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GAPP Lab using an Elementar Isotope Cube elemental analyzer (EA) coupled directly to an 

Isoprime 100 isotope ratio mass spectrometer (IRMS) using conventional techniques for EA-

IRMS. Solid crushed sediment samples were first acidified using 3 N hydrochloric acid to 

removed carbonate phases, dried, and weighed into tin cups. Samples were then introduced to the 

EA system, where they were oxidized in an 1100˚C oxidation reactor comprised of aluminum 

oxide wool/spheres (Al2O3) and tungsten (VI) oxide (WO3). The evolved gas is taken up in a 

helium stream and passed to a 650˚C reduction furnace comprised of reduced copper (Cu) 

filings, quartz (SiO2) wool and silver (Ag) wool where oxidized nitrogen species (NOX) are 

reduced to N2. 

 

Figure 1-1: Elementar Isotope Cube elemental analyzer (EA) coupled directly to an Isoprime 
100 isotope ratio mass spectrometer (IRMS) 

 

The reduced gases were then directed through water and CO2 traps, and a thermal conductivity 

detector (TCD) in order to quantify the amount of a given element in the sample (Fig. 1). When 

measuring carbon isotopes, the trapped CO2 was released to the sample stream once other gasses 
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were allowed to pass through. The sample stream was then introduced to the magnetic sector 

IRMS through a sample diluter, ionized via electrons produced by a tungsten-thorium filament, 

and sent through a magnetic field/flight tube where the individual mass species are 

separated based on the Lorentz law (see Ireland, 2013 for overview). The ions then reach an 

array of Faraday cup collectors where they generate a measurable current that is used to derive 

the ratio of the heavy to the light isotope (13C/12C for carbon, 15N/14N for nitrogen). Isotope ratio 

values are then converted to delta (d) notation, which is the comparison of the sample ratio, to 

the ratio of a universally accepted standard (see equation 1 and 2)(Coplen et al., 2006, 2002). 

More detailed instrument settings, conditions, and standard details can be found within chapters 

3 and 4. 

(1)				% = 	
'()*+,	)-	 .	/0

'()*+,	)-	 .		
/1  

(2)				3 .	/0 = 	
%456789 −	%4;5<=5>=

%4;5<=5>=
∗ 1000‰ 

 

1.3.1.2 HPLC separation and UV-Vis analysis of pigments 

High performance liquid chromatography (HPLC) has been shown to have broad utility 

in the separation of complex mixtures of organic compounds, particularly those which contain 

compounds that are non-volatile or strongly polar and are not amenable to separation by gas 

chromatography (GC) (Airs et al., 2001). The key features of an HPLC system are 1.) A pump 

used to force solvents (mobile phase) through the system; 2.) A sample injection mechanism 

which introduces the sample into the solvent stream; 3.) A column filled with stationary phase 

having a different polarity than that of the mobile phase solvents, that promotes separation of the 
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individual components of the mixture based on their polarity/structural flexibility; 4.) A detector 

capable of quantifying the eluted compounds (Fig. 2).  

In this body of research, mixtures of pigments were separated and analyzed using a 

Thermoscientific Dionex Ultimate 3000 UHPLC system equipped with a quaternary solvent 

pump loaded with four solvents; water, acetonitrile, methanol and ethyl acetate (listed in order of 

decreasing polarity). Samples were introduced using a 50 µl injection loop auto sampler, and 

then passed through two Waters Spherisorb reverse phase (nonpolar) analytical C18 silica 

columns linked in series (Fig. 2). Separation was achieved utilizing a gradient elution scheme 

where the proportion of the solvents applied to the column changed over the course of the 

analysis, moving from more polar to less polar, following method A of Airs et al. (2001). The 

onboard detector in this system is a UV/Visible light photodiode array which quantifies pigments 

based on their absorbance of a given wavelength(s). Light is generated by deuterium (UV) and 

tungsten (Vis) lamps, and then passed through a quartz cuvette hosting the solvent stream, and 

then on to a diffraction grating which reflects the individual wavelengths of light at different 

angles. The separated light then passes to a photo diode array where a current is generated based 

on the intensity of the light reaching each diode. As a sample compound is passed through the 

quartz cuvette, it will absorb specific wavelengths of light, and the current being generated in 

those specific photodiodes will drop and this drop in current is proportional to the concentration 

of the analyte passing through the cuvette according to Beers Law (equation 3), where A is 

absorbance (in arbitrary units AU), e is the molar absorption coefficient, L is the path length of 

the light through the cuvette, and C is the concentration of the analyte (see review by Skoog et 

al., 2007). 

(3)			C = 	DE. 
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Figure 1-2: Schematic of Thermoscientific Dionex Ultimate 3000 UHPLC system.  
 

1.3.1.3 LC-MSn analyses of pigments 

 After passing through the diode array detector, separated compounds proceed to the 

liquid chromatography ion trap multistage mass spectrometer (LC-MSn). Similar to stable 

isotope mass spectrometry, the analytes are first volatilized and ionized. Volatilization is 

achieved using a heated nebulizer, and ionization through atmospheric pressure chemical 

ionization (APCI). APCI involves passing the nebulized solvent and sample mist across a corona 

discharge electrode needle along with the nebulizing gas  (Hoffman and Stroobant, 2001) (Fig. 

3). A primary ion is then formed by ionizing the nebulizing gas (in this case N2 à N2+), which 

then collides with solvent molecules to create the secondary ion (in this solvent system H2O à 
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H3O+). From the secondary ion, a cascade of chemical reactions proceeds until the analyte (M) is 

ionized through proton transfer (MH+) or adduct formation (e.g. MNa+) (Fig. 3). 

  

 

Figure 1-3: Schematic of Thermo LCQ Fleet Ion Trap LC-MSn. 

 The ionized analyte then proceeds through a skimmer/focusing cone into the quadrupole 

ion trap mass spectrometer, which is made up of four electrodes: two ring electrodes and two end 

cap electrodes (Fig. 3). Sample ions are introduced to spectrometer through an aperture in the 

entry end-cap electrode where an oscillating radio frequency (RF) potential, that is applied across 

the ring electrodes, effectively “traps” the ions in the center of the electrodes. In order to mitigate 

the expansive forces brought on by like-charged ions in close proximity, a cooling helium buffer 
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gas is applied at a constant pressure. The instrument then undergoes a “mass scan” where the 

amplitude of the RF potential is gradually increased. As this potential increases, ions of 

increasing mass/charge (m/z) ratio can effectively escape through the exit end cap electrode and 

to the detector. Ions of a particular (m/z) ratio can be isolated within the trap through resonance 

ejection of all other ions utilizing a supplemental AC potential that matches with a specific ions’ 

secular frequency (a frequency at which an ion with a given m/z oscillates within the trap). Once 

isolated, trapped precursor ions are fragmented via resonance enhanced collision induced 

dissociation (CID) through collision with the helium cooling gas creating fragment MS2 ions. 

The MS2 ions can then either be passed on to the detector, or isolated and further fragmented into 

MS3 ions and so on. This process can be repeated n times until the number of MSn ions 

remaining falls below the detection limit. This process provides a wealth of information on the 

structural properties and functional groups of a compound of interest (Rivera et al., 2014; Rosell-

Melé, 1999). For the studies detailed in chapters two and three, the depth of the mass 

fragmentation was limited to MS4 due to the complexity of the mixtures being analyzed. 

 

1.3.2 Brief overview of proxies used 

1.3.2.1 Nitrogen isotopes 

Nitrogen isotopes (d15N) serve as a proxy for nutrient dynamics, sources of biologically 

available nitrogen, and the degree to which redox processes affect the isotopic composition of 

reactive nitrogen reservoirs. Sedimentary organic matter  d15Nbulk values have been shown to be 

reliable tracers of sub-euphotic zone nitrate, and therefore can be used to track the evolution of 

nitrogen cycling processes at a particular site through time (Robinson et al., 2012; Tesdal et al., 

2013; Thunell et al., 2004). The d15N of nitrate is controlled by the balance of processes that act 
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to add or removed nitrogen from the ocean (Algeo et al., 2014; Altabet, 2007; Brandes and 

Devol, 2002; Deutsch et al., 2004), which are largely regulated by water column redox state and 

N:P ratios (Loladze and Elser, 2011; Quan and Falkowski, 2009).  

 
Figure 1-4: Overview of the major processes in the marine nitrogen cycle 

Most new dissolved inorganic nitrogen (DIN) is introduced to a marine system by 

diazotrophic nitrogen fixation, which is an energy intensive process due to the need to reduce 

triple-bound diatomic nitrogen gas across three oxidation states to ammonium, which also likely 

contributes to its low fractionation effect of -3 - +1 ‰ (Bauersachs et al., 2009; Fogel and 

Cifuentes, 1993; Higgins et al., 2012). In the modern ocean, fixed reduced nitrogen is generally 

oxidized to nitrite, and subsequently nitrate by the process of nitrification which can have a 

significant isotope effects (Casciotti et al., 2010) but these are generally not expressed due to 
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quantitative utilization.  Nitrate reduction (denitrification), and anaerobic ammonium oxidation 

(anammox), which occur in anoxic water columns and sediments (Brandes et al., 2007; Canfield 

et al., 2010), are the principal sinks for DIN in the ocean (e.g. Lam et al., 2009; Ward et al., 

2009) (see Fig. 4 for overview of marine nitrogen cycle). Rates of diazotrophy and 

denitrification/anammox show a degree of spatial coupling as the loss of DIN acts to decrease 

the N:P ratio in the water column, creating ecologically advantageous conditions for phosphorus 

dependent diazotrophs once DIN has been depleted (Deutsch et al., 2007; Moutin et al., 2008). 

Each of these processes have an associated isotope effect, that generally act to enrich the residual 

nitrate pool: water-column denitrification (ε ~+20 ‰), sedimentary denitrification (ε ~0 ‰, due 

to quantitative utilization), and anammox (ε ~+23.5 - +29.1 ‰) (Altabet and Francois, 1994; 

Brunner et al., 2013; Canfield et al., 2010; Galbraith and Sigman, 2008; Hoch et al., 1994, 1992; 

Lam et al., 2009; Waser et al., 1998). 

 

1.3.2.2 Carbon isotopes 

Carbon isotopes of marine organic matter (d13Corg) have been shown to serve as a tracer 

for the global carbon cycle (Kump and Arthur, 1999). However, on local scales the carbon 

isotopic composition of sedimentary organic matter is dependent on other factors, such as pCO2 

(Freeman and Hayes, 1992; Hollander and McKenzie, 1991), organic matter source (Meyers, 

1994), microbial ecology/the biosynthetic pathway of carbon fixation (House et al., 2003; Hügler 

and Sievert, 2011), the d13C of dissolved inorganic carbon being utilized for organic carbon 

production (Fogel and Cifuentes, 1993), and the extent of heterotrophy. Because of this small-

scale heterogeneity, the d13Corg of sediments can therefore be used to characterize localized 

carbon cycle dynamics through time. Used in tandem, d13Corg and d15Nbulk data can help to 
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illuminate the interplay of regional water-column redox structure and primary producer 

communities. 

 

1.3.2.3 Pigments 

Pigments are organic compounds that interact with and absorb specific wavelengths of 

light, dependent on their structure and electronic properties (see Fig. 5 for example structures). In 

microbial organisms, pigments are directly associated with photosynthesis (e.g. chlorophyll a) or 

serve a variety of roles in support of photosynthesis, including photoprotective roles such as UV 

screening. There are several forms of chlorophyll, each of which is typically produced by 

specific classes of photoautotrophs (Castañeda and Schouten, 2011; Loughlin et al., 2013; Roy et 

al., 2011). For example, notable differences in the structures of many bacteriochlorophylls allows 

for positive identification of  anoxygenic photoautotrophs from ancient systems (e.g. Keely, 

2006). Carotenoids have a broad structural and functional diversity (Rivera et al., 2014; Roy et 

al., 2011; Takaichi, 2011) that play important roles in light harnessing (Alberte et al., 1981; 

Guglielmi et al., 2005; Katoh et al., 1989; Tanada, 1951) as well as photoprotection (Ehling-

Schulz et al., 1997; Garcia-Pichel et al., 1992). Carotenoids also have utility as biomarkers in 

both modern and ancient systems, as many carotenoids are specific to certain classes of 

organisms (Castañeda and Schouten, 2011; Roy et al., 2011; Takaichi, 2011). Additionally there 

have been numerous studies that have shown the effects of light on pigment concentrations 

within cultured and wild organisms (Ehling-Schulz et al., 1997; Garcia-Pichel and Castenholz, 

1991; Kana et al., 1988; Kao et al., 2012; Leisner et al., 1994; Schäfer et al., 2006). As such, 

pigment quantification can be used to investigate contributions of specific organisms to bulk 

biomass, as well as assess light regimes. 
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Figure 1-5: Select molecular structures of common pigments. A: b-Carotene; B: Lutein; C: 
Fucoxanthin; D: Diadinoxanthin; E: Chlorophyll d; F: Chlorophyll b; G: Chlorophyll a; H: 
Hydroxy-pheophytin a; I: Pheophytin a; J: Pyropheophytin a; K: Scytonemin. 
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1.4 Dissertation Outline 

This dissertation proceeds stepwise from a modern microbialite system to progressively 

more ancient sedimentary systems. In chapter 2, an analysis of the pigment distributions within 

modern microbialites, and how they vary with depth is presented in order to investigate how 

water depth can be qualified by relative pigment concentrations. It was found that the UV 

screening pigment scytonemin, along with chlorophyll a and other pigments displayed 

statistically significant correlations with depth in the water column, and UV A irradiance. This 

chapter has recently been accepted for publication at the journal Organic Geochemistry with 

coauthors Mark A. Teece, James M. Fulton and Christopher K. Junium. 

Chapter 3 describes how sedimentary pigments and the stable isotope signatures of 

carbon and nitrogen changed in association with hypothesized chemocline destabilization events 

in a modern meromictic lake in East Africa (Lake Kivu) within the past several kyr. At the base 

of the organic-rich sapropels initiated by the volcanism/hyperpycnal flow driven mixing events, 

sharp decreases in d13Corg and d15Nbulk values occur, accompanied by a general increase in the 

ratio of photoprotective to light gathering pigments. As sapropelic deposition ends, carbon 

isotopes recover to background values, while nitrogen isotopes overshoot to strongly enriched 

values and then return to background. The patterns observed are most consistent with a delivery 

of high concentrations of isotopically depleted dissolved inorganic carbon and ammonium to the 

photic zone during mixing events, followed by a subsequent quantitative utilization of 

ammonium as stratification is reestablished. These mixing events likely moved the chemocline 

as well as the locus of primary production closer to the surface, resulting in the increased 

production of photoprotective pigments. This chapter is in preparation to be submitted with 

coauthors Christopher A. Scholz, James Fulton and Christopher K. Junium. 
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Finally, in chapter 4, high-resolution stable isotope analyses of carbon and nitrogen are 

applied to the Late Devonian Appalachian(AB) and Illinois Basins(IB) with a focus on the 

Kellwasser intervals associated with the Frasnian-Famennian biotic crisis. In the studied sections 

the isotope signatures observed were strikingly similar to those observed in Lake Kivu 

sediments. Black shales from the IB and AB are 15N-depleted and have significantly lower 

d15Nbulk than interbedded grey shales, and also display sharp decreases in δ13Corg superimposed 

on the longer term global positive excursion. The pattern of depletion suggests that the depth of 

the chemocline and the degree of water-column stratification exert a primary control on both 

d13Corg and d15Nbulk during black shale deposition. In the context of the Frasnian-Famennian 

biotic crisis, the oscillating redox state and changing temperatures would have likely placed 

extreme stress on organisms within the marine environment of the AB and IB and may 

potentially have been a contributing factor to diversity loss over this time period. Chapter 4 has 

been published in the journal Palaeogeography, Palaeoclimatology, Palaeoecology with 

coauthors Christopher K. Junium, Diana L. Boyer, Phoebe A. Cohen and James E. Day. 

Overall this body of work lends new insight into the influence of chemocline dynamics 

and the presence of ammonium on past instances of marine anoxia and nutrient cycling, with 

chapter 3 providing a particularly compelling analogue for the influence of chemocline variations 

on past sedimentary systems.  
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CHAPTER 2: ENVIRONMENTAL CONTROLS ON PIGMENT DISTRIBUTIONS IN 
THE FRESHWATER MICROBIALITES OF FAYETTEVILLE GREEN LAKE 

 

 

Abstract 

 We analyzed pigments in acetone extracts of microbialites collected over a shallow depth 

gradient from the freshwater Fayetteville Green Lake (FGL), Fayetteville, NY. Pigment 

identification and quantification were achieved using reverse phase high performance liquid 

chromatography and ion trap multi-stage mass spectrometry (MSn). Chlorophyll a and its 

derivatives, the photoprotective pigment scytonemin, and the carotenoid fucoxanthin were 

present in all samples, b-carotene was observed in all but one sample, and minor abundances of 

other pigments such as chlorophyll d and lutein were observed in select samples. The 

concentration of scytonemin and its abundance relative to that of chlorophyll a decrease 

logarithmically with depth, consistent with the function of scytonemin as a UV screening 

pigment. As well, the increase in the concentration of chlorophyll a, b and the photosynthetic 

accessory carotenoids fucoxanthin and b-carotene with depth are consistent with lower 

irradiance at depth. The distribution and relative abundance of photosynthetic and light shielding 

pigments may provide a means for determining the relative water depth/incident radiation levels 

of ancient microbialites in which pigments or their derivatives are preserved.    
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2.1 Introduction 

 Microbialites have been an important constituent of Earth’s geologic record for nearly 3.5 

billion years (Grotzinger and Knoll, 1999; Hofmann et al., 1999), and are among the most 

common organo-sedimentary structures through the bulk of Earth’s history (Burne and Moore, 

1987; Riding, 2011). The formation of microbialites is fostered by the metabolic activity of 

diverse microbial mat communities that catalyze the precipitation of calcium carbonate, 

producing laminated carbonate accumulations associated with organic matter, cellular exudates, 

and trapped sedimentary grains (Burne and Moore, 1987; Dupraz and Visscher, 2005; Dupraz et 

al., 2009; Riding, 2011). The metabolically active region of microbialite systems comprises the 

outer-most, mm-scale layer that includes photoautotrophs on the surface and diverse 

heterotrophic and chemoautotrophic organisms on the interior (Allen et al., 2010; Brady et al., 

2014).  The phototrophic community is commonly dominated by cyanobacteria, but also includes 

green algae and diatoms (Chan et al., 2014), and heterotrophic bacteria on the microbialite 

interior respire organic matter produced by the phototrophs (Allen et al., 2010; Brady et al., 

2014).   

Organic geochemical analyses of modern microbialites provide context from which we 

can better understand past environments. Ancient microbialites typically do not preserve the type 

of detailed genetic data that allow us to investigate microbial communities and the diversity of 

metabolisms that exist in modern microbialites (e.g. Edgcomb et al., 2013). However, lipid and 

pigment biomarkers have a comparatively higher potential for preservation and can provide data 

about the makeup of ancient communities where organic biomarkers are preserved. Investigating 

modern systems and the range of factors that influence pigment and lipid biomarker moieties 

provides this necessary context.  
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Pigments are organic compounds that interact with and absorb specific wavelengths of 

light, dependent on their structure and electronic properties. In microbial organisms, pigments 

are directly associated with photosynthesis (e.g. chlorophyll a) or serve a variety of roles in 

support of photosynthesis, including photoprotective roles such as UV screening. There are 

several forms of chlorophyll, each of which is typically produced by specific classes of 

photoautotrophs (Castañeda and Schouten, 2011; Roy et al., 2011; Loughlin et al., 2013). For 

example, notable differences in the structures of many bacteriochlorophylls allows for positive 

identification of  anoxygenic photoautotrophs from ancient systems (e.g. Keely, 2006). 

Carotenoids have a broad structural and functional diversity (Roy et al., 2011; Takaichi, 2011; 

Rivera et al., 2014) that play important roles in light harnessing (Tanada, 1951; Alberte et al., 

1981; Katoh et al., 1989; Guglielmi et al., 2005) as well as photoprotection (Garcia-Pichel et al., 

1992; Ehling-Schulz et al., 1997). Carotenoids can also be used as biomarkers in both modern 

and ancient systems, as many carotenoids are specific to certain classes of organisms (Castañeda 

and Schouten, 2011; Roy et al., 2011; Takaichi, 2011). 

Here, we present pigment biomarker analyses from modern microbialites collected from 

the meromictic Fayetteville Green Lake, New York, a well-studied analog for ancient oceans 

(Meyer et al., 2011; Havig et al., 2015, 2017; Fulton et al., 2018) that has actively accumulating 

thrombolitic microbialites in shallow waters (Thompson et al., 1990).  The objectives of this 

study were to: 1) determine the pigment composition of the freshwater microbialites at FGL and 

2) determine if there is variation in the type or amount of pigments relative to water column 

depth position of the microbialites. Characterizing the distribution and controls of pigment 

signatures in modern microbialites is a valuable exercise, as it can provide necessary context for 
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characterization of ancient microbialites and environmental conditions on Earth, as well as on 

other planets such as Mars (Dupraz and Visscher, 2005; Varnali et al., 2009).  

  

Figure 2-1: Map of study area with microbialite sample locations labeled.  

 

2.2 Geologic Setting 

Fayetteville Green Lake (FGL) is a meromictic freshwater lake located near Syracuse, 

NY, the first lake classified as such in North America (Eggleton, 1931). The origin of the lake is 

assumed to be a glacial plunge pool that likely formed because of extensive erosion associated 

with glacial melt runoff at the end of the Pleistocene glaciation period. The lake drains an area of 

4.3 km2, and the predominant inflows are surface water runoff, a stream that flows into FGL 

from nearby Round lake and subsurface inflows of groundwater (Brunskill and Ludlam, 1969). 

The groundwater contains high concentrations of calcium and sulfate sourced from Silurian Age 

gypsum-rich Vernon Shale that subcrops beneath the lake surface (Brunskill and Ludlam, 1969). 

The slightly saline groundwater that enters the lake at depth contributes to the persistence of 

meromixis which results in a sharp chemocline that is generally between 17 - 20 m water depth 
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