NSEGS. FhuA ΔC/Δ6L-25N was made by neutralizing 25 negative charges of 

amino acids from FhuA ΔC/Δ5L protein (EXPERIMENTAL PROCEDURES, Table S5, Fig. 

S6). Those residues marked in magenta show additional loop deletions in FhuA ΔC/7L-30N. 

Loop deletions are also marked beneath all sequences by arrows in bold. Residues shown in 

yellow point out positions at which sequence alterations of FhuA ΔC/5L, FhuA ΔC/5L-25N, and 

FhuA ΔC/7L-30N, were produced with respect to that of FhuA ΔC (or WT-FhuA). 
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Figure S2. Topology of the cork-free, wild-type FhuA protein (WT-FhuA ΔC).  

Residues marked by squares are β stranded, whereas those marked by circles are not structured 

(e.g., present in loops and β-turns). Amino acids marked by triangles are part of the α-helical 

structure [8, 9]. Extracellular loops (L) and β turns (T) are numbered from 1 to 11 and from 1 to 

10, respectively. The first (β 1) and last (β 22) β sheets are shown in the figure. 
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Table S1. Features of the extracellular loops of the WT-FhuA protein. 

 
Loop Residues Loop 

length1 

(Å) 

Brief description 

L1 T170-S172 7 Very  short loop 

L2 A203-S208 18 Relatively short loop 

L3 Y243-N273 105 Large flexible and random coil loop that folds into the pore lumen.  

L4 C318-H339 74 Large loop that contains three helixes and a -strand. The loop 

features a stabilizing disulfide bridge C318-C329. It is likely that L4 

along with part of the -strands block to the pore lumen.   

L5 D394-N419 88 Large loop that contains a  strand that likely occludes the lumen. 

L6 R463-G466 11 Very short loop 

L7 P502-P515 46 Flexible medium-sized loop that does block the pore lumen. 

L8 D552-F559 25 Relatively short loop 

L9 D598-K611 46 Medium-sized flexible loop. This is a rather rigid loop due to its 

positioning between two uneven  strands.   

L10 G640-S654 49 Medium-sized flexible loop that might block the pore lumen. 

L11 N682-R704 77 Large loop that contains an anti-parallel -sheet, protruding into the 

pore lumen.   
1The total length of the loop, which was determined under stretched out conformation. 

 

 

Table S2. Details of the truncation FhuA ΔC/Δ5L mutant. 

Loop Deletion Deleted Residues Point mutations Purpose 

ΔL3   

(NSEGS) 

Δ243-266, 

Δ272-273 

YYGWLPKEGTVEPLPNGKRLPTDF, 

NN 

E268S, G269E, 

A270G, K271S 

NSEGS 

linker 

ΔL4   

(NSEGS) 

Δ321-343 PANAYSKQCAALAPADKGHYLAR Y315N, G316S, 

V317E, C318G, 

D320R 

NSEGS 

linker & 

reverse 

negative 

charge 

ΔL5   

(NSEGS) 

Δ396-416 SVPLLNLYNPVNTDFDFNAKD D394N, D395S, 

P417E, A418G, 

N419S 

NSEGS 

linker 

ΔL10 

(NSEGS) 

Δ642-651 SYGDPANSFK G640N, V652E NSEGS 

linker 

ΔL11 

(NSEGS) 

Δ685-703 REYVASCFNTYGCFWGAER N681S, L682E, 

F683G, D684S 

NSEGS 

linker 
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The truncation FhuA ΔC/Δ5L mutant features both deleted residues and point mutations of the 

cork-free FhuA ΔC. The resulting mutant has truncated loops L3, L4, L5, L10 and L11 as well as 

the addition of NSEGS-containing flexible loops. Here, we number all residues with respect to 

the WT-FhuA starting at position 161, which is due to the deletion of the 160-residue cork 

domain (ΔC). It should also be noted that the 33-residue signal polypeptide (see above) will be 

omitted in the numbering of amino acids with respect to WT-FhuA within this table (and Table 

S5). It should be clear to the reader that the first amino acid for the sequences not containing the 

N-terminal, 33-residue signal polypeptide is a methionine. This methionine is also omitted from 

numbering with respect to FhuA C, as its start codon is within the signal polypeptide. FhuA 

ΔC/Δ5L-25N has the same loop deletions as FhuA ΔC/Δ5L, except the linkers were point 

mutated in ΔL3, ΔL5, ΔL10, ΔL11 to NSGGS, NSGGS, NSQGS, NSQGS respectively. 
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Figure S3. Topology map of FhuA ΔC/Δ5L showing in red the loops that have been altered 

from the WT-FhuA structure [8, 9].  

Squares represent amino acids assumed to be in β strands, while circles represent residues in the 

loops and β turns. 
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Table S3. Comparison of the unitary conductance and oligomeric state of FhuA ΔC/Δ5L 

pore with those of other protein nanopores.  
 

 

a This protein is from S. typhi  bacterium and its dimensions were obtained using E. coli ClyA 

crystal structure [17].  
bThe dimensions of this protein were obtained using WT FhuA crystal structure as a template.  
cThe internal dimensions were determined including the side chains of the residues which form 

the constrictions in the respective crystal structures, or from modeled structures in case of  ClyA 

and FhuA ΔC/Δ5L. 
dConductances for other pores and all inner dimensions were obtained from respected references. 

All pores were engineered to give the reported conductance values with buffers containing 1 M 

KCl, except for ClyA, 150 mM NaCl.  
eThe unitary conductance value of M1MspA is 2-3 fold less than that of the WT MspA value 

(4.9 ns) [15]. 
f Represents how many subunits make up the pore. 

  

Protein pore Constriction 

(nm)c 

 

Conductance 

(nS)d 

Oligomeric 

statef 

Reference 

αHL 1.4 1 7 [10, 11] 

Phi29 

connecter 

3.6 4.8 12 [12, 13]  

M1MspA 1 ~2e 8 [14, 15] 

ClyAa 3.8 1.8 12 [16, 17] 

OmpG 1.4 1.2 1 [18-20]  

FhuA ΔC/Δ5Lb 2.6 X 3.9 3.9 1 This work 
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Table S4. Comparison of the unitary conductance of globally engineered FhuA-based 

protein pores under various experimental conditions.  

 

Unless otherwise indicated, the unitary conductance was obtained from single channel electrical 

recordings formed by n-dodecyl-β-D-maltopyranoside (DDM)-refolded nanopores.  

 

 

aThe conductance was obtained from the ratio of the measured current jumps (induced by 

discrete steps or single-channel insertions) to the applied voltage of +40 mV in the indicated 

buffer conditions. All channels were included in the conductance calculations. 
b“n” represents the total number of discrete single-channel insertions from the indicated number 

of independent experiments. 
cFhuA ΔC/Δ5L protein was refolded using the n-octyl-β-D-glucopyranoside (OG) detergent. 
dFhuA ΔC/Δ5L protein was refolded using the 1-lauroyl-2-hydroxy-sn-glycero-3-

phosphocholine (LPhC) detergent. 

  

Protein Conditions Conductance 
(nS)a, b 

Buffer 
conductivity 

(mS/cm) 

Independen
t 

experiment
s 

 
 
 
 
 
 
FhuA ΔC/Δ5L 

Buffer Salt 
concentratio

n  

pH 

Phosphat
e 

.02 M KCl 7.4 0.40 ± 0.07 (n=40) 4.5 4 

0.2  M KCl 7.4 1.2 ± 0.2 (n=15) 24.5 4 

1  M KCl 7.4 3.9 ± 0.6 (n=127) 99.5 7 

3  M KCl 7.4 10.2 ± 0.7 (n=4) 242.3 2 

1  M KCl 7.4 3.8 ± 0.8 (n=33)c 99.5 8 

1  M KCl 7.4 3.9 ± 0.4 (n=44)d 99.5 6 

Phosphat
e- citrate 

1 M NaCl 2.8 2.7 ± 0.7 (n=39) 73.7 5 

1 M NaCl 4.3 2.4 ± 0.6 (n=47) 75.4 4 

1 M NaCl 7.4 2.5 ± 0.8 (n=15) 75.3 4 

1 M NaCl 11.6 2.5 ± 0.3 (n=10) 77.6 3 

 
FhuA ΔC/Δ5L-25N 

Phosphat
e 

1  M KCl 7.4 3.4 ± 0.2 (n=3) 99.5 3 

0.2  M KCl 7.4 1.0 ± 0.2 (n=3) 24.5 3 

Phosphat
e- acetate 

1  M KCl 3.4 4.1 ± 0.1 (n=3) 130 3 

0.2  M KCl 3.4 1.1 ± 0.1 (n=3) 30.5 3 
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4. FhuA ΔC/Δ5L channel is stable under an unusually broad range of ion concentration 

conditions.  

 

In 1 M KCl, 10 mM potassium phosphate, pH 7.4, the refolded proteins were stable up to ±140 

mV. We were able to reliably obtain single-channel step-wise insertions of FhuA ΔC/Δ5L 

protein in the extreme symmetric ionic conditions between 20 mM and 4 M KCl (Fig. S4). For 

example,  the conductance of FhuA ΔC/Δ5L in 0.02 M KCl, 0.2 M KCl, and 3 M KCl, was 0.4 ± 

0.07 (n=40), 1.2  ± 0.2 (n=15) and 10.2 ± 0.7 (n=4), respectively, showing an expectation of the 

increase in unitary conductance with increasing conductivity of the bathing solution at greater 

salt concentration (Table S4). In Fig. S5A, we show the stability of the FhuA ΔC/Δ5L protein in 

a symmetric condition of 20 mM KCl, 10 mM potassium phosphate, pH 7.4. This channel is 

stable at ± 120 mV in symmetric and very low ionic salt condition (20 mM cis/trans), displaying 

infrequent current spikes (~0.4 s-1; Fig. S5A). It is also stable at ±140 mV in asymmetric ionic 

conditions (20 mM in cis, 200 mM in trans) (Fig. S5B). Finally, FhuA ΔC/Δ5L is stable at +140 

mV in symmetric and physiological salt condition of 200 mM KCl, showing short-lived, 

infrequent and low-amplitude current spikes (Fig. S5C). Fig. S5D shows a voltage ramp with 

FhuA ΔC/Δ5L, from -140 to +140, and with a speed of 1.4 mVs-1, under symmetric ion 

concentration conditions of either 20 mM or 200 mM KCl. This plot indicates that this pore 

exhibits a nonlinear current-voltage, so it is ion selective. We determined that the FhuA ΔC/Δ5L 

protein pore is cation selective with an ionic permeability ratio PK/PCl of ~5.5. Further 

investigations on FhuA ΔC/Δ5L showed a uniform single-channel conductance of ~0.4 nS in 20 

mM KCl-containing buffer solution (Fig. S5E). 
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5. FhuA ΔC/Δ5L protein is stable under acidic and basic pHs.  

 

The FhuA ΔC/Δ5L protein readily inserts and forms channels into a lipid bilayer at pH 2.8, 4.3, 

7.4 and 11.6 (Fig. S6A). Electrical traces that show stepwise insertions were recorded under a 

similar symmetric ion concentration of 1 M NaCl. We determined that the unitary conductance 

of FhuA ΔC/Δ5L is 2.7 ± 0.7 (n=39), 2.4 ± 0.6 (n=47), 2.5 ± 0.8 (n=15) and 2.5 ± 0.3 (n=10) at 

pH 2.8, 4.3, 7.4 and 11.6, respectively (Table S4). The unitary conductance values obtained here 

are lower than those values obtained in 1 M KCl-containing buffers owing to the decrease in the 

solution conductivity of 1 M NaCl-containing buffers (Table S4). Fig. S6B shows a voltage ramp 

with FhuA ΔC/Δ5L, from -140 to +140 mV, with a speed of 1.4 mVs-1, under 1 M KCl-

containing buffer conditions, and at pH 2.8, pH 4.3 and pH 11.6. Remarkably, the channels 

formed at various pHs remained open for long periods (Fig. S6C-E). This protein channel is very 

stable up to +140 mV and -100 mV at pH 2.8 (Fig. S6C). FhuA ΔC/Δ5L maintained its stable, 

open-current state up to ±140 mV in pH 7.4 under the same buffering condition (Fig. S6D), 

except that it underwent reversible closures at -140 mV, which were preceded by frequent 

millisecond-lived current fluctuations (~3 s-1) (Fig. S6D, the right panel). FhuA ΔC/Δ5L was 

also stable at pH 11.6 (Fig. S6E). Under this condition, the single-channel electrical trace was 

accompanied by current spikes. We also examined the spectral density of the noise in the single-

channel electrical recordings with FhuA ΔC/Δ5L at different pH values (Fig. S7). The single-

channel current of the FhuA ΔC/Δ5L nanopore exhibits the highest noise at extreme pH values 

of 2.8 and 11.6. However, at pH 2.8, the noise frequency is highest in the range of 30 Hz to 10 

KHz. At an applied potential of +140 mV, the noise of the nanopore increased significantly at pH 

7.4.    
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Figure S4. (A) Single-channel current of FhuA ΔC/Δ5L as a function of the KCl 

concentration.  

At each salt concentration, single-channel insertions from at least two different experiments were 

obtained (single channel ≥ 6 at different salt concentrations) at an applied potential of +80 mV 

and in 10 mM potassium phosphate, pH 7.4. The KCl concentration is indicated on the horizontal 

axis; (B) FhuA ΔC/Δ5L pore inserts into lipid bilayer at low and high ionic salt conditions. This 

panel indicates stepwise single-channel insertions at low salt (20 mM KCl, upper panel) and high 

salt (4 M KCl, lower panel) concentrations. The KCl concentration is indicated on the top of 

each electrical trace.  
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Figure S5. Engineered FhuA ΔC/Δ5L nanopores are stable under low-salt concentration 

conditions.  

Representative single-channel electrical recordings with FhuA ΔC/Δ5L under symmetrical buffer 

solutions on both sides of the chamber, containing 20 mM KCl (A), under asymmetrical buffer 
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solutions, 20 mM KCl in cis side of the chamber and 200 mM KCl in trans side of the chamber 

(B), and under symmetrical buffer solutions on both sides of the chamber containing 200 mM KCl 

(C). The expanded traces in A, B and C illustrate the signature of the nanopore at a greater time 

resolution, In (D), current traces from single channels in symmetrical buffer solutions containing 

either 20 mM or 200 mM KCl, under a voltage ramp from -140 mV to +140 mV, are shown. The 

speed of the voltage ramping was 1.4 mV s-1. In (E), we present a histogram of the distribution of 

the single-channel conductance values of the FhuA ΔC/Δ5L protein at an applied transmembrane 

potential of +40 mV and in 20 mM KCl. The buffer used in all experiments contained 10 mM 

potassium phosphate, pH 7.4. The single-channel electrical traces were low-pass Bessel filtered at 

2 kHz. 
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Figure S6. Engineered FhuA ΔC/Δ5L pores are stable under extreme pH and greater 

transmembrane potential conditions.  

(A) Stepwise insertions of single channels after the addition of the FhuA ΔC/Δ5L protein and at 

an applied transmembrane potential of +40 mV. The buffer solution in the chamber contained  10 

mM phosphate-citrate, 1 M NaCl buffer at indicated pH’s, except for pH 11.6, at which 
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condition the buffer solution was 10 mM Na2HPO47H2O, 1 M NaCl. This type of stepwise 

insertions was reproduced in 5, 4, 4, and 3 different experiments for pH 2.8, pH 4.3, 7.4 and pH 

11.6, respectively. For acquiring macroscopic current recordings with tens of channels inserted 

into a single lipid bilayer, 250 ng FhuA ΔC/Δ5L was added to the cis chamber. The upper 

current/time scale is shown for stepwise channel insertions at pH values of 2.8, 4.3 and 7.4. The 

lower current/time scale is shown for stepwise channel insertions at a pH value of 11.6;  

(B) Single-channel current traces recorded with FhuA ΔC/Δ5L at pH 2.8 (black), 4.3 (red) and 

11.6 (blue) under a voltage ramp from -140 mV to +140 mV. The speed of the voltage ramping 

was 1.4 mV s-1. The buffer conditions are the same as in A; (C) Two-channel electrical 

recordings acquired with FhuA ΔC/Δ5L at pH 2.8. The left and right panels indicate single-

channel electrical traces at an applied transmembrane potential of +140 and -100 mV, 

respectively. The buffer solution in the chamber contained 1 M NaCl, 10 mM phosphate-citrate, 

pH 2.8; (D) Two-channel electrical recordings acquired with FhuA ΔC/Δ5L pore at pH 7.4 and 

at an applied voltage of +140 (the left panel) and -140 mV (the right panel). The buffer solution 

in the chamber contained 1 M NaCl, 10 mM phosphate-citrate, pH 7.4;  

(E) Electrical recordings acquired with FhuA ΔC/Δ5L at pH 11.6 with an applied transmembrane 

potential of +140 (left panel) and -100 mV (right panel). The left and right traces in (E) represent 

currents through two channels and a single channel, respectively. The buffer solution in the 

chamber contained 1 M NaCl, 10 mM Na2HPO47H2O, pH 11.6. The expanded traces in C, D 

and E illustrate the signature of these traces at a greater time resolution. DDM-refolded FhuA 

ΔC/Δ5L protein was used. The single-channel electrical traces were low-pass Bessel filtered at 2 

kHz, except for B, the trace was filtered at 0.1 kHz to eliminate the noise from the amplifier 

during the application of the voltage ramp. 
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Figure S7. Spectral density of the current noise of single FhuA ΔC/Δ5L nanopores under 

different pH conditions.  

 Data are collected at +100 mV (A) and +140 mV (B) and at pH values of 2.8 (orange), 4.3 

(blue), 7.4 (red) and 11.6 (purple). The buffer solutions were the same as in Fig. S6A. Noise 

spectral density taken at 0 mV is the background signal (green). 5-s durations of the single-

channel electrical traces were used for this current noise analysis. All current measurements were 

performed at a sampling rate of 50 kHz with an internal low-pass Bessel filter set at 10 kHz. No 

additional filtering was used prior to this analysis. 
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Figure S8. Topology map of FhuA ΔC/Δ4L-N25 highlighting the residues in red that 

represent the 25 charge neutralizations with respect to the WT-FhuA protein [8, 9]. 

 Squares represent amino acids assumed to be in β strands, whereas circles indicate residues in 

the loops and β turns. 
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Table S5. This table lists all of the point mutations in FhuA ΔC/Δ5L-25N with respect to 

the sequence of FhuA ΔC/Δ5L.  

 

6. The FhuA ΔC/Δ5L-25N nanopore is stable and displays a uniform single-channel 

conductance.  

For FhuA ΔC/Δ5L-25N, we neutralized 25 negative charges (Fig. 1; Table S4). The aim of these 

modifications was to reduce the cationic selectivity of the FhuA ΔC/Δ5L protein, allowing for 

future studies of anionic analytes. The new DDM-refolded nanopores formed channels in the 

lipid bilayer with no prior requirement for preparative reconstitution steps or osmotic gradients 

(Table S4). DDM-refolded FhuA ΔC/Δ5L-25N protein formed stable and open nanopores with a 

unitary current of 137 ± 10 pA, which corresponds to a single channel conductance of  3.4 ± 0.2, 

in 1 M KCl, 10 mM potassium phosphate, pH 7.4, and at an applied potential of +40 mV (n=3) 

(Table S4; Fig. S9A). The distribution of the unitary conductance values showed a single peak 

Mutation Region Purpose Mutation Region Purpose 

D11N loop 1 Neutralization E187G loop 5 Neutralization 

D27G turn 1 Neutralization D239N β strand 12 Neutralization 

E50Q β strand 4 Neutralization D257G turn 6 Neutralization 

D64N turn 2 Neutralization E271Q loop 7 Neutralization 

D65N turn 2 Neutralization E300Q turn 7 Neutralization 

E80Q loop 3 Neutralization D301G turn 7 Neutralization 

E85G loop 3 Neutralization D322N loop 8 Neutralization 

D101N β strand 6 Neutralization E324Q loop 8 Neutralization 

E103Q β strand 6 Neutralization E331Q loop 8 Neutralization 

D139N β strand 8 Neutralization D368N loop 9 Neutralization 

E141Q β strand 8 Neutralization E412Q loop 10 Neutralization 

D160G turn 4 Neutralization E443Q loop 11 Neutralization 

D162N turn 4 Neutralization 
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centered at ∼3.6 nS (Fig. S9B). Further, we measured the conductance of the FhuA ΔC/Δ5L-25N 

nanopores using a current-voltage curve (Fig. S9C). The single channel conductance was ~3.3 nS 

(Table S4). As we expected, the permeability ratio PK/PCl of FhuA ΔC/Δ5L-25N has 

substantially dropped to 0.60 ± 0.09 (n=3) under asymmetric conditions of 200 mM KCl (cis)/1 

M KCl (trans) in 10 mM potassium phosphate, pH 7.4. Similar to FhuA ΔC/Δ5L nanopore, we 

were able to obtain stable, open-state channels with the FhuA ΔC/Δ5L-25N protein in low ion 

concentration, low pH, and the combination of low ion concentration and low pH conditions 

(Table S4, Fig. S10). The unitary conductance of FhuA ΔC/Δ5L-25N in 0.2 M KCl/pH 7.4, 0.2 

M KCl/pH 3.4, and 1 M KCl/pH 3.4 was 1.1 ± 0.2 (n=3), 1.1 ± 0.1 (n=3), and 4.1 ± 0.1 (n=3), 

respectively (Table S4). In 0.2 M KCl, the protein channel was very stable at ± 100 mV (Fig. 

S10). This protein exhibited irresolvable and infrequent current spikes (0.2 s-1) with a low 

amplitude (5 -10% current reduction) at a positive transmembrane potential (Fig. S10A, the 

upper panel), and ms-duration, infrequent current spikes (0.3 s-1) with low amplitudes (8 -16% 

current reduction) at negative voltage (Fig. S10A, lower panel). FhuA ΔC/Δ5L-25N maintained 

the same stability of the open state up to ±100 mV in 200 mM KCl, pH 3.4 (Fig. S10B). At +100 

mV, FhuA ΔC/Δ5L-25N displayed infrequent millisecond-timescale duration events (0.1 s-1), 

with low current amplitudes (~ 15% current reduction) (Fig. S10B, the upper panel). Under 1 M 

KCl/pH 3.4 buffering condition, FhuA ΔC/Δ5L-25N showed two types of current fluctuations 

(Fig. S10C). These fluctuations are quite distinct in their current amplitudes, dwell times, and 

frequencies. At +100 mV, the first type featured a low amplitude (~9% current reduction), a 

microsecond- to millisecond-timescale duration, and a high event frequency (~110 s-1). The 

second type showed a larger amplitude (~35% current reduction), a microsecond-timescale 

duration, and a low event frequency (~0.5 s-1).   
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Figure S9. FhuA ΔC/Δ5L-25N shows a closely similar single-channel electrical signature to 

FhuA ΔC/Δ5L.  

 

(A) Representative single-channel electrical recordings with FhuA ΔC/Δ5L-25N in 1 M KCl, 10 

mM potassium phosphate, pH 7.4, and at an applied transmembrane potential of +100 (the left 

panel) and -100 mV (the right panel). The single-channel electrical traces were low-pass Bessel 
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filtered at 2 kHz; (B) The histograms of the distribution of the single-channel conductance values 

of DDM–refolded FhuA ΔC/Δ5L-25N at an applied transmembrane potential of +60 mV under 

the buffer conditions from A. The bin size was 0.64 nS; (C) The relationships between currents 

and voltages (I/V curves) of single protein channel insertions from -100 mV to +100 mV under 

different salt concentration and pH conditions, as indicated in the panel.  
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Figure S10. Engineered FhuA ΔC/Δ5L-25N pores are stable under a broad range of 

conditions.  

Representative single-channel electrical recordings acquired with FhuA ΔC/Δ5L-25N at an 

applied transmembrane potential of +100 mV (the upper panels) and -100 mV (the lower panels). 

The buffer conditions were the following: (A) 0.2 M KCl, 10 mM potassium phosphate, pH 7.4, 

(B) 0.2 M KCl, 10 mM phosphate acetate, pH 3.4, and (C) 1 M KCl, 10 mM potassium acetate, 

pH 3.4. The expanded traces illustrate the signature of the channels at a greater time resolution. 

The single-channel electrical traces were low-pass Bessel filtered at 2 kHz. 

 

7. Discrete 33% current transitions noted with different truncation FhuA mutants at high 

transmembrane potentials. 
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Figure S11. Representative long-lived current blockades observed with globally mutated 

FhuA derivatives at greater negative applied transmembrane potentials.  

These discrete blockades show each ~33% reduction in the unitary conductance. (A) FhuA 

ΔC/Δ5L at -180 mV (n=10 distinct single-channel electrical recordings); (B) FhuA ΔC/Δ5L-25N 
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at -180 mV (n=3); (C) FhuA ΔC/Δ5L-25N_ELP at -100 mV (n=3). All single-channel electrical 

recordings were achieved in 1M KCl, 10 mM potassium phosphate, pH 7.4. Single-channel 

electrical traces were low-pass Bessel filtered at 1.4 kHz. 

 

8. The 33% current blockades between various sub-states are reversible at high 

transmembrane potentials. 
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Figure S12. The current transitions between the long-lived and discrete sub-states of FhuA 

Δ C/Δ5L are reversible under extreme applied transmembrane potentials.  

In (A) and (B), we illustrate traces from two distinct single-channel electrical recordings showing 

reversibility of current transitions among various sub-states at a transmembrane potential of +180 



87 
 

mV. These recordings were conducted in 1M KCl, 10 mM potassium phosphate, pH 7.4. Single-

channel electrical traces were low-pass Bessel filtered at 1.4 kHz. 
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Figure S13. Representative single-channel electrical recordings of TL-FhuA ΔC/ 5L in 1M 

KCl, 10 mM potassium phosphate, pH 7.4.  

The applied transmembrane potential was -150 mV. The single-channel electrical trace was 

sampled at 100 kHz and low-pass Bessel filtered at 1 kHz. The acquired data are representative 

over three distinct single-channel electrical recordings. 
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9. FhuA C/7L-30N has an asymmetric single-channel electrical signature with respect to 

the voltage polarity. 

 Table S6. Details of the truncation FhuA ΔC/Δ7L-30N mutant. 

Mutation Deletions Deleted Residues Point mutations Purpose 

ΔL3   

(NSGGS) 

Δ243-266, Δ272-

273 

YYGWLPKEGTVEPLPNGKRLPTDF, 

NN 

E268S, G269G, 

A270G, K271S 

NSGGS linker 

ΔL4    

(GS) 

Δ310-317 

Δ320-348 

 

 

NSVYGYGV, 

DPANAYSKQCAALAPADKGHYLA

RKYVVD 

 

C318G 

 

GS linker 

 

ΔL5   

(GYNSGGS) 

Δ387-391 

Δ396-416, 

Δ420-424 

INAWF, 

SVPLLNLYNPVNTDFDFNAKD, 

SGPYR 

D394N, D395S, 

P417G, A418G, 

N419S 

GYNSGGS 

linker 

ΔL7 (QSGQ) Δ505-515 QVGKDGNIFAP E501Q, P502S, 

S503G, S504Q 

QSGS linker 

ΔL8 (SGQS) Δ547-558 NNLMADPEGSFF V560Q, E561Q 

,G562S 

(SGQS) linker 

ΔL10 

(NSQGS) 

Δ642-651 SYGDPANSFK G640N, V652Q NSEGS linker 

ΔL11 

(NSQGS) 

Δ685-703 REYVASCFNTYGCFWGAER N681S, L682Q, 

F683G, D684S 

NSEGS linker 

This table shows all of the loop truncations and consequent linkers of FhuA ΔC/Δ7L-30N. Here, 

all numbering and mutations are with respect to the WT-FhuA. L4 and L5 were further truncated 

from the FhuA ΔC/Δ5L-25N deletions, whereas L7 and L8 were deleted in FhuA ΔC/Δ7L-30N. 

A direct comparison of the loop deletions between FhuA ΔC/Δ5L and that of FhuA ΔC/Δ7L-

30N can be seen in Fig. 1, panel F. 
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Figure S14. Topology map of FhuA ΔC/Δ7L-30N. The four extracellular loops, which were 

reduced with respect ΔC/Δ5L FhuA scaffold (L4, L5, L7, L8), are highlighted in red. The 

residues making up the total point mutations in this construct are labeled as follows: red are 

mutations still present from the FhuA ΔC/Δ5L-25N protein, blue are additional charge reversals, 

and purple are other new mutations of the FhuA ΔC/Δ7L-30N protein (see Tables S6 and S7). 
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Table S7. The point mutations table highlights all of the point mutations that differentiate 

the FhuA ΔC/Δ7L-N30 polypeptide from the FhuA ΔC/Δ5L. All numbering is with respect to 

FhuA ΔC/Δ5L. 

Mutation Structure Purpose Mutation Structure Purpose 

D11N Loop 1 Neutralization D162N Turn 4 Neutralization 

D25N Turn 1 Neutralization E187G Loop 5 Neutralization 

D26K Turn 1 Charge 

reversal  

D213N Turn 5 Neutralization 

D27G Turn 1 Neutralization D239N β strand 12 Neutralization 

N42G Loop2 Addition of 

Bam HI site 

D257G Turn 6 Neutralization 

A43S Loop2 Addition of 

Bam HI site 

E271Q 

 

Loop 7 Neutralization 

E50F Loop2 Neutralization 

& Addition of 

ECORI site 

S274G Loop 7 Loop linker 

D64N Turn 2 Neutralization E300Q Turn 7 Neutralization 

D65N Turn 2 Neutralization D301G Turn 7 Neutralization 

E80Q Loop 3 Neutralization V330G Loop 8 Loop linker 

E85G Loop 3 Neutralization E331Q Loop 8 Neutralization 

D101N β strand 6 Neutralization G332S Loop 8 Loop linker 

E103Q β strand 6 Neutralization D368N Loop 9 Neutralization 

D106G Turn 3 Neutralization G395K Turn 9 + charge 

E141Q β strand 8 Neutralization E412Q 

D425N 

Loop 10 

Turn 10 

Neutralization 

Neutralization 

D160K Turn 4 Charge 

reversal  

E443Q Loop 11 Neutralization 
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Table S8. Loop modifications table highlighting the deletions and point modifications 

which make up the reduction of the specified loops in FhuA ΔC/Δ7L-N30. The amino acids 

in the parenthesis are the native amino acids that were left in-between deletion mutations to 

make up the loops. Tables S7 and S8 elucidate the total mutational landscape of FhuA ΔC/Δ7L-

N30 with respect to FhuA ΔC/Δ5L.   

Mutation Region Purpose 

Δ124-131 (GS) Δ134-139 Loop4 Reduction of large 

loop 

Δ178-182 (GYSNSGGS), Δ189-194 Loop5 Reduction of large 

loop 

ΔP272, S274G, Δ276-285 Loop7 Reduction of large 

loop 

Δ316-328, V330G, G332S Loop8 Reduction of large 

loop 
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Figure S15. Single-channel electrical signature of FhuA C/7L-30N at lower applied 

potentials.  

(A) A representative single-channel electrical trace acquired with FhuA C/7L-30N at applied 

transmembrane potentials of +40 and -40 mV. Transient current fluctuations are observed at 

negative potential;  

(B) A snapshot of a single-channel channel electrical recording obtained at a negative potential 

of -40 mV. The 33% closures were absent at either positive or negative potentials; (C) All-point 

current amplitude histogram of the electrical trace acquired in (B). All single-channel electrical 
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recordings were accomplished in 1M KCl, 10 mM potassium phosphate, pH 7.4. The electrical 

traces were low-pass Bessel filtered at 1.4 kHz. These traces are representative over at least a 

number of four distinct single-channel electrical recordings. 
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Figure S16. FhuA ΔC/Δ7L-30N showed brief current fluctuations when Syn B2, a cationic, 

23-residue polypeptide, was added to the trans side at +120 mV.  

(A) The transmembrane potential was +80 mV. No current blockades were observed; (B) The 

transmembrane potential was +100 mV. Rare brief current blockades were noted; (C) The 

transmembrane potential was +120mV. Highly frequent Syn B2-induced current blockades were 

detected. In all cases, 10 μM Syn B2 was added to the trans side of the bilayer. All single-

channel measurements were conducted in 1 M KCl, 10 mM potassium phosphate, pH 7.4. The 

electrical traces were low-pass Bessel filtered at 1.4 kHz. 

 

10. Interaction of the Syn B2 polypeptide with FhuA ΔC/∆5L. 
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Figure S17. Demonstration that engineered FhuA ΔC/∆5L pore has a bimolecular 

interaction with the Syn B2 polypeptide.  

(A) The dose-response dependence of the 1/off values; (B) The dose-response dependence of 

the 1/on values; (C) The voltage-dependence of the time constants of dissociation (off). The 

concentration of the polypeptide was 50 μM. All measurements were carried out at room 

temperature in 1 M KCl, 10 mM potassium phosphate, pH 7.4. The transmembrane potential in 
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(A) and (B) was +80 mV. The plot from (C) reveals a biphasic dependence of the time constant 

on the applied transmembrane potential [21-23], suggesting that most of peptides are fully 

translocated from one side of the bilayer to the other at a potential greater than +60 mV.   

 

11. Interaction between the 55-residue nucleocapsid protein 7 (NCp7) with FhuA Δ C/ Δ 5L 

and between pb2-Ba proteins and FhuA Δ C/Δ5L. 
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Figure S18. Discrete long-lived current blockades were observed with FhuA C/ 5L in the 

presence of 55-residue nucleocapsid protein 7 (NCp7) (A) [24, 25] as well as pb2(95)-Ba (B), 

pb2(65)-Ba (C), and pb2(35)-Ba (D) at a much lower applied transmembrane potential of 

+80 mV.  

pb2-Ba consists of the N terminal region of the pre-cytochrome b2 (pb2) of varying length 

(indicated as number of residues in parenthesis) fused to the N terminus of the small 

ribonuclease barnase (Ba) [23, 26]. All single-channel electrical recordings were accomplished 

in 1M KCl, 10 mM potassium phosphate, pH 7.4. Electrical traces were low-pass Bessel filtered 

at 1.4 kHz. 

12. The 33% current blockades observed with FhuA Δ C/ Δ 5L-N25_ELP are reversible. 
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Figure S19. The demonstration of the reversibility of the long-lived current blockades 

among long-lived sub-states observed with FhuA ΔC/Δ5L-N25_ELP.  

In this figure, we illustrate reversibility of 33% current transitions noted with FhuA ΔC/Δ5L-

N25_ELP. The “on” and “off” rates of the transitions of this protein pore are greater than those 

observed with other globally mutated FhuA protein pores, suggesting lower energetic barriers 

among all open sub-states. (A) -100 mV; (B) +100 mV; (C) +100 mV. All single-channel 
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electrical recordings were accomplished in 1M KCl, 10 mM potassium phosphate, pH 7.4. 

Electrical traces were low-pass Bessel filtered at 1.4 kHz. 
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Figure S20. FhuA C/5L is characterized by heterogeneous positive and negative charge 

distribution throughout the β turns, β barrel, and extracellular loops.  

 

(A) Cross-sectional image from the periplasmic side, indicating charge heterogeneity of the β 

turns; (B) Cross-sectional image from the extracellular side, illustrating surface change 
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distribution within the remaining loops; (C) Longitudinal slice image of the protein showing the 

periplasmic turns on the top and presenting surface charge distribution within the pore interior 

between residues 1 and 218; (D) Longitudinal slice image of the protein showing the periplasmic 

turns on the top and presenting surface charge distribution within the pore lumen between 

residues 218 and 455. In all panels, negative charges are marked in red, whereas positive charges 

are marked in blue. 
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ABSTRACT 

Understanding how membrane proteins interact with detergents is of fundamental and practical 

significance in structural and chemical biology as well as in nanobiotechnology. Current 

methods for inspecting protein–detergent complex (PDC) interfaces require high concentrations 

of protein and are of low throughput. Here, we describe a scalable, spectroscopic approach that 

uses nanomolar protein concentrations in native solutions. This approach, which is based on 

steady-state fluorescence polarization (FP) spectroscopy, kinetically resolves the dissociation of 

detergents from membrane proteins and protein unfolding. For satisfactorily solubilizing 

detergents, at concentrations much greater than the critical micelle concentration (CMC), the 

fluorescence anisotropy was independent of detergent concentration. In contrast, at detergent 

concentrations comparable with or below the CMC, the anisotropy readout underwent a time-

dependent decrease, showing a specific and sensitive protein unfolding signature. Functionally 

reconstituted membrane proteins into a bilayer membrane confirmed predictions made by these 

FP-based determinations with respect to varying refolding conditions. From a practical point of 

view, this 96-well analytical approach will facilitate a massively parallel assessment of the PDC 

interfacial interactions under a fairly broad range of micellar and environmental conditions. We 

expect that these studies will potentially accelerate research in membrane proteins pertaining to 

their extraction, solubilization, stabilization, and crystallization, as well as reconstitution into 

bilayer membranes. 

 

INTRODUCTION 

Understanding the protein–detergent complex (PDC)(1) interface remains a ubiquitous problem 

in the extraction, solubilization, stabilization, and crystallization of membrane proteins. The 

PDCs were traditionally examined by numerous techniques, including small-angle X-ray 
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scattering (SAXS),(2) circular dichroism (CD) spectroscopy,(3) size-exclusion 

chromatography,(4) and tryptophan fluorescence quenching.(5) These approaches were used to 

determine a variety of physical properties of the proteomicelles, such as their size, shape, and 

distributions. In the past few years, there has been an increased interest in examining the details 

of the interfacial forces that govern the PDC formation as well as their effects on the protein 

structure, stability, and dynamics. CD spectroscopy was frequently used to determine the 

secondary structure and thermostability of membrane proteins under a variety of detergent 

solubilization conditions.(5, 6) Recently, the Brouillette group has developed differential 

scanning calorimetry (DSC) approaches for the inspection of the interactions between detergents 

and extramembranous water-soluble domains of the human cystic fibrosis transmembrane 

conductance regulator (hCFTR).(7, 8) Isothermal titration calorimetry (ITC) was also employed 

for the determination of thermodynamic phase diagrams of ternary lipid–detergent–protein 

systems and their deviation from data obtained in protein-free lipid–detergent mixtures.(9) 

Moreover, nuclear magnetic resonance (NMR) spectroscopy was extensively used for the 

examination of the interactions of membrane proteins with detergent micelles.(10, 11) In 

particular, solid-state NMR is a versatile approach for the investigation of membrane proteins in 

various detergent and lipid environments, including cell membranes.(12) For example, Frey and 

colleagues (2017) were able to characterize the internal backbone and side chain flexibility of the 

outer membrane protein X (OmpX) in micelles, bicelles, and nanodiscs using NMR relaxation in 

a broad range of time scales, from picoseconds to milliseconds.(13) Such a versatility and time 

resolution of NMR spectroscopy often facilitates direct correlations of the collected data with 

membrane protein folding(14) and function.(12) 
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However, current approaches require high concentrations of proteins. Such a problem is 

especially critical to membrane proteins, because the yield is unpredictable due to limited 

expression levels and unproductive aggregation. In addition, the signal-to-noise ratio of the most 

spectroscopic and calorimetric techniques is severely deteriorated by protein aggregation. As a 

result, these approaches cannot be readily expanded to a high-throughput format for the 

concurrent inspection of a broad array of environmental conditions and interacting partners. 

These problems restrain opportunities for acquiring a better quantitative and mechanistic 

information on the PDC interactions. 

Here, we developed a single-fluorophore, 96-well plate-reader approach for obtaining a fast and 

scalable readout of the PDC interactions at low nanomolar concentrations of the protein. This 

assay relied on the use of fluorescence polarization (FP) spectroscopy.(15-18) In the past, FP 

spectroscopy was employed for inspecting the PDC interactions with either mild(19) or harsh 

detergents(20-22) and water-soluble proteins. In contrast to this work, prior sodium dodecyl 

sulfate (SDS)–protein interaction studies were focused on the mechanistic understanding of 

harsh detergent-induced protein unfolding(22) and resistance of proteins to denaturation(21) 

under diverse environmental conditions. 

The steady-state FP spectroscopy facilitates the examination of the rotational mobility of a 

labeled protein. This analysis can be conducted by exciting a chemically attached fluorophore 

with plane-polarized light. If the labeled protein binds to a detergent micelle, then a slowed 

rotational diffusion of the PDC will be accompanied by an increased emission in the plane 

parallel to the polarized light and a decreased emission in the plane perpendicular to the 

polarized light. This emission change is measured and analyzed by a ratio between the numbers 

of free and bound proteins.(16) We postulated that the dynamics of the dissociation of the PDC 
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at detergent concentrations below the critical micelle concentration (CMC) can be examined by 

the steady-state fluorescence anisotropy and kinetic readouts. As a test case, we explored the 

detergent desolvation-induced unfolding of protein nanopores using ferric hydroxamate uptake 

component A (FhuA),(23) a monomeric outer membrane β-barrel protein of Escherichia coli. We 

employed FhuA ΔC/Δ5L, an extensive truncation mutant (Figure 1),(24) so that FhuA was 

converted from a non-ion conducting transmembrane protein(25) to a large-conductance 

nanopore. Therefore, this redesigned protein nanopore enabled parallel inspections of the 

anisotropy readout of detergent-refolded FhuA in solution and its ion transport activity, as judged 

by single-molecule electrophysiology in planar lipid membranes. 
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Figure 1. Side view of the FhuA ΔC/Δ5L protein,(24) illustrating five truncated 

extracellular loops, L3, L4, L5, L10, and L11 of FhuA by top arrows.(23) The bottom 

arrow indicates the T7 β turn and site for protein labeling with Texas Red, which is 

marked by a red sphere. 
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We examined the interactions of this redesigned β-barrel protein nanopore with 12 detergents of 

diverse hydrophilic head groups and hydrophobic tails. This FP-based analytical approach 

enabled the determination of the apparent dissociation constants of the PDC, Kd, over a 4 orders 

of magnitude range. It should be noted that the detergent desolvation of a protein nanopore is 

intimately related to its unfolding owing to detergent depletion in its proximity. From a practical 

point of view, this approach facilitates the detection of low-affinity PDC interfacial interactions, 

whereas the signal-to-noise ratio is not significantly impaired by the extent of protein 

aggregation. Moreover, the ability to obtain quantitative information about specific detergent–

membrane protein interactions in a high-throughput format will be valuable by identifying 

satisfactory solvation and crystallization conditions for structural studies of membrane 

proteins.(26) 

 

EXPERIMENTAL SECTION 

Refolding of FhuA ΔC/Δ5L 

We employed a rapid-dilution refolding protocol(27) to obtain FhuA ΔC/Δ5L. 40 μL of 6 × 

His+-tag purified denatured protein was 50-fold diluted into 200 mM NaCl, 50 mM HEPES, pH 

7.4 solutions at 4 °C, which contained various detergents at concentrations above the CMC 

(Table S1). Different starting detergent concentrations were as follows (when multiple 

concentrations are given, the lower concentrations were needed to get dilutions with a low 

enough detergent concentration to cover the required range): (i) for n-decyl-β-d-maltopyranoside 

(DM), n-undecyl-β-d-maltopyranoside (UM), and n-dodecyl-β-d-maltopyranoside (DDM), we 

used 5 and 20 mM starting detergent concentration; (ii) 50 mM 4-cyclohexyl-1-butyl-β-d-

maltoside (CYMAL-4); (iii) 5 and 20 mM n-dodecyl-N,N-dimethylglycine (LD); (iv) 20 mM 1-
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lauroyl-2-hydroxy-sn-glycero-3-phosphocholine (LysoFos); (v) 0.2, 0.5, 1, and 25 mM 1-

palmitoyl-2-hydroxy-sn-glycero-3-[phospho-rac-(1-glycerol)] (LPPG); (vi) 50 mM 3-[(3-

cholamidopropyl)-dimethylammonio]-1-propanesulfonate] (CHAPS); (vii) 100 mM N,N′-bis(3-

d-gluconamidopropyl)cholamide (Big CHAP); (viii) 50 mM n-octyl-β-d-glucoside (OG); and 

(ix) 50, 100, and 250 mM n-octyl-β-d-thioglucoside (OTG). All detergents were obtained from 

Anatrace (Maumee, OH), except LPPG, which was purchased from Avanti Polar Lipids 

(Alabaster, AL). All detergent solutions were freshly prepared to avoid hydrolysis and 

oxidation.(28) 

 

Anisotropy Measurements 

We employed a SpectraMax I3 plate reader (Molecular Devices, Sunnyvale, CA) equipped with 

the Paradigm detection cartridge for Rhodamine FP spectroscopy, which features the excitation 

and emission wavelengths of 535 and 595 nm, respectively. We covalently attached a 

hydrophilic Texas Red fluorophore(29) to a reactive cysteine sulfhydryl using an engineered 

flexible Gly/Ser-rich peptide loop within the T7 β turn (Figure 1; Supporting Information, Figure 

S1). A similar fluorophore labeling approach was conducted using an engineered cysteine 

sulfhydryl on loop L6 of outer membrane protein G (OmpG D224C; Supporting Information, 

Figure S2).(30) We chose the labeling site on the aqueous phase-exposed regions of the proteins, 

because Texas Red is a hydrophilic compound. The primary advantage of Texas Red is its 

optical stability over a broad range of conditions.(31) Measurements were taken on black flat 

bottom 96-well Costar assay plates (Corning Incorporated Kennebunk, ME). The fluorescence 

anisotropy was calculated using the parallel, Ip(t), and orthogonal, I0(t), time-dependent 

components of the emission intensity:(31, 32)  
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 (1)    (2) 

 

where G is a sensitivity correction factor for the detection modes when emission polarizers are 

oriented vertically and horizontally. Thus where IHV is the intensity with the excitation and 

emission polarizers in a horizontal and vertical orientation, respectively, whereas IHH is the 

intensity with both the excitation and emission polarizers in a horizontal orientation. Because this 

study was conducted on a single instrument, G was assumed to be 1, and the numbers reported 

are uncalibrated anisotropy. The anisotropy measurements were conducted by taking the refolded 

protein sample and diluting it within individual wells with buffer containing various detergent 

concentrations. In this way, we gradually decreased the detergent concentration in individual 

wells, while keeping the final protein concentration constant at 28 nM. The anisotropy was 

determined for time periods in the range 30–60 min. Then samples were covered and placed at 4 

°C, and end points of the PDC reaction were collected 24 h later for equilibrium determinations 

(Supporting Information, Figure S3). Anisotropy traces presented throughout this article 

represent averages ± SD over a number of at least three independent data acquisitions. 

 

RESULTS 

Experimental Rationale 

We found that bringing the protein from a Gdm-HCl-denaturing condition to a detergent 

concentration above the CMC, via a fast-dilution refolding protocol,(27) was accompanied by a 

maximum fluorescence anisotropy, rmax (Table S2). When the detergent concentration was 

brought to a value below the CMC, a reproducible and gradual time-dependent decrease in the 

fluorescence anisotropy was detected (Figure 2A–C). We interpret this decrease in the anisotropy 
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as the dissociation of the detergent from the nanopore. This detergent desolvation-induced 

unfolding resulted in a decrease in the hydrodynamic radius of the protein nanopore, thereby 

leading to an increase in its local mobility. Such an interpretation was also supported by a 

decrease in the anisotropy end point (rmin) due to a gradually reduced final detergent 

concentration (c) within the well (Figure 2D). Moreover, the equilibrium anisotropy end points 

showed a clear two-state transition between rmin and rmax. In conclusion, detergent-solubilized 

proteins were characterized by a maximum anisotropy, rmax, whereas detergent-desolvated 

proteins were featured by an absolute minimum anisotropy, rmin (Table S2). 

  



118 
 

 



119 
 

Figure 2. Time-dependent anisotropy showing the protein–detergent complex (PDC) 

interfacial dynamics of FhuA ΔC/Δ5L. The anisotropy data were acquired by adding 

overnight refolded protein to a bath of varying detergent concentration. All anisotropy 

measurements were carried out at room temperature in 200 mM NaCl, 50 mM HEPES, pH 

7.4. The starting detergent concentrations were as follows: (A) 20 mM LysoFos; (B) 5 and 

25 mM LD; and (C) 0.2, 0.5, and 1 mM LPPG. In (D), concentration–response anisotropy 

changes as a result of the PDC dissociation are shown. The horizontal axis indicates 

individual dilutions of detergent concentrations, while keeping the final protein 

concentration constant at 28 nM (see the Experimental Section). The anisotropy values on 

the vertical axis were collected 24 h later for equilibrium determinations. The LPPG data 

points belonging to the maximum state (rmax = ∼0.342) were obtained when the protein 

was refolded in either 0.5 or 1 mM LPPG. The orange horizontal line on the LPPG data 

points corresponds to a secondary maximum anisotropy value, rmax = 0.31, when the 

protein was refolded in 200 μM LPPG. (E) This panel shows a low anisotropy value, r1, 

which was recorded either in the presence of 40 mM SDS or 6 M Gdm-HCl. The top of 

each panel or vertical bars indicate the CMC (Table S1). 

 

Specificity and Sensitivity of the Time-Dependent Anisotropy on Detergent Properties 

LPPG Exhibited a Strong Binding Affinity to FhuA ΔC/Δ5L 

Here, we show a clear distinction among the time-dependent anisotropy signatures acquired with 

anionic and zwitterionic detergents, such as LysoFos (Figure 2A), LD (Figure 2B), and LPPG 

(Figure 2C). LPPG was able to maintain a uniform rmax-based PDC population when the protein 

was solubilized into a detergent concentration of 1 mM (Figure 2C and Supporting Information, 



120 
 

Figure S4). To probe the LPPG-desolvation process of the protein, we solubilized FhuA ΔC/Δ5L 

in 0.5 and 0.2 mM LPPG. Indeed, an anisotropy decrease was noticed at very low final LPPG 

concentrations of 4 and 8 μM. For the sake of plot simplicity in Figure 2C, we illustrated only a 

few time-dependent anisotropy traces (others are in the Supporting Information, Figure S5). The 

presence of an excess of denaturing agent (6 M Gdm-HCl) revealed a low anisotropy of ∼0.17, 

most likely due to a drastic increase in mobility of the protein in the denatured state (Figure 2E). 

Moreover, the observation of the absolute recorded minimum anisotropy, r1 (the dashed 

horizontal line), under denaturing conditions in the presence of 40 mM SDS, a harsh anionic 

surfactant, indicates that r1 corresponded to the highest tumbling rate of the protein nanopore. 

The concentration–response curves of the detergent-desolvation phases are Langmuir–Hill 

isothermal dissociation plots (Figure 2D).(33) These equilibrium concentration–response curves 

were fitted by a symmetrical four-parameter Hill equation, as previously conducted in other 

receptor–ligand binding assays:(34) 

 

(3) 

Such a fitting procedure implied the assumption that the solvent-accessible surface of the protein 

exhibits individual binding sites for specific detergents. Here, rmin and rmax indicate the above-

mentioned minima and maxima of anisotropy, respectively (Supporting Information, Table S2). 

We also assumed that rmax corresponds to conditions in which all proteins (Ptot) are fully 

solvated (e.g., all binding sites are occupied), whereas rmin corresponds to conditions in which 

all proteins are desolvated (e.g., all detergent monomers are released; Supporting Information). p 

denotes the Hill coefficient. Assuming that all detergent molecules bind to the protein surface 
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with a similar binding affinity, p unambiguously indicates whether this binding occurs with a 

positive (p > 0) or a negative cooperativity (p < 0). It does not mean that p is equal to the exact 

number of binding sites of the protein surface for a certain detergent.(33) All p values were 

greater than 1 (Supporting Information, Table S3), suggesting that several to many detergent 

monomers bind to the protein surface with positive cooperativity. The Hill coefficients are 

nonintegers, because they are likely affected by intermediate state(s) of detergent–protein 

bindings, which are weighted by their distribution fractions. The midpoint of the protein 

unfolding transition corresponds to a concentration c0, which is the apparent dissociation 

constant (Kd; Table S3). The slope factor, q, is the slope of the unfolding transition at half 

saturation and is expressed in mM–1. q is also the steepness of the protein unfolding transition at 

half detergent saturation. When the protein was solubilized in 200 μM LPPG, we recorded data 

points corresponding to a substantially decreased rmax (the orange horizontal line, Figure 2D). 

This was likely caused by the inability to completely solubilize a large fraction of the proteins 

present in solution, otherwise achievable in 1 and 25 mM LPPG. We expanded our FP 

measurements to the steroidal group-based detergents, which included the zwitterionic CHAPS 

and Big CHAP (Supporting Information, Figure S6). CHAPS dissociated quickly from FhuA 

ΔC/Δ5L at a concentration of 2.1 mM, which is approximately 4-fold lower than the CMC. The 

long-lived fluctuations in the anisotropy signal were noticed when Big CHAP-solubilized FhuA 

ΔC/Δ5L was inspected, suggesting very weak PDC interactions (Table S3). 

(4) 
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Neutral, Maltoside-Containing Detergents 

The same experimental approach was conducted in the case of four maltoside-containing 

detergents: DDM, UM, DM, and CYMAL-4 (Supporting Information, Figure S7). The first three 

detergents have 12, 11, and 10 alkyl carbons, respectively, whereas CYMAL-4 is also a 

maltoside-containing detergent with a very short hydrophobic tail, which includes only 4 alkyl 

carbons as well as a cyclohexyl group. It is worth mentioning that these time-dependent kinetic 

reads reveal the time scale of the detergent desolvation-induced protein unfolding. For example, 

at a DM concentration of 0.45 mM, the dissociation of detergent from FhuA ΔC/Δ5L underwent 

three phases with lifetimes from a few minutes to tens of minutes. 

 

 

Dependence of the Detergent Desolvation on the Nanopore Electrostatics 

To further examine the specificity of the anisotropy readout on nanopore properties, we analyzed 

four proteins of closely similar structure but of varying isoelectric point. These were wild-type 

OmpG(35) and three FhuA derivatives, FhuA ΔC/Δ5L, FhuA ΔC/Δ5L_25N, and FhuA 

ΔC/Δ7L_30N (Figure 3A).(24) FhuA ΔC/Δ5L_25N is a FhuA ΔC/Δ5L-based nanopore, whose 

25 negative residues were neutralized, whereas FhuA ΔC/Δ7L_30N features 30 such negative 

neutralizations and further truncation of four major extracellular loops (L4, L5, L7, and L8). For 

all FhuA-based nanopores, Texas Red was attached on T7 β turn. The isoelectric points of 

OmpG, FhuA ΔC/Δ5L, FhuA ΔC/Δ5L_25N, and FhuA ΔC/Δ7L_30N are 4.4, 5.7, 9.3, and 9.6, 

respectively; thereby, at physiological pH, the first two nanopores are acidic, whereas the other 

two are basic. Figure 3B,C shows the dose–response anisotropy following LysoFos and OG 

depletion in the chamber, respectively. We were able to refold both acidic nanopores in OG and 
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noted the two-state protein unfolding transition. In contrast, experiments with basic nanopores 

showed low anisotropy end point values of ∼0.17, because of very weak PDC interfacial 

interactions (Supporting Information, Figure S8). Therefore, the anisotropy values continue to 

decrease even at concentrations well above the CMC. A similar trait, but with a different 

anisotropy signature, was observed with the solubilization of FhuA ΔC/Δ5L in OTG, another 

neutral, glucoside-containing detergent. Remarkably, distinctive anisotropy signatures of OG and 

OTG were noted, although the only molecular difference between the two detergents is the 

replacement of an oxygen with a sulfur atom (Supporting Information, Figure S9). 
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Figure 3. Concentration–response anisotropy changes recorded with protein nanopores of 

varying isoelectric point pI. (A) Side views of the four protein nanopores inspected in this 

work, OmpG, FhuA ΔC/Δ5L, FhuA ΔC/Δ5L_25N, and FhuA ΔC/Δ7L_30N. Locations of 

fluorophore attachment are marked in yellow. Negative charge neutralizations with respect 

to FhuA ΔC/Δ5L are marked in red. For FhuA ΔC/Δ7L_30N, there are three additional 

lysine mutations in the β turns (marked in blue), out of which two are negative-to-positive 

charge reversals.(44) The top of each cartoon indicates the nanopore abbreviated name and 

its respective isoelectric point. (B) Dose–response of the LysoFos depletion in the well; (C) 

Dose–response of OG depletion in the well. Vertical bars indicate the CMC (Table S1). The 



125 
 

horizontal axis indicates individual dilutions of detergent concentrations, while keeping the 

final protein concentration constant at 28 nM (see the Experimental Section). The 

anisotropy values on the vertical axis were collected 24 h later for equilibrium 

determinations. All of the other experimental conditions were the same as in Figure 2. 

 

Predictive Power of This Analytical Approach 

We validated this FP-based analytical assay using two independent approaches. First, the 

unusually strong binding interactions between LPPG and FhuA ΔC/Δ5L (Figure 2C,D and the 

Supporting Information, Table S3) would normally result in a highly thermostable LPPG-

solubilized membrane protein. This expectation was tested using temperature-dependent circular 

dichroism (CD) spectroscopy for identifying the presence of the β-structure in solution. Second, 

we examined whether the zwitterionic and neutral detergents that solubilized well FhuA ΔC/Δ5L 

can be used for the reconstitution of uniform and stable protein nanopores into planar lipid 

membranes. 

Figure 4A confirmed that solubilizing detergents LPPG, LysoFos, UM, DM, and DDM facilitate 

the formation of the β structure in solution (the method details are provided in the Supporting 

Information).(36) Protein samples solubilized with the other detergents did not exhibit a 

satisfactory CD signal under similar conditions. In Figure 4B, we show a clear distinction in the 

temperature-dependent profile between LPPG and LysoFos. Protein refolded in LysoFos began 

losing CD signal by ∼50 °C, with measurements beyond 67 °C rendered impossible by 

irreversible protein aggregation and visible precipitation in the cuvette. On the contrary, the CD 

signal recorded with LPPG-refolded FhuA ΔC/Δ5L continued to decrease slowly, while no 

visible precipitation was noted, suggesting a much more thermodynamically stable protein 
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structure. These results are in excellent accord with the FP data, which indicated unusually 

strong binding interactions between LPPG and FhuA ΔC/Δ5L. To validate the functional pore-

forming properties of proteins solubilized with satisfactory detergents, we conducted single-

molecule electrophysiology experiments (the method details are provided in the Supporting 

Information).(37, 38) In these experiments, we used representative detergents of three different 

classes, in which a detergent desolvation-induced protein unfolding transition was noted 

(LysoFos, Figure 3B; OG, Figure 3C; DDM, Supporting Information, Figure S7E). Indeed, we 

were able to confirm uniform single-channel insertions of LysoFos-, OG-, and DDM-refolded 

FhuA ΔC/Δ5L nanopores (Figure 4C). The distributions of single-channel conductance values 

obtained with FhuA ΔC/Δ5L refolded in each detergent provided a similar average unitary 

conductance of ∼4 nS (Figure 4D). Relatively uniform-conductance channels were observed 

with the LysoFos-refolded protein, but ∼15% and ∼25% outliers of the average conductance 

were detected with DDM- and OG-refolded proteins, respectively. This finding indicates that the 

uniformity of the histogram peak of the single-channel conductance was impaired by the 

refolding detergent (Supporting Information, Figures S10 and S11). 
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Figure 4. Unusual thermostability of LPPG-refolded protein nanopores and functional 

reconstitution of LysoFos-, DDM-, and OG-refolded protein nanopores. (A) Wavelength 

circular dichroism scans of ∼1 μM FhuA ΔC/Δ5L in 200 mM NaCl, 50 mM potassium 

phosphate, pH 7.4 with 20 mM of the specified detergent. In the negative control 

experiment, we used a buffer solution containing 6 M Gdm-HCl. (B) Temperature-

dependent ellipticity θ225 of FhuA ΔC/Δ5L in either 20 mM LPPG or in 20 mM LysoFos. 
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For DDM, UM, and DM, we could not achieve a sufficiently high aggregation-free protein 

concentration. (C) Representative stepwise insertions of single nanopores, over at least six 

distinct experiments, after the addition of DDM- (blue), OG- (black), or LysoFos-refolded 

(red) FhuA ΔC/Δ5L at an applied transmembrane potential of +40 mV. 40 μL of pure and 

denatured 6 × His+-tagged FhuA ΔC/Δ5L was 50-fold diluted into 29 mM DDM, 85 mM 

OG, or 16 mM LysoFos, containing 200 mM NaCl, 50 mM Tris.HCl, 1 mM EDTA, pH 8.0. 

The dilution ratio of the refolded protein within the bilayer chamber was ∼1:1000. 

Therefore, the presence of detergent within the bilayer chamber did not affect the stability 

of the membrane.(45) (D) The unitary-conductance histograms of DDM-, OG-, and 

LysoFos-refolded FhuA ΔC/Δ5L. The electrical recordings were collected using 1 M KCl, 

10 mM potassium phosphate, pH 7.4. 

 

DISCUSSION 

In this work, we show that the FP spectroscopy can be used as a molecular reporter of the 

detergent desolvation-induced unfolding of a membrane protein. While the local flexibility of the 

fluorophore can indeed contribute to the steady-state anisotropy value, the unfolding transition 

only occurs at detergent concentrations comparable with or lower than the CMC. That supports 

the most likely possibility that the tumbling rate (e.g., rotational correlation time) of the protein 

nanopore is indeed affected by the detergent coat. On the contrary, at concentrations of 

satisfactorily solubilizing detergents much greater than the CMC, no significant change in 

fluorescence anisotropy was noticed. Therefore, the detergent-induced aggregation of several 

proteins in one large proteomicelle, further declining the rotameric mobility of the protein, is 

unlikely under these conditions. In some cases, especially at detergent concentrations below their 
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corresponding CMC, we found either some small discrete changes in anisotropy or increased 

error bars (e.g., Figure 2A, 0.5, 1, and 1.5 mM LysoFos). This variability resulted, most likely, 

from the coexistence of multiple substates of the protein nanopores during the desolvation 

process. These physicochemical alterations are perhaps induced by changes in the internal 

pressure created by the detergent layer around the protein, leading sometimes to more discrete 

changes in anisotropy (e.g., Figure 2C, 0.008 mM LPPG). 

We interpret that the two-state detergent desolvation-induced protein unfolding plots acquired in 

this work resulted from the average alterations in the overall cross-sectional size of the PDC due 

to detergent depletion within the well. Under conditions in which the detergent concentration is 

below the CMC, stochastic dissociation events of the detergent monomers from the 

proteomicelle are very likely,(39) leading to ruptured proteomicelles containing misfolded or 

unfolded proteins (Supporting Information, Figure S12 and Table S2). The rotational diffusion 

coefficients of fully solvated nanopores, Drslow, for various inspected detergents, were in a 

broad range, 0.05–1.8 × 107 s–1, revealing greatly distinctive tumbling rates of diverse 

proteomicelles (details are provided in the Supporting Information). In contrast, the rotational 

diffusion coefficients of unfolded proteins, Drfast, spanned a narrow range, between 2.9 and 6.8 

× 107 s–1. At room temperature, a Dr = 3.0 × 107 s–1 corresponds to a rotational correlation 

time of 5.5 ns for an unfolded FhuA ΔC/Δ5L, which features a molecular weight of ∼55 kDa. 

This is in good accord with the calculated rotational correlation time of 15.4 ns for a 50 kDa-

protein at 20 °C.(40) Detergent desolvation-induced protein unfolding produced a change in the 

PDC hydrodynamic radius, ΔRh, within a broad range of 0.6–5.1 nm. 

We were able to refold acidic nanopores in OG, and the two-state unfolding transitions of these 

nanopores were noted under physiological conditions. In contrast, we acquired low anisotropy 
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signals with the OG-refolded basic nanopores. Therefore, it is very unlikely that we can get 

functional membrane-inserted FhuA ΔC/Δ5L_25N and FhuA ΔC/Δ7L_30N nanopores under 

these denaturing conditions. This finding substantiates that the anisotropy readout is not 

primarily driven by the interaction of the fluorophore with a proteomicelle but the protein–

micelle interactions. In other words, even if there is some mobility restraint of the fluorophore 

dynamics by the detergent coat, the anisotropy readout pertaining to the desolvation kinetics and 

energetics is strongly dependent on the properties of the PDC interactions. Figure 3C can be 

considered as a positive control experiment, in which all four anisotropy traces were collected 

under identical conditions but of strongly varying PDC interfacial interactions.(41) 

It is worth mentioning that FhuA ΔC/Δ5L interacted weakly with OG, as compared with 

LysoFos and DDM (Supporting Information, Table S3). A large number of unitary conductance 

outliers were noted with OG. This suggests that the insertion of many misfolded OG-solubilized 

proteins into bilayer were due to their residual detergent desolvation in aqueous phase (Figure 

4D). Although the Kd values for DDM and LysoFos were closely similar, some unitary 

conductance outliers observed with DDM, but not LysoFos, imply that a highly uniform 

conductance peak might be determined by other physicochemical factors as well (e.g., size and 

packing of the proteomicelles), as the protein insertion is preceded by demicellization. It is also 

true that the functional activity of membrane proteins is sometimes compromised in part by their 

reduced internal flexibility within detergent micelles, which is another reason for the appearance 

of some unitary conductance outliers.(13) 

One consequence of the detergent dissociation from membrane proteins is their aggregation. This 

process is accompanied by changes in the interactions of waters with the protein surface. In the 

absence of detergent, the waters lose their capacity to form hydrogen bonds with the protein 



131 
 

surface. Therefore, this unusual interaction is entropically unfavorable, leading to minimized 

interaction interfaces between water molecules and hydrophobic regions of the membrane 

protein. In this case, the waters are confined in small clusters surrounded by hydrophobically 

collapsed parts of the protein. 

Our FP-based approach can be extended to other applications. For example, the inability to 

completely extract some lipids from membrane proteins during crystallographic studies is 

phenomenally interesting, indicating that the lipids have a required structural role for these 

proteins. With further developments, this FP method may be used to determine changes in the 

tumbling rate of membrane proteins under native (e.g., in lipid-bound detergent micelles) and 

denaturing (e.g., in the presence of Gdm-HCl) conditions. FP experiments with specific 

detergent–lipid solubilization mixtures(9) might potentially generate an understanding of the 

structural role of these lipids in the stabilization of membrane proteins. 

Despite obvious advantages of this FP-based analytical assay, there are a number of limitations. 

First, this approach is restrained to a low-molecular size fluorophore. Large-molecular size 

fluorophores (e.g., genetically engineered green fluorescence protein (GFP) and its derivatives) 

are prone to distort the flexibility, dynamics, and structure of the inspected protein. Second, 

proteins with multiple native cysteines cannot be used if the approach is extended to time-

resolved anisotropy and time-dependent, steady-state FP studies, because individual fluorophore 

anisotropy spectra can complicate data interpretations due to their diverse residue and solvent 

environments during the desolvation process. Moreover, a hydrophilic fluorophore needs to be 

attached within the aqueous phase-exposed domains of the protein for a satisfactory anisotropy 

signal-to-noise ratio. 
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In summary, we examined the time-dependent detergent-desolvation of protein nanopores. To 

our knowledge, this is the first study on the kinetic read of desolvation of water-insoluble 

proteins at detergent concentrations well below the CMC. This approach can be readily expanded 

to a broad range of situations for identifying optimized interfacial interactions. These include 

ionic strength, temperature, osmotic pressure, viscosity, pH, binary and ternary mixtures of 

detergents, as well as other nonclassical detergent-like compounds, such as lipopeptides(42) and 

amphipols.(43) Future developments of this analytical approach will likely impact advancements 

in the synthetic chemistry of newly designed detergent-like molecules and membrane proteins. 
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SUPPLEMENTAL EXPERIMENTAL METHODS   

 
 

 1. Protein overexpression and purification of FhuA-based nanopores under denaturing 

condition. Through de novo synthesis (Geneart, Regensburg, Germany),1 the  fhua Δc/Δ5l gene 

lacked the regions coding for the cork domain and extracellular loops 3, 4, 5, 10, and 11, as 

compared to the wild-type fhua. fhua Δc/Δ5l_t7 was created by inverse PCR2 using the forward 

primer  5’-/Phos/TGC GGG TCG TCC GGA GGT ATT GTG GTT ACC GGT GCC GTT T -3’ 

and the reverse primer 5’-/Phos/GCC AGA TGA ACC TCC ATA TTT AAC GCC CAC TTC 

ATA CTG-3’, using pPR-IBA1-fhua Δc/∆5l-6×His+ plasmid as a template. The PCR product 

was self-ligated to create pPR-IBA1-fhua Δc/∆5l_t7-6×His+. This replaced  turn T7 

(V
331

PEDRP
336

) with a single cysteine-containing, flexible, GS-rich peptide loop 

(GGSSGCGSSGGS). Proteins were expressed in E. coli BL21 (DE3). Cells, transformed with 

pPR-IBA1-fhua Δc/∆5l_t7-6×His+ plasmid, were grown in LB media at 37°C until OD600 ~0.6-

0.7, at which time the protein expression was induced with 0.5 mM isopropyl β-D-1-

thiogalactopyranoside (IPTG) and allowed to continue until the cell growth plateaued, as 

measured by OD600. Cells were harvested by centrifugation and the pellet was resuspended in 1X 

PBS, pH 8.0. The cell lysis was conducted using a microfluidizer, model 110L (Microfluidics, 

Newton, MA). The homogenate was centrifuged for 20 min at 4,000×g and 4°C. Inclusion 

bodies were resuspended and washed 3 times in 1X PBS, 1% Triton X-100, pH 8.0, followed by 

centrifugation for 30 min at 30,000×g and 4°C. Resulting washed inclusion bodies were 

resuspended in 50 mM HEPES, 1 mM Tris(2-carboxyethyl)phosphine (TCEP), 6 M guanidinium 

hydrochloride (Gdm-HCl), pH 8.0, which was followed by centrifugation at 30,000×g and 4°C to 
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remove the insoluble materials. The final protein-containing solutions were filtered using 0.2 μM 

filters (Thermo Fisher Scientific, Rochester, NY). The solubilized proteins were loaded onto a 

column packed with 2 ml of Ni+-NTA resin (Bio-Rad, Hercules, CA), which was equilibrated in 

200 mM NaCl, 50 mM HEPES, 6 M Gdm-HCl, 1 mM TCEP, pH 8.0. The column was washed 

in two steps with same equilibrating buffer, but containing 5 and 25 mM imidazole, respectively. 

The proteins were eluted with equilibrating buffer containing 250 mM imidazole in 5 ml 

fractions. SDS-PAGE was used to monitor the elution profile of pure proteins (Supporting 

Information, Fig. S1). For the sake of simplicity of mutant abbreviations, “T7” is omitted in the 

case of all FhuA-based nanopores examined in this study.   

 

 

 

 

 

Figure S1:  SDS-PAGE gel of purified FhuA ∆C/Δ5L. In 

this engineered FhuA protein, the  turn 7 (V
331

PEDRP
336

) 

was replaced by a single cysteine-containing flexible peptide 

loop (GGSSGCGSSGGS). Proteins were visualized using 

GelCode Blue Stain Reagent (Thermo Scientific, Rockford, 

IL). MW stands for molecular-weight standards. For the sake 

of simplicity of the abbreviations, ”T7“ was omited in the case 

of all FhuA-based protein nanopores examined in this study. 

 
 

 

 

 

2. Protein labeling of the FhuA derivatives.  
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10 μM 6×His+-tagged FhuA ΔC/Δ5L, FhuA ΔC/Δ5L_25N, and FhuA ΔC/Δ7L_30N proteins 

were incubated with 200 μM Texas Red C2 maleimide (Thermo Fisher Scientific) overnight at 

room temperature in 200 mM NaCl, 50 mM Tris, 1 mM TCEP, pH 8.0, and 6 M Gdm-HCl. 

Proteins were separated from free dye by Ni2+-NTA column chromatography in the same buffer, 

but with a 10-200 mM imidazole step gradient. Labeling stoichiometry was between 0.3-0.8 

labels/protein using ε595 = 104,000 M-1cm-1 for Texas Red and a correction factor of 0.26 x ε595 to 

account for the dye absorbance at 280 nm. 
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 3. Expression, purification, and labeling of OmpG D224C proteins. OmpG D224C (loop 

L6) was constructed and expressed in E. coli, as previously described.3 Briefly, a single cysteine 

was introduced to replace the aspartic acid 224 by mutagenesis PCR. BL21 (pLys) E. coli cells 

were transformed with the plasmid pT7-OmpG D224C. Cells were grown in LB medium at 37oC 

until the OD600 reached 0.6 and induced with IPTG (0.5 mM, final concentration). Cells were 

harvested 3 hours later and lysed in lysis buffer (50 mM Tris·HCl, pH 8.0, 150 mM NaCl, 200 

µg/ml lysozyme, 1 mM EDTA, 3 mM TCEP) by sonication. The lysate was centrifuged at 

19,000 g for 30 min before washing once with 30 ml 50 mM Tris·HCl, pH 8.0, 1.5 M Urea, 3 

mM TCEP.   Then the OmpG-containing inclusion body was dissolved in 30 ml 50 mM 

Tris·HCl, pH 8.0, 8 M Urea, 3 mM TCEP and passed through a 0.45 µm filter before FPLC 

purification. All OmpG proteins were purified using a 5ml Q-ionic exchange column (GE 

Healthcare) and eluted in buffer 50 mM Tris·HCl, pH 8.0, 8 M Urea, 3 mM TCEP, 500 mM 

NaCl by applying a gradient.  The purified protein was incubated with 10 mM freshly prepared 

TCEP for 30 min on ice to reduce the thiols. The TCEP was then removed using a desalting 

column equilibrated with buffer 50 mM HEPES, pH 7.0, 150 mM NaCl, 8M Urea. Next, the 

protein was incubated with Texas Red® C2 Maleimide (Life Technologies Corp) in a molar ratio 

1:20 (protein to dye) at room temperature (~23°C) for 2 hours (or at 4 °C overnight). The 

reaction mixture was passed through the desalting column once again to remove the unreacted 

chemicals. The sample was snap-frozen in liquid nitrogen and stored at -80oC. To test the 

foldability of the labeled protein, an aliquot of the sample was then diluted with the refolding 

buffer 50 mM Tris·HCl, pH 9.0, 3.25% OG until the final concentration of urea reached 3.0 M. 

Samples were then incubated at 37 °C for 3 days. The refolding efficiency was determined by 

SDS-PAGE (Supporting Information, Fig. S2). 
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Figure S2: SDS-PAGE analysis of Texas Red labeled OmpG. The refolded OmpG construct was 

either pre-heated at 95oC for 15 min or directly loaded on a 12.5% SDS-PAGE.3 
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Table S1: Physical features of the detergents used in this study. 

Detergent FW 

(Da)
a 

Head 

group 

Aggregatio

n number 

CMC 

(mM)b 

Micella

r 

weight 

(kDa) 

Reference

s 

1-lauroyl-2-hydroxy-sn-

glycero-3-phosphocholine 

(LysoFos) 

440 Zwitterioni

c 

NAc ~0.7d NA 4 

n-dodecyl-N,N-

dimethylglycine (LD) 

271 Zwitterioni

c 

NA ~1.5e NA 5 

sodium dodecanoyl 

sarcosine (Sarkosyl) 

293 Anionic 2 ~14.4f 0.6 6 

1-palmitoyl-2-hydroxy-sn-

glycero-3-[phospho-rac-(1-

glycerol)] (LPPG) 

507 

 

Anionic 125 ~0.018
g 

63 4,7 

3-[(3-cholamidopropyl)-

dimethylammonio]-1-

propane sulfonate] 

(CHAPS) 

615 Zwitterioni

c 

~10 ~5.9h 6 6 

N,N'-bis-(3-D-

gluconamidopropyl)cholami

de (Big CHAP) 

878 Non-ionic ~10 ~2.9b 9 6 

n-octyl-β-D-glucoside (OG) 292 Non-ionic ~27-100 ~25b 25 6 

n-octyl-β-D-thioglucoside 

(OTG) 

308 Non-ionic ~189 ~9b 58 6 

n-dodecyl-β-D-maltoside 

(DDM) 

511 Non-ionic ~78-149 ~0.17b 70 6 

n-undecyl-β-D-maltoside  

(UM) 

497 Non-ionic ~71 ~0.59b 35 8 

n-decyl-β-D-maltoside 

(DM) 

483 Non-ionic ~69 ~1.8b 33 6 

4-cyclohexyl-1-Butyl-β-D-

maltoside (CYMAL-4) 

481 Non-ionic ~25 ~7.6b 12 9 

aFormula weights of the detergent monomers (FW) were reported by Anatrace 

(https://www.anatrace.com/).  
bCMC values or aggregation numbers in water were reported by Anatrace 

(https://www.anatrace.com/). 
cNA stands for not available. 
dCMC value of LysoFos in 140 mM NaCl, 20 mM Tris-HCl, pH 7.2.4   
eDetergent monomers are neutral at pH > 6.10 
fCMC value in ionic solutions is not available. 
gCMC value of LPPG in 100 mM Tris.HCl, pH 8.0.4   
hCMC value of CHAPS in 200 mM NaCl. 

 



143 
 

 

 4. Contributions of anisotropy values to the Langmuir-Hill isothermal binding curves. 

Our primary assumption is that during the desolvation process the proteins can be found in either 

bound or unbound state. A single fluorescent protein nanopore produces two distinct values of 

anisotropy, either bound, rb, or unbound, ru. Because anisotropy is an additive property, the 

overall anisotropy readout is a variable value given by the fraction-weighted sum of the two 

possible anisotropy values. 

 

If the concentrations of the detergent desolvated and solvated proteins are [P] and [PDn], 

respectively, then the total protein concentration, Ptot, is given by  

 

Ptot = [P] + [PDn]           (S1) 

 

Therefore, the equilibrium isothermal binding curves undergo changes in r(c), where c is the 

detergent concentration, as follows, 

 

𝑟(𝑐) =
[𝑃]

𝑃𝑡𝑜𝑡
𝑟𝑢 +

[𝑃𝐷𝑛]

𝑃𝑡𝑜𝑡
𝑟𝑏        (S2) 

 

Using equation (S1), we rearrange (S2), as follows: 

 

𝑟(𝑐) =
𝑃𝑡𝑜𝑡−[𝑃𝐷𝑛]

𝑃𝑡𝑜𝑡
𝑟𝑢 +

[𝑃𝐷𝑛]

𝑃𝑡𝑜𝑡
𝑟𝑏        (S3a) 

 

𝑟(𝑐) = (1 −
[𝑃𝐷𝑛]

𝑃𝑡𝑜𝑡
) 𝑟𝑢 +

[𝑃𝐷𝑛]

𝑃𝑡𝑜𝑡
𝑟𝑏        (S3b) 
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Under extremely low detergent concentration conditions, we assume that most of the proteins will be 

desolvated (e.g., unbound). 

 

Thereby,  

 

Ptot = [P]; [PDn] = 0           (S4) 

 

𝑟(𝑐) = 𝑟𝑢 = 𝑟𝑚𝑖𝑛         (S5) 

Equation (S5) indicates that the unbound value of anisotropy is exactly the minimum value of anisotropy, 

rmin.  

At detergent concentration much greater than the CMC, we assume that all available proteins are 

solvated. Therefore,   

Ptot = [PDn]; [P] = 0           (S6) 

𝑟(𝑐) = 𝑟𝑏 = 𝑟𝑚𝑎𝑥         (S7)  

 

5. Secondary structure determination of the refolded FhuA ΔC/Δ5L protein in solution 

using circular dichroism. Circular dichroism (CD) spectra were collected using a 

Spectropolarimeter (Model 420; Aviv Biomedical, Lakewood, NJ) in a 1 cm x 1 cm quartz 

cuvette. The cuvette contained protein samples at a concentration of ~1 μM. For temperature 

melts, samples were heated at 2C/min, with a 30 s equilibration prior to each 20 s data read at 

every 1C with constant magnetic stirring. 

 

6. Single-channel and macroscopic electrical recordings using planar lipid bilayers. 

Electrical recordings were conducted using planar bilayer lipid membranes (BLMs) were 
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published previously.11 For macroscopic current recordings,  FhuA ΔC/Δ5L was added to the cis 

chamber to a final concentration of ~100 ng/µl. 40 μl pure and denatured 6×His+-tagged FhuA 

ΔC/Δ5L was 50-fold diluted into 29 mM DDM, 85 mM OG, or 16 mM LysoFos, containing 200 

mM NaCl, 50 mM Tris-HCl, 1 mM EDTA, pH 8.0. The diluted protein samples were left 

overnight at 23°. Aggregated or misfolded proteins were removed by centrifugation for 15 

minutes at 16,000×g. Current recordings were obtained by using a patch-clamp amplifier 

(Axopatch 200B, Axon Instruments, Foster City, CA), which was connected to Ag/AgCl 

electrodes. The cis chamber was grounded, so that a positive current represents positive charge 

moving from the trans to cis side.  
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7. Acquiring equilibrium steady-state endpoints of the FP anisotropy at different 

concentrations of detergents of varying chemistry. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S3: Some examples of concentration-dependent anisotropy endpoints of FhuA 

C/5L determined after 24 hours incubation at 4C. (A) CHAPS; (B) OG; (C) UM; (D) 

DM. The other experimental conditions were the same as in Fig. 2.  
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 8. Rotational motions of the protein nanopores under detergent solvation and 

desolvation conditions. The steady-state anisotropy measurements can be used to determine the 

changes in the hydrodynamic radius of the proteins under detergent solvation and desolvation 

conditions. Specifically, the Perrin equation relates the acquired steady-state fluorescence 

anisotropy, r, to the rotational diffusion coefficient of the labeled protein, Dr, as follows:12,13 

r0

r
= 1 + 6DrF          (S8) 

where r0 is the fundamental anisotropy or the theoretical intrinsic maximum anisotropy value. F, 

the fluorescence lifetime of Texas Red, has a value of 4.2 ns,14 whereas r0  is 0.4.15 On the other 

hand, the Perrin equation enables the determination of the rotational correlation time, , as well 

as the apparent hydrodynamic volume of the labeled molecule, Vh, according to the following 

expressions: 

 =
1

6Dr
            (S9) 

𝑉h =
kBT


=

kBT

6Dr
          (S10) 

Here,  denotes the dynamic viscosity of the solution, whereas kB and T indicate the Boltzmann 

constant and absolute temperature, respectively. Therefore, we were able to determine the 

rotational diffusion coefficients of the fully solvated proteins, Dr
slow, and detergent desolvation-

induced unfolded proteins, Dr
fast. Substantial changes in the rotational diffusion coefficients were 

conceivably determined by alterations in the apparent hydrodynamic radii varying solvation 

condition. At room temperature, kBT =4.1110-21 J. In order to determine the hydrodynamic radii 

(eq. (5)), we employed a dynamic viscosity,  = 1.028 mPa s.16 The average maximum 

hydrodynamic radii, Rh
max, which corresponded to the fully detergent solvated conditions as well 
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as changes in the average hydrodynamic radii between the solvation and desolvation conditions, 

Rh, were listed in Table S2. 

 

 

 

 

 Table S2. Table showing the acquired minima and maxima of anisotropy and rotational 

diffusion coefficients.a  

 

Detergentb rmin
c rmax

c Dr
slow  (107 s-1)d Dr

fast (107 s-1)d Rh
max (nm)e  Rh  (nm)f 

LysoFos 
0.224 ± 

0.012 

0.329 ± 

0.002 

0.86 ± 0.03 3.1 ± 0.4 2.7 0.93 ± 0.09 

LD 
0.228 ± 

0.003 

0.335 ± 

0.001 

0.77 ± 0.01 3.0 ± 0.1 2.7 1.0 ± 0.1 

Sarkosyl 
0.147 ± 

0.139 

0.337 ± 

0.002 

0.74 ± 0.03 6.8 ± 0.5 2.8 1.5 ± 0.3 

LPPG 
0.229 ± 

0.037 

0.342 ± 

0.004 

0.67 ± 0.05 3.0 ± 0.9 2.9 1.1 ± 0.2 

CHAPS 
0.172 ± 

0.048 

0.292 ± 

0.005 

1.5 ± 0.1 5.3 ± 2.0 2.2 0.77 ± 0.20 

Big CHAP 
0.227 ± 

0.002 

0.315 ± 

0.012 

1.1 ± 0.2 3.0 ± 0.1 2.5 0.72± 0.14 

OG 
0.162 ± 

0.002 

0.291 ± 

0.002 

1.5 ± 0.1 5.8 ± 0.1 2.2 0.81 ± 0.03 

OTG 
0.185 ± 

0.010 

0.277 ± 

0.001 

1.8 ± 0.1 4.6 ± 0.4 2.1 0.57 ± 0.05 

DDM 
0.196 ± 

0.054 

0.336 ± 

0.003 

0.76 ± 0.04 4.1 ± 1.7 2.8 1.2 ± 0.2 

UM 
0.230 ± 

0.015 

0.357 ± 

0.003 

0.48 ± 0.03 2.9 ± 0.4 3.2 1.5 ± 0.2 

DM 
0.190 ± 

0.033 

0.373 ± 

0.002 

0.29 ± 0.02 4.4 ± 1.2 3.8 2.3 ± 0.2 

CYMAL-4 
0.231 ± 

0.019 

0.395 ± 

0.001 

0.05 ± 0.01 2.9 ± 0.5 6.8 5.1 ± 0.5 

SDSg ~0.16 ~0.16 ~0.057 ~0.057 NAi NAi 

Gdm-HClh ~0.16 ~0.16 ~0.057 ~0.057 NAi NAi 
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aTo reach low detergent concentrations below CMC, the Gdm-HCl-solubilized FhuA C/5L 

protein was refolded at various detergent concentrations above CMC. These values were stated 

in Experimental Methods.  
bFull names of the detergents are provided in Experimental Methods. 
cExperimentally determined anisotropy minima (rmin) and maxima (rmax) for various detergents. 

rmin was extrapolated for the lowest detergent concentration in the well. rmax was determined for 

detergent concentrations above the CMC. 
dDr

slow and Dr
fast indicate the rotational diffusion coefficients of the FhuA C/5L protein under 

solvation and desolvation conditions, respectively. Rotational diffusion coefficients were 

calculated using Perrin’s equation (3)12-14 for steady-state FP spectroscopy using the theoretical 

limiting anisotropy, r0 = 0.4,15 and the fluorescence lifetime for the Texas Red fluorophore, F = 

4.2 ns.14  
eRh

max are the maximum hydrodynamic radii of the FhuA C/5L proteomicelle with various 

solubilizing detergents.  
fRh is the decrease in the hydrodynamic radius, Rh, as a result of the detergent desolvation-

induced unfolding transition of the protein.    
gThe lowest anisotropy, r1, which was determined at a denaturing detergent concentration of 40 

mM sodium dodecyl sulfate (SDS) (Fig. 2E). CMC of SDS is in the range 1.2-7.1×10-3 M 

depending on the ionic concentration of the buffer solution.9 
hThe lowest anisotropy, r1, which was determined in 6 M Gdm-HCl.  
iNA stands for not applicable.  
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Table S3. Table showing the fitting parameters derived from dose-response dissociation 

phases of detergent tori from FhuA C/5L. The FP measurements were conducted using a 

buffer that contained 200 mM NaCl, 50 mM HEPES, pH 7.4 and at a temperature of 24C. All 

data are derived as averages ± SDs of three independent data acquisitions.  

Detergent p Adj. R-

squareda 

qb 

(mM-1) 

Kd
c 

(mM) 

LysoFos ~9.6 0.980 0.538 0.47 ± 0.07 

LD ~81 0.994 1.241 1.8 ± 0.9 

Sarkosyl 1.5 ± 0.4 0.971 0.139 ~0.51 

LPPG ~4.5 NDi 13.8 0.009 ± 0.003 

CHAPS 1.7 ± 0.6 0.966 0.015 3.4 ± 1.8 

Big CHAP 1.4 ± 0.6 0.997 0.001 25 ± 4 

OG 5.3 ± 0.9 0.995 0.013 13 ± 1 

OTG 2.5 ± 1.1 0.927 0.009 6.2 ± 2.4 

DDM 1.1 ± 0.3 0.974 0.073 0.52 ± 0.36 

UM 3.5 ± 0.9 0.935 0.381 0.29 ± 0.05 

DM 1.6 ± 0.3 0.982 0.007 1.3 ± 0.4 

CYMAL-4 4.4 ± 1.1 0.997 0.026 6.8 ± 0.9 

  

aThis column indicates the adjusted R-squared, which is a modified R-squared that has been 

adjusted by the number of predictors in the fitting model. 
bThe slope factor or transition steepness was calculated at the midpoint of the dissociation phase. 

See equations (3)-(5). 
cThe apparent dissociation constant, Kd, was determined as the midpoint of the dose-dependent 

dissociation phase (e.g., c0).
17   
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9. Fluorescence anisotropy readout acquired with LPPG-refolded FhuA C/5L at a final 

refolding detergent concentration of 25 mM.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure S4: Specific fluorescence anisotropy signature of LPPG-refolded FhuA ΔC/Δ5L 

at higher detergent concentrations. (A) Time-dependent fluorescence anisotropy of LPPG-

refolded FhuA ΔC/Δ5L at a detergent concentration of 25 mM; (B) Dose-response of the 
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endpoints of the PDC interfacial reaction after 24 hours at LPPG concentrations in the range 20 

M – 25 mM. All the other experimental conditions were the same as in Fig. 2. 

 

 10. Detailed time- and concentration-depedent anistropy traces acquired with anionic 

and zwitterionic detergents. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure S5: Time- and concentration-dependent anisotropy traces acquired with anionic 

and zwitterionic detergents. The anisotropy data was acquired by adding overnight refolded 
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protein to a bath of varying detergent concentration. All anisotropy measurements were carried 

out in 200 mM NaCl, 50 mM HEPES, pH 7.4, and at various detergent concentrations. 

Detergents started at concentrations above the CMC and were diluted to concentrations below 

the CMC (Experimental Methods). Time-dependent anisotropy measurements were conducted 

directly after dilution of the refolded protein sample in respective detergent concentration. Final 

protein concentration was always maintained at 28 nM. The starting detergent concentrations 

were as follows: (A) 20 mM 1-Lauroyl-2-hydroxy-sn-glycero-3-phosphocholine (LysoFos); (B) 

5 and 25 mM n-Dodecyl-N, N-Dimethylglycine (LD); (C) 50 mM Sodium dodecanoyl sarcosine 

(Sarkosyl); (D) 50 mM Sarkosyl read after additional 24 hour incubation at 4̊C. This is shown, 

because first read (C) did not show clearly defined groups. Here, Sarkosyl refolding starting 

conditions were 25 mM and 100 mM; (E) 0.2, 0.5, and 1 mM 1-palmitoyl-2-hydroxy-sn-glycero-

3-[phospho-rac-(1-glycerol)] (LPPG). The horizontal arrows indicate the three distinct families 

of curves that correspond to refolding detergent concentrations of 0.2 (I), 0.5 (II), and 1 mM 

(III); (F) The concentration-response anisotropy data of Sarkosyl, which was fitted by a four-

parameter Hill equation. At concentrations near CMC, there are long-lived anisotropy 

fluctuations, encompassing time-dependent increasing and decreasing phases. We interpret that 

these phases reflect different populations of detergent-associating (e.g., anisotropy increasing) 

and detergent-dissociating proteins (e.g., anisotropy decreasing).    
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11. Steroidal group-containing detergents are weakly binding to the FhuA C/5L 

nanopore. 

 
 

 Figure S6: Time-dependent changes in anisotropy produced by the dissociation of 

steroidal group-containing detergents from FhuA C/5L. (A) Time-dependent anisotropy 

for a starting concentration of 50 mM CHAPS; (B) Concentration-response anisotropy changes 

observed with CHAPS, whose data points were collected after 24 hours of the dissociation 

phase; (C) Time-dependent anisotropy for a starting concentration of 100 mM Big CHAP; (D) 

Concentration-response anisotropy changes observed with Big CHAP. The top of each panel or 
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vertical bars indicate the CMC (Table S1). All the other experimental conditions were the same 

as in Fig. 2. 

 

 12. Dissociation of maltoside-containing detergents from FhuA C/5L. 
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 Figure S7: Time-dependent changes in anisotropy produced by the dissociation of 

neutral, maltoside-containing detergents of varying tail from FhuA C/5L. The starting 

detergent concentrations were, as follows: (A) 5, 20, and 50 mM DDM,  (B) 5, 20, and 50 mM 

UM, (C) 5, 20, and 50 mM DM,  and (D) 50 mM CYMAL-4. (E) Concentration-response 

anisotropy changes observed for maltoside-containing detergents. The top of each panel or 

vertical bars indicate the CMC (Table 1). All the other experimental conditions were the same as 

in Fig. 2. For DM, we were not able to use the four-parameter Hill equation to obtain a 

statistically significant fit. Instead, we fitted the experimental data points with an asymmetrical 

five-parameter Hill curve:  

𝑟(𝑐) =
𝑟𝑚𝑎𝑥+𝑟𝑚𝑖𝑛{[1+(

𝑐0
𝑐

)
𝑝

]
𝑠

−1}

[1+(
𝑐0
𝑐

)
𝑝

]
𝑠          (S11) 

where s=0.071 is an exponential constant accounting for the asymmetry of the sigmoidal curve. 

The other parameters in eq. (S11) were the same as those defined above for eqs. (3)-(4) in the 

text. 
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13. Dependence of time-dependent, steady-state fluorescence anisotropy on proteins of 

closely similar structure, but varying isoelectric point.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S8: Time- and concentration-dependent anisotropy traces acquired with OG using 

four protein nanopores: FhuA C/5L, OmpG, FhuA C/5L_25N, and FhuA 

C/7L_30N. The other experimental conditions were the same as in Fig. 2. 
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Figure S9: Time- and concentration-dependent anisotropy traces acquired with FhuA 

C/5L in OTG. The other experimental conditions were the same as in Fig. 2. 
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14. Current-voltage relationship of FhuA ΔC/Δ5L refolded in detergents of varying 

chemistry. We also noticed unitary conductance values of DDM-refolded FhuA ΔC/Δ5L 

proteins that were lower than 3 nS or greater than 5 nS (~11% and 4%, respectively). These 

histograms also revealed that 20% OG-refolded FhuA ΔC/Δ5L proteins showed a single-channel 

conductance smaller than 3 nS, whereas only 3% displayed a single-channel conductance greater 

than 5 nS. Channels under these categories were excluded from further data analysis. The slopes 

of the current-voltage (I/V) plots recorded with DDM-, OG- and LysoFos-refolded proteins 

provided values of ~3.9 nS, ~4.4 nS, and ~4.3 nS, respectively (Fig. S10A). Similar I/V plots 

were also obtained from a voltage ramping, between -140 and +140 mV. The slopes gave the 

unitary conductance values of ~3.9 nS, ~4.4 nS, and ~4.2 nS for DDM-, OG- and LysoFos-

refolded proteins, respectively (Fig. S10B).  
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 Figure S10: Single-channel electrical signature of the engineered FhuA ΔC/Δ5L protein 

pores refolded in different detergents. (A) The relationship between current and voltage (I/V) 

of single protein pore insertions from -140 mV to +140 mV for the three proteins. The single-

channel conductance values were derived using the  I/V slopes. Error bars were omitted for the 

sake of clarity; (B) Single-channel currents from single channels of the three proteins under a 

voltage ramp from -140 to +140 mV. The speed of the voltage ramping was 1.4 mV s-1. The 

single-channel conductance values were derived using the I/V slopes. In A, the single-channel 

electrical traces were low-pass Bessel filtered at 2 kHz. In B, the single-channel electrical traces 

were low-pass Bessel filtered at 0.1 kHz to eliminate the current noise generated by the patch-

clamp amplifier during the application of the voltage ramp. The single-channel electrical 

recordings were collected under symmetrical buffer solutions on both sides of the chamber 

containing 1M KCl, 10 mM potassium phosphate, pH 7.4. For single-channel recordings, 40 μl 

pure and denatured 6×His+-tagged FhuA ΔC/Δ5L was 50-fold diluted into 29 mM DDM, 85 mM 

OG, or 16 mM LysoFos, containing 200 mM NaCl, 50 mM Tris-HCl, 1 mM EDTA, pH 8.0. The 
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dilution ratio of the sample of refolded protein within lipid bilayer chamber was ~1/1000. 

Therefore, the final detergent concentration in the bilayer chamber did not affect the stability of 

the membrane.18   

 

  

15. Stability of the open-state current of the refolded FhuA ΔC/Δ5L proteins at higher 

applied transmembrane potentials. We examined the refolded FhuA ΔC/Δ5L proteins at 

transmembrane potentials in the ranges -140 to -80 mV and +80 to +140 mV. In 1 M KCl, 10 

mM potassium phosphate, pH 7.4, the refolded proteins were stable up to ±140 mV (Fig. S11I-

III). These refolded FhuA ΔC/Δ5L proteins showed some reversible short-lived current 

fluctuations (Fig. S11). In the case of the OG-refolded proteins, the single-channel current trace 

was accompanied by highly infrequent millisecond-time scale, voltage-independent current 

fluctuations (~0.01 s-1) (Fig. S11II). In this work, single-channel electrical recordings 

performed on the DDM-, OG- or LysoFos-refolded FhuA ΔC/Δ5L produced uniform channels 

with high conductance ~4.0 nS in 1 M KCl (Fig. 4C and Fig. 4D). Refolded FhuA ΔC/Δ5L 

proteins showed very stable channel properties at higher voltages, displaying no major current 

fluctuations or channel closures (Fig. S11). DDM-refolded FhuA ΔC/Δ5L protein was stable up 

to -120 mV and +140 mV (Fig. S11CI, DI), OG-refolded FhuA ΔC/Δ5L protein was stable up to 

±140 mV (Fig. S11DII), and LysoFos-refolded FhuA ΔC/Δ5L protein was stable up to -100 and 

+140 mV (Fig. S11BIII, DIII). The stability and uniformity of channels produced by refolded 

proteins in different detergents are an advantage. This means that we have options in choosing 

detergents to refold modified or engineered FhuA proteins in the future. In addition, a uniform 

conductance may indicate that protein pores, at least for the ones inserted into the bilayer, have 

one major folded state.19,20 
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Figure S11: Comparison of the single- and multi-channel electrical traces produced by the 

FhuA ΔC/Δ5L proteins under various voltages. DDM- (I), OG- (II) and LysoFos-refolded 

(III) FhuA ΔC/Δ5L protein were reconstituted into planar lipid membranes. The single-channel 

electrical recordings were collected under symmetrical buffer solutions on both sides of the 

chamber containing 1M KCl, 10 mM potassium phosphate, pH 7.4. The number of reconstituted 

nanopores (e.g., 2 channels is denoted by 2 ch in bold) is indicated near the trace for positive and 

negative voltages, respectively. Solid and dashed arrows denote the end of the positive voltage 

and the start of the negative voltage in the same electrical trace, respectively. All electrical traces 

were low-pass Bessel filtered at 2 kHz. The expanded traces in IA and IIIA indicate 

representative current spikes recorded at a greater time resolution. The refolding conditions of 

FhuA ΔC/Δ5L were the same as those mentioned in the caption of Fig. S10. 
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 Figure S12: Schematic model of the detergent desolvation-induced protein unfolding. 

This example is for a prolate proteomicelle. (A) A nanopore-containing proteomicelle; (B) Loss 

of detergent molecules produces protein misfolding; (C) Complete detergent desolvation 

accelerates protein unfolding as well as reduction in the average hydrodynamic radius, Rh 

(Table S2).   

A

B

C

Detergent-refolded protein 
in a prolate proteomicelle

Desolvation-induced unfolded protein 

Desolvation-induced misfolded protein 
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ABSTRACT  

Although fundamentally significant in structural, chemical, and membrane biology, the 

interfacial protein-detergent complex (PDC) interactions have been modestly examined because 

of the complicated behavior of both detergents and membrane proteins in aqueous phase. 

Membrane proteins are prone to unproductive aggregation resulting from poor detergent 

solvation, but the participating forces in this phenomenon remain ambiguous. Here, we show that 

using rational membrane protein design, targeted chemical modification, and steady-state 

fluorescence polarization spectroscopy, the detergent desolvation of membrane proteins can be 

quantitatively evaluated. We demonstrate that depleting the detergent in the sample well 

produced a two-state transition of membrane proteins between a fully detergent-solvated state 

and a detergent-desolvated state, the nature of which depended on the interfacial PDC 

interactions. Using a panel of six membrane proteins of varying hydrophobic topography, 

structural fingerprint, and charge distribution on the solvent-accessible surface, we provide direct 

experimental evidence for the contributions of the electrostatic and hydrophobic interactions to 

the protein solvation properties. Moreover, all-atom molecular dynamics simulations report the 

major contribution of the hydrophobic forces exerted at the PDC interface. This semi-

quantitative approach might be extended in the future to include studies of the interfacial PDC 

interactions of other challenging membrane protein systems of unknown structure. This would 

have practical importance in protein extraction, solubilization, stabilization, and crystallization. 
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INTRODUCTION 

The protein-detergent complex (PDC) interactions play a pivotal role in extraction, 

solubilization, and stabilization of water-insoluble membrane proteins.1-5 Therefore, they were 

studied by various approaches. For example, circular dichroism (CD) spectroscopy was 

employed to probe alterations in the secondary structure and stability of membrane proteins 

under diverse detergent-solubilization contexts.6 Using hydrogen-deuterium exchange, along 

with NMR spectroscopy and mass spectrometry, Raschle and colleagues (2016) have recently 

examined the time-dependent protein folding of the outer membrane protein X in 

proteomicelles.7 The nature of the interfacial PDC interactions was also inspected in the gas 

phase using ion-mobility mass spectrometry.8 Moreover, isothermal titration calorimetry (ITC) 

was used for the real-time probing of phase diagrams between bilayer-forming lipids and 

micelle-forming detergents.9-10 Differential scanning calorimetry (DSC) was adapted for the 

investigation of the impact of detergents on the water-soluble domains of membrane proteins.2, 5 

However, the detergent-mediated solubilization and refolding of membrane proteins often lead to 

aggregation,11 a ubiquitous process caused by the inability of detergents to fully solvate them. 

There are at least three reasons for a modest progress in this research area. First, the protein 

aggregation substantially deteriorates the signal-to-noise ratio of most spectroscopic and 

calorimetric approaches. Second, the protein-free detergent micelles without an accurately 

determined concentration coexist with the proteomicelles in aqueous phase, adding an 

uncontrolled signal. Third, the quantitative assessment of the interfacial PDC interactions is 

impractical in the absence of a high-throughput screening (HTS) approach that utilizes a low 

concentration of membrane proteins. 
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  Here, we show that we can overcome these challenges using rational membrane protein 

design, along with targeted chemical modification and steady-state fluorescence polarization 

(FP) spectroscopy,12-13 to probe the detergent desolvation transitions of membrane proteins. The 

FP spectroscopy was previously used to inspect: (i) the interactions of mild14 and harsh15 

detergents with water-soluble proteins, (ii) the harsh detergent-induced unfolding16 and 

resistance of soluble proteins to denaturation,17 (iii) the detergent-mediated oligomerization of 

hydrophobic proteins into proteomicelles,18 and (iv) the impact of detergent on conformational 

changes14 and enzymatic activity19 of soluble proteins.  

 

 In this article, we place an emphasis on the transition of detergent desolvation of 

hydrophobic membrane proteins. Such a process undergoes a two-state transition, whose 

apparent dissociation constant, Kd, is usually within the same order of magnitude with the critical 

micelle concentration (CMC).2, 5, 20 The adhesive interactions occur at the specific interface 

between the detergent tails and hydrophobic residues on the detergent-accessible surface of the 

membrane protein. In addition, these interactions occur at the specific interface between the 

polar head groups of the detergents and water-soluble parts of the membrane protein. In contrast, 

the cohesive interactions are mediated by detergents, maintaining the integrity of the 

proteomicelle. The aberrant imbalance between these interactions produces a significant 

departure of the proteomicelle dissociation from the demicellization transition.  

 

 For exploring the PDC interactions exposing -barrel surfaces, we chose the outer membrane 

protein G (OmpG)21 and three extensive truncation derivatives of ferric hydroxamate uptake 
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component A (FhuA)22 of E. coli (Fig. 1). We demonstrate that robust -barrel proteins, which 

tolerate extensive changes in charge distribution across the solvent-accessible surface, exhibit 

drastic alterations in the interfacial PDC interactions. In some instances, these major 

modifications culminated with the transition from excellent to poor solubilization properties due 

to variations from strong to very weak adhesive interactions. For example, the zwitterionic 

detergents solubilized well the acidic  barrels, but exhibited weak adhesive contacts with the 

basic  barrels, performing poorly in solubilizing the latter proteins. Moreover, hydrophobic 

interactions played a major role in the PDC. This was clearly supported by the full-atomistic 

molecular dynamics (MD) simulations with an uncharged maltoside-containing detergent. 

Finally, we show that such a semi-quantitative experimental approach might be extended to other 

challenging membrane protein systems of different subunit stoichiometry or unknown structure, 

suggesting its potentiality to produce impactful transformations in the areas of membrane 

chemical biology.  
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FIGURE 1. 
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Figure 1: Cartoons showing the backbone homology structures of the four -barrel 

proteins inspected in this work. (A) OmpG; (B) FhuA ΔC/Δ5L; (C) FhuA ΔC/Δ5L_25N; and 

(D) FhuA ΔC/Δ7L_30N. Positions of the fluorophore attachment are marked by yellow. All 

negative charge neutralizations with respect to FhuA ΔC/Δ5L are indicated in red. Moreover, 

there are there are three additional lysine mutations in the β turns of FhuA C/7L-30N that 

marked in blue, out of which two are negative-to-positive charge reversals. The top of each 

cartoon shows the protein abbreviated name and its respective isoelectric point. 
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METHODS 

Cloning, expression, and purification of FhuA C/5L. The fhua Δc/Δ5l gene lacking the 

regions coding for the cork domain (C) and five extracellular loops L3, L4, L5, L10, and L11, 

was produced through de novo synthesis (Geneart, Regensburg, Germany).23-24 fhua Δc/Δ5l_t7 

was created by inverse PCR using pPR-IBA1-fhua Δc/∆5l-6×His+ plasmid as a template. The 

PCR product was self-ligated to create pPR-IBA1-fhua Δc/∆5l_t7-6×His+. The  turn T7 

(V
331

PEDRP
336

) was replaced with a single cysteine-containing, flexible, GS-rich peptide loop 

(GGSSGCGSSGGS) for the fluorophore attachment. Protein expression was conducted, as 

previously published.25-26  
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Table 1: Physical properties of the detergents examined in this work. 

 

Detergent FW 

(Da

)a 

Head 

group 

Aggregati

on 

number, 

Nagg
b

  

CM

C 

(mM

)b 

Micell

ar 

Weigh

t, 

MWm 

(kDa) 

Referen

ces 

n-dodecyl-β-D-maltoside 

(DDM) 

511 Non-

ionic 

~78-149 ~0.1

7 

70 29 

n-undecyl-β-D-maltoside 

(UM) 

497 Non-

ionic 

~71 ~0.5

9 

35 29 

n-decyl-β-D-maltoside (DM) 483 Non-

ionic 

~69 ~1.8 33 29 

4-cyclohexyl-1-Butyl-β-D-

maltoside (CYMAL-4) 

481 Non-

ionic 

~25 ~7.6 12 63 

n-octyl-β-D-glucoside (OG) 292 Non-

ionic 

~27-100 ~25 25 29 

3-[(3-cholamidopropyl)-

dimethylammonio]-1-propane 

sulfonate] (CHAPS)c 

615 Zwitterio

nic 

~10 ~5.9
c 

6 29 

1-lauroyl-2-hydroxy-sn-

glycero-3-phosphocholine 

(LysoFos)d 

440 Zwitterio

nic 

80d ~0.7
e 

35 1, 64 

n-dodecyl-N,N’-

dimethylglycine (LD)d 

271 Zwitterio

nic 

NAf ~1.5
g 

NAf 65 

 

aFormula weights of the detergent monomers (FW) were reported by Anatrace 

(https://www.anatrace.com/).  
bCMC values or aggregation numbers, Nagg, in water were reported by Anatrace 

(https://www.anatrace.com/). 
cCMC value of CHAPS in 200 mM NaCl is 5.9 mM.66 
dThe Nagg for LysoFos used in this work is ~80.1 
eCMC value of LysoFos in 140 mM NaCl, 20 mM Tris-HCl, pH 7.2 is 0.7 mM.64   
fNA stands for not available. 
gDetergent monomers are neutral at pH > 6.65 

 

 

  

https://www.anatrace.com/
https://www.anatrace.com/
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Table 2: Biophysical properties of the β-barrel proteins used in this study.67  

 

Proteina pI/Charge 

state 

GRAVYc Aliphatic 

indexd 

Negative 

residues 

Positive 

residues 

 

Total 

number 

of 

residuese 

WT-OmpG 4.4/acidic -0.798 55.87 55 22 281 

FhuA 

C/5Lb 

5.7/acidic -0.550 60.42 57 48 505 

FhuA 

C/5L_25N 

9.3/basic -0.563 58.31 34 43 473 

FhuA 

C/7L_30N 

9.6/basic -0.574 57.42 27 42 426 

 

aAll proteins have a 6His+ tag at the C terminus.  
bThis engineered FhuA includes a 33-residue signal peptide at the N terminus.  
cThe GRAVY hydrophobicity parameter was calculated by adding individual hydropathy 

indexes68 of each residue and dividing by the total number of residues. Increasing positive 

GRAVY number shows a more hydrophobic protein. 
dThe aliphatic index is given by the relative volume of aliphatic chain-containing residues.69   
eThe total number of residues includes those amino acids from the Gly/Ser-rich containing 

polypeptide loop and 6×His+ tag.  
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Refolding of FhuA ΔC/Δ5L. We employed a rapid-dilution refolding protocol.27-28 Briefly, 

40 μl of 6×His+-tag purified and guanidinium hydrochloride (Gdm-HCl)-denatured FhuA protein 

was 50-fold diluted into 200 mM NaCl, 50 mM HEPES, pH 7.4 solutions at 4C, which included 

detergents at concentrations above their CMC (Table 1). Different starting detergent 

concentrations were used, as follows (when multiple concentrations are given, the lower 

concentrations were needed to get dilutions with a low enough detergent concentration to cover 

the required range): (i) 5 and 20 mM starting detergent concentration for n-decyl-β-D-

maltopyranoside (DM), n-undecyl-β-D-maltopyranoside (UM), and n-dodecyl-β-D-

maltopyranoside (DDM); (ii) 50 mM 4-cyclohexyl-1-butyl-β-D-maltoside (CYMAL-4); (iii) 50 

mM n-octyl-β-D-glucoside (OG); (iv) 50 mM 3-[(3-cholamidopropyl)-dimethylammonio]-1-

propane sulfonate] (CHAPS); and (v) 20 mM 1-lauroyl-2-hydroxy-sn-glycero-3-phosphocholine 

(LysoFos). All detergents were purchased from Anatrace (Maumee, OH). To avoid hydrolysis 

and oxidation,29 detergent solutions were freshly prepared.  

 

Fluorescent labeling of the FhuA derivatives. 10 μM FhuA derivatives (Table 2) were 

each incubated with 200 μM Texas Red C2 maleimide (Thermo Fisher Scientific) overnight at 

room temperature. The incubation buffer contained 200 mM NaCl, 50 mM Tris, 1 mM TCEP, 

pH 8.0, and 6 M Gdm-HCl. Proteins were separated from the unreacted fluorophore by Ni2+-

NTA column chromatography in the same buffer, but with a 10-200 mM imidazole step gradient. 

Using ε595 = 104,000 M-1cm-1 for Texas Red C2 and a correction factor of 0.26 x ε595 to account 

for the fluorophore absorbance at 280 nm, labeling stoichiometry was determined as ~0.3-0.8 

labels/protein. 
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 Expression and purification of OmpG D224C. A cysteine was engineered on extracellular 

loop L6 of OmpG using single-site mutagenesis PCR. OmpG D224C was expressed, purified, 

and refolded as previously described.30 Proteins were expressed in E. coli BL21 (pLys) cells, 

which were transformed with the plasmid pT7-OmpG D224C. Cells were grown in LB media at 

37oC until the OD600 reached a value of 0.6, at which time they were induced by 0.5 mM IPTG. 

Cells were harvested three hours later and lysed in lysis buffer (50 mM Tris·HCl, pH 8.0, 150 

mM NaCl, 200 µg/ml lysozyme, 1 mM EDTA, 3 mM TCEP) via sonication. The lysate was 

centrifuged at 19,000 g for 30 min before washing once with 30 ml of a buffer containing 50 mM 

Tris·HCl, pH 8.0, 1.5 M urea, 3 mM TCEP. Then, the OmpG D224C-containing inclusion 

bodies were dissolved in 30 ml of buffer containing 50 mM Tris·HCl, pH 8.0, 8 M urea, 3 mM 

TCEP and passed through a 0.45 µm filter before FPLC purification. Protein purification was 

accomplished using a 5ml Q-ionic exchange column (GE Healthcare Life Sciences, Pittsburg, 

PA) and eluted in a buffer containing 50 mM Tris·HCl, pH 8.0, 8 M Urea, 3 mM TCEP, 500 mM 

NaCl by applying a salt gradient.   

 

 Fluorescent labeling of the OmpG D224C. After purification, OmpG D224C was 

incubated in 10 mM TCEP for 30 min on ice. Then, TCEP was removed using a desalting 

column, which was equilibrated with buffer containing 50 mM HEPES, pH 7.0, 150 mM NaCl, 8 

M urea. The reduced protein was incubated in Texas Red C2-maleimide (Thermo Fisher 

Scientific), in a molar protein:fluorophore ratio 1:20 either at room temperature for 2 hours or at 

4°C overnight. The reaction mixture was passed through the desalting column to eliminate all 

unreacted reagents. The chemically modified OmpG D224C sample was snap-frozen in liquid 

nitrogen and stored at -80oC. To test the folding properties of the labeled protein, an aliquot of 



179 
 

the protein sample was diluted with the refolding buffer containing 50 mM Tris·HCl, pH 9.0, 

3.25% OG until the final urea concentration reached 3.0 M. Samples were then incubated at 37 

°C for 3 days. The refolding efficiency of Texas Red-labeled OmpG D224C was determined 

using the heat-modifiability assay through the SDS-PAGE analysis.27, 31  

 

 Expression and purification of SELENOK U92C and SELENOS U188S. The cloning, 

expression, and purification of Homo sapiens SELENOK U92C (UniProtKB Q9Y6D0) and 

SELENOS U188S (UniProtKB Q9BQE4) used in this study were described previously.32 In 

short, SELENOK U92C was cloned into a pMAL-C5X vector (New England Biolabs, Ipswich, 

MA) and fused to maltose-binding protein (MBP). A 6His+ tag was introduced between 

residues I3 and E4 of MBP to facilitate purification. A short linker NSSS with a tobacco etch 

virus (TEV) protease cleavage site (ENLYFQG) was used to connect the two proteins. In 

addition, an eight-amino acid-StrepII tag (WSHPQFEK) was inserted between the TEV protease 

cleavage site and SELENOK U92C to assist the purification. Following cleavage of the fusion 

protein by TEV protease, SELENOK U92C retained in its N-terminus the sequence 

GWSHPQFEK. MBP-SELENOK U92C was purified by amylose affinity chromatography. Then 

the fusion partner MBP was cleaved off by TEV protease. SELENOK U92C was further purified 

by Strep-Tactin affinity column (GE Healthcare Life Sciences). All purification steps were 

carried out in buffers supplemented with 1.3 mM DDM, which represented the starting detergent 

concentration for the follow-up dilutions. Protein purity, as assessed by 16% TRICINE-SDS-

PAGE, was greater than 95% (Supporting Information, Fig. S1). Similarly, SELENOS U188S, 

with the native selenocysteine at position 188 mutated to serine, was cloned in the same way into 

the pMAL-C5X vector and fused with MBP.33 A short linker NSSS and a TEV cleavage site, 
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ENLYFQS, was used to connect the two proteins. Following cleavage with TEV protease, only a 

serine was present before the first native amino acid. Expression and purification of SELENOS 

U188S was similar to the procedure above with the only difference that instead of the Strep-

Tactin affinity chromatography SELENOS U188S was purified by a HisTrap FF column (GE 

Healthcare Life Sciences) to remove the 6His+ tagged-MBP and TEV protease.34 The flow 

through containing the purified SELENOS U188S was collected. The protein purity, as 

determined by SDS-PAGE, was greater than 95%. 

 

 Fluorescent Labeling of SELENOK U92C and SELENOS U188S. 40 μM SELENOK 

U92C or SELENOS U188S were reduced by addition of 5 mM dithiothreitol (DTT) and 

incubated at room temperature for 20 min. DTT was then removed using a desalting column (5 

mL HiTrap desalting column, GE Healthcare Life Sciences). Labeling reactions were carried out 

using 50 μM SELENOK U92C or SELENOS U188S in the reaction buffer (50 mM sodium 

phosphate, 200 mM NaCl, 0.067% DDM, 1 mM EDTA, pH 7.5) supplemented with 1 mM 

Texas Red C2- maleimide (Setareh Biotech, Eugene, OR) and incubated at room temperature for 

1 h. Excess Texas Red C2 maleimide was removed by dialysis in the dark against the reaction 

buffer. SELENOK U92C was specifically labeled on the C92 position, as this is the only 

cysteine in the protein. SELENOS U188S was only labeled on the C174 position since the other 

cysteine is located in the trans-membrane helix and was proven to be inaccessible for fluorescent 

labeling.  

 

       Anisotropy measurements. For FP measurements, we used a SpectraMax I3 plate reader 

(Molecular Devices, Sunnyvale, CA) equipped with the Paradigm detection cartridge for 
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Rhodamine FP spectroscopy.35 The excitation and emission wavelengths were 535 and 595 nm, 

respectively. A Texas Red fluorophore was covalently attached to an engineered cysteine 

sulfhydryl, because of its optical stability over a broad range of experimental circumstances.36 

The attachment site was chosen on the water-soluble domains of the membrane proteins, because 

of the hydrophilic nature of this bright fluorophore.37 The FP recordings were carried out using 

96-well Costar assay plates (Corning Incorporated, Kennebunk, ME). The fluorescence 

anisotropy depends on the time-dependent orthogonal, Io(t), and parallel, Ip(t), emission 

intensities, as follows:36, 38 

𝑟(𝑡) =
𝐼𝑝(𝑡)−𝐺𝐼𝑜(𝑡)

𝐼𝑝(𝑡)+2𝐺𝐼𝑜(𝑡)
          (1) 

Here, G is a sensitivity correction factor for the detection modes when emission polarizers are 

oriented vertically and horizontally.   

𝐺 =
𝐼𝐻𝑉

𝐼𝐻𝐻
           (2) 

IHH denotes the intensity with both the excitation and emission polarizers in a horizontal 

orientation. IHV indicates the intensity with the excitation and emission polarizers oriented 

horizontally and vertically, respectively. The FP data were processed as average  SD over a 

number of at least three independent acquisitions. The robustness of the acquired data was 

illustrated in figures through vertical SD bars.  

 

 We executed steady-state anisotropy recordings with diluted refolded protein samples within 

individual wells, while keeping the final protein concentration constant at either 28 nM (-barrel 

proteins) or at 200 nM (-helical proteins). For all proteins, this was accomplished by diluting 

the refolded protein sample within individual wells with buffer containing detergents at various 
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concentrations. The final detergent concentration in the protein samples for anisotropy 

measurements was derived using the following equation: 

𝐶f𝑉 = 𝐶s𝑉s + 𝐶d𝑉d = (𝐶s𝑓s + 𝐶dfd)𝑉       (3) 

where V and Cf denote the well volume and the final detergent concentration of the protein 

sample for anisotropy measurements, respectively. Cs and Cd indicate the detergent 

concentrations of the refolded protein (starting concentrations) and diluting buffer, respectively. 

Vs and fs are the volume and fractional volume (Vs/V) of the refolded protein sample at a starting 

detergent concentration, respectively. Vd and fd are the volume and fractional volume (Vd/V) of 

the diluting buffer containing detergents at different concentrations, respectively. In this way, we 

were able to prepare samples containing detergents in a broad range of concentrations below and 

above their CMC. 

 

 We verified that potential self-quenching of Texas Red does not produces a time-dependent 

reduction in the FP output of the protein-Texas Red conjugate. Therefore, we performed control 

time-dependent anisotropy experiments, as follows: (i) at the beginning of the measurements at 

detergent concentrations much greater than their CMCs (Supporting Information, Fig. S2); and 

(ii) after 24 hours, reaching the endpoints of the detergent desolvation reaction (Supporting 

Information, Fig. S3). In both cases, we found no time-dependent alterations of the anisotropy 

readout. The FP anisotropy measurements were conducted under equilibrium conditions. The 

incubation time for the equilibration of protein samples after detergent dilution was 15 min. 

Then, a time-dependent kinetic read of the fluorescence anisotropy was acquired at the beginning 

of the detergent desolvation reaction. To assure uniform recording conditions, we collected the 

endpoints after 24 h, a period in which the protein samples, incubated at different detergent 
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concentrations, were covered and placed at 4C. These endpoints were used to achieve the 

detergent dissociation isotherms. Protein aggregation increased over time upon drastic detergent 

depletion, but without affecting the signal-to-noise ratio of the anisotropy endpoints. The Hill-

Langmuir dissociation-isotherm curves were fitted by:39 

𝑟(𝑐) =
𝑟𝑚𝑖𝑛+𝑟𝑚𝑎𝑥(

𝑐

𝐾𝑑
)

𝑝

1+(
𝑐

𝐾𝑑
)

𝑝           (4) 

rmin and rmax denote the minimum and maximum values of anisotropy, respectively.10 p and Kd 

indicate the Hill coefficient and the apparent dissociation constant, respectively. The major 

assumption of this fitting procedure is that the protein surface shows specific binding sites for 

detergent monomers. The steepness of the two-state transition of detergent desolvation at half 

detergent saturation, q, was calculated by the following equation: 

𝑞 =
𝑝(𝑟𝑚𝑎𝑥−𝑟𝑚𝑖𝑛)

4𝐾𝑑
          (5) 

 

 MD simulations of the interactions of DDM with β-barrel proteins. All simulations were 

performed using the molecular dynamics program NAMD2,40 periodic boundary conditions, and 

a 2-fs timestep. The CHARMM36 force field41 was used to describe proteins, detergents, TIP3P 

water, and ions. The CUFIX corrections were applied to improve description of charge-charge 

interactions.42-43 RATTLE44 and SETTLE45 algorithms were applied to describe covalent bonds 

that involved hydrogen atoms in proteins, detergents and water molecules. Particle-Mesh-Ewald 

(PME)46 algorithm was used to evaluate the long-range electrostatic interaction on a 1 Å-spaced 

grid; the full electrostatics calculation was performed every three timesteps. Van der Waals 

interactions were evaluated using a smooth 10-12 Å cutoff. Atomic coordinates of the four -

barrel proteins, OmpG (PDB entry 2IWV21), FhuA ΔC/Δ5L (PDB entry 1BY522), FhuA 
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ΔC/Δ5L_25N, and FhuA ΔC/Δ7L_30N, were obtained from the Protein Data Bank. Structures 

containing deletions and mutations were built by modifying the wild-type structure. For each β-

barrel protein, two systems were constructed differing by the initial placement of the DDM 

molecules. The cubic arrangement of DDM was realized by placing 21 DDM molecules around 

the protein with the average protein-to-DDM distance of 5.7 nm, whereas in the planar 

arrangement, the DDM molecules were placed within a plane passing through the geometrical 

center of the protein. The systems were solvated using the VMD's Solvate plugin. Waters 

overlapping with the proteins and DDM molecules were removed. Sodium and chloride ions 

were added to neutralize the system and bring the ion concentration to 200 mM. The final 

systems contained approximately 172,000 atoms. The initial DDM concentration was 20 mM. 

One additional FhuA ΔC/Δ5L system was built to containing 105 DDM molecules in the same 

electrolyte volume, which corresponded to a concentration of 100 mM DDM with cubic 

arrangement. Each system was minimized for 9600 steps using the conjugate gradient method, 

then equilibrated for ~230 ns in the constant number of atoms, pressure and temperature 

ensemble. The Nose-Hoover Langevin piston pressure control47-48 was used to maintain the 

pressure of the system at 1 atm by adjusting the system's dimension. Langevin thermostat49 was 

applied to all the heavy atoms of the system with a damping coefficient of 0.1 ps-1. All the 

trajectories were analyzed by using VMD.50 
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RESULTS 

 Rationale for data acquisition, analysis, and interpretation. For a satisfactorily 

solubilizing detergent, we determined that at concentrations much greater than the CMC (Table 

1) the FP anisotropy reached a concentration-independent maximum value, rmax (Fig. 2). In 

contrast, at detergent concentrations comparable with or below the CMC, the FP anisotropy 

followed a decrease to a concentration-dependent value, r(c) < rmax. Moreover, at detergent 

concentrations much lower than the CMC the FP anisotropy decreased to a concentration-

independent minimum value, rmin. OmpG51 and FhuA23, 35 proteins exhibit an overwhelming 

preponderance of anti-parallel -sheet structure in solution under detergent-refolding conditions. 

At detergent concentrations well below their CMC, a decrease in the FP anisotropy was 

produced by the dissociation of the detergent monomers from the protein, resulting in a reduction 

in the hydrodynamic radius, Rh, of the PDC, and a corresponding increase in its tumbling rate. 

This interpretation was also supported by the observation that at detergent concentrations well 

above their CMC, no significant change in the FP anisotropy readout was noted (Supporting 

Information, Fig. S2).  

 

 Therefore, the detergent-solubilized membrane proteins featured a maximum anisotropy, 

rmax, whereas the detergent-desolvated proteins exhibited a minimum anisotropy, rmin (Fig. 2). Of 

course, deviations from this rule occurred under poor detergent solubilization conditions, even if 

the detergent concentration was much greater than the CMC. For each case, the mid-point of the 

transition of detergent desolvation, Kd, was compared with CMC. If Kd  > CMC, then the 

cohesive interactions were greater than the adhesive interactions (Fig. 2A), and vice-versa, if Kd  
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 CMC (Fig. 2B). The adhesive and cohesive interactions were comparable to each other when 

Kd   CMC (Fig. 2C). 
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FIGURE 2. 
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Figure 2: Graphic illustrating the three hypothetical scenarios of the balance between 

adhesive and cohesive interactions of PDCs. (A) The detergent-protein interactions are weaker 

than the detergent-detergent interactions that keep the proteomicelle molecules together; (B) The 

detergent-protein interactions are stronger than the detergent-detergent interactions; (C) The two 

types of interactions are of similar magnitude. 
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FIGURE 3. 
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Figure 3: Dose-response changes in fluorescence anisotropy for neutral maltoside-

containing detergents. (A) n-dodecyl-β-D-maltoside (DDM); (B) n-undecyl-β-D-maltoside 

(UM); (C) n-Decyl-β-D-maltoside (DM); (D) 4-Cyclohexyl-1-butyl-β-D-maltoside (CYMAL-4). 

All anisotropy measurements were conducted out in 200 mM NaCl, 50 mM HEPES, pH 7.4, and 

at room temperature. The anisotropy data were recorded by adding overnight detergent-refolded 

protein to a bath of varying detergent concentration, but keeping the final protein concentration 

at 28 nM. Starting detergent concentrations were above the CMC. Thereafter, they were reduced 

at concentrations below the CMC (Experimental Methods). Time-dependent anisotropy 

measurements were conducted directly after dilution of the refolded protein sample at respective 

detergent concentration. Vertical bars represent the magnitudes of the CMC and Kd of the PDCs 

of varying isoelectric point of the proteins. The horizontal dashed bar represents the minimum 

anisotropy value, r1 = ~0.16, obtained with FhuA C/5L in 6 M Gdm-HCl (Table 3). This 

anisotropy value corresponds to the most rotationally diffusive FhuA C/5L.     
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Table 3: The recorded minima and maxima of the anisotropy with neutral and zwitterionic 

detergents and -barrel proteins.a This table also illustrates the rotational diffusion coefficients 

as well as alterations in hydrodynamic radii of the proteomicelles during the detergent 

desolvation transitions.  

 
DMb rmin

c rmax
c Dr

slow (107 s-1)d Dr
fast (107 s-1)d Rh

max (nm)e  Rh (nm)f 

OmpG 
0.214 ± 0.005 0.327 ± 

0.001 
0.89 ± 0.02 3.5 ± 0.2 2.6 0.95 ± 0.04 

FhuA C/5L 
0.219 ± 0.005 0.360 ± 

0.001 
0.44 ± 0.01 3.3 ± 0.2 3.3 1.6 ± 0.1 

FhuA C/5L_25N 
0.166 ± 0.003 0.343 ± 

0.002 
0.66 ± 0.03 5.6 ± 0.2 3.0 1.5 ± 0.1 

FhuA C/7L_30N 
0.168 ± 0.007 0.312 ± 

0.001 
1.1 ± 0.1 5.5 ± 0.4 2.4 1.0 ± 0.1 

CYMAL-4b rmin
c
 rmax

c
 Dr

slow (107 s-1)d Dr
fast (107 s-1)d Rh

max (nm)e  Rh (nm)f 

OmpG 0.163 ± 0.001 
0.326 ± 
0.001 

0.90 ± 0.01 5.8 ± 0.1 2.6 1.2 ± 0.1 

FhuA C/5L 0.242 ± 0.001 
0.367 ± 
0.001 

0.36 ± 0.01 2.6 ± 0.1 3.6 1.7 ± 0.1 

FhuA C/5L_25N 0.166 ± 0.001 
0.341 ± 
0.001 

0.69 ± 0.01 5.6 ± 0.1 2.9 1.4 ± 0.1 

FhuA C/7L_30N 0.168 ± 0.025 
0.345 ± 
0.004 

0.63 ± 0.05 5.5 ± 1.2 2.9 1.5 ± 0.2 

OGb rmin
c rmax

c Dr
slow (107 s-1)d Dr

fast (107 s-1)d Rh
max (nm)e  Rh (nm)f 

OmpG 
0.153 ± 0.002 

0.306 ± 
0.001 

1.2 ± 0.1 6.4 ± 0.1 2.4 1.0 ± 0.1 

FhuA C/5L 
0.162 ± 0.002 

0.291 ± 
0.002 

1.5 ± 0.1 5.8 ± 0.1 2.2 0.80 ± 0.02 

FhuA C/5L_25N ~0.15 ~0.17 ~5.2 ~6.6 NDh NDh 

FhuA C/7L_30N ~0.15 ~0.17 ~5.2 ~6.6 NDh NDh 

CHAPSb rmin
c
 rmax

c
 Dr

slow (107 s-1)d Dr
fast (107 s-1)d Rh

max (nm)e  Rh (nm)f 

OmpG 
NDh 

0.318 ± 
0.002 

1.0 ± 0.1 NDh 2.5 NDh 

FhuA C/5L 0.172 ± 0.048 0.292 ± 
0.004 

0.53 ± 0.2 1.5 ± 0.1 2.2 0.77 ± 0.18 

FhuA C/5L_25N ~0.15 ~0.17 ~5.2 ~6.6 NDh NDh 

FhuA C/7L_30N ~0.16 ~0.17 ~5.2 ~6.0 NDh NDh 

LysoFosb rmin
c
 rmax

c
 Dr

slow (107 s-1)d Dr
fast (107 s-1)d Rh

max (nm)e  Rh (nm)f 

OmpG 
0.229 ± 0.006 

0.307 ± 
0.001 

1.2 ± 0.1 3.0 ± 0.2 2.4 0.61 ± 0.04 

FhuA C/5L 
0.223 ± 0.007 

0.330 ± 
0.001 

0.84 ± 0.01 3.1 ± 0.2 2.7 0.95 ± 0.05 

FhuA C/5L_25N 
0.177 ± 0.001 

0.313 ± 
0.001 

1.1 ± 0.02 5.0 ± 0.1 2.4 0.96 ± 0.02 

FhuA C/7L_30N 
0.184 ± 0.003 

0.294 ± 
0.005 

1.4 ± 0.1 4.7 ± 0.1 2.2 0.73 ± 0.06 

FhuA C/5L in 

Gdm-HClg 
~0.16 ~0.16 

~6.0 ~6.0 1.4 NAi 
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aTo reach low detergent concentrations below CMC, the Gdm-HCl-solubilized protein was 

refolded at various detergent concentrations above the CMC.  
bFull names of the detergents are provided in Experimental and computational methods. 
crmin was extrapolated for the lowest detergent concentration in the well. rmax was determined at 

detergent concentrations above the CMC. 
dDr

slow and Dr
fast indicate the rotational diffusion coefficients under solvation and desolvation 

conditions, respectively.  
eRh

max is the maximum hydrodynamic radius of the proteomicelle.  
fRh is the decrease in the hydrodynamic radius, Rh, as a result of the detergent desolvation.  
gAnisotropy was determined in 6 M Gdm-HCl.  
hNot determined.  
iNot applicable. 
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 Alterations in the charge distribution of the solvent-accessible surface of -barrels. To 

further examine the impact of electrostatic adhesive interactions on Kd, we examined four -

barrel proteins of varying charge distribution on the solvent-accessible surface (Table 2). These 

were OmpG21 and three derivatives of FhuA22 of E.coli, FhuA C/5L, FhuA C/5L_25N, and 

FhuA C/7L_30N (Fig. 1).24 FhuA ΔC/Δ5L is a truncation FhuA mutant lacking the 160-

residue, N-terminal cork domain (C) and extensive parts of the extracellular loops L3, L4, L5, 

L10, and L11. FhuA C/5L_25N features 25 negative charge neutralizations on the 

extracellular loops and periplasmic  turns with respect to FhuA C/5L. FhuA C/7L_30N 

was derived by additional four loop truncations, L4, L5, L7, and L8, with respect to the FhuA 

ΔC/Δ5L scaffold, and with a total of 30 negative charge neutralizations with respect to FhuA 

ΔC/Δ5L. These charge neutralizations were conducted by replacing D and E with N and Q, 

respectively. In this way, we accomplished an extensive change in the balance between positive 

and negative residues on the solvent-accessible surface. Therefore, at physiological pH negative 

residues were dominant in OmpG and FhuA C/5L, making these proteins acidic (pI < 7.0), 

whereas positive side chains are prevalent in FhuA C/5L_25N and FhuA C/7L_30N, 

making these proteins basic (pI > 7.0) (Table 2).  

 

 The balance of adhesive and cohesive interactions of the  barrel-containing 

proteomicelles  

Neutral detergents. Fig. 3 shows the transitions of detergent desolvation with four maltoside-

containing neutral detergents, as follows: DDM (Fig. 3A), UM (Fig. 3B), DM (Fig. 3C), 

CYMAL-4 (Fig. 3D) (Supporting Information, Table S1). In these panels, we showed the 

basal anisotropy readout, r1 =0.16, recorded with FhuA C/5L when fully unfolded (e.g., in 
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most rotationally diffusive state) using 6 M Gdm-HCl (Table 3). The only distinction among 

DDM, UM, and DM is the length of their hydrophobic tail, with 12, 11, and 10 alkyl carbons, 

respectively. CYMAL-4 is also a maltoside-containing detergent, but containing a very short 

hydrophobic tail (e.g., 4 alkyl carbons) and a cyclohexyl group. When all four proteins were 

incubated in DDM, we noted that the three FhuA protein mutants exhibited Kd values greater 

than the CMC, suggesting that the cohesive forces outperformed the adhesive forces, a finding 

that was not encountered with OmpG (Supporting Information, Table S2). The FhuA mutants 

showed a shift in the UM desolvation-induced transition towards stronger adhesive interactions 

(Fig. 3B). Interestingly, the DM desolvation-induced transition recoded with the basic FhuA 

proteins was very sharp and featured the largest positive Hill cooperativity p values of ~27 (Fig. 

3C and Table 4), contrasting to those noted with weakly adhesive acidic  barrels. Moreover, all 

four -barrel proteins exhibited stronger adhesive than cohesive interactions with CYMAL-4 

(Fig. 3D and Table 4). Therefore, at physiological pH conditions, we found that for basic  

barrels the adhesive interactions increased with respect to cohesive interactions in the order 

DDM → UM → CYMAL-4 → DM (Supporting Information, Table S2; last column).  

 

 We were able to refold the acidic -barrel proteins in glucoside-containing neutral detergent 

(OG) and noted a detergent desolvation-induced transition with maximum and minimum 

anisotropy values of ~0.30 and ~0.16, respectively (Table 3, Table 4). In contrast, the 

experiments with the basic -barrel proteins revealed very low anisotropy values of ~0.17, near 

r1, which corresponded to the most rotationally diffusive FhuA C/5L, indicating poor 

solubility features under these experimental conditions. Because the two-state detergent 

desolvation-induced transition was only observed with acidic, but not basic  barrels, it is 
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conceivable that the anisotropy value, r, is strongly dependent on the characteristics of the PDC, 

even if there is some mobility restriction of the fluorophore by the detergent coat. Therefore, 

these examples illustrate how extensive changes in the charge distribution across the solvent-

accessible surface of the  barrel proteins produced dramatic alterations in the magnitude of 

adhesive interactions. 

 

 Zwitterionic detergents. We extended these studies to zwitterionic detergents. Interestingly, 

we were able to refold the acidic  barrels in CHAPS, but not the basic  barrels (Fig. 4). This 

situation resembles that found with OG. Indeed, the time-dependent changes in the FP anisotropy 

revealed a fast dissociation of CHAPS from FhuA C/5L at a detergent concentration of 2 mM, 

which is ~3-fold lower than its CMC (Table 1, Supporting Information, Fig. S4). In contrast, 

we found a strong binding interaction between CHAPS and OmpG, with a Kd < 0.6 mM (Table 

4). n-dodecyl-N,N-dimethylglycine (LD), another zwitterionic detergent, showed a closely 

similar signature, encompassing adhesive interactions with the acidic  barrels, but weak 

interactions with the basic  barrels (Supporting Information, Fig. S5). In excellent accord 

with the outcomes pertaining to the above-mentioned zwitterionic detergents, LysoFos exhibited 

stronger adhesive interactions with the acidic -barrels than those interactions with the basic  

barrels (Table 3 and Table 4). On the other hand, the Kd values noted with the interaction of 

LysoFos with the basic  barrels matched the CMC under similar experimental conditions, 

indicating no significant difference between adhesive and cohesive interactions (Table 1 and 

Table 4). Therefore, LysoFos was found as a satisfactorily solubilizing detergent for both the 

acidic and basic  barrels.    
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FIGURE 4.  
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Figure 4: Dose-response changes in fluorescence anisotropy recorded with zwitterionic 

detergents and proteins of varying isoelectric point pI. This panel shows a desorption 

isotherms recorded with 3-[(3-Cholamidopropyl) dimethylammonio]-1-Propanesulfonate 

(CHAPS). Vertical bars represent the magnitudes of the CMC and Kd of the PDCs of the proteins 

of varying isoelectric point. The horizontal dashed bar represents the minimum anisotropy value, 

r0 = ~0.16, obtained with FhuA C/5L in 6 M Gdm-HCl (Table 3). All the other experimental 

conditions were the same as in Fig. 3. 
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Table 4: Summary of the fitting results of the two-state, concentration-dependent 

anisotropy curves of the endpoints of the detergent desolvation phase with neutral 

detergents.a,b This was determined with three FhuA derivatives and OmpG as well as a panel of 

five neutral detergents of varying hydrophobic chain and hydrophilic head group. The FP 

measurements were carried in 200 mM NaCl, 50 mM HEPES, pH 7.4 and at a temperature of 

24C. All data were derived as averages ± SDs of three independent data acquisitions.   
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DMc pd Kd

e  (mM) qf (mM-1) Gg (kcal/mol) Balanceh 

OmpG 4.1 ± 1.2 1.8 ± 0.4 
0.064 

-3.7 ± 0.1 Fadh   Fcoh 

FhuA C/5L 3.5 ± 0.5 1.7 ± 0.1 
0.072 

-3.8 ± 0.1 Fadh   Fcoh 

FhuA C/5L_25N 27 ± 3 0.9 ± 0.1 

1.30 
-4.1 ± 0.1 Fadh >> Fcoh 

FhuA C/7L_30N 27 ± 6 0.9 ± 0.1 
1.07 

-4.1 ± 0.1 Fadh >> Fcoh 

CYMAL-4c pd Kd
e  (mM) qf (mM-1) Gg (kcal/mol) Balanceh 

OmpG 6.7 ± 0.1 4.6 ± 0.1 
0.25 

-3.2 ± 0.1 Fadh > Fcoh 

FhuA C/5L 3.7 ± 0.1 5.3 ± 0.1 0.38 
-3.1 ± 0.1 Fadh > Fcoh 

FhuA C/5L_25N 5.2 ± 0.3 5.7 ± 0.1 0.28 
-3.1 ± 0.1 Fadh > Fcoh 

FhuA C/7L_30N 2.3 ± 0.9 4.5 ± 1.1 0.17 
-3.2 ± 0.1 Fadh > Fcoh 

OGc pd Kd
e  (mM) qf (mM-1) Gg (kcal/mol) Balanceh 

OmpG 
4.9 ± 0.5 

11 ± 1 0.017 
-2.7 ± 0.1 Fadh > Fcoh 

FhuA C/5L 5.3 ± 0.9 13 ± 1 0.013 -2.5 ± 0.1 Fadh > Fcoh 

FhuA C/5L_25N 
NDi NDi NDi NDi Fadh << Fcoh 

FhuA C/7L_30N NDi NDi NDi NDi Fadh << Fcoh 

CHAPSc pd Kd
e  (mM) qf (mM-1) Gg (kcal/mol) Balanceh 

OmpG ~1.6 
< 0.6 

NDi 
~-7.0 Fadh >> Fcoh 

FhuA C/5L 1.7 ± 0.6 
3.3 ± 1.8 

0.015 
-3.4 ± 0.5 Fadh > Fcoh 

FhuA C/5L_25N NDi NDi NDi NDi Fadh << Fcoh 

FhuA C/7L_30N NDi NDi NDi NDi Fadh << Fcoh 

LysoFosc pd Kd
e  (mM) qf (mM-1) Gg (kcal/mol) Balanceh 

OmpG 5.6 ± 1.5 
0.26 ± 0.03 

0.41 
-4.9 ± 0.1 Fadh > Fcoh 

FhuA C/5L 9.1 ± 6.2 
0.47 ± 0.04 0.51 -4.5 ± 0.1 Fadh > Fcoh 

FhuA C/5L_25N 4.5 ± 0.5 0.71 ± 0.03 0.22 
-4.3 ± 0.1 Fadh   Fcoh 

FhuA C/7L_30N 3.5 ± 0.7 0.73 ± 0.04 0.13 
-4.3 ± 0.1 Fadh   Fcoh 
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aTo reach low detergent concentrations below the CMC, the Gdm-HCl-solubilized (FhuA 

derivatives) or urea-solubilized (OmpG) proteins were refolded at various detergent 

concentrations above the CMC.  
bThe dose-response equilibrium curves were fitted by the four-parameter Hill equation. 
c This column indicates the names of the detergents and proteins used in this work.  
dp is the Hill coefficient. 
eThe apparent dissociation constant, Kd, was determined as the midpoint of the dose-dependent 

dissociation phase.13  
fThe slope factor or transition steepness was calculated at the midpoint of the dissociation phase.  
gFree energies were determined using the standard thermodynamic relationship G = RT ln Kd. 
hThe quantitative balance between the adhesive protein-detergent (Fadh) and cohesive detergent-

detergent interactions (Fcoh) of the proteomicelles.  
iNot determined. 
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 Does pH alter the interfacial interactions of the PDC with neutral detergents? Here, we 

asked whether pH alters the balance between the adhesive and cohesive interactions. It is worth 

mentioning that Texas Red is a pH insensitive fluorophore.52 Because pH modifications affect 

the protein electrostatics, but not the cohesive interactions within proteomicelles formed by a 

neutral detergent, we examined the PDC interfacial interactions mediated by DM (Fig. 5; 

Supporting Information, Table S3 and Table S4). The rationale of this choice resided in the 

fact that at physiological pH DM showed substantially increased adhesive interactions with the 

basic  barrels (Kd ~ 0.9 mM), as compared with the acidic  barrels (Kd ~ 1.8 mM), although it 

is a neutral detergent (Fig. 3C). At acidic pH values, no significant distinctions between Kd and 

CMC were observed, despite a broad pI range among the four  barrels. In contrast to all FhuA 

derivatives, DM-refolded OmpG showed no significant pH-dependent alterations in the balance 

between adhesive and cohesive interactions when examined in the pH range 4.6 – 8.2 

(Supporting Information, Table S4; last column), likely due to very strong hydrophobic 

interactions at the PDC interface.  
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FIGURE 5. 
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Figure 5: Dose-response changes in fluorescence anisotropy acquired with DM under acidic 

conditions. (A) pH 4.6; (B) pH 5.6; (C) pH 6.8; (D) pH 8.2; and (E) pH 10.0. The buffer was 

either 50 mM HEPES (pH 6.8), or 50 mM NaOAc (pH 4.6, pH 5.6). The salt concentration was 

200 mM NaCl. Vertical bars represent the magnitudes of the CMC and Kd of the PDCs of 

varying isoelectric point of the proteins. The horizontal dashed bar represents the minimum 

anisotropy value, r0 = ~0.16, obtained with FhuA C/5L in either 40 mM SDS or 6 M Gdm-HCl 

(Table 3). All the other experimental conditions were the same as in Fig. 3. 
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FIGURE 6. 
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Figure 6: MD simulations of DDM binding to the β-barrel proteins. (A) Initial setup of a 

typical MD simulation. FhuA C/5L is shown using a cartoon representation (yellow); the head 

and the tail regions of the DDM molecules are shown as orange spheres and cyan lines, 

respectively. The magenta and green spheres indicate the sodium and chloride ions, respectively; 

the semitransparent surface indicate the volume occupied by the electrolyte; (B) A sequence of 

microscopic configurations realized in a typical MD simulation. Images in the top and bottom 

rows depict the same system from two different viewpoints; (C) The number of the DDM 

molecules bound to FhuA C/5L with their tail (top) or head (bottom) parts versus simulation 

time. The simulation system contained 20 mM DDM initially placed on a cubic lattice around the 

protein. To count as a binding event, any atom of a DDM must reside within 4 Å of any atom of 

the protein. The traces show 0.48 ns block average of 2.4 ps-sampled data. The inset image 

shows a zoomed-in view of a 10-ns fragment of the binding trace. The standard deviation of the 

number of bound DDM molecules, , is used as an effective measure of the molecules' binding 

affinity: smaller deviation indicates stronger binding; (D) The mean equilibrium number of 

DDM molecules bound to the proteins (left) and the mean equilibrium standard deviation (right) 

of the number of DDM molecules bound to the proteins. In each figure, the left two columns 

characterize binding of the tail or head groups of DDM to the proteins; the right three columns 

characterize binding of entire DDM molecules to the hydrophobic, hydrophilic and charged 

residues of the proteins. The data were averaged over the steady-state (last ~70 ns) parts of two 

independent MD trajectories for each protein and then over the four protein systems; (E) Four β-

barrel proteins colored according to their local propensity for forming an interface with DDM 

molecules. For each residue, the contact probability was calculated as the fraction of the time it 
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was bound to a DDM molecule within the last ~70 ns of the equilibration simulation; (F) The 

average fraction of the hydrophobic, hydrophilic, positively and negatively charged residues in 

the four -barrel proteins (open bars) and the fraction of those residues that bind DDM (filled 

bars) during the steady-state (last ~70 ns) parts of the MD trajectories. The data were averaged 

over the two independent MD trajectories for each protein and then over the four protein 

systems. In panels D and F, error bars represent standard deviations among the eight simulations. 

 

 MD simulations of the interactions between DDM and the -barrel proteins. To gain 

insights into the PDC interactions at the submicroscopic level, we simulated spontaneous 

aggregation of DDM detergents around OmpG, FhuA C/5L, FhuA C/5L_25N, and FhuA 

C/7L_30N, using the MD method of Bond and colleagues (2004).53 Each simulation system 

contained one copy of the protein, 21 or 105 DDM molecules, which translates into 20 or 100 

mM DDM concentration, respectively, and 200 mM NaCl electrolyte (Fig. 6A). Two 

independent simulations were performed for each system differing by the initial arrangements of 

the DDM molecules (Methods). Starting from a disperse configuration, DDM molecules were 

seen to aggregate at the surface of the proteins, reaching a dynamic equilibrium after ~100 ns 

(Fig. 6B; Supporting Information, Fig. S6A). In all simulations, all DDM molecules were 

observed to eventually form a complex with the protein (Supporting Information, Fig. S6B-D). 

All proteins maintained their structural integrity at our simulation timescale. Reflecting the 

progress of the aggregation process, the radius of gyration of the DDM-protein complex, Rg, 

reached steady-state values of ~2.2,  ~2.9, ~2.7, and ~2.6 nm for proteomicelles with OmpG, 

FhuA C/5L, FhuA C/5L_25N, and FhuA C/7L_30N, respectively (Supporting 
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Information, Fig. S6B,C). Interestingly, increasing DDM concentration by 5-fold produced a 

rather modest (~0.6 nm) increase of Rg (Supporting Information, Fig. S6D). 

 

 The steady-state parts of the trajectories were used to extract information about DDM-protein 

interactions. Fig. 6C shows two typical traces characterizing binding of DDM’s hydrophobic 

(tail) and hydrophilic (head) parts to FhuA C/5L. The tail parts of all DDM molecules bind to 

the protein surface, which is not the case for the head groups of which only ~80% have atoms 

that are in contact with the protein surface (Fig. 6D). The most dramatic difference, however, is 

seen in the magnitude of the steady-state fluctuations, , which we use as an effective measure of 

binding affinity. Indeed, assuming that the binding of a detergent to a protein can be described by 

a harmonic potential and that the conditions of the equipartition theorem are met, the spring 

constant of the harmonic potential should be inversely proportional to the square of the standard 

deviation. According to this argument, the head group of DDM binds to the protein ~8 times less 

strongly than the tail part (Fig. 6D). Similarly, we find that the binding of DDM to hydrophobic 

residues to be ~2.6 times stronger than to hydrophilic residues and ~8 times stronger than to 

charged residues (Fig. 6D; Supporting Information, Fig. S7A). Here and anywhere else in the 

paper, hydrophilic residues include polar and charged residues. Analyzing the binding of head 

groups and tails of DDM separately, we find only the tail domain to exhibit considerable 

dependence of binding strength on the residue type (Supporting Information, Fig. S7B-C). 

Further analysis found no significant correlation between the DDM binding affinity and the sign 

of the charged residues (Supporting Information, Fig. S7D-F). 

 

 Fig. 6E shows the structure of the four proteins colored by the local probability of binding 
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DDM molecules. Interestingly, DDM molecules did not uniformly cover the hydrophobic belt of 

the protein and tended to form half-micelle like aggregates at the junction of the loops and the  

barrel. One possible explanation for such an arrangement is that detergent molecules seek such 

configurations where both their hydrophobic and hydrophilic parts are placed in the most 

favorable environment. At the same time, the pattern of DDM binding (Fig. 6E) is very similar 

to the pattern of hydrophobic and hydrophilic residues in the protein structures (Supporting 

Information, Fig. S8A). Note that increasing the number of DDM molecules does not lead to 

formation of half-micelles at the hydrophobic belt of the protein (Supporting Information, Fig. 

S6A). Unfortunately, statistical sampling of binding events was not sufficient in our simulations 

to elucidate the effect of point mutations on DDM binding. Nevertheless, we could infer this 

information by evaluating the effect that a residue type has on its probability to bind DDM. Fig. 

6F plots the fraction of hydrophobic, hydrophilic, as well as positively and negatively charged 

residues in the respective protein structures, which was averaged over the four proteins. Fig. S8A 

(Supporting Information) show the same data for individual proteins. If the binding of DDM 

molecules to a protein were completely random, the fraction of residues that would bind 

detergent would be the same as the fraction of the residues in the protein. Analysis of MD 

simulations, however, does not support this conjecture. DDM molecules are found to bind 

hydrophobic residues 50% more likely than suggested by their abundance in the structure 

whereas binding hydrophilic residues was 30% less likely (Fig. 6F). Interestingly, the 

hydrophobic residues of OmpG bind DDM considerably stronger than those of FhuA variants 

(Supporting Information, Fig. S8B), in agreement with the proteins’ grand average of 

hydropathicity indices (Table 2). Substantial reduction of DDM binding is also observed in the 

case of positively and negatively charged residues.  
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Figure 7: Dose-response in fluorescence anisotropy acquired with SELENOK U92C and 

SELENOS U188S, two short single α-helical transmembrane proteins solubilized in DDM.  

(A) Cartoon presenting the transmembrane topography of the SELENOK U92C and SELENOS 

U188S proteins; (B) Domain organization and the position of relevant Cys and Sec residues of 

SELENOS and SELENOK. TM stands for the transmembrane region of these proteins; (C) The 

protein concentration in the well was 200 nM. The initial DDM concentration was 1.3 mM. The 

FP measurements were carried out using a solution that contained 200 mM NaCl, 50 mM 

HEPES, pH 7.4 at a temperature of 24C. Vertical bars represent the magnitudes of the CMC and 

Kd. All the other experimental conditions were the same as in Fig. 3. 
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  Do -helical transmembrane proteins undergo a two-state detergent desolvation-

induced transition? One question is whether we can extend this FP-based approach to other 

membrane proteins, which are different in structure from  barrels. Therefore, we inspected 

SELENOS and SELENOK, two small, human membrane proteins that are not related in structure 

and homology with either OmpG or FhuA. SELENOS and SELENOK are single-pass 

polypeptides with a short luminal segment, a single transmembrane helix, and a cytoplasmic 

domain housing a selenocysteine (Sec) residue.54 The cytoplasmic regions contain an 

unstructured segment rich in glycine, proline, and polar residues (Fig. 7A). Both SELENOS34 

and SELENOK32 are homodimers (Fig 7B). In this work, we explored SELENOK U92C and 

SELENOS U188S, in which the selenocysteine was mutated either to cysteine (SELENOK) or 

serine (SELENOS), leaving a sole cysteine in the protein for fluorescent labeling (Supporting 

Information, Table S5). We also noted that these proteins underwent a two-state DDM 

desolvation transition in proteomicelles, but between significantly lower rmax and rmin values than 

those determined with the FhuA derivatives (Supporting Information, Table S6). For both -

helical proteins, the apparent Kd values were greater than the CMC, suggesting that the cohesive 

interactions were greater than the adhesive interactions (Fig. 7C; Supporting Information, 

Table S7; last column).     
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DISCUSSION 

 In this work, we inspected the interfacial interactions between detergents and water-insoluble 

membrane proteins. The detergent desolvation of insoluble membrane proteins is closely related 

to protein unfolding. Recently, using temperature-dependent circular dichroism (CD) 

spectroscopy and chemical denaturant-induced protein unfolding, we showed that rmax and rmin 

correspond to the folded and unfolded states, respectively.35 This finding implies that the 

unfolding transition of these  barrel proteins in aqueous phase occurs in between these states. 

However, the observed changes in the FP anisotropy directly reflected adhesion-dissociation of 

detergent monomers from the protein, not protein folding-unfolding. The two-state transition of 

detergent desolvation was due to detergent depletion in the proximity of a hydrophobic 

membrane protein or weak adhesive PDC interactions. The steady-state FP anisotropy values on 

these plots represent the endpoints of the desolvation reaction; thereby, the signal resulting from 

more fluorophores has no impact on the endpoints of the desolvation reaction. For example, we 

show the ability of obtaining the two-state Langmuir-Hill dissociation curves using two dimeric 

selenoproteins of unknown structure. Moreover, three distinct protein instances (e.g., FhuA, 

OmpG, and selenoproteins) indicate the effective labeling of the membrane proteins within the 

aqueous phase-exposed domains for quantitative FP studies. 

 

 In general, the very acidic OmpG exhibited stronger adhesive interactions with both neutral 

and zwitterionic detergents than the other FhuA protein mutants, likely due to strong 

hydrophobic PDC contacts. The all-atom MD simulations confirmed a stronger binding 

interaction of DDM to OmpG than to other FhuA derivatives (Fig. 3; Table S2; Supporting 

Information, Fig. S8B). At physiological conditions, the adhesive interactions were greater than 
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the cohesive interactions in the case of acidic  barrels solubilized by neutral, short-hydrophobic 

tail detergents CYMAL-4 and OG, as well as by zwitterionic detergents CHAPS, LD, and 

LysoFos. In contrast, the basic  barrels could not be folded in OG, CHAPS and LD, but showed 

comparable adhesive and cohesive interactions when incubated in LysoFos. These findings 

imply that for the zwitterionic detergents the electrical dipoles of the monomers are attracted by 

the dominant negative charges of the acidic  barrels, but repelled by the dominant positive 

charges of the basic  proteins. Another clear distinction between acidic and basic barrels was 

noted with DM at physiological pH. Closely similar adhesive and cohesive interactions were 

apparent for the acidic  barrels, but strong adhesive interactions were found for the basic  

barrels. These few examples illuminate the entanglement and importance of the hydrophobic and 

electrostatic interactions in mediating the PDC interface.  

 

 rmin and rmax, defining the two sub-states of the desolvation transition, were significantly 

smaller for the shorter polypeptides, which is in accord with a greater rotational mobility of a 

lower-molecular mass proteomicelle. For example, the 102-residue SELENOK U92C and 190-

residue SELENOS U188S showed rmin values of 0.095  0.002 and 0.103  0.002, respectively, 

when they were solubilized in 1.3 mM DDM. These values correspond to rotational diffusion 

coefficients, Dr
fast, of ~1.3108 and ~1.1108 s-1 (Supporting Information, Table S6), 

respectively, giving rotational correlation times, , in the range 1.3 -1.5 ns. This time interval 

compares well with the rotational correlation time  = 14.2 ns, as calculated for Stam2 VHS-

domain (VHS), a 17.7 kDa protein, at 20C.55 Another interesting aspect of the hydrodynamics 

of DDM-containing proteomicelles is that the average radius, Rh, determined with  barrel 

proteins, ranged a narrow interval between 2.5 and 2.8 nm, whereas that calculated for the 
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shorter helical polypeptides was ~2.1 nm. The MD trajectories of the DDM-mediated 

proteomicellizations with all four  barrels indicated a gyration radius covering a range between 

2.2 nm and 2.9 nm. Our full-atomistic MD computational studies also indicated that a substantial 

increase in the DDM concentration did not produce a significant change in the PDC gyration 

radius. This finding is in accord with the FP anisotropy measurements, which did not reveal 

alterations in the FP anisotropy at detergent concentrations much greater than the CMC 

(Supporting Information, Fig. S2).  

 

 In some cases (e.g., all desorption isotherms in Fig. 3B), the rmin values acquired with the -

barrel proteins were greater than the value corresponding to most rotationally diffusive FhuA 

C/5L protein (r1 = ~0.16), which was acquired under denaturing conditions by excess of 

Gdm-HCl. At least two possibilities can explain these slightly elevated rmin values. First, there 

might be a small residual amount of yet-bound detergent monomers at the lowest detergent 

concentrations used in this work, thus contributing to a decreased rotational mobility of the 

desolvated protein. Second, there are effects of the soluble local aggregation, again decreasing 

the tumbling rate of the desolvated protein. It should be noted that soluble aggregates of proteins 

would increase the anisotropy due to the size increase from monomers. Because the proteins 

examined in this work are hydrophobic, we do also see, as expectedly, insoluble aggregation at 

detergent concentrations much smaller than the CMC, resulting in a decrease in raw polarization 

signal.  

 

 We used Texas Red, a bright fluorophore,36 enabling a low concentration of the inspected 

protein. This is a very important asset of this approach, given the limited expression and 
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purification yields of water-insoluble membrane proteins. Previous FP methods also involved 

time-resolved anisotropy measurements that require a very fast detector.56 This latter FP method 

facilitates the determination of anisotropy decays of proteins exposed to excitation light pulses 

shorter than the decay time constant of the sample. In this way, time-resolved anisotropy studies 

can reveal details lost in the averaging process, such as molecular shape, conformational sub-

states, and local flexibility. Because of the need for sophisticated equipment, these time-resolved 

anisotropy measurements cannot be expanded to a multiplexed format for inspecting a large 

sample number, which is a critical requirement in the HTS area of the PDC interactions. One 

immediate question is whether this semi-quantitative FP-based approach can be expanded by 

employing intrinsic tryptophan fluorescence. This is because in general membrane proteins have 

multiple tryptophan residues exposed to their hydrophobic interface.24 We judge that it is not 

very convenient to use intrinsic tryptophan fluorescence for the FP-based spectroscopy studies 

for a number of reasons. They include complex contributions of individual-residue tryptophan 

spectra to the overall FP spectrum of the protein as well as rapid tryptophan quenching, because 

the indole nucleus is prone to electron donation during the excitation state.57 Moreover, the 

presence of multiple tryptophan residues in any given membrane protein requires their 

mutagenesis with non-fluorescent side chains.14 Therefore, many applications of the FP 

spectroscopy rely on covalently attached intense fluorophores, such as Texas Red from this 

work. It should be mentioned that this approach cannot be coupled with large fluorophores, such 

as green fluorescence protein (GFP) and its derivatives, because they can potentially impact the 

local tumbling rate, flexibility, and even conformation of the inspected protein.  

 



217 
 

 There are various ways to identify contributions (if any significant) of light scattering to the 

FP anisotropy signal. We think that the light scattering has negligible effects to our acquired 

fluorescence anisotropy signal for the following independent reasons: (i) the Spectramax i3 plate 

reader that we used is equipped with emission filters for rhodamine derivatives (Texas Red is 

one of them). These filters are designed for excitation at 535 nm and emission at 595 nm. This 

rather large separation between excitation and emission (~ 60 nm) ensures that scattering is 

minimal in our data; (ii) the large wavelength of emission was strategically used to avoid Raman 

and Rayleigh scattering effects. This is because the light intensities of both scattering 

contributions are proportional to -4, where  is the wavelength;58 (iii) in our very preliminary 

stage of these studies, we have increased the concentration of labeled proteins up to a level, in 

which the signal was independent on protein concentration;59 (iv) we conducted control 

experiments with proteins of closely similar molecular mass, but that exhibit a broad range of 

detergent solubilization properties under identical micellization conditions. The basal 

fluorescence anisotropy of the unfolded FhuA variants under excess of Gdm-HCl was ~0.16. We 

demonstrated that acidic FhuA proteins were refolded in OG, showing an anisotropy signal of 

~0.3. On the contrary, the basic FhuA variants were not refolded in OG and aggregated in 

solution in the presence of OG-induced micelles, exhibiting a fluorescence anisotropy of ~0.16. 

This control experiment demonstrated that both the light scattering contributions and protein 

aggregation did not affect the FP anisotropy signal under OG-induced micellization conditions. 

Such a control experiment was also recapitulated with other detergent micelles (e.g., CHAPS in 

Table 3, Fig. 4). These experimental outcomes indicates that the fluorophore directly probed 

whether the protein is in a detergent solvated or desolvated state.35 Overall, we think that the 
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light scattering of the incident excitation light into the emission pathway does not affect the 

anisotropy values reported here. 

CONCLUSIONS 

 In summary, we report a comparative study of the detergent desolvation-induced transitions 

of membrane proteins of varying biophysical and structural fingerprint. This approach for 

deriving the energetics of detergent desolvation was used for four robust -barrels, but extended 

to two -helical ones, whose X-ray crystal structure is not yet available. These membrane 

proteins were expressed, solubilized, purified, and refolded under very distinctive protocols, 

reinforcing the impact of this approach on other membrane proteins to examine their interfacial 

PDC interactions. Therefore, this method may be applied to diverse mixtures of detergents with 

complementary interfacial features. For example, such measurements might be expanded to 

mechanistic studies of the PDC interactions of newly developed detergent-like compounds, such 

as steroid-based facial amphiphiles,60 lipopeptides61 and amphipols.62  
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 Supporting Information. (i) Characterization of selenoproteins prior to and following 

labeling with Texas Red; (ii) Example of steady-state FP traces illustrating no time-dependent 

alterations in the anisotropy readout at detergent concentrations much greater than the CMC; (iii) 

Example of steady-state FP traces showing no time-dependent alterations in the anisotropy 

readout after 24 hours;  

(iv) Hydrodynamic changes of the proteomicelles during the transition of detergent desolvation; 

(v) Table that summarizes the recorded minima and maxima of the anisotropy with maltoside-

containing detergents; (vi) Summary of the fitting results of the two-state, concentration-

dependent anisotropy curves acquired with maltoside-containing  detergents; (vii) Time-

dependent changes in the FP anisotropy acquired with CHAPS; (viii) Time-dependent FP 

anisotropy acquired with LD; (ix) Table that summarizes the recorded minima and maxima of 

the anisotropy readout with DM at various pH values; (x) Summary of the fitting results of the 

two-state desolvation curves acquired with DM at various pH values; (xi) MD simulations of 

DDM molecules binding to -barrel proteins; (xii) Differential affinity of DDM molecules to 

residues of β-barrels; (xiii) DDM binding versus residue type; (xiv) Biophysical properties of the 

selenoproteins; (xv) Table that summarizes the recorded minima and maxima of the anisotropy 

readout with the -helical membrane proteins solubilized in DDM; (xvi) Summary of the fitting 

results of the two-state, concentration-dependent anisotropy curves acquired with -helical 

transmembrane proteins. These materials are available free of charge via the Internet at 

http://pubs.acs.org 
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 1. Characterization of SELENOK U92C and SELENOS U188S proteins prior to and 

following labeling with Texas Red 

       A      B  C 
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 Figure S1: Characterization of SELENOK U92C and SELENOS U188S prior to and 

following labeling with Texas Red. (A) The purity of SELENOK U92C (lane 1) and SELENOS 

U188S (lane 2) prior to labeling was assessed from 16% Tris-Glycine SDS-PAGE. 

Electrophoresis was performed under reducing conditions. The molecular weights of SELENOK 

U92C and SELENOS U188S are 11.5 and 21.2 kDa, respectively. (B) The fluorescence of 

SELENOS U188S and SELENOK U92C labeled with Texas Red C2-maleimide was visualized 

using a FluorChem Q imaging system (Alpha Innotech, San Jose, CA) with a Cy5 filter (lanes 3 

and 4). (C) The same gel from B was visualized by coomassie-blue staining (lanes 5 and 6). 
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 2. Example of steady-state FP traces illustrating no time-dependent alterations in the 

anisotropy readout at detergent concentrations much greater than their corresponding CMCs  
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Figure S2: Time-dependent fluorescence anisotropy traces acquired with n-Decyl--D-

maltoside (DM). The anisotropy data were collected by adding overnight refolded protein to a 

bath of varying detergent concentration, as indicated in the legend. All anisotropy measurements 

were conducted at room temperature in 200 mM NaCl, 50 mM HEPES, pH 6.8. Time-dependent 

anisotropy measurements were executed directly after dilution of the refolded protein sample at 

respective detergent concentration. Final protein concentration was maintained at 28 nM.  
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3. Example of steady-state FP traces showing no time-dependent alterations in the anisotropy 

readout after 24 hours, regardless of the detergent concentration inspected in this work. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S3: Anisotropy readout was collected after 24 hours, but under similar experimental 

conditions with those mentioned in the caption of Fig. S2.   
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 4. Hydrodynamic changes of the proteomicelles during the transition of detergent 

desolvation. Data resulting from steady-state FP measurements were used to derive the 

hydrodynamic radius of the proteins under detergent solvation and desolvation conditions. 

Perrin’s equation relates the rotational diffusion coefficient, Dr, to the steady-state fluorescence 

anisotropy, r,1 

𝑟0

𝑟
= 1 + 6𝐷𝑟𝐹          (S1) 

r0 indicates the fundamental maximum anisotropy value. Here, F is the fluorescence lifetime of 

the fluorophore. In the case of Texas Red, r0 is 0.4,2 whereas F is 4.2 ns.3 The rotational 

correlation time, , relates to the apparent hydrodynamic volume of the labeled molecule, Vh, as 

follows:3 

 =
1

6𝐷𝑟
            (S2) 

𝑉ℎ =
𝜃𝑘𝐵𝑇

𝜂
=

𝑘𝐵𝑇

6𝜂𝐷𝑟
          (S3) 

Using (S1) and (S2): 

𝑟0

𝑟
= 1 +

𝐹

𝜃
           (S4) 

Here, the dynamic viscosity of the buffer solution that corresponds to 200 mM NaCl, , is 1.028 

mPa s.4 kB and T denote the Boltzmann constant and absolute temperature, respectively. 

Therefore, we determined the rotational diffusion coefficients of the fully solvated proteins, 

Dr
slow, and detergent-desolvated proteins, Dr

fast, as well as the average maximum hydrodynamic 

radii, Rh
max (Table3). 
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Table S1: Table that summarizes the recorded minima and maxima of the anisotropy 

readout with neutral, maltoside-containing detergents and the four -barrel proteins.a This 

table also illustrates the rotational diffusion coefficients as well as alterations in hydrodynamic 

radii of the proteomicelles during the detergent desolvation transitions.  

 
DDMb rmin

c
 rmax

c
 Dr

slow (107 s-1)d Dr
fast (107 s-1)d Rh

max  

(nm)e 

 Rh (nm)f 

OmpG NDg 

0.330 ± 

0.004 

0.84 ± 0.06 NDg 2.7 NDg 

FhuA C/5L 

0.196 ± 

0.054 

0.336 ± 

0.003 

0.76 ± 0.04 4.1 ± 1.7 2.8 1.2 ± 0.2 

FhuA C/5L_25N 

0.181 ± 

0.008 

0.315 ± 

0.003 

1.1 ± 0.1 4.8 ± 0.4 2.5 0.97 ± 

0.07 

FhuA C/7L_30N 

0.183 ± 

0.012 

0.314 ± 

0.002 

1.1 ± 0.1 4.7 ± 0.5 2.5 0.95 ± 

0.08 

UMb rmin
c rmax

c Dr
slow (107 s-1)d Dr

fast (107 s-1)d Rh
max 

(nm)e 

 Rh (nm)f 

OmpG 

0.216 ± 

0.006 

0.319 ± 

0.002 

1.1 ± 0.1 3.4 ± 0.2 2.5 0.83 ± 

0.06 

FhuA C/5L 

0.230 ± 

0.015 

0.357 ± 

0.003 

0.48 ± 0.04 2.9 ± 0.4 3.2 1.5 ± 0.2 

FhuA C/5L_25N 

0.186 ± 

0.002 

0.322 ± 

0.002 

0.96 ± 0.03 4.6 ± 0.01 2.6 1.0 ± 0.1 

FhuA C/7L_30N 

0.208 ± 

0.005 

0.312 ± 

0.002 

1.1 ± 0.1 3.7 ± 0.2 2.4 0.79 ± 

0.05 

DMb rmin
c rmax

c Dr
slow (107 s-1)d Dr

fast (107 s-1)d Rh
max 

(nm)e 

 Rh (nm)f 
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OmpG 

0.214 ± 

0.005 

0.327 ± 

0.001 

0.89 ± 0.02 3.5 ± 0.2 2.6 0.95 ± 

0.04 

FhuA C/5L 
0.219 ± 

0.005 

0.360 ± 

0.001 

0.44 ± 0.01 3.3 ± 0.2 3.3 1.6 ± 0.1 

FhuA C/5L_25N 
0.166 ± 

0.003 

0.343 ± 

0.002 

0.66 ± 0.03 5.6 ± 0.2 3.0 1.5 ± 0.1 

FhuA C/7L_30N 
0.168 ± 

0.007 

0.312 ± 

0.001 

1.1 ± 0.1 5.5 ± 0.4 2.4 1.0 ± 0.1 

CYMAL-4b 
rmin

c
 rmax

c
 Dr

slow (107 s-1)d Dr
fast (107 s-1)d Rh

max 

(nm)e 

 Rh (nm)f 

OmpG 

0.163 ± 

0.001 

0.326 ± 

0.001 

0.90 ± 0.01 5.8 ± 0.1 2.6 1.2 ± 0.1 

FhuA C/5L 

0.242 ± 

0.001 

0.367 ± 

0.001 

0.36 ± 0.01 2.6 ± 0.1 3.6 1.7 ± 0.1 

FhuA C/5L_25N 

0.166 ± 

0.001 

0.341 ± 

0.001 

0.69 ± 0.01 5.6 ± 0.2 2.9 1.4 ± 0.1 

FhuA C/7L_30N 

0.168 ± 

0.025 

0.345 ± 

0.004 

0.63 ± 0.05 5.5 ± 1.2 2.9 1.5 ± 0.2 

 

aTo reach low detergent concentrations below CMC, the Gdm-HCl-solubilized proteins were 

refolded at various detergent concentrations above CMC.  
bFull names of the detergents are provided in Experimental Methods. 
cExperimentally determined anisotropy minima (rmin) and maxima (rmax) for various detergents. 

rmin was extrapolated for the lowest detergent concentration in the well. rmax was determined for 

detergent concentrations above the CMC. 
dDr

slow and Dr
fast indicate the rotational diffusion coefficients of the protein under solvation and 

desolvation conditions, respectively.  
eRh

max are the maximum hydrodynamic radii of the proteomicelle with various solubilizing 

detergents.  
fRh is the decrease in the hydrodynamic radius, Rh, as a result of the detergent desolvation 

transition of the protein.     
gNot determined.   
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 Table S2: Summary of the fitting results of the two-state, concentration-dependent 

anisotropy curves acquired with neutral, maltoside-containing detergents.a,b This was 

determined with three FhuA derivatives and OmpG as well as a panel of five neutral detergents 

of varying hydrophobic chain and hydrophilic head group. The FP measurements were carried in 

200 mM NaCl, 50 mM HEPES, pH 7.4 and at a temperature of 24C. All data were derived as 

averages ± SDs of three independent data acquisitions.   
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DDMc pd Kd
e (mM) qf (mM-1) Gg (kcal/mol) Balanceh 

OmpG 1.4 ± 0.9 ~0.11 0.99 -5.4 ± 1.2 Fadh >> Fcoh 

FhuA C/5L 1.1 ± 0.3 0.52 ± 0.36 0.07 -4.5 ± 0.7 Fadh ≤ Fcoh 

FhuA C/5L_25N 4.4 ± 2.8 0.62 ± 0.17 0.24 -4.4 ± 0.1 Fadh < Fcoh  

FhuA C/7L_30N 4.4 ± 1.6 0.64 ± 0.10 0.22 -4.3 ± 0.1 Fadh < Fcoh 

UMc pd Kd
e (mM) qf (mM-1) Gg (kcal/mol) Balanceh 

OmpG 4.8 ± 3.1 0.49 ± 0.17 0.25 -4.5 ± 0.3 Fadh  ≤ Fcoh 

FhuA C/5L 3.5 ± 0.9 0.29 ± 0.05 0.38 -4.8 ± 0.1 Fadh > Fcoh 

FhuA C/5L_25N 4.9 ± 0.3 0.59 ± 0.02 0.28 
-4.4 ± 0.1 Fadh   Fcoh 

FhuA C/7L_30N 4.6 ± 1.1 0.69 ± 0.07 0.17 
-4.3 ± 0.1 Fadh  Fcoh 

DMc pd Kd
e (mM) qf (mM-1) Gg (kcal/mol) Balanceh 

OmpG 4.1 ± 1.2 1.8 ± 0.4 
0.064 

-3.7 ± 0.1 Fadh   Fcoh 

FhuA C/5L 3.5 ± 0.5 1.7 ± 0.1 
0.072 

-3.8 ± 0.1 Fadh   Fcoh 

FhuA C/5L_25N 27 ± 3 0.9 ± 0.1 1.30 -4.1 ± 0.1 Fadh >> Fcoh 

FhuA C/7L_30N 27 ± 6 0.9 ± 0.1 1.07 -4.1 ± 0.1 Fadh >> Fcoh 

CYMAL-4c pd Kd
e (mM) qf (mM-1) Gg (kcal/mol) Balanceh 

OmpG 6.7 ± 0.1 4.6 ± 0.1 0.25 -3.2 ± 0.1 Fadh > Fcoh 

FhuA C/5L 3.7 ± 0.1 5.3 ± 0.1 0.38 -3.1 ± 0.1 Fadh > Fcoh 

FhuA C/5L_25N 5.2 ± 0.3 5.7 ± 0.1 0.28 -3.1 ± 0.1 Fadh > Fcoh 

FhuA C/7L_30N 2.3 ± 0.9 4.5 ± 1.1 0.17 -3.2 ± 0.1 Fadh > Fcoh 
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aTo reach low detergent concentrations below the CMC, the Gdm-HCl-solubilized proteins were 

refolded at detergent concentrations above the CMC.  
bThe dose-response equilibrium curves were fitted by the four-parameter Hill equation (eq. (3)). 
cThis column indicates the names of the detergents and proteins used in this work. Other details 

are provided in Methods.  
dp is the Hill coefficient.  
eThe apparent dissociation constant, Kd, was determined as the midpoint of the dose-dependent 

dissociation phase (e.g., c0).
5   

fThe slope factor or transition steepness was calculated at the midpoint of the dissociation phase.  
gFree energies were determined using the standard thermodynamic relationship G = RT ln Kd. 
hThe semi-quantitative balance between the adhesive protein-detergent (Fadh) and cohesive 

detergent-detergent interactions (Fcoh) of the proteomicelles. 
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5. Time-dependent changes in the FP anisotropy when the four -barrel proteins were incubated in 

CHAPS at detergent concentrations above and below the CMC 
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Figure S4: Time-dependent changes in the FP anisotropy when the four -barrel proteins were 

incubated in CHAPS at detergent concentrations above and below the CMC. (A) OmpG;  

(B) FhuA C/5L; (C) FhuA C/5L_25N; (D) FhuA C/7L_30N. The other experimental 

conditions were similar to those presented in Fig. 3 and Table 4.  
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 6. Time-dependent changes in the FP anisotropy when the four -barrel proteins were 

incubated in LD. 
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 Figure S5: Time-dependent changes in the FP anisotropy when the four -barrel 

proteins were incubated in n-dodecyl-N,N-dimethylglycine (LD). (A) OmpG; (B) FhuA 

C/5L; (C) FhuA C/5L_25N; (D) FhuA C/7L_30N. The other experimental conditions 

were similar to those presented in Fig. 3 and Table 4.  
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 Table S3: Table that summarizes the recorded minima and maxima of the anisotropy 

readout with DM and the four -barrel proteins under conditions of varying pH.a This table 

also illustrates the rotational diffusion coefficients as well as alterations in the hydrodynamic 

radii of the proteomicelles during the two-state detergent desolvation transitions. 

 

OmpGb rmin
c rmax

c Dr
slow (107 s-1)d Dr

fast (107 s-1)d Rh
max (nm)e  Rh (nm)f 

4.6 0.094 ± 

0.004 

0.219 ± 

0.005 

3.3 ± 0.2 13 ± 1 1.7 0.62 ± 0.05 

5.6 0.112 ±0.009 0.303 ± 

0.001 

1.3 ± 0.1 10 ± 1 2.3 1.2 ± 0.1 

6.8 0.151 ± 

0.019 

0.331 ± 

0.002 

0.83 ± 0.02 6.5 ± 1.2 2.7 1.3 ± 0.1 

7.4 0.214 ± 

0.005 

0.327 ± 

0.001 

0.89 ± 0.02 3.4 ± 0.2 2.6 0.95 ± 0.04 

8.2 0.150 ± 

0.027 

0.334 ± 

0.001 

0.79 ± 0.01 6.6± 1.6 2.7 1.4 ± 0.1 

10 0.169 ± 

0.004 

0.337 ± 

0.001 

0.74 ± 0.01 5.4 ± 0.2 2.8 1.3 ± 0.1 

FhuA C/5Lb rmin
c
 rmax

c
 Dr

slow (107 s-1)d Dr
fast (107 s-1)d Rh

max (nm)e  Rh (nm)f 

4.6 0.161 ± 

0.005 

0.235 ± 

0.003 

2.8 ± 0.1 5.8 ± 0.2 1.8 0.40 ± 0.04 

5.6 0.195 ± 

0.016 

0.365 ± 

0.002 

0.38 ± 0.02 4.2 ± 0.6 3.5 1.9 ± 0.1 

6.8 0.216 ± 

0.005 

0.366 ± 

0.002 

0.37 ± 0.02 3.4 ± 0.2 3.5 1.8 ± 0.1 



244 
 

7.4 0.219 ± 

0.005 

0.360 ± 

0.001 

0.44 ± 0.01 3.3 ± 0.2 3.3 1.6 ± 0.1 

8.2 0.117 ± 

0.024 

0.373 ± 

0.002 

0.29 ± 0.02 9.6 ± 2.3 3.8 2.6 ± 0.2 

10 ~0.238  0.329 ± 

0.003 

~0.86 ~2.7 2.6 ~0.84  

FhuA 

C/5L_25Nb 

rmin
c
 rmax

c
 Dr

slow (107 s-1)d Dr
fast (107 s-1)d Rh

max (nm)e  Rh (nm)f 

4.6 0.176 ± 

0.024 

0.307 ± 

0.002 

1.2 ± 0.3 5.1 ± 1.1 2.4 0.89 ± 0.11 

5.6 0.154 ± 

0.002 

0.326 ± 

0.001 

0.90 ± 0.01 6.3 ± 0.1 2.6 1.2 ± 0.1 

6.8 0.144 ± 

0.009 

0.327 ± 

0.005 

0.89 ± 0.07 7.1 ± 0.7 2.6 1.3 ± 0.1 

7.4 0.166 ± 

0.003 

0.343 ± 

0.002 

0.66 ± 0.03 5.6 ± 0.2 2.9 1.5 ± 0.1 

8.2 0.168 ± 

0.004 

0.309 ± 

0.001 

1.2 ± 0.02 5.5 ± 0.2 2.4 0.96 ± 0.02 

10 NDg 0.265 ± 

0.007 

2.0 ± 0.2 NDg 2.0 NDg 

FhuA 

C/7L_30Nb 

rmin
c
 rmax

c
 Dr

slow (107 s-1)d Dr
fast (107 s-1)d Rh

max (nm)e  Rh (nm)f 

4.6 0.198 ± 

0.006 

0.348 ± 

0.001 

0.59 ± 0.01 4.1 ± 0.2 3.0 1.4 ± 0.1 

5.6 0.178 ± 

0.010 

0.338 ± 

0.002 

0.73 ± 0.03 5.0 ± 0.5 2.8 1.3 ± 0.1 
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6.8 0.155 ± 

0.016 

0.296 ± 

0.006 

1.4 ± 0.1 6.3 ± 1.0 2.3 0.89 ± 0.12 

7.4 0.168 ± 

0.007 

0.312 ± 

0.001 

1.1 ± 0.1 5.5 ± 0.4 2.4 1.0 ± 0.1 

8.2 0.151 ± 

0.010 

0.284 ± 

0.026 

1.6 ± 0.5 6.5 ± 0.7 2.1 0.80 ± 0.22 

10 0.325 ± 

0.009 

0.358 ± 

0.001 

0.4 ± 0.1 0.9 ± 0.1 3.2 0.66 ± 0.14 

 

 
aTo reach low detergent concentrations below CMC, the Gdm-HCl-solubilized FhuA C/5L 

protein was refolded at various detergent concentrations above CMC. These values were stated 

in Methods.  
bFull names of the detergents are provided in Methods. 
cExperimentally determined anisotropy minima (rmin) and maxima (rmax) for various detergents. 

rmin was extrapolated for the lowest detergent concentration in the well. rmax was determined for 

detergent concentrations above the CMC. 
dDr

slow and Dr
fast indicate the rotational diffusion coefficients of the FhuA C/5L protein under 

solvation and desolvation conditions, respectively.  
eRh

max are the maximum hydrodynamic radii of the proteomicelle with various solubilizing 

detergents.  
fRh is the decrease in the hydrodynamic radius, Rh, as a result of the detergent desolvation 

transition of the protein.    
NDg Not determined. 
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 Table S4: Summary of the fitting results of the two-state, concentration-dependent 

anisotropy curves acquired with three FhuA derivatives and OmpG under conditions of 

varying pH.a,b DM was the detergent used in this case. The solution contained 200 mM NaCl 

at room temperature. The buffer was either 50 mM HEPES (pH 6.8, pH 7.4, pH 8.2), 50 mM 

NaOAc (pH 4.6, pH 5.6) or 50 mM Sodium borate (pH 10.0). All data were derived as averages 

± SDs of three independent data acquisitions.    

 

OmpGc pd Kd
e (mM)

 
qf (mM-1)

 
Gg (kcal/mol) Balanceh 

4.6 3.7 ± 1.2 1.6 ± 0.5 
0.05 -3.8 ± 0.2 Fadh   Fcoh 

5.6 6.5 ± 6.8 1.8 ± 0.6 
0.17 -3.7 ± 0.2 Fadh   Fcoh 

6.8 6.2 ± 3.4 1.5 ± 0.4 
0.18 -3.8 ± 0.2 Fadh   Fcoh 

7.4 4.1 ± 1.2 1.8 ± 0.4 
0.064 -3.7± 0.1 Fadh   Fcoh 

8.2 5.2 ± 2.1 1.5 ± 0.4 
0.17 -3.9 ± 0.2 Fadh   Fcoh 

10 3.6 ± 0.2 1.3 ± 0.1 0.12 -3.9 ± 0.1 Fadh > Fcoh 

FhuA C/5Lc pd Kd
e (mM) qf (mM-1) Gg (kcal/mol) Balanceh 

4.6 ~25 ~2.1 0.23 ~-3.6 Fadh < Fcoh 

5.6 3.7 ± 0.8 1.6 ± 0.2 
0.098 

-3.8 ± 0.1 Fadh   Fcoh 

6.8 5.3 ± 1.0 1.7 ± 0.1 
0.12 

-3.8 ± 0.1 Fadh   Fcoh 

7.4 3.5 ± 0.5 1.7 ± 0.1 
0.072 

-3.8 ± 0.1 Fadh   Fcoh 

8.2 1.9 ± 0.3 0.9 ± 0.1 0.13 -4.1 ± 0.1 Fadh > Fcoh 

10 ~2.4 ~1.9 
0.029 

~-3.7 Fadh   Fcoh 

FhuA C/5L_25Nc pd Kd
e (mM) qf (mM-1) Gg (kcal/mol) Balanceh 
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4.6 2.9 ± 0.9 1.9 ± 0.5 
0.049 

-3.7 ± 0.2 Fadh   Fcoh 

5.6 4.5 ± 0.3 2.0 ± 0.1 0.10 -3.7 ± 0.2 Fadh < Fcoh 

6.8 2.6 ± 0.6 2.7 ± 0.5 0.043 -3.5 ± 0.1 Fadh < Fcoh 

7.4 27 ± 2.9 0.9 ± 0.1 1.30 -4.1 ± 0.1 Fadh >> Fcoh 

8.2 ~9.7 1.7 ± 1.2 
0.20 

-3.8 ± 0.7 Fadh   Fcoh 

10 2.0 ± 6.7 < 2.0 NDa ~-5.6 Fadh   Fcoh 

FhuA C/7L_30Nc pd Kd
e (mM) qf (mM-1) Gg (kcal/mol) Balanceh 

4.6 9.0 ± 7.6 2.0 ± 0.1 0.17 -3.7 ± 0.1 Fadh < Fcoh 

5.6 5.3 ± 2.7 1.8 ± 0.3 
0.12 

-3.7 ± 0.1 Fadh   Fcoh 

6.8 2.4 ± 0.9 1.8 ± 0.4 
0.048 

-3.7 ± 0.1 Fadh   Fcoh 

7.4 27 ± 6 0.9 ± 0.1 1.07 -4.1 ± 0.1 Fadh >> Fcoh 

8.2 1.3 ± 0.5 3.2 ± 1.5 0.014 -3.4 ± 0.5 Fadh < Fcoh 

10 5.6 ± 7.4 3.9 ± 1.2 0.012 -3.3 ± 0.2 Fadh < Fcoh 
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aTo reach low detergent concentrations below the CMC, the Gdm-HCl-solubilized proteins were 

refolded at detergent concentrations above the CMC. These values were stated in Methods.  
bThe dose-response equilibrium curves were fitted by the four-parameter Hill equation. 
cThis column indicates the names of the proteins and various pH values examined used in this 

work. Other details are provided in Methods.  
dp is the Hill coefficient.  
eThe apparent dissociation constant, Kd, was determined as the midpoint of the dose-dependent 

dissociation phase (e.g., c0).
5   

fThe slope factor or transition steepness was calculated at the midpoint of the dissociation phase.  
gFree energies were determined using the standard thermodynamic relationship G = RT ln Kd. 
hThe semi-quantitative balance between the adhesive protein-detergent (Fadh) and cohesive 

detergent-detergent interactions (Fcoh) of the proteomicelles. 
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Figure S6: MD simulations of DDM molecules binding to -barrel proteins. (A) A sequence 

of microscopic configurations realized in simulations of FhuA ΔC/Δ5L with 100 mM DDM 

molecules around it. Images in the top and bottom rows depict the same system from two 

different viewpoints: top view (above) and side view (bottom); (B) The number of the DDM 

molecules bound to each of the four β-barrel proteins (top) and the radius of gyration of the 

protein-DDM complex (bottom) versus simulation time. The initial concentration of DDM was 

20 mM; the DDM molecules were initially arranged on a cubic lattice around the proteins. The 

mean values of the Rg for the protein-DDM complexes during the last ~70 ns equilibrated 

simulations are: 22.2 Å for OmpG, 28.1 Å for FhuA ΔC/Δ5L, 27.8 Å for FhuA ΔC/Δ5L_25N 

and 26.6 Å for FhuA ΔC/Δ7L_30N. Each data point represents a 0.48 ns block average of 2.4 ps 

sampled values; (C) The same as in panel B, but for the initially planar arrangement of the DDM 

molecules around the proteins. The mean values of the Rg for the protein-DDM complexes 

during the last ~70 ns equilibrated simulations are: 22.1 Å for OmpG, 30.3 Å for FhuA ΔC/Δ5L, 

27.7 Å for FhuA ΔC/Δ5L_25N and 26.4 Å for FhuA ΔC/Δ7L_30N; (D) The same as in panel B, 

but for 100 mM DDM concentration. The mean values of the Rg for the protein-DDM complexes 

during the last ~70 ns equilibrated simulation is 35.8 Å.  
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 Figure S7: Differential affinity of DDM molecules to residues of β-barrel proteins. (A) 

The number of DDM molecules bound to the hydrophobic (top), hydrophilic (middle) and 

charged (bottom) residues of FhuA C/5L versus simulation time. The simulation system 

contained 20 mM DDM initially placed on a cubic lattice around the protein. The traces were 

sampled at 2.4 ps intervals and block-averaged in 0.12 ns blocks; (B-C) The mean equilibrium 

number (top) and the standard deviation (bottom) of the number of DDM molecules bound, with 

either their tail (panel B) and head (panel C) parts, to the hydrophobic, hydrophilic or charged 

residues of the four β-barrel proteins. To count as a binding event, any atom of the tail (or the 

head) part of the molecule must reside within 4 Å of any atom of the hydrophobic, hydrophilic or 

charged residue of the protein.  To compute the mean equilibrium number of bound molecules 

and its standard deviation, the last ~70 ns of an equilibration trajectory was split into 10 ns 

fragments; the mean and the standard deviation was computed for each of the fragment and then 

averaged over all fragments. The final plotted values were obtained by averaging over the two 

independent MD simulations of each protein system and then over the four protein systems. 

Error bars represent standard deviations among the eight simulations; (D-F) Same as in panel B 

and C but for binding of the entire DDM molecules (panel D), and separately of their tail (panel 

E) and head (panel F) parts to all positively or negatively charged residues of the β-barrel 

proteins.  
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 Figure S8: DDM binding versus residue type. (A) Molecular structures of the four -barrel 

proteins colored to highlight the presence of the hydrophobic (blue) and hydrophilic (red) 

residues. The proteins are shown from the same viewpoints as in Fig. 6E; (B) The fraction of the 

hydrophobic, hydrophilic (polar or charged), as well as positively and negatively charged 

residues in the respective protein structures (open bars) and the fraction of those residues that 

bind to DDM (filled bars) during the steady-state (last ~70 ns) parts of the MD trajectories. For 

each protein, the data were averaged over the two independent MD trajectories, which were 

different by the initial arrangement of the DDM molecules. The hydrophobic residues of OmpG 

bind DDM 60% more likely than suggested by their abundance in the structure, whereas the 

hydrophobic residues of FhuA variants bind DDM 47% more likely than suggested by the 

structure. 
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 Table S5: Biophysical properties of the α-helical proteins used in this study.6-7  

 

Protein pI GRAVY1 Aliphatic 

index2 

Negative 

residues 

Positive 

residues 

 

Total 

number 

of 

residues 

SELENOK 

U92C 

10.34 -0.723 59.22 8 15 102 

SELENOS 

U188S 

9.72 -0.791 70.89       24 34 190 

 

1The GRAVY hydrophobicity parameter was calculated by adding individual hydropathy 

indexes8 of each residue and dividing by the total number of the protein residues. Increasing 

positive GRAVY number shows a more hydrophobic protein. 
2The aliphatic index is given by the relative volume of aliphatic chain-containing residues.9   
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 Table S6: Table that summarizes the recorded minima and maxima of the anisotropy 

readout with the SELENOK U92C and SELENOS U188S -helical membrane proteins 

solubilized in DDM.a This table also illustrates the rotational diffusion coefficients as well as 

alterations in the hydrodynamic radii of the proteomicelles during the two-state detergent 

desolvation transitions. 

 

Proteinb rmin
c
 rmax

c
 Dr

slow (109 s-

1)d 

Dr
fast (109 s-

1)d 

Rh
max (nm)e  Rh 

(nm)f 

SELENOK 

U92C 

0.095 ± 0.002 0.283 ± 

0.023 

0.016 ± 0.004 0.127 ± 

0.003 
2.1 

1.1 ± 0.2 

SELENOS 

U188S 

0.103 ± 0.002 0.282 ± 

0.029 

0.017 ± 0.005 0.114 ± 

0.003 

2.1 1.0 ± 0.2 

 

aTo reach low detergent concentrations below the CMC, the Gdm-HCl-solubilized protein was 

refolded at detergent concentrations above the CMC.  
bDetails about these proteins are provided in Methods. 
cExperimentally determined anisotropy minima (rmin) and maxima (rmax). rmin was extrapolated 

for the lowest detergent concentration in the well. rmax was determined for detergent 

concentrations above the CMC. 
dDr

slow and Dr
fast indicate the rotational diffusion coefficients of the proteins under solvation and 

desolvation conditions, respectively.  
eRh

max are the maximum hydrodynamic radii of the proteomicelle with various solubilizing 

detergents.  
fRh is the decrease in the hydrodynamic radius, Rh, as a result of the detergent desolvation 

transition.    

 

  



257 
 

 Table S7: Summary of the fitting results of the two-state, concentration-dependent 

anisotropy curves acquired with SELENOK U92C and SELENOS U188S -helical 

transmembrane proteins. DDM was the detergent used in this case. The protein concentration 

in the well was 200 nM. The initial detergent concentration was 1.3 mM. The FP measurements 

were carried out using a solution that contained 200 mM NaCl, 50 mM HEPES, pH 7.4 at a 

temperature of 24C. All data were derived as averages ± SDs of three independent data 

acquisitions.    

 

Protein pb Kd
c 

(mM) 

qd 

(mM-1) 

Ge 

(kcal/mol) 

Balancef 

SELENOK U92C 3.1 ± 1.6 0.29 ± 0.13 0.50 -4.8 ± 0.3 Fadh ≤ Fcoh 

SELENOS U188S 4.8 ± 5.0 0.55 ± 0.12 0.39 -4.4 ± 0.1 Fadh < Fcoh 

 

aExperimentally determined anisotropy minima (rmin) and maxima (rmax) for various detergents 

and proteins. rmin was extrapolated for the lowest detergent concentration in the well. rmax was 

determined for detergent concentrations above the CMC. 
bp is the Hill coefficient 
cThe apparent dissociation constant, Kd, was determined as the midpoint of the dose-dependent 

dissociation phase (e.g., c0).
5   

dThe slope factor or transition steepness was calculated at the midpoint of the dissociation phase.  
eFree energies were determined using the standard thermodynamic relationship G = RT ln Kd. 
fThe quantitative balance between the adhesive protein-detergent (Fadh) and cohesive detergent-

detergent interactions (Fcoh) of the proteomicelles.  
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ABSTRACT  

 

Gradual dissociation of detergent molecules from water-insoluble membrane proteins culminates 

in protein aggregation. However, the time-dependent trajectory of this process remains 

ambiguous, because the signal-to-noise ratio of most spectroscopic and calorimetric techniques is 

declined by the presence of protein aggregates in solution. Here, we show that by using steady-

state fluorescence polarization (FP) spectroscopy, the dissociation of the protein-detergent 

complex (PDC) can be inspected in real time at detergent concentrations below the critical 

micelle concentration (CMC). This article provides experimental evidence for the coexistence of 

two distinct phases of the dissociations of detergent monomers from membrane proteins. We first 

noted a slow detergent predesolvation process, which was accompanied by a relatively modest 

change in the FP anisotropy, suggesting a small number of dissociated detergent monomers from 

the proteomicelles. This predesolvation phase was followed by a fast detergent desolvation 

process, which was highlighted by a major alteration in the FP anisotropy. The durations and 

rates of these phases were dependent on both the detergent concentration and interfacial PDC 

interactions. Further development of this approach might lead to the creation of a new semi-

quantitative method for the assessment of the kinetics of association and dissociation of 

proteomicelles. 
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INTRODUCTION 

 Interactions of detergents with membrane proteins are ubiquitous in structural and chemical 

biology, as well as biotechnology.1-5 These interactions are complex because of the diversity of 

architectural fingerprints of membrane proteins in various reconstitution systems, such as 

liposomes, nanodiscs, and planar lipid membranes.6 The complicated behavior of membrane 

proteins in solution is driven by the subtle balance among their physicochemical features, which 

include the interfacial forces with detergent micelles.7-8 In many instances, the inability of 

membrane proteins to optimally interact with detergents leads to their loss of activity,6, 9 

stability,10-12 and proper solubilization,2, 12-15 preceding the protein aggregation.16-17 The presence 

of aggregates in solution adds to the difficulty of many approaches to characterize the stability 

and interfacial dynamics of insoluble membrane proteins in aqueous phase.18 This is especially a 

frequent problem at detergent concentrations comparable with or below the critical micelle 

concentration (CMC). Therefore, the interfacial protein-detergent complex (PDC) interactions 

are not normally assessed under these harsh, low-detergent concentration conditions.16, 19  

 

 Recently, we have shown that these challenges of measuring the interfacial PDC interactions 

can be overcome using steady-state fluorescence polarization (FP) spectroscopy.20 Additional 

advantageous traits of this approach included its amenability for a high-throughput microplate 

reader-based setting, low-nanomolar concentration of protein sample, and an increased optical 

signal-to-noise ratio due to a bright and photostable fluorophore.21 These attributes enabled us to 

determine the isothermal Hill-Langmuir desorption curves of the proteomicelles containing 

either -helical or -barrel membrane proteins of varying size, charge, stability, and structure.22  
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 Here, we show that this approach can be extended to infer the time-dependent detergent 

desorption curves of membrane proteins at detergent concentrations below the CMC. The 

primary attribute of this approach is the fact that the FP readout for a noninteracting fluorophore 

is not dependent on its effective concentration.4, 23 Therefore, the dissociation of detergent 

micelles from membrane proteins was observed as a relative change in the population of the 

fluorescent proteins between detergent solvated and desolvated states. The membrane proteins 

were first incubated in solubilizing mild detergents at concentrations much greater than the 

CMC. Under these circumstances, all proteins were detergent solvated, so that a high FP 

anisotropy was noted, reflecting a slow tumbling rate of the proteomicelles. Of course, this 

assumes that the detergent exhibited good solubilizing properties of a membrane protein. 

Interestingly, a time-dependent reduction in the FP anisotropy was noted when the proteins were 

diluted at a detergent concentration below the CMC, suggesting that there was a gradual 

detergent desolvation process. This finding was in good accord with an increased rotational 

diffusion coefficient of the dissociated membrane proteins.               
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Figure 1: Side-view of the molecular structures of OmpG and truncation FhuA mutants.  

(A) OmpG; (B) FhuA ΔC/Δ5L_25N; (C) ΔC/Δ7L_30N. The positions of the fluorophore were 

marked in yellow. For OmpG, Texas Red21 was tethered at position D224C on loop L6. For the 

two truncation FhuA derivatives, Texas Red was attached to an engineered GS-rich, cysteine-

containing loop on the T7 β turn. FhuA C/5L_25N and FhuA C/7L_30N show charge 

neutralizations, which are marked in red with respect to the native FhuA. For the latter FhuA 

mutant, there are three additional lysine mutations within the β turns, which are marked in blue, 

out of which two are negative-to-positive charge reversals.38-39 The arrows indicate molecular 

dimensions, as inferred from C to C, which were obtained from the X-ray crystal structure of 

both proteins33-34 Cartoons show proteomicelles in a prolate geometrical packing.40 The 

homology structure of truncation FhuA derivatives was accomplished using Swiss-model41 and 

FhuA PDB ID:1FI1.34 
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EXPERIMENTAL METHODS 

Expression, extraction, and purification of the OmpG and FhuA proteins. Expression, 

extraction, and purification of OmpG,22, 24 as well as the truncation FhuA25-26 proteins FhuA 

ΔC/Δ5L_25N and FhuA ΔC/Δ7L_30N, were previously reported. The deletion FhuA mutants 

lacked the internal cork domain (C) and either five (L3, L4, L5, L10, and L11) or seven (L3, L4, 

L5, L7, L8, L10, and L11) extracellular loops, respectively.27-28 In addition, they featured either 

25 or 30 negative charge neutralizations with respect to the wild-type FhuA barrel scaffold, 

making them basic proteins. For the fluorophore covalent attachment, the T7  turn 

(V
331

PEDRP
336

) of the truncation FhuA mutants was replaced with a cysteine-containing, GS-

rich flexible loop (GGSSGCGSSGGS). In the case of OmpG, the cysteine sulfhydryl was 

engineered on extracellular loop L6 at position D224.  

 

 Refolding of the -barrel membrane proteins. A rapid-dilution refolding protocol was 

employed for the refolding of all proteins.29 40 μl of 6His tag-purified and guanidinium 

hydrochloride (Gdm-HCl)-denatured protein was 50-fold diluted into 200 mM NaCl, 50 mM 

HEPES, pH 7.4 solutions at 4C, which contained detergents (Anatrace, Maumee, OH) at 

concentrations above their CMC. The starting detergent concentrations were the following: (i) 20 

mM 1-lauroyl-2-hydroxy-sn-glycero-3-phosphocholine (LysoFos); (ii) 5 and 20 mM starting 

detergent concentration for n-decyl-β-D-maltopyranoside (DM) and n-undecyl-β-D-

maltopyranoside (UM); (iii) 50 mM 4-cyclohexyl-1-butyl-β-D-maltoside (CYMAL-4). 
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Fluorescent labeling of the FhuA and OmpG proteins. Texas Red C2-maleimide (Thermo 

Fisher Scientific) was used for fluorescent labeling of all membrane proteins, as previously 

reported.20, 22   

 

 FP anisotropy determinations. The time-dependent FP anisotropy traces were acquired 

using a SpectraMax I3 plate reader (Molecular Devices, Sunnyvale, CA), which was equipped 

with a Paradigm detection cartridge for rhodamine FP spectroscopy.20 Texas Red fluorophore21, 

30 was covalently attached to an engineered cysteine sulfhydryl of the membrane proteins. The 

FP traces were collected using the excitation and emission wavelengths of 535 and 595 nm, 

respectively. The time-dependent, steady-state FP anisotropy traces were acquired with diluted 

detergents either above or below their CMC, while keeping the final protein concentration 

constant at 28 nM.20 The buffer solution contained 200 mM NaCl, 50 mM HEPES, pH 7.4. This 

was achieved by titrating the same protein sample with buffer solutions of varying detergent 

concentration. The equilibration of the samples was conducted using an incubation time of ~15 

min, which was followed by a time-dependent FP anisotropy read. Drastic detergent reduction 

within the well increased the protein aggregation over time, but without impacting the optical 

signal-to-noise ratio of the FP anisotropy. In addition, we checked that the self-quenching of 

Texas Red did not induce a time-dependent reduction in the FP anisotropy.22  

 

 Determination of the predesolvation and desolvation rates. The observed predesolvation 

rates (kobs
pre) were determined at various detergent concentrations below the CMC (Supporting 

Information, Table S3). This was accomplished using a linear fit of the time-dependent FP 

anisotropy (i.e., kobs
pre is r/t), r (t): 
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r (t) = -kobs
pre

  t + rmax         (1) 

Here, rmax is the maximum FP anisotropy at the initial recording time, whereas t shows the 

elapsed time during the predesolvation phase. The observed desolvation rates, kobs
des, were also 

determined at various detergent concentrations below the CMC. This was accomplished using a 

single-exponential fit of the time-dependent FP anisotropy (i.e., kobs
des is 1/, where  is the time 

constant), r (t), as follows: 

𝑟(𝑡) = 𝑟0𝑒−
𝑡

𝜏 + 𝑟𝑚𝑖𝑛          (2) 

Here, rmin denotes the minimum FP anisotropy at the infinite time of the desolvation reaction. t 

shows the elapsed time during the desolvation phase, including the total time of the 

predesolvation phase. In most cases, the observed desolvation rate, kobs
des, was derived by fitting 

the single-exponential decay of the time-dependent FP anisotropy, r (t), except in a number of 

cases that were approached with a linear dependence. In Eq. (2), r0 is an FP anisotropy constant, 

so that the initial FP anisotropy during desolvation phase, rin, is given as follows (rmax  rin  

rmin), 

𝑟𝑖𝑛 = 𝑟(𝑇𝑝𝑟𝑒) = 𝑟0𝑒−
𝑇𝑝𝑟𝑒

𝜏 + 𝑟𝑚𝑖𝑛        (3) 

  

where Tpre is the total predesolvation time, which provides the following expression: 

𝑟0 =
𝑟𝑖𝑛−𝑟𝑚𝑖𝑛

𝑒
−

𝑇𝑝𝑟𝑒
𝜏

           (4) 

Using eqns. (2) and (4), one obtains the final form of the time-dependent FP anisotropy function 

for the detergent desolvation phase of proteomicelles: 

𝑟(𝑡) = (𝑟𝑖𝑛 − 𝑟𝑚𝑖𝑛)𝑒−
𝑡−𝑇𝑝𝑟𝑒

𝜏 + 𝑟𝑚𝑖𝑛        (5) 
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In general, the experimental uncertainty was greater at detergent concentrations below the CMC 

than that measured at concentrations above the CMC. We think that this alteration in the 

experimental uncertainty was primarily determined by the coexistence of complex sub-states of 

soluble and insoluble protein aggregates.  

 

 The reduction in light scattering effects. One obvious difficulty of these steady-state FP-

based determinations was the presence of light scattering signals produced by the detergent 

micelles and proteomicelles in solution and at detergent concentrations either below or above the 

CMC. Therefore, their scattering effects must be minimized. Both Raman and Rayleigh 

scattering factors feature light intensity contributions, which are proportional to the power of -4, 

where  is the wavelength.31-32 Therefore, we tactically employed a large wavelength of the 

emission to preclude these light scattering effects. During the preliminary stage of this work, we 

gradually amplified the concentrations of Texas Red-labeled proteins until a value, beyond 

which the emission was independent of the protein concentration. This value was in the low-

nanomolar range. Moreover, the SpectraMax I3 plate reader (Molecular Devices) is equipped 

with excitation and emission filters that form a spectral gap of 60 nm, ensuring the that scattering 

effect contributions are minimized. Finally, the light scattering effects are always significantly 

reduced when the FP anisotropy signals are independent of both protein concentration and 

emission wavelength.32       
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RESULTS AND DISCUSSION 

 In this work, we explored this time-dependent detergent desorption process for three -barrel 

membrane proteins of varying charge and size, which were solubilized using a panel of four 

detergents of diverse hydrophobic tails and polar head groups. These studies were conducted 

using a wild-type outer membrane protein G (OmpG),33 a medium-size, 14-stranded -barrel, 

and two extensive-truncation derivatives of ferric hydroxamate uptake component A (FhuA),34 a 

large 22-stranded -barrel (Fig. 1; Supporting Information, Table S1). The FhuA derivatives 

FhuA C/5L_25N and FhuA C/7L_30N featured a complete deletion of an internal cork 

domain (C) as well as the truncation of five (L3, L4, L5, L10, and L11) and seven (L3, L4, L5, 

L7, L8, L10, and L11) extracellular loops, respectively. OmpG is an acidic protein at 

physiological conditions (pI 4.4). On the contrary, these truncation FhuA variants encompass 25 

and 30 negative charge neutralizations, respectively, producing a charge reversal of the wild-type 

FhuA from acidic to basic values under physiological circumstances.28 The basic FhuA variants 

feature pI values of 9.3 and 9.6, respectively. Here, we were interested to examine whether the 

FP anisotropy is a robust readout of the time-dependent desorption process of these three -

barrel membrane proteins solubilized in detergents of varying physicochemical properties 

(Supporting Information, Table S2). These detergents included 1-lauroyl-2-hydroxy-sn-

glycero-3-phosphocholine (LysoFos), a zwitterionic molecule, as well as n-undecyl-β-D-

maltopyranoside (UM), n-decyl-β-D-maltopyranoside (DM), and 4-cyclohexyl-1-butyl-β-D-

maltoside (CYMAL-4), three neutral molecules of varying hydrophobic tails. These maltoside-

containing detergents have 11, 10, and 4 alkyl groups, respectively. Furthermore, CYMAL-4 

differs from UM and DM through the addition of a benzene ring.       
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Figure 2: Time-dependent alterations in the FP anisotropy when the membrane proteins were 

incubated at different concentrations of LysoFos, a zwitterionic detergent. (A) OmpG; (B) FhuA 

C/5L_25N; (C) FhuA C/7L_30N. The solubilized protein concentration was 28 nM. The buffer 

solution contained 200 mM NaCl, 50 mM HEPES, pH 7.4. The experimental FP data were presented as 

average  SD over a number of at least three distinct acquisitions. 
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Figure 3: Time-dependent alterations in the FP anisotropy when the membrane proteins 

were incubated at different concentrations of UM, a neutral maltoside-containing 

detergent. (A) OmpG; (B) FhuA C/5L_25N; (C) FhuA C/7L_30N. The other 

experimental conditions were the same as those in Fig. 2. 
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 In Fig. 2, we illustrated the time-dependent change in the FP anisotropy when these -barrel 

membrane proteins were incubated in LysoFos at concentrations either above or below the CMC 

value of this zwitterionic detergent (0.7 mM). As a common feature, at detergent concentrations 

much greater than the CMC, all proteins showed a fairly unchanged FP anisotropy for long 

periods, suggesting robust proteomicelles formed with LysoFos. In contrast, at detergent 

concentrations comparable with or less than the CMC, the FP anisotropy underwent a time-

dependent significant modification. Moreover, the FP readout was also sensitive upon the 

dilution of detergent concentration within the well at values below the CMC. Another similar 

trait among all proteins was coexistence of a slow, low-FP amplitude change phase, which was 

followed by a fast, high-FP amplitude alteration phase. In this article, we will call these phases 

predesolvation and desolvation, respectively. Notably, the predesolvation phase, as the longer of 

the two phases, lasted for a few minutes (Supporting Information, Table S3). The desolvation 

phase followed an exponential decay (Supporting Information, Figs. S1-S3, Table S4). For the 

basic FhuA proteins, the observed desorption rate, kobs
des, increased by decreasing the detergent 

concentration within the well. For example, at LysoFos concentrations of 0.4, 0.2, and 0.1 mM, 

the observed desorption rates, kobs
des, for FhuA C/5L_25N were (140  9)10-5 s-1, (360  

22)10-5 s-1, and (510  27)10-5 s-1, respectively. The corresponding kobs
des rates for FhuA 

C/7L_30N were (182  9)10-5 s-1, (284  14)10-5 s-1, and (719  20 s-1)10-5 s-1, 

respectively.  

 

 In Fig. 3, we show the time-dependent alteration in the FP anisotropy when these -barrel 

membrane proteins were incubated in UM. Again, at concentrations below the CMC for this 

detergent (~0.59 mM), we noted two distinct phases: a slow predesolvation phase, which was 
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followed by a fast desolvation phase. The duration of the predesolvation phase recorded with an 

UM concentration of 0.1 mM was shorter than those found by using higher detergent 

concentrations (Supporting Information, Figs. S4-S6, Table S3). In general, the desolvation of 

these membrane proteins from UM followed faster rates that those observed with LysoFos 

(Supporting Information, Table S4). This outcome indicates a specific, time-dependent FP-

based signature of this detergent desorption process, despite closely similar CMC values and 

apparent dissociation constants of their proteomicelles, Kd. Moreover, this finding shows that in 

the case of UM, the adhesion forces between proteins and detergent monomers were weaker as 

compared to those in the case of LysoFos. For example, the CMC values of LysoFos and UM are 

~0.7 and ~0.6 mM (Supporting Information, Table S2), respectively. On the other hand, their 

previously determined Kd are in the range 0.3-0.7 and 0.5-0.7 mM, respectively.22 

 

 When the proteins were incubated in DM at concentrations below the CMC (~1.8 mM), the 

predesolvation and desolvation were also dependent on the detergent concentration within the 

well (Fig. 4; Supporting Information, Figs. S7-S9). Specifically, at a lower detergent 

concentration, the predesolvation phase rates were shorter, whereas the observed desolvation 

rates were faster (Supporting Information, Table S3, Table S4). At DM concentrations of 

0.45, 0.85, and 1 mM, the observed predesolvation rates, kobs
pre, recorded for FhuA C/5L_25N 

were (54.4  0.1)10-6 s-1, (29.7  0.1)10-6 s-1, and (19.8  0.1)10-6 s-1, respectively. On the 

other hand, the corresponding kobs
des values for FhuA C/5L_25N were (629  59)10-5 s-1, 

(353  36)10-5 s-1, and (191  19)10-5 s-1, respectively. At the same time, the kobs
des values 

noted with FhuA C/7L_30N were (599  50)10-5 s-1, (478  37)10-5 s-1, and (369  44)10-

5 s-1, respectively. These rates indicate that at a lower detergent concentration there is a shift of 
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the association-dissociation equilibrium of the proteomicelles with the coexistent micelles 

towards dissociation.  
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Figure 4: Time-dependent alterations in the FP anisotropy when the membrane proteins 

were incubated at different concentrations of DM, a neutral maltoside-containing 

detergent. (A) OmpG; (B) FhuA C/5L_25N; (C) FhuA C/7L_30N. The other 

experimental conditions were the same as those in Fig. 2. 
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Figure 5: Time-dependent alterations in the FP anisotropy when the membrane proteins 

were incubated at different concentrations of CYMAL-4, a neutral maltoside-containing 

detergent.  

(A) OmpG; (B) FhuA C/5L_25N; (C) FhuA C/7L_30N. The other experimental conditions 

were the same as those in Fig. 2. 
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Finally, we show the time-dependent change in the FP anisotropy recorded when the proteins 

were incubated in CYMAL-4 (Fig. 5; Supporting Information, Figs. S10-S12). Remarkably, 

very long predesolvation durations were recorded at detergent concentrations below the 

CMCCYMAL-4 (~7.6 mM). For example, the predesolvation times recorded with all proteins at 2 

mM CYMAL-4 were greater than 20 min, suggesting strong adhesive interactions between 

detergent monomers and these proteins. Moreover, no FP anisotropy changes were noted when 

the truncation FhuA proteins were incubated at 4 mM CYMAL-4, a concentration significantly 

smaller than the corresponding CMC. These results illuminate that the adhesive PDC interactions 

between proteins and CYMAL-4 are greater than the cohesive interactions among the detergent 

monomers. These time-dependent FP anisotropy reads are in good accord with the recently 

determined apparent equilibrium constants, Kd, for CYMAL-4 with -barrel membrane 

proteins.22 Specifically, these Kd values for the PDC formed by CYMAL-4 with OmpG, FhuA 

C/5L_25N, and FhuA C/7L_30N are 4.6, 5.7, and 4.5 mM, respectively.   
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Figure 6: Cartoon showing different FP anisotropy-based trajectories of the 

proteodemicellization. The predesolvation phase underwent a linear change in the FP 

anisotropy, whereas the desolvation phase followed either a linear regime, which was marked in 

green, or an exponential decay, which was marked in red. In the case of weak PDC interactions 

and low incubating detergent concentration, there is no a predesolvation phase, whereas the 

desolvation phase, which is marked in blue, is rapid.     
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 It is now clear that satisfactory detergent-mediated solvation forces of -barrel membrane 

proteins contribute to the existence of a predesolvation phase. We found that the characteristics 

of the predesolvation phase strongly depends not only on these adhesive PDC interactions, but 

also the available detergent concentration within the well. It is conceivable that a very weak 

interfacial PDC interaction of a certain detergent-membrane protein pair might impede the 

presence of a predesolvation phase, whereas the desolvation should normally occur within a 

matter of seconds. Therefore, we illustrated a cartoon in Fig. 6, which presents three distinct FP 

anisotropy-based trajectories of the time-dependent desolvation of a membrane protein. A 

predesolvation phase occurs when these adhesive PDC interactions between the detergent 

molecules and membrane proteins overcome the cohesive forces among the detergent monomers. 

Because of the low FP anisotropy alteration during this predesolvation phase, we think that the 

average proteomicelle still maintains most of the solubilizing detergent monomers under these 

conditions. It is more than likely that the predesolvation phase represents a relatively small loss 

of detergent monomers of the proteomicelle, inducing a reconfiguration of the internal packing 

forces of the proteomicelle. This proteomicelle rearrangement leads to fast desolvation phase. 

 

 The desolvation rate is always greater than the predesolvation rate and occurs in an 

exponential fashion. Assuming a simple bimolecular model of association of the -barrel 

membrane protein to a detergent micelle and a high detergent concentration at values below the 

CMC, the observed desolvation rate, kobs
des, is -kon[D] + koff.

35 Here, the detergent concentration, 

[D], is in the micromolar to millimolar range, which is much greater than the protein 

concentration, [P], in the nanomolar concentration. That means a linear dependence of kobs
des on 

detergent concentration, [D], with a slope of -kon and an intercept with the vertical axis of koff. 
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Among all cases examined in this work, we only found this behavior in the case of the 

desolvation process of the truncation FhuA derivatives from LysoFos (Supporting Information, 

Fig. S13, Table S5). For example, kon and koff of the PDC made with FhuA ΔC/Δ5L_25N were 

12.1  1 M-1s-1 and (6.2  0.3)10-3 s-1, respectively, giving an apparent Kd of 0.51 mM. This 

value is in excellent agreement with the apparent Kd of 0.71 mM for the same PDC, which was 

determined from isothermal Hill-Langmuir desorption curves.22 A certain numerical difference 

between the two equilibrium constants might also arise from the fact that the predesolvation 

phase was neglected in the determination of Kd via kinetic FP anisotropy-based measurements. 

The above kinetic rate constants illustrate a very slow association process and a relatively long 

off binding time. Taken together, the weak binding interactions leading to millimolar values of 

the apparent dissociation constant, Kd, are primarily determined by the very slow association 

process (kon) (Supporting Information, Fig. S13, Table S5). However, we determined other 

scaling functions of kobs
des with the final detergent concentration in the well, [D], suggesting 

diverse kinetic models of varying order of the desolvation reaction (Supporting Information, 

Figs. S14-S16, Table S6). This finding shows that the desolvation kinetic scheme strongly 

depends on the architectural and biophysical fingerprints of the membrane proteins as well as the 

physicochemical characteristics of the solubilizing detergents.   
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CONCLUSIONS 

 In summary, this study sheds light on the time-dependent detergent desorption of membrane 

proteins at detergent concentrations below the CMC. We were able to observe this process by 

employing a steady-state FP spectroscopy approach that featured a bright and photostable 

fluorophore, maintaining the optical signal-to-noise ratio within a satisfactory range. Notably, the 

approach that we present in this paper requires extremely small quantities of membrane proteins 

(e.g., tens of nanograms per trial). Moreover, these time-dependent FP anisotropy reads were 

conducted using a microplate format, potentially allowing for parallel assessment of hundreds-

thousands of conditions in minutes-hours. We showed that the detergent desolvation of 

membrane proteins using both zwitterionic and uncharged detergents is preceded by a slow 

predesolvation phase that can be longer than 20 minutes. This predesolvation phase might either 

be slowed at detergent concentrations approaching the CMC value or accelerated at very low 

detergent concentrations within the well. Future developments of this steady-state FP 

spectroscopy-based approach might lead to the creation of a detailed kinetic analysis of the 

interfacial PDC interactions, involving challenging membrane protein systems and detergents of 

varying physicochemical properties. Finally, these semi-quantitative studies might stimulate 

novel discoveries in membrane protein solubilization, stabilization, and crystallization.17, 36-37 
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1. Properties of the membrane proteins used in this work 

 

Table S1: Characteristics of the β-barrel proteins examined in this study.a 

 

β-barrelb Charge state pI GRAVYc Positive 

residues 

 

Negative 

residues 

Total 

number of 

residuesd 

WT-OmpG acidic 4.4 -0.8 22 55 281 

FhuA C/5L_25N basic 9.3 -0.6 43 34 473 

FhuA C/7L_30N basic 9.6 -0.6 42 27 426 

 

aThis table was adapted from Wolfe at al. (2017).1 
bAll proteins contain a 6His+ tag at the C terminus.  
cThis hydrophobicity parameter was determined by summing the hydropathy indexes2 of 

residues, then dividing it by the total residue number.3 
dThis number also includes the residues of the Gly/Ser-rich containing loop and 6×His+ tag.  
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2. Properties of the detergents used in this work 

Table S2: Physicochemical features of the detergents used in this article.a 

 

Detergent Head 

group 

CM

C 

(m

M)b 

F

W 

(D

a)c 

 

Aggrega

tion 

number, 

Nagg
d

  

Micel

lar 

Weig

ht, 

MWm 

(kDa) 

Refere

nces 

1-lauroyl-2-hydroxy-sn-

glycero-3-

phosphocholine 

(LysoFos)e,f 

Zwitteri

onic 

~0.

7d 

44

0 

80e 35 4-5 

n-undecyl-β-D-maltoside 

(UM) 

Non-

ionic 

~0.

59 

49

7 

~71 35 6 

n-decyl-β-D-maltoside 

(DM) 

Non-

ionic 

~1.

8 

48

3 

~69 33 6 

4-cyclohexyl-1-Butyl-β-

D-maltoside (CYMAL-

4) 

Non-

ionic 

~7.

6 

48

1 

~25 12 7 

 

a This table was adapted from Wolfe at al. (2017).1 
bCMC values in water were reported by Anatrace (https://www.anatrace.com/). 
cFormula weights of the detergent monomers (FW) were reported by Anatrace 

(https://www.anatrace.com/).  
dAggregation numbers, Nagg, in water were reported by Anatrace (https://www.anatrace.com/). 
eCMC value of LysoFos in 140 mM NaCl, 20 mM Tris-HCl, pH 7.2 is 0.7 mM.4   
fThe Nagg for LysoFos used in this work is ~80.5 
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3. Detailed graphical presentation of the fits of the predesolvation and desolvation phases. 
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Figure S1: Illustration of the time-dependent predesolvation and desolvation of OmpG 

solubilized with 20 mM LysoFos. These phases were recorded using detergent concentrations 

below the CMCLysoFos = 0.7 mM. The solubilized protein concentration was 28 nM, whereas the 

buffer solution contained 200 mM NaCl, 50 mM HEPES, pH 7.4 
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Figure S2: Illustration of the time-dependent predesolvation and desolvation of FhuA 

C/5L_25N solubilized with 20 mM LysoFos. These phases were recorded using detergent 

concentrations below the CMCLysoFos = 0.7 mM. The other experimental conditions were the 

same as in Fig. S1. 
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Figure S3: Illustration of the time-dependent predesolvation and desolvation of FhuA 

C/7L_30N solubilized with 20 mM LysoFos. These phases were recorded using detergent 

concentrations below the CMCLysoFos = 0.7 mM. The other experimental conditions were the 

same as in Fig. S1. 
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 Figure S4: Illustration of the time-dependent predesolvation and desolvation of OmpG 

solubilized with 5 mM UM. These phases were recorded using detergent concentrations below 

the CMCUM = 0.59 mM. The other experimental conditions were the same as in Fig. S1. 
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 Figure S5: Illustration of the time-dependent predesolvation and desolvation of FhuA 

C/5L_25N solubilized with 5 mM UM. These phases were recorded using detergent 

concentrations below the CMCUM = 0.59 mM. The other experimental conditions were the same 

as in Fig. S1.  
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 Figure S6: Illustration of the time-dependent predesolvation and desolvation of FhuA 

C/7L_30N solubilized with 5 mM UM. These phases were recorded using detergent 

concentrations below the CMCUM = 0.59 mM. The other experimental conditions were the same 

as in Fig. S1. 
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 Figure S7: Illustration of the time-dependent desolvation of OmpG solubilized with 5 

mM DM.  These phases were recorded using detergent concentrations below the CMCDM = 1.8 

mM. The other experimental conditions were the same as in Fig. S1. 
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Figure S8: Illustration of the time-dependent predesolvation and desolvation of FhuA 

C/5L_25N solubilized with 5 mM DM. These phases were recorded using detergent 

concentrations below the CMCDM = 1.8 mM. The other experimental conditions were the same 

as in Fig. S1. 
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Figure S9: Illustration of the time-dependent predesolvation and desolvation of FhuA 

C/7L_30N solubilized with 5 mM DM. These phases were recorded using detergent 

concentrations below the CMCDM = 1.8 mM. The other experimental conditions were the same 

as in Fig. S1. 
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Figure S10: Illustration of the time-dependent predesolvation and desolvation of OmpG 

solubilized with 50 mM CYMAL-4. These phases were recorded using detergent 

concentrations below the CMCCYMAL-4 = 7.6 mM. The other experimental conditions were the 

same as in Fig. S1. 
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Figure S11: Illustration of the time-dependent predesolvation and desolvation of FhuA 

C/5L_25N solubilized with 50 mM CYMAL-4. These phases were recorded using detergent 

concentrations below the CMCCYMAL-4 = 7.6 mM. The other experimental conditions were the 

same as in Fig. S1. 
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Figure S12: Illustration of the time-dependent predesolvation and desolvation of FhuA 

C/7L_30N solubilized with 50 mM CYMAL-4. These phases were recorded using detergent 

concentrations below the CMCCYMAL-4 = 7.6 mM. The other experimental conditions were the 

same as in Fig. S1 
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4. Results of the fits of the predesolvation phase  

 

 

 Table S3: Determination of the observed predesolvation rates (kobs). The predesolvation 

rates were determined at various detergent concentrations below the CMC. The solubilized 

protein concentration was 28 nM. The buffer solution contained 200 mM NaCl, 50 mM HEPES, 

pH 7.4. In the below equation of Table S3, r (t) indicates the time-dependent FP anisotropy 

during the predesolvation phase. Here, rmax is the maximum FP anisotropy at the initial recording 

time and t is the elapsed time during the predesolvation phase. kobs
pre denotes the observed 

predesolvation rate. 
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r (t) = -kobs
pre

  t + rmax 

[Detergent] (mM) kobs
pre

  106 (s-1) Predesolvation duration, Tpre (s) 

LysoFos – OmpG 

0.2 10 ± 2 ~567 

0.1 33 ± 8 ~315 

LysoFos – FhuA ΔC/Δ5L_25N 

0.4 13 ± 3 ~693 

0.2 25 ± 5 ~693 

0.1 ~8.7 ~315 

Lysofos – FhuA ΔC/Δ7L_30N 

0.4 ~6.7 ~693 

0.2 34 ± 5 ~693 

0.1 38 ± 1 ~315 

UM – OmpG 

0.4 ~4.1 ~441 

0.2 ~4.2 ~630 

0.1 41 ± 11 ~252 

UM – FhuA ΔC/Δ5L_25N 

0.4 33 ± 2 ~819 

0.2 30 ± 2 ~882 

0.1 21 ± 7 ~441 

UM – FhuA ΔC/Δ7L_30N 

0.4 17 ± 2 ~1010 

0.2 44 ± 2 ~819 

0.1 77 ± 8 ~315 

DM – OmpG 

1 19 ± 3 ~945 

0.85 4.9 ± 2.1 ~756 

0.45 ~7.7 ~504 

DM – FhuA ΔC/Δ5L_25N 

1 19.8 ± 0.1 ~670 

0.85 29.7 ± 0.1 ~871 

0.45 54.4 ± 0.1 ~402 

DM – FhuA ΔC/Δ7L_30N 

1 13.7 ± 1.6 ~469 

0.85 19.1 ± 2.7 ~536 

0.45 21.9 ± 8.6 ~335 

CYMAL-4 – OmpG 

4 16 ± 1 ~1610 

2 27 ± 2 ~1390 

1 21 ± 2 ~1310 

CYMAL-4 – FhuA ΔC/Δ5L_25N 
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2 45 ±1 ~1250 

1 73 ± 6 ~355 

CYMAL-4 – FhuA ΔC/Δ7L_30N 

2 29 ± 1 ~1633 

1 40± 12 ~426 
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5. Results of the fits of the desolvation phase 

 

 Table S4: Determination of the observed desolvation rates, kobs
des. The desolvation rates 

were determined at various detergent concentrations below the CMC. The solubilized protein 

concentration was 28 nM. The buffer solution contained 200 mM NaCl, 50 mM HEPES, pH 7.4. 

NA is indicated for those cases that cannot be fitted with a single-exponential function, but a 

simple linear dependence. Below, r (t) indicates the time-dependent FP anisotropy during the 

detergent desolvation phase. Here, rmin denotes the minimum FP anisotropy at the inifinite time 

of the desolvation reaction. t shows the elapsed time during the desolvation phase, including the 

total time of the predesolvation phase. The observed desolvation rate, kobs
des, was derived by 

fitting the single-exponential decay of the time-dependent FP anisotropy, r (t). r0 is an FP 

anisotropy constant. 
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r (t) = r0*exp(-t/) + rmin             

[Detergent] (mM) kobs
des

  105 (s-1) rmin r0  (s) 

LysoFos – OmpG 

0.2 350 ± 22 0.26 ± 0.01 0.49 ± 0.07 286 ± 18 

0.1 340 ± 35 0.25 ± 0.01 0.18 ± 0.03 293 ± 30 

LysoFos – FhuA ΔC/Δ5L_25N 

0.4 140 ± 9 0.29 ± 0.01 0.14 ± 0.01 735 ± 50 

0.2 360 ± 22 0.21 ± 0.01 1.42 ± 0.24 281 ± 17 

0.1 510 ± 27 0.21 ± 0.01 0.72 ± 0.08 198 ± 11 

LysoFos – FhuA ΔC/Δ7L_30N 

0.4 182 ± 9 0.30 ± 0.01 0.22 ± 0.02 549 ± 28 

0.2 284 ± 14 0.23 ± 0.01 0.80 ± 0.09 352 ± 17 

0.1 719 ± 29 0.24 ± 0.01 1.26 ± 0.13 139 ± 6 

UM – OmpG 

0.4 10.7 ± 1.1 NA NA NA 

0.2 446 ± 21 0.23 ± 0.01 1.32 ± 0.19 224 ± 10 

0.1 610 ± 43 0.23 ± 0.01 0.61 ± 0.09 164 ± 12 

UM – FhuA ΔC/Δ5L_25N 

0.4 248 ± 19 0.23 ± 0.01 0.55 ± 0.10 404 ± 31 

0.2 526 ± 30 0.20 ± 0.01 10.4 ± 2.9 190 ± 11 

0.1 704 ± 45 0.19 ± 0.01 2.6 ± 0.5 142 ± 9 

UM – FhuA  ΔC/Δ5L_30N 

0.4  324 ± 28 0.23 ± 0.01 1.4 ± 0.4 309 ± 27 

0.2 395 ± 27 0.21 ± 0.01 1.7 ± 0.4 253 ± 17 

0.1 752 ± 85 0.21 ± 0.01 1.0 ± 0.4 133 ± 15 

DM – OmpG 

1 272 ± 21 0.25 ± 0.01 0.95 ± 0.21 367 ± 29 

0.85 262 ± 8 0.23 ± 0.01 0.77 ± 0.06 382 ± 12 

0.45 610 ± 55 0.23 ± 0.01 1.67 ± 0.51 164 ± 15 

DM – FhuA ΔC/Δ5L_25N 

1 191 ± 19 0.22 ± 0.01 0.38 ± 0.05 523 ± 51 

0.85 353 ± 36 0.16 ± 0.01 3.0 ± 1.0  283 ± 29 

0.45 629 ± 59 0.16 ± 0.01 1.7 ± 0.4 159 ± 15 

DM – FhuA ΔC/Δ7L_30N 

1 369 ± 44 0.24 ± 0.01 5.1 ± 2.6 271 ± 32 

0.85 478 ± 37 0.18 ± 0.01 19.2 ± 7.8 209 ± 16 

0.45 599 ± 50 0.18 ± 0.01 1.3 ± 0.3 167 ± 14 

CYMAL-4 – OmpG 

4 211 ± 27 0.22 ± 0.01 2.6 ± 1.1 473 ± 61 

2 352 ± 33 0.16 ± 0.01 15 ± 7 284 ± 26 

1 353 ± 36 0.15 ± 0.01 19 ± 9 283 ± 29 

CYMAL-4 – FhuA ΔC/Δ5L_25N 
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1 328 ± 19 0.15 ± 0.01 0.55 ± 0.05 305 ± 18 

2 13.2 ± 0.01 NA NA NA 

CYMAL-4 – FhuA ΔC/Δ7L_30N 

2 12.6 ± 0.69 NA NA NA 

1 ~214 0.17 ± 0.01 0.393 ± 0.03 467 ± 0.0 
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 6. Dependence of the observed desolvation rates on the detergent concentration 
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 Figure S13: Illustration of the dependence of the observable desolvation rate, kobs
des, on 

the detergent concentrations at values below the CMC. The cartoon show the rate data 

obtained FhuA C/5L_25N solubilized in 20 mM LysoFos. kobs
des data points were inferred 

from single-explonential decay fits of at least three independent FP traces.  
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 Table S5: Determination of the kinetic rate constants of association (kon) and dissociation 

(koff) of proteomicelles formed by LysoFos with truncation FhuA derivatives.  

kon (M-1s-1) koff x103 (s-1) Kd (mM) 

LysoFos – FhuA ΔC/Δ5L_25N 

12 ± 1 

 

6.2 ± 0.3 

 

0.51 ± 0.03 

LysoFos – FhuA ΔC/Δ7L_30N 

~16 ~7.8 ~0.48 
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Figure S14: Logarithmic plot showing that the observable desolvation rate, kobs
des, recorded 

with FhuA C/5L scales with the detergent concentration of LysoFos at values below the 

CMCLysoFos = 0.7 mM. The truncation FhuA C/5L mutant features complete deletion of the 

internal cork domain C and removal of five extracellular loops (L3, L4, L5, L10, and L11), but 

without any charge neutralization with respect to the native FhuA protein. The protein was 

solubilized in 20 mM LysoFos. The other experimental conditions were the same as in Fig. S1. 
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 Figure S15: Logarithmic plot showing that the observable desolvation rate, kobs
des, 

recorded with FhuA C/7L_30N scales with the detergent concentration of dodecyl--D-

maltoside (DDM) at values below the CMCDDM = 0.17 mM. The protein was solubilized in 5 

mM DDM. The other experimental conditions were the same as in Fig. S1. 
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Figure S16: Logarithmic plot showing that the observable desolvation rate, kobs
des, recorded 

with FhuA C/7L_25N scales with the detergent concentration of UM at values below the 

CMCUM = 0.59 mM. The protein was solubilized in 5 mM UM. The other experimental 

conditions were the same as in Fig. S1. 
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 In Figures S14-S16, the observed desolvation constant, kobs
des, is a function of the aparrent 

first-order reaction rate constant, k, and the order, r, of the reaction with respect to [D], the 

detergent concentration:     

𝑘𝑜𝑏𝑠
𝑑𝑒𝑠 = 𝑘[𝑃]𝑠[𝐷]𝑟 = 𝑘′[𝐷]𝑟         (S1) 

where 

𝑘′ = 𝑘[𝑃]𝑠           (S2) 

and 

𝐿𝑛 𝑘𝑜𝑏𝑠
𝑑𝑒𝑠 = 𝐿𝑛 𝑘′ + 𝑟𝐿𝑛 [𝐷]         (S3) 

 Here, s is the order of the reaction with respect to [P], the protein concentration, whereas k 

denotes the reaction rate constant of association. In Table S6, the negative values of r indicate 

that the analyzed process is a dissociation (detergent desolvation).  
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Table S6: The dissociation rate scaling with the final detergent concentration in the sample well. 

Detergent – Protein Pair r k 105 (s-1) 

LysoFos - FhuA ΔC/Δ5L -1.54 ± 0.19 0.23 

DDM - FhuA ΔC/Δ7L_30N -1.00 ± 0.20 3.00 

UM – FhuA ΔC/Δ5L_25N -0.75 ±0.19 135 
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ABSTRACT  

  Interactions of a membrane protein with a detergent micelle represent a fundamental process 

with practical implications in structural and chemical biology. Quantitative assessment of the 

kinetics of protein-detergent complex (PDC) interactions has always been challenged by 

complicated behavior of both membrane proteins and solubilizing detergents in aqueous phase. 

Here, we show the kinetic reads of the desorption of maltoside-containing detergents from -

barrel membrane proteins. Using steady-state fluorescence polarization (FP) anisotropy 

measurements, we recorded real-time, specific signatures of the PDC interactions. The results of 

these measurements were used to infer the model-dependent rate constants of association and 

dissociation of the proteomicelles. Remarkably, the kinetics of the PDC interactions depend on 

the overall protein charge despite the nonionic nature of the detergent monomers. In the future, 

this approach might be employed for high-throughput screening of kinetic fingerprints of 

different membrane proteins stabilized in micelles that contain mixtures of various detergents.      
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INTRODUCTION 

 Understanding the specific interactions at the protein-detergent complex (PDC) interface has 

critical importance to membrane protein structure,1-2 function,3-4 stability,5-6 and dynamics.7-8 

Current approaches for an assessment of the PDC kinetics have numerous limitations. Available 

techniques are not amenable to high-throughput settings, are too highly specialized for a 

widespread adoption, or require high amounts of membrane protein. Because both the detergents 

and membrane proteins exhibit complex phases in solution,9-11 these challenges add up to a list of 

various difficulties for inferring a comprehensive determination of the forces that govern the 

kinetics of the PDC formation and dissociation. In many instances, the presence of protein 

aggregates,10, 12 which coexist with both micelles and proteomicelles in solution, produces a 

significant deterioration in the signal-to-noise ratio of prevailing spectroscopic and calorimetric 

methods. These shortcomings are primarily determined by the direct relationship between the 

recorded readout and effective concentration of the detergent-solubilized membrane protein in 

solution.13 In the absence of a robust membrane protein scaffold that features programmable 

functional and biophysical properties, obtaining the kinetic fingerprints at the PDC interface 

remains challenging. This gap of fundamental knowledge, which profoundly impacts structural 

biology and protein biotechnology, restrains the progress in the extensive screening of newly 

synthesized non-conventional detergents14-16 for membrane protein research.    

 

 To address these intimidating barriers, we developed a scalable approach for determining the 

real-time kinetic reads of the PDC interactions. This method is based upon a widely accessible, 

single-fluorophore probe technique. The pivotal concept of this study is the specific and sensitive 

modulation in the steady-state fluorescence polarization (FP) anisotropy17-20 of a membrane 
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protein by alterations in its interfacial interactions with solubilizing detergent monomers. 

Dissociation of a membrane protein from a detergent micelle is accompanied by a decreased 

emission in the plane parallel to the polarized light and an increased emission to the plane 

orthogonal to the polarized light.21 In this way, the PDC dissociation is accompanied by a 

decrease in the FP anisotropy, so the opposite is true for the PDC formation. Thus, the time-

dependent steady-state FP anisotropy is recorded and processed as a ratio between the numbers 

of detergent-free and detergent-solvated membrane proteins.  

 

 -barrel proteins are versatile to remodeling in various ways.22-23 The targeted panel in this 

study included the outer membrane protein G (OmpG)24, a medium-sized, 14-stranded -barrel 

(pI 4.4; Fig. 1A), and three homologous variants of the ferric hydroxamate uptake component A 

(FhuA) of E. coli, a large 22-stranded -barrel (Fig. 1B-D).25 The monomeric nature of these 

outer membrane proteins is advantageous for both the preparative steps26-28 and further data 

analysis of the steady-state FP anisotropy recordings.21 In order to explore the effect of the 

protein charge on the PDC kinetics, we conducted local and global protein engineering of FhuA. 

The 505-residue FhuA C/5L protein is an extensive truncation mutant of the wild-type, 714-

residue FhuA, lacking an N-terminal, 160-residue cork domain and five large extracellular loops 

(pI 5.7; Fig. 1B).29 Furthermore, dramatic alterations in the charge of the acidic FhuA C/5L 

protein were conducted by neutralizing its 25 and 30 negative charges, resulting in two basic -

barrels, FhuA C/5L_25N (pI 9.3; Fig. 1C) and FhuA C/7L_30 (pI 9.6; Fig. 1D), 

respectively. In this way, the targeted panel in this work included two acidic and two basic 

proteins, out of which the 281-residue OmpG protein featured a relatively smaller size than that 

of the three homologous FhuA variants. This experimental design enabled us to observe whether 
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a change in the membrane protein size has a significant impact on the steady-state FP anisotropy. 

Notably, the truncation FhuA variants exhibit a fairly stable β-barrel scaffold under a very broad 

range of experimental conditions, including very acidic pH,30-31 highly osmotic26, 32 or electro-

osmotic pressure,30 and elevated temperatures.30 In addition, the stability of FhuA is not impaired 

by local and global modifications even when accommodating newly functional polypeptides 

within the pore interior.31  
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Figure 1: Structural homology models of the four proteins explored in this work. (A) 

OmpG, (B) FhuA ΔC/Δ5L, (C) FhuA ΔC/5L_25N, (D) FhuA ΔC/Δ7L_30N. The native residues 

are shown in gold. Charge neutralizations that occur in both FhuA ΔC/Δ5L_25N and FhuA 

ΔC/Δ7L _30N are shown in red.  Additional charge reversals that occur only in FhuA 

ΔC/Δ7L_30N are shown in cyan. Other non-charge altering mutations of FhuA ΔC/Δ7L_30N, 

with respect to FhuA ΔC/Δ5L_25N, are shown in magenta. For each protein, the position of 

Texas Red53 is labeled in green. The corresponding isoelectric point (pI) of each protein is 

presented on the top of individual panels. 
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Figure 2: Cartoon illustrating the two phases noted as a result of detergent depletion within 

the sample well. (A) Predesolvation; (B) Detergent desolvation. Predesolvation phase is 

accompanied by the dissociation of a small number of detergent monomers from proteomicelles, 

contributing to a low modification of the FP anisotropy. Detergent desolvation is a rapid 

dissociation of numerous detergent monomers in single-exponential decay fashion. The right-

hand panels show typical trajectories of the FP anisotropy of the predesolvation and desolvation 

phases for various detergent concentrations below the CMC.   
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 Very recently, we showed that the desorption of detergent monomers from membrane 

proteins undergoes two distinct phases: a slow detergent predesolvation, which is highlighted by 

a minor and linear decrease in the FP anisotropy (Fig. 2A), and a fast detergent desolvation, 

which is characterized by a drastic, exponential-decay change in the FP anisotropy (Fig. 2B).33 

In this work, we systematically examined the kinetic reads of the PDC interactions for -barrel 

membrane proteins of varying surface charge. Specifically, we were able to probe time-

dependent FP anisotropy changes at detergent concentrations comparable with and below the 

critical micelle concentration (CMC), but keeping the protein concentration constant at a low-

nanomolar level. Our method enables model-dependent determinations of the kinetic rate 

constants and equilibrium dissociation constants of the proteomicelles. These interfacial PDC 

interactions were inferred for two nonionic, maltoside-containing detergents, whose CMC values 

are in the millimolar range. In the future, this method might be employed for rapid screening of 

the kinetic reads of proteomicelles under a broad range of physical and chemical conditions.        

 

METHODS 

Cloning, expression, and purification of membrane proteins. The fhua Δc/Δ5l gene, 

which lacked the regions coding for five extracellular loops L3, L4, L5, L10, and L11, as well as 

the cork domain (C), was produced through de novo synthesis (Geneart, Regensburg, 

Germany).27, 31 The fhua Δc/Δ5l_25n and fhua Δc/Δ7l_30n genes were generated by Integrated 

DNA Technologies (IDT, Coralville, IA) in pIDTSmart Amp vector. All genes included a 3’ 

thrombin site and 6×His+ tag.  fhua Δc/Δ5l_t7 was developed using inverse PCR and pPR-IBA1-

fhua Δc/∆5l-6×His+ as a template. The PCR product was self-ligated for the creation of pPR-

IBA1-fhua Δc/∆5l_t7-6×His+. The T7  turn (V
331

PEDRP
336

) was replaced with a cysteine-
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containing, GS-rich flexible loop (GGSSGCGSSGGS) for the fluorophore grafting. Similar 

approach was used for the mutagenesis within the fhua Δc/Δ5l_25n and fhua Δc/Δ7l_30n genes. 

Protein expression and extraction of truncation FhuA29, 32 mutants and OmpG34-35 proteins were 

previously reported. In the case of OmpG, the cysteine sulfhydryl was engineered at position 

D224, on extracellular loop L6, using single-site mutagenesis PCR.  

 

 Refolding of proteins. A rapid-dilution refolding protocol was used for the refolding of all 

proteins.30 40 μl of purified and guanidinium hydrochloride (Gdm-HCl)-denatured protein was 

50-fold diluted into 200 mM NaCl, 50 mM HEPES, pH 7.4 solutions at 4C, which contained 

detergents (Anatrace, Maumee, OH) at concentrations above their CMC. Detergent solutions 

were freshly produced to avoid their oxidation and hydrolysis.36 Different incubation detergent 

concentrations were prepared, as follows: (i) 5, 20, and 50 mM n-decyl-β-D-maltopyranoside 

(DM); and (ii) 50 mM 4-cyclohexyl-1-butyl-β-D-maltoside (CYMAL-4). 

 

Fluorescent labeling of the FhuA and OmpG proteins. Texas Red C2-maleimide (Thermo 

Fisher Scientific) was used for fluorescent labeling of all membrane proteins, as previously 

reported.21   

 Steady-state FP anisotropy recordings. Time-dependent FP anisotropy traces were 

acquired using a SpectraMax I3 plate reader (Molecular Devices, Sunnyvale, CA) equipped with 

a Paradigm detection cartridge for rhodamine FP spectroscopy.21 These measurements were 

conducted using 96-well Costar assay plates (Corning Incorporated, Kennebunk, ME). The 

wavelengths of excitation and emission were 535 and 595 nm, respectively. The attachment site 

of Texas Red was chosen on the water-soluble domains of the membrane proteins, because of the 
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hydrophilic nature of this fluorophore.37 The FP anisotropy depended on the orthogonal, Io(t), 

and parallel, Ip(t), emission intensities:38-39 

𝑟(𝑡) =
𝐼𝑝(𝑡)−𝐺𝐼𝑜(𝑡)

𝐼𝑝(𝑡)+2𝐺𝐼𝑜(𝑡)
          (1) 

where, G is a sensitivity correction factor for the detection modes when emission polarizers are 

oriented vertically and horizontally, as follows:   

𝐺 =
𝐼𝐻𝑉

𝐼𝐻𝐻
           (2) 

Here, IHH is the intensity with both the excitation and emission polarizers in a horizontal 

orientation, whereas IHV shows the intensity with the excitation and emission polarizers oriented 

horizontally and vertically, respectively. The experimental FP data were presented as average  

SD over a number of at least three distinct acquisitions. The time-dependent, steady-state FP 

anisotropy traces were acquired with diluted detergents, while keeping the final protein 

concentration constant at 28 nM. These detergent dilutions were conducted by titrating the 

refolded protein samples with buffer containing detergents at various concentrations. The final 

detergent concentration was inferred using the equation: 

𝐶f𝑉 = 𝐶s𝑉s + 𝐶d𝑉d          (3) 

V and Cf indicate the well volume and final detergent concentration of the protein sample, 

respectively. Cs and Cd show the detergent concentrations of the refolded protein (starting 

concentrations) and diluting buffer, respectively. Vs and Vd denote the volume of the refolded 

protein sample at a starting detergent concentration and the volume of the diluting buffer 

containing detergent at a given concentration, respectively. For DM, we used three 

concentrations below the CMC (0.45, 0.85, and 1 mM) and four concentrations above the CMC 

(2.5, 5, 10, and 20 mM). For CYMAL-4, four concentrations below the CMC (1, 2, 4, and 7 

mM) and two concentrations above the CMC (12 and 50 mM) were employed. It was noted that 
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in the case of DM-solvated FhuA variants the FP anisotropy curves were very noisy at extreme 

pH values (e.g., pH 4.6 and pH 10.0) and detergent concentrations lower than 1 mM. This 

outcome precluded the determination of statistically significant rate constants of association and 

dissociation. In addition, the FP anisotropy decayed even at detergent concentrations above the 

CMC, suggesting a slow increase in the tumbling rate of the proteomicelles under these 

experimental conditions. Therefore, we expanded the dilution spectrum of DM in the range of 1-

50 mM for these specific cases. The self-quenching of Texas Red did not induce a time-

dependent reduction in the FP anisotropy.35 Radical detergent depletion within the wells 

increased protein aggregation, but without impacting the optical signal-to-noise ratio of the FP 

anisotropy. The experimental uncertainty was affected at detergent concentrations below the 

CMC as compared to that at concentrations above the CMC, most likely because of the 

coexistence of complex substates produced by soluble and insoluble protein aggregates.  

 

 Minimizing the effects of light scattering. These studies involved the presence of 

nanoscopic particles within the sample well, such as detergent micelles, proteomicelles and 

protein aggregates. Therefore, these steady-state FP anisotropy recordings were subject to light 

scattering signals produced by these particles in solution and at detergent concentrations either 

below or above the CMC. The major contributions to light scattering are the Rayleigh and 

Raman factors, which are characterized by light intensity functions proportional to the power of 

-4, where  is the emission wavelength.20, 40 For that reason, our assay was conducted using a 

long emission wavelength. Moreover, the concentration of the Texas Red-labeled proteins was 

increased up to a critical value, beyond which the FP anisotropy readout was independent of the 

protein concentration.35 In addition, SpectraMax I3 plate reader features excitation and emission 
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filters that form a spectral gap of 60 nm, contributing to a reduction in the light scattering 

signals. Finally, additional control experiments reinforced the minimized contributions of light 

scattering to the FP anisotropy readout. For example, at increased detergent concentrations above 

the CMC, the FP anisotropy readout reached a well-defined plateau with a maximum value, rmax. 

In the presence of significant light scattering contributions, enhanced concentrations of detergent 

micelles above the CMC would gradually increase the steady-state FP anisotropy, which was not 

found in our studies. 

  

 Analysis of the predesolvation and desolvation rates. The observed predesolvation rate 

constants (𝑘𝑜𝑏𝑠
𝑝𝑟𝑒

) were determined using a linear fit of the time-dependent FP anisotropy, r (t), at 

detergent concentrations below the CMC (Supporting Information, Tables S1-S8):  

𝑟(𝑡) = −𝑘𝑜𝑏𝑠
𝑝𝑟𝑒𝑡 + 𝑟𝑚𝑎𝑥         (4) 

where, rmax is the maximum FP anisotropy recorded at time zero. Here, t is the recording time 

during the predesolvation phase. In fact, 𝑘𝑜𝑏𝑠
𝑝𝑟𝑒

 is the apparent zero-order rate constant for the 

predesolvation reaction of the proteomicelles. On the other hand, the observed desolvation rate 

constants, kobs
des, were determined at various detergent concentrations below the CMC using a 

single-exponential fit of the time-dependent FP anisotropy (i.e., 𝑘𝑜𝑏𝑠
𝑑𝑒𝑠 is 1/, where  is the 

desolvation time constant): 

𝑟(𝑡) = 𝑟𝑑𝑒−
𝑡

𝜏 + 𝑟𝑚𝑖𝑛          (5) 

where rmin is the minimum recorded FP anisotropy at time infinity of the desolvation phase. t 

indicates the recorded time during the desolvation phase. This time includes the total time of the 

predesolvation phase, Tpre. In general, the observed desolvation rate constant, 𝑘𝑜𝑏𝑠
𝑑𝑒𝑠, was 

determined by a single-exponential decay fit of the time-dependent FP anisotropy, r(t). In fact, 
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𝑘𝑜𝑏𝑠
𝑑𝑒𝑠 is the apparent first-order rate constant41 for the desolvation reaction of the proteomicelles. 

This rate constant includes a composite mixture of the kinetic rate constants of association (kon) 

and dissociation (koff) (Supporting Information).42 Deviations from this pattern occurred in a 

number of cases that were treated by a linear time-dependence fit. In Eq. (5), rd is a constant, so 

that the initial FP anisotropy during the desolvation phase, rin, is given by the following equation: 

𝑟𝑖𝑛 = 𝑟(𝑇𝑝𝑟𝑒) = 𝑟𝑑𝑒−
𝑇𝑝𝑟𝑒

𝜏 + 𝑟𝑚𝑖𝑛        (6) 

  

which provides the rd constant: 

𝑟𝑑 =
𝑟𝑖𝑛−𝑟𝑚𝑖𝑛

𝑒
−

𝑇𝑝𝑟𝑒

𝜏

           (7) 

Using eqns. (5) and (7), one derives the time-dependent FP anisotropy for the detergent 

desolvation phase of proteomicelles: 

𝑟(𝑡) = (𝑟𝑖𝑛 − 𝑟𝑚𝑖𝑛)𝑒−
𝑡−𝑇𝑝𝑟𝑒

𝜏 + 𝑟𝑚𝑖𝑛        (8) 

The time-dependent protein concentration that is still detergent solvated, [𝑃(𝑡)], is given by the 

following equation: 

[𝑃(𝑡)] = [𝑃𝑡] (
𝑟(𝑡)−𝑟𝑚𝑖𝑛

𝑟𝑖𝑛−𝑟𝑚𝑖𝑛
)         (9) 

Therefore, the time-dependent observed desolvation rate is: 

𝑅𝑑𝑒𝑠(𝑡) = |
𝑑[𝑃(𝑡)]

𝑑𝑡
| = [𝑃𝑡]

1

𝜏𝑒
𝑡−𝑇𝑝𝑟𝑒

𝜏

        (10) 

where [𝑃𝑡] is the total protein concentration at the beginning of the desolvation process. At the 

initial time of the desolvation process, t = Tpre. Consequently, the initial observed desolvation 

rate, 𝑅𝑖𝑛
𝑑𝑒𝑠, is the following: 

𝑅𝑖𝑛
𝑑𝑒𝑠 =

[𝑃𝑡]

𝜏
= [𝑃𝑡]𝑘𝑜𝑏𝑠

𝑑𝑒𝑠         (11) 
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Here, Δ𝑟 = 𝑟𝑖𝑛 − 𝑟𝑚𝑖𝑛 is the absolute FP anisotropy change during the desolvation phase. 

Finally, the time-independent rate of the protein predesolvation is the following: 

𝑅𝑝𝑟𝑒 =
[𝑃𝑡]

𝑇𝑝𝑟𝑒           (12) 
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RESULTS 

 Kinetics of the neutral detergent – membrane protein interactions are pH dependent. 

Prior steady-state FP anisotropy studies under equilibrium conditions demonstrated that the 

apparent dissociation constant, Kd, of proteomicelles with maltoside-containing detergents is not 

generally affected by the pH.35 Here, we inspected whether this is also true for the kinetic reads 

of proteomicelles containing either n-decyl-β-D-maltopyranoside (DM) or 4-cyclohexyl-1-butyl-

β-D-maltoside (CYMAL-4), two nonionic detergents. DM encompasses a medium-sized 

hydrophobic chain with 10 alkyl carbons. CYMAL-4 includes a short hydrophobic chain with 

four alkyl carbons and a cyclohexyl group. The CMC values of DM and CYMAL-4 are ~1.8 and 

7.6 mM, respectively.21, 36 We found that at detergent concentrations much greater than the 

CMC, there was no significant alteration in the FP anisotropy (Figs. 3-7; Supporting 

Information, Figs. S1-S3).21 Under these conditions, both OmpG43 and truncation FhuA21, 27 

variants were fully detergent-solvated and showed a preponderant -sheet structure in solution. 

Thus, the proteomicelles reached the slowest rotational mobility, which corresponded to the 

highest FP anisotropy value, rmax. However, at detergent concentrations comparable with or 

below the CMC, the FP anisotropy showed drastic changes as a result in the desorption of 

detergent monomers from proteomicelles. Therefore, for these conditions the FP anisotropy 

varied between rmax, which corresponded to slowly tumbling proteomicelles, and rmin, which was 

reached under detergent-desolvated conditions (Supporting Information, Figs. S4-S21).  
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Figure 3: Time-dependent anisotropy showing the DM desolvation of OmpG at various pH 

values. The starting DM concentration was 20 mM. (A) pH 4.6; (B) pH 5.6; (C) pH 6.8; (D) pH 

8.2;  

(E) pH 10.0. The FP measurements were carried out using a solution that contained 200 mM 

NaCl at room temperature. The buffer was either 50 mM HEPES (pH 6.8 and pH 8.2), 50 mM 

NaOAc (pH 4.6 and pH 5.6) or 50 mM sodium borate (pH 10.0). All data were derived as 

averages ± SD of at least three independent data acquisitions.  
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Figure 4: Time-dependent FP anisotropy showing the CYMAL-4 desolvation of OmpG at 

various pH values. The starting CYMAL-4 concentration was 50 mM. (A) pH 4.6; (B) pH 5.6; 

(C) pH 6.8; (D) pH 8.2; (E) pH 10.0. The other experimental conditions were the same as those 

stated in the caption of Fig. 3. 
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 The linear and exponential phases of the time-dependent FP anisotropy decrease were 

employed to determine the apparent zero-order and first-order rate constants of the 

predesolvation and desolvation processes (METHODS), respectively. Usually, the observed 

predesolvation rate constants (𝑘𝑜𝑏𝑠
𝑝𝑟𝑒

) (Supporting Information, Tables S1-S8) and desolvation 

rate constants (𝑘𝑜𝑏𝑠
𝑑𝑒𝑠) (Supporting Information, Tables S9-S16) increased by reducing the 

detergent concentration within the sample well. By changing the pH, the overall protein charge 

of a membrane proteins is altered. Therefore, we first explored this effect using steady-state FP 

anisotropy measurements under detergent desolvation conditions. At pH 4.6, the 𝑘𝑜𝑏𝑠
𝑝𝑟𝑒

 values for 

the DM-OmpG proteomicelles acquired at DM concentrations of 1, 0.85, and 0.45 mM were (1.9 

 0.1)  10-5, (2.0  0.1)  10-5, and (5.2  0.4)  10-5  s-1, respectively (Fig. 3; Supporting 

Information, Table S1). On the other hand, the corresponding 𝑘𝑜𝑏𝑠
𝑑𝑒𝑠 values for similar 

experimental conditions were (2.6  0.3)  10-3, (3.0  0.3)  10-3, and (4.5  0.5)  10-3 s-1, 

respectively (Supporting Information, Table S9). At a slightly acidic pH of 6.8, the 𝑘𝑜𝑏𝑠
𝑝𝑟𝑒

 

values were (0.9  0.1)  10-5, (2.1  0.1)  10-5, and (4.2  0.7)  10-5 s-1, respectively. Under 

identical experimental conditions, the corresponding 𝑘𝑜𝑏𝑠
𝑑𝑒𝑠 values were lower than those noted at 

pH 4.6, as follows: (1.3  0.1)  10-3, (2.0  0.1)   10-3, and (2.4  0.2)  10-3 s-1, respectively. 

On the contrary, higher 𝑘𝑜𝑏𝑠
𝑑𝑒𝑠 values were recorded at pH 10: (2.4  0.2)  10-3, (2.7  0.2)   10-

3, and (5.1  0.2)  10-3  s-1, respectively. This non-monotonic pH-dependence of the 𝑘𝑜𝑏𝑠
𝑑𝑒𝑠 values 

suggests compensatory effects of the numerous heterogeneously distributed electrostatic 

interactions at the PDC interface. 𝑘𝑜𝑏𝑠
𝑝𝑟𝑒

 was less sensitive than 𝑘𝑜𝑏𝑠
𝑑𝑒𝑠 upon pH changes. This is an 

intuitive finding, because it is conceivable that during the predesolvation phase only a limited 

number of nonionic detergent monomers detach from the proteomicelles.  
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 On the other hand, an atypical desolvation pattern was noted with CYMAL-4-OmpG 

proteomicelles at pH 4.6 and at 1 and 2 mM CYMAL-4 (Fig. 4). For example, the FP anisotropy 

traces acquired at 1 mM showed a fast desolvation phase, whereas those recorded at 2 mM 

exhibited a long predesolvation phase. Interestingly, at a CYMAL-4 concentration of 4 mM or 

greater than this value,21 no significant time-dependent FP anisotropy change was noted. At an 

acidic pH of 5.6, the 𝑘𝑜𝑏𝑠
𝑝𝑟𝑒

 values for the CYMAl-4-OmpG proteomicelles at CYMAL-4 

concentrations of 4, 2, and 1 mM were (2.0  0.1)  10-5, (3.4  0.2)  10-5, and (5.8  0.3)  10-5  

s-1, respectively (Supporting Information, Table S5). The corresponding 𝑘𝑜𝑏𝑠
𝑑𝑒𝑠 values for 

identical conditions were (1.1  0.1)  10-3, (1.7  0.1)  10-3, and (2.0  0.1)  10-3 s-1, 

respectively (Supporting Information, Table S13). Under a mildly acidic pH of 6.8, the 𝑘𝑜𝑏𝑠
𝑝𝑟𝑒

 

values for the CYMAL-4-OmpG proteomicelles at CYMAL-4 concentrations of 4, 2, and 1 mM 

were (1.7  0.1)  10-5, (2.7  0.1)  10-5, and (3.0  0.6)  10-5 s-1, respectively. The 

corresponding 𝑘𝑜𝑏𝑠
𝑑𝑒𝑠 values under similar conditions were close to those noted at pH 5.6, as 

follows: (1.0  0.1)   10-3, (2.0  0.1)  10-3, and (2.4  0.1)  10-3  s-1, respectively. When these 

experiments were conducted at pH 10.0, a significant increase in the signal noise was recorded 

(Fig. 4), impeding an accurate determination of the observed rate constants of predesolvation and 

desolvation.  

 

 The apparent first-order rate constants of detergent desolvation of the proteomicelles 

depend on the protein charge. In the prior results section, we demonstrate that even if the 

detergent monomers are nonionic the interfacial PDC interactions might be affected by pH. Here, 

we asked whether these interactions with neutral detergents depend on the overall protein charge. 

The test case was conducted for radically altered FhuA C/5L_25N and FhuA C/7L_30N, 
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two homologous FhuA variants whose 25 and 30 negative charges were neutralized with respect 

to FhuA C/5L protein. The presence of slow predesolvation and fast desolvation phases were 

also noted for these proteins that encompassed radical alterations in the overall protein charge 

(Figs. 5-7). At 1 mM DM and pH 5.6, we acquired desolvation rate constants of (1.6  0.1)  10-

3, (3.4  0.2)  10-3, and (1.1  0.1)  10-3  s-1 for FhuA C/5L, FhuA C/5L_25N, and FhuA 

C/7L_30N, respectively (Fig. 8A; Supporting Information, Tables S10-S12). Under similar 

conditions, but at slightly alkaline pH 8.2, these values were (1.9  0.2)  10-3, (3.4  0.2)  10-3, 

and (2.6  0.2)  10-3  s-1, respectively. If the DM concentration was reduced to 0.85 mM, then 

the 𝑘𝑜𝑏𝑠
𝑑𝑒𝑠 values at an acidic pH of 5.6 were (3.2  0.1)  10-3, (3.4  0.2)  10-3, and (2.2  0.1)  

10-3  s-1, respectively (Fig. 8B). At the same time, at pH 8.2, a significant reduction in the 𝑘𝑜𝑏𝑠
𝑑𝑒𝑠 

values was noted for the acidic FhuA derivative, but substantially increased values were 

determined for the basic FhuA variants. This finding indicates stronger interfacial PDC 

interactions of the acidic FhuA protein as compared to those corresponding to basic FhuA 

variants.  
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Figure 5: Time-dependent FP anisotropy showing the DM desolvation of FhuA C/5L at 

various pH values. (A) pH 4.6; (B) pH 5.6; (C) pH 6.8; (D) pH 8.2; (E) pH 10.0. The other 

experimental conditions were the same as those stated in the caption of Fig. 3.    
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Figure 6: Time-dependent FP anisotropy showing the DM desolvation of FhuA 

C/5L_25N at various pH values. (A) pH 4.6; (B) pH 5.6; (C) pH 6.8; (D) pH 8.2; (E) pH 

10.0. The other experimental conditions were the same as those stated in the caption of Fig. 3.  
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Figure 7: Time-dependent FP anisotropy showing the DM desolvation of FhuA 

C/7L_N30 at various pH values. (A) pH 4.6; (B) pH 5.6; (C) pH 6.8; (D) pH 8.2; (E) pH 

10.0. The other experimental conditions were the same as those stated in the caption of Fig. 3.   
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Figure 8: Dependence of the observed desolvation rate constants, 𝒌𝒐𝒃𝒔
𝒅𝒆𝒔, on the protein 

charge.  

(A) The values were determined for the DM desolvation of FhuA C/5L, FhuA C/5L_25N, 

and FhuA C/7L_30N at 1 mM DM; (B) The values were determined for the DM desolvation 

of FhuA C/5L, FhuA C/5L_25N, and FhuA C/7L_30N at 0.85 mM DM; (C) The values 

were determined for the CYMAL-4 desolvation of FhuA C/5L, FhuA C/5L_25N, and 

FhuA C/7L_30N at pH 8.2. Different vertical columns show data acquired at various 

CYMAL-4 concentrations; (D) Illustration of the initial desolvation rates, 𝑅𝑖𝑛
𝑑𝑒𝑠, which were 

determined for proteins of varying overall charge at pH 8.2. The final detergent concentrations 

for DM and CYMAL-4 were 1 and 4 mM, respectively. The other experimental conditions were 

the same as those stated in the caption of Fig. 3. 
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Kinetics but not energetics of the adhesive PDC interactions depend on the protein charge. 

These steady-state FP anisotropy measurements enabled the determination of the 𝑘𝑜𝑏𝑠
𝑑𝑒𝑠 values at 

detergent concentrations below the CMC. In most cases examined in this study, the 𝑘𝑜𝑏𝑠
𝑑𝑒𝑠 values 

scaled with the detergent concentration in a linear fashion (Supporting Information, Figs. S22-

S29). Therefore, we formulated a simple kinetic model of proteomicelles, which includes the 

bimolecular association of a membrane protein with a detergent micelle and unimolecular 

dissociation of a membrane protein from a micelle (Supporting Information).37 The two 

processes are quantitatively assessed by the apparent model-dependent rate constants of 

association, kon, and dissociation, koff. These data, which were determined for the four proteins, 

two maltoside-containing detergents, and three pH values, are illustrated in Fig. 9A and Fig. 9B, 

respectively.  
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Figure 9: The apparent rate constants of the interfacial PDC interactions of proteomicelles.  

(A) The association rate constants of DM-containing proteomicelles are much greater than those 

of CYMAL-4-containing proteomicelles; (B) The dissociation rate constants of DM-containing 

proteomicelles are greater than those of CYMAL-4-containing proteomicelles; (C) The model-

dependent (this work) and model-free34 equilibrium dissociation constants, Kd, of the DM-

containing proteomicelles; (D) The model-dependent apparent dissociation constants, Kd, of the 

CYMAL-4-containing proteomicelles. The other experimental conditions were the same as those 

stated in the caption of Fig. 3. 
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 The impact of protein electrostatics on adhesive interactions was also noted in the case of 

CYMAL-4-FhuA proteomicelles. For example, at pH 8.2 the 𝑘𝑜𝑏𝑠
𝑑𝑒𝑠 values acquired with the 

acidic FhuA mutant were significantly smaller than those obtained for the basic FhuA variants 

(Fig. 8C; Supporting Information, Tables S14-S16). Fig. 8D illustrates the initial desolvation 

rates, 𝑅𝑖𝑛
𝑑𝑒𝑠 (METHODS), which were inferred for various types of proteomicelles at detergent 

concentrations of 1 mM DM and 4 mM CYMAL-4. These concentrations are about ~55% and 

~52% of their corresponding CMC values, respectively. For both cases DM- and CYMAL-4-

containing proteomicelles, the initial desolvation rates of the acidic proteins OmpG and FhuA 

C/5L were lower than those determined for the basic truncation FhuA mutants (Fig. 8D; 

Supporting Information, Table S17). This outcome suggests stronger adhesive forces of the 

acidic protein-containing proteomicelles than those interfacial interactions of the basic protein-

containing proteomicelles at pH 8.2.  

 

 Kinetics but not energetics of the adhesive PDC interactions depend on the protein 

charge. In most cases examined in this study, the 𝑘𝑜𝑏𝑠
𝑑𝑒𝑠 values scaled with the detergent 

concentration in a linear fashion (Supporting Information, Figs. S22-S29). Therefore, we 

formulated a simple kinetic model of proteomicelles, which includes the bimolecular association 

of a membrane protein with a detergent micelle and unimolecular dissociation of a membrane 

protein from a micelle (Supporting Information).42 The two processes are quantitatively 

assessed by the apparent model-dependent rate constants of association, kon, and dissociation, 

koff. These data, which were determined for the four proteins, two maltoside-containing 

detergents, and three pH values, are illustrated in Fig. 9A and Fig. 9B, respectively.  

q 
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 An immediate observation is that the kon values obtained for DM are from several fold to 

about one order of magnitude greater than those determinations acquired for CYMAL-4 (Fig. 

9A; Supporting Information, Tables S18-S19). For example, these kon values inferred for the 

most basic protein, FhuA C/7L_30N, and DM-containing proteomicelles were 48  11, 22  

3, and 63  14 M-1s-1 at pH values of 5.6, 6.8, and 8.2, respectively. Under similar experimental 

conditions, the kon values for CYMAL-4-containing proteomicelles were 4  1, 6  1, and 5  2 

M-1s-1, respectively. The fact of the kon values obtained for DM-containing proteomicelles are 

substantially greater than those inferred for CYMAL-4-containing proteomicelles is in accord 

with a longer alkyl chain of DM. The dissociation rate constants, koff, of the DM-containing 

proteomicelles were also greater than those inferred for the CYMAL-4-containing proteomicelles 

(Fig. 9B). Therefore, the alteration in the hydrophobic interactions at the PDC interface through 

the length of the alkyl chain has a significant effect on the association rate constants. We were 

able to calculate the apparent equilibrium dissociation constants of the PDC using the model-

dependent kon and koff values (e.g., Kd = koff/kon). These determinations neglected the contributions 

of the predesolvation phases (Fig. 9C and Fig. 9D). Remarkably, the model-dependent apparent 

Kd values for DM-containing proteomicelles were comparable with the CMCDM (~1.8 mM) 

(Supporting Information, Table S18),35-36 suggesting that the adhesion forces between the 

membrane proteins and DM detergent monomers are well balanced by the cohesive forces 

among the detergent monomers. Finally, these equilibrium constants were neither dependent on 

the overall protein charge nor sensitive to alterations in pH, contrasting the outcomes pertaining 

to observed desolvation constants as well as the  rate constants of association and dissociation 

(Fig. 9C, Fig. 9D).  
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In this paper, we show a semiquantitative approach for the determination of model-dependent 

association and dissociation rate constants of proteomicelles. To the best of our knowledge, this 

is the first kinetic method of proteomicelles that has potential for high-throughput screening,19-20 

because of its amenability to a 1536-well, plate-reader format. The central player of this 

approach is a bright,39, 44 optically stable,39, 44 and pH insensitive45 Texas Red fluorophore. In 

addition, the photophysics of Texas Red is not sensitive to its environmental changes,46 

permitting these extensive measurements in a fairly broad range of physical and chemical 

circumstances. Here, Texas Red was covalently attached either on a flexible loop (e.g., OmpG) 

or on a  turn (e.g., FhuA derivative) using maleimide chemistry. Because the fluorophore was 

not located within the core of the folded -barrel protein, but at its periphery, the recorded FP 

anisotropy is not directly related to protein folding, contrasting an intrinsic, internal tryptophan 

probe.13 A sharp decrease in the FP anisotropy is most likely directly determined by the 

reduction in the hydrodynamic radius of the proteomicelle, Rh, resulting from detergent 

desorption at the protein surface. Therefore, we think that FP anisotropy curves are not 

expectedly sensitive to changes in the site of fluorescent labeling on the protein surface.  

 

 Recently, we have used this approach for screening detergents of varying physicochemical 

properties in order to select those that exhibit satisfactory solubilizing features.21 The value of 

the steady-state FP anisotropy followed a two-state transition when the protein sample was 

brought from a detergent concentration greater than the CMC to a detergent concentration below 

the CMC. The isothermal detergent desorption curves were used to infer the equilibrium 

dissociation constants of the proteomicelles containing -helical membrane proteins.35 The 
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process of detergent desorption showed the existence of slow predesolvation and fast desolvation 

phases for detergents with excellent solubilizing characteristics.33 The kinetic details of the 

interfacial PDC interactions represent a foundation for developing novel protocols employed in 

the functional reconstitution of membrane proteins. Previously, isothermal titration calorimetry 

(ITC)47 has been successfully employed to unravel equilibrium phase diagrams of complex 

ternary mixtures of lipid-detergent-protein systems.11, 48 This information has practical 

implications for the protein reconstitution into lipid vesicles.      

 

 Our FP anisotropy approach is also facilitated by the fact that the steady-state FP anisotropy 

is insensitive to changes in protein concentration.49 Accordingly, a gradual decrease in the 

effective detergent-solubilized protein concentration, which potentially results from 

unproductive aggregation,10, 12 does not impair the optical signal-to-noise ratio. Indeed, the 

truncation FhuA variants are highly prone to aggregation as a result of detergent depletion within 

the sample well at concentrations well below the CMC. Despite these environmentally harsh 

conditions for these -barrel membrane proteins, we were still able to measure time-dependent 

changes in the FP anisotropy that reflect the decrease of the proteomicelle size in a reproducible 

fashion. Gradual protein aggregation might have various effects on the FP readout, including 

quenching. According to Perrin’s equation,20 ro/r is an additive function of 6𝐷𝑟𝜏𝐹, where ro, r, 

𝐷r, and 𝜏F denote the fundamental maximum FP anisotropy, recorded steady-state FP anisotropy, 

rotational diffusion coefficient of the proteomicelle, and fluorescence lifetime of the fluorophore, 

respectively. Therefore, quenching increases the FP anisotropy. Second, protein aggregation, 

even without quenching, decreases the tumbling rate of the detergent-desolvated proteins. Third, 

it is conceivable that a residual amount of bound detergent monomers still exists under detergent 
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depletion conditions. These effects likely increase the rmin values depending on their relative 

impact on the raw FP signal at detergent concentrations much lower than the CMC. In accord 

with these expectations, we often observed elevated rmin states in these FP anisotropy 

measurements. The truncation FhuA variants exhibit an rmin of ~0.16 under fully denaturing 

conditions in the presence of chaiotropic agents,21 but time-dependent FP anisotropy 

measurements during detergent desolvation phase at times showed the rmin values even greater 

than 0.2. 

 On the other hand, at detergent concentrations much greater than the CMC, we recorded high 

FP anisotropy values with rmax of ~0.3 or even greater, approaching the fundamental maximum 

FP anisotropy, ro (ro = 0.4).50 This reason is primarily determined by probing relatively slow 

rotational diffusion mobilities of the membrane proteins. Under these conditions, the diffusional 

correlation times are slightly greater than the fluorescence lifetime of Texas Red (𝜏F = 4.2 ns).44 

High anisotropy data points indicate that the majority of the emitted photons maintain their 

original polarization. The high FP anisotropy is related not only to the size of the membrane 

protein, but also to the overall size of micelles, so that these values are expected under detergent-

mediated refolding conditions.  

 

 Different groups routinely recorded steady-state FP anisotropy values of ~0.3 under 

equilibrium conditions.44, 49, 51-52 For example, Qiao and coworkers (2011) found anisotropy 

changes between 0.1 and 0.3 when Texas Red was attached to short peptides forming complexes 

with antibodies.53 Again, such a high FP anisotropy value of ~0.3 is expected under conditions in 

which the tumbling rate of the peptide-protein complex is drastically slowed down. Here, we 

provide compelling evidence for the high sensitivity and specificity of our method, which in 
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many examples feature FP anisotropy changes of ~0.15, namely ~38% out of the maximum 

anisotropy range. Interestingly, at final detergent concentrations much greater than the CMC, the 

steady-state FP anisotropy remains fairly unchanged at a value rmax, suggesting that the 

proteomicelles reach the lowest rotational mobilities under this experimental circumstance. This 

situation corresponds to the highest hydrodynamic radius of proteomicelles. Such an outcome is 

somewhat counterintuitive, because of the gradually enhanced solution viscosity at increased 

detergent concentrations. However, our finding is in good accord with prior NMR studies 

performed by Stanczak and coworkers,54 who also discovered that the hydrodynamic radius of 

the PDC containing n-decylphosphocholine (Fos-10) and outer membrane protein X (OmpX) is 

not affected by greatly increased Fos-10 concentrations above the CMC.      

 

 The observed predesolvation and desolvation rate constants depend on the alkyl chain of the 

detergent monomers, charge of the membrane protein, and pH of the interfacial PDC space. 

These variables modulate the adhesion forces of the proteomicelles between detergent monomers 

and membrane proteins. Notably, the observed desolvation rate constants, 𝑘𝑜𝑏𝑠
𝑑𝑒𝑠, are generally 

greater for the basic homologous FhuA variants than those acquired for the acidic proteins 

OmpG and FhuA C/5L. A deviation from this trend occurred for DM-containing 

proteomicelles at pH 5.6 and 0.85 mM DM. It should be noted that changing the pH would also 

change the overall protein charge, explaining at least in part the non-monotonic nature of the pH 

dependence of 𝑘𝑜𝑏𝑠
𝑑𝑒𝑠. Furthermore, the initial desolvation rates, 𝑅𝑖𝑛

𝑑𝑒𝑠, of the DM- and CYMAL-4-

containing proteomicelles were also greater for the basic proteins than those obtained for the 

acidic -barrels. This finding suggests that the adhesive interactions at the PDC interface55 are 

generally stronger for the acidic proteins than those for the basic ones. These results agree well 
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with prior studies that indicated satisfactory solubilization traits of nonionic n-octyl--D-

glucoside (OG) for acidic but not basic -barrels.21  

 

CONCLUSIONS 

 In summary, we show time-dependent kinetic determinations of proteomicelles containing -

barrel membrane proteins of varying isoelectric point. The model-dependent apparent Kd values 

are fairly independent of pH and protein charge, but they are comparable with or slightly lower 

than the CMC. Because the affinity constants of the PDC interactions are closely similar to the 

corresponding CMC, these inspected -barrel membrane proteins are poor nucleators of the 

proteomicellization process. Therefore, the detergent monomers have little discrimination in 

associating either with the proteins or with themselves. The high equilibrium dissociation 

constants, in the millimolar range, are primarily caused by low association rate constants of the 

proteomicelles. Small kon values, lower than 102 M-1s-1, provide a quantitative confirmation of 

fairly low diffusion coefficients of hydrophobic molecules, either detergent monomers or 

membrane proteins, in aqueous phase. Further adaptations of this approach will likely impact 

accelerated discoveries in the synthetic chemistry of non-conventional detergents56 as well as in 

the structural, physical, and chemical biology of membrane proteins.    
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SUPPORTING INFORMATION. (i) Time-dependent FP anisotropy changes of membrane 

proteins of varying isoelectric point (pI) at detergent incubations above and below the CMC, and 

in buffers of varying pH; (ii) Curve fits of the predesolvation and desolvation phases at detergent 

concentrations below the CMC and in buffers of varying pH; (iii) Determination of the 

predesolvation rates of protein nanopores of varying pI, at detergent concentrations below the 

CMC, and in buffers of varying pH;  

(iv) Determination of the desolvation rate and time constants of protein nanopores of varying pI, 

and at detergent concentrations below the CMC, and in buffers of varying pH; (v) Initial 

desolvation rates determined for acidic and basic -barrel membrane proteins; (vi) Calculation of 

the association (kon) and dissociation (koff) rate constants using detergent desolvation curves; (vii) 

Scaling of the observed desolvation rates of the protein nanopores with the detergent 

concentrations at values below the CMC; (viii) Kinetic rate constants of association and 

dissociation of proteomicelles using time-dependent FP anisotropy changes. These materials are 

available free of charge via the Internet at http://pubs.acs.org 
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 1. Time-dependent FP anisotropy changes of protein nanopores of varying isoelelctric 

point (pI), at detergent concentrations above and below the CMC, and in buffers of varying 

pH.  
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 Figure S1: Time-dependent desolvation of FhuA C/5L incubated in CYMAL-4.  

(A) pH 4.6; (B) pH 5.6; (C) pH 6.8; (D) pH 8.2; (E) pH 10.0. The solubilized protein 

concentration was 28 nM. Detergent dilutions above the CMCCYMAL-4 (~7.6 mM) were conducted 

using an incubation concentration of 50 mM CYMAL-4. The FP measurements were carried out 

using a solution that contained 200 mM NaCl at room temperature. The buffer was either 50 mM 

HEPES (pH 6.8 and pH 8.2), 50 mM NaOAc (pH 4.6 and pH 5.6) or 50 mM sodium borate (pH 

10.0). All data were derived as averages ± SDs of three independent data acquisitions. 
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Figure S2: Time-dependent desolvation of FhuA C/5L_25N incubated in CYMAL-4.  

(A) pH 5.6; (B) pH 6.8; (C) pH 8.2; (D) pH 10.0. The solubilized protein concentration was 28 

nM. Detergent dilutions were conducted using an incubation concentration of 50 mM CYMAL-

4. The other experimental conditions were the same as in Fig. S1. 
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Figure S3: Time-dependent desolvation of FhuA C/5L_25N incubated in CYMAL-4.  

(A) pH 4.6; (B) pH 5.6; (C) pH 6.8; (D) pH 8.2; (E) pH 10.0. The solubilized protein 

concentration was 28 nM. Detergent dilutions were conducted using an incubation concentration 

of 50 mM CYMAL-4. The other experimental conditions were the same as in Fig. S1. 
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 2. Curve fits of the predesolvation and desolvation phases at detergent concentrations 

below the CMC and in buffers of varying pH.  
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Figure S4: Time-dependent predesolvation and desolvation of OmpG and FhuA ΔC/Δ5L 

incubated with DM at pH 4.6. (A) Predesolvation of OmpG from DM ; (B) Predesolvation of 

FhuA ΔC/Δ5L from DM; (C) Desolvation of OmpG from DM; (D) Desolvation of FhuA 

ΔC/Δ5L from DM. The solubilized protein concentration was 28 nM. Detergent dilutions were 

conducted using an incubation concentration of 5 mM DM. The other experimental conditions 

were the same as in Fig. S1. 
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Figure S5: Time-dependent predesolvation and desolvation of OmpG and FhuA ΔC/Δ5L 

incubated with DM at pH 5.6. (A) Predesolvation of OmpG from DM ; (B) Predesolvation of 

FhuA ΔC/Δ5L from DM; (C) Desolvation of OmpG from DM; (D) Desolvation of FhuA 

ΔC/Δ5L from DM. The solubilized protein concentration was 28 nM. Detergent dilutions were 

conducted using an incubation concentration of 5 mM DM. The other experimental conditions 

were the same as in Fig. S1. 
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Figure S6: Time-dependent predesolvation and desolvation of OmpG and FhuA ΔC/Δ5L 

incubated with DM at pH 6.8. (A) Predesolvation of OmpG from DM ; (B) Predesolvation of 

FhuA ΔC/Δ5L from DM; (C) Desolvation of OmpG from DM; (D) Desolvation of FhuA 

ΔC/Δ5L from DM. The solubilized protein concentration was 28 nM. Detergent dilutions were 

conducted using an incubation concentration of 5 mM DM. The other experimental conditions 

were the same as in Fig. S1. 
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Figure S7: Time-dependent predesolvation and desolvation of OmpG and FhuA ΔC/Δ5L 

incubated with DM at pH 8.2. (A) Predesolvation of OmpG from DM ; (B) Predesolvation of 

FhuA ΔC/Δ5L from DM; (C) Desolvation of OmpG from DM; (D) Desolvation of FhuA 

ΔC/Δ5L from DM. The solubilized protein concentration was 28 nM. Detergent dilutions were 

conducted using an incubation concentration of 5 mM DM. The other experimental conditions 

were the same as in Fig. S1. 
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Figure S8: Time-dependent predesolvation and desolvation of OmpG incubated with DM 

at pH 10.0. (A) Predesolvation of OmpG from DM; (B) Desolvation of OmpG from DM. The 

solubilized protein concentration was 28 nM. Detergent dilutions were conducted using an 

incubation concentration of 5 mM DM. The other experimental conditions were the same as in 

Fig. S1. 
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Figure S9: Time-dependent predesolvation and desolvation of FhuA ΔC/Δ5L_25N 

incubated with DM at pH 4.6. (A) Predesolvation of FhuA ΔC/Δ5L_25N from DM; (B) 

Desolvation of FhuA ΔC/Δ5L_25N from DM. The solubilized protein concentration was 28 nM. 

Detergent dilutions were conducted using an incubation concentration of 5 mM DM. The other 

experimental conditions were the same as in Fig. S1. 
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Figure S10: Time-dependent predesolvation and desolvation of FhuA ΔC/Δ5L_25N and 

FhuA ΔC/Δ7L_30N incubated with DM at pH 5.6. (A) Predesolvation of FhuA ΔC/Δ5L_25N 

from DM ;  

(B) Predesolvation of FhuA ΔC/Δ7L_30N from DM; (C) Desolvation of FhuA ΔC/Δ5L_25N 

from DM; (D) Desolvation of FhuA ΔC/Δ7L_30N from DM. The solubilized protein 

concentration was 28 nM. Detergent dilutions were conducted using an incubation concentration 

of 5 mM DM. The other experimental conditions were the same as in Fig. S1. 
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 Figure S11: Time-dependent predesolvation and desolvation of FhuA ΔC/Δ5L_25N and 

FhuA ΔC/Δ7L_30N incubated with DM at pH 6.8. (A) Predesolvation of FhuA ΔC/Δ5L_25N 

from DM ;  

(B) Predesolvation of FhuA ΔC/Δ7L_30N from DM; (C) Desolvation of FhuA ΔC/Δ5L_25N 

from DM; (D) Desolvation of FhuA ΔC/Δ7L_30N from DM. The solubilized protein 

concentration was 28 nM. Detergent dilutions were conducted using an incubation concentration 

of 5 mM DM. The other experimental conditions were the same as in Fig. S1. 
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Figure S12: Time-dependent predesolvation and desolvation of FhuA ΔC/Δ5L and FhuA 

ΔC/Δ7L_30N incubated with DM at pH 8.2. (A) Predesolvation of FhuA ΔC/Δ5L_25N from 

DM ;  

(B) Predesolvation of FhuA ΔC/Δ7L_30N from DM; (C) Desolvation of FhuA ΔC/Δ5L_25N 

from DM; (D) Desolvation of FhuA ΔC/Δ7L_30N from DM. The solubilized protein 

concentration was 28 nM. Detergent dilutions were conducted using an incubation concentration 

of 5 mM DM. The other experimental conditions were the same as in Fig. S1. 

  



414 
 

 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

CYMAL-FhuA ΔC/Δ5L 

Time (s)

Time (s)

Predesolvation

Desolvation

A
n

is
o

tr
o

p
y

A
n

is
o

tr
o

p
y

A

B

0 1000 2000 3000 4000
0.15

0.20

0.25

0.30

0.35  1 mM

 

 

0 1000 2000 3000 4000
0.15

0.20

0.25

0.30

0.35
 2 mM

 1 mM

 

 

pH 4.6

0 1000 2000 3000 4000
0.15

0.20

0.25

0.30

0.35
 2 mM

 1 mM

 

 

0 1000 2000 3000 4000
0.15

0.20

0.25

0.30

0.35
 2 mM

 1 mM

 

 

CYMAL-4 - FhuA DC/D5L 
 



415 
 

 

 

 

 Figure S13: Time-dependent predesolvation and desolvation of FhuA ΔC/Δ5L 

incubated with CYMAL-4 at pH 4.6. (A) Predesolvation of FhuA ΔC/Δ5L from CYMAL-4; 

(B) Desolvation of FhuA ΔC/Δ5L from CYMAL-4. The solubilized protein concentration was 

28 nM. Detergent dilutions were conducted using an incubation concentration of 50 mM 

CYMAL-4. The other experimental conditions were the same as in Fig. S1. 
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Figure S14: Time-dependent predesolvation and desolvation of OmpG and FhuA ΔC/Δ5L 

incubated with CYMAL-4 at pH 5.6. (A) Predesolvation of OmpG from CYMAL-4; (B) 

Desolvation of OmpG from CYMAL-4; (C) Desolvation of FhuA ΔC/Δ5L from CYMAL-4. The 

solubilized protein concentration was 28 nM. Detergent dilutions were conducted using an 

incubation concentration of 50 mM CYMAL-4. The other experimental conditions were the 

same as in Fig. S1. 
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Figure S15: Time-dependent predesolvation and desolvation of OmpG and FhuA ΔC/Δ5L 

incubated with CYMAL-4 at pH 6.8. (A) Predesolvation of OmpG from CYMAL-4; (B) 

Desolvation of OmpG from CYMAL-4; (C) Desolvation of FhuA ΔC/Δ5L from CYMAL-4. The 

solubilized protein concentration was 28 nM. Detergent dilutions were conducted using an 

incubation concentration of 50 mM CYMAL-4. The other experimental conditions were the 

same as in Fig. S1. 
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Figure S16: Time-dependent predesolvation and desolvation of OmpG and FhuA ΔC/Δ5L  

incubated with CYMAL-4 at pH 8.2. (A) Predesolvation of OmpG from CYMAL-4; (B) 

Predesolvation of FhuA ΔC/Δ5L from CYMAL-4. (C) Desolvation of OmpG from CYMAL-4; 

(D) Desolvation of FhuA ΔC/Δ5L from CYMAL-4. The solubilized protein concentration was 

28 nM. Detergent dilutions were conducted using an incubation concentration of 50 mM 

CYMAL-4. The other experimental conditions were the same as in Fig. S1. 

 

 

 

  



422 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

CYMAL-OMPG

Time (s)

Desolvation

A
n

is
o

tr
o

p
y

A

0 1000 2000 3000 4000

0.25

0.30

0.35  2 mM

 1 mM

 

 

pH 10.0
 OmpG CYMAL-4 - OmpG 

 



423 
 

Figure S17: Time-dependent desolvation of OmpG incubated with CYMAL at pH 10.0. 

Desolvation of OmpG and CYMAL. The solubilized protein concentration was 28 nM. 

Detergent dilutions were conducted using an incubation concentration of 50 mM CYMAL-4. 

The other experimental conditions were the same as in Fig. S1. 
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Figure S18: Time-dependent predesolvation and desolvation of FhuA ΔC/Δ5L_25N and 

FhuA ΔC/Δ7L_30N incubated with CYMAL-4 at pH 5.6. (A) Predesolvation of FhuA 

ΔC/Δ5L_25N from CYMAL-4; (B) Predesolvation of FhuA ΔC/Δ7L_30N from CYMAL-4. (C) 

Desolvation of FhuA ΔC/Δ5L_25N from CYMAL; (D) Desolvation of FhuA ΔC/Δ7L_30N from 

CYMAL-4. The solubilized protein concentration was 28 nM. Detergent dilutions were 

conducted using an incubation concentration of 50 mM CYMAL-4. The other experimental 

conditions were the same as in Fig. S1. 
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Figure S19: Time-dependent predesolvation and desolvation of FhuA ΔC/Δ5L_25N and 

FhuA ΔC/Δ7L_30N incubated with CYMAL-4 at pH 6.8. (A) Predesolvation of FhuA 

ΔC/Δ5L_25N from CYMAL-4; (B) Predesolvation of FhuA ΔC/Δ7L_30N from CYMAL-4. (C) 

Desolvation of FhuA ΔC/Δ5L_25N from CYMAL-4; (D) Desolvation of FhuA ΔC/Δ7L_30N 

from CYMAL-4. The solubilized protein concentration was 28 nM. Detergent dilutions were 

conducted using an incubation concentration of 50 mM CYMAL-4. The other experimental 

conditions were the same as in Fig. S1. 

  



428 
 

 

 

 

  

  

CYMAL-FhuA ΔC/Δ5L_25N

Time (s)

Time (s)

Predesolvation

Desolvation

A
n

is
o

tr
o

p
y

A
n

is
o

tr
o

p
y

A

C

0 2000 4000 6000
0.20

0.25

0.30

0.35  4 mM

 2 mM

 1 mM

 

 

0 2000 4000 6000
0.20

0.25

0.30

0.35  4 mM

 2 mM

 1 mM

 

 

CYMAL-FhuA ΔC/Δ7L_30N

Time (s)

Time (s)

Predesolvation

Desolvation

A
n

is
o

tr
o

p
y

A
n

is
o

tr
o

p
y

B

D

0 2000 4000 6000
0.20

0.25

0.30

0.35
 4 mM

 2 mM

 1 mM

 

 

0 2000 4000 6000
0.20

0.25

0.30

0.35
 4 mM

 2 mM

 1 mM

 

 

pH 8.2
CYMAL-4 - FhuA DC/D5L_25N 
 

CYMAL-4 - FhuA DC/D5L_30N 
 



429 
 

Figure S20: Time-dependent predesolvation and desolvation of FhuA ΔC/Δ5L_25N and 

FhuA ΔC/Δ7L_30N incubated with CYMAL-4 at pH 8.2. (A) Predesolvation of FhuA 

ΔC/Δ5L_25N from CYMAL-4; (B) Predesolvation of FhuA ΔC/Δ7L_30N from CYMAL-4. (C) 

Desolvation of FhuA ΔC/Δ5L_25N from CYMAL-4; (D) Desolvation of FhuA ΔC/Δ7L_30N 

from CYMAL-4. The solubilized protein concentration was 28 nM. Detergent dilutions were 

conducted using an incubation concentration of 50 mM CYMAL-4. The other experimental 

conditions were the same as in Fig. S1. 
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 Figure S21: Time-dependent predesolvation and desolvation of FhuA ΔC/Δ5L_25N 

incubated with CYMAL-4 at pH 10.0. (A) Predesolvation of FhuA ΔC/Δ5L_25N from 

CYMAL-4; (B) Desolvation of FhuA ΔC/Δ5L_25N from CYMAL-4. The solubilized protein 

concentration was 28 nM. Detergent dilutions were conducted using an incubation concentration 

of 50 mM CYMAL-4. The other experimental conditions were the same as in Fig. S1. 
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3. Determination of the predesolvation rates of protein nanopores of varying pI, at detergent 

concentrations below the CMC, and in buffers of varying pH. 

 

 Table S1: Determination of the observed predesolvation rates, 𝒌𝒐𝒃𝒔
𝒑𝒓𝒆

, of OmpG when was 

incubated in 5 mM DM. The predesolvation rates were determined at various pH values. The 

solubilized protein concentration was 28 nM. The FP measurements were carried out using a 

solution that contained 200 mM NaCl at room temperature. The buffer was either 50 mM 

HEPES (pH 6.8, pH 7.4, pH 8.2), 50 mM NaOAc (pH 4.6, pH 5.6) or 50 mM sodium borate (pH 

10.0). All data were derived as averages ± SDs of three independent data acquisitions. The 𝑘𝑜𝑏𝑠
𝑝𝑟𝑒

 

rate constants were inferred from the approximated linear decline in the FP anisotropy upon the 

incubation of the proteomicelle samples at detergent concentrations below the CMC. This was 

accomplished using the equation: 𝑟(𝑡) = −𝑘𝑜𝑏𝑠
𝑝𝑟𝑒𝑡 + 𝑟𝑚𝑎𝑥, where t, r(t), and rmax denote the 

elapsed time, time-dependent FP anisotropy, and maximum FP anisotropy value, which is 

reached at detergent concentrations much greater than the CMC. Tpre is the average total duration 

of the predesolvation phase. [D] is the detergent concentration within the sample well. 
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pH [D] (mM) 𝒌𝒐𝒃𝒔
𝒑𝒓𝒆

  106 (s-1) Tpre (s) 

4.6 1 19 ± 1 ~1680 

0.85 20 ± 1 ~1470 

0.45 52 ± 4 ~737 

5.6 1 12 ± 1 ~1340 

0.85 19 ± 2 ~1147 

0.45 22 ± 3 ~268 

6.8 1 9 ± 1 ~1220 

0.85 21 ± 1 ~1560 

0.45 42 ± 7 ~476 

8.2 1 16 ± 1 ~1070 

0.85 17 ± 2 ~737 

0.45 91 ± 1 ~201 

10.0 1 11 ± 2 ~1540 

0.85 ~1.5 ~1270 

0.45 ~1.7 ~804 

 

  

 

Table S2: Determination of the predesolvation observed rates of FhuA ΔC/Δ5L when was 

incubated in 5 mM DM. The predesolvation rates were determined at various pH values. The 

other experimental conditions and data analysis details were the same as in Table S1.  

pH [D] (mM) 𝒌𝒐𝒃𝒔

𝒑𝒓𝒆
  106 (s-1) Tpre (s) 

4.6 2 8 ± 1 ~1270 

1 ~0.2 ~648 

5.6 1 10 ± 2 ~1140 

0.85 19 ± 1 ~1270 

0.45 57 ± 3 ~670 

6.8 1 11 ± 2 ~1020 

0.85 12 ± 1 ~1220 

0.45 35 ± 3 ~748 

8.2 1 ~0.3 ~1070 

0.85 7 ± 2 ~1070 

0.45 15 ± 5 ~603 
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 Table S3: Determination of the predesolvation observed rates of FhuA ΔC/Δ5L_25N 

when was incubated in 5 mM DM. The predesolvation rates were determined at various pH 

values. The other experimental conditions and data analysis details were the same as in Table 

S1. 

 

pH [D] (mM) 𝒌𝒐𝒃𝒔

𝒑𝒓𝒆
  106 (s-1) Tpre (s) 

4.6 2 20 ± 1 ~720 

1 39 ± 6 ~288 

5.6 1 25 ± 1 ~1610 

0.85 32 ± 1 ~1340 

0.45 55 ± 1 ~469 

6.8a 1 11 ± 1 ~1630 

0.85 40 ± 1 ~1560 

8.2 1 15 ± 2 ~1340 

0.85 61 ± 2 ~1210 

0.45 61 ± 5 ~402 

 
aRecorded data at a DM concentration of 0.45 mM exhibited an increased optical noise, 

precluding accurate determinations of the observed desolvation rates (Fig. S11A).  
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 Table S4: Determination of the predesolvation observed rates of FhuA ΔC/Δ7L_30N 

when was incubated in 5 mM DM. The predesolvation rates were determined at various pH 

values. The other experimental conditions and data analysis details were the same as in Table 

S1. 

 

pH [D] (mM) 𝒌𝒐𝒃𝒔

𝒑𝒓𝒆
  106 (s-1) Tpre (s) 

5.6 1 15 ± 1 ~1610 

0.85 19 ± 1 ~1470 

0.45 63 ± 5 ~670 

6.8 1 22 ± 1 ~1470 

0.85 24 ± 1 ~1360 

0.45 12 ± 5 ~476 

8.2 1 18 ± 2 ~871 

0.85 27 ± 1 ~1340 

0.45 67 ± 4 ~536 
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 Table S5: Determination of the predesolvation observed rates of OmpG when was 

incubated in 50 mM CYMAL-4. The predesolvation rates were determined at various pH 

values. The other experimental conditions and data analysis details were the same as in Table 

S1. 

pH [D] (mM) 𝒌𝒐𝒃𝒔
𝒑𝒓𝒆

  106 (s-1) Tpre (s) 

5.6 4 20 ± 1 ~2580 

2 34 ± 2 ~1370 

1 58 ± 3 ~384 

6.8 4 17 ± 1 ~2630 

2 27 ± 1 ~1260 

1 30 ± 6 ~328 

8.2 4 28 ± 2 ~1090 

2 22 ± 1 ~1090 

1 52 ± 8 ~437 

10.0 2 N/A* N/A 

1 N/A N/A 

 

*N/A stands for predesolvation was not noted.  
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 Table S6: Determination of the predesolvation observed rates of FhuA ΔC/Δ5L when 

was incubated in 50 mM CYMAL-4. The predesolvation rates were determined at various pH 

values. The other experimental conditions and data analysis details were the same as in Table 

S1. 

 

pH [D] (mM) 𝒌𝒐𝒃𝒔
𝒑𝒓𝒆

  106 (s-1) Tpre (s) 

4.6 2 20 ± 5 ~2966 

1 51 ± 3 404 

5.6 4 N/A* N/A 

2 N/A N/A 

1 N/A N/A 

6.8 4 N/A N/A 

2 N/A N/A 

1 N/A N/A 

8.2 2 22 ± 3 ~874 

1 ~31 ~383 

 

*N/A stands for predesolvation was not noted. 
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 Table S7: Determination of the predesolvation observed rates of FhuA ΔC/Δ5L_25N 

when was incubated in 50 mM CYMAL-4. The predesolvation rates were determined at 

various pH values. The other experimental conditions and data analysis details were the same as 

in Table S1. 

 

pH [D] (mM) 𝒌𝒐𝒃𝒔
𝒑𝒓𝒆

  106 (s-1) Tpre (s) 

5.6 4 23 ±1 1592 

2 33 ± 1 1043 

1 N/A* N/A 

6.8 4 20 ± 1 ~1590 

2 34 ± 2 ~1150 

1 86 ± 8 ~547 

8.2 4 24 ± 2 ~1310 

2 41 ± 3 ~929 

1 93 ± 14 ~273 

10.0 2 26 ± 2 ~1200 

1 52 ± 13 ~437 

 

*N/A stands for predesolvation was not noted. 
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Table S8: Determination of the predesolvation observed rates of FhuA ΔC/Δ7L_30N when 

was incubated in 50 mM CYMAL-4. The predesolvation rates were determined at various pH 

values. The other experimental conditions and data analysis details were the same as in Table 

S1. 

 

pH [D] (mM) 𝒌𝒐𝒃𝒔
𝒑𝒓𝒆

  106 (s-1) Tpre (s) 

5.6 4 17 ± 1 ~1590 

2 32 ± 2 ~988 

1 30 ± 8 ~274 

6.8 4 17 ± 1 ~1480 

2 40 ± 2 ~1090 

1 59 ± 12 ~437 

8.2 4 14 ± 5 ~601 

2 23 ± 5 ~765 

1 85 ± 16 ~328 
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 4. Determination of the desolvation rate and time constants of protein nanopores of 

varying pI, at detergent concentrations below the CMC, and in buffers of varying pH. 

 

 Table S9: The observed desolvation rate constants, 𝒌𝒐𝒃𝒔
𝒅𝒆𝒔, of OmpG refolded in 5 mM 

DM. The desolvation rates were determined at various pH values. The solubilized protein 

concentration was 28 nM. The FP measurements were carried out using a solution that contained 

200 mM NaCl at room temperature. The buffer was either 50 mM HEPES (pH 6.8, pH 7.4, pH 

8.2), 50 mM NaOAc (pH 4.6, pH 5.6) or 50 mM sodium borate (pH 10.0). All data were derived 

as averages ± SDs of three independent data acquisitions.  The 𝑘𝑜𝑏𝑠
𝑝𝑟𝑒

 values were inferred using a 

single-exponential decay of the FP anisotropy upon the incubation of proteomicelle samples at 

detergent concentrations below the CMC. This was accomplished using the equation:  

 

𝑟(𝑡) = 𝑟𝑑𝑒−
𝑡

𝜏 + 𝑟𝑚𝑖𝑛,           (S1) 

 

 

where  𝑘𝑜𝑏𝑠
𝑑𝑒𝑠 =

1

τ
          (S2) 

 

Here, t, r(t), and rmin denote the elapsed time during the detergent desolvation phase, time-

dependent FP anisotropy, and minimum FP anisotropy value, which is reached at infinity and at 

detergent concentrations below the CMC. rd is a FP anisotropy constant. The standard error of 

the mean for rmin was always lower than 0.001. 
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pH [D] (mM) 𝒌𝒐𝒃𝒔
𝒅𝒆𝒔  105 (s-1) 𝒓𝒎𝒊𝒏 𝒓𝒅  (s) 

4.6 1 260 ± 29 0.14 ~3.3 385 ± 43 

0.85 300 ± 29 0.09 ~7.6 333 ± 32 

0.45 452 ± 45 0.09 3.0 ± 1.2 221 ± 22 

5.6 1 114 ± 8 0.15 0.56 ± 0.06 876 ± 61 

0.85 256 ± 10 0.12 ~0.14 390 ± 16 

0.45 224 ± 8 0.11 0.38 ± 0.01 447 ± 16 

6.8 1 133 ± 14 0.26 0.25 ± 0.05 750 ± 80 

0.85 202 ± 12 0.18 2.6 ± 0.6 494 ± 32 

0.45 236 ± 17 0.15 0.39 ± 0.04 423 ± 31 

8.2 1 146 ± 8 0.23 0.40 ± 0.04 685 ± 35 

0.85 269 ± 13 0.17 1.3 ± 0.2 372 ± 18 

0.45 556 ± 38 0.16 0.79 ± 0.10 180 ± 12 

10.0 1 235 ± 16 0.24 4.5 ± 1.2 426 ± 30 

0.85 267 ± 18 0.21 3.8 ± 0.9 375 ± 26 

0.45 505 ± 24 0.18 8.6 ± 1.8 198 ± 9 
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Table S10: The observed desolvation rate constants, 𝒌𝒐𝒃𝒔
𝒅𝒆𝒔, of FhuA ΔC/Δ5L refolded in 5 

mM DM. Details about other experimental conditions and data analysis were the same as in 

Table S9. 

 

 

 

 

  

pH [D] (mM) 𝒌𝒐𝒃𝒔
𝒅𝒆𝒔  105 (s-1) 𝒓𝒎𝒊𝒏 𝒓𝒅  (s) 

4.6 2 149 ± 26 0.29  0.44 ± 0.16 672 ± 117 

1 236 ± 14 0.21  0.76 ± 0.09 423 ± 25 

5.6 1 159 ± 10 0.21  0.84 ± 0.11 628 ± 40 

0.85 323 ± 14 0.21  7.8 ± 1.5 310 ± 13 

0.45 476 ± 32 0.20  3.1 ± 0.8 210 ± 14 

6.8 1 117 ± 11 0.26  0.32 ± 0.04 857 ± 80 

0.85 266 ± 18 0.22  3.4 ± 0.8 376 ± 25 

0.45 403 ± 29 0.21  2.4 ± 0.6 248 ± 18 

8.2 1 191 ± 18 0.29  0.47 ± 0.10 523 ± 50 

0.85 157 ± 11 0.24  0.60 ± 0.08 636 ± 50 

0.45 319 ± 28 0.23  0.66 ± 0.14 314 ± 28 
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Table S11: The observed desolvation rate constants, 𝒌𝒐𝒃𝒔
𝒅𝒆𝒔, of FhuA ΔC/Δ5L_25N refolded 

in 5 mM DM. Details about other experimental conditions and data analysis were the same as in 

Table S9. 

 

 

 

 

 

 
aRecorded data at a DM concentration of 0.45 mM exhibited an increased optical noise, 

precluding accurate determinations of the observed desolvation rates (Fig. S11C).  

 

 

 

 

 

 

 

  

pH [D] (mM) 𝒌𝒐𝒃𝒔
𝒅𝒆𝒔  105 (s-1) 𝒓𝒎𝒊𝒏 𝒓𝒅  (s) 

4.6 2 115 ± 16 0.19  0.18 ± 0.02 866 ± 117 

1 199 ± 10 0.15  0.23 ± 0.01 503 ± 26 

5.6 1 340 ± 16 0.18  28 ± 8 294 ± 14 

0.85 337 ± 14 0.16  12 ± 3 297 ± 12 

0.45 403 ± 22 0.16  1.2 ± 0.2 248 ± 14 

6.8a 1 292 ± 23 0.22  10 ± 4 342 ± 27 

0.85 336 ± 16 0.16  23 ± 6 298 ± 14 

8.2 1 344 ± 23 0.19  11 ± 4 291 ± 20 

0.85 437 ± 31 0.17  13 ± 5 229 ± 16 

0.45 641 ± 32 0.16  2.3 ± 0.4 156 ± 8 
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Table S12: The observed desolvation rate constants, 𝒌𝒐𝒃𝒔
𝒅𝒆𝒔, of FhuA ΔC/Δ7L_30N refolded 

in 5 mM DM. Details about other experimental conditions and data analysis were the same as in 

Table S9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

pH [D] (mM) 𝒌𝒐𝒃𝒔
𝒅𝒆𝒔  105 (s-1) 𝒓𝒎𝒊𝒏 𝒓𝒅  (s) 

5.6 1 111 ± 12 0.19  0.84 ± 0.16 899 ± 103 

0.85  217 ± 8 0.19  3.09 ± 0.41 461 ± 18 

0.45  377 ± 19 0.19  1.44 ± 0.22 265 ± 13 

6.8 1  263 ± 21 0.23  2.63 ± 0.90 380 ± 31 

0.85  280 ± 11 0.19  5.15 ± 0.92 357 ± 18 

0.45  378 ± 20 0.18  0.90 ± 0.11 265 ± 14 

8.2 1 259 ± 24 0.23 0.47 ± 0.12 386 ± 36 

0.85  394 ± 23 0.18  13.7 ± 4.67 254 ± 15 

0.45  595 ± 52 0.18  1.76 ± 0.59 168 ± 15 
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Table S13: The observed desolvation rate constants, 𝒌𝒐𝒃𝒔
𝒅𝒆𝒔, of OmpG refolded in 50 mM 

CYMAL-4. Details about other experimental conditions and data analysis were the same as in 

Table S9. 

 

 

 

pH [D] (mM) 𝒌𝒐𝒃𝒔
𝒅𝒆𝒔  105 (s-1) 𝒓𝒎𝒊𝒏 𝒓𝒅  (s) 

5.6 4 108 ± 4.7 0.15  1.87 ± 0.23 922 ± 40 

2 171 ± 5.6 0.13  1.52 ± 0.14 586 ± 19 

1 202 ± 9.5 0.13  0.39 ± 0.02 495 ± 23 

6.8 4 96 ± 5.2 0.23  1.16 ± 0.16 1040 ± 56 

2 200 ± 7.5 0.20  1.63 ± 0.18 499 ± 19 

1 235 ± 8.4 0.19  0.38 ± 0.02 426 ± 15 

8.2 4 82 ± 3.6 0.25  0.21 ± 0.01 1220 ± 53 

2 112 ± 2.6 0.21  0.39 ± 0.01 889 ± 21 

1 190 ± 5.8 0.18  0.34 ± 0.01 525  ± 16 

10.0 2 ~1.48 N/A N/A N/A 

1 158 ± 12.0 0.26  0.10 ± 0.00 632 ± 48 

 

NA stands for not applicable. In this case, the desolvation phase followed an almost linear time-

dependent decrease with an observed desolvation constant, 𝒌𝒐𝒃𝒔
𝒅𝒆𝒔. 
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Table S14: The observed desolvation rate constants, 𝒌𝒐𝒃𝒔
𝒅𝒆𝒔, of FhuA ΔC/Δ5L refolded in 50 

mM CYMAL-4. Details about other experimental conditions and data analysis were the same as 

in Table S9. 

 

 

pH [D] (mM) 𝒌𝒐𝒃𝒔
𝒅𝒆𝒔  105 (s-1) 𝒓𝒎𝒊𝒏 𝒓𝒅  (s) 

4.6 2 7.8 ±  0.4 N/A* N/A N/A 

1 185 ± 10 0.18 ± 0.01 0.33 ± 0.02 542 ± 30 

5.6 4 2.7 ± 0.1 N/A N/A N/A 

2 4.4 ± 0.1 N/A N/A N/A 

1 7.7 ± 0.1 N/A N/A N/A 

6.8 4 1.5 ± 0.1 N/A N/A N/A 

2 3.6 ± 0.1 N/A N/A N/A 

1 6.1 ± 0.1 N/A N/A N/A 

8.2 4 40 ± 3 0.27  0.09 ± 0.01 2504 ± 161 

2 135 ± 7 0.24  0.31 ± 0.02 742 ± 38 

1 156 ± 11 0.24 0.20 ± 0.02 643 ± 45 

 

*NA stands for exponential decay of the detergent desolvation was not applicable. In this case, 

the desolvation phase followed an almost linear time-dependent decrease with an observed 

desolvation constant, 𝒌𝒐𝒃𝒔
𝒅𝒆𝒔. 
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Table S15: The observed desolvation rate constants, 𝒌𝒐𝒃𝒔
𝒅𝒆𝒔, of FhuA ΔC/Δ5L_25N refolded 

in 50 mM CYMAL-4. Details about other experimental conditions and data analysis were the 

same as in Table S9. 

 

 

pH [D] (mM) 𝒌𝒐𝒃𝒔
𝒅𝒆𝒔  105 (s-1) 𝒓𝒎𝒊𝒏 𝒓𝒅  (s) 

5.6 4 94 ± 5 0.19 0.70 ± 0.08 1060 ± 59 

2 146 ± 6 0.18 0.56 ± 0.04 686 ± 28 

1 124 ± 5 0.17 0.16 ± 0.01 807 ± 35 

6.8 4 59 ± 3 0.20  0.34 ± 0.02 1702 ± 92 

2 201 ± 9 0.21  1.3 ± 0.2 497 ± 22 

1 339 ± 20 0.20  0.86 ± 0.12 295 ± 17 

8.2 4 147 ± 6 0.22  0.77 ± 0.08 680 ± 30 

2 216 ± 10 0.22  0.85 ± 0.10 463 ± 22 

1 326 ± 22 0.22  0.33 ± 0.03 307 ± 21 

10.0 2 171 ± 15 0.27  0.55 ± 0.11 585 ± 50 

1 269 ± 29 0.26  0.28 ± 0.05 372 ± 40 
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Table S16: The observed desolvation rate constants, 𝒌𝒐𝒃𝒔
𝒅𝒆𝒔, of FhuA ΔC/Δ5L_30N refolded 

in 50 mM CYMAL-4. Details about other experimental conditions and data analysis were the 

same as in Table S9. 

 

 

pH [D] (mM) 𝒌𝒐𝒃𝒔
𝒅𝒆𝒔  105 (s-1) 𝒓𝒎𝒊𝒏 𝒓𝒅  (s) 

5.6 4 65 ± 4 0.21  0.30 ± 0.02 1542 ± 88 

2 139 ± 6 0.20  0.45 ± 0.03 718 ± 30 

1 188 ± 9 0.20  0.20 ± 0.01 531 ± 27 

6.8 4 56 ± 3 0.23  0.23 ± 0.01 1786 ± 106 

2 218 ± 10 0.23  1.0 ± 0.1 458 ± 21 

1 240 ± 14 0.21  0.36 ± 0.03 417 ±  25 

8.2 4 133 ± 5 0.25  0.23 ± 0.01 753 ± 28 

2 196 ± 9 0.26  0.38 ± 0.03 509 ± 24 

1 309 ± 21 0.23  0.29 ± 0.03 324 ± 22 
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5. Initial rates of detergent desolvation determined for acidic and basic -barrel membrane 

proteins.  

 

 

 Table S17: Initial desolvation rates, 𝑹𝒊𝒏
𝒅𝒆𝒔, of the DM- and CYMAL-4-containing 

proteomicelles that include acidic and basic -barrel membrane proteins.a,b,c 

 

 

Detergent CMC 

(mM) 

Protein Charge 

state 

pI Total 

protein 

length 

(residues) 

Initial 

desolvation 

rate, 𝑹𝒊𝒏
𝒅𝒆𝒔  

1012 (Ms-1)d 

 

 

DM 

 

 

 

1.8 

OmpG Acidic 4.4 281 41  2 

FhuA C/5L Acidic 5.7 505 54  5 

FhuA 

C/5L_25N 

Basic 9.3 473 96  6 

FhuA 

C/7L_30N 

Basic 9.6 426 73  7 

 

 

CYMAL-

4 

 

 

7.6 

OmpG Acidic 4.4 281 23  1 

FhuA C/5L Acidic 5.7 505 11  1 

FhuA 

C/5L_25N 

Basic 9.3 473 41  2 

FhuA 

C/7L_30N 

Basic 9.6 426 37  1 

aThe final detergent concentrations for DM and CYMAL-4 were 1 and 4 mM, respectively.  
bThe isoelectric point was determined using the total number of residues of each protein. The 

truncation FhuA proteins include a 33-residue signal peptide at the N-terminus and a Cys-

containing, Gly/Ser-rich containing polypeptide loop engineered on the T7 -turn.  
cAll proteins include a 6His+ at the C terminus.  
dThe initial desolvation rates were determined using a solution that contained 200 mM NaCl, 50 

mM HEPES, pH 8.2.  
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6. Calculation of the association (kon) and dissociation (koff) rate constants using detergent-

desolvation curves.  

 

 In this work, the detergent concentration-dependent desolvation curves were acquired when 

the  

 

detergent concentration was lower than the CMC. Assuming a simplified bimolecular reaction 

 

𝑃 + 𝐷
𝑘

↔ 𝑃𝐷              (S3) 

 

where [P] and [D] are time-dependent concentrations of free proteins and detergent micelles, 

respectively.  

𝑑[𝑃𝐷]

𝑑𝑡
= 𝑘𝑜𝑛[𝑃][𝐷] − 𝑘𝑜𝑓𝑓[𝑃𝐷]        (S4) 

where kon and koff are the association and dissociation rate constants, respectively. Here, [PD] 

indicates the concentration of proteomicelles. Then, 

[𝑃] = [𝑃]𝑡𝑜𝑡 − [𝑃𝐷]          (S5) 

Here, [P]tot denotes the total solubilized protein in solution (e.g., [P]tot = 28 nM), 

[𝐷] = [𝐷]𝑡𝑜𝑡 − [𝑃𝐷]          (S6) 

Because, the concentration of detergent micelles, [D], is much greater than the protein 

concentration, [P], 

 

[𝑃] ≪ [𝐷], then  [𝑃𝐷] ≪ [𝐷]         (S7) 
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and 

 

[𝐷] ≅ [𝐷]𝑡𝑜𝑡           (S8) 

 

Therefore,  

 

𝑑[𝑃𝐷]

𝑑𝑡
= 𝑘𝑜𝑛[𝑃]𝑡𝑜𝑡[𝐷] − (𝑘𝑜𝑛[𝐷] + 𝑘𝑜𝑓𝑓)[𝑃𝐷]      (S9) 

 

To solve this differential equation, we will denote the main variable [PD] by x, and  

 

 = 𝑘𝑜𝑛[𝑃]𝑡𝑜𝑡[𝐷]          (S10) 

 

 = (𝑘𝑜𝑛[𝐷] + 𝑘𝑜𝑓𝑓)          (S11) 

 

Thus,  

 

𝑑𝑥

𝑑𝑡
=  − 𝑥           (S12) 

 

or 

 

∫
𝑑𝑥

−𝑥
= ∫ 𝑑𝑡

𝑡

0

𝑥

𝑥𝑚𝑎𝑥
          (S13) 
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where 𝑥𝑚𝑎𝑥 is the concentration of the proteomicelles, [𝑃𝐷]𝑚𝑎𝑥, at the beginning of the 

detergent- 

 

desolvation reaction.  The integral equation has the following solution:  

 

𝑙𝑛 (𝑥 −



) 𝑥

𝑥𝑚𝑎𝑥
= −𝑡         (S14)  

 

𝑥−




𝑥𝑚𝑎𝑥−




= 𝑒−𝑡           (S15) 

 

𝑥(0) = 𝑥𝑚𝑎𝑥  at 𝑡 = 0         (S16) 

 

and 

 

𝑥(∞) =



   at 𝑡 =  ∞          (S17) 

 

𝑥∞ =
𝑘𝑜𝑛[𝑃]𝑡𝑜𝑡[𝐷]

𝑘𝑜𝑛[𝐷]+ 𝑘𝑜𝑓𝑓 
          (S18) 

 

In between these values: 

 

𝑥(𝑡) =



+  (𝑥𝑚𝑎𝑥 −  




) 𝑒−𝑡         (S19) 
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This is an exponential curve, but it has a constant in front of the exponential term 

 

𝑥 𝑎𝑡 ∞  =



           (S20) 

 

In order to operate linear-regression fittings of the desolvation curve domains at detergent 

concentrations comparable with or below CMCc, we always need to subtract that constant from 

x(t). Of course, the  

main assumption is that the changes in the FP anisotropy are proportional to the detergent 

exchange between solution and proteomicelles.   

 The equation (S19) can be re-written as: 

𝑙𝑛 [𝑥(𝑡) −



] = 𝑙𝑛 (𝑥𝑚𝑎𝑥 −  




) − 𝑡        (S21) 

From the linear fit, one extracts detergent concentration-dependent  [D] 

([𝐷]) = (𝑘𝑜𝑛[𝐷] + 𝑘𝑜𝑓𝑓) = 𝑘𝑜𝑏𝑠
𝑑𝑒𝑠        (S22) 

where 𝑘𝑜𝑏𝑠
𝑑𝑒𝑠 indicates the observed rate constant of desolvation. Here, we monitor an FP 

anisotropy decrease, so a dominantly dissociation process, the fitting function (S22) becomes the 

following:1  

𝑘𝑜𝑏𝑠
𝑑𝑒𝑠 = −𝑘𝑜𝑛[𝐷] + 𝑘𝑜𝑓𝑓         (S23) 

Because the desolvation occurs below the CMC, [D] is the actual detergent concentration in the 

sample well. We observed fast desolvation rates when there is little detergent in the well. The 

intercept with the vertical axis ([D]=0) is the kinetic rate constant of dissociation of the 

proteomicelles, koff. The intercept with the horizontal axis (𝑘𝑜𝑏𝑠
𝑑𝑒𝑠=0) is the equilibrium 
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dissociation constant, Kd. For a positive value of kon, an increase of [D] produces a decrease in 

𝑘𝑜𝑏𝑠
𝑑𝑒𝑠

. Because of an exponential dependence in equation (S21), then  

𝑘𝑜𝑏𝑠
𝑑𝑒𝑠 =

𝑙𝑛2

𝑇1/2
=

0.693

𝑇1/2
           (S24) 

where T1/2 is the half-time of the detergent desolvation reaction, namely the time at which the FP 

anisotropy reaches 50% out of the value that corresponds to the beginning of the desolvation 

phase, or the end of the predesolvation phase. 
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7. Scaling of the observed desolvation rates of the protein nanopores with the detergent 

concentrations at values below the CMC. 
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Figure S22: The observed kinetic rates of desolvation of OmpG scale linearly with the DM 

detergent concentrations at values below the CMCDM = 1.8 mM. (A) pH 4.6; (B) pH 6.8; (C) 

pH 8.2; (D) pH 10.0. The other experimental conditions were the same as those stated in the 

figure caption of Fig. S1. 
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Figure S23: The observed kinetic rates of desolvation of FhuA C/5L scale linearly with 

the DM detergent concentrations at values below the CMCDM = 1.8 mM. (A) pH 5.6; (B) pH 

6.8. The other experimental conditions were the same as those stated in the figure caption of Fig. 

S1. 
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Figure S24: The observed kinetic rate constants of desolvation of FhuA C/5L_25N scale 

linearly with the DM detergent concentrations at values below the CMCDM = 1.8 mM at pH 

8.2. The other experimental conditions were the same as those stated in the figure caption of Fig. 

S1. 



461 
 

 

  

0.0 0.2 0.4 0.6 0.8 1.0
0.002

0.004

0.006

0.008

0.010

 

 

Concentration (mM)

DM - FhuA ΔC/Δ7L_30N pH 8.2

k o
b

s
(s

-1
)

0.0 0.2 0.4 0.6 0.8 1.0
0.001

0.002

0.003

0.004

0.005

 

 

Concentration (mM)

DM- FhuA ΔC/Δ7L_30N pH 6.8

k o
b

s
(s

-1
)

0.0 0.2 0.4 0.6 0.8 1.0

0.002

0.004

0.006

 

 

Concentration (mM )

DM- FhuA ΔC/Δ7L_30N pH 5.6

k o
b

s
(s

-1
)

A

B

C



462 
 

Figure S25: The observed kinetic rates of desolvation of FhuA C/7L_30N scale linearly 

with the DM detergent concentrations at values below the CMCDM = 1.8 mM. (A) pH 5.6; 

(B) pH 6.8; (C) pH 8.2. The other experimental conditions were the same as those stated in the 

figure caption of Fig. S1. 
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Figure S26 The observed kinetic rates of desolvation of OmpG scale linearly with the 

CYMAL-4 detergent concentrations at values below the CMCCYMAL-4 = 7.6 mM. (A) pH 5.6; 

(B) pH 6.8; (C) pH 8.2. The other experimental conditions were the same as those stated in the 

figure caption of Fig. S1. 
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Figure S27: The observed kinetic rates of desolvation of FhuA C/5L scale linearly with 

the CYMAL-4 detergent concentrations at values below the CMCCYMAL-4 = 7.6 mM. The 

buffer pH was 8.2. The other experimental conditions were the same as those stated in the figure 

caption of Fig. S1. 
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Figure S28: The observed kinetic rates of desolvation of FhuA C/5L_25N scale linearly 

with the CYMAL-4 detergent concentrations at values below the CMCCYMAL-4 = 7.6 mM. 

(A) pH 6.8; (B) pH 8.2. The other experimental conditions were the same as those stated in the 

figure caption of Fig. S1. 
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Figure S29: The observed kinetic rates of desolvation of FhuA C/7L_30N scale linearly 

with the CYMAL-4 detergent concentrations at values below the CMCCYMAL-4 = 7.6 mM.  

(A) pH 5.6; (B) pH 6.8; (C) pH 8.2. The other experimental conditions were the same as those 

stated in the figure caption of Fig. S1. 
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8. Kinetic rate constants of association and dissociation of proteomicelles using time-

dependent FP anisotropy changes. 

 

 Table S18: Determination of kinetic rate constants of association and dissociation of 

DM-based proteomicelles as well as the equilibrium dissociation constant, Kd. The 

experimental conditions were the same as those stated in the figure caption of Fig. S1. 

 

Protein pH kon (M-1s-1) koff 103 (s-

1) 

Kd (mM)a Kd (mM)b 

OmpG 4.6 36 ± 2 61 ± 2 1.7 ± 0.1 1.6 ± 0.5 

OmpG 6.8 17 ± 8 32 ± 6 1.9 ± 0.4 1.5 ± 0.4 

OmpG 8.2 74 ± 2 89 ± 2 1.2 ± 0.1 1.5 ± 0.4 

OmpG 10.0 51 ± 8 73 ± 7 1.4 ± 0.2 1.3 ± 0.1 

FhuA ΔC/Δ5L 5.6 54 ± 15 73 ± 12 1.4 ± 0.2 1.6 ± 0.2 

FhuA ΔC/Δ5L 6.8 48 ± 14 63 ± 11 1.3 ± 0.3 1.7 ± 0.1 

FhuA 

ΔC/Δ5L_25N 

8.2 53 ± 2 88 ± 2 1.6 ± 0.1 ~1.7 

FhuA 

ΔC/Δ7L_30N 

5.6 48 ± 11 61 ± 1 1.3 ± 0.3 1.8 ± 0.3 

FhuA 

ΔC/Δ7L_30N 

6.8 22 ± 3 47 ± 3 2.1 ± 0.3 1.8 ± 0.4 

FhuA 

ΔC/Δ7L_30N 

8.2 63 ± 14 91 ± 12 1.4 ± 0.3 ~3.2 
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aThese model-dependent equilibrium dissociation constants were derived in this work using the 

values of the association (kon) and dissociation (koff) rate constants of the proteomicelles. These 

constants were determined using the linear fits of the observed desolvation rates, 𝑘𝑜𝑏𝑠
𝑑𝑒𝑠 as follows: 

 

𝑘𝑜𝑏𝑠
𝑑𝑒𝑠 = −𝑘𝑜𝑛[𝐷] + 𝑘𝑜𝑓𝑓         (S25) 

 

The relationships of the observed predesolvation rates, 𝑘𝑜𝑏𝑠 
𝑑𝑒𝑠 ([𝐷]), to the association and 

dissociation constants are closely similar to the equation (S23). The “-“ sign in front of kon shows 

that the overall observed rate is a dissociation (not association) rate of the proteomicelles. This is 

the reason why the observed rate decreases by increasing the detergent concentration within the 

sample well at values approaching the CMC. Therefore, the koff and kon values were inferred 

using the intercepts with the vertical 𝑘𝑜𝑏𝑠 
𝑑𝑒𝑠 axes ([D]=0) and the linear slopes, respectively (Figs. 

S22-S29). At the same time, the Kd values were derived as intercepts of the linear fits with the 

horizontal axes (𝑘𝑜𝑏𝑠 
𝑑𝑒𝑠 =0). 

 

bThese equilibrium dissociation constants were derived previously using the endpoints of the 

desolvation reaction.2  
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Table S19: Determination of kinetic rate constants of association and dissociation of 

CYMAL-4-based proteomicelles as well as the equilibrium dissociation constant, Kd. The 

experimental conditions were the same as those stated in the figure caption of Fig. S1. 

Protein pH kon (M-1s-1) koff 103 (s-1) Kd (mM)a 

OmpG 5.6 3 ± 1 23 ± 1 7.5 ± 0.1 

OmpG 6.8 5 ± 1 29 ± 1 6.1 ± 0.1 

OmpG 8.2 3 ± 2 21 ± 4 6.2 ± 1.2 

FhuA ΔC/Δ5L 8.2 4 ± 1 20 ± 2 5.1 ± 1.0 

FhuA ΔC/Δ5L_25N 6.8 9 ± 2 41 ± 4 4.5 ± 1.1 

FhuA ΔC/Δ5L_25N 8.2 6 ± 2 36 ± 5 6.4 ± 0.9 

FhuA ΔC/Δ7L_30N 5.6 4 ± 1 23 ± 1 5.6 ± 0.3 

FhuA ΔC/Δ7L_30N 6.8 6 ± 1 32 ± 4 5.0 ± 0.6 

FhuA ΔC/Δ7L_30N 8.2 5 ± 2 34 ± 5 6.2 ± 0.9 
 
 aThese model-dependent equilibrium dissociation constants were derived in this work using 

the values of the association (kon) and dissociation (koff) rate constants of the proteomicelles. 

Other data analysis details are provided in the footnotes of Table S18. 
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Chapter 7. Concluding Remarks   
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Here I present the general conclusions for this thesis. If the reader desires a more nuanced look at the 

conclusions for any of the five papers presented within this thesis, I kindly direct them to the discussions 

and conclusion sections at the end of each chapter.  
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In the past decades, there have been tremendous advances in the structural and biophysical 

understanding of membrane proteins[1],[2]. The adaption of high throughput methods for 

determining solubilization conditions is driving the recent advances in the number of membrane 

protein structures being solved[3].  Even these high throughput techniques are still selecting 

detergents by trial and error[4] and the reason why one detergent works while another fails for 

any given protein is ill-defined. The continued use of trial and error for detergent selection may 

be due to the lack of a descriptive methodology to map the kinetic fingerprint of the protein 

detergent complex, which may be a fundamental limitation in membrane protein structural 

biology and biophysics.  In this thesis, I describe the development of an assay which uses steady 

state florescence polarization anisotropy to measures the change of hydrodynamic radius caused 

by stripping of detergent from the membrane protein.  This change in signal is due to the 

physical change of the size of the protein as the detergent torus is depleted. The unique feature of 

fluorescence anisotropy is that it measures this change in a concentration independent manner. 

Therefore, as protein aggregates form and proteins fall out of solution, they stop contributing to 

the overall signal in a meaningful way. This allows the remaining labeled proteins still in 

solution to report on their size via relative tumbling rate as measured by anisotropy.  Unlike most 

detergent solubilization high throughput assays which report primarily on solubilization[5]–[7], 

the method I described within this thesis allows for the semiquantitative description of the 

kinetics of the association and dissociation of the detergents from the protein of interest. So, not 

only are we able to determine detergents with favorable solubilization features, we are able to 

identify detergents where the adhesive force to the protein is much tighter than the cohesive 

force to other detergent monomers.   

 



477 
 

This is fundamentally important, as we will be able to focus on detergent profiles that show long 

desorption kinetics and tight adhesive interactions highlighting extremely tight binding 

detergents that can potentially be used at much lower concentrations, while still imparting huge 

benefits to protein stability, such as the tight binding of LPPG to FhuA ΔC/Δ5L described in 

Chapter 3.  As more data becomes available on more protein detergent complex mixtures, the 

analysis may be able to shine some light on the various characteristics driving these not so 

obvious interactions, such as the finding in Chapter 6 that the kinetics, but not the energetics, of 

the adhesive interaction between the protein and detergent depend on protein charge even with 

neutral detergents. This type of information may be used to further understand the elements of 

the protein-detergent complex that are driving strong interactions. Due to the complexities of 

membrane proteins and the interactions governing the protein detergent-complex, a complete and 

informative description of the forces driving these interactions is still far off. Hopefully, this 

methodology will be broadly adapted to many membrane proteins. The accumulated information 

could allow chemists to have a powerful tool, that in the future, would allow the informed tuning 

of novel detergent structures to specific membrane proteins based on simple findings, such as 

charge density or other biophysical characteristics of the complex.   
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Expanding possibilities beyond detergents 

The next step in understanding and working with membrane proteins after they are well 

solubilized in detergents, is determining how they insert from that detergent solubilized state into 

lipids. The study of proteoliposomes is important in understanding transport kinetics [8] and is 

the next step in understanding structure in a native-like environment [9]. However, the transition 

from detergent solubilized state to liposomal associated state is ill defined and wrought with trial 

and error.   

 

It may be possible to adapt the previously described method to determine detergent solubilized 

protein insertion kinetics into liposomes. The main technical hurdle in employing fluorescence 

polarization to a large complex, such as a proteoliposome, is the fluorescence lifetime of the 

fluorophore. The effect on measured anisotropy (r) of rotation is the strongest when the when the 

lifetime of florescence emission is on the same time scale as the molecular rotation of the target. 

If the rotation is too slow because the complex is large, the emission will be over before the 

target rotates enough and will approach the fundamental limit of anisotropy, r 0.4. For 

complexes >100 kDa, longer lifetimes of approximately >20 ns would be preferable [10]. For the 

work highlighted in this thesis, Texas Red was the fluorophore of choice, as it is bright and 

environmentally robust, but it has a relatively short florescent lifetime of ~4.5 ns [11]. This was 

sufficient for the complexes of proteomicelles examined in this work, primarily because the 

anisotropy signal was decreasing as desorption took place, which is easier to measure than small 

changes in intensity. However, Texas Red’s lifetime was too short to study assembly of the 

proteomicelles to the larger liposomes. As the anisotropy level of many of the proteomicelles 

examined in this thesis was between 0.32-0.37, which is close to the theoretical anisotropy limit 
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of r=0.4, this short fluorescence lifetime gives little room to measure signal for assembling into 

larger complexes such as a liposome. A fluorophore that would emit a signal for  >20 ns would 

strongly increase the chances of measuring the assembly kinetics of the labeled protein to a 

liposome. In the search for longer emitting fluorophores, we identified Dr. Laursen’s group out 

of Denmark. Dr. Laursen and his colleagues manufactured a new type of dye, ADOTA+, that 

emits red and has a lifetime of ~20 ns[12]–[14]. It is my belief that, armed with the well 

characterized engineered FhuA beta-barrel described within this thesis orthogonally labeled with 

the ADOTA fluorophores, the complex assembly kinetics into liposomes can be measured. I 

think that this would have a great impact on the field of membrane biophysics broadly but would 

also allow my fellow single molecule electrophysiology brethren to know if the long waits in 

measuring insertions are due to insoluble proteins or poor kinetics, which if the reader recalls, 

was the impetus for the line of thinking and body of work that resulted in this thesis. 
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