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Abstract

The focus of this work is to develop theoretical methods that will accurately
describe electron-electron and electron-hole correlation in nanoparticles using
many-body diagrammatic techniques. Diagrammatic representation is a more
complex representation of quantum mechanics, however, it becomes a more ad-
vantageous representation in its application to this work due to its ease of use.
Diagrammatic techniques are essential to the five methods presented here as
they prove to be pivotal in theoretical development as well as providing useful
information in extracting and visualizing fundamental physics to make useful
approximations to the methods. In the projected congruent transformed Hamil-
tonian method with partial infinite order summation of diagrams (PCTH-PIOS),
diagrammatic summation approach was used. In the geminal projected config-
uration interaction (GPCI) method, diagrammatic factorization techniques were
used. In the geminal screened electron-hole interaction kernel (GSIK) method,
we conclude that only linked diagrams contribute to the exciton binding energy.
The approximation is made to only include first order diagrams which captures
the essential physics of the electron-hole interaction. In the composite control-
variate stratified sampling (CCSS) method the calculation of the vertices of the
diagrams using stratified sampling. Lastly we investigate the effect of electro-
magnetic (EM) field on the generation of 2e-2h states from 1e-1h states. In this
work, time independent diagrams are calculated once and used for the rest of
the calculation. Diagrammatic techniques are essential to the theoretical devel-
opment of the methods in this work for understanding the optical and electronic
properties of nanoparticles.
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Chapter 1

Introduction

1.1 Scope

In quantum chemistry, the goal is to accurately describe a chemical system in the computa-

tionally quickest way possible. To accurately describe a chemical system, we are interested in

calculating the energy of that system to match the ground state energy, or the lowest-energy

state, as close as possible. To do this in the computationally quickest way possible it is to

mean that we either use more efficient algorithms in our coding practices or we cleverly do

not perform calculations that will contribute negiligibly to the result. We can also precom-

pute certain elements of the calculation once and store that information to be used over and

over again throughout the calculation. All of the above techniques are used extensively in

this work.

The Hartree-Fock method captures around 99% of the total electronic energy and it

becomes the starting point of many more accurate quantum chemistry methods that seek

to recover the remaining 1% of the total energy. This remaining energy is known as the

correlation energy and is defined as the total energy of the system minus the Hartree-Fock

energy for that system. The Hartree-Fock method is extremely important and elementry to

any quantum chemist and it will be briefly discussed in chapter 2 as well as configuration

interaction, however, I will allocate most of the focus in developing the second quantized

representation of quantum mechanics in chapter 3 and diagrammatic representation in chap-

ter 4 as both are essential to understanding all of my work in this thesis. One must have

an understanding of second quantized representation before we can start to comprehend

diagrams. The second-quantized formulism is a very helpful formulation becuase it easily

accounts for problems involving infinite, indefinite, or variable numbers of particles. In ex-

tension, diagrammatic theory will also be able to handle these problems and it also serves as

a compact representation in method development. Background material that will be usefull

in understanding the main subjects of the research in this thesis are presented in chapter 2,

1



chapter 3, and chapter 4, whereas research material is presented in chapter 5, chapter 6,

chapter 7, chapter 8, and chapter 9.

In chapter 5, we present the development of a real-space and projected congruent trans-

formation method for treating electron correlation in chemical systems. This method uses

an explicitly correlated function for performing congruent transformation on the electronic

Hamiltonian. As a result of this transformation, the electronic Hamiltonian is transformed

into a sum of two, three, four, five, and six-particle operators. Efficient computational im-

plementation of these many-particle operators continues to be challenging for application of

the congruent transformation approach for many-electron systems. In this work, we present

projected congruent transformed Hamiltonian (PCTH) approach to avoid computation of

integrals involving operators that couple more than two particles. The projected congruent

transformation becomes identical to the real-space congruent transformation in the limit of

infinite basis size. However, for practical calculations, the projection is always performed on

a finite dimensional space. We show that after representing the contributing expressions of

the PCTH in terms of diagrams, it is possible to identify a subset of diagrams that can be

summed up to infinite order. This technique, denoted as partial infinite-order summation

(PIOS), partly alleviates the limitation from the finite-basis representation of the PCTH

method. The PCTH and PCTH-PIOS methods were applied to an isoelectronic series of

10-electron systems (Ne,HF,H2O,NH3,CH4) and results were compared with CISD calcu-

lations. The results indicate that the PCTH-PIOS method can treat electron-electron cor-

relation while avoiding explicit construction and diagonalization of the Hamiltonian matrix.

This work is published in Physical Reviews A.DOI: 10.1103/PhysRevA.89.032515

In chapter 6, we present a diagrammatic projection approach for a priori identification

of non-contributing terms in a configuration interaction (CI) expansion due to the fact that

the computational cost of performing a CI calculation is directly proportional to the number

of terms in the CI expansion. This method, known as the geminal-projected configura-

tion interaction (GP-CI) method, is based on using a two-body R12 geminal operator for

describing electron-electron correlation in a reference many-electron wave function. The di-

agrammatic projection procedure was performed by first deriving the Hugenholtz diagrams

of the energy expression of the R12 reference wave function and then performing diagram-

matic factorization of effective particle-hole creation operators. The projection operation,

which is a functional of the geminal function, was defined and used for the construction

of the geminal-projected particle-hole creation operators. The form of the two-body R12

geminal operator was derived analytically by imposing an approximate Kato cusp condi-

tion. A linear combination of the geminal-projected one-particle one-hole and two-particle

2
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two-hole operators were used for the construction of the GP-CI wave function. The appli-

cability and implementation of the diagrammatic projection method was demonstrated by

performing proof-of-concept calculations on an isoelectronic series of 10 electron systems:

CH4,NH3,H2O,HF,Ne. The results from the calculations show that, as compared to con-

ventional CI calculations, the GP-CI method was able to substantially reduce the size of

the CI space (by a factor of 6-9) while maintaining an accuracy of 10−5 Hartrees for the

ground state energies. These results demonstrate the ability of the diagrammatic projection

procedure to identify non-contributing states using an analytical form of the R12 geminal

correlator operator. The geminal-projection method was also applied to second order Moller-

Plesset perturbation theory (GP-MP2) giving similar results to the GP-CI method in terms

of reduction of the double excitation space and accuracy to the ground state energy. This

work also extends the analytical derivation of the geminal-projected particle-hole creation

operators that were used for the construction of the CI wave function to coupled-cluster

theory (GP-CCSD). This general derivation can also be applied to other many-electron the-

ories and multi-determinant quantum Monte Carlo calculations. This work is published in

Physical Reviews A.DOI: 10.1103/PhysRevA.94.052504

In chapter 7, we present the geminal screened electron-hole interaction kernel (GSIK)

method. Electron-hole or quasiparticle representation plays a central role in describing elec-

tronic excitations in many-electron systems. For charge-neutral excitation, the electron-hole

interaction kernel is the quantity of interest for calculating important excitation properties

such as optical gap, optical spectra, electron-hole recombination and electron-hole binding en-

ergies. The electron-hole interaction kernel can be formally derived from the density-density

correlation function using both Green’s function and TDDFT formalism. The accurate de-

termination of the electron-hole interaction kernel remains a significant challenge for precise

calculations of optical properties in the GW+BSE formalism. From the TDDFT perspective,

the electron-hole interaction kernel has been viewed as a path to systematic development

of frequency-dependent exchange-correlation functionals. Traditional approaches, such as

MBPT formalism, use unoccupied states (which are defined with respect to Fermi vacuum)

to construct the electron-hole interaction kernel. However, the inclusion of unoccupied states

has long been recognized as the leading computational bottleneck that limits the application

of this approach for larger finite systems. In this work, an alternative derivation that avoids

using unoccupied states to construct the electron-hole interaction kernel is presented. The

central idea of this approach is to use explicitly correlated geminal functions for treating

electron-electron correlation for both ground and excited state wave functions. Using this

ansatz, it is derived using both diagrammatic and algebraic techniques that the electron-

hole interaction kernel can be expressed only in terms of linked closed-loop diagrams. It is
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proved that the cancellation of unlinked diagrams is a consequence of linked-cluster theorem

in real-space representation. The electron-hole interaction kernel derived in this work was

used to calculate excitation energies in many-electron systems and results were found to be

in good agreement with the EOM-CCSD and GW+BSE methods. The numerical results

highlight the effectiveness of the developed method for overcoming the computational barrier

of accurately determining the electron-hole interaction kernel to applications of large finite

systems such as quantum dots and nanorods. This work is published in Journal of Chemical

theory and Computation.DOI: 10.1021/acs.jctc.8b00123

In chapter 8, we present the composite control-variate stratified sampling (CCSS) method.

Efficient evaluation of molecular integrals is central for quantum chemical calculations. Post

Hartree-Fock methods that are based on perturbation theory, configuration interaction,

coupled-cluster, and many-body Green’s function based methods require access to 2-electron

molecular orbital (MO) integrals in their implementations. In conventional methods, the MO

integrals are obtained by the transformation of pre-existing atomic orbital (AO) integrals

and the computational efficiency of AO-to-MO integral transformation has long been rec-

ognized as one of the key computational demanding steps in many-body methods. In this

work, the composite control-variate stratified sampling (CCSS) method is presented for cal-

culation of MO integrals without transformation of AO integrals. The central idea of this

approach is to obtain the 2-electron MO integrals by direct integration of 2-electron coor-

dinates. This method does not require or use pre-computed AO integrals and the value of

the MOs at any point in space is obtained directly from the linear combination of AOs. The

integration over the electronic coordinates was performed using stratified sampling Monte

Carlo method. This approach was implemented by dividing the integration region into a

set of non-overlapping segments and performing Monte Carlo calculations on each segment.

The Monte Carlo sampling points for each segment were optimized to minimize the total

variance of the sample mean. Additional variance reduction of the overall calculations was

achieved by introducing control-variate in the stratified sampling scheme. The composite

aspect of the CCSS allows for simultaneous computation of multiple MO integrals during

the stratified sampling evaluation. The main advantage of the CCSS method is that unlike

rejection sampling Monte Carlo methods such as Metropolis algorithm, the stratified sam-

pling uses all instances of the calculated functions for the evaluation of the sample mean.

The CCSS method is designed to be used for large systems where AO-to-MO transforma-

tion is computationally prohibitive. Because it is based on numerical integration, the CCSS

method can be applied to a wide variety of integration kernels and does not require a priori

knowledge of analytical integrals. In this work, the developed CCSS method was applied
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for calculation of exciton binding energies in CdSe quantum dots using electron-hole explic-

itly correlated Hartree-Fock (eh-XCHF) method and excitation energy calculations using

geminal-screened electron-hole interaction kernel (GSIK) method. The results from these

calculations demonstrate that the CCSS method enabled the investigation of excited state

properties of quantum dots by avoiding the computationally challenging AO-to-MO integral

transformation step. This work has been submitted to the Journal of Chemical Physics.

In chapter 9, we investigate the effect of electromagnetic (EM) field on the generation of

2e-2h states from 1e-1h states. One of the fundamental ways by which electromagnetic (EM)

waves interact with matter is by the generation of excited electronic states. The interaction

of EM field with atoms and molecules is given by the field-dependent Hamiltonian. Ex-

cited states are intrinsically transient in nature because they are not stationary states of the

field-dependent Hamiltonian. Consequently, the time-dependent dynamics of excited states

depend strongly on the external electromagnetic field. Starting with the 1e-1h excitation in

a general many-electron system, the system was propagated in time using time-dependent

perturbation theory (TDPT). The expression for time-dependent transition probability of

(1e − 1h) → (2e − 2h) was evaluated for a given time t up to second-order in TDPT using

diagrammatic techniques. The derivation does not assume any a priori approximations to

the electron-electron correlation operator and presents the derivation of a complete set of

contributing diagrams associated with the full configuration interaction wave function. The

result from this work show that the calculation of time-dependent transition probability can

be factored into a time-independent and time-dependent components. This is a significant

outcome for efficient computation of the time-dependent transition probability because it

allows for pre-computation of time-independent components before the start of the calcula-

tions. This work is published on arXiv.DOI: arXiv:1704.02428v1

Finally, in chapter 10 we discuss some overall conclusion of the research presented in this

thesis as well as look ahead to the future direction of this work.
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Chapter 2

Quantum chemistry background

2.1 Hartree-Fock approximation

In this section I will briefly cover some material of the Hartree-Fock method which serves

as the starting point of most of the methods that I have developed in this work. The wave

function used in the Hartree-Fock approximation is a single Slater determinant, Φ,

Φ =
1√
N !

∣∣∣∣∣∣∣∣∣

ψ1(1) ψ2(1) . . . ψN(1)
ψ1(2) ψ2(2) . . . ψN(2)

...
...

. . .
...

ψ1(N) ψ2(N) . . . ψN(N)

∣∣∣∣∣∣∣∣∣
= Aψ1ψ2 . . . ψN . (2.1)

In Equation 2.1, the factor 1√
N !

is a normalization factor and A is the antisymmetrizer. ψi(µ)

is a spin orbital which completely describes the µth electron by specifying both the spatial

distribution and spin. The spin of electron can have either α (up) or β (down) spin. A

Slater determinant is selected as the wave function of choice as the starting approximation

because it is the simplest function that inherently satisfies the conditions necessary for a

physical wave function. A Slater determinant meets the requirement of the antisymmetry

principle because the interchanging of the coordinates of two electrons corresponds to the

interchanging of two rows of the Slater determinant which yields a negative sign. Also,

the Slater determinant satisfies the Pauli exclusion principle which states that two electrons

cannot occupy the same spin orbital. If two electrons occupy the same spin orbital in a

Slater determinant, it will make two columns of the Slater determinant equal to each other

which will make the determinant zero.

The spin orbitals in the Slater determinant are minimized with respect to energy accord-

ing to the following eigenvalue equation,

f̂ψi = Eiψi. (2.2)
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The expression in Equation 2.2 is the Hartree-Fock equation where f̂ is the Fock operator

which has the form,

f̂ = ĥ+
N∑

i=1

(Ĵi − K̂i). (2.3)

ĥ is the one-electron operator in the Hamiltonian and the J and K terms are the Coulomb

and exchange operators, respectively,

Ĵi(1)φ(1) = 〈ψi(2)| 1

r12

|ψi(2)〉2φ(1)

K̂i(1)φ(1) = 〈ψi(2)| 1

r12

|φ(2)〉2ψi(1). (2.4)

Finding the Slater determinant that minimizes the energy provides an excellent initial ap-

proximation for the electronic wave function and energy and in fact this approximation will

account for about 99% of the total energy and 95% of the electronic wave function. However,

the exact wave function is an infinite expansion of all possible states, therefore only using

one Slater determinant is only a simple approximation to the exact wave funtion because

correlation affects are not accounted for.

2.2 Electron correlation

Much of the research in quantum chemistry is to solve for this remaining 1% of energy which

is known as the correlation energy. Formally, correlation energy is defined as the difference

between the Hartree-Fock description of the electronic wave function and the exact energy.

The equation is shown below,

∆Ecorr = Eexact − EHF. (2.5)

EHF represents the exact solution of the Hartree-Fock problem and Eexact is the exact energy

of the system. Consequently, we can also add the correlation to the Hartree-Fock determi-

nant, ΦHF, to get the exact wave function, Ψexact,

Ψexact = ΦHF + χcorr. (2.6)

The Hartree-Fock method falls short of describing the exact wave function because it de-

scribes the motion of the electrons in the average field of the other electrons and neglects

the insantaneous correlation in the motions of the electrons due to their repulsion. The

Hartree-Fock method also fails in bond dissociation calculations. Other post Hartree-Fock

methods are required to treat electron correlation, the simplest approach (conceptionally) is

by the configuration interaction (CI) method.
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2.3 Configuration interaction

In the configuration interaction method, we represent the wave function as a linear combina-

tion of N -electron trial Slater determinants and not just one optimized Slater determinant

as we did in the Hartree-Fock method. The CI expansion is given as,

Ψ = ΦSCF +
∑

i,a

Ca
i Φa

i +
∑

i<j,a<b

Cab
ij Φab

ij + . . . (up to N excitations). (2.7)

A pictoral representation of the full CI equation is given in Figure 2.1.

En
er
gy

ΨFCI = 		Φ( 				+ 		*𝐶,-Φ,
- +

�

,,-

* 𝑐,1-2Φ,1
-2

�

,31
-32

+ * 𝑐,14-25Φ,14
-25

�

,3134
-3235

+ * 𝑐,146-257Φ,146
-257

�

,313436
-323537

+⋯

Figure 2.1: Pictoral representation of the full configuration interaction equation.

The first term on the left hand side of the equation is the ground state, or Hartree-Fock

determinant, Φ0. Underneath this term we see a column of energy levels which are increasing

in energy from bottom to top. Each energy level is a molecular orbital and in the ground state

configuration, each MO is doubly occupied following the Pauli exclusion principle. There

is a space that separates the occupied orbitals from the virtual (unoccupied) orbitals. This

space is called the HOMO-LUMO gap or the quasiparticle gap. As we move to the right from

the ground state configuration, we get the Φa
i term which is a singly excited determinant

in which one electron in the occupied molecular orbital, φi, is excited to the virtual orbital,

φa. Φab
ij is a doubly excited determinant in which two electrons are excited from molecular

orbital φi and φj and are excited to virtual orbitals φa and φb, and so on. Even though

the above graphic only shows one excitation per excitation type, each possible excited state

configuration must be included in the full CI expansion. Moreover, there is no upper limit
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for the virtual orbitals. To get the exact energy from a full CI calculation, we will need to

include an infinite number of virtual orbitals. However, if we start with the Hartree-Fock

wave function and orbitals, the Hartree-Fock solution is limited to the space spanned by a

given basis set. Therefore, the infinite number of virtual orbitals is truncated by the size of

the basis. Even with this truncation due to the basis set, the number of configurations in

the CI expansion still grows rapidly and an example is presented in Table 2.1.

Table 2.1: Total number of configuration interaction determinants for H2O with
6-31G? basis. (10 electrons, 19 basis functions).

Configuration Total determinants
Ground 1.000E+00
S 2.810E+02
S,D 1.729E+04
S,D,T 4.104E+05
S,D,T,Q 4.710E+06
Full 4.727E+08

The left column of this table is the configuration type. For water, a 10 electron system,

there will be single-, double-, triple-, all the way up to decuple-excitations, and the right

column of the table shows the number of total determinants there will be in the calculation

in scientific notation. The total number of determinants needed for the CI expansion is

calculated using the following equation,

n− tuply excited state determinants =

(
N

n

)(
2K −N

n

)
, (2.8)

where n is the number of excitation types, N is the number of electrons in the system, and

K is the number of basis functions. Even though this is only a relatively small 10 electron

system with also what is considered a small basis set (6-31G?), you can see that the number

of determinants increases to a point that the calculation will become very infeasible, very

soon. It is becuase of this reality that the CI calculation is often truncated to only including

single and double excitations. This is known as CISD. Although there are a large number

of determinants in the calculation, it is important to realize that many of the configurations

contribute negligibly to the total energy. There has been lots of research focused on removing

these non-contributing configurations from the CI calculation and an extensive review is

presented in subsection 6.1.1. I present my own work in this field in chapter 6, where I

discuss the geminal screening method which uses a two-body explictly correlated operator

to project out non-contributing terms from the CI expansion.
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In chapter 3 I introduce second quantization which is another representation of quantum

mechanics that will serve as a convenient and compact notation to present the research

in this document as well as supplying a stepping stone to understanding diagrammatic

representation which will be presented in chapter 4.

10



Chapter 3

Second quantization

Second quantization is another formulation of quantum mechanics that becomes useful in this

work for representing wave functions (i.e. Slater determinants) and operators in a compact

and convenient notation. This formulation also allows for an efficient way of manipulating

the functions and operators.

3.1 Creation and annihilation operators

To start, we again consider the normalized Slater determinant,

Φ = Φijk...z ≡ Aφiφjφk . . . φz ≡ |φiφjφk . . . φz〉 ≡ |ijk . . . z〉, (3.1)

where A is the antisymmetrizer and each φ is a spin orbital in the one-particle Hartree-Fock

basis. Equation 3.1 shows four equivalent ways of writing the Slater determinant and in

this work we will primarily use the last form (|ijk . . . z〉) to explain second quantization and

diagrammatic representation. This notation is just a short hand way of writing spin orbitals

in which we do not write the symbol for the spin orbital (φ), and instead we just write the

index (ijk . . . z) to represent the spin orbital.

A spin orbital can either be occupied or unoccupied. If the spin orbital is occupied, that

means that there is a particle in the given spin orbital. If the spin orbital is unoccupied, then

there is no particle in that particular spin orbital. This is shown in second quantization using

creation and annihilation operators. The creation operator creates a particle in a particular

spin orbital and is represented with a dagger, (†). The annihilation operator removes a

particle from a given spin orbital. In the following equation we show the notation for these

operators,

creation operator for spin orbital φi, î† (3.2)

annihilation operator for spin orbital φi, î. (3.3)
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Now that we have defined the creation and annihilation operators, we will now show their

action on Slater determinants,

î†|jk . . . z〉 = |ijk . . . z〉 (3.4)

î|ijk . . . z〉 = |jk . . . z〉. (3.5)

Equation 3.4 shows creation operator, î† operating on Slater determinant |jk . . . z〉. In this

example, a particle is created in spin orbital i, resulting in the determinant, |ijk . . . z〉.
Correspondingly, in Equation 3.5, the occupied spin orbital, i, is removed from the Slater

determinant via the annihilation operator î. However, a particle cannot be created in a

spin orbital where a particle already exists and a particle cannot be annihilated from a spin

orbital if a particle is not present in that spin orbital. This is presented below,

î†|ijk . . . z〉 = 0 (3.6)

î|jk . . . z〉 = 0. (3.7)

It is convenient to write the spin orbitals in a Slater determinant in lexical order as follows,

|ijk . . . z〉, where i < j < k < · · · < z. (3.8)

Therefore, we must examine the effect the creation and annihilation has on a Slater deter-

minant when we rearrange the spin orbitals or if a particle is added to a spin orbital that

is not at the beginning or in the first place in the Slater determinant. The effect is shown

below,

p̂†|ijk . . . z〉 = (−1)∇P |ijk . . . p . . . z〉 (3.9)

p̂|ijk . . . p . . . z〉 = (−1)∇P |ijk . . . z〉, (3.10)

where ∇P is the number or spin orbitals preceding p in the Slater determinant. This effect

is also in accordance with the antisymmetry principle for Slater determinants such that the

interchange of two spin orbitals in second quantizations corresponds to the interchange of

two columns of the Slater determinant. Both procedures result in a change in sign of the

determinant. We can now show how to build an entire Slater determinant using successive

operations on the vacuum Slater determinant, |〉, shown below,

î†ĵ†k̂† . . . ẑ†|〉 = |ijk . . . z〉. (3.11)

For completeness we define the vacuum Slater determinant, |〉, as simply a Slater determinant

with no spin oribitals.

12



3.2 Anticommutation relations

Creation and annihilation operators follow a set of anticommutation relationships. We first

look at how two creation operators behave when they operate on a Slater determinant. We

consider the following two possibilities,

p̂†q̂†|ijk . . . 〉 = |pqijk . . . 〉 (3.12)

q̂†p̂†|ijk . . . 〉 = |qpijk . . . 〉 = −|pqijk . . . 〉. (3.13)

When p̂† and q̂† operate on the same Slater determinant, but in a different order, the resulting

determinants differ in sign. This is true only when p and q do not already exist in the Slater

determinant or if p = q. Otherwise the operation would yield zero. Therefore, we can state

the following anticommutation relationship,

p̂†q̂† = −q̂†p̂† (3.14)

[p̂†, q̂†]+ ≡ p̂†q̂† + q̂†p̂† = 0, (3.15)

where [Â, B̂]+ ≡ ÂB̂ + B̂Â is the aticommutator of Â and B̂. The notation is given as

follows,

[Â, B̂]+ = ÂB̂ + B̂Â (3.16)

[Â, B̂]+ = [B̂, Â]+. (3.17)

Now we can consider the anticommutation relations for two annihilation operators. Sim-

ilar to Equation 3.12 and Equation 3.13, we replace the creation operators with annihilation

operators and consider the two possibilities,

p̂q̂|qpijk . . . 〉 = p̂|pijk . . . 〉 = |ijk . . . 〉 (3.18)

q̂p̂|qpijk . . . 〉 = −q̂p̂|pqijk . . . 〉 = −q̂|qijk . . . 〉 = −|ijk . . . 〉. (3.19)

Much like the case in which we considered the two creation operators, we once again see

that for this case we get two determinants that are only different in sign. Thus, we have the

anticommutation relationship for two annihilation operators as,

p̂q̂ = −q̂p̂ (3.20)

[p̂, q̂]+ = 0. (3.21)

Again it is important to note that if orbitals p or q do not exist in the determinant, then the

relationship will be zero, or if p = q it will also be zero.
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The last relationship we will consider is the anticommutation relation between a creation

operator and an annihilation operator. In this case, when p 6= q, either a particle is destroyed

that exists in the Slater determinant, and then a particle is created (Equation 3.22), or a

particle is created first and then an existing particle is destroyed in the Slater determinant

(Equation 3.23),

p̂†q̂|ijk . . . q . . . 〉 = |ijk . . . p . . . 〉 (3.22)

q̂p̂†|qijk . . . 〉 = q̂|pqijk . . . 〉 = −q̂|qpijk . . . 〉 = −|pijk . . . 〉 (p 6= q). (3.23)

In Equation 3.22 and Equation 3.23, we see that the same Slater determinant is generated,

however, it differs in sign. The anticommutation relation is given as,

[p̂†, q̂]+ = 0. (3.24)

Now we consider the case where p = q. We show the relationship where p already exists in

the Slater determinant,

p̂†p̂|pijk . . . 〉 = |pijk . . . 〉 (3.25)

p̂p̂†|pijk . . . 〉 = 0, (3.26)

and when p does not already exist in the Slater determinant,

p̂†p̂|ijk . . . 〉 = 0 (3.27)

p̂p̂†|ijk . . . 〉 = |ijk . . . 〉. (3.28)

The anticommutation relation is then given as,

[p̂†, q]+ = [q̂, p̂†]+ = 1. (3.29)

Overall, the anticommutation relation for the cases where p 6= q and p = q is defined as

follows,

[p̂†, q]+ = [q̂, p̂†]+ = δpq. (3.30)

δpq is the Kronecker delta which means that when p = q the value of the Kronecker delta is

1, however when p 6= q, the value of the Kronecker delta is zero. Therefore, the Kronecker

delta used in Equation 3.30 holds for for this anticommutation relation case for p = q.

The anticommutation relations described here will be very important when we are putting

putting our second quantized operators in normal order. Normal ordering is necessary be-

cuase it will allow us to evaluate matrix elements in second quantization using Wick’s con-

tractions. First we will introdue the normal ordered second quantized operators and then

discuss the particle-hole representation of quantum mechanics and the fermi vacuum. Then

we can discuss Wick’s contractions which will be used to evaluate the matrix elements.
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3.3 Normal ordered operators in second quantized rep-

resentation

First we consider the one-electron operator,

F̂ =
N∑

i=1

f̂(i) =⇒
∑

pq

〈p|f̂ |q〉p̂†q̂. (3.31)

In Equation 3.31, the left expression is the one-electron operator in wave function rep-

resentation and the right expression is the one-electron operator in second quantization.

Using Wick’s theorem (which will be discussed in more detail in section 3.5) where, ÂB̂ =

ÂB̂ − {ÂB̂}, we get,

p̂†q̂ = {p̂†q̂}+ p̂†q̂. (3.32)

The contracted term in Equation 3.32 goes to zero unless p and q are the same hole states.

Therefore we write,

F̂ =
∑

pq

〈p|f̂ |q〉{p̂†q̂}+
∑

i

〈i|f̂ |i〉 (3.33)

= F̂N +
∑

i

〈i|f̂ |i〉, (3.34)

where F̂N is the normal-product form of the operator given as,

F̂N =
∑

pq

〈p|f̂ |q〉{p̂†q̂}. (3.35)

Subsequently, the two-electron operator in second quantized representation is given as,

Ĝ =
1

2

N∑

i 6=j

g(i, j) =⇒ 1

2

∑

pqrs

〈pq|ĝ|rs〉p̂†q̂†ŝr̂. (3.36)

In Equation 3.36, the left expression is the two-electron operator in wave function represen-

tation and the right expression is the two-electron operator in second quantization. Using

Wick’s theorem where,

p̂†q̂† = 0, p̂q̂ = 0, î†ĵ = δij, â†b̂ = 0, (3.37)

we get,

p̂†q̂†ŝr̂ = {p̂†q̂†ŝr̂}+ {p̂†q̂†ŝr̂}+ {p̂†q̂†ŝr̂}

15



+ {p̂†q̂†ŝr̂}+ {p̂†q̂†ŝr̂}+ {p̂†q̂†ŝr̂}+ {p̂†q̂†ŝr̂} (3.38)

= {p̂†q̂†ŝr̂}+ p̂†r̂{q̂†ŝ}+ q̂†ŝ{p̂†r̂}

− p̂†ŝ{q̂†r̂} − q̂†r̂{p̂†ŝ}+ p̂†r̂q̂†ŝ− p̂†ŝq̂†r̂. (3.39)

Evaluating, we get,

Ĝ =
1

2

∑

pqrs

〈pq|ĝ|rs〉{p̂†q̂†ŝr̂}+
1

2

∑

ipq

〈ip|ĝ|iq〉{p̂†q̂}

+
1

2

∑

ipq

〈pi|ĝ|qi〉{p̂†q̂} − 1

2

∑

ipq

〈ip|ĝ|qi〉{p̂†q̂}

− 1

2

∑

ipq

〈pi|ĝ|iq〉{p̂†q̂}+
1

2

∑

ij

〈ij|ĝ|ij〉 − 1

2

∑

ij

〈ij|ĝ|ji〉. (3.40)

Next we can combine terms in the above expression,

Ĝ =
1

2

∑

pqrs

〈pq|ĝ|rs〉{p̂†q̂†ŝr̂}+
∑

ipq

〈pi|ĝ|qi〉{p̂†q̂}

−
∑

ipq

〈pi|ĝ|iq〉{p̂†q̂}+
1

2

∑

ij

〈ij|ĝ|ij〉 − 1

2

∑

ij

〈ij|ĝ|ji〉 (3.41)

= ĜN +
∑

pq

(∑

i

〉pi|ĝ|qi〉A
)
{p̂†q̂}+

1

2

∑

ij

〈ij|ĝ|ij〉A, (3.42)

where the expression for ĜN is given as,

ĜN =
1

2

∑

pqrs

〈pq|ĝ|rs〉{p̂†q̂†ŝr̂} =
1

4

∑

pqrs

〈pq|ĝ|rs〉A{p̂†q̂†ŝr̂} (3.43)

As we can see, both the left hand expressions in Equation 3.31 and Equation 3.36 depend

on the number of particles in the system, where as both the expressions in Equation 3.31

and Equation 3.36 do not depend on the number of particles in the system. The lack

of dependence on the number of electrons in second quantized representation is the main

strength of the representation. As the system size increases it becomes very impractical

to use wave function representation to write the expressions due to the dependence on the

number of electrons. Since operators in second quantized representation do not depend on

the number of electrons, the expressions will be the same no matter which system is done.

This independence on the number of electrons in second quantized representation exgends to

diagrams as well because diagrammatic representation uses second quantization and this will

be explored in chapter 4. In the next sections we will discuss particle-hole representation,

the fermi vacuum, and normal ordering.
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3.4 Fermi vacuum and normal ordering

The evaluation of matrix elements of second quantized operators is much more easily done if

the creation and annihilation operators are normal ordered with respect to the Fermi vacuum

state. Before we can discuss normal ordering, we must define the Fermi vacuum state and

particle-hole represenation. The particle-hole representation is best shown in Figure 3.1. [195]

Starting with the ground state in the ordinary picture in column (a), we see that the atomic

Figure 3.1: particle-hole/quasiparticle representation diagram. Column (a) and
(b) show the ground and excited state, respectively, for the ordinary picture.
Column (c) and (d) show the ground and excited state, respectively, for the
particle-hole/quasiparticle representation. (Mattuck, R. D. (1992). A Guide
to Feynman Diagrams in the Many-Body Problem. Dover Publications, Inc.,
N.Y.) [195].

energy levels are filled with electrons according to the Pauli principle in which there can

be no more than one particle in each state. This is in the lowest energy state because the

particles are filled starting in the lowest energy state and subsequently filling each energy

level as you move up the energy levels. The highest filled single-particle level is called the

Fermi level denoted as, εF . Column (b) represents an excitation from the picture in column

(a). The excitation occurs when a particle is removed by a level below the Fermi level and

placed in a state above the Fermi level. The empty space in column (b) is called a hole.

To describe an excitation more efficiently, we can just consider changes from the ground

state. This will allow us to avoid writing each particle in the ground state, and thus we come

upon the picture in column (c). This picture is called the Fermi vacuum. The excitation from
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column (c) is shown in column (d). Columns (c) and (d) are the particle-hole/quasiparticle

representation. Note that particles in the particle-hole representation exist only above the

Fermi level, whereas in the ordinary picture, particles can exist above and below the Fermi

level.

The Fermi vacuum serves to be a reference state in which all other Slater determinants

are described relative to it. Typically the Fermi vacuum is the Hartree-Fock reference state

denoted as |0〉, therefore,

|0〉 = |ijkl . . . 〉 (3.44)

Recall that the Hartree-Fock reference state is the ground state determinant. Now we will

write excitations with respect to the Fermi vacuum in the particle-hole formalism. The

i, j, k, l . . . in Equation 3.44 are hole states (occupied states). Particle states (unoccupied

sates) are defined as a, b, c, d, . . . , and the indices p, q, r, s, . . . describe states that can be

both particle and hole states. In the particle-hole representation we now have hole creators

and annihilators as well as particle creators and annihilators.

î† - is a hole annihilator (3.45)

î - is a hole creator (3.46)

â† - is a particle creator (3.47)

â - is a particle annihilator (3.48)

Note that you cannot destroy a hole that doesn’t exist,

î†|ijkl . . . N〉 = 0, (3.49)

and you cannot destroy a particle that doesn’t exist,

â|ijkl . . . N〉 = 0. (3.50)

So when describing a single excitation, we first create a hole in the Fermi vacuum and

then create a particle in the unoccupied space.

|Φa
i 〉 = â†î|ijkl . . . N〉 = â†|jkl . . . N〉 = |ajkl . . . N〉 (3.51)

A double excitation follows similarly in that two holes are created in the Fermi vacuum and

then two particles are created in the unoccupied space.

|Φab
ij 〉 = â†b̂†ĵ î|ijkl . . . N〉 = â†b̂†|kl . . . N〉 = |abkl . . . N〉 (3.52)
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Now that we have defined the anticommutation relations in section 3.2, and now the

Fermi vacuum and the particle-hole formalism, we are now in a position to discuss normal

ordering. Creation and annihilation operators are said to be in normal order when all pseudo-

creation operators are to the left of all pseudo-annihilation operators. By pseudo-creation

operators, it is meant that the operators that create such as â† and î. They are “pseudo”

because specifically î is not a creation operator because it does not have a †, however, with

respect to the Fermi vacuum, it creates a hole.

The process of putting all the pseudo-creation operators to the left of the pseudo-

annihilation operators is normal ordering and the anticommutation relations are used to

do this. Recall the anticommutation relations in Equation 3.15, Equation 3.21, and Equa-

tion 3.30,

[p̂†, q̂†]+ = 0 (3.53)

[p̂, q̂]+ = 0 (3.54)

[p̂†, q]+ = δpq, (3.55)

which can be rewritten as,

p̂†q̂† = −q̂†p̂† (3.56)

p̂q̂ = −q̂p̂ (3.57)

p̂†q = δpq − qp̂†. (3.58)

When normal ordering strings of creation and annihilation operators, we must apply the

anticommutation relations which will yield a sign change with respect to the interchange

of neighboring operators. Therefore, when we arrange all the pseudo-creation operators to

the left of all the pseudo-annihilation operators, we must keep track of the sign after each

interchange. Let’s consider a few examples. For the first example we have,

p̂†q̂ = p̂†q̂. (3.59)

In this example, the creation operator is already to the left of the annihilation operator. For

the second example we have,

q̂p̂† = −p̂†q̂. (3.60)

In this example we moved p̂† to the left of q̂, thus yielding a negative sign. For the last

example, we consider three different operators,

q̂r̂p̂† = −q̂p̂†r̂ = p̂†q̂r̂ = −p̂†r̂q̂. (3.61)
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Note that the order in which we write q̂ and r̂ at the end matters because q̂r̂ = −r̂q̂. Normal

ordering is essential to evaluating matrix elements in second quantized notation. Typically

we write operators in normal order in curly braces, {ABC . . . }, for the normal product

relative to the Fermi vacuum. In the next section, we will evaluate the normal ordered

operators using Wick’s theorem.

3.5 Wick’s contractions and generalized Wick’s theo-

rem

To evaluate the normal ordered operators, we use Wick’s theorem. Wick’s theorem is a

method in which we reduce products of creation and annihilation operators by contracting

pairs of these operators. Contractions of these operators will be donoted by connecting these

operators with a line or bracket as follows,

ÂB̂ = ÂB̂ − {ÂB̂}. (3.62)

The bracket notation given above, ({ABC . . . }) will denote the normal product relative to

the Fermi vacuum. According to the anticommutation relations, the only nonzero contrac-

tions will be,

î†ĵ = δij, âb̂† = δab. (3.63)

For particle and hole indices, (p, q, r, s, . . . ), the above relationships also hold true,

î†q̂ = δiq (3.64)

p̂†ĵ = δpj (3.65)

âp̂† = δap (3.66)

q̂b̂† = δqb. (3.67)

Indices representing both particle and hole indices become more important when applying

Wick’s contractions to operators in second quantized notation.

Contracting the creation and annihilation operators using Wick’s theorem allows us to

write these normal ordered strings of creation and annihilation operators in terms of only

Kronecker delta functions. This is expressed in the following equation,

ÂB̂ĈD̂ÊF̂ . . . = {ÂB̂ĈD̂ÊF̂ . . . } (3.68)
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+
∑

singles

{ÂB̂ĈD̂ÊF̂}

+
∑

doubles

{ÂB̂ĈD̂ÊF̂}

+ . . . ,

where the dots at the end indicate that all possible contractions are included. That is all

possible single contractions, all possible double contractions, and so on. The Fermi vacuum

expectation value of a normal ordered string of creation and annihilation operators will

be zero unless all the creation and annihilation operators are fully contracted. By fully

contracted, it is meant that all creation operators are paired with an annihilation operator.

This is shown below and is the generalized Wick’s theorem,

〈0|Â . . . B̂ . . . Ĉ . . . D̂ . . . |0〉 =
∑
〈0|Â . . . B̂ . . . Ĉ . . . D̂ . . . |0〉, (3.69)

where the right hand side of Equation 3.69 is the sum over all fully contracted creation and

annihilation operators in normal order.

This discussion illustrates the power of using second quantization. Second quantization

allows for the computation of the expectation value of a large strings of creation and an-

nihilation operators to be reduced to a linear combination of Kronecker delta functions in

which, when evaluated will be either 0, 1, or -1. Another way second quantization is a very

useful representation is that the second quantized operators are independent of the number

of electrons in the system which will become more and more important as the system size

increases. This strength of second quantized notation will be highlighted in the next sec-

tion where we look at the form of the one- and two-electron operators in second quantized

representation.

3.6 Evaluation of the matrix elements of second quan-

tized one- and two-electron operators

We will start with evaluating the matrix elements of the one-electron operator between two

singly excited determinants which is shown in the following expression,

〈Φa
i |F̂N |Φb

j〉 =
∑

pq

〈p|f̂ |q〉〈Φa
i |{p̂†q̂}|Φb

j〉

=
∑

pq

〈p|f̂ |q〉〈0|{̂i†â}{p̂†q̂}{b̂†ĵ}|0〉. (3.70)
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We use Wick’s contraction to evaluate the string of creation and annihilation operators.

Applying Wick’s contractions to Equation 3.70 we recall that the only non-zero contractions

will be the following contractions,

î†ĵ = δij, î†q̂ = δiq, p̂†ĵ = δpj,

âb̂† = δab, âp̂† = δap, q̂b̂† = δqb. (3.71)

Now we will consider all the contractions of the one-particle operator. We will show all the

contractions and resolve them in a stepwise fashion to be clear. We begin with our one-

particle operator expression with respect to two single excited determinants and we pair the

creation operators with annihilation operators as shown here,

〈Φa
i |F̂N |Φb

j〉 =
∑

pq

〈p|f̂ |q〉〈0|{̂i†â}{p̂†q̂}{b̂†ĵ}|0〉 (3.72)

=
∑

pq

〈p|f̂ |q〉〈0|{̂i†â}{p̂†q̂}{b̂†ĵ}|0〉

+
∑

pq

〈p|f̂ |q〉〈0|{̂i†â}{p̂†q̂}{b̂†ĵ}|0〉. (3.73)

There are only two possible terms when joining the creation and annihilation operators in

all the ways allowed. We will now resolve the contractions step by step so we can see what

is happening explicitly. First we resolve the î†q̂, âb̂†, and p̂†ĵ contractions in the first term

giving,

〈Φa
i |F̂N |Φb

j〉 =−
∑

pq

〈p|f̂ |q〉δiqδabδpj

+
∑

pq

〈p|f̂ |q〉〈0|{̂i†â}{p̂†q̂}{b̂†ĵ}|0〉. (3.74)

Next we resolve the î†ĵ, âp̂†, and q̂b̂† contractions in the second term giving,

〈Φa
i |F̂N |Φb

j〉 =−
∑

pq

〈p|f̂ |q〉δiqδabδpj

+
∑

pq

〈p|f̂ |q〉δijδapδqb. (3.75)

Note that there is now a negative sign in front of the first term in Equation 3.74. When

determining the sign of a fully contracted term, you must consider the number of “crossings”
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that occur when writing the Wick’s contractions. By crossings it is meant that you must

count the number of times the lines cross each other. If the number of crossings in the

contraction lines is odd, the sign on the term is negative, whereas if the number of crossings

is even, the sign is positive.[185] For example, consider Equation 3.73. When looking at the

contraction lines in the first term in Equation 3.73, we see that the lines cross three times,

and thus we say there three crossing in the contraction lines. In this case, the number of

crossings are odd and therefore, the sign of the term is negative. For the second term in

Equation 3.73, we see that there are zero crossings in the contraction lines, and therefore

the number of crossings is even and the sign for that term is positive.

Now that we have explained the signs of the terms, we continue the derivation by resolving

the Kronecker deltas shown here,

〈Φa
i |F̂N |Φb

j〉 =−
∑

ij

〈j|f̂ |i〉δab

+
∑

ab

〈a|f̂ |b〉δij. (3.76)

The last possibility that we have to add is when both the singly excited determinants operat-

ing on F̂N have single excitations, such as, 〈Φa
i |F̂N |Φa

i 〉. Upon doing the Wick’s contractions

and resolving the Kronecker deltas in the same manner in which we did above, we obtain,

〈Φa
i |F̂N |Φa

i 〉 =
∑

a

〈a|f̂ |a〉δii

−
∑

i

〈i|f̂ |i〉δaa. (3.77)

Combining all these expressions we have these three cases,

〈Φa
i |F̂N |Φa

j 〉 = −〈j|f̂ |i〉 (i 6= j), (3.78)

〈Φa
i |F̂N |Φb

i〉 = 〈a|f̂ |b〉 (a 6= b), (3.79)

〈Φa
i |F̂N |Φa

i 〉 = 〈a|f̂ |a〉 − 〈i|f̂ |i〉. (3.80)

For completeness sake and more practice, I will include the evaluation of the matrix

elements for a two-electron operator between a single and double excitation. The derivation

is on the long and tedius side, however it illustrates the need for another representation to

evaluate the matrix elements. We start with,

〈Φa
i |ĜN |Φbc

jk〉 =
1

2

∑

pqrs

〈pq|ĝ|rs〉〈0|{̂i†â}{p̂†q̂†ŝr̂}{b̂†ĉ†k̂ĵ}|0〉, (3.81)
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and now we contract the creation and annihilation operators according to Wick’s contraction.

We then get these 16 terms,

〈Φa
i |ĜN |Φbc

jk〉 =
1

2

∑

pqrs

〈pq|ĝ|rs〉
[
〈0|{̂i†â}{p̂†q̂†ŝr̂}{b̂†ĉ†k̂ĵ}|0〉

+ 〈0|{̂i†â}{p̂†q̂†ŝr̂}{b̂†ĉ†k̂ĵ}|0〉

+ 〈0|{̂i†â}{p̂†q̂†ŝr̂}{b̂†ĉ†k̂ĵ}|0〉

+ 〈0|{̂i†â}{p̂†q̂†ŝr̂}{b̂†ĉ†k̂ĵ}|0〉

+ 〈0|{̂i†â}{p̂†q̂†ŝr̂}{b̂†ĉ†k̂ĵ}|0〉

+ 〈0|{̂i†â}{p̂†q̂†ŝr̂}{b̂†ĉ†k̂ĵ}|0〉

+ 〈0|{̂i†â}{p̂†q̂†ŝr̂}{b̂†ĉ†k̂ĵ}|0〉

+ 〈0|{̂i†â}{p̂†q̂†ŝr̂}{b̂†ĉ†k̂ĵ}|0〉

+ 〈0|{̂i†â}{p̂†q̂†ŝr̂}{b̂†ĉ†k̂ĵ}|0〉

+ 〈0|{̂i†â}{p̂†q̂†ŝr̂}{b̂†ĉ†k̂ĵ}|0〉

+ 〈0|{̂i†â}{p̂†q̂†ŝr̂}{b̂†ĉ†k̂ĵ}|0〉

+ 〈0|{̂i†â}{p̂†q̂†ŝr̂}{b̂†ĉ†k̂ĵ}|0〉

+ 〈0|{̂i†â}{p̂†q̂†ŝr̂}{b̂†ĉ†k̂ĵ}|0〉
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+ 〈0|{̂i†â}{p̂†q̂†ŝr̂}{b̂†ĉ†k̂ĵ}|0〉

+ 〈0|{̂i†â}{p̂†q̂†ŝr̂}{b̂†ĉ†k̂ĵ}|0〉

+ 〈0|{̂i†â}{p̂†q̂†ŝr̂}{b̂†ĉ†k̂ĵ}|0〉
]

(3.82)

Since we have made all the possible contractions, we now show the sign each term will carry

based on how many crossings there are,

〈Φa
i |ĜN |Φbc

jk〉 = (3.83)

1

2

∑

pqrs

〈pq|ĝ|rs〉
[
− 〈0|{̂i†â}{p̂†q̂†ŝr̂}{b̂†ĉ†k̂ĵ}|0〉 7 crossings (odd) =⇒ - sign

+ 〈0|{̂i†â}{p̂†q̂†ŝr̂}{b̂†ĉ†k̂ĵ}|0〉 6 crossings (odd) =⇒ + sign

+ 〈0|{̂i†â}{p̂†q̂†ŝr̂}{b̂†ĉ†k̂ĵ}|0〉 6 crossings (even) =⇒ + sign

− 〈0|{̂i†â}{p̂†q̂†ŝr̂}{b̂†ĉ†k̂ĵ}|0〉 5 crossings (odd) =⇒ - sign

+ 〈0|{̂i†â}{p̂†q̂†ŝr̂}{b̂†ĉ†k̂ĵ}|0〉 8 crossings (even) =⇒ + sign

− 〈0|{̂i†â}{p̂†q̂†ŝr̂}{b̂†ĉ†k̂ĵ}|0〉 7 crossings (odd) =⇒ - sign

− 〈0|{̂i†â}{p̂†q̂†ŝr̂}{b̂†ĉ†k̂ĵ}|0〉 7 crossings (odd) =⇒ - sign

+ 〈0|{̂i†â}{p̂†q̂†ŝr̂}{b̂†ĉ†k̂ĵ}|0〉 6 crossings (even) =⇒ + sign

+ 〈0|{̂i†â}{p̂†q̂†ŝr̂}{b̂†ĉ†k̂ĵ}|0〉 12 crossings (even) =⇒ + sign
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− 〈0|{̂i†â}{p̂†q̂†ŝr̂}{b̂†ĉ†k̂ĵ}|0〉 11 crossings (odd) =⇒ - sign

− 〈0|{̂i†â}{p̂†q̂†ŝr̂}{b̂†ĉ†k̂ĵ}|0〉 13 crossings (odd) =⇒ - sign

+ 〈0|{̂i†â}{p̂†q̂†ŝr̂}{b̂†ĉ†k̂ĵ}|0〉 12 crossings (even) =⇒ + sign

− 〈0|{̂i†â}{p̂†q̂†ŝr̂}{b̂†ĉ†k̂ĵ}|0〉 13 crossings (odd) =⇒ - sign

+ 〈0|{̂i†â}{p̂†q̂†ŝr̂}{b̂†ĉ†k̂ĵ}|0〉 12 crossings (even) =⇒ + sign

+ 〈0|{̂i†â}{p̂†q̂†ŝr̂}{b̂†ĉ†k̂ĵ}|0〉 14 crossings (even) =⇒ + sign

− 〈0|{̂i†â}{p̂†q̂†ŝr̂}{b̂†ĉ†k̂ĵ}|0〉 13 crossings (odd) =⇒ - sign
]

(3.84)

There is obviously a way to write the contractions to minimize the number of crossings,

however, whichever way it is written, it will not effect the sign so long as the contractions

are all written either above or below the term. The next step is we will resolve all the

contractions to Kronecker delta functions in one step shown here,

〈Φa
i |ĜN |Φbc

jk〉 =− 1

2

∑

pqrs

〈pq|ĝ|rs〉δisδabδpkδqjδrc +
1

2

∑

pqrs

〈pq|ĝ|rs〉δisδabδpjδqkδrc

+
1

2

∑

pqrs

〈pq|ĝ|rs〉δisδacδpkδqjδrb −
1

2

∑

pqrs

〈pq|ĝ|rs〉δisδacδpjδqkδrb

+
1

2

∑

pqrs

〈pq|ĝ|rs〉δirδabδpkδqjδsc −
1

2

∑

pqrs

〈pq|ĝ|rs〉δirδabδpjδqkδsc

− 1

2

∑

pqrs

〈pq|ĝ|rs〉δirδacδpkδqjδsb +
1

2

∑

pqrs

〈pq|ĝ|rs〉δirδacδpjδqkδsb

+
1

2

∑

pqrs

〈pq|ĝ|rs〉δikδapδqjδsbδrc −
1

2

∑

pqrs

〈pq|ĝ|rs〉δikδapδqjδscδrb

− 1

2

∑

pqrs

〈pq|ĝ|rs〉δikδaqδpjδsbδrc +
1

2

∑

pqrs

〈pq|ĝ|rs〉δikδaqδpjδscδrb

− 1

2

∑

pqrs

〈pq|ĝ|rs〉δijδapδqkδsbδrc +
1

2

∑

pqrs

〈pq|ĝ|rs〉δijδapδqkδscδrb
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+
1

2

∑

pqrs

〈pq|ĝ|rs〉δijδaqδpkδsbδrc −
1

2

∑

pqrs

〈pq|ĝ|rs〉δijδaqδpkδscδrb. (3.85)

Now we can resolve the Kronecker delta as seen here,

〈Φa
i |ĜN |Φbc

jk〉 = (3.86)

− 1

2

∑

kjci

〈kj|ĝ|ci〉δab +
1

2

∑

jkci

〈jk|ĝ|ci〉δab +
1

2

∑

kjbi

〈kj|ĝ|bi〉δac −
1

2

∑

jkbi

〈jk|ĝ|bi〉δac

+
1

2

∑

kjic

〈kj|ĝ|ic〉δab −
1

2

∑

jkic

〈jk|ĝ|ic〉δab −
1

2

∑

kjib

〈kj|ĝ|ib〉δac +
1

2

∑

jkib

〈jk|ĝ|ib〉δac

+
1

2

∑

ajcb

〈aj|ĝ|cb〉δik −
1

2

∑

ajbc

〈aj|ĝ|bc〉δik −
1

2

∑

jacb

〈ja|ĝ|cb〉δik +
1

2

∑

jabc

〈ja|ĝ|bc〉δik

− 1

2

∑

akcb

〈ak|ĝ|cb〉δij +
1

2

∑

akbc

〈ak|ĝ|bc〉δij +
1

2

∑

kacb

〈ka|ĝ|cb〉δij −
1

2

∑

kabc

〈ka|ĝ|bc〉δij. (3.87)

We can now combine terms,

〈Φa
i |ĜN |Φbc

jk〉 =
∑

kjic

〈kj|ĝ|ic〉δab −
∑

jkic

〈jk|ĝ|ic〉δab +
∑

jkib

〈jk|ĝ|ib〉δac −
∑

kjib

〈kj|ĝ|ib〉δac

+
∑

ajcb

〈aj|ĝ|cb〉δik −
∑

ajbc

〈aj|ĝ|bc〉δik +
∑

akbc

〈ak|ĝ|bc〉δij −
∑

akcb

〈ak|ĝ|cb〉δij,

(3.88)

and we notice that the terms in Equation 3.89 represent the Coulomb and exchange terms,

so we can write,

〈Φa
i |ĜN |Φbc

jk〉 =
∑

kjic

〈kj||ic〉δab +
∑

jkib

〈jk||ib〉δac +
∑

ajcb

〈aj||cb〉δik +
∑

akbc

〈ak||bc〉δij. (3.89)

Therefore, we can get a non-zero result only if at least one hole or particle in Φbc
jk matches

with the hole or particle in Φa
i . So, for example,

〈Φa
i |ĜN |Φbc

ik〉 = 〈ak||bc〉 (a 6= b, c) (3.90)

〈Φa
i |ĜN |Φac

jk〉 = 〈kj||ic〉 (i 6= j, k) (3.91)

〈Φa
i |ĜN |Φac

ik〉 = 〈ak||ac〉+ 〈ki||ic〉 (3.92)

We showed that using second quantization formulation and Wick’s theorem is very ef-

fective at obtaining these terms and has built in symmetry in its representation, however

the process of obtaining these terms is rather tedius and cumbersome. Lots of bookkepping

is required and as such it can be easy to make errors. Also, we have only considered an

example of moderate difficulty or size in the two-particle operator between a single and dou-

ble excitation. With higher order excitations or an operator or product of operators with
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higher order, the number of terms will grow very quickly. Therefore, another representation

of quantum mechanics is introduced called diagrammatic representation which will allow us

to generate these terms and identify terms which do not contribute to the energy expression.

This more practical approach will be presented in chapter 4.
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Chapter 4

Diagrammatic notation

4.1 Introduction

In this chapter, diagrammatic notation is presented. This will allow us to turn an alge-

braic problem into a topological problem. In the previous chapter we solved this problem

algebraically using Wick’s contractions to find non-zero terms. However, we will show in

diagrammatic representation that we can easily eliminate these non-zero terms based on

non-connected lines which is much easier rather than going through the math. First we will

look at the connection of diagrammatic notation to the particle-hole formalism. Then we will

use diagrammatic notation to represent Slater determinants. The more familiar Goldstone

diagrams are presented for one- and two-particle operators and then we show the relationship

of Goldstone diagrams to the more compact Hugenholtz diagrams. Hugenholtz diagrams are

the main choice of diagrams used in this work because of their compactness due to their

ability to inherently account for antisymmetry in the integrals. This will greatly reduce the

number of diagrams that will need to be accounted for.

PSTricks was used to make all the diagrams in this work. For a more detailed look at

how to use PSTricks to make the many-body diagrams presented here and in the proceed-

ing chapters, a how-to guide is provided in Appendix F which highlights some important

functionality in the PSTricks documentation that is essential for making diagrams.

4.2 Slater determinants

On the simplest level, diagrams in quantum chemistry are just vertical lines directed up-

wards (↑) and vertical lines directed downwards (↓), and these two types of lines, only, is

exactly how to represent particles and holes as described in the particle-hole formalism dis-

cussed in section 3.4. In diagrammatic notation, the Slater determinant is represented by

an empty space as seen in Figure 4.1 (c), and any deviation from the Slater determinant is
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represented by lines pointing upwards and lines pointing downwards. As seen in Figure 4.1,

i a

b

i a

b

i
j

a
b

(a) (b) (c) (d) (e)

Figure 4.1: Basic components for diagrammatic representation are shown. (a)
hole lines; (b) particle lines; (c) fermi vacuum, |0〉; (d) single excitation, |Φa

i 〉; (e)
double excitation, |Φab

ij 〉 .

downward-pointing lines are hole states (a), and upward-pointing lines are particle states

(b). Figure 4.1 (d) would represent a single excitation on the Slater determinant in which

a particle from orbital i is excited to orbital a. A determinant that is doubly-excited (Φab
ij )

would be represented by two downward-pointing lines labeled i and j (hole states), and two

upward-pointing lines labeled a and b (particle states), which is represented in (e). In the

next section we consier the representation of operators using Goldstone diagrams.

4.3 Goldstone diagrams

4.3.1 One-particle operators

We begin with the one-particle operator given as,

F̂N =
∑

pq

〈p|f̂ |q〉{p̂†q̂}. (4.1)

To represent the second quantization representation of the one-particle operator diagram-

matically, we must consider the following rules to write the diagrams,

incoming line ↔ annihilation operator ↔ ket state

outgoing line ↔ creation operator ↔ bra state

where 〈| is the bra state and |〉 is the ket state. When writing operators using Goldstone

diagrams, the operators are represented with horizontal “interacting lines”. For this work,

we will use horizontal dashed lines to represent components of the electronic Hamiltonian
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operator when using Goldstone diagrams. From these horizontal interaction lines the vertical

particle and hole lines (Figure 4.1) emanate. At this point where the lines emanate, there is a

vertex. This vertex represents the action of the operator on individual electrons. Therefore,

one-particle (i.e. one-electron) operators have one vertex, two-particle operators have two

vertices, and so on. The creation operators are always pointing away from the vertex while

the annihilation operators are always pointing towards the vertex.

Let’s look at the components of the one-particle operator where the dashed interaction

line is capped with and “x”. The four components of the one-particle operator are shown

below in Figure 4.2. The first component in Figure 4.2 involves two particle lines. Since they

F̂ =
∑

ab〈a|f̂ |b〉{â†b̂} +
∑

ij〈i|f̂ |j〉{̂i†ĵ} +
∑

ia〈i|f̂ |a〉{̂i†â} +
∑

ia〈a|f̂ |i〉{â†î}

=
b

a

b

x
+

b

j

i

x
+

b

a i

x

+
b

i a

x

(a) (b) (c) (d)

Figure 4.2: One-particle operator components for diagrammatic representation
are shown. The horizontal dashed line is the interaction line which is capped by
the “x”. (a) hole created; (b) hole destroyed; (c) particle created; (d) particle
destroyed.

are particle lines, they must point upwards. â† is the creation operator so it point upwards

and away from the vertex. b̂ is the annihilation operator so it will point towards the vertex.

The second component of the one-particle operator involves two hole lines. The hole lines

must point downwards. î† is the creation operator so it will point upwards and away from

the vertex and ĵ is the annihilation operator so it points downwards and towards the vertex.

Since the last two components of the one-particle operator contain both particle and hole

lines, they will both be either below or above the interaction line. The third component

in Figure 4.2 annihilates a particle from the virtual orbital a and creates a particle in the

occupied orbital i. This corresponds to a de-excitation. On the other hand, the fourth

component corresponds to an excitation because a particle is annihilated from occupied

orbital i and a particle is created in virtual orbital a. The first two components do not have

an excitation level as the either have only particle lines, or only hole lines.
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4.3.2 Two-particle operators

Now we look at the two-particle operator given as,

ĜN =
1

2

∑

pqrs

〈pq|rs〉{p̂†q̂†ŝr̂}. (4.2)

For representing the two-particle operators using Goldstone diagrams, we still have the same

horizontal interaction line as in the one-particle operator case, however, the two-particle

operator case has two vertices instead of only one. The horizontal interaction line connects

two half-vertices. Each individual half-vertices have one incoming line and one outgoing line

which may be a particle or hole line. These particle and hole lines follow the same rules as

with the one-particle operator which are repeated below,

incoming line ↔ annihilation operator ↔ ket state

outgoing line ↔ creation operator ↔ bra state

but with the added feature for the two-particle case that

electron 1 ↔ left half-vertex

electron 2 ↔ right half-vertex

So for the two-particle term, 〈pq|rs〉{p̂†q̂†ŝr̂}, we have the association,

p̂† ↔ left outgoing line, q̂† ↔ right outgoing line,

r̂ ↔ left incoming line, ŝ↔ right incoming line.

The indices associated with the two-particle vertex are assigned according to these rules,

〈left-out right-out | left-in right-in〉,

and the corresponding creation and annihilation operator strings follow the scheme below,

{(left-out)†(right-out)†(right-in)(left-in)}.

We can easily generate all of the two-particle diagrams from combinations of the one-

particle diagrams. From Figure 4.2 we see that there are four one-particle diagrams labeled

(a), (b), (c), and (d). We can pair (a) with (a), (a) with (b), (a) with (c), (a) with (d), (b)

with (a), (b) with (b), and so on until we make all possible pairs. The direct product of the

one-particle diagrams are shown as follows,



a, a a, b a, c a, d
b, a b, b b, c b, d
c, a c, b c, c c, d
d, a d, b d, c d, d


 . (4.3)
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This gives us a total of 16 diagrams, however, there are repeating terms in this matrix. We

remove the repeating terms and are left with the ten combinations shown below,




a, a a, b a, c a, d

�
�Z
Zb, a b, b b, c b, d

��HHc, a �
�Z
Zc, b c, c c, d

�
�Z
Zd, a �

�Z
Zd, b �

�Z
Zd, c d, d


 . (4.4)

Following the combinations in the above equation, we pair the one-particle diagrams and

generate the two-particle diagrams shown in Figure 4.3. The diagrams are laid out in relation

b b

a

c d

b

b b

j

i b

a

b b

a

b c i

b b

a

c

i b

b b

k

i j

l

b b

k

i a j

b b

j

i

k a

b b

b i

j a

b b

a i b j

b b

i a j b

Figure 4.3: Two-particle operator components for diagrammatic representation
are shown. The horizontal dashed line is the interaction line .

to the pairs presented in the matrix in Equation 4.4.
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4.4 Hugenholtz diagrams

The problem with Goldstone diagrams is highlighted in the above discussion. As the number

of diagrams increases, the number of interaction vertices also increase. For example, each

two-particle diagram included, adds two interaction vertices. The interaction vertices just

reflect individual instances of each possible exchange possibility. Also, we must make sure

that we account for each different exchange possibility without having two diagrams that are

equivalent. There is definitely difficulties associated with determining equivalent diagrams

and associating weight factors to the expressions. However, Goldstone diagrams provide no

ambiguity in the exact equation they represent.

Hugenholtz diagrams overcome these difficulties of Goldstone diagrams by incorporating

the antisymmetry from each integral into each resulting diagram. This will greatly reduce

the number of diagrams needed. This is done in for two-particle operators by combining the

two interaction vertices into one interacting vertex.

4.4.1 One- and two-particle operators

There is no distinct sections for one-particle and two-particle operators like for the Goldstone

diagrams because one-particle Hugenholtz diagrams are exactly equal to the one-particle

Goldstone diagrams.

However, for the two-particle operator, the vertices of the Goldstone diagrams are com-

bined into one vertex for the Hugenholtz diagrams. So, instead of having one incoming

and one outgoing line such as was for each vertex of the two-particle Goldstone diagrams,

in the Hugenholtz diagrammatic representation, there is only one vertex with 4 incoming

and outgoing lines (two incoming and two outgoing lines). The rules for incoming and

outgoing particle and hole lines is the same as for Hugenholtz diagrams and are seen in

subsection 4.3.2. The relationship to the two-particle operator and their matrix elements

are seen in Figure 4.4.

Diagrammatic represenation provides us with many advantages such as its ability to turn

an algebraic problem into a topological problem, their compactness, and that diagrams are

system independent. Wave function representation, or even second quantized representation,

still requires many pages of equations, however, diagrammatic representation will allow for

the presentation of these equations much less space which makes it easier to analyze the equa-

tions. Inherently diagrammatic representation only provides non-zero terms by construction

which also limits the number of equations. Lastly, diagrams are system independent. Since

second quantized operators are independent of the number of electrons in the system, the

corresponding diagrams are also system independent. Therefore, once we write the diagrams
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b b

a

c d

b

b
a

c

b

d

〈ab|ĝ|cd〉 〈ab|ĝ|cd〉A

b b

k

i j

l

b
k

i

l

j

〈ij|ĝ|kl〉 〈ij|ĝ|kl〉A

b b

b i

j a

b
j

b

a

i

〈ia|ĝ|bj〉 〈ia|ĝ|bj〉A

b b

a

b c i

b

a

c b i

〈ai|ĝ|bc〉 〈ai|ĝ|bc〉A

b b

k

i a j

b

k

a i j

〈ij|ĝ|ka〉 〈ij|ĝ|ka〉A

b b

a

c

i b

b
ai

c

b

〈ab|ĝ|ci〉 〈ab|ĝ|ci〉A

b b

j

i

k a

b
jk

i

a

〈ia|ĝ|jk〉 〈ia|ĝ|jk〉A

b b

i a j b

b
ai j b

〈ab|ĝ|ij〉 〈ab|ĝ|ij〉A
b b

a i b j

b

ia b j

〈ij|ĝ|ab〉 〈ij|ĝ|ab〉A

Figure 4.4: Corresponding two-particle Hugenholtz diagrams to the two-particle
Goldstone diagrams .
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for a particular theory or method, those same diagrams can be used for any system they

are applied to. This is not true for wave function representation where the operators are

dependent on the number of electrons in the system. With this introduction to second quan-

tization and diagrammatic notation, we can begin to apply them to the work presented in

the following chapters.
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Chapter 5

Infinite-order diagrammatic
summation approach to explicitly
correlated congruent transformed
Hamiltonian

5.1 Introduction

The form of the many-electron wave function at small electron-electron separation plays an

important role in accurate determination of the ground state energy. The relationship be-

tween the Coulomb singularity in the electronic Hamiltonian and form of the many-electron

wave function at the electron-electron coalescence point is well known and is given by the

Kato cusp condition. [159, 115, 181, 215] Explicitly correlated methods improve the form of

the many-electron wave function near the electron-electron coalescence point by incorporat-

ing explicit r12 dependence in the form of the wave function. The inclusion of the r12 term

was shown to be indispensable for high-precision calculations of ground and excited state en-

ergies in atoms and molecules and has been implemented in various methods including quan-

tum Monte Carlo (QMC), [115, 181, 215, 205, 338, 29, 237, 236] perturbation theory (R12-

MP2), [192, 193, 331, 279] coupled-cluster (R12-CC), [178, 282, 332, 168, 123, 167, 281, 227]

configuration interaction, transcorrelated Hamiltonian, [27, 28, 353, 309, 326, 131, 327] gem-

inal augmented MCSCF, [334] the correlation operator approach, [212] and in explicitly

correlated gaussians. [275, 202, 324] One of the main challenges in efficient implementa-

tion of explicitly correlated methods is the analytical evaluation of integrals involving the

r12 term. The electronic Hamiltonian has only one and two-particle operators, however,

because of the r12 term in the wave function, integrals involving the Hamiltonian and ex-

plicitly correlated wave functions often involve three-particle and higher terms. The res-

olution of identity (RI) approach has been successfully applied for efficient evaluation of
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many-particle integrals and has been widely adopted for implementing faster, more efficient

R12-MP2 [162, 318, 316, 330, 175] and R12-CC methods. [280]

In this article, we introduce the projected version of the explicitly correlated congruent

transformed Hamiltonian (CTH) method. [83] In the CTH method, an explicitly correlated

function is used to perform congruent transformation [150, 70] on the electronic Hamilto-

nian. This approach is similar to the transcorrelated Hamiltonian method where a similarity

transformation is performed on the Hamiltonian. [27, 28] However, one of the advantages of

the CTH method is that the transformation preserves the Hermitian property of the Hamil-

tonian. Consequently, the transformed Hamiltonian is amenable to standard variational pro-

cedures for obtaining the ground state energy. [83] The transformed Hamiltonian involves up

to six-particle operators and efficient implementation of these many-particle operators is cru-

cial for application of the CTH method. To address the limitations of the CTH method for

many-electron systems, we have developed the projected congruent transformed Hamiltonian

(PCTH) method. The PCTH method is formulated by projecting the CT Hamiltonian on

a finite-dimensional space spanned by N -particle orthonormal basis functions. The PCTH

method is identical to the CTH method in the limit of an infinite number of basis func-

tions, however, practical implementation of the PCTH is always approximate because of the

truncation of the basis. Here, we present a diagrammatic summation approach to include

infinite-order contributions to the finite basis implementation of the PCTH method. We

have used diagrammatic notation that is commonly used in the perturbation theory and

coupled-cluster equations to represent the terms in the PCTH expansion. [276] After that,

we show that certain classes of diagrams can be summed up to infinite-order and the re-

sult can be expressed as an analytical expression of a renormalized two-particle operator.

Because the method in its current form is applicable only to selected (as opposed to all)

classes of diagrams, it is denoted as partial infinite-order summation (PIOS) method. The

details of the derivation of the PIOS method are presented in the following section. The

PIOS method was used for calculating the ground state energy of isoelectronic 10-electron

systems (Ne,HF,H2O,NH3,CH4) and results are presented in section 5.3.
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5.2 Theory and computational details

5.2.1 Real-space formulation of congruent transformed Hamilto-
nian

The first step in the construction of the CTH is to define an explicitly correlated two-body

operator as shown below

G(1, . . . , N) =
N∑

i<j

g(rij) =
N∑

i<j

g(i, j), (5.1)

where N is the number of electrons in the system. The derivation presented here is inde-

pendent of the choice of the two-body explicitly correlated function g(1, 2). The specific

form used in the present calculation will be discussed in subsection 5.2.4. The congruent-

transformed operators are defined as

H̃ = G†HG (5.2)

S̃ = G†1G (5.3)

where the transformed Hamiltonian contains up to six-particle operators. [81, 83] For a given

trial wave function ΨT, the CTH energy is defined as

E[ΨT, G] =
〈ΨT|H̃|ΨT〉
〈ΨT|S̃|ΨT〉

. (5.4)

The congruent transformation preserves the Hermitian property of the electronic Hamilto-

nian and by construction the CTH energy is an upper bound to the exact ground state

energy

Eexact ≤ min
ΨT,G

E[ΨT, G] ≤ min
ΨT

E[ΨT, G = 1]. (5.5)

As a consequence of the above relationship, the CTH energy is amenable to standard varia-

tional procedure and can be minimized with respect to both the trial wave function ΨT and

the explicitly-correlated function G. In the limit of G = 1, the CTH energy is equivalent to

the expectation value of the electronic Hamiltonian. The congruent transformed Hamilto-

nian can be expressed as sum of two, three, four, five, and six-particle operators as shown

below

H̃ =

[∑

i<j

g(i, j)

][∑

i

hi +
∑

i<j

r−1
ij

][∑

i<j

g(i, j)

]
(5.6)

= Ω2 + Ω3 + Ω4 + Ω5 + Ω6, (5.7)
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where the m−particle operator Ωm(1, . . . , N) for N electron system is defined as

Ωm =
1

m!

N∑

i1 6=i2···6=im

ωm(i1, . . . , im), (5.8)

and the exact expression for ωm is given in Ref. [87]. It is important to note that ωm

is constructed such that it is completely symmetric with respect to all the m electronic

coordinates as shown by the following equation

Pkωm(1, . . . ,m) = ωm(1, . . . ,m). (5.9)

In the above equation, Pk is a permutation operator of the symmetric Sm group with m

symbols. The matrix element of the CTH with Slater determinant Φ0 can be expressed as

sum of matrix elements of the individual Ωi operators as shown below

〈Φ0|H̃|Φ0〉 = 〈Φ0|Ω2|Φ0〉+ · · ·+ 〈Φ0|Ω6|Φ0〉. (5.10)

The individual component can be calculated from integrals involving only the occupied

molecular orbitals

〈Φ0|Ωm|Φ0〉 =
1

m!

Nocc∑

i1,...,in

〈i1 . . . im|ωm
m!∑

Pk∈Sm

(−1)pkPk|i1 . . . im〉, (5.11)

where Pk is the permutation operator of symmetry group Sm and pk is the parity associated

with the permutation. We introduce the following compact notation for the antisymmetrized

sum

〈Φ0|Ωm|Φ0〉 =
1

m!

Nocc∑

i1,...,in

〈i1 . . . im|ωm|i1 . . . im〉A, (5.12)

where the subscript A denotes that matrix element is antisymmetrized. The matrix element

of the overlap 〈Φ0|S̃|Φ0〉 can be obtained using similar procedure. The operator S̃ is written

as

〈Φ0|S̃|Φ0〉 = 〈Φ0|ΩS
2|Φ0〉+ · · ·+ 〈Φ0|ΩS

4|Φ0〉. (5.13)

The superscript in the ΩS
m denotes that the operator is related to the transformed overlap

operator. The total energy can be written as

ECTH =
〈Φ0|Ω2|Φ0〉+ · · ·+ 〈Φ0|Ω6|Φ0〉
〈Φ0|ΩS

2|Φ0〉+ · · ·+ 〈Φ0|ΩS
4|Φ0〉

. (5.14)

The main bottleneck in application of the above energy expression is that the computational

cost is dominated by the Ω5 and Ω6 terms. Therefore, it is desirable to introduce approxima-

tions to the above expression that will reduce the computational effort of the CTH method.

The projected congruent transformed Hamiltonian (PCTH) is one such approach and is

described in the following subsection.
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5.2.2 Projected congruent transformed Hamiltonian

The correlation operator G can be expanded into a complete set of Slater determinants. For

the present derivation, we are only interested in application of the correlation operator on

the Hartree-Fock reference state Φ0 as shown below

G|Φ0〉 =
∞∑

k

〈Φk|G|Φ0〉|Φk〉. (5.15)

Because the correlation operator G is a two-particle operator, the expansion in Eq. (5.15) can

be substantially reduced by using the Slater-Condon rule that G will only connect singly and

doubly excited determinants. Consequently, triples and higher excited states are excluded

from the expansion as shown in the following equation

G|Φ0〉 =
∞∑

k∈0,S,D

〈Φk|G|Φ0〉|Φk〉 (5.16)

= 〈Φ0|G|Φ0〉|Φ0〉+
Nocc∑

i

∞∑

a>Nocc

〈Φa
i |G|Φ0〉|Φa

i 〉

+
1

4

Nocc∑

ij

∞∑

ab>Nocc

〈Φab
ij |G|Φ0〉|Φab

ij 〉. (5.17)

In the above expression, we have used the following convention[276] for indexing the molecu-

lar orbitals. Occupied states are labeled by i, j, k, l, . . . and unoccupied states are labeled by

a, b, c, d, . . . . States that can be both occupied and unoccupied are labeled as p, q, r, s. For

practical implementation, we are also interested in defining the finite-basis representation of

the correlation operator. This denoted as G(M) and is defined as

G(M) = P (M)GP (M), (5.18)

where, P (M) is the projector onto the M -dimensional subspace. The matrix element of G(M)

between any two arbitrary Slater determinant is given by the following expression

〈Φabc...
ijk...|G(M)|Φa′b′c′...

i′j′k′...〉 =

{
〈Φabc...

ijk...|G|Φa′b′c′...
i′j′k′...〉 for max (ijk, abc, i′j′k′, a′b′c′ . . . ) ≤M

0 for max (ijk, abc, i′j′k′, a′b′c′ . . . ) > M

(5.19)

As seen from the above equation, G(M) coincides with the correlation operator G only

for finite basis. In the limit of complete basis, G(M) becomes identical to the G

G = lim
M→∞

G(M). (5.20)
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Operation of G(M) on the reference state Φ0 is given by the following expression

G(M)|Φ0〉 = 〈Φ0|G|Φ0〉|Φ0〉

+
Nocc∑

i

M∑

a>Nocc

〈Φa
i |G|Φ0〉|Φa

i 〉

+
1

4

Nocc∑

ij

M∑

ab>Nocc

〈Φab
ij |G|Φ0〉|Φab

ij 〉, (5.21)

where explicit dependence on M is highlighted in the above equation. To write the above

expression in a compact representation, we will introduce the singles and doubles excitation

operators which are defined in the following equations

T0 = 〈Φ0|G|Φ0〉 (5.22)

T
(M)
1 =

Nocc∑

i

M∑

a>Nocc

〈Φa
i |G|Φ0〉X̂a

i (5.23)

T
(M)
2 =

1

4

Nocc∑

ij

M∑

ab>Nocc

〈Φab
ij |G|Φ0〉X̂ab

ij . (5.24)

The above expression can be simplified as

T0 =
1

2

∑

ij

〈ij|g|ij〉A (5.25)

T
(M)
1 =

Nocc∑

ij

M∑

a

〈ij|g|aj〉AX̂a
i (5.26)

T
(M)
2 =

1

4

Nocc∑

ij

M∑

ab

〈ij|g|ab〉AX̂ab
ij . (5.27)

Substituting T
(M)
1 and T

(M)
2 we get,

〈Φ0|G(M)HG(M)|Φ0〉 =

〈Φ0|(T0 + T
(M)
1 + T

(M)
2 )†H(T0 + T

(M)
1 + T

(M)
2 )|Φ0〉. (5.28)

The matrix elements involving T
(M)
0 as one of the components can be obtained easily and

are presented below

〈Φ0|T †0HT0|Φ0〉 = 〈Φ0|G|Φ0〉〈Φ0|H|Φ0〉〈Φ0|G|Φ0〉 (5.29)

=

(
1

2

∑

ij

〈ij|g|ij〉A
)2(∑

i

〈i|h1|i〉+
1

2

∑

ij

〈ij|r−1
12 |ij〉A

)
, (5.30)
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〈Φ0|T †0HT (M)
1 |Φ0〉 = 〈Φ0|G|Φ0〉〈Φ0|HT (M)

1 |Φ0〉
= 0 (Brillouin’s theorem), (5.31)

〈Φ0|T †0HT (M)
2 |Φ0〉 =

1

8

(∑

ij

〈ij|g|ij〉A
)(∑

ij

M∑

ab

〈ij|g|ab〉A〈ij|r−1
12 |ab〉A

)
. (5.32)

The analytical expressions of the matrix elements 〈Φ0|T (M)†
1 HT

(M)
2 |Φ0〉,

〈Φ0|T (M)†
1 HT

(M)
2 |Φ0〉, and, 〈Φ0|T (M)†

2 HT
(M)
2 |Φ0〉 that involve both the excitation operators

require more involved algebraic manipulation. Efficient computer implementation of these

expressions are generally achieved using the alpha-beta string representation of the Slater

determinant[126]. The analytical expression of the matrix elements can be obtained by using

the generalized Wick’s theorem[276] and enumerating all possible contractions. However,

for the present derivation, we use the diagrammatic representation to write the resulting

expressions. The representative diagrams for the matrix elements are shown in 5.1 and are

summarized in the following equations

〈Φ0|T (M)†
1 HT

(M)
2 |Φ0〉 = D1 +D2 +D3 + . . . (5.33)

〈Φ0|T (M)†
1 HT

(M)
1 |Φ0〉 = D4 +D5 +D6 + . . . (5.34)

〈Φ0|T (M)†
2 HT

(M)
2 |Φ0〉 = D7 +D8 +D9+

D10 +D11 . . . (5.35)

The the finite-basis representation of the CTH energy is given as

E
(M)
PCTH =

〈Φ0|G(M)†HG(M)|Φ0〉
〈Φ0|G(M)†G(M)|Φ0〉

. (5.36)

The finite-basis energy is related to the CTH energy by the following limiting condition

ECTH =
limM→∞〈Φ0|G(M)†HG(M)|Φ0〉
limM→∞〈Φ0|G(M)†G(M)|Φ0〉

. (5.37)

5.2.3 Infinite-order summation of diagrams

In this section, we will develop the partial infinite order summation approach. The central

ideal of this method is to select a subset of diagrams from the 〈Φ0|G(M)HG(M)|Φ0〉 expansion

and perform the M →∞ limit analytically for those diagrams. Because we are interested in

infinite-order summation of selected diagrams (as opposed to all the diagrams) we denote this

technique as partial infinite-order summation (PIOS) method. For a compact representation,

we label the set of diagrams that will be used for the PIOS method by SPIOS.
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Figure 5.1: Diagrams for the diagrammatic representation of congruent transformed Hamil-
tonian
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One of the important issues associated with the PIOS method is the selection diagrams

in the set SPIOS. The success of the PIOS method relies on the existence of the analytical

solution of the M →∞ limit, therefore only sets of diagrams whose infinite-order summation

can be expressed analytically should be considered for SPIOS. Moreover, even if the analytical

expression for the M →∞ limit exists, the implementation and evaluation of the expression

may be computationally demanding. Because of these reasons, the set of diagrams that can

be selected in SPIOS is limited.

For the present work, we focused on diagrams related to the gr−1
ee g expression. The

set SPIOS consisted of all closed diagrams that connected matrix elements 〈ij|g| ∗ ∗〉A and

〈∗∗ |g|ij〉A with 〈∗∗ |r−1
ee | ∗∗〉A where, asterisk denote placeholders for particle and hole lines.

5.2 and 5.3 list all the diagrams that were included in the SPIOS set where {i, j} represent

hole lines and {p, q, r, s} can be either hole or particle lines {↑, ↓}

SPIOS = {D14, . . . , D27}. (5.38)

In the next step the M → ∞ limit of the summation of all the diagrams in set SPIOS was

performed and the result is shown in the following equation

lim
M→∞

{D14 + · · ·+D27} =
∞∑

pqrs

〈ij|g|pq〉A〈pq|r−1
ee |rs〉A〈rs|g|ij〉A, (5.39)

where the subscript A denotes that the matrix elements are antisymmetric. Substituting the

explicit expression of the antisymmetrizer, we get,

lim
M→∞

{D14 + · · ·+D27} =
∞∑

pqrs

〈ij|g(1− P12)|pq〉

× 〈pq|r−1
ee (1− P12)|rs〉

× 〈rs|g(1− P12)|ij〉. (5.40)

Using the idempotent property of the antisymmetrizer,

(1− P12)2 = 2(1− P12), (5.41)

we can obtain the following expression

lim
M→∞

{D14 + · · ·+D27} =
1

4

∞∑

pqrs

〈ij|g(1− P12)|pq〉〈pq|(1− P12)r−1
ee (1− P12)|rs〉

〈rs|(1− P12)g(1− P12)|ij〉. (5.42)
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Figure 5.2: Diagrams for partial infinite order summation
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Figure 5.3: Diagrams for partial infinite order summation
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The expression (1 − P12)|pq〉 represents a set of Slater determinants for two electron

system and satisfies the following closure relationship

1 =
1

4

∞∑

pq

(1− P12)|pq〉〈pq|(1− P12). (5.43)

Substituting the identity operator in Eq. (5.43) in Eq. (5.42),

lim
M→∞

{D14 + · · ·+D27} = 4〈ij|gr−1
ee g(1− P12)|ij〉 (5.44)

= 4〈ij|gr−1
ee g|ij〉A (5.45)

= 4×D28, (5.46)

where, the diagram D28 is shown in 5.4. The diagram D28 is related to the expectation value

b b

gr−1
ee g

i

i

j

j

〈ij|gr−1
ee g|ij〉A

(D28)

Figure 5.4: Diagram for gr−1
ee g integral

of the following two-particle operator

Ωee
2 =

∑

i<j

g(i, j)r−1
ij g(i, j) (5.47)

Combining the results from Eq. (5.46) and (7.70), we obtain the following equation

〈Φ0|Ωee
2 |Φ0〉 = 〈Φ0|

∑

i<j

g(i, j)r−1
ij g(i, j)|Φ0〉 (5.48)

=
1

2
D28 (5.49)

=
1

8
lim
M→∞

{D14 + · · ·+D27} (5.50)

= lim
M→∞

〈Φ0|Ωee
2 |Φ0〉(M) (5.51)
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where we have used the compact notation

〈Φ0|Ωee
2 |Φ0〉(M) =

1

8
{D14 + · · ·+D27}. (5.52)

The relationship expressed in Eq. (5.51), is one of the key results of the PIOS derivation.

In addition to the gr−1
ee g term, the calculation of the PIOS energy also requires dia-

grammatic summation of the overlap term gg. The derivation for the gg is identical to the

derivation presented above for gr−1
ee g and is not presented here to avoid repetition. Analogous

to Ωee
2 , we define the following terms for the overlap operator ΩS

2

〈Φ0|ΩS
2|Φ0〉 = lim

M→∞
〈Φ0|ΩS

2|Φ0〉(M) (5.53)

ΩS
2 =

∑

i<j

g(i, j)g(i, j) (5.54)

Using the results from Eq. (5.51) and (5.53), we define the PCTH-PIOS energy expression

as

EPCTH−PIOS =
〈Φ0|G(M)†HG(M)|Φ0〉 − 〈Φ0|Ωee

2 |Φ0〉(M) + 〈Φ0|Ωee
2 |Φ0〉

〈Φ0|G(M)†G(M)|Φ0〉 − 〈Φ0|ΩS
2|Φ0〉(M) + 〈Φ0|ΩS

2|Φ0〉
. (5.55)

Equation (5.55) illustrates the conceptual structure of the PIOS method. Starting with

the finite-basis expression of the congruent transformed Hamiltonian, the partial infinite or-

der summation technique allows us to remove the finite-basis approximation for one of the

components (Ωee
2 in this case) of the energy expression. The term

(
〈Φ0|Ωee

2 |Φ0〉 − 〈Φ0|Ωee
2 |Φ0〉(M)

)

represents the missing piece in the PCTH energy expression because of the finite size of the

projected space.

5.2.4 Form of the correlation function

Although the expression in Eq. (5.55) is valid for any form of g(1, 2), the computational cost

and ease of implementation depend on the specific choice of g(1, 2). In this work, we have used

Gaussian-type geminal (GTG) functions [234, 38, 309, 312, 193, 331, 313, 69, 332, 334, 353]

for representing the 2-body correlation function

g(r12) =

Ng∑

k=1

bke
−r212/d2k , (5.56)

where bk, dk are the geminal parameters that completely define the GTG function. There are

mainly two different techniques for determining the geminal parameters. In the first method,

the parameters are determined variationally by minimizing the total energy. Although this
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approach is very accurate, it becomes computationally expensive because it involves multidi-

mensional minimization and recomputation of the atomic orbital (AO) integrals. The second

approach is to have a set of precomputed values of the geminal parameters. This approach is

computationally fast, however, the challenge is to find a transferable set of parameters that

can be applied to different molecules. In this work, we have developed a mixed approach

where the linear geminal parameters bk are variationally optimized by minimizing the PCTH

energy and the non-linear geminal parameters dk are precomputed before the start of the

geminal optimization.

The strategy for determining the non-linear parameters developed in this work is to

use an appropriate characteristic length scale associated with the molecule for calculating

the dk parameters. We have used the average electron-electron separation distance as the

characteristic system-dependent quantity for calculating the geminal parameters. Using the

reference Slater determinant Φ0, we define the average electron-electron distance as

〈r2
12〉0 =

2

N(N − 1)
〈Φ0|

∑

i<j

r2
ij|Φ0〉. (5.57)

The dk parameters are selected from a set of numbers obtained by scaling 〈r2
12〉0

d2
k ∈

[
1

n
〈r2

12〉0, . . .
1

2
〈r2

12〉0, 〈r2
12〉0, 2〈r2

12〉0, . . . n〈r2
12〉0
]
. (5.58)

The choice of 〈r2
12〉0 over 〈r12〉0 was made purely for computational convenience. The inte-

gral involving r2
12 is separable in x, y, and z components and can be integrated easily with

Cartesian Gaussian-type orbitals (GTOs). Similar separation is not possible for 〈r12〉0. The

above procedure provides a fast and physically intuitive method for obtaining the non-linear

geminal parameters.

One of the advantages of the GTG function is that the AO integrals involving the GTG

functions are analytical and can be expressed in a closed form. Analytical expressions for

integrals involving s-type GTO’s are known and were derived by Boys. [26] An analytical form

for the higher angular momentum GTOs using Mcmurchie-Davidson algorithm was derived

by Persson and Taylor. [234] Because of the availability of fast analytical integral routines,

Gaussian-type geminal functions have found widespread application in a large number of

explicitly correlated calculations. [234, 38, 309, 312, 193, 331, 313, 69, 332, 334, 353, 81, 83]

As seen in Eq. (5.55), the geminal integrals needed for computation of the energy expression

is of the form G0k. These geminal integrals are known as the overlap integrals and are

especially efficient to compute because they can be written as a product of three 1D integrals

[µν|e−r212/d2k |λσ] = IxIyIz. (5.59)

The exact expression for the integrals can be found in Refs. [26, 234].
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5.3 Results and conclusion

The implementation of the PCTH-PIOS method was tested by performing the ground state

energy of isoelectronic 10-electron systems, Ne, HF, H2O, NH3, and CH4. All the calculations

were performed using Ng = 2 with two Gaussian-type geminal functions. The first set of

geminal parameters were fixed at b1 = 1 and d2
1 =∞. The resulting expression for g used in

the calculation is given by the following equation

g(1, 2) = 1 + b2e
−r212/d22 . (5.60)

This choice of parameters ensured that the PCTH energy is always bounded from top by

the Hartree-Fock energy. The PCTH energy is bounded from below by the CISD energy.

This is because the energy expression of the PCTH method is identical to the CISD energy

where the CI coefficient are constrained to ck = 〈Φk|G|Φ0〉. The upper and lower bounds of

the PCTH energy calculated using the HF reference wave function is given by the following

expression

ECISD < EPCTH < EHF. (5.61)

Hartree-Fock calculation was performed and 〈r2
12〉0 was evaluated. The 〈r2

12〉0 was used

to construct the following trial set for the selection of the d2 parameter

d2
trial ∈

1

3
〈r2

12〉0,
1

2
〈r2

12〉0, 〈r2
12〉0, 2〈r2

12〉0, 3〈r2
12〉0. (5.62)

The b2 parameter was optimized for each trial d2
2 and the b2,opt, d

2
2,opt were obtained by

finding the lowest PCTH energy in the trial set. The change in the energy as a function of

the trial non-linear parameter is presented in 5.5. Interestingly, the optimum expression for

d2 in all the systems was found to be d2
2 = 〈r2

12〉0/2. This result shows that although the

numerical value of the d2 parameter is different for each chemical system, the relationship

between d2 and the average electron-electron separation distance is conserved. The PCTH-

PIOS calculations were performed using the optimized geminal parameters. The correlation

energies obtained from the PCTH-PIOS method are compared with other methods (CISD,

MP2, and CCSD) and the results are presented in 7.1. Comparing the PCTH energies

with the CISD/6-31G* results, it is seen that the PCTH energies are higher than the CISD

energies. As discussed in Eq. (5.61), this is an expected result because the PCTH energy

is bounded from below by CISD energy. However, the PCTH-PIOS energies in all cases

are lower as compared to the CISD/6-13G* results. We attribute this lowering of energy

to the additions of diagrams in the PCTH-PIOS method. Comparing PCTH-PIOS/6-31G*

and CISD/cc-pVTZ results we see that the PCTH-PIOS energies are bounded from below
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Table 5.1: Correlation energies for isoelectronic 10-electron systems. All values
are reported in a.u.

Method Ne HF H2O NH3 CH4

PCTH/6-31G? -0.130603 -0.151003 -0.155345 -0.143408 -0.118838
PCTH-PIOS/6-31G? -0.260906 -0.269057 -0.300579 -0.257571 -0.192598
MP2/6-31G? -0.150315 -0.179777 -0.186849 -0.170397 -0.137732
CCSD/6-31G? -0.152327 -0.184207 -0.195842 -0.185705 -0.158185
CISD/6-31G? -0.148933 -0.178315 -0.188207 -0.178082 -0.152076
CISD/cc-pVTZ -0.320384 -0.322179 -0.305133 -0.272034 -0.227915

by the exact ground state energy. These results indicate the relevance of the infinite-order

diagrammatic summation approach of the PCTH-PIOS method.

In conclusion, we have presented the development of the projected congruent transformed

Hamiltonian method for many-electron systems. The congruent transformation of the many-

electron Hamiltonian was performed using Gaussian-type geminal functions. The challenge

of efficient optimization of the geminal function was addressed by using different strategies

for optimizing linear and non-linear parameters. The linear geminal parameters were ob-

tained variationally by minimizing the PCTH energy. The expectation value of the square

of the electron-electron separation distance was used as the characteristic length scale for

construction of the non-linear geminal parameters. One of the key results in this work is

the development and application of partial infinite order summation method. The PCTH-

PIOS method is based on performing infinite-order summation for a subset of diagrams in

the PCTH energy expression. The closed-shell version of the PCTH-PIOS method was im-

plemented and the method was applied to a series of 10 electron systems. The correlation
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energies computed using the PCTH-PIOS method were found to be in good agreement with

CISD calculations. This is an interesting result because unlike the CISD method, the PCTH-

PIOS method avoids construction and diagonalization of the CI Hamiltonian. The results

indicate that PCTH-PIOS can be used for treating electron correlation in many-electron

systems.
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Chapter 6

Construction of R12
geminal-projected particle-hole
creation operators for many-electron
systems using diagrammatic
factorization approach

6.1 Introduction

An accurate description of correlation energy is needed in order to describe a chemical

system. In recovering this correlation energy, the method of configuration interaction[278]

(CI) is one of the most successful methods due to the simplicity of its underlying mathematics

and its variational properties. Also, it is well known that in the limit of infinite basis, full

configuration interaction will solve the Schrödinger equation exactly which makes FCI an

important benchmark for any method that treats electron correlation.

One of the challenges in performing CI calculations is the rapid increase in the size of the

CI space. However, post calculation analysis of the converged CI vector reveals that a large

number of configurations in the CI expansion are non-contributing in the sense that if these

configurations were removed, the CI energy of the system would remain essentially the same.

Therefore, to reduce the size of the CI space and decrease the computation cost of the CI

calculation, it is important to identify the contributing configurations before the start of the

CI calculation and to select only important configurations in the CI expansion. Extensive

research has been done to effectively truncate the CI space to reduce computational time.

A method widely used to select only the important configurations is based on many-body

perturbation theory.[19, 141, 37, 92, 94, 117, 258, 259, 105] In such studies, the configurations

are chosen based either on their energy[105, 19, 37] or their coefficients in the first order wave
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function.[141, 92] From these criteria, states will either be accepted or rejected based on a

given threshold.[146, 147, 349] Examples of these approaches include the MRD-CI method[37,

32] and the CIPSI (configuration interaction perturbing a multi-configurational zeroth-order

wave function selected iteratively) method.[141, 92, 141, 117] In related work, Roth et al.

introduced an iterative importance truncation (IT-CI) scheme that aims at reducing the

dimensions of the model space of configuration interaction approaches by an a priori selection

of the physically most relevant basis states. Using an importance measure derived from

multiconfigurational perturbation theory in combination with an importance threshold, they

construct a model space optimized for the description of individual eigenstates of a given

Hamiltonian.[258, 259] Another method to reduce the cost of the CI calculation is with

integral-direct CI approach. The Saebo-Almlof algorithm is a direct integral transformation

method with low memory requirements.[263] Efficient integral screening was shown in the

framework of local-correlation methods [243, 244, 264, 116, 130, 273] and also for truncation

of virtual orbitals.[63, 61, 62]

Determinants can also be selected based on monte-carlo methods.[107, 108, 109, 24, 65, 66]

Greer proposed a Monte Carlo CI method (MCCI)[107, 108, 109] to estimate the corre-

lation energies. In this method, a configuration is generated by randomly branching to

new configurations in the expansion space. Then the configuration is kept or discarded

based on its weight in the wave function. This process is repeated until a desired conver-

gence in the variational energy is achieved. Greer’s method is an integral direct method

in which the matrix elements, HAB, are calculated directly during each iteration of the

matrix diagonalization step. Sambataro et al. presented a variational subspace diagonaliza-

tion method[265] that finds the relevant configurations by means of iterative sequences of

diagonalizations of spaces of reduced size. Each diagonalization provides an energy-based

importance measure that governs the selection of the configurations to be included in the

states. Similar to Greer’s method which uses Monte-Carlo, Booth et al. and Petruzeilo et

al. presented a new stochastic method called full configuration interaction quantum Monte

Carlo (FCIQMC).[24, 65, 66, 23, 235] While Greer’s method[107, 108, 109] is a subspace di-

agonalization method, the FCIQMC method takes a different approach in that it represents

the wave function in terms of a set of discretized ”walkers”. The walkers carry a positive

or negative sign which inhabit Slater determinant space, and evolve according to a set of

rules which include spawning, death and annihilation processes. This method is capable

of converging onto the FCI energy and wave function of the problem, without any a pri-

ori information regarding the nodal structure of the wave function. Bytautas et al. found

that a good approximation to the FCI expansion can be obtained based on seniority, or the

number of unpaired electrons in a determinant.[39] For example, if there are no unpaired
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electrons in a determinant, the seniority will be zero, if there are two unpaired electrons

in a determinant, the seniority will be two, and so on. Another interesting technique for

reducing the CI space is known as Löwdin partitioning.[188, 187, 189] Ten-no also presented

a novel quantum Monte Carlo method in configuration space, which stochastically samples

the contribution from a large secondary space to the effective Hamiltonian in the energy

dependent partitioning of Löwdin.[314]

Earlier studies showed that the slow convergence of the CI expansion with respect to

the size of the 1-particle basis is related to poor treatment of the electron-electron cusp

condition.[170] As a consequence, a better description of electron-electron correlation can

be obtained by including explicit electron-electron distance dependent terms in the form of

the many-electron wave function. There have been very important results from methods

such as quantum Monte Carlo ,[182, 215, 29, 237, 235, 98, 351, 352, 339, 72, 73] transcor-

related methods,[28] and R12/F12 methods which show that the inclusion of the r12 term

in the form of the wavefunction, results in a faster convergence of the CI energies. In the

VMC method, the Jastrow function is used for including the explicit r12 terms in the wave

function.[182, 215] The Jastrow function can also be augmented by a linear combination

of determinants.[328, 96, 179, 268, 270, 266, 323, 211, 112, 68, 206, 64, 357, 81, 21] In the

transcorrelated method, a similarity transformation is performed on the Hamiltonian us-

ing an explicitly correlated function.[28, 309, 353] Explicit dependence on r12 term in the

wave function has been implemented in other methods such as MP2-R12,[192, 193, 331, 279]

and coupled cluster,[282, 332, 168, 123, 167, 281] and geminal augmented MCSCF[334] The

applicability of geminal operator approach for treating electron correlation [201, 35, 34]

has also been demonstrated by Rassolov et al. in a series articles for various chemical sys-

tems. [213, 249, 252, 250, 251, 41, 153] A congruent-transformed approach using an explicitly-

correlated geminal operator has also been developed by Elward et al.[83] and Bayne et al.[10]

The goal of this work is to use an explicitly correlated reference function to project out

non-contributing terms in a CI expansion before the start of the CI calculation. Starting

with an ansätz for the explicitly correlated wave function and using many-body diagram-

matic techniques, we derive effective particle-hole excitation operators that project out low-

amplitude excitations. The key difference between the method presented here and other

approaches described above is that the present method does not use an energy-based scheme

or perturbation-theory based criteria to eliminate configurations from the CI expansion. The

elimination of configurations is solely based on particle-hole excitation amplitudes derived

from an underlying explicitly correlated wave function. The derivation of the method and

construction of the explicitly correlated wave function are presented in Sec. 6.2.1 and 6.2.2.
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The method has been applied to many-electron systems and proof-of-concept calculations of

isoelectronic series of 2nd row molecules are presented in Sec. 6.3.

6.1.1 Review

Knowles and Handy exploit the sparsity of the FCI vector and converge the CI energy to

some threshold. Studies were done specifically on the NH3 system involving 2×108 determi-

nants in the FCI wave function. Using their method, the sparsity of the FCI wavefunction is

taken advantage of and their final wave function is about 0.3% populated while still achieving

accurate results. However, this calculation still required access to a large IBM 3090 super-

computer (100 MB memory, 200 MB disk space) to determine the full-CI result to within

0.0001 Eh.[163, 164]

A widely used method that is used to select only the important configurations is based on

many-body perturbation theory.[19, 141, 37, 92, 94, 117, 258, 259, 105] In these references,

the configurations are chosen either based on their energy[105, 19, 37] or based on their

coefficient in the first order wave function.[141, 92] Based on these criteria, states will either

be accepted or rejected based on a given threshold.

Bender and Davidson studied properties of the first row diatomic hybrids. The wave

functions presented give properties such as dipole moment more accuracy than SCF wave

functions. Previously it was known that the CI wave function would only give more accurate

energies in terms of just total energy. Their method used single and double excitations in

their wave function, but points out that many of the double excitations contribute very little

to the total energy. Configurations were selected using an energy contributation criteria,

ε
(2)
i =

1

k

k∑

l=1

|〈φli|H|φ0〉|2
〈φ0|H|φ0〉 − 〈φli|H|φli〉

(6.1)

and a resonable number (≤1000) of configuration were selected for the CI wave function.[19]

The Gershgorn and Shavitt method perturbs the ground state wavefunction ψ0 resulting

from the diagonalization of the CI matrix restricted to the ground state and the k lowest

(doubly) excited determinants. They present a test example on the relatively small BH3

system.[105]

Buenker and Peyerimhoff’s MRD-CI method uses a threshold which defines a set of

references whose interacting space of single and double excitations is then truncated upon

energy lowering at second order perturbation theory.[37, 32]

The method of Huron et. al. known as the CIPSI-2 algorithm, includes determinants in

the reference space based upon their coefficient in the wave function and uses second-order

perturbation theory to include the effects of the interacting space. This method differs from
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the method proposed by Gershgorn[105] in that this CIPSI-2 method allows a less arbitrary

construction of ψ0
m since the most important components of ψm are progressively introduced.

Thus a small number of determinants in S should be sufficient to reach the same degree of

accuracy. This method is more general and allows the treatment of excited states as well as

of the ground state. Excitation energies for the H2 system and Ne are presented.[141]

Evangelisti presents a method similar to the MRDCI scheme by Buenker and Peyerimhoff[32]

except this CIPSI (Configuration Interaction Perturbing A Multi-Configurational Zeroth-

Order Wave Function Selected Iteratively), (known as CIPSI-3), differs in when the David-

son correction is applied. In this method, the Davidson correction is applied after a first

extrapolation, and followed by a second extrapolation. This method is tested on H2O and

CN+.[92]

The CIPSI methods of Huron[141] and Evangelisti[92] differs from the MRD-CI methods

in that the MRD-CI methods are typically one-step calculations whereas the CIPSI meth-

ods iteratively improve on the importance truncated space. The CIPSI methods use a CI

calculation for a limited model space of important configurations and supplements it with

a second-order perturbative correction for singles and doubles excitations on top of the CI

model space. The CI space is then iteratively enlarged by including those singles and doubles

that contribute to the first-order perturbed states with amplitudes larger than a threshold

value.

Feller and Davidson truncate the double excitations using a Rayleigh-Schrodinger per-

turbation theory estimate on the energetic importance of Ψ0 on each configuration outside

of a reference space. If this energy value of the configuration was greater than 2.0×10−8,

the configuration was included in the final wave function. As a result of this process, about

30,000 configurations out of a total of 13 million were incuded. Tests on O and O− systems

report more than 95% of the correlation energy was recovered using this method.[94]

The method of Harrison is a sythesis of CIPSI-2[141, 92] and MRD-CI[37], however, the

method does not use any extrapolations and ad hoc corrections when approximating the full-

CI limit. Selected configuration interaction (CI) calculations and second order perturbation

theory are combined to systematically approach the full-CI limit. The resulting algorithm

has negligible requirement for memory or disk space, being limited only by available cpu

time. Comparison is made to existing full-CI benchmarks (DZ and DZP water, the oxygen

atom and its anion, ammonia and the magnesium atom). In all cases the full-CI result is

recovered to better than 0.1 kcal/mol.[117]

Roth et al. introduces an iterative importance truncation (IT-CI) scheme that aims at

reducing the dimension of the model space of configuration interaction approaches by an a

priori selection of the physically most relevant basis states. Using an importance measure
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derived from multiconfigurational perturbation theory in combination with an importance

threshold, they construct a model space optimized for the description of individual eigen-

states of a given Hamiltonian.[258, 259] This method has the conceptual elements of the

MRD-CI schemes[37, 32], but is similar to the CIPSI methods[141, 92] in that it has the

iterative setup which allows for the systematic improvement of the importance space.

Other methods include a coupled-cluster[240, 239, 219, 220, 1, 2] approaches to determine

the dominant configurations to select.

The calculation of accurate potential energy surfaces is particularly difficult as a result

of when a bond is stretched, higher excitations, on the order of triples and quadruples and

higher, become more and more important. However, the inclusion of these higher order

excitations beyond that of doubles is highly expensive. However, it is possible to only

include subsets of these higher-order excitations. This can be done by dividing the orbitals

into subspaces and restricting the occupations of each subspace. This has been applied to

coupled-cluster theory. [220, 219, 240, 239]

Oliphant et. al. presents a generalized version of the multireference coupled-cluster

method using a single-reference formalism. Any number of determinants, that differ from

the formal reference determinant by single or double excitations, can now be included in the

reference space. The single and double excitations from the secondary reference determinants

have been truncated to include only those that correspond to triple excitations from the

formal reference determinant. Calculations are done on a few model systems, LiH, BH, and

H20, at equilibrium and stretched geometries.[220, 219]

Piecuch et. al. extends coupled-cluster theory to connected triply, T3, and quadruply,

T4, excited clusters in order to study bond breaking. A hierarchy of approximations to

standard CCSDT and CCSDTQ approaches, in which the dominant T3 and T4 contributions

are evaluated via the concept of active orbitals. This method is applied to H2O, HF, and C2

systems.[240, 239]

Abrams et al. construct truncated CI and truncated coupled-cluster wave functions by

selecting the most important configurations a posteriori, by weight, from a full configura-

tion interaction or full coupled cluster wave function. Results show that for the symmetric

dissociation of water, chemical accuracy can be achieved across the surface with 2% of

the full coupled-cluster expansion compared to 10% of the full configuration interaction

expansion.[1, 2]

The cost of the CI calculation can also be reduced using an integral-direct CI approach

Saebo and Almlof propose a direct integral transformation method. The Saebo-Almlof

algorithm is unique in that its fast memory requirement scales only quadratically with the
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basis size. However, this is at the expense of sacrificing much of the permutational symmetry

of the AO integrals.[263]

Baker et. al. presents a parallel version of an algorithm for the efficient calculation

of cononical MP2 energies. This method is based on the Saebo-Almlof direct-integral

transformation,[263] coupled with an efficient prescreening of the AO integrals. Results

for systems with up to 2000 basis functions are presented.[9]

AO screening methods are also studied in the following research.

Efficient integral screening was shown in the framework of local-correlation methods

[243, 244, 264, 116, 130, 273] would eventually lead to a method that scales linearly with the

size of the system.

Haser et. al. introduces the powerful Schwarz screening method for two-electron integrals.

With this method, it became possible to rigorously preselect the two-electron integrals and

the number of integrals was reduced from O(N4) to O(N2) with N as the number of basis

functions. However, this method neglects entirely the 1/R distance decay between the two

charge distributions in four-center two-electron integrals.[120]

Almlof stated that the missing 1/R dependence in the Schwarz screening might be ap-

proximated via overlap integrals.[4]

To account for the 1/R distance decay between the charge distributions, Lambrecht et. al.

proposes a multipole-based integral estimates (MBIE) as rigorous and tight upper bounds

to four-center two-electron integrals. This MBIE method is studied for examples of two-

electron integrals within a stretched hydrogen fluoride dimer, for DNA fragments up to 1052

atoms, for linear alkanes, and for graphite sheets.[176]

Chwee et. al. developed a linear scaling multireference singles and doubles configuration

interaction method. The method reduces the cubic-to-quartic scaling MRSDCI algorithm to

linear scaling by integral screening. The scaling and accuracy of this method with system size

was tested on a series of linear alkane chains C3H8 to C14H30. In Chwee and Carter’s proposal,

the truncation of the determinant or configuration state functions basis is obtained through

the weak pair approximation (WP)- interaction between OLOs (occupied localized orbitals)

and the truncation of virtuals (TOV)- interaction between occupied and virtual orbitals,

while the reduction of the number of integrals results from the application of prescreening

techniques.[63, 61, 62]

Krisiloff developed a local (L) and approximately size extensive MRCI method that ad-

dresses the poor scalability of MRCI with molecular size as well as the size extensivity issues

of MRCI. Truncating long-range electron correlation in a local orbital basis as well as efficient

processing of two-electron integrals via Cholesky decomposition (CD) and integral screening
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reduce the computational cost to O(N3) with a small prefactor. Molecules with up to 50

heavy atoms are studied.[172]

CI prescreening methods are also researched. In these methods the configurations in the

CI space are truncated a priori to any diagonalization or calculation of coefficients.

A method has been developed for the quantitative assessment of those terms in a con-

figuration interaction expression that can be deleted when a given error in the energy is

tolerated. The assessment is made a priori. The energy error caused by the truncation is

estimated. The method is based on constructing the correlated wavefunction by successive

excitations from a very small kernel function constructed from strongly occupied orbitals.

The truncations are performed independently for quadruple, quintuple and sextuple excita-

tions based on the information from double and triple excitations. The method has been

illustrated for the molecules HNO, N2 and NCCN. The truncations obtained by this a pri-

ori approach closely agree with the a posteriori truncations based on the coefficients in the

known full CI expansions.[40]

A direct configuration interaction (CI) has been developed for determining completely

general configurational expansions base on arbitrary determinantal configuration lists. This

method uses the Slater-Condon expressions in direct conjunction with single and double

replacements. Results show that for full configuration spaces of Ne, C2, CO, and H2O

consisting up to 40 million determinants, only about 1% of the configurations are necessary

to produce exact results within chemical accuracy.[146]

Using a GCI code, CI calculations of truncated full-space determinantal expansions were

performed to obtain qualitative assessments of the fractions of the SD and SDTQ wavefunc-

tions that must be considered as deadwood with regard to correlation energy recovery. While

the SD parts contain in no case more than 50% deadwood, the TQ parts typically contain

an order of magnitude more deadwood than the SD parts.[147]

Stampfuβ, Wenzel (J. Chem. Phys. 122, 024110 (2005): Discusses their configuration-

selecting multireference configuration interaction method on massively parallel architectures

with distributed memory, which now permits the treatment of Hilbert spaces of dimension

O(1012). Of these about 50,000,000 can be selected in the variational subspace. Benchmark

results for two selected applications: the energetics of the isomers of dinitrosoethylene and

the benchmark results for the ring closure reaction of enediyene are presented.

Wulfov et. al. presents an efficient algorithm for the full configuration interaction (FCI)

on a personal computer is presented. Selected configuration interaction and second-order

perturbation theory (PT) are combined to approach the full-Cl limit. Comparison was made

to existing full-CI benchmarks. A test calculation of NH2 symmetrical dissociation shows

that the running time for finding the correlation energy with an accuracy of 0.1 kcal/mol
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is just 5 min on an IBM 486DX2-66 PC. As another example, the approximate full-CI

calculations of the HF dimer in the (4s2p1d/2s1p) and the (4s3p1d/2s1p) basis sets have

been carried out. The ground state of (HF)2 produces 3×l014 and 4×1015 determinants,

respectively.[349]

AO screening has also been used in other methods such as in MP2.

AO-Laplace transform (LT) MP2 method is presented. Almlof showed that the ex-

act MP2 energy can be obtained using noncanonical MOs while retaining the simplicity

of the conventional formulation.[5] Almlof noted that the Laplace transform of the energy

denominator yields an energy expression invariant with respect to unitary transformation

of weighted molecular orbitals. Almlof and Haser showed that micro-Hartree accuracy can

be obtained with 8-10 quadrature points and that milli-Hartree accuracy is obtained with

only 3-5 quadrature points.[121] Finally, Haser presents MP2 theory which starts from the

Laplace transform MP2 ansatz, and subsequently moves from a molecular orbital (MO) rep-

resentation to an atomic orbital (AO) representation. Consequently, the new formulation is

denoted AO-MP2. As in traditional MP2 approaches electron repulsion integrals still need to

be transformed. Strict bounds on the individual MP2 energy contribution of each interme-

diate four-index quantity allow to screen off numerically insignificant integrals with a single

threshold parameter. The AO-Laplace transform method uses Schwarz based screening for

the AO integrals.[119]

Ayala et. al. present a linear scaling MP2 algorithm based on the AO-Laplace transform

(LT) MP2 method by Almlof and Haser.[5, 121, 119] In this method, the energy denominators

are eliminated by Laplace transformation, which allows for the expression of the MP2 energy

directly in the AO basis. However, the additional Laplace integration is necessary which is

carried out by quadrature over few (8-10) points. For each of the quadrature points an

integral transformation has to be performed, but the transformation matrices are much

more sparse than the canonical MO coefficients; therefore, more efficient prescreening is

possible.[8]

Maurer et. al. shows efficient estimates for the preselection of two-electron integrals

in atomic-orbital based Moller-Plesset perturbation theory (AO-MP2) theory are presented.

The AO-MP2 method using screening based on QQR estimates provides reliable results for

large molecular systems and exhibits linear-scaling with system size allowing calculations on

systems with more than 1000 atoms and 10 000 basis functions on a single core.[196]

A Laplace-transformed second-order Moller-Plesset perturbation theory (MP2) method is

presented by Doser et. al., which allows to achieve linear scaling of the computational effort

with molecular size for electronically local structures. Numerically significant contributions
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to the atomic orbit (AO)-MP2 energy are preselected using the so-called multipole-based

integral estimates (MBIE).[76]

Determinants can also be selected based on monte-carlo methods.[107, 108, 109, 24, 65, 66]

Greer proposed a Monte Carlo CI method (MCCI)[107, 108, 109] to estimate the correla-

tion energies. In this method, a configuration is generated by randomly branching to new

configurations in the expansion space. Then the configuration is kept or discarded based on

their weight in the wave function. This process is repeated until a desired convergence in

the variational energy is achieved. Greer’s method is an integral direct method in which the

matrix elements HAB are calculated directly during each iteration of the matrix diagonaliza-

tions. This method also belongs to a class subspace diagonalization methods. Generally a

subspace diagonalization method chooses an optimal subset of determinants which are used

to construct the Hamiltonian which is then diagonalize in the subspace. Then the lowest

eigenvalue is taken as the best variational estimate to the exact FCI energy. The method of

Greer iteratively seaches the FCI space for the optimal selection of determinants.

Sambataro et. al. presents a variational subspace diagonalization method in which it finds

the relevant configurations by means of iterative sequences of diagonalizations of spaces of

very reduced size. Each diagonalization provides an energy-based importance measure that

governs the selection of the configurations to be included in the states. A series of calculations

is performed on a Hartree-Fock basis for a number of orbitals ranging from 5 to 20. The

procedure accurately reproduces the results in the complete space.[265]

FCIQMC methods are also effective in obtaining FCI energies. FCIQMC methods are

discussed in the following research.

Like Greer’s method which uses monte-carlo, Booth et. al. presented a new stochastic

method called full configuration interaction quantum Monte Carlo (FCIQMC). While Greer’s

method[107, 108, 109] is a subspace diagonalization method, the FCIQMC method takes a

different approach in that it represents the wave function in terms of a set of discretized

”walkers”. The walkers carry a positive or negative sign which inhabit Slater determinant

space, and evolve according to a set of rules which include spawning, death and annihilation

processes. This method is capable of converging onto the FCI energy and wave function

of the problem, without any a priori information regarding the nodal structure of the wave

function being provided.[24]

Cleland et. al. presents the FCIQMC method, however, it has a vastly more efficient

initiator extension (i-FCIQMC). It has been shown to calculate the exact basis-set ground

state energy of small molecules, to within modest stochastic error bars, using tractable

computational cost.[65]
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Cleland et. al. then apply the i-FCIQMC method to the first-row diatomic systems

of Be2, C2, CN, CO, N2, NO, O2, and F2. Using i-FCIQMC, the dissociation energies of

these molecules are obtained almost entirely to within chemical accuracy of experimental

results.[66]

Configuration interaction methods with only single excitations in the CI space are re-

searched. Using only single excitations, excitation energies can be calculated.

Del Bene et. al. present the configuration interaction with single substitutions (CIS)

method for the determination of excited states.[74] This is considered the simplest method

that can describe electronically-excited states, but it is unable to predict the correct topogra-

phy of the intersecting surfaces because of the identically zero Hamiltonian matrix elements

between the HF reference and the singly-excited determinants (Brillouins theorem). Results

are reported for a series of molecules including H2O. This method reports the lowest singlet

excited state energy for water as 9.58 eV and the lowest triplet excited state energy for water

as 8.68 eV.[74]

However, it is known that the CIS approximation is not enough to consistently include

the dynamic correlation in order to predict the correct conical topography. Head-Gordon

et. al. introduce a ’theta diagnostic’ is introduced that measures the reliability of the single

excitation configuration interaction (CIS) approach to excitation energies, and a second order

perturbation correction, CIS(D). This diagnostic characterizes the extent of mixing between

CIS excited states due to electron correlation effects through second order in a Moller-Plesset

expansion.[223, 124]

Laikov and Matsika claim that the CIS method with second-order perturbative correc-

tion proposed by Head-Gordon[124] will also not recover the correct conical topography

because it still separates the calculation of the ground and excited state energies. Laikov

introduces a new electronic structure model in which the energies of both the ground and

singly-excited states are eigenvalues of adressed symmetric configuration interaction (CI)

matrix in the space of the reference and singly-excited determinants. The effects of double

and triple substitutions are approximately included into the CI matrix elements in the spirit

of quasidegenerate second-order perturbation theory. The model correctly describes conical

intersections between the ground and singly-excited states and appears to be the simplest

single-reference correlated treatment for this class of problems. Test calculations on organic

molecules are presented.[174]

Different diagonalization techniques are also studied such as the Davidson-Lanczos diag-

onalization and filter-diagonalization by Neuhauser et. al. and Guo et. al.

Lanczos introduces a systematic procedure for the evaluation of latent roots and principal

axis of a matrix, without constant reductions of the order of the matrix. A systematic
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algorithm is developed, which obtains the linear identity between the iterated vectors in

successive steps by means of recursions.[177]

Davidson’s method differs from Lanczos only by the use of a device based on first-order

perturbation theory, the purpose of which is to accelerate convergence.[71, 180]

Neuhauser introduces filter diagonalization for extracting highly excited rovibrational

states from an arbitrary Hamiltonian, in any desired energy range. In the method, an arbi-

trary initial wave packet is propagated for a short time and during the propagation a ”short

time filter” of the wave packet is accumulated at various energies in any desired ”window,”

yielding a small set of functions which span the eigenfunctions of the Hamiltonian in the

desired range. A small Hamiltonian matrix is then evaluated in the filtered-functions basis,

to yield the eigenvalues in the desired range. The combination of the time-dependent (TD)

propagation with the small matrix diagonalization eliminates the uncertainty-relation limi-

tation associated with a pure TD approach and the large-matrix diagonalization necessary

in a purely time-independent approach.[208]

Time-dependent scattering is extended to systems possessing narrow resonances. At short

times the wave function is integrated directly, and at late times the wave function is expanded

in terms of the slowly decaying (complex) resonance eigenfunctions of the Hamiltonian.

The slowly decaying eigenfunctions are easily found via a short-time filterization approach

adapted from bound-state studies, in which a random wave packet is filtered at various

energies and the resulting vectors are then diagonalized. The method is exemplified for

collinear reactions of H + H2, where it halves the propagation time.[209]

Applies Neuhauser 1990 filter diagonalization on a molecular Hamiltonian exhibiting

accidental near degeneracies, thereby supplying a stringent test for the approach. A two-

dimensional model of LiCN (J =0) is used. Good agreement is established with previous

results for high-energy states. To further check the consistency, a large-scale direct diag-

onalization of the Hamiltonian was performed, and it was verified that this method was

highly accuracy even for nearly degenerate levels. Extraction of these levels by a purely TD

approach would have necessitated about a 700-fold increase in propagation time.[210]

Guo shows how a single Lanczos propagation (SLP) can be used to calculate scalar

properties such as the overlaps between eigenstates and many arbitrary pre-specified states.

Due to the severe loss of global orthogonality among the Lanczos states, multiple copies of

the true Lanczos eigenpairs emerge in long propagation. Traditionally, many of these copies

are regarded as ”spurious” and discarded. Guo shows that these copies, when converged,

are all good approximations of the true Lanczos eigenpairs and may make nonnegligible

contributions to the quantities of interest.[57]
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Guo improves the efficiency of the (SLP) method. Guo accomplishes this by showing

that the transition amplitudes can be calculated without explicit calculation and storage

of the Lanczos eigenvectors. Guo also implements symmetry adaptation in the Lanczos

propagation.[58]

Guo uses the Lanczos algorithm based on repetitive matrix-vector multiplication. The

six-dimensional vibrational Hamiltonian in the diatom-diatom Jacobi coordinate system was

discretized in a mixed basis/grid representation. Using this method, accurate calculations

of vibrational energy levels of HOOH, DOOD, and HOOD up to 10000 cm−1 above the

zero-point energy levels on a high-quality ab initio potential energy surface.[59]

Guo presents a modified version of the single Lanczos propagation method, which allows

both energies and overlaps between multiple target functions and all eigenfunctions to be

computed from a single Lanczos recursion with no explicit construction of the eigenfunctions.

This method is employed to help assigning some highly excited bending levels of acetylene

(HCCH) using a six-dimensional exact quantum Hamiltonian and target functions designed

to extract information about the shape of the eigenfunctions.[350]

Excited states can also be obtained without diagonalization by using the equations of

motion (EOM) approach.

Bartlett (1989): The equation-of-motion coupled-cluster (EOM-CC) method for the cal-

culation of excitation energies is presented. The procedure is based upon representing an

excited state as an excitation from a coupled-cluster ground state and the excitation energies

are obtained by solving a non-Hermitian eigenvalue problem. Numerical applications are re-

ported for Be and CO, and compared to full CI, Fock space multi-reference coupled-cluster,

multi-reference MBPT, and propagator results.[104]

Bartlett presents an overview of the equation of motion coupled-cluster (EOM-CC)

method and its application to molecular systems. By exploiting the biorthogonal nature

of the theory, it is shown that excited state properties and transition strengths can be eval-

uated via a generalized expectation value approach that incorporates both the bra and ket

state wave functions. Excitation energy, oscillator strength, and property calculations are

illustrated by means of several numerical examples, including comparisons with full config-

uration interaction calculations and a detailed study of the ten lowest electronically excited

states of the cyclic isomer of C4. Presents the lowest excited state of water energy as 7.40

eV. (1B1 state). [302]

In this paper, we remove unimportant configurations by using the geminal operator, G,

which intrinsically has properties that make the form of the wave function better. The

geminal operator makes the wave function explicitly dependent on the the interparticle sep-

aration of two electrons. Using this property, we show that G is related to the connectedness
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of configurations, more specifically, it connects the single and double excitations from the

reference. In analysis of the G operator and the connectedness of determinants, we can select

out determinants that are more important, and discard determiannts that are not important

to the energy a priori to performing a diagonalization or finding any coefficients.

Another interesting technique for reducing the CI space is known as Löwdin partitioning.

Löwdin uses the partitioning technique to partition the Hilbert space into two subspaces,

one of which is usually a one-dimensional reference space associated with a reference function

Φ. A reduced resolvent T = P / (e - H) is then defined, where P is the projection operator

for the orthogonal complement to the reference function, e is a variable with the dimensions

of energy, and H is the Hamiltonian for the system of interest. By using this reduced resol-

vent, Lowdin defined a ”bracketing function”. The bracketing theorem in the partitioning

technique for solving the Schrodinger equation may be used in principle to determine upper

and lower bounds to energy eigenvalues. Practical lower bounds of any accuracy desired

may be evaluated by utilizing the properties of ”inner projections” on finite manifolds in the

Hilbert space.[188, 187, 189]

Ten-no presents a novel quantum Monte Carlo method in configuration space, which

stochastically samples the contribution from a large secondary space to the effective Hamil-

tonian in the energy dependent partitioning of Lowdin. The method treats quasi-degenerate

electronic states on a target energy with bond dissociations and electronic excitations avoid-

ing significant amount of the negative sign problem. The performance is tested with small

model systems of H4 and N2 at various configurations with quasi-degeneracy.[314]

There have been very interesting results from methods such as variational monte carlo

(VMC),[182, 215] transcorrelated methods,[28] and R12/F12 methods which show that with

the inclusion of the r12 term in the form of the wavefunction, the energy converges much

faster than CI energies.

In the VMC methods, the jastrow function is used for including the explicit r12 terms

in the wave function.[182, 215] In the transcorrelated method, a similarity transformation is

performed on the Hamiltonian using an explicitly correlated function.[28] In the transcor-

related approach proposed by Ten-no, a gaussian type geminal function was used as the

explicitly correlated function.[309, 353]

Explicit dependence on r12 term in the wave function has been implemented in other

methods such as MP2-R12,[192, 193, 331, 279] and coupled cluster,[282, 332, 168, 123, 167,

281] and geminal augmented MCSCF[334]

Martinez et. al. presents a variational G-MCSCF method. Test calculations on two-

electron systems indicate that this method is able to account for a significant portion of

dynamic correlation and can describe states with ionic and covalent character equally well.
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This is achieved without including excitations to virtual orbitals used in traditional correla-

tion methods.[334]

6.2 Theory and computational details

6.2.1 Diagrammatic factorization of particle-hole excitation oper-
ators

The derivation relies on the existence of an explicitly correlated wave function for the many-

electron system. In this work, we assumed the following general form for the R12 operator

|ΨG〉 = G|Φ0〉 (6.2)

where G is assumed to be a two-body operator of the following form.

G =
∑

i<j

g(i, j) ≡
∑

i<j

g(rij) (6.3)

In the above expression, the function g depends on the electron-electron separation distance

r12. The following derivation does not depend on the specific functional form of g and

its discussion is postponed until section 6.2.2. The ground state energy is obtained by

performing minimization over function g.

EG = min
g

〈0|G†HG|0〉
〈0|G†G|0〉 (6.4)

The energy expression can be expressed by performing congruent transformation on the

many-electron Hamiltonian.

G†HG =

[∑

i<j

g(i, j)

][∑

i

h1(i) +
∑

i<j

h2(i, j)

][∑

i<j

g(i, j)

]
(6.5)

The transformed operator can be expressed as a sum of the two, three, four, five, and six

body operators as shown in the following equation.

G†HG =
∑

i1<i2

w2(i1, i2) +
∑

i1<i2<i3

w3(i1, i2, i3) +
∑

i1<i2<i3<i4

w4(i1, i2, i3, i4) (6.6)

+
∑

i1<i2<i3<i4<i5

w5(i1, i2, i3, i4, i5) +
∑

i1<i2<i3<i4<i5<i6

w6(i1, i2, i3, i4, i5, i6)

The expectation value of the congruent-transformed Hamiltonian with respect to the Fermi

vacuum state is given by the following expression.

〈0|G†HG|0〉 =
1

2

∑

i1i2

〈i1i2|w2(1, 2)|i1i2〉A (6.7)
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+
1

3!

∑

i1i2i3

〈i1i2i3|w3(1, 2, 3)|i1i2i3〉A

+
1

4!

∑

i1i2i3i4

〈i1i2i3i4|w4(1, 2, 3, 4)|i1i2i3i4〉A

+
1

5!

∑

i1i2i3i4i5

〈i1i2i3i4i5|w5(1, 2, 3, 4, 5)|i1i2i3i4i5〉A

+
1

6!

∑

i1i2i3i4i5i6

〈i1i2i3i4i5i6|w6(1, 2, 3, 4, 5, 6)|i1i2i3i4i5i6〉A

As expected, the energy expression depends only on the occupied orbitals. In the next step,

the components of the energy expression are expressed using diagrammatic notation. Gen-

erally, diagrammatic analysis in many-electron systems is performed using antisymmetrized

Goldstone diagrams. However, in this work we used the much more compact Hugenholtz

diagrams to keep the number of diagrams tractable. The diagrammatic representation of the

energy terms is given by diagrams labeled as D2, D3, D4, D5 and D6 in Fig. 6.1. The vertex

of each diagram represents the corresponding wk operator in Eq. 6.7. In the next step, the

vertex of each diagram is split in to two vertices. This is done by analyzing the action of

operator g on the occupied orbitals. Specifically, without loss of any generality, the action

of the g on the occupied space is given by the following expression.

g(1, 2)|i1i2〉 =
∞∑

p1p2

〈p1p2|g|i1i2〉|p1p2〉 (6.8)

where, the orbitals p1 and p2 span both occupied and unoccupied space. It is important to

note that Eq. (6.8) is not the definition of the g operator because the above equation does

not define its action on unoccupied orbitals. The above expansion allows us to split the

vertices of each diagram shown in Fig. 6.1 and the resulting diagrams of this transformation

are shown in Fig. 6.2. Analysis of the resulting diagrams reveals that a subset of diagrams

can be simplified by factoring out common particle-hole (p-h) excitation operators which are

show in Fig. 6.3. Specifically, diagrams in Fig. 6.2 can be factorized as 2p-2h (Fig. 6.4 ) and

1p-1h operators (Fig. 6.5). It is important to note that this factorization is performed for

all orders of many-particle operators (w2, . . . , w6). From Fig. 6.3, the 2p-2h excitation has

the following form

W2 =
1

4

∑

i1i2a1a2

gA
i1i2a1a2

{a†1a†2i2i1} (6.9)

where

gA
i1i2a1a2

= 〈i1i2|g(1, 2)(1− P12)|a1a2〉 (6.10)
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Similarly, the 1p-1h excitation operator is defined as

W1 =
∑

i1a1

gi1a1{a†1i1} (6.11)

where,

gi1a1 =
∑

k2

gA
i1k2a1k2

(6.12)

We note that the strength of the particle-hole excitation operator depends on the value of

the amplitude, which is functional of g. In this work we are interested in using g to project

out weak excitations. We achieve this by defining the following 1p-1h and 2p-2h operators

T θ1 [η] =
∑

ia

θ(|gia| − η)tia{a†i} (6.13)

T θ2 [η] =
∑

i<j,a<b

θ(|gA
ijab| − η)tijab{a†b†ji} (6.14)

In the above equations, we have introduced a control parameter η that projects out particle-

hole excitations whose amplitudes are below a certain tolerance value. Using the above

expressions we define the geminal projected configuration interaction (GPCI) operator

ΩGPCI[η, g] = 1 + T θ1 [η, g] + T θ2 [η, g] (6.15)

The total number of terms in the ΩGPCI is given by

NGPCI[η, g] = 1 +
∑

ia

θ(|gia| − η) +
∑

i<j,a<b

θ(|gA
ijab| − η) (6.16)

The energy is given by

EGPCI[η, g] = min
tia,tijab

〈0|Ω†GPCIHΩGPCI|0〉
〈0|Ω†GPCIΩGPCI|0〉

(6.17)

In the limit of η → 0, the method should reduce to the conventional CISD method.

lim
η→0

NGPCI = NCISD (6.18)

lim
η→0

ΩGPCI = ΩCISD (6.19)

lim
η→0

EGPCI = ECISD (6.20)

In the limit η →∞, the method reduces to the Hartree-Fock method

lim
η→∞

NGPCI = 1 (6.21)

lim
η→∞

ΩGPCI = 1 (6.22)

lim
η→∞

EGPCI = EHF (6.23)

The projection of the particle-hole excitation operators and the efficacy of the method depend

on the choice of the g which is described in the following section.

70



6.2.2 Determination of correlation function

In this work, the R12-correlation operator is represented using Gaussian-type geminal func-

tions as shown in the following equation.

g(r1, r2) =

Ng∑

k=1

bke
−r212/dk (6.24)

where Ng are the number of terms in the expansion and bk and dk are expansion parame-

ters. Typically, the expansion parameters are determined using a variational approach by

minimizing the energy or its variance. However, such a strategy in not practical in this work

because the computational effort for the variational determination of the geminal parame-

ters would be higher than performing the GPCI calculations. Here, we present an analytical

method for determination of the geminal parameters, which does not rely on a variational

approach. To keep the analytical derivation tractable we use only one geminal function

(Ng = 1). The determination of the geminal parameters (b1, d1) is based on imposing the

the Kato electron-electron cusp condition which is given by the following equation

(
∂Ψ

∂r12

)

r12=0

=
1

2
r12 (6.25)

Unfortunately, Gaussian-type geminal (GTG) functions do not have the necessary analytical

properties to satisfy the above condition. The Kato cusp condition in principle, can be

realized by using Slater-type geminal (STG) function.

φSTG(r12) = e−
1
2
r12 (6.26)

However calculation of molecular integrals is more expensive using STG as compared to

GTG, and using STG will increase the computational cost and complexity of the overall

calculations. Because the GTG function cannot satisfy the exact Kato cusp condition, we

imposed the requirements that the geminal parameters must satisfy an approximate condition

that is based on the average electron-electron separation distance.

b1

d1

r2
12 6=

1

2
r12 (6.27)

b1

d1

〈r2
12〉 =

1

2
〈r12〉 (6.28)

The motivation for the above condition is based on the previous observations [241, 170, 10]

that the form of the explicitly correlated wave function in the neighborhood of the electron-

electron coalescence point plays a significant role in accurate treatment of electron-electron
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correlation. Comparing the left and right side of the above equation, we define geminal

parameter as

b1 = 〈r12〉 (6.29)

d1 = 2〈r2
12〉 (6.30)

The computation of 〈r12〉 is more expensive than the computation of 〈r2
12〉 because integral

over r2
12 using Gaussian-type orbitals (GTOs) can be expressed as sum of x2, y2 and z2

components. Therefore we approximate the average electron-electron distance using the

following expression

〈r12〉 ≈
√
〈r2

12〉 (6.31)

Substituting in the values for d1 from Eq. 6.30 and b1 from Eq. 6.31 into Eq. 6.24, we arrive

at the final expression for the geminal function (in atomic units)

g(r12) =

(√
〈r2

12〉
1 a.u.

)
exp[− r2

12

2〈r2
12〉

] (in atomic units) (6.32)

The square of the electron-electron separation distance is obtained from the Hartree-Fock

wave function using the following expression

〈r2
12〉 =

2

N(N − 1)
〈0|
∑

i<j

r2
ij|0〉 (6.33)

6.3 Results

The effectiveness of the GPCI method was analyzed by performing proof-of-concept calcu-

lations of representative many-electron systems. The GPCI method was tested on a set of

isoelectronic 10-electron systems: CH4, NH3, H2O, HF, and Ne and the calculated ground

state energies were compared with CISD results. In all cases, the calculations were per-

formed using 6-31G? basis functions. We defined two important metrics for analyzing the

GPCI results. The first is the difference between CISD and GPCI energies Ediff and second is

the ratio of the number of variational parameters between the two methods. (Eq. 6.34,6.35)

Ediff(η) = EGPCI(η)− ECISD (6.34)

R(η) =
NCISD

NGPCI(η)
(6.35)

As presented in Eq. 6.16, the number of variational parameters in the GPCI method depends

on the choice of the η and for these calculations η was varied from 10−1 to 10−5. In tables 6.1
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Figure 6.1: Diagram 2 through diagram 6.
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Figure 6.2: Diagram 7 through diagram 9. The first row is diagram 7 (D7) with each
corresponding wk operator, the second row is diagram 8 (D8) with each corresponding wk
operator, and the second row is diagram 9 (D9) with each corresponding wk operator.
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Figure 6.3: The diagram on the left is the 2p-2h excitation operator and the diagram on the
right is the 1p-1h operator.
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Figure 6.4: Diagram 7 expansion.
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Figure 6.5: Diagram 8 expansion.
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to 6.5 we observe a significant reduction in the size of the CI space, while not sacrificing

accuracy in the calculated ground state energy. Using the GPCI method on the systems

studied, the CI space was reduced by a factor of 6 while still maintaining ground state

energies with accuracy of 10−6 Hartrees with respect to the CISD energy. For example, in

case of Neon, the GPCI method was able to give an accuracy of 10−3 Hartrees as compared

to CISD results while using a configuration space that is 19 times smaller than the CISD

calculation. The accuracy of the GPCI method can be systematically increased by decreasing

the η parameter and for the Neon atom, 10−6 Hartrees accuracy was achieved by using a

configuration space that was 7 times smaller than the CISD calculation.

The percentage of CISD correlation energy recovered by the GPCI method as a function

of the cutoff-parameter η is presented in Fig. 6.6. In all cases, we found that more than 90%

of CISD correlation energy was recovered when η is in the range of 10−2 − 10−3.

Table 6.1: Ground state energy of CH4 calculated using analytical geminal pa-
rameters.

η NGPCI EGPCI NCISD/NGPCI EGPCI − ECISD

10−1 49 -40.194994 585.94 1.56× 10−1

10−2 334 -40.267663 85.96 8.34× 10−2

10−3 4506 -40.345942 6.37 5.16× 10−3

10−4 8042 -40.351008 3.57 9.36× 10−5

10−5 8893 -40.351079 3.23 2.26× 10−5

CISD 28711 -40.351102 1.00 0.00

Table 6.2: Ground state energy of NH3 calculated using analytical geminal pa-
rameters.

η NGPCI EGPCI NCISD/NGPCI EGPCI − ECISD

10−1 29 -56.183815 780.72 1.81× 10−1

10−2 265 -56.296168 85.44 6.85× 10−2

10−3 2214 -56.360953 10.23 3.76× 10−3

10−4 3221 -56.364358 7.03 3.50× 10−4

10−5 3599 -56.364668 6.29 4.02× 10−5

CISD 22641 -56.364708 1.00 0

6.4 Conclusions

The derivation of the geminal projected configuration interaction was presented. The central

idea underlying this method is the use of an explicitly correlated reference wave function to

76



Table 6.3: Ground state energy of H2O calculated using analytical geminal pa-
rameters.

η NGPCI EGPCI NCISD/NGPCI EGPCI − ECISD

10−1 25 -76.009999 691.64 1.90× 10−1

10−2 235 -76.149998 73.58 5.03× 10−2

10−3 1192 -76.197151 14.51 3.12× 10−3

10−4 1709 -76.199857 10.12 4.15× 10−4

10−5 1905 -76.200269 9.08 3.31× 10−6

CISD 17291 -76.200272 1.00 0

Table 6.4: Ground state energy of HF calculated using analytical geminal param-
eters.

η NGPCI EGPCI NCISD/NGPCI EGPCI − ECISD

10−1 27 -100.002394 468.93 1.80× 10−1

10−2 177 -100.129812 71.53 5.26× 10−2

10−3 1067 -100.179204 11.87 3.21× 10−3

10−4 1754 -100.182295 7.22 1.24× 10−4

10−5 1943 -100.182403 6.52 1.57× 10−5

CISD 12661 -100.182419 1.00 0

define a projecting operator that projects out potential non-contributing configurations in

the CI expansion. In this work, the explicitly correlated reference function was defined using

a two-body Gaussian-type geminal function. The derivation of the projection operator was

performed by first expressing the total energy in terms of Hugenholtz diagrams and then

factorizing out particle-hole excitation operators that are functionals of the R12-correlator

operator. The efficiency of the projection operation is controlled by a tunable external

parameter. The projected particle-hole operators were used for construction of geminal-

projected CI wave function which was subsequently used to perform proof-of-concept ground

state energy calculations on a set of molecules. The results from these calculations demon-

strate that the method shows much promise since in all cases the geminal-projected CI wave

function was found to deliver CISD level accuracy using a CI space that is at least six

times smaller than the CISD space. The results from this work highlight the efficacy of the

geminal-project particle-hole operators for reducing number of optimizable parameters in

a correlated many-electron wave function. The application of geminal-project particle-hole

operators operators derived in this work is not restricted to a CI wave functions, but may be

applied to other methods, such as many-body perturbation theory, coupled-cluster theory,

and multi-determinant quantum Monte Carlo methods.
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Table 6.5: Ground state energy of Ne calculated using analytical geminal param-
eters.

η NGPCI EGPCI NCISD/NGPCI EGPCI − ECISD

10−1 9 -128.474407 972.33 1.50× 10−1

10−2 72 -128.593508 121.54 3.11× 10−2

10−3 450 -128.622295 19.45 2.30× 10−3

10−4 1021 -128.624309 8.57 2.89× 10−4

10−5 1248 -128.624596 7.01 2.05× 10−6

CISD 8751 -128.624598 1.00 0
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Figure 6.6: Percent error of the systems, Ne, HF, H2O, NH3, and CH4 after geminal weight-
ing.
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Chapter 7

Linked-cluster formulation of
electron-hole interaction kernel in
real-space representation without
using unoccupied states

7.1 Introduction

The concept of electron-hole or particle-hole quasiparticle formulation is central to the treat-

ment of electronically excited states in many-electron systems. The electron-hole picture

represents excitation from the Fermi vacuum and constitutes the zeroth-order treatment of

electronic excitation. In addition, the electron-hole excitation is used extensively in vari-

ous formulations for treating electron-correlation for both ground and electronically excited

states.[221]

For charge neutral excitations, the accurate treatment of electron-hole interaction is

extremely important.[114, 75, 55, 355] For example, in the Bethe-Salpeter (BSE) approach,

the electron-hole interaction kernel is used for calculations of excitations.[257, 199, 321, 322,

140, 33, 20, 256, 222] The electron-hole interaction kernel can be obtained using both many-

body perturbation theory (MBPT)[221, 277, 102, 253, 254, 333, 336, 56] and time-dependent

density functional theory (TDDFT).[77, 44, 221, 325, 194, 191] In both of these approaches,

it has been shown convincingly that the accurate determination of electron-hole screening is

crucial for the accurate calculation of excitation energy.

The overarching objective of this work is the determination of electron-hole screening

in excited states without using unoccupied states. Although the BSE approach has been

very successful in predicting the optical spectra of periodic solids and finite-size clusters, it

is restricted by the computational effort it takes to construct the electron-hole interaction

kernel. In a traditional approach, the construction of the electron-hole interaction kernel
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Figure 7.1: The electron-hole interaction kernel.

requires knowledge of a large number of virtual or unoccupied states. This feature puts

severe limitations on the applicability of the BSE and other methods that rely on electron-

hole screening for treating large finite-size clusters such as quantum dots and rods. In

this work, we present the derivation of the electron-hole interaction kernel that does not

require unoccupied states. This is a real-space formulation that uses the connection between

electron-hole screening and electron-electron correlation to avoid unoccupied states in the

construction of the electron-hole interaction kernel. Similar strategy has also been developed

by Nichols et al. using real-space electron correlator approach. [213] We anticipate that

using such a kernel will result in significant reduction in the cost of the BSE method. This

work is also relevant in the TDDFT formulation with respect to the construction of the

effective exchange-correlation functional.[355] Because the derivation presented here is using

real-space as opposed to occupation-number space, we expect this approach is much more

amenable for the development of exchange-correlation functionals.

Recently, in a series of articles, Galli and coworkers have developed the WEST method
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that addresses the issue of removing contributions of unoccupied states from the GW and

BSE equations.[106, 272, 30] This method relies on projecting out non-contributing terms

from the dielectric matrices. The derivation presented here uses a strategy different than the

one used for the WEST method. First, this method is derived from the equation-of-motion

approach developed by Simons,[285, 296, 110, 6, 60, 284, 132] Cederbaum,[48, 46, 49, 47, 337]

and Yeager.[356, 129, 101, 100, 127, 128, 190, 184] This method calculates the electron-hole

interaction kernel directly for charge-neutral excitations without requiring the construction

or knowledge of the one-particle Green’s function. This derivation also does not assume

that it is a post-DFT procedure and in general can be applied to both Hartree-Fock and

ground state DFT formulations. In this work, the bare electron and hole quasiparticles are

defined with respect to the Fermi vacuum and are constructed from single-particle states

of an effective one-electron Hamiltonian. We present two derivations of the electron-hole

interaction kernel. In the first derivation, we show a compact derivation using Hugenholtz

diagrams in section 7.2, and we present the derivation using algebraic representation in

Appendix A.

An important connection between electron-hole screening and electron-electron corre-

lation is that electron-hole screening is a consequence of electron-electron correlation. For

example, in a hypothetical many-electron system that lacks electron-electron correlation, the

electron-hole interaction can be described exactly as the bare Coulomb interaction. Hence,

treatment of electron-electron correlation is very important for studying electron-hole inter-

action. In this work, we use the two-body geminal operator, G for treating electon-electon

correlation

Ψ = GΦ0, (7.1)

where G is a real-space operator that depends explicitly on the electron-electron separation

distance r12. An explicitly correlated operator with r12 dependence can be used to provide a

better description of the wave function near the electron-electron coalescence point.[159] For

example, both variational Monte Carlo [215, 115] and transcorrelated Hamiltonian[27, 28]

are methods that use the ansatz in Equation 7.1 for the many-electron wave function. The

connection between the explicitly-correlated wave function (Equation 7.1) and configuration

interaction (CI) can be seen by applying the identity operator on the correlated wavefunction

(Equation 7.2),

∞∑

k=0

|Φk〉〈Φk| = I, (7.2)
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and substituting in Equation 7.1,

|Ψ〉 = IG|Φ0〉 =

[
∞∑

k=0

|Φk〉〈Φk|
]
G|Φ0〉. (7.3)

The above equation (Equation 7.3) is an infinite-order CI expansion which is shown in

Equation 7.4 below,

|Ψ〉 =
∞∑

k=0

cGk |Φk〉, (7.4)

where, the expansion coefficients cGk = 〈Φk|G|Φ0〉 are constrained to be a functional of G.

The inclusion of this explicit r12 dependence in the wave function has been used since the

early days of quantum mechanics to achieve accurate ground state energies. Slater[293,

294] and Hylleraas[143, 144] first used the explicitly correlated wave function calculating

the ground state energy in Helium atom in 1929. Since then and especially within the

last 30 years, the inclusion of explicit correlation in the form of the wave function is the

subject of much research and has been implemented in more recent work in various method

such as variational Monte Carlo, [215, 115] transcorrelated Hamiltonian[27, 28, 310, 311,

315], explicitly correlated Hartree-Fock,[304, 51, 291, 292, 31, 287, 88, 84, 11, 12] geminal

augmented MCSCF, [334] the electronic mean field configuration interaction method,[45] and

the strongly orthogonal geminal method.[42, 152] The field of explicitly correlated method

has been recently reviewed by various authors. [161, 317, 171, 122]

7.2 Theory

In this section, we present the derivation of the electron-hole interaction kernel using Hugen-

holtz diagrams. We start by defining a zeroth-order Hamiltonian,

H0 =
N∑

i

[
−~2

2m
∇2
i + vext(i) + veff(i)], (7.5)

where veff is a one-particle effective potential for which the eigenvalues and eigenfunctions of

H0 can be computed exactly. This derivation does not require a specific form of the effective

potential and veff can be obtained using various methods such as Hartree-Fock (vHF), KS-

DFT (vKS), pseudopotential (vps), or empirical model potential (vemp). The ground and

excited electronic states in the non-correlated system (described by H0), are represented by

Φ0 and Φa
i , respectively.

H0|Ψ0〉 = E
(0)
0 |Φ0〉 (7.6)
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H0|Φa
i 〉 = E

(0)
ia |Φa

i 〉. (7.7)

The excitation energy in the non-correlated system is represented by ω0
X and is calculated

from the difference in the eigenvalues of the one-particle Hamiltonian,

ω0
X = (E

(0)
ia − E(0)

0 ) = εa − εi. (7.8)

Using the effective potential, we define the residual electron-electron interaction operator W

which is the part of the Coulomb operator not included in the effective potential. Mathe-

matically, W is a two-body operator which is expressed as,

W =
∑

i<j

w(i, j) =
N∑

i 6=j

r−1
ij −

N∑

i

veff(i). (7.9)

The many-electron Hamiltonian is defined as,

H = H0 +W, (7.10)

and the corresponding ground and excited state wave functions are defined as,

H|Ψ0〉 = E0|Ψ0〉 (7.11)

H|ΨX〉 = EX|ΨX〉, (7.12)

where the subscript “X” is used to represent excited state. The excitation energy in the

correlated system is analogously defined as,

ωX = (EX − E0). (7.13)

The ground and excited state correlated wave functions are normalized using the following

intermediate normalization condition,

〈Φ0|Ψ0〉 = 〈Φa
i |ΨX〉 = 1. (7.14)

In this derivation, we assume that the ansatz for the correlated ground state, Ψ0, and

excited state, ΨX, wave functions are defined with respect to their corresponding uncorrelated

wave function and correlation operator, G. The expressions for the correlated ground and

excited state wave functions are given by,

Ψ0 = G0Φ0 (7.15)

ΨX = GXΦa
i , (7.16)
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where the correlation operator is a two-body operator with the following form,

G0 =
N∑

i<j

g0(i, j) (7.17)

GX =
N∑

i<j

gX(i, j). (7.18)

The derivation presented here is general and does not depend on the choice of g(1, 2). How-

ever, practical implementation of this method requires specific choice of g(1, 2) and the

functional form used in this work will be discussed in the results section.

The goal of this derivation is to find the relationship between the excitation energies

of the correlated (ωX) and the uncorrelated (ω0
X) systems. We start by left-multiplying the

eigenvalue equation for the correlated system (Equation 7.11) by the uncorrelated bra-vectors

as shown below,

〈Φ0|H|Ψ0〉 = E0〈Φ0|Ψ0〉 (7.19)

〈Φa
i |H|ΨX〉 = EX〈Φa

i |ΨX〉. (7.20)

Using intermediate normalization (Equation 7.14) and expanding the Hamiltonian (Equa-

tion 7.10) we get,

〈Φ0|[H0 +W ]|Ψ0〉 = E0 (7.21)

〈Φa
i |[H0 +W ]|ΨX〉 = EX. (7.22)

Operating on the bra-vector with H0 gives,

E
(0)
0 + 〈Φ0|W |Ψ0〉 = E0 (7.23)

E
(0)
ia + 〈Φa

i |W |ΨX〉 = EX. (7.24)

Subtracting the two equations gives,

EX − E0 = (E
(0)
ia − E(0)

0 ) + 〈Φa
i |W |ΨX〉 − 〈Φ0|W |Ψ0〉. (7.25)

Using Equation 7.8 and Equation 7.13, the above equation can be used to relate the excitation

energies of the correlated system with the excitation energies of the uncorrelated system,

ωX = ω0
X + 〈Φa

i |W |ΨX〉 − 〈Φ0|W |Ψ0〉. (7.26)

Substituting Equation 7.15 and Equation 7.16 into Equation 7.26, we arrive at the following

expression of the excitation energy,

ωX = ω0
X + 〈0|{i†a}WGX{a†i}|0〉 − 〈0|WG0|0〉, (7.27)
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where,

|Φ0〉 ≡ |0〉 (7.28)

|Φa
i 〉 ≡ {a†i}|0〉. (7.29)

We recognize that the expression in Equation 7.27 involves evaluation of vacuum expectation

value of operators. Using Wick’s contraction theorem, we can immediately conclude than

only fully-contracted terms will contribute to the above expression,[277] because as shown

below, expectation value of uncontracted terms with respect to the Fermi vacuum will have

zero contribution

〈0|X|0〉 = 〈0|X†|0〉 = 0 (X is any second-quantized operator). (7.30)

Therefore, we can write the following expression,

〈0|{i†a}WGX{a†i}|0〉 = 〈0|{i†a}WGX{a†i}|0〉FC, (7.31)

and

〈0|WG0|0〉 = 〈0|WG0|0〉FC, (7.32)

where the subscript “FC” implies and only fully-contracted terms are evaluated in the above

expression. The set of all fully-contracted terms will contain both linked and unlinked terms

and will be discussed later. Substituting Equation 7.31 and Equation 7.32 into Equation 7.27

gives,

ωX = ω0
X + 〈0|{i†a}WGX{a†i}|0〉FC − 〈0|WG0|0〉FC. (7.33)

The first term in the above expression represents the excitation energy in the zeroth-order

Hamiltonian. The second term contains the electron-hole interaction terms. The expres-

sion of this term in terms of electron and hole indices can be obtained using diagrammatic

techniques and in this work we will use the Hugenholtz diagrams[277, 12] (and see chap-

ter 4) for a compact representation of the diagrams. To derive expression for the second

term in Equation 7.33, we note that operator WGX is a product of two, two-body operators

W and GX. Therefore, this product can be expanded into a sum of 2-body, 3-body, and

4-body operators[12] by substituting the definitions of W and GX from Equation 7.9 and

Equation 7.18. The resulting expansion is shown below,

WGX =
∑

i<j

w(i, j)×
∑

i<j

gX(i, j) (7.34)
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=
∑

i<j

κX
2 (i, j) +

∑

i<j<k

κX
3 (i, j, k) +

∑

i<j<k<l

κX
4 (i, j, k, l) (7.35)

= ΩX
2 + ΩX

3 + ΩX
4 . (7.36)

The expression for (κX
2 , κ

X
3 , κ

X
4 ) can be obtained using the operators of the complete sym-

metric group SN , for example,

κX
2 (1, 2) = w(1, 2)gX(1, 2) (7.37)

=
1

2!
[w(1, 2)gX(1, 2) + w(2, 1)gX(2, 1)] (7.38)

=
1

2!

∑

Pα∈S2

Pα[w(1, 2)g(1, 2)], (7.39)

where Pα is the permutation operator in SN that permutes the symbols [1, 2] to one of the

N ! arrangements,

Pα[1, 2] = [π1, π2]. (7.40)

Therefore,

κX
3 (1, 2, 3) =

1

3!

∑

Pα∈S3

Pα[w(1, 2)gX(2, 3)] (7.41)

κX
4 (1, 2, 3, 4) =

1

4!

∑

Pα∈S4

Pα[w(1, 2)gX(3, 4)]. (7.42)

We note that the above expression guarantees that operators are completely symmetric with

respect to the permutation of electronic coordinates. We have similar expressions for the

WG0 term,

WG0 =
∑

i<j

w(i, j)×
∑

i<j

g0(i, j) (7.43)

=
∑

i<j

κ0
2(i, j) +

∑

i<j<k

κ0
3(i, j, k) +

∑

i<j<k<l

κ0
4(i, j, k, l) (7.44)

= Ω0
2 + Ω0

3 + Ω0
4. (7.45)

The evaluation of the matrix elements of operators 〈0|{i†a}Ω{a†i}|0〉 can then be per-

formed using second-quantized algebra. We note that matrix element is of the general form

〈0| . . . |0〉 and is an expectation value expression with respect to the vacuum state. This

allows us to apply the Wick’s contraction theorem and conclude that only fully-contracted

terms will have non-zero contributions to the matrix elements. The expressions resulting
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Figure 7.2: This figure shows the derivation represented using Hugenholtz dia-
grams. Diagrams D19 through D21 have the operator represented by, N, which
corresponds to the operator W (GX − G0). Diagrams with � represent operators
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2 , κ
X
3 , κ

X
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from the Wick’s contraction are represented diagrammatically for a compact representation

and are presented in Figure 7.2. An equivalent but longer derivation using algebraic represen-

tation is presented in Appendix A and description of Hugenholtz diagrams are presented in

chapter 4. Specifically, fully-contracted terms from 〈0|WG0|0〉 are represented by diagrams

(D1, D2, D3) in panel A of Figure 7.2,

〈0|Ω0
2|0〉FC = D1 (7.46)

〈0|Ω0
3|0〉FC = D2 (7.47)

〈0|Ω0
4|0〉FC = D3, (7.48)

substituting,

〈0|WG0|0〉FC = 〈0|Ω0
2|0〉FC + 〈0|Ω0

3|0〉FC + 〈0|Ω0
4|0〉FC (7.49)

= D1 +D2 +D3. (7.50)

These diagrams do not have any particle-hole lines because these expressions only involve

occupied states which are represented by closed-loops in the diagrams. Therefore, as shown

in Figure 7.2, all the terms arise from linked diagrams,

〈0|WG0|0〉FC = 〈0|WG0|0〉L. (7.51)

The equivalent algebraic derivation of Equation 7.51 using second-quantized operators is

presented in Appendix A.

The fully-contracted terms from 〈0|WGX|0〉 are represented by diagrams (D4, . . . , D18)

in panel B of Figure 7.2,

〈0|{i†a}ΩX
2 {a†i}|0〉FC = D4 +D7 +D10 +D13D16 (7.52)

〈0|{i†a}ΩX
3 {a†i}|0〉FC = D5 +D8 +D11 +D14D17 (7.53)

〈0|{i†a}ΩX
4 {a†i}|0〉FC = D6 +D9 +D12 +D15D18. (7.54)

We note that the diagram pairs (D13, D16),(D14, D17), and (D15, D18) form the set of all

unlinked-diagrams. However, analysis of the bubble diagrams (D16, D17, D18) reveals that all

these diagrams refer to the same electron-hole pair and are exactly equal to 1. Algebraically,

they represent the following Wick’s contraction,

D16 = D17 = D18 = 〈0|{i†a}{a†i}|0〉 = 1. (7.55)

Substituting Equation 7.55 in Equation 7.52, we get,

〈0|{i†a}ΩX
2 {a†i}|0〉FC = D4 +D7 +D10 +D13 (7.56)
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〈0|{i†a}ΩX
3 {a†i}|0〉FC = D5 +D8 +D11 +D14 (7.57)

〈0|{i†a}ΩX
4 {a†i}|0〉FC = D6 +D9 +D12 +D15. (7.58)

Combining all the terms in Equation 7.56,

〈0|{i†a}WGX{a†i}|0〉FC = D4 +D7 +D10 +D13 (7.59)

+D5 +D8 +D11 +D14

+D6 +D9 +D12 +D15.

We note that all the diagrams in the above expression are linked diagrams, therefore the left

hand side of Equation 7.59 can be expressed solely in terms of linked terms. The summation

of loop diagrams D13, . . . , D15 is equal to the vacuum expectation value of the operator,

D13 +D14 +D15 = 〈0|WGX|0〉L, (7.60)

and the summation of the remaining diagrams are related to the following matrix element,

D4 + · · ·+D12 = 〈0|{i†a}WGX{a†i}|0〉L, (7.61)

where the subscript (L) implies that only linked diagrams are included in that expression.

Therefore, we conclude that the matrix elements (summarized in panel A and B of Fig-

ure 7.2) consist of only linked diagrams. Combining the results from Equation 7.60 and

Equation 7.61 we conclude that only linked diagrams contribute to the expression as show

below (Equation 7.62),

〈0|{i†a}WGX{a†i}|0〉 = 〈0|{i†a}WGX{a†i}|0〉L
+ 〈0|WGX|0〉L. (7.62)

The equivalent algebraic derivation of Equation 7.62 using second-quantized operators is

presented in Appendix A.

To obtain the expression for ωX, we observe that the D1 . . . D3 and D13 . . . D15 diagrams

have similar structures and can combined together into a single expression. Mathematically,

substituting Equation 7.62 in Equation 7.27, gives the following expression for ωX,

ωX = ω0
X + 〈0|W (GX −G0)|0〉

+ 〈0|{i†a}WGX{a†i}|0〉L. (7.63)

The diagrammatic expression for the above equation (Equation 7.63) is given in panel C

of Figure 7.2. An important result from this derivation is the proof that the excitation

energy of the correlated system can be expressed entirely in terms of linked diagrams. The
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diagrammatic representation in Figure 7.2 implies the following expression for the excitation

energy,

ωX = ω0
X +D19 + · · ·+D30. (7.64)

The diagrams can be related to matrix elements of the following one-body and two-body

operators,

ωX = ω0
X + 〈0|W (GX −G0)|0〉

+ 〈i|Uh|i〉+ 〈a|Ue|a〉+ 〈ia|Keh|ai〉. (7.65)

The first term, ω0
X, in Equation 7.65 is the excitation energy in the reference system. The

remaining terms in the equation are corrections to the reference excitation energy due to the

electron-electron correlation effect. The second term in Equation 7.65 is obtained from the

following combination of diagrams,

〈0|W (GX −G0)|0〉 = D19 +D20 +D21. (7.66)

In this diagrammatic representation, D19 = D8−D1, D20 = D13−D2, and D21 = D18−D3,

respectively. The expressions of these terms in terms of the one-particle basis functions {χp}
are presented in Appendix A. This term is a vacuum expectation value and therefore does

not contribute to the electron-hole interaction kernel. Because of the W (GX−G0) term in the

above expression (represented by N in Figure 7.2), this expression represents the correction

to the reference excitation energy, ω0
X, due to the difference in the treatment of electron-

electron correlation in the ground and excited state wave functions. In the limit where

the electron-electron correlation operator for both ground and excited states are identical,

the contribution from this term will be zero. The terms Uh and Ue are obtained from the

following diagrams,

〈i|Uh|i〉+ 〈a|Ue|a〉 = D22 + · · ·+D27. (7.67)

In diagrammatic representation, the Ue,h implies that the operators are one-body operators

that operate either on the quasielectron or quasihole particles. The correction to the exci-

tation energy due to the Ue,h can be interpreted as the consequence of the renormalization

of the electron and hole energy levels due to the presence of the electron-electron correla-

tion. We note that the Ue,h depends only on the form of the electron-electron correlation

operator for the excited state and not on the ground state correlator operator. The operator

(�) in diagrams (D28, D29, D30) operates simultaneously on both electron and hole lines and

represent the electron-hole interaction kernel,

〈ia|Keh|ai〉 = D28 +D29 +D30. (7.68)
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As shown in panel C of Figure 7.2, the expression for the Keh is completely described only

by linked diagrams. The result from this derivation also shows that the Keh depends only

on the correlator operator of the excited state wave function. We note that since we are

using Hugenholtz diagrams (as opposed to Goldstone diagrams), the expression for Keh is a

non-local operator and includes the anti-symmetrized operator in its definition (chapter 4).

The loops in diagrams D29 and D30 are associated with the summation over occupied orbital

indices, and can be interpreted as the renormalization of the 3-body and 4-body operators

into effective 2-body particle-hole operators. As claimed in our title, Equation 7.68 and panel

C of Figure 7.2 present the expression of the electron-hole interaction kernel only in terms

of the real-space operators, w(1, 2) and gX(1, 2), without involving any unoccupied states.

7.3 Results

The derived expressions for the electron-hole interaction kernel and excitation energy were

used to perform proof-of-concept calculations on molecules, clusters, and quantum dots.

Practical implementation required us to make additional approximations to the derived ex-

pressions. For the proof-of-concept calculations, all the higher-order diagrams were neglected

and only the lowest order diagrams we included for describing the electron-hole interaction

kernel. Also, for the excitation energy calculations, all contributions from diagrams that

do not involve a particle-hole line were ignored. Applying these two approximations, the

final expressions for the geminal-screened electron-hole interaction kernel (GSIK) and the

excitation energy are given by the following expressions,

K
(I)
eh (1, 2) = D28 = w(1, 2)gX(1, 2)(1− P12) (7.69)

ωX = ω0
X +D22 +D23 +D28 (7.70)

= ω0
X + 〈i|Uh|i〉+ 〈a|Ue|a〉+ 〈ia|Keh|ai〉. (7.71)

In this work, the uncorrelated Hamiltonian was defined as the Fock operator obtained

from Hartree-Fock calculation. The transition of interest was the HOMO to LUMO transition

and the single-particle (quasi) hole and electron states were defined using the HOMO and

LUMO states,

|i〉 ≡ |χHOMO〉 (7.72)

|a〉 ≡ |χLUMO〉. (7.73)

The uncorrelated excitation energy was defined as the HOMO-LUMO gap,

ω0
X = (εLUMO − εHOMO) . (7.74)
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All the operators Uh, Ue, Keh depend on gX(1, 2), which was chosen to be an explicitly corre-

lated Gaussian-type geminal function that depends explicitly on the electron-electron sepa-

ration distance,

gX(1, 2) =

Ng∑

k=1

bX
k exp[−γkr2

12], (7.75)

where Ng is the number of Gaussian functions. Geminal functions have been used extensively

in past[213, 334, 307, 203, 36, 204] for treating electron-electron correlation and was used in

this work for construction of the correlator operator.

7.3.1 Excitation energy of water and CdSe cluster

The excitation energy of a single water molecule was computed using Equation 7.70 and the

results were compared with EOM-CCSD[277] calculations. Both calculations were performed

using 6-31G* basis, and the single-particle states were obtained from Hartree-Fock calcula-

tions. Electron-electron correlation effect for both ground and excited states were entirely

treated using the explicitly-correlated Gaussian-type geminal functions and only one gemi-

nal function was used. We assumed that the correlator operator for the excited state is of a

similar form for the ground state and the expansion coefficients, (bk, γk), were obtained from

previously published results on ground state calculations and are given in Table B.1 (Ap-

pendix B).[12] Comparison of the geminal-screened electron-hole interaction kernel (GSIK)

with the EOM-CC results (Table 7.1) shows that the excitation energies are in good agree-

ment with each other. We also calculated the excitation energy of a small CdSe cluster,

Table 7.1: Comparison of excitation energy for H2O and Cd20Se19 in eV
System This work (GSIK) Existing methods
H2O 8.601 8.539 (EOM-CCSD)[277]
Cd20Se19 3.139 3.096 (Pseudopot.+CI)[340]

Cd20Se19, using the LANL2DZ ECP basis and the results were compared with previously re-

ported pseudopotential+CI calculations.[340] The geminal parameters for CdSe clusters were

obtained from previously reported calculations on parabolic quantum dots.[90, 91] In both

cases, we found that the excitation energies obtained using the geminal-screened electron-

hole interaction kernel were in good agreement with previously reported results (Table 7.1).

These results also highlight the transferability of the geminal parameters from a model po-

tential (parabolic quantum dots in this case) to electronic structure calculations.
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7.3.2 Exciton binding energy

In addition to calculation of the excitation energies, proof-of-concept calculations were per-

formed on calculation of exciton binding energies. Excition binding energies are directly

related to the electron-hole interaction kernel and provide a direct route to verify the qual-

ity of the derived expression. The exciton binding energies for Cd6Se6 and Cd20Se19 were

Table 7.2: Comparison of exciton binding energies in eV
System This work (GSIK) Previously reported
Cd6Se6 3.374 3.33 (GW/BSE)[216]
Cd20Se19 0.960 1.003 (Pseudopot.+CI)[340]

calculated using the geminal-screened electron-hole interaction kernel and were compared

with previously published results obtained using GW/BSE[216] and pseudopotential+CI

calculations.[340] As shown in Table 7.2, the results from this work were found to be in good

agreement with both of these methods.

7.3.3 Extension to spin-resolved states

In its present form, the particle-hole excitation operator used in Equation 7.16 is not spin-

resolved. As a consequence of that, the excited state (ΨX) of the correlated system is not

an eigenfunction of the total spin operator Ŝ2. To extend the derivation for spin-resolved

states such as singlet and triplet excited states, a modified particle-hole excitation operator

with well-defined spin states must be used. For example, the singlet excitation operator is

defined as,[125]

ÊS=0,Ms=0
ia = {a†αiα}+ {a†βiβ}, (7.76)

where ψi(r) and ψa(r) refer to occupied and unoccupied spatial molecular orbitals, respec-

tively and α and β are the spin states. Similarly, the triplet excitation operator is defined

as,[125]

T̂ S=1,Ms=1
ia = −{a†αiβ} (7.77)

T̂ S=1,Ms=−1
ia = {a†αiβ} (7.78)

T̂ S=1,Ms=0
ia = {a†αiα} − {a†βiβ}. (7.79)

Using these particle-hole creation operators, the singlet and triplet excited states can be

defined as,

|ΨS=0
X 〉 = GS=0

X Êia|0〉 (7.80)
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|ΨS=1
X 〉 = GS=1

X T̂ia|0〉. (7.81)

An important aspect of treating electron-correlation in spin-resolved states is the choice of

the two-body correlator operator, G. For example, in the above expression, the two-body

correlator operators for the singlet and triplet states have different functional forms. This is

a consequence of the different cusp conditions at the electron-electron coalescence point for

spin-paired and spin-unpaired electrons. The spin-dependence of the functional form near

the electron-electron coalescence point has been studied extensively in the past[319, 139] and

an excellent review on this topic is presented by Kong et al. [171] Future development of

the GSIK method will focus on using the spin-resolved excitation operators for describing

electron-hole interaction.

7.4 Conclusion

The expression for the electron-hole interaction kernel, Keh, was derived without using unoc-

cupied states. One key result from this derivation is our proof-by-construction demonstration

that Keh can be expressed entirely in terms of linked diagrams. By factorization of the dia-

grams, it was shown that contributions from all unlinked diagrams rigorously vanish from the

expressions for both excitation energy and electron-hole interaction kernel. It was also shown

that the electron-hole interaction kernel depends only on the electron correlator operator as-

sociated with the excited state, and is independent of the level and quality of treatment of

electron-correlation in the ground electronic state. For the excitation energy calculations,

the derivation also demonstrated the emergence of effective one-body operators that are

responsible for the renormalization of the quasi-electron and quasi-hole states. This is an

important point, because in a conventional GW/BSE calculations, the quasiparticle energies

are obtained from the GW calculations, however, in the present derivation although GW was

not performed, the renormalization of the quasiparticle states emerges in the natural course

of the derivation. We note that the renormalization of quasiparticle energies also satisfies

the link-cluster theorem and are evaluated as a sum of only linked diagrams. The derived

expressions were implemented and proof-of-concept calculations of excitation energies and

exciton binding energies were performed for water and CdSe clusters. In all cases, the re-

sults were found to be in good agreement with the previously reported calculations. These

results demonstrate the effectiveness of the geminal-screened electron-hole interaction kernel

method for the efficient calculation of excited state properties in many-electron systems.
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Chapter 8

Development of composite
control-variate stratified sampling
approach for efficient stochastic
calculation of molecular integrals

8.1 Introduction

Matrix elements of molecular orbitals (MOs) are central to quantum chemical calcula-

tions. The MOs form a natural choice for single-particle basis functions used in the second-

quantized representation for many-body post Hatree-Fock (HF) theories. In the LCAO-MO

representation, each molecular orbital is represented as a linear combination of a set of

atomic orbitals. The expansion coefficients of the MOs in terms of the AOs are obtained

by solving the pseudo-eigenvalue Fock equation using the SCF procedure. Evaluation of the

matrix elements in the MO representation requires transformation of the AO integrals. For

example, in the case of the two-electron Coulomb integral this expansion is given as,

[ψp(1)ψq(1)|r−1
12 |ψr(2)ψs(2)] =

∑

µνλσ

CµpCνqCλrCσs[φµ(1)φν(1)|r−1
12 ω(1, 2)|φλ(2)φσ(2)]. (8.1)

As seen from Equation 8.1, the transformation formally scales as the 4th power of the number

of AO basis functions (Nb). There are various situations where efficient computation of MO

integrals is required to perform electronic structure calculations. For example, application of

many-body theories such as configuration interaction (CI),[93, 297] many-body perturbation

theory (MBPT),[160, 218] and couple-cluster theory (CC) [233] for large chemical systems

need fast and efficient access to these MO integrals.

Efficient calculation on MO integrals is a recurrent theme in increasing the efficiency of

the electronic structure calculations. The transformation can be accelerated by performing
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it in parallel and various parallelization algorithms have been developed. [186, 238, 347] The

computational cost can also be reduced using rank-reduction techniques such as resolution-

of-identity[25, 78, 344, 255, 298, 343, 95, 329, 342, 308] and Cholesky decomposition.[261, 7,

18, 166, 262] In a series of papers, Martinez et al. have developed the tensor-hypercontraction

approach[300, 301, 299, 137, 228, 229, 138, 135, 230, 231, 136, 232, 169] that has enabled sig-

nificant reduction in the computational cost of electron-repulsion integrals (ERI). A current

review of the various ERI techniques has been presented by Peng and Kowalski.[233]

Efficient evaluations of MO integrals are also required in explicitly correlated methods[161,

334, 43, 154, 246, 247, 248, 214] where the evaluation of the r12-kernel in AO representation

is not readily available or is not computationally efficient. For a n-body operator, the AO-to-

MO transformation scales as N2n
b and becomes computationally expensive for n-body oper-

ators when n > 2 because of steep scaling with respect to the number of AO basis functions.

This has found to be especially true for explicitly correlated methods for treating electron-

electron,[161, 335, 111, 133, 134, 155, 345, 346] electron-proton,[354, 118, 288, 290, 286, 289,

165, 52, 53, 54, 305, 306, 226] and electron-hole[89, 90, 271, 79, 12, 91, 11, 86, 22, 85, 82]

many-body theories. One approach to avoid the transformation of the AO integrals is to

use real-space representation and to evaluate the MO integrals numerically. This procedure

requires evaluation of the MOs at any position in the 3D space which can be evaluated from

the AO expansion,

ψp(r) =
∑

µ

Cµpφµ(r). (8.2)

This strategy has been used very successfully in quantum Monte Carlo methods [97, 113, 207,

269, 358, 50, 183, 215] where evaluation of individual MO integrals can be completely avoided

and the entire many-electron integral is evaluated directly in real-space representation using

Markov chain Monte Carlo (MCMC) implementation. The MCMC implementation was also

shown to be used in the context of perturbation theory in a series of articles by Hirata et

al. [133, 134, 155, 345, 346] in which MCMC techniques were used for the evaluation of

MP2-F12 energies.

In this work we present the composite control-variate stratified sampling (CCSS) Monte

Carlo method for efficient calculation of MO integrals. The accuracy of stochastic evaluation

of integrals can be systematically improved by reducing the variance of the calculation. In

the CCSS method, we have combined both control-variate and stratified sampling strategies

for variance reduction. The CCSS method was used in conjunction with the electron-hole

explicitly correlated Hartree-Fock method (eh-XCHF) for the calculation of exciton binding

energies and excitation energies in CdSe clusters and quantum dots.
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8.2 Theory

8.2.1 Coordinate transformations

We start by defining the following general two-electron integral of the following form,

Ipqrs =

+∞∫∫

−∞

dr1dr2 Λpq(1)Λrs(2)r−1
12 ω(1, 2), (8.3)

where Λpq = ψpψq and Λrs = ψrψs. We will transform the two-electron coodinate system

into intracular and extracular coordinates,

r12 = r1 − r2 (8.4)

R =
1

2
(r1 + r2). (8.5)

The Jacobian for this transformation is,

dr1dr2 = dRdr12. (8.6)

In the next step, we will transform into spherical polar coordinates,

dr12 = r2
12 sin(θ12)dr12dθ12dφ12 (8.7)

dR = R2 sin(Θ)dRdΘdΦ. (8.8)

Using Equation 8.7, the integral Equation 8.3 is,

Ipqrs =

∞∫∫

0

dRdr12r12R
2

π∫∫

0

dΘdθ12 sin2 Θ sin2 θ12

2π∫∫

0

dΦdφΛpq(1)Λrs(2)ω(1, 2). (8.9)

The transformation to the spherical polar coordinates allows us to analytically remove the

r−1
12 singularity in the integration kernel. In many applications, the operator ω(1, 2) might

depend only on r12 in which case it can be moved out of the integration over the angular

coordinates. For performing Monte Carlo calculation to evaluate this integral numerically,

it is convenient to transform the integration limits to [0, 1]. Now we will perform a third

coordinate transformation and transform the integration domain to [0, 1] limits. This is done

mainly to aid in the numerical evaluation of the integral using Monte Carlo techniques. We
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define a new set of coordinates (t = {t1, t2, . . . , t6}) where each coordinate is in the range

t ∈ [0, 1]. The radial and angular coordinates are transformed as,

r =
t

1− t (8.10)

θ =
t

π
(8.11)

φ =
t

2π
. (8.12)

The associated Jacobians are,

dr =
1

(1− t)2
dt (8.13)

dθ =
1

π
dt (8.14)

dφ =
1

2π
dt. (8.15)

In the t-space, the expression for Ipqrs can be expressed compactly as,

Ipqrs =

∫ 1

0

dtf(t). (8.16)

The integral kernel f(t) is obtained by substituting Equation 8.10 and Equation 8.13 into

Equation 8.9,

f(t) =

(
1

2π2

)2
t1

(1− t1)3

t22
(1− t2)4

sin(t3/π) sin(t4/π)Λpq(t)ω(t)Λrs(t), (8.17)

where t1 and t2 corresponds to r12 and R, respectively, and the remaining ti are angular

coordinates. Using Monte Carlo, the estimation of Ipqrs is then given by the following

expression,

Ipqrs ≈ E[f ]±
√

V[f ]

NS

, (8.18)

where NS is the number of sampling points and E is the expectation value. V is the variance

defined by Equation 8.19 and Equation 8.20, respectively, and is shown below,

E[f ] =
1

NS

NS∑

i=1

f(ti) (8.19)

V[f ] = E[f 2]− E[f ]2. (8.20)
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A summary of key relationships between expectation value and variance that is relevant

to this derivation is provided in appendix A. As seen from Equation 8.18, the error in the

numerical estimation of the integral depends on the variance, hence it is desirable to reduce

the overall variance of the sampling to obtain an accurate value of the integral. In this work,

we have combined stratified sampling approach with the control-variate method to achieve

variance reduction.

8.2.2 Stratified sampling

Stratified sampling is a successful strategy to reduce the variance of the overall estimate of

the calculation. This is a well-know technique that has been described earlier in previous

publications.[260, 242, 173, 99, 158] Here, only the key features of the method that are

directly related to this work are summarized below. Stratified sampling can be implemented

using both constant-volume or different-volume segments, and in this work we have used only

the constant volume version. In the constant-volume approach, the integration domain Ω of

the integration region is uniformly divided among non-overlapping segments (Equation 8.21),

Ω =

Nseg∑

α=1

Ωα. (8.21)

We have used a direct-product approach for generation of the segments. Along each t-

dimension, the region [0, 1] was divided equally into 2m segments. The segments for the

6-dimension was obtained by the direct-products of the 1-dimensional segments. This pro-

cedure resulted in a total of Nseg = 26m number of 6D segments. The sample mean and

variance associated with each segment α is given as,

µα = E[fα] =
1

Nα
S

∑

t∈Ωα

f(t), (8.22)

where Nα
S is the number of sampling points used in the evaluation of the expectation value

for segment α. The notation t ∈ Ωα implies that points only in the domain Ωα should be

used for evaluation of the expectation value E. Analogous to Equation 8.20, the variance

associated with each segment is defined as,

σ2
α = V[fα] = E[f 2

α]− E[fα]2. (8.23)

The estimate of the total expectation value is obtained by the average over all the segments.

Mathematically, this can be expressed as,

E[f ] = µ =
1

Nseg

Nseg∑

α=1

µα. (8.24)
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In Equation 8.24, partial averages from all the segments contribute equally because all the

segments have exactly identical volumes. For cases where segments have different volumes,

the above expression should be replaced by a weighted average. To calculate the variance on

µ we will use the relationship that the variance of sum of two random variates are related

to each other by their covariance (derived in Equation C.17) as shown below,

V[
∑

i

aiXi] =
∑

ij

aiajC[Xi, Xj], (8.25)

where covariance C defined as,

C[X, Y ] = E[XY ]− E[X]E[Y ]. (8.26)

Using the relationship in Equation 8.26,

V[µ] = V[
1

Nseg

Nseg∑

α=1

µα] (8.27)

=
1

N2
seg

Nseg∑

αβ

C[µα, µβ]. (8.28)

Because the sampling of any two segments are completely uncorrelated, all the off-diagonal

elements of the covariance matrix will be zero,

C[µα, µβ] = V[µα]δαβ. (8.29)

Using Equation 8.29 and result from Equation C.21,

V[µ] =
1

N2
seg

Nseg∑

α

V[µα]. (8.30)

The result from Equation 8.30 implies that the variance of the mean always decreases with

increasing number of segments. The variance of the segment mean, µα, is related to related

to sample variance by the following relationship (derived in Equation C.24),[260, 242, 173,

99, 158]

V[µα] =
V[fα]

Nα
S

. (8.31)

This implies,

V[µ] =
1

N2
seg

Nseg∑

α

V[fα]

Nα
S

. (8.32)
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The central idea of stratified sampling is to optimize the distribution of sampling points

across all segments to reduce the variance in the mean. To achieve this, a normalized weight

factor, wα, is associated with each segment and is given by,

Nseg∑

α

wα = 1 and wα ≥ 0. (8.33)

The number of sampling points for each segment is given by a fraction of the total number

of sampling points,

Nα
S = wαNT . (8.34)

Substituting in Equation 8.32,

V[µ] =
1

N2
segNT

Nseg∑

α

1

wα
V[fα]. (8.35)

It can be shown that the optimal distribution of points is achieved by selecting the weights

proportional to the standard-deviations of each segment,[260, 242, 173, 99, 158]

min
w

V[µ]→ wopt
α =

√
V[fα]

∑Nseg

β

√
V[fβ]

. (8.36)

The above equation very nicely illustrates the intuitive logic behind stratified sampling that

segments with higher variance (or standard deviation) should receive proportionally more

sampling points than regions with lower variance. The optimized distribution of weights

and inverse dependence on the number of segments are the two main reasons why stratified

sampling is an effective technique for variance reduction.

8.2.3 Variance reducing using control-variate

Control-variate is another strategy that has been used in past for reducing the variance of

Monte Carlo calculations.[260, 242, 173, 99, 158] In this work, we have incorporated control-

variate technique in our stratified sampling calculations. In control-variate methods, we start

with a function (denoted as f0(t)) whose integral is known in advance,

I0
pqrs =

1∫

0

dtf0(t). (8.37)

We then add and subtract this quantity from the integral to be evaluated,

Ipqrs =

1∫

0

dtf(t) + η


I0

pqrs −
1∫

0

dtf0(t)


 , (8.38)
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where η is a yet to be determined scaling parameter. Rearranging we get,

Ipqrs = ηI0
pqrs +

1∫

0

dt [f(t)− ηf0(t)] . (8.39)

The optimum value of the scaling parameter η is obtained by minimizing the variance given

in Equation 8.35,

min
η

V[µ]→ ηopt. (8.40)

Because of the above minimization, the variance obtained from control-variate sampling is

always lower or equal to the variance obtained without using control-variate,

(
V[µ]

)
ηopt
≤
(
V[µ]

)
η=0

. (8.41)

Conceptually, control-variate method allows us to perform Monte Carlo calculation only

on the component of the f that is different from f0. For integration over molecular integrals,

one of the simplest control-variate function is the overlap integral,

f0(1, 2) = [χp(1)χq(1)] [χr(2)χs(2)] (8.42)

I0
pqrs = δpqδrs. (8.43)

In the case that the underlying AO integrals are available, a better estimate of f0 can be

constructed. For example, collecting only the diagonal elements of the
∑

µνλσ in Equation 8.1,

the control-variate function f0 can be defined as,

f0(1, 2) =

Nb∑

µ

CµpCµqCµrCµsφµ(1)φµ(1)r−1
12 φµ(2)φµ(2). (8.44)

The value of the integral I0 is obtained analytically from the underlying AO integrals,

I0
pqrs =

Nb∑

µ

CµpCµqCµrCµs[φµ(1)φµ(1)|r−1
12 |φµ(2)φµ(2)]. (8.45)

We note that unlike Ipqrs, evaluation of I0
pqrs is linear in terms of number of AO basis function

Nb.

8.2.4 Composite control-variate stratified sampling

In most applications, matrix elements of a set of molecular orbitals are needed for performing

electronic structure calculations. Although in principle the control-variate stratified sampling
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method presented above can be applied for evaluation of each matrix element, however, such

an approach is computationally inefficient. A more efficient approach is to evaluate the

integrals simultaneously for all the matrix elements. We call this approach the composite

control-variate stratified sampling (CCSS) and is described as follows.

We start with set of MO indicies for which the integrals are needed to be evaluated,

Z = {(p1q1r1s1), (p2q2r2s2), . . . , }. (8.46)

If all the MO integrals are needed, this set will be a set of all symmetry unique indicies. All

index combination from Z which are known to be zero because of symmetry arguments are

also eliminated from the set. We will use the collective index K to enumerate the individual

elements of set Z,

Z = {zK}. (8.47)

Because the domain of the integration is identical for all the indicies, all the integrals can

be evaluated simultaneously,

IK = ηKI0
K +

1∫

0

dt
[
fK(t)− ηKfK0 (t)

]
. (8.48)

In terms of segments,

IK = ηKI0
K +

1

Nseg

Nseg∑

α

E
[
fK − ηKfK0

]
. (8.49)

The expectation value for each segment will be evaluated using Nα
S number of sample points

whose distribution is defined using the weights obtained in Equation 8.36. However, because

each segment is now associated withNK number of functions, there are wK weights associated

with each segment. In the CCSS method, we renormalize the weights by choosing the

maximum weight associated with all the functions for a given segment. Mathematically, this

is described by the following equations,

xopt
α = max

K
{wopt

α,K} (8.50)

wopt
α =

xopt
α∑
β x

opt
β

. (8.51)
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8.2.5 Precomputation, run-time computation, and parallelization

In the CCSS method, because the same set of molecular orbitals will be used for calculations

of all the integrals in set Z, it is computationally efficient to compute them once and use

them for all functional evaluations. In a single Monte Carlo step in a given segment, first

a random vector t ∈ Ωα is obtained and all the MOs at t are evaluated and stored in a

vector v of size NMO. The functions fK and fK0 are then built by reading values from vector

v. These simple steps result in significant savings in computation time because it avoids

repeated evaluations of MO values at point t for each function evaluation in set Z.

The implementation of the CCSS method requires the determination of two run-time

parameters ηK and wopt
α defined in Equation 8.40 and Equation 8.50, respectively. Instead

of evaluating them for the entire run, these parameters were determined using data from the

first 10% of the run and were kept fixed for the remaining 90% of the calculation. As seen

from Equation 8.50, the evaluation of the weights for each segment requires information from

all the segments. By making these weights constant for the 90% of the run time allows for

efficient parallization of the CCSS method by completely decoupling information exchange

among the segments. Consequently, this enables Monte Carlo steps for each segment to be

performed in parallel. This strategy was found to significantly reduce the computational

time of the overall calculation.

8.3 Results

8.3.1 Electron-hole interaction in CdSe quantum dots with dielec-
tric screening

The CCSS method was used for calculating the exciton binding energies in a series of CdSe

quantum dots using the electron-hole explicitly-correlated Hartree-Fock (eh-XCHF) method.

The eh-XCHF method has been successfully used before [90] for investigation of excitonic

interactions in QDs and only a brief summary relevant to the CCSS method is presented

here. In the eh-XCHF method, the electronic excitation in the QD is described using the

quasiparticle representation. The electron-hole integration is represented using the following

effective quasiparticle Hamiltonian,

Ĥeh =
∑

ij

〈i|−~
2

2me

∇2 + ve
ext|j〉e†iej (8.52)

+
∑

ij

〈i|−~
2

2mh

∇2 + vh
ext|j〉h†ihj (8.53)
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+
∑

iji′j′

Keh
iji′j′e

†
iejh

†
i′hj′ (8.54)

+
∑

ijkl

wee
ijkle

†
ie
†
jelek +

∑

ijkl

whh
ijklh

†
ih
†
jhlhk, (8.55)

where the unprimed and primed indicies represent quasielectron and quasihole states, re-

spectively. The attractive electron-hole interaction, Keh, is the principle component that

results in exciton binding and in these calculations, Keh was approximated using static di-

electric screening developed by Wang and Zunger for CdSe QDs.[341] The electron-hole wave

function was represented using the eh-XCHF ansatz which is defined as,

Ψeh−XCHF = ĜΦeΦh, (8.56)

where,

Ĝ =
Ne∑

i=1

Nh∑

j=1

g(i, j), (8.57)

and g is a linear combination of Gaussian-type geminal functions,

g(1, 2) =

Ng∑

k=1

bke
−γkr212 . (8.58)

In the eh-XCHF method the function g is obtained by the following minimization procedure,

E = min
g

〈ΦeΦh|Ĝ†ĤehĜ|ΦeΦh〉
〈ΦeΦh|Ĝ†Ĝ|ΦeΦh〉

. (8.59)

The exciton binding energy is calculated as the difference between the interaction and non-

interacting energies,

EEB = 〈Enon−interacting〉 − 〈Eexciton〉. (8.60)

The eh-XCHF formulation requires matrix elements of molecular orbitals involving the

Coulomb operator r−1
12 and the Gaussian-type geminal function g and is an ideal candi-

date to test the CCSS method. In the previous applications of the eh-XCHF method,[90]

these integrals were evaluated using analytical geminal integrals. For testing the CCSS im-

plementation, we calculated the exciton binding energies in CdSe clusters and compared with

the previously reported[90] exciton binding energies obtained using analytical AO integrals.

The results from the CCSS methods are summarized in Figure 8.1. The results show that

the exciton binding energies obtained using the CCSS method are in good agreement with

the analytical results. We also find that the CCSS are in good agreement with the pre-

viously reported exciton binding energies from experimental and theoretical investigations

(Figure 8.2).
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Figure 8.1: Binding energies in meV of CdSe quantum dots ranging in size from
1 nm to 20 nm in diameter of the XCHF method on the y-axis and this work on
the x-axis. The trendline in this graph has a slope of 1.0072.

8.3.2 Excitation energy of CdSe clusters using dynamic screening

The developed CCSS method was applied for the calculation of excitation energy in small

CdSe clusters. The electronic excitation was described using electron-hole quasiparticle

representation and the electron-electron correlation effect was incorporated using screened

electron-hole interaction kernel. In this work, we have used the geminal screened electron-

hole interaction kernel which has the following form,

Keh(1, 2) = w(1, 2)g(1, 2)(1− P12), (8.61)

where w(1, 2) is residual electron-electron interaction operator, g(1, 2) is explicitly-correlated

Gaussian-type geminal operator, and the P12 is the permutation operator (Equation 8.62-

Equation 8.63 ),

∑

i<j

r−1
ij −

∑

i

vHF(i) =
∑

i<j

w(i, j) (8.62)
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Table 8.1: Exciton binding energies [meV] for CdSe quantum dots ranging in
diameters from 1.24nm to 20nm in size. The standard deviation σ is reported in
the last column.

CdSe QD CCSS σ
Diameter [nm] Binding Energy [meV] [meV]
1.24 855 1.24E-03
1.79 596 2.89E-03
2.76 388 8.24E-03
2.98 360 9.66E-03
3.28 327 1.22E-02
3.79 284 1.68E-02
4.80 225 3.19E-02
6.60 166 7.69E-02
10.0 110 2.72E-02
15.0 75.2 1.02E-02
20.0 57.4 2.64E-02

P12f(1, 2) = f(2, 1). (8.63)

Using diagrammatic perturbation theory, it can be shown that up to first-order in g, the

excitation energy is given by the following expression,[11]

ω = ω0 + 〈ia|Keh|ai〉, (8.64)

where ω0 is the independent quasiparticle excitation energy and is equal to the energy dif-

ference between the quasihole and quasielectron states (ω0 = εa − εi). The evaluation of the

matrix element of Keh was accomplished using the developed CCSS method. The single-

particle states were obtained from Hartree-Fock calculations using LANL2DZ ECP basis.

The Gaussian-type geminal function was expanded using three-term expansions and the ex-

pansion coefficients are were obtained from literature. The b and γ used in this work were

0.867863 and 0.010425, respectively, for the binding energy calculation on the Cd20Se19 quan-

tum dot. Excitation energy in the Cd20Se19 cluster using the CCSS method was calculated

and was found to be 3.14± 4× 10−4 eV. This result was found to be in good agreement with

the previously published excitation energy of 3.10 eV obtained using pseudopotential+CI

calculation. The application of the geminal-screened electron-hole interaction kernel method

using analytical geminal AO integrals were computationally prohibitive for this system, how-

ever the developed CCSS method allowed us to overcome the computational barrier (948 ba-

sis functions) and apply the explicity-correlated formulation to the calculation of excitation

energy for this system.
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Figure 8.2: Binding energies in meV of CdSe quantum dots ranging in size from
1 nm to 20 nm in diameter of this work compared with Ellis et al.,[80] Elward
et al.,[90] Inamdar et al.,[145] Jasieniak et al.,[151] Muelenberg et al.,[200] and
Querner et al.[245] For the CCSS method, red error bars are shown for the
exciton binding energy calculations.

8.4 Conculsion

In conclusion, the development and implementation of the CCSS Monte Carlo method was

presented. The CCSS method is a numerical integration scheme that uses Monte Carlo ap-

proach for calculation of MO integrals. The accuracy of Monte Carlo evaluation of integrals

can be systematically improved by reducing the variance of the sample mean. In the CCSS

method, we have combined both control-variate and stratified sampling strategies for vari-

ance reduction. The main feature of the CCSS method is that it avoids explicit AO-to-MO

integral transformation for evaluation of the MO integrals. Consequently, it only requires

value of the spatial MO at a given point which is readily obtained from the linear combi-

nation of the AOs. The use of stratified sampling in CCSS method is an important feature

because the distribution of sampling points for each segment is optimized to minimize the

overall variance. Computationally, this results in segments with higher variance are sam-

pled proportionally more than segments with lower variance. Another feature of stratified
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sampling is that all instances of the calculated function are used for the estimation of the

integral. This should be contrasted with rejection sampling Monte Carlo methods, where

not all function evaluations contribute towards the estimation of the integral. This feature of

stratified sampling has a direct impact on the efficiency of the overall calculation especially

for cases where function evaluation is expensive. In the CCSS method, the variance of the

sample mean was further reduced by introducing control-variate in the stratified sampling

scheme. The control-variate in this approach plays an identical role as the importance func-

tion in Metropolis sampling. In this work, we have derived two different control-variates

that are appropriate for MO integrals. The composite aspect of the CCSS method allows

for evaluation of multiple MO integrals for the same stratified sampling step. Because the

CCSS is a numerical method, it can be readily applied to complex kernels whose analytical

integral in AO basis is not known. The developed CCSS method was applied for calculation

of electron-hole matrix elements in the electron-hole explicitly correlated Hartree-Fock cal-

culations and in the calculation of geminal-screened electron-hole interaction kernel. These

methods were applied for investigation of excitonic properties of quantum dots. In both cases,

the CCSS method not only allowed us to avoid the expensive AO-to-MO transformations

but also allowed us to avoid calculation of AO integrals with R12 terms.

We believe that the CCSS method will be relevant for large-scale quantum mechanical

calculations where AO-to-MO transformation is prohibitively expensive, calculations that

are integral-direct where the AO integrals not pre-computed and stored, real-space and

grid-based methods, many-body theories that use complex explicitly-correlated 2-electron,

3-electron, and higher n-electron operators for treating electron-electron correlation, and

excited state calculations (such as CIS, Tamm-Dancoff, Bethe-Salpeter, GSIK and others)

that require a small subset of MO integrals.
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Chapter 9

Derivation of time-dependent
transition probability for 2e− 2h
generation from 1e− 1h state in the
presence of external electromagnetic
field

9.1 Introduction

In 1961, Shockley and Queisser found the upper theoretical limit for the efficiency of p-n

junction solar energy converters to be about 30%. This is known as the Shockley-Queisser

thermodynamic limit.[283] Since then, there have been two main approaches for increasing

the efficiency of the solar cell by means of producing multiple photogenerated excitons from a

single absorbed photon. The two approaches are multiple exciton generation (MEG) (carrier

multiplication (CM)) and singlet fission (SF).

In MEG, the exciton multiplication occurs when the absorbed photon is at least twice the

nanocrystal band gap. This has been tested experimentally in semiconductor nanocrystals,[274,

17, 16, 14, 303] quantum dots,[217, 15, 267, 198] quantum wires, and quantum rods.[224, 13]

The affect of size, shape, and composition of PbS, PbSe, PbTe nanocrystals has on MEG was

studied by Padilha et. al.[225] MEG also has been shown to occur in carbon nanotubes[103]

as well as graphene.[197] The generation of multiexcitons has been subject of intense theo-

retical research.[149] For example, symmetry-adapted configuration interaction mehtod has

been used to study the excited states of nanocrystals, such as lead selenide and silicon

quantum dots, to determine the energetic threshold of MEG.[148, 3] In addition to ener-

getics requirements, the importance of electron-phonon coupling for multiexciton genera-

tion and multiexciton recombination (MER) in semiconductor quantum dots has also been
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demonstrated.[142]

The second avenue to generate multiple excitons is singlet fission. In molecular chro-

mophores that have a triplet state energy that is close to 1/2 the energy of the first allowed

optical transition (S1-S0), exciton multiplication can occur upon photoexcitation to produce

two triplet states from the single singlet state.[157, 295] Johnson et. al. showed this using

1,3-Diphenylisobenzofuran as a model chromophore.[156] Thompson et. al. shows the mag-

netic field dependence of singlet fission in solutions of diphenyl tetracene.[320] Wu et. al.

presents that tetracene is the best candidate in silicon solar cells to increase efficency using

SF. They report a quantum efficiency of 127% ± 18%.[348]

In this work, we present a theoretical study of the effect of an external electromagnetic

field on the generation of a biexcitonic state from a single excitonic state. The main goal of

this work is to present a systematic derivation of the time-dependent transition probability

for the (1e − 1h) → (2e − 2h) process. We consider a general many-electron system in the

presence of an external EM field. The system is assumed to be excited at t = 0 and the

is propagated in time using field-dependent Hamiltonian. The form of the field-dependent

Hamiltonian and the initial conditions are described in section 9.2. The time-propagation

of the state vector is performed using time-ordered field-dependent propagator (section 9.3)

using time-dependent perturbation theory and the 0th, 1st and 2nd order contributions to

the time-dependent transition amplitudes were derived in terms for second-quantized opera-

tors(section 9.4). The transition amplitudes were expressed in terms of the time-independent

Hugenholtz diagrams[276] (section 9.5) with time-dependent vertex amplitudes. Finally,

simplified expressions for calculating time-dependent vertex amplitudes that is amenable to

computer implementation were derived (section 9.6). The key results and conclusions from

the derivation are summarized in section 9.7.

9.2 System information and definition

We define the reference effective one-particle Hamiltonian as,

h0 =
−~2

2m
∇2 + vext + veff (9.1)

where veff is the effective one-particle operator and can be approximated using vHF, vKS, vps,

or vmodel. The eigenspectrum of the h0 is used for the construction of the creation and

annihilation operators

h0χp = εpχp. (9.2)

111



The N-electron non-interacting Hamiltonian is defined as,

H0 =
N∑

i

h(i). (9.3)

The ground state of H0 is defined as the quasiparticle vacuum,

|0〉 ≡ Φ0. (9.4)

The Hamiltonian for the interacting N-electron system is defined as,

H = H0 +W (9.5)

where W is the residual electron-electron interaction not included in the one-body operator

veff

W =
N∑

i<j

r−1
ij −

N∑

i

veff(i). (9.6)

The non-interacting electron-hole wave function is defined using the creation operators

for quasi-electrons and quasi-holes

|Φa
i 〉 = {a†i}|0〉. (9.7)

The correlated electron-hole wave function is defined using a correlation operator, Ωn,

|Ψ〉 = Ωn|Φa
i 〉 (9.8)

where Ωn will be defined later.

We are interested in the time-development of the correlated wave function under the

influence of an external electromagnetic field. The interaction between the molecule and

the EM field is given by the time-dependent interaction operator VF (t).[67] The total field

dependent Hamiltonian is defined as,

HF (t) = H0 + VF (t). (9.9)

9.3 Method for time-propagation

In this work, we will work in the Dirac’s interaction representation. In this representation,

the total interaction potential is defined using the following similarity-transformation,

ZF
I (t) = e+iH0t/~[VF (t) +W ]e−iH0t/~. (9.10)
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The field-dependent time-development operator, UF (t, 0), is defined as,

UF (t, 0) = 1 +
∑

n=1

U
(n)
F (t) (9.11)

where U
(n)
F (t) is defined as,

U
(n)
F (t) = Cn

∫ t

0

dt1dt2 . . . dtnT [ZF
I (t1)ZF

I (t2) . . . ZF
I (tn)]. (9.12)

We assume that the system at t = 0 is described by the state vector Ψ(0) = Ωn|Φa
i 〉. The

time-development of this state vector to time t is given by the following exprssion,

|ΨF (t)〉 = UF (t, 0)|Ψ(0)〉. (9.13)

The subscript F in the above equation implies that the time-development was performed

under the influence of the the extenral field, VF . In this work, we are interested in the 2e-2h

generation from 1e-1h excitation.

(Carrier multiplication) PF,X→X2(t) = |〈0|{k†j†bc}|ΨF (t)〉|2. (9.14)

For the purpose of this derivation, it is useful to write the transition probability in terms of

the transition amplitude I as shown below,

PF,X→X2(tf ) =

∫ tf

0

dt [IF (t)][IF (t)]∗ (9.15)

where,

IF (t) = 〈0|{k†j†bc}|ΨF (t)〉. (9.16)

In this work, we will use both Wick’s contraction and diagrammatic methods for deriving the

expression for the time-dependent transition amplitudes. The first step in this many-step

derivation is to write all the relevant quantities as vacuum expectation values. Writing the

expression in terms of time-development operator,

IF (t) = 〈0|{k†j†bc}UF (t, 0)ΩX{a†i}|0〉. (9.17)

For the nth-order term in the time-developmenet operator, we define

I
(n)
F (t1, t2, . . . , tn) = 〈0|{k†j†bc}T [ZF

I (t1)ZF
I (t2) . . . ZF

I (tn)]ΩX{a†i}|0〉. (9.18)

Using Wick’s theorem, we conclude the only fully contracted terms will have non-zero con-

tribution to the above expression

I
(n)
F (t1, t2, . . . , tn) = 〈0|{k†j†bc}T [ZF

I (t1)ZF
I (t2) . . . ZF

I (tn)]ΩX{a†i}|0〉C . (9.19)

In this work, we evaluate the above expansion up to second-order using diagrammatic tech-

niques. The explicit expression for I
(0)
F , I

(1)
F and I

(2)
F are presented in Sec. 9.4.1, 9.4.2,and

9.4.3.
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9.4 Perturbative treatment of transition amplitudes

9.4.1 0th order contribution

The zeroth order term is field-independent and is given by the expression,

I
(0)
F = 〈0|{kj†bc}ΩX{a†i}|0〉C . (9.20)

As expected, the above expression is independent of time. The Wick’s contraction required

to evaluate this term is denoted by the following expression,

η(3a) = 〈0|{kj†bc}ΩX{a†i}|0〉L. (9.21)

We note that only connected diagrams contribute to the above expression and this fact is

denoted by subscribe ”L”.

9.4.2 1st order contribution

The first-order term is:

I
(1)
F (t1) = 〈0|{kj†bc}ZF

I (t1)ΩX{a†i}|0〉C . (9.22)

To evaluate the above expression, we will have to derive the expression of the the time-

dependent interaction potential, ZF
I (t1), which is defined as,

ZF
I (t) = e+iH0t/~[VF (t) +W ]e−iH0t/~. (9.23)

In this derivation, we will split the above expression into 1-body and 2-body terms,

V F
I (t) = e+iH0t/~VF (t)e−iH0t/~ (9.24)

W F
I (t) = e+iH0t/~We−iH0t/~. (9.25)

The 1-body and 2-body time-dependent operators are represented using time-dependent

amplitudes,

V F
I (t) =

∑

pq

Apq(t)p
†q (9.26)

=
∑

pq

Apq(t){p†q}+ 〈0|V F
I (t)|0〉 (9.27)

=
∑

pq

Apq(t){p†q}+ 〈0|VF (t)|0〉. (9.28)
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Similarly the 2-body term is given as,

W F
I (t) =

1

2

∑

pqrs

Bpqrs(t)p
†q†sr (9.29)

=
1

2

∑

pqrs

Bpqrs(t){p†q†sr}+
∑

pq

Cpq(t){p†q}+ 〈0|W F
I (t)|0〉 (9.30)

where,

Cpq(t) =
N∑

i

Bpiqi(t)−Bpiiq(t). (9.31)

Adding the terms and rewriting them in terms of normal-ordered 2-body, 1-body, and vacuum

expectation value terms we get,

ZF
I (t) =

1

2

∑

pqrs

Bpqrs(t){p†q†sr}+
∑

pq

Dpq(t){p†q}+ 〈0|ZF
I (t)|0〉. (9.32)

where,

D(t) = A(t) + C(t) (9.33)

ZF
I (t) = Z0(t) + ZD(t) + ZB(t). (9.34)

The 1st order probability for generation of 2e-2h from 1e-1h is given by the following expres-

sion,

I
(1)
F (t) = 〈0|{kj†bc}[Z0 + ZD + ZB]ΩX{a†i}|0〉C . (9.35)

Summing over

I
(1)
F (t) = Z0(t)I(0) +

∑

pq

Dpq(t)η
(4a)
pq +

∑

pqrs

Bpqrs(t)η
(4b)
pqrs (9.36)

where,

η(4a)
pq = 〈0|{kj†bc}{p†q}ΩX{a†i}|0〉C (9.37)

η(4b)
pqrs = 〈0|{kj†bc}{p†q†sr}ΩX{a†i}|0〉C . (9.38)
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9.4.3 2nd order contribution

The second-order term for (t1 > t2) is:

I
(2)
F (t) = 〈0|{kj†bc}ZF

I (t1)ZF
I (t2)ΩX{a†i}|0〉C . (9.39)

Substituting,

ZF
I (t1)ZF

I (t2) = [Z0(t1) + ZD(t1) + ZB(t1)][[Z0(t2) + ZD(t2) + ZB(t2)] (9.40)

= Z0(t1)[[Z0(t2) + ZD(t2) + ZB(t2)]

+ ZD(t1)[Z0(t2) + ZD(t2) + ZB(t2)]

+ ZB(t1)[Z0(t2) + ZD(t2) + ZB(t2)] (9.41)

= Z0(t1)[Z0(t2) + ZD(t2) + ZB(t2)]

+ [ZD(t1) + ZB(t1)]Z0(t2)

+ [ZD(t1)ZB(t2)] + [ZB(t1)ZD(t2)]

+ [ZD(t1)ZD(t2)] + [ZB(t1)ZB(t2)]. (9.42)

Adding and subtracting Z0(t1)Z0(t2) in the following expression,

[ZD(t1) + ZB(t1)]Z0(t2) = [Z0(t1) + ZD(t1) + ZB(t1)]Z0(t2)− Z0(t1)Z0(t2). (9.43)

Therefore,

ZF
I (t1)ZF

I (t2) = Z0(t1)[Z0(t2) + ZD(t2) + ZB(t2)]

+ [Z0(t1) + ZD(t1) + ZB(t1)]Z0(t2)

+ [ZD(t1)ZB(t2)] + [ZB(t1)ZD(t2)]

+ [ZD(t1)ZD(t2)] + [ZB(t1)ZB(t2)]− [Z0(t1)Z0(t2)]. (9.44)

We define time-reversed anti-commutation as,

[A(t1), B(t2)]t+ = A(t1)B(t2) +B(t1)A(t2). (9.45)

Using the above equation, the expression for I
(2)
F (t) is given as,

I
(2)
F (t1t2) = Z0(t1)I

(1)
F (t2) + I

(1)
F (t1)Z0(t2)− Z0(t1)Z0(t2)I(0)

+ 〈0|{kj†bc}[ZD(t1), ZB(t2)]t+ΩX{a†i}|0〉
+ 〈0|{kj†bc}[ZD(t1)ZD(t2)]ΩX{a†i}|0〉
+ 〈0|{kj†bc}[ZB(t1)ZB(t2)]ΩX{a†i}|0〉. (9.46)
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The evaluation of the terms in Eq. 9.46 are given by,

〈0|{kj†bc}[ZD(t1)ZD(t2)]ΩX{a†i}|0〉 =
∑

pq

∑

rs

Dpq(t1)Drs(t2)η(5a)
pqrs (9.47)

〈0|{kj†bc}[ZD(t1), ZB(t2)]t+ΩX{a†i}|0〉 =
∑

pqrs

∑

xy

Gpqrsxy(t1, t2)η(5b)
pqrsxy (9.48)

〈0|{kj†bc}[ZB(t1)ZB(t2)]ΩX{a†i}|0〉 =
∑

pqrs

∑

tuvw

Bpqrs(t1)Btuvw(t2)η
(5c)
pqrstuvw (9.49)

where the time-independent components are given as,

η(5a)
pqrs = 〈0|{kj†bc}{p†q}{r†s}ΩX{a†i}|0〉C (9.50)

η(5b)
pqrsxy = 〈0|{kj†bc}{p†q†sr}{x†y}ΩX{a†i}|0〉C (9.51)

η
(5c)
pqrstuvw = 〈0|{kj†bc}{p†q†sr}{t†u†wv}ΩX{a†i}|0〉C (9.52)

and

Gpqrsxy(t1, t2) = Bpqrs(t1)Dxy(t2) +Dxy(t1)Bpqrs(t2). (9.53)

I
(2)
F (t1t2) = Z0(t1)I

(1)
F (t2) + I

(1)
F (t1)Z0(t2)− Z0(t1)Z0(t2)I(0)

+
∑

pqrs

Dpq(t1)Drs(t2)η(5a)
pqrs

+
∑

pqrsxy

Gpqrsxy(t1, t2)η(5b)
pqrsxy

+
∑

pqrstuvw

Bpqrs(t1)Btuvw(t2)η
(5c)
pqrstuvw. (9.54)

9.5 Diagrammatic evaluation of Wick’s contraction

In this section, we derive the expressions for the η terms that are needed to evaluate the

expression. The 3-vertex terms η(3a) are given by the set of diagrams presented in Figure 9.1.

We note that only linked-diagrams have non-zero contribution to η(3a). The expression for

η(4) can be expressed as a sum of both linked and unlinked diagrams. However, it can be

shown that all unlinked diagrams have zero contribution. Analysis of the unlinked diagrams

reveal that the unlinked diagrams contain the following expressions,

〈0|{k†j†bc}{a†i}|0〉〈0|ZD,BΩ|0〉 = 0. (9.55)
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Figure 9.2: Part A: 4-vertex diagams.
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Figure 9.3: Part B: 4-vertex diagams.
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The set of linked diagrams for η(4a) and η(4b) are presented in Fig. 9.2 and Fig. 9.3.

The evaluation of the η(5) expressions require both linked and unlinked diagrams. In

many cases, the unlinked 5-vertex diagrams can be expressed in terms of the 3-vertex and 4-

vertex diagrams derived earlier. In case of η(5a), this diagrammatic factorization is expressed

as,

η(5a)
pqrs = η(2a)

pqrsη
(3a) + η(5aL)

pqrs (9.56)

where η(2a) is the vacuum bubble

η(2a)
pqrs = 〈0|{p†q}{r†s}|0〉 (9.57)

and η
(5aL)
pqrs are set of all linked diagrams and the superscript L is used to represent it. Using

Wick’s theorem,

{p†q}{r†s} = {p†qr†s}+ δqr{p†s} − δps{r†q}+ δpsδqr. (9.58)

Therefore,

η(5aL)
pqrs = η(4b)

pqrs + δqrη
(4a)
ps − δpsη(4a)

rq + δpsδqrη
(3a). (9.59)

Similarly, the diagrams associated with η(5b) can be factored as,

η(5b)
pqrsxy = η(1a)

xy η(4b)
pqrs + η(1b)

pqrsη
(4a)
xy + η(1a)

xy η(1b)
pqrsη

(3a) + η(5bL)
pqrsxy (9.60)

η
(5c)
pqrstuvw = η

(1b)
tuvwη

(4b)
pqrs + η(1b)

pqrsη
(4b)
tuvw + η(1b)

pqrsη
(1b)
tuvwη

(3a) + η
(5cL)
pqrstuvw (9.61)

where,

η(1a)
pq = 〈0|{p†q}|0〉 (9.62)

η(1a)
pqrs = 〈0|{p†q†sr}|0〉. (9.63)

In this work, we introduce a renormalization scheme where all linked 5-vertex diagrams are

represented as 1-loop and 2-loop renormalized 3-vertex and 4-vertex diagrams. Using this

approach, diagrams associated with η
(5aL)
pqrs and η

(5bL)
pqrs are presented in Fig. 9.4 and Fig. 9.5,

respectively.

9.6 Evaluation of time-dependent vertex amplitudes

9.6.1 Evaluation of time-dependent amplitudes associated with
bare 1-body vertex

In this section, we will evaluate the expression of the time-dependent amplitude Apq(t)

associated with the bare 1-body vertex. The equation that defines this amplitude is given
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Figure 9.4: 1-loop renormalized 4-vertex diagams.
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Figure 9.5: 2-loop renormalized 4-vertex diagams.

122



by the following equation,

e+iH0t/~VF (t)e−iH0t/~ =
∑

pq

Apq(t)p
†q. (9.64)

We will start by writing the second-quantized (SQ) representation of the VF (t) operator

VF (t) =
∑

pq

vFpq(t)p
†q. (9.65)

Since vFpq(t) is just a number, we are interested in evaluating the SQ operator

e+iH0t/~p†qe−iH0t/~. We will start by inserting identity in this expression,

e+iH0t/~p†qe−iH0t/~ = e+iH0t/~p†e−iH0t/~e+iH0t/~qe−iH0t/~. (9.66)

The time-dependent creation and annihilation operators are defined as,

p†(t) = e+iH0t/~p†e−iH0t/~ (9.67)

q(t) = e+iH0t/~qe−iH0t/~. (9.68)

Using BCH expansion,

q(t) = q +
it

~
[q,H0] +

1

2!

(
it

~

)2

[[q,H0], H0] + . . . (9.69)

Using the results from Eq. (D.15), derived in Appendix D.1,

[p, q†r] = δpqr (9.70)

Therfore,

[q,H0] =
∑

p1q1

hp1q1 [q, p
†
1, q1] (9.71)

=
∑

p1q1

hp1q1δqp1q1 (9.72)

=
∑

q1

hqq1q1. (9.73)

Hence, we have the general result,

[q,H0] =
∑

q1

hqq1q1. (9.74)

Similarly,

[[q,H0], H0] =
∑

q1

hqq1 [q1, H0] (9.75)
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=
∑

q1q2

hqq1hq1q2q2 (9.76)

We note that the above expression can be written in terms of the matrix product

∑

q1

hqq1hq1q2 = [hh]qq2 = [h2]qq2 (9.77)

Therefore, for m-terms expansion,

[[q,H0], . . . ,m-terms, H0] =
∑

q1q2...qm

hqq1hq1q2hq2q3 . . . hqm−1,qmqm (9.78)

=
∑

qm

[hm]qqmqm. (9.79)

Since qm is just a summation index, we can rewrite the expression as,

[[q,H0], . . . ,m-terms, H0] =
∑

q1

[hm]qq1q1. (9.80)

Substituting the above expression in the BCH expansion,

q(t) = q +
it

~
∑

q1

hqq1q1 +
1

2!

(
it

~

)2∑

q1

[h2]qq1q1 +
1

k!

(
it

~

)k∑

q1

[hk]qq1q1 . . . (9.81)

Combining all the h-terms

q(t) = q +
∑

q1

[
it

~
hqq1q1 +

1

2!

(
it

~

)2

[h2]qq1 +
1

k!

(
it

~

)k
[hk]qq1 . . .

]
q1 (9.82)

Expressing the first term q in terms of q1 using Kronecker delta,

q =
∑

q1

δqq1q1 (9.83)

we get,

q(t) =
∑

q1

[
δqq1 +

it

~
hqq1q1 +

1

2!

(
it

~

)2

[h2]qq1 +
1

k!

(
it

~

)k
[hk]qq1 . . .

]
q1. (9.84)

We recognize that the δ in the above expression is the element of the identity matrix I.

q(t) =
∑

q1

[
Iqq1 +

it

~
hqq1q1 +

1

2!

(
it

~

)2

[h2]qq1 +
1

k!

(
it

~

)k
[hk]qq1 . . .

]
q1 (9.85)

We define matrix h̃(t) as,

h̃A(t) =
it

~
h. (9.86)
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The subscript A is to remind us that it is an anti-hermitian matrix

h̃†A(t) = −h̃A(t). (9.87)

Using the above definition, the sum in the square brackets can be written in terms of matrix

exponentiation,

∞∑

k=0

1

k!
h̃kA(t) = eh̃A(t) (9.88)

where,

h̃0
A = I (9.89)

and I is identity matrix (and not scalar 1). Therefore, the time-development of q is given by,

q(t) =
∑

q1

[eh̃A(t)]qq1q1. (9.90)

Similarly, the time-development of p† is given by,

p†(t) =
∑

p1

[e−h̃A(t)]pp1p
†
1. (9.91)

Therefore,

e+iH0t/~VF (t)e−iH0t/~ =
∑

pq

vFpq(t)p
†(t)q(t) (9.92)

=
∑

pqp1q1

vFpq(t)[e
−h̃A(t)]pp1 [e

h̃A(t)]qq1p
†
1q1. (9.93)

Using

[e−h̃A(t)]† = e+h̃A(t) (9.94)

e+iH0t/~VF (t)e−iH0t/~ =
∑

pqp1q1

[e+h̃A(t)]p1pv
F
pq(t)[e

−h̃A(t)]q1qp
†
1q1 (9.95)

which is equal to,

e+iH0t/~VF (t)e−iH0t/~ =
∑

p1q1

[e+h̃A(t)vF (t)e−h̃A(t)]p1q1p
†
1q1. (9.96)

Comparing to Eq. 9.64, we get the expression for the A amplitudes

A(t) = e+(it/~)hvF (t)e−(it/~)h. (9.97)
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9.6.2 Evaluation of time-dependent amplitudes associated with
bare 2-body vertex

In this section, we will evaluate the expression of the time-dependent amplitude Bpq(t)

associated with the bare 2-body vertex. The equation that defines this amplitude is given

by the following equation,

e+iH0t/~We−iH0t/~ =
∑

pqrs

Bpqrs(t)p
†q†sr (9.98)

where the 2-body operator is defined as,

W =
∑

pqrs

Wpqrsp
†q†sr. (9.99)

Using the insertion of identity method used in the previous section, we express the above

equation in terms of time-dependent SQ operators

e+iH0t/~We−iH0t/~ =
∑

pqrs

Wpqrsp
†(t)q†(t)s(t)r(t). (9.100)

Substituting the previously derived expression for time-dependent SQ

p†(t) =
∑

p1

[e−(it/~)h]pp1p
†
1 =

∑

p1

[e+(it/~)h]p1pp
†
1 (9.101)

s(t) =
∑

s1

[e+(it/~)h]ss1s1 =
∑

s1

[e−(it/~)h]s1ss1 (9.102)

we get,

e+iH0t/~We−iH0t/~ =
∑

pqrs

Wpqrsp
†(t)q†(t)s(t)r(t) (9.103)

=
∑

p1q1r1s1pqrs

[e+(it/~)h]p1p[e
+(it/~)h]q1q (9.104)

×Wpqrs[e
−(it/~)h]r1r[e

−(it/~)h]s1s

× p†1q†1s1r1.

The above relationship implies the following expression for the B,

Bp1q1r1s1 =
∑

pqrs

[e+(it/~)h]p1p[e
+(it/~)h]q1qWpqrs[e

−(it/~)h]r1r[e
−(it/~)h]s1s. (9.105)
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9.7 Results and conclusion

The main result from this work is the explicit expressions for the time-dependent transition

amplitudes for generation of 2e-2h pair from 1e-1h pair for excited states propagating in time

under the influence of external electromagnetic field. Up to second-order the time-dependent

transition amplitude is given by the following expression,

IF (tf ) = I
(0)
F tf +

∫ tf

0

dt1 I
(1)
F (t1) +

∫ tf

0

dt1

∫ t1

0

dt2I
(2)
F (t1, t2). (9.106)

Because of the complexity of the equation, a brute-force approach for the calculation of this

expression is computationally prohibitive. In this work, we showed that the expressions for

I
(n)
F can be separated into a time-dependent component and time-independent components.

We have derived the expression for the time-dependent components and we show that these

quantities can be expressed in terms standard matrix-matrix tensor-tensor contraction terms.

The extraction of the time-independent components from the time-propagation equation

presents a significant computational advantage because the time-independent component can

be evaluated at the start of the calculation and can be reused during the course of the time-

dependent calculation. This strategy dramatically reduces the computational complexity

of for performing such calculations. We have also presented the explicit results from the

calculation of the time-dependent quantities (denoted by η) in terms of the diagrammatic

representation.

One of the key results from this work is the general treatment of electron correlation in

the derived result. The inclusion of electron-electron correlation for the excited state is done

by the operator Ω in Eq. 9.8. In the derivation presented here, we have not imposed any

specific form for the electron-correlation operator. As a consequence, the set of diagrams

presented in Fig. 9.2 and 9.3, is the complete set of diagrams associated any form of Ω. If Ω

is chosen to be an N-body operator like the full-CI or coupled-cluster wave functions, all the

diagrams presented in Fig. 9.4 and 9.5 will contribute to the transition amplitudes. However,

if Ω is chosen to be a 2-body operator only a subset of those diagrams will contribute.

The complexity and computational cost of the evaluation of the diagrams increase with

increasing number of vertices. Out of the 3-vertex, 4-vertex, and 5-vertex diagrams, the

5-vertex diagrams are most expensive to calculate. In this derivation, we have shown that a

subset of the 5-vertex diagrams can be factored into pre-existing 3- and 4-vertex diagrams.

We also present a renormalization scheme for the 5-vertex diagrams by expressing them as

1-loop and 2-loop contracted effective 4-vertex diagrams. The renormalization method and

the factorization of diagrams utilizes reusability of pre-computed results and contributes in

reducing the overall cost of the calculations. We envision that the developed method can be
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used for the investigation of time-dependent carrier multiplicity in both semiconductor and

organic photoactive systems.
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Chapter 10

Conclusions and future work

In this work, 5 methods were presented. In chapter 5, the projected congruent transformed

Hamiltonian (PCTH) method was presented with partial infinite order diagrammatic sum-

mation (PIOS). In this work we project the CTH onto a finite basis and then we identify

a subset of diagrams that we can sum to infinite order. Proof-of-concept calculations are

performed on 10-electron systems. In chapter 6, the geminal screening method is presented

in which we use the geminal operator to project out noncontributing terms in the configura-

tion interaction expansion without performing a diagonalization step. We use the two-body

geminal operator for a priori indentification of terms in the CI energy expression that are

negligible by using diagrammatic factorization approach. Test calculations are performed on

a series of 10-electron systems. In chapter 7, we present the geminal-screened electron-hole

interaction kernel (GSIK) approach for the determination of excitation energies and exciton

binding energies in H2O, Cd6Se6, and Cd20Se19. In this approach we write the expression for

the electron-hole interaction kernel using only linked diagrams and without using unoccupied

states. From this derivation we can conclude and confirm that we cannot have electron-hole

interaction without electron correlation. In chapter 8, the composite control-variate strati-

fied sampling (CCSS) method is presented. In this method stratified sampling Monte Carlo

is used to evaluate MO integrals without explicit AO-to-MO integral transformation which

always proves to be a bottleneck to performing calculations on large systems. Exciton bind-

ing energies are calculated on CdSe clusters ranging in size between 1 nm to 20 nm. And

finally in chapter 9 exciton dynamics are studied by deriving the expressions using diagram-

matic notation for the transition probabilites for the generation of 2e-2h from 1e-1h in an

external electromagnetic field. In this work, we show that the time-dependent transition

amplitude can be separated into time-dependent and time-independent components. The

time-independent components can be calculated at the start of the calculation and reused

during the course of the time-dependent calculation.
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Diagrammatic notation is a widespread tool that is used in the work presented here.

It is extremely useful for derivations as well as for interpretation of essential physics in

the methods presented. Second quantization is presented in chapter 3 which is essential to

understanding diagrammatic notation which is presented in chapter 4. chapter 2 provides

some background information for quantum mechanics.

The future direction of these projects is to use the GSIK method combined with the

CCSS method which is the main workhorse for the computation of molecular integrals for

big systems such as CdSe, PbSe, and Ag clusters. GSIK will allow us to add correlation

to the MO integrals so we can calculate properties such as binding energies on system sizes

that have not been done yet. We combine these two methods with CUDA which is a parallel

computing platform. We also continue to study the diagrams in the GSIK method and

extract out more essential physics to find more diagrams that contribute more the electron-

hole interaction kernel.

We are also interested in the continued analysis of the diagrams presented in this work.

For the PCTH-PIOS project, we are interested in the summation of more diagrams up to in-

finite order. Previously, we could only sum the two-body diagrams to infinite order, however,

with the CCSS engine, we will now be able to include higher order diagrams such as the 3-

and 4-body diagrams in the summation to infinite order. Also, we are working on a theory

which will be able to solve the whole CTH expression with an explicitly correlated density

matrix (XCDM) ansatz. The CCSS technology will allow us to solve the integrals associated

with this theory. The CCSS method provides us with a lot of interesting applications moving

forward with its ability to solve large integrals.
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Appendix A

GSIK algebraic derivation

In this appendix, we present the derivation of the electron-hole interaction kernel using

algebraic representation.

A.0.1 Evaluation of 〈0|WG0|0〉FC
To start, we write WG0 (Equation 7.44) in second-quantized representation,

WG0 =
∑

p1q1p2q2

〈p1p2|κ0
2|q1q2〉p†1p†2q2q1 (A.1)

+
∑

p1q1p2q2p3q3

〈p1p2p3|κ0
3|q1q2q3〉p†1p†2p†3q3q2q1

+
∑

p1q1p2q2p3q3p4q4

〈p1p2p3p4|κ0
4|q1q2q3q4〉p†1p†2p†3p†4q4q3q2q1,

Using Equation 7.33 and Equation A.1,

〈0|WG0|0〉FC =
1

2!

∑

p1q1p2q2

〈p1p2|κ0
2|q1q2〉〈0|p†1p†2q2q1|0〉FC (A.2)

+
1

3!

∑

p1q1p2q2p3q3

〈p1p2p3|κ0
3|q1q2q3〉〈0|p†1p†2p†3q3q2q1|0〉FC

+
1

4!

∑

p1q1p2q2p3q3p4q4

〈p1p2p3p4|κ0
4|q1q2q3q4〉〈0|p†1p†2p†3p†4q4q3q2q1|0〉FC,

where the subscript “FC” implies that only fully-contracted terms are evaluated. Inspection

of the expressions show that the only non-zero terms in the above expressions must involve

only occupied state indices. Including all possible non-zero contractions gives us the following

expression,

〈0|WG0|0〉FC = (A.3)
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1

2!

∑

i1i2

〈i1i2|κ0
2|i1i2〉A +

1

3!

∑

i1i2i3

〈i1i2i3|κ0
3|i1i2i3〉A +

1

4!

∑

i1i2i3i4

〈i1i2i3i4|κ0
4|i1i2i3i4〉A, (A.4)

where subscript “A” in 〈. . . 〉A implies anti-symmetrized matrix element. Comparing to

diagrammtic representation, the above expression corresponds to the following closed-loop

diagrams,

〈0|WG0|0〉FC = D1 +D2 +D3. (A.5)

A.0.2 Evaluation of 〈0|{i†a}WGX{a†i}|0〉FC
WGX (Equation 7.35) in second-quantized representation is written as,

WGX =
1

2!

∑

p1q1p2q2

〈p1p2|κX
2 |q1q2〉p†1p†2q2q1 (A.6)

+
1

3!

∑

p1q1p2q2p3q3

〈p1p2p3|κX
3 |q1q2q3〉p†1p†2p†3q3q2q1

+
1

4!

∑

p1q1p2q2p3q3p4q4

〈p1p2p3p4|κX
4 |q1q2q3q4〉p†1p†2p†3p†4q4q3q2q1.

Using Equation 7.33 and Equation A.6 we get the following expression,

〈0|{i†a}WGX{a†i}|0〉FC = (A.7)
∑

p1q1p2q2

〈p1p2|κX
2 |q1q2〉〈0|{i†a}p†1p†2q2q1{a†i}|0〉FC (A.8)

+
∑

p1q1p2q2p3q3

〈p1p2p3|κX
3 |q1q2q3〉〈0|{i†a}p†1p†2p†3q3q2q1{a†i}|0〉FC

+
∑

p1q1p2q2p3q3p4q4

〈p1p2p3p4|κX
4 |q1q2q3q4〉〈0|{i†a}p†1p†2p†3p†4q4q3q2q1{a†i}|0〉FC.

To analyze the various resulting contracted terms, we introduce the following shorthand

notation,

A = {i†a} (A.9)

B = (p†1p
†
2 . . . ) (A.10)

C = (. . . q2q1) (A.11)

D = {a†i}. (A.12)

Using the above notation, the operator strings can be compactly expressed as,

〈0|{i†a}p†1p†2q2q1{a†i}|0〉FC = 〈0|AB2C2D|0〉FC (A.13)
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〈0|{i†a}p†1p†2p†3q3q2q1{a†i}|0〉FC = 〈0|AB3C3D|0〉FC (A.14)

〈0|{i†a}p†1p†2p†3p†4q4q3q2q1{a†i}|0〉FC = 〈0|AB4C4D|0〉FC. (A.15)

We note that in all cases, the set of fully contracted terms can be factored in the following

two non-overlapping subsets,

ABCD = ABCD + ABCD. (A.16)

The first term in (A.16) represent pair-wise contraction of only the excitation operators

AandD where as the second term represent terms that involve all the operators. Substituting

in earlier expression, we get,

〈0|ABCD|0〉FC = 〈0|AB2C2D + AB3C3D + AB4C4D|0〉 (A.17)

+ 〈0|AB2C2D + AB3C3D + AB4C4D|0〉.

The above expression can be simplified by noting that the contraction involving the excitation

operators contributes ”1” to the total expression,

AD = δiiδaa = 1. (A.18)

The remaining contractions, link all the four different types of operators, and are collectively

referred to as the linked-terms. This implies the following simplification,

〈0|ABCD|0〉FC = 〈0|BC|0〉FC + 〈0|ABCD|0〉L, (A.19)

where subscript “L” implies only linked fully-contracted terms. Because, 〈0|BC|0〉FC does

not contain any terms from excitation operators, it is similar to the expression of 〈0|WG0|0〉
derived earlier. Consequently, we can write the expression for 〈0|{i†a}WGn{a†i}|0〉FC as,

〈0|{i†a}WGn{a†i}|0〉FC = 〈0|WGn|0〉FC + 〈0|{i†a}WGn{a†i}|0〉L. (A.20)

Comparing to the diagrammtic representation, the fully-contracted terms can be compactly

represented as,

〈0|{i†a}WGn{a†i}|0〉FC = D4 + · · ·+D18. (A.21)
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Appendix B

b and γ values for the GSIK method

The b and γ values used in this work are presented in Table B.1.

Table B.1: The b and γ values (in atomic units) used in GSIK method. The form
of the correlation operator used in this work is of similar form to the ground
state correlation operator presented in earlier work.[12]

System b γ
H2O 0.186766 0.557658
Cd6Se6 0.128975 0.052184
Cd20Se19 0.867863 0.010425
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Appendix C

Expectation value and variance

We define a set of values X,

X = {x1, x2, . . . , xN}. (C.1)

The expectation value on set X is defined by the following operation,

E[X] =
1

N

N∑

i

xi. (C.2)

We also define the following common notations,

aX ≡ {ax1, ax2, . . . , axN} (C.3)

X + Y ≡ {x1 + y1, x2 + y2, . . . , xN + yN} (C.4)

XY ≡ {x1y1, x2y2, . . . , xNyN}. (C.5)

Using this we can now write the following properties of E,

E[aX] = aE[X] (C.6)

E[X + Y ] = E[X] + E[Y ]. (C.7)

These two properties can be combined into a single relationship,

E[
M∑

α

aαXα] =
M∑

α

aαE[Xα]. (C.8)

The variance is defined as,

V[X] = E[X2]− E[X]2. (C.9)

Analogously, the covariance is defined as,

C[X, Y ] = E[XY ]− E[X]E[Y ]. (C.10)
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The variance has the following scaling property,

V[aX] = a2V[X]. (C.11)

Proof.

V[aX] = E[a2X2]− E[aX]2 (C.12)

= a2E[X2]− a2E[X]2 (C.13)

= a2
(
E[X2]− E[X]2

)
(C.14)

= a2V[X] (C.15)

The variance of sum of distributions is given by the following equation,

V[
M∑

α

aαXα] =
M∑

αβ

aαaβC[Xα, Xβ]. (C.16)

Proof.

V[
M∑

α

aαXα] = E[
M∑

αβ

aαaβXαXβ]− E[
M∑

α

aαXα]2 (C.17)

=
M∑

αβ

aαaβE[XαXβ]−
M∑

αβ

aαaβE[Xα]E[Xβ] (C.18)

=
M∑

αβ

aαaβC[Xα, Xβ] (C.19)

In case Xα and Xβ are uncorrelated then the covariance is zero,

C[Xα, Xβ] = 0 (for α 6= β). (C.20)

The above expression reduces to,

V[
M∑

α

aαXα] =
M∑

α

a2
αV[Xα] (for uncorrelated Xα). (C.21)

The relationship between the variance in the sample mean and the variance of the underlying

distribution can be obtained as follows,

V[µ] = V[
1

N

N∑

i

Xi] (C.22)
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Because all the samples are uncorrelated,

V[µ] =
1

N2

N∑

i

V[Xi] (C.23)

Since Xi is drawn for the same distributions, all instances of Xi have identical variance,

V[µ] =
1

N2
(NV[X]) (C.24)

=
V[X]

N
(C.25)
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Appendix D

Commutator identities

D.1 Commutator identities

The commutator and anticommutator is defined as,

[A,B] = AB −BA (D.1)

[A,B]+ = AB +BA. (D.2)

Note that,

[B,A] = −[A,B] (D.3)

[B,A]+ = [A,B]+. (D.4)

The fermionic second-quantized operators satisfy the following anticommutation relation-

ships,

[p†, q†]+ = 0 (D.5)

[p, q]+ = 0 (D.6)

[p†, q]+ = δpq. (D.7)

This is a well-known identity commutator identity

[A,B1B2] = B1[A,B2] + [A,B1]B2 (D.8)

[A1A2, B] = A1[A2, B] + [A1, B]A2. (D.9)

The corresponding anticommutator identity is,

[A,B1B2]+ = [A,B1]B2 +B1[A,B2]+ (D.10)

= [A,B1]+B2 −B1[A,B2]. (D.11)
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The commutator can be written in terms of the anticommutator as well,

[A,B1B2] = [A,B1]+B2 −B1[A,B2]+. (D.12)

These relationship can be extended to a series of operators

[A,B1 . . . BN ] =
N∑

k=1

B1 . . . Bk−1[A,Bk]Bk+1 . . . BN (D.13)

[A,B1 . . . BN ]+ =
N∑

k=1

(−1)k−1B1 . . . Bk−1[A,Bk]+Bk+1 . . . BN . (D.14)

The commutation of a single SQ operator with 1-body operator generates a single SQ

operator,

[p†, q†r] = −δprq† (D.15)

[p, q†r] = δpqr. (D.16)

The commutator with two one-body operators generate a sum of two one-body operators,

[p†q, r†s] = δqrp
†s− δpsr†q. (D.17)

The commutator of a one and two-body operator generates a sum of two-body operators

[p†q, r†sm†n] = δqrp
†sm†n− δpsr†qm†n+ δqmr

†sp†n− δpnr†sm†q. (D.18)

The general expression for the above results can be summarized as follows. The commutator

of two 1-body operators is another 1-body operator,

[p†1q1, p
†
2q2] = λpq...p2q2p

†q (D.19)

λ = δq1p2δpp1δqq2 − δp1q2δpp2δqq1 . (D.20)
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Appendix E

Commutation with 1-body operator

E.1 Commutation with 1-body operator

A =
∑

p1q1

Ap1q1p
†
1q1 (E.1)

B =
∑

p2q2

Bp2q2p
†
2q2 (E.2)

[A,B] =

[∑

p1q1

Ap1q1p
†
1q1, B

]
(E.3)

=
∑

p1q1

Ap1q1 [p
†
1q1, B] (E.4)

=
∑

p1q1p2q2

Ap1q1Bp2q2 [p
†
1q1, p

†
2q2] (E.5)

Using

[p†1q1, p
†
2q2] = δq1p2p

†
1q2 − δp1q2p†2q1 (E.6)

We get,

[A,B] =
∑

p1q1p2q2

Ap1q1Bp2q2 [p
†
1q1, p

†
2q2] (E.7)

=
∑

p1q1p2q2

Ap1q1Bp2q2(δq1p2p
†
1q2 − δp1q2p†2q1) (E.8)

=
∑

p1q1p2q2

Ap1q1Bp2q2δq1p2p
†
1q2 −

∑

p1q1p2q2

Ap1q1Bp2q2δp1q2p
†
2q1 (E.9)

=
∑

p1q2t

Ap1tBtq2p
†
1q2 −

∑

q1p2t

Atq1Bp2tp
†
2q1 (E.10)
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Using

∑

t

Ap1tBtq2 = [AB]p1q2 (E.11)

∑

t

Bp2tAtq1 = [BA]p2q1 (E.12)

We get,

[A,B] =
∑

p1q2

[AB]p1q2p
†
1q2 −

∑

q1p2t

[BA]p2q1p
†
2q1 (E.13)

Using general indices, we can write the above expression as,

[A,B] =
∑

pq

Cpqp
†q (E.14)

C = [A,B]. (E.15)

Therefore, formally we can write that commutator of two 1-body operators is another 1-body

operator,

[Â, B̂] = Ĉ. (E.16)
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Appendix F

PSTricks: How to guide for
application to many-body diagrams in
quantum chemistry

F.1 Why PSTricks?

In our work, we have found that diagrammatic techniques are essential to our work in

both the derivation of theory as well as understanding the theory and underlying physics.

Therefore, we had come to the point in which we were in great need of a software package

in which we can make clean good-looking diagrams for our personal use and in addition

to for our publications. In 4 out of 5 of my papers, diagrams were heavily used in the

theoretical development. We have chosen to use PSTricks to write all of the diagrams in

our work because we find that PSTricks makes the best and cleanest-looking diagrams. We

have tried many different software packages, but PSTricks provides all the functionality we

need to design our diagrams while producing the visually best diagrams. What sealed the

deal for PSTricks for us is that Bartlett referenced using PSTricks in his book Many-Body

Mehtods in Chemistry and Physics.[277] In this Appendix, we will cover the main aspects

of PSTricks which relate to writing many-body diagrams. In section F.2 we will cover six

graphical objects of PSTricks needed to write these diagrams, and in section F.3 we will

cover how to set up a PSTricks file and then how to compile the file.

F.2 Graphical objects

The six graphical objects we will need in PSTricks is the line (Figure F.1), the circle (Fig-

ure F.2), the ellipse (Figure F.3), the bezier (Figure F.4), dots (Figure F.5), and labels

(Figure F.6). The following images presented here are slides from a presentation I gave to
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Lines

\psline[parameters]{arrows}(x0,y0)(x1,y1)…(xn,yn)

This	command	draws	a	line	through	the	list	of	coordinates

• linewidth=2pt
• linestyle=style	(solid)
• ArrowInside=->
• ArrowInside=<-
• ArrowInsidePos=0.5
• arrowsize=2pt

• ->				This	places	an	arrow	at	
the	end	of	the	line.

• -<				This	places	a	backwards
arrow	at	the	end	of	the	line.
• (Typically	I	use	the	

ArrowInside parameter.)

• This	is	the	list	of	coordinates	
that	the	line	is	drawn	through.
(Typically	I	only	use	2	coordinates).

II Basic graphics objects

6 Lines and polygons
The objects in this section also use the following parameters:

linearc=dim Default: 0pt
The radius of arcs drawn at the corners of lines by the \psline and
\pspolygon graphics objects. dim should be positive.

framearc=num Default: 0
In the \psframe and the related box framing macros, the radius of
rounded corners is set, by default, to one-half num times the width
or height of the frame, whichever is less. num should be between 0
and 1.

cornersize=relative/absolute Default: relative
If cornersize is relative, then the framearc parameter determines
the radius of the rounded corners for \psframe, as described above
(and hence the radius depends on the size of the frame). If corner-
size is absolute, then the linearc parameter determines the radius of
the rounded corners for \psframe (and hence the radius is of constant
size).

Now here are the lines and polygons:

\psline*[par]{arrows}(x0,y0)(x1,y1)… (xn,yn)

This draws a line through the list of coordinates. For example:

0 1 2 3 4
0

1

2

1 \psline[linewidth=2pt,linearc=.25]{->}(4,2)(0,1)(2,0)

\qline(coor0)(coor1)
This is a streamlined version of \psline that does not pay attention to
the arrows parameter, and that can only draw a single line segment.
Note that both coordinates are obligatory, and there is no optional

Basic graphics objects 10

Figure F.1: PSTricks graphical object description for a line.

the Chakraborty Group on April 9th, 2018. These slides explain the pertinent information

from the PSTricks manual that you will need to make the above listed graphical objects.

It is also important to note that all of the functionality that PSTricks is capable of is not

written on the following images, only the information that I found sufficient and necessary

to make many-body diagrams.

The bezier, presented in Figure F.4, is perhaps the most complicated object of the six I

am mentioning in that it is a curve with four control points. The first and the last points

in the structure are the beginning and ending points of the line and the middle two points

pull the curve toward themselves. The bezier curve may be the most complicated object,

however, it is probably the most important object when making diagrams, and thus I have

highlighted the title in yellow. Often we will need to make diagrams with lines coming from

below and above. The bezier curve has the most flexibility to represent these lines because

the bezier curve, (unlike the other objects such as the line, ellipse, and circle), allows for the

curve to approach the vertex more from the top or the bottom. Objects such as the ellipse

or circle make nice curves, but lack the ability to really be clear that they are approaching

from the top or the bottom. The bezier CAN also make nice curves, however more diligence

is required to fix the control points to make the perfect arc that is visually pleasing.
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Circles

\pscircle*[parameters](x0,y0){radius}

This	draws	a	circle	whose	center	is	at	(x0,y0)	and	that	has	radius	radius.

• linewidth=2pt
• linestyle=style	(solid)

7 Arcs, circles and ellipses
\pscircle*[par](x0,y0){radius}

This draws a circle whose center is at (x0,y0) and that has radius
radius. For example:

-1 0 1 2
-1

0

1

2

1 \pscircle[linewidth=2pt](.5,.5){1.5}

\qdisk(coor){radius}
This is a streamlined version of \pscircle*. Note that the two ar-
guments are obligatory and there is no parameters arguments. To
change the color of the disks, you have to use \psset:

1 \psset{linecolor=gray}
2 \qdisk(2,3){4pt}

\pswedge*[par](x0,y0){radius}{angle1}{angle2}
This draws a wedge whose center is at (x0,y0), that has radius ra-
dius, and that extends counterclockwise from angle1 to angle2. The
angles must be specified in degrees. For example:

0 1 2
0

1

2

1 \pswedge[linecolor=gray,linewidth=2pt,fillstyle=solid]{2}{0}{70}

\psellipse*[par](x0,y0)(x1,y1)
(x0,y0) is the center of the ellipse, and x1 and y1 are the horizontal
and vertical radii, respectively. For example:

-1 0 1 2
-1

0

1

1 \psellipse[fillcolor=lightgray](.5,0)(1.5,1)

\psarc*[par]{arrows}(x ,y ){radius}{angleA}{angleB}
This draws an arc from angleA to angleB, going counter clockwise,
for a circle of radius radius and centered at (x ,y ). You must include
either the arrows argument or the (x ,y ) argument. For example:

Arcs, circles and ellipses 12

• This	is	the	center	
of	the	circle.

• This	is	the	radius	
of	the	circle.

• This	fills	in	the
shape

Figure F.2: PSTricks graphical object description for a circle.

Ellipse

\psellipse[parameters](x0,y0)(x1,y1)

(x0,y0)	is	the	center	of	the	ellipse,	and	x1 and	y1 are	the	horizontal	and	vertical	radii,	respectively.

• linewidth=2pt
• linestyle=style	(solid)
• ArrowInside=->
• ArrowInside=<-
• ArrowInsidePos=0.5
• arrowsize=2pt

• This	is	the	center	coordinate
of	the	ellipse

• x1 is	the	horizontal	radii
• y1 is	the	vertical	radii

7 Arcs, circles and ellipses
\pscircle*[par](x0,y0){radius}

This draws a circle whose center is at (x0,y0) and that has radius
radius. For example:

-1 0 1 2
-1

0

1

2

1 \pscircle[linewidth=2pt](.5,.5){1.5}

\qdisk(coor){radius}
This is a streamlined version of \pscircle*. Note that the two ar-
guments are obligatory and there is no parameters arguments. To
change the color of the disks, you have to use \psset:

1 \psset{linecolor=gray}
2 \qdisk(2,3){4pt}

\pswedge*[par](x0,y0){radius}{angle1}{angle2}
This draws a wedge whose center is at (x0,y0), that has radius ra-
dius, and that extends counterclockwise from angle1 to angle2. The
angles must be specified in degrees. For example:

0 1 2
0

1

2

1 \pswedge[linecolor=gray,linewidth=2pt,fillstyle=solid]{2}{0}{70}

\psellipse*[par](x0,y0)(x1,y1)
(x0,y0) is the center of the ellipse, and x1 and y1 are the horizontal
and vertical radii, respectively. For example:

-1 0 1 2
-1

0

1

1 \psellipse[fillcolor=lightgray](.5,0)(1.5,1)

\psarc*[par]{arrows}(x ,y ){radius}{angleA}{angleB}
This draws an arc from angleA to angleB, going counter clockwise,
for a circle of radius radius and centered at (x ,y ). You must include
either the arrows argument or the (x ,y ) argument. For example:

Arcs, circles and ellipses 12

Figure F.3: PSTricks graphical object description for an ellipse.

144



Bezier

\psbezier[parameters]{arrows}(x0,y0)(x1,y1)	(x2,y2)(x3,y3)

This	draws	a	Bezier	curve	with	the	four	control	points	

• linewidth=2pt
• ArrowInside=->
• ArrowInside=<-
• ArrowInsidePos=0.5
• arrowsize=2pt

• ->				This	places	an	arrow	at	
the	end	of	the	line.

• -<				This	places	a	backwards
arrow	at	the	end	of	the	line.
• (Typically	I	use	the	

ArrowInside parameter.)

• (x0,y0)	is	the	start	of	the	curve
• (x1,y1)	and	(x2,y2)	coordinates	
pull	the	curve	towards	themselves
• (x3,y3)	is	the	end	of	the	curve.

See how showpoints=true draws a dashed line from the center to
the arc; this is useful when composing pictures.

Like \psarc, \psellipticarc use the arcsep/arcsepA/arcsepB pa-
rameters.

Unlike \psarc, \psellipticarcuse the dimen=inner/middle/outer
parameter.

\psellipticarcn*[par]{arrows}(x0,y0)(x1,y1){angleA}{angleB}
This is like \psellipticarc, but the arc is drawn clockwise. You can
achieve the same effect using \psellipticarc by switching angleA
and angleB and the arrows.4

8 Curves
\psbezier*[par]{arrows}(x0,y0)(x1,y1)(x2,y2)(x3,y3)

\psbezier draws a bezier curve with the four control points. The
curve starts at the first coordinate, tangent to the line connecting to
the second coordinate. It ends at the last coordinate, tangent to the
line connecting to the third coordinate. The second and third coor-
dinates, in addition to determining the tangency of the curve at the
endpoints, also “pull” the curve towards themselves. For example:

1 \psbezier[linewidth=2pt,showpoints=true]{->}(0,0)(1,4)(2,1)(4,3.5)

showpoints=true puts dots in all the control points, and connects
them by dashed lines, which is useful when adjusting your bezier
curve.

\parabola*[par]{arrows}(x0,y0)(x1,y1)
Starting at (x0,y0), \parabola draws the parabola that passes through
(x0,y0) and whose maximum or minimum is (x1,y1). For example:

4However, with \pscustom graphics object, described in Part IV, \psellipticarcn is
not redundant.

Curves 14

Figure F.4: PSTricks graphical object description for a bezier.

Dots

\psdot[parameters](x1,y1)

This	places	a	dot	at	point	(x1,y1).	The	value	of	”dot”	depends	on	the	value	of	the	dotstyle.

• dotstyle=style
• dotsize=dim
default:	2pt	or	2

• This	is	the	coordinate	in	which
the	dot	is	placed.

Style Example

*
o
Bo
x      

+ + + + + +

B+ + + + + +

asterisk * * * * *

Basterisk * * * * *

oplus      

otimes      

| | | | | |

B| | | | | |

Style Example

square
Bsquare
square*
diamond
diamond*
triangle
Btriangle
triangle*
pentagon
Bpentagon
pentagon*

Except for diamond, the center of dot styles with a hollow center is colored
fillcolor.

Here are the parameters for changing the size and orientation of the dots:

dotsize=dim ‘num’ Default: 2pt 2
The diameter of a circle or disc is dim plus num times linewidth
(if the optional num is included). The size of the other dots styles
is similar (except for the size of the | dot style, which is set by the
tbarsize parameter described on page ??).

dotscale=num1 ‘num2’ Default: 1
The dots are scaled horizontally by num1 and vertically by num2.
If you only include num1, the arrows are scaled by num1 in both
directions.

dotangle=angle Default: 0
After setting the size and scaling the dots, the dots are rotated by
angle.

10 Grids
PSTricks has a powerful macro for making grids and graph paper:

\psgrid(x0,y0)(x1,y1)(x2,y2)

\psgrid draws a grid with opposing corners (x1,y1) and (x2,y2). The in-
tervals are numbered, with the numbers positioned at x0 and y0. The coor-
dinates are always interpreted as Cartesian coordinates. For example:

Grids 17

Figure F.5: PSTricks graphical object description for dots.
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Labels

\uput[refangle](x,y){stuff}

This	places	stuff at	(x,y)	in	the	direction	refangle.

• Can	be	a	value	from	
0	to	360	degrees. • This	is	the	(x,y)	coordinate

in	which	you	will	be	placing	
the	label.

• This	is	the	text	you	will	be	placing
at	the	location.
• Typically	I	place	the	following:
\fontsize{16pt}{16pt}\selectfont$i$

0

90

180

270

(x,y)

One common use of a macro such as \rput is to put labels on things.
PSTricks has a variant of \rput that is especially designed for labels:

\uput*{labelsep}[refangle]{rotation}(x ,y ){stuff }

This places stuff distance labelsep from (x ,y ), in the direction refangle.

The default value of labelsep is the dimension register

\pslabelsep

You can also change this be setting the

labelsep=dim Default: 5pt

parameter (but remember that \uput does have an optional argument for
setting parameters).

Here is a simple example:

(1,1) 1 \qdisk(1,1){1pt}
2 \uput[45](1,1){(1,1)}

Here is a more interesting example where \uput is used to make a pie chart:

1 \psset{unit=1.2cm}
2 \pspicture(-2.2,-2.2)(2.2,2.2)
3 \pswedge[fillstyle=solid,fillcolor=gray]{2}{0}{70}
4 \pswedge[fillstyle=solid,fillcolor=lightgray]{2}{70}{200}
5 \pswedge[fillstyle=solid,fillcolor=darkgray]{2}{200}{360}
6 \SpecialCoor
7 \psset{framesep=1.5pt}
8 \rput(1.2;35){\psframebox*{\small\$9.0M}}
9 \uput{2.2}[45](0,0){Oreos}

10 \rput(1.2;135){\psframebox*{\small\$16.7M}}
11 \uput{2.2}[135](0,0){Heath}
12 \rput(1.2;280){\psframebox*{\small\$23.1M}}
13 \uput{2.2}[280](0,0){M\&M}
14 \endpspicture

Placing and rotating whatever 44

One common use of a macro such as \rput is to put labels on things.
PSTricks has a variant of \rput that is especially designed for labels:

\uput*{labelsep}[refangle]{rotation}(x ,y ){stuff }

This places stuff distance labelsep from (x ,y ), in the direction refangle.

The default value of labelsep is the dimension register

\pslabelsep

You can also change this be setting the

labelsep=dim Default: 5pt

parameter (but remember that \uput does have an optional argument for
setting parameters).

Here is a simple example:

(1,1) 1 \qdisk(1,1){1pt}
2 \uput[45](1,1){(1,1)}

Here is a more interesting example where \uput is used to make a pie chart:

1 \psset{unit=1.2cm}
2 \pspicture(-2.2,-2.2)(2.2,2.2)
3 \pswedge[fillstyle=solid,fillcolor=gray]{2}{0}{70}
4 \pswedge[fillstyle=solid,fillcolor=lightgray]{2}{70}{200}
5 \pswedge[fillstyle=solid,fillcolor=darkgray]{2}{200}{360}
6 \SpecialCoor
7 \psset{framesep=1.5pt}
8 \rput(1.2;35){\psframebox*{\small\$9.0M}}
9 \uput{2.2}[45](0,0){Oreos}

10 \rput(1.2;135){\psframebox*{\small\$16.7M}}
11 \uput{2.2}[135](0,0){Heath}
12 \rput(1.2;280){\psframebox*{\small\$23.1M}}
13 \uput{2.2}[280](0,0){M\&M}
14 \endpspicture

Placing and rotating whatever 44

Figure F.6: PSTricks graphical object description for labels.

F.3 File setup and how to compile

In this section I explain what the PSTricks file contains in Figure F.7, Figure F.8, Figure F.9,

and Figure F.10.

In Figure F.11 I show how to compile the PSTricks file.
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File	setup
1 \documentclass{article}
2 \usepackage{pstricks}
3 \usepackage{pst-all}
4 \usepackage{pstricks-add}
5 \usepackage{amsmath}
6 \thispagestyle{empty}
7
8 \begin{document}
9 \psset{arrowscale=2}

10 \psset{dotscale=2}
11
12 \begin{pspicture}(8,10)

46 \end{pspicture}
47
48
49 \end{document}

Use	the	PSTricks graphics	objects	
we	showed	to	make	your	diagrams!

Figure F.7: The setup of a PSTricks file.

File	setup
1 \documentclass{article}
2 \usepackage{pstricks}
3 \usepackage{pst-all}
4 \usepackage{pstricks-add}
5 \usepackage{amsmath}
6 \thispagestyle{empty}
7
8 \begin{document}
9 \psset{arrowscale=2}

10 \psset{dotscale=2}
11
12 \begin{pspicture}(8,10)

46 \end{pspicture}
47
48
49 \end{document}

Use	the	PSTricks graphics	objects	
we	showed	to	make	your	diagrams!

-Packages

• Pstricks:	allows	you	to	use	the	
pstricks commands	and	
graphics	objects	we	discussed.

• pst-all	and	pstricks-add:	I	use	
these	packages	to	compile	the	
pstricks picture	which	we	will	
talk	about	in	a	few	slides.	

• amsmath:	latex	package	for	
mathematical	formulas.	Mainly	
used	for	the	labels	of	the	
diagrams.

Figure F.8: The setup of a PSTricks file and explanation of the packages needed.
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File	setup
1 \documentclass{article}
2 \usepackage{pstricks}
3 \usepackage{pst-all}
4 \usepackage{pstricks-add}
5 \usepackage{amsmath}
6 \thispagestyle{empty}
7
8 \begin{document}
9 \psset{arrowscale=2}

10 \psset{dotscale=2}
11
12 \begin{pspicture}(8,10)

46 \end{pspicture}
47
48
49 \end{document}

Use	the	PSTricks graphics	objects	
we	showed	to	make	your	diagrams!

-\psset

• You	can	use	\psset to	specify	
parameters	that	you	would	like	
to	set	for	the	entire	pspicture.	

• dotscale default	is	2.	

Figure F.9: The setup of a PSTricks file and explanation of the psset command.

File	setup
1 \documentclass{article}
2 \usepackage{pstricks}
3 \usepackage{pst-all}
4 \usepackage{pstricks-add}
5 \usepackage{amsmath}
6 \thispagestyle{empty}
7
8 \begin{document}
9 \psset{arrowscale=2}

10 \psset{dotscale=2}
11
12 \begin{pspicture}(8,10)

46 \end{pspicture}
47
48
49 \end{document}

Use	the	PSTricks graphics	objects	
we	showed	to	make	your	diagrams!

-{pspicture}

• PSTricks commands	are	usually	
placed	in	the	pspicture
environment.

• The	first	argument	in	the	
parenthesis	specifies	the	
coordinates	of	the	upper-right	
corner	of	the	picture.	The	
bottom	left	corner	is	at	(0,0).

Figure F.10: The setup of a PSTricks file and explanation of the pspicture environment.
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How	to	compile

1 latex file.tex
2 dvips -Ppdf -G0 file.dvi
3 ps2pdf file.ps
4 open file.pdf

These	are	the	4	steps	to	compile	file.tex

Live	demonstration
Now	I	will	show	a	live	example.

You	cannot	use
pdflatex to	
compile.

You	must	first	
make	a	dvi	file
then	use	dvips
to	make	a	ps file. Finally	we	can	convert	to	ps

file	to	a	pdf	thanks	to	ps2pdf.

Figure F.11: How to compile a PSTricks file.
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Appendix G

List of publications

1. Michael G. Bayne, John Drogo, and Arindam Chakraborty. Infinite-order diagram-

matic summation approach to the explicitly correlated congruent transformed Hamil-

tonian. Physical Reviews A, 89:032515, 2014.DOI: 10.1103/PhysRevA.89.032515

2. Michael G. Bayne, Yuki Uchida, Joshua Eller, Carena Daniels, and Arindam Chakraborty.

Construction of explicitly correlated geminal-projected particle-hole creation opera-

tors for many-electron systems using diagrammatic factorization approach. Physical

Reviews A, 94:052504, 2016.DOI: 10.1103/PhysRevA.94.052504

3. Michael G. Bayne, Jeremy A. Scher, Benjamin H. Ellis, and Arindam Chakraborty.

Linked-cluster formulation of electron-hole interaction kernel in real-space representa-

tion without using unoccupied states. Journal of Chemical Theory and Computation,

14(7), pp. 3656-3666, 2018.DOI: 10.1021/acs.jctc.8b00123

4. Michael G. Bayne and Arindam Chakraborty. Development of composite control-

variate stratified sampling approach for efficient stochastic calculation of molecular

integrals. Submitted to Journal Chemical Physics, 2018.

5. Michael G. Bayne and Arindam Chakraborty. Derivation of time-dependent transition

probability for 2e-2h generation from 1e-1h state in the presence of external electro-

magnetic field. Submitted to arXiv, 2017.DOI: arXiv:1704.02428v1
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from strongly orthogonal geminal wavefunctions. Molecular Physics, 113(3-4):249–259,

2015.

[155] Cole M. Johnson, Alexander E. Doran, Jinmei Zhang, Edward F. Valeev, and So Hi-

rata. Monte carlo explicitly correlated second-order many-body perturbation theory.

The Journal of Chemical Physics, 145(15):154115, 2016.

[156] Justin C. Johnson and Josef Michl. Chapter 10 singlet fission and 1,3-

diphenylisobenzofuran as a model chromophore. In Advanced Concepts in Photo-

voltaics, pages 324–344. The Royal Society of Chemistry, 2014.

[157] Justin C. Johnson, Arthur J. Nozik, and Josef Michl. The role of chromophore coupling

in singlet fission. Accounts of Chemical Research, 46(6):1290–1299, 2013. PMID:

23301661.

[158] M.H. Kalos and P.A. Whitlock. Monte Carlo Methods. Monte Carlo Methods. Wiley,

2008.

[159] Tosio Kato. On the eigenfunctions of many-particle systems in quantum mechanics.

Communications on Pure and Applied Mathematics, 10(2):151–177, 1957.

[160] M. Katouda, A. Naruse, Y. Hirano, and T. Nakajima. Massively parallel algorithm and

implementation of ri-mp2 energy calculation for peta-scale many-core supercomputers.

Journal of Computational Chemistry, pages 2623–2633, 2016.

165



[161] Wim Klopper, Frederick R. Manby, Seiichiro Ten-No, and Edward F. Valeev. R12

methods in explicitly correlated molecular electronic structure theory. Int. Rev. Phys.

Chem., 25(3):427–468, 2006.

[162] Wim Klopper and Claire CM Samson. Explicitly correlated second-order møller–plesset

methods with auxiliary basis sets. The Journal of chemical physics, 116:6397, 2002.

[163] Peter J Knowles. Very large full configuration interaction calculations. Chemical

physics letters, 155(6):513–517, 1989.

[164] Peter J Knowles and Nicholas C Handy. Unlimited full configuration interaction cal-

culations. The Journal of chemical physics, 91:2396, 1989.

[165] Chaehyuk Ko, Michael V. Pak, Chet Swalina, and Sharon Hammes-Schiffer. Alter-

native wavefunction ansatz for including explicit electron-proton correlation in the

nuclear-electronic orbital approach. The Journal of Chemical Physics, 135(5):054106,

2011.

[166] Henrik Koch, Alfredo Snchez de Mers, and Thomas Bondo Pedersen. Reduced scaling

in electronic structure calculations using cholesky decompositions. The Journal of

Chemical Physics, 118(21):9481–9484, 2003.

[167] Andreas Kohn. Explicitly correlated connected triple excitations in coupled-cluster

theory. Journal of Chemical Physics, 130(13):131101, 2009.

[168] Andreas Köhn and David P Tew. Explicitly correlated coupled-cluster theory using

cusp conditions. i. perturbation analysis of coupled-cluster singles and doubles (ccsd-

f12). The Journal of chemical physics, 133:174117, 2010.

[169] Sara I. L. Kokkila Schumacher, Edward G. Hohenstein, Robert M. Parrish, Lee-Ping

Wang, and Todd J. Martnez. Tensor hypercontraction second-order mllerplesset per-

turbation theory: Grid optimization and reaction energies. Journal of Chemical Theory

and Computation, 11(7):3042–3052, 2015.

[170] Liguo Kong, Florian A Bischoff, and Edward F Valeev. Explicitly correlated r12/f12

methods for electronic structure. Chemical reviews, 112(1):75, 2012.

[171] Liguo Kong, Florian A. Bischoff, and Edward F. Valeev. Explicitly correlated r12/f12

methods for electronic structure. Chem. Rev., 112(1):75–107, 2012.

166



[172] David B Krisiloff and Emily A Carter. Approximately size extensive local multiref-

erence singles and doubles configuration interaction. Physical Chemistry Chemical

Physics, 14(21):7710–7717, 2012.

[173] D.P. Kroese, T. Taimre, and Z.I. Botev. Handbook of Monte Carlo Methods. Wiley

Series in Probability and Statistics. Wiley, 2013.

[174] Dimitri Laikov and Spiridoula Matsika. Inclusion of second-order correlation effects

for the ground and singly-excited states suitable for the study of conical intersections:

The cis (2) model. Chemical Physics Letters, 448(1):132–137, 2007.

[175] Daniel S Lambrecht, Kai Brandhorst, William H Miller, C William McCurdy, and

Martin Head-Gordon. A kinetic energy fitting metric for resolution of the identity

second-order møller- plesset perturbation theory. The Journal of Physical Chemistry

A, 115(13):2794–2801, 2011.

[176] Daniel S Lambrecht, Christian Ochsenfeld, et al. Multipole-based integral estimates

for the rigorous description of distance dependence in two-electron integrals. Journal

of Chemical Physics, 123(18):184101, 2005.

[177] Cornelius Lanczos. An iteration method for the solution of the eigenvalue problem of

linear differential and integral operators. United States Governm. Press Office, 1950.

[178] Joseph R Lane. Ccsdtq optimized geometry of water dimer. Journal of Chemical

Theory and Computation, 9(1):316–323, 2012.

[179] S. Lee, L. Jnsson, J.W. Wilkins, G.W. Bryant, and G. Klimeck. Electron-hole cor-

relations in semiconductor quantum dots with tight-binding wave functions. Physical

Review B - Condensed Matter and Materials Physics, 63(19):1953181–19531813, 2001.

[180] Matthew L Leininger, C David Sherrill, Wesley D Allen, and Henry F Schaefer. System-

atic study of selected diagonalization methods for configuration interaction matrices.

Journal of Computational Chemistry, 22(13):1574–1589, 2001.

[181] William A Lester. Recent advances in quantum Monte Carlo methods. World Scientific

Publishing Company Incorporated, 1997.

[182] William A Lester, BL Hammond, and PJ Reynolds. Monte Carlo methods in AB initio

quantum chemistry. World Scientific, 1994.

167



[183] William A Lester, Stuart M Rothstein, and Shigenori Tanaka. Recent advances in

quantum Monte Carlo methods, volume 92. World Scientific, 2002.

[184] Liyuan Liang and Danny L. Yeager. The complex scaled multiconfigurational time-

dependent hartree-fock method for studying resonant states: Application to the 2 s2

he feshbach resonance. J. Chem. Phys., 140(9):094305, 2014.

[185] Kenny B Lipkowitz and Donald B Boyd. Reviews in computational chemistry, vol-

ume 14. Wiley-VCH, 2000.

[186] Pedro E. M. Lopes. Fast calculation of two-electron-repulsion integrals: a numerical

approach. Theoretical Chemistry Accounts, 136(9):112, Sep 2017.
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