Syracuse University

SURFACE

Dissertations - ALL SURFACE

August 2018

A Knowledge Enriched Computational Model to Support Lifecycle
Activities of Computational Models in Smart Manufacturing

Heng Zhang
Syracuse University

Follow this and additional works at: https://surface.syr.edu/etd

b Part of the Engineering Commons

Recommended Citation

Zhang, Heng, "A Knowledge Enriched Computational Model to Support Lifecycle Activities of
Computational Models in Smart Manufacturing” (2018). Dissertations - ALL. 947.
https://surface.syr.edu/etd/947

This Dissertation is brought to you for free and open access by the SURFACE at SURFACE. It has been accepted for
inclusion in Dissertations - ALL by an authorized administrator of SURFACE. For more information, please contact
surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/etd
https://surface.syr.edu/
https://surface.syr.edu/etd?utm_source=surface.syr.edu%2Fetd%2F947&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=surface.syr.edu%2Fetd%2F947&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/etd/947?utm_source=surface.syr.edu%2Fetd%2F947&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

ABSTRACT

Due to the needs in supporting lifecycle activities of computational models in Smart
Manufacturing (SM), a Knowledge Enriched Computational Model (KECM) is proposed in this
dissertation to capture and integrate domain knowledge with standardized computational models.
The KECM captures domain knowledge into information model(s), physics-based model(s), and
rationales. To support model development in a distributed environment, the KECM can be used
as the medium for formal information sharing between model developers. A case study has been
developed to demonstrate the utilization of the KECM in supporting the construction of a
Bayesian Network model. To support the deployment of computational models in SM systems,
the KECM can be used for data integration between computational models and SM systems. A
case study has been developed to show the deployment of a Constraint Programming
optimization model into a Business To Manufacturing Markup Language (B2ZMML) -based
system. In another situation where multiple computational models need to be deployed, the
KECM can be used to support the combination of computational models. A case study has been
developed to show the combination of an Agent-based model and a Decision Tree model using
the KECM. To support model retrieval, a semantics-based method is suggested in this
dissertation. As an example, a dispatching rule model retrieval problem has been addressed with
a semantics-based approach. The semantics-based approach has been verified and it

demonstrates good capability in using the KECM to retrieve computational models.

A KNOWLEDGE ENRICHED COMPUTATIONAL MODEL TO SUPPORT
LIFECYCLE ACTIVITIES OF COMPUTATIONAL MODELS IN SMART
MANUFACTURING

By

Heng Zhang

B.S., Hebei University of Technology, 2010
M.S., Syracuse University, 2012

Dissertation
Submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in Mechanical and Aerospace Engineering

Syracuse University

August 2018

Copyright © Heng Zhang 2018

All Rights Reserved

ACKNOWLEDGMENTS

First, I would like to express my deepest appreciation to my advisor, Dr. Utpal Roy, for his
continuous help in guiding me throughout my doctoral studies. I am also very grateful for the
opportunities for international conferences, NIST research workshop, and industrial company
collaboration that Dr. Roy provided to make me a better researcher.

I also would like to thank Dr. Riyad S. Aboutaha, Dr. Jianshun Zhang, Dr. Jeffrey S. Saltz,
Dr. Michael N. Roppo, and Dr. Teng Zhang for serving as my committee members and providing
valuable suggestions and comments for this dissertation.

A big “thank you” goes to Dr. Bicheng Zhu for all his help in fundamental research problem
discussions, encouragement, and suggestions for life. Further thanks go to the lab colleagues and
friends, including Omer Yaman, Yunpeng Li, Hang Yin, and Kai Sun, for their good suggestions
in my research work.

Special thanks go to Dr. Xianrui Wang and Dr. Xu Yan, for their friendship and support
across the world. I also want to thank my friends Dr. Jing Wang, Zhengyi Song, and Daiyang
Gao for their companionship in graduate school.

Finally, I would like to acknowledge the most important persons in my life — my parents
Zhijian Zhang and Huiying Jia for their unconditional love. Without their support, I could not

overcome all the challenges I faced all these years.

TABLE OF CONTENTS

ABSTRACT ...ttt bttt bbbttt h e bt et R e e bt e bt R e bt e bt n e nh bt ne e be e ne e i
ACKNOWLEDGMENTS ..ottt sttt be et e sbe e teeseeabe e beeneesneenreeneennes v
TABLE OF CONTENTS ..ottt ettt b ettt v
LIST OF TABLES ... oottt sttt bttt se e b et st et e e be et esneenbeeneennes ix
LIST OF FIGURES ...ttt bbbttt n et X
CHAPTER 1. INtrOQUCEION. ...ttt sttt sttt ettt ettt e e b e esb e e be e et e e neeeenes 1

1.1 ReSEArCh MOLIVALION ..c.viiiiiieiic sttt sne e r e ne e 1

1.2 Research Objective and Proposed Methodologycccevviiiiiiiiiiiniine e 3

1.3 Dissertation OULINEcccuveiiiiiieiie e ne e 5
CHAPTER 2. Literature REVIEWcoiiiiiiiiiiiiieiie ettt sttt ettt 8

2.1 Formally Representing Computational Models and Relevant Knowledge to Support
Model INtErOPETADILILYvevieiiiiiiitieie e 8

2.2 Formalizing Domain Knowledge to Support Lifecycle Activities of Computational

1\ (T (S OO OPPRTI 10
2.2.1 Formalizing Knowledge for Computational Models’ Development..................... 11

2.2.2 Formalizing Knowledge for Computational Models’ Deployment...................... 14

2.2.3 Formalizing Knowledge for Computational Models’ Retrieval.............ccccceeueeee 17
CHAPTER 3. Proposed Methodology for the Knowledge Enriched Computational Model 21
3.1 General Description of the Knowledge Enriched Computational Model...................... 21

3.2 Information MOlcooouiiiiiiiiii e 22

3.3 Standardized Computational Modelcccooviviiiiiiiiii 24
3.4 Physics-based MOAEIS........coiiiiiiiiiiiiie i 25

3.5 RAUIONALES.....eiuiiiiiiieiie ettt b e 26

CHAPTER 4. Utilization of the Knowledge Enriched Computational Model for Model

DIEVEIOPIMENL ...ttt 28

S 3150 Y6 LD L1 (o) o 28

4.2 Development of Computational Models with the Knowledge Enriched Computational

1Y 04 IS TP T PP PP PP UP 29
4.3 Case StUAY SCONATIO ...eeuviiiuiiiiieiiiieitie ettt sttt sttt b e e be et e e sbeessbeesbeeenteenneeanes 30
4.4 Development of the Knowledge Enriched Computational Model...........c.ccccvviivernnnn. 36
4.4.1 Information MOE]c.ooiiiiiiiiiiiii e 36
4.4.2 Physics-based MOlccooiiiiiiiiiiiiiiiii e 39
4.4.3 Standardized Computational Model............ceoiiiiiiiiiiiiiic 40
444 RAONALESeeiiiiiiiiiiii et re e 41
4.4.5 Representation of the Knowledge Enriched BN Model in OWL.............ccceenie 47
4.5 Utilization of the Knowledge Enriched Computational Modelcccovvviiiiiinnnn. 49
O I D 1T 111 T) o PRSPPI 51

CHAPTER 5. Utilization of the Knowledge Enriched Computational Model for Model
DIEPLOYIMENLttt bbb bt bbb et n e 53

5.1 Utilization of the Knowledge Enriched Computational Model to Support the

Deployment of Computational Models in Smart Manufacturing Systemccceovveennen. 53
5.1.1 A General Method to Support the Deployment of Computational Models.......... 55
5.1.2 Development of A Standardized Model for Optimization Models....................... 56

5.1.2.1 Optimization Metamodel............cccoviiiiiiiiiiii 57
5.1.2.2 Representation of an MILP Model Using the Optimization Metamodel........ 60

5.1.3 Development of a Knowledge Enriched Optimization Model for Model

DEPIOYMENL. ... e 65
5.1.3.1 Information MOdel..........coouiiiiiiiieii e 67
5.1.3.2 Optimization Metamodel..........ccocveiiiiiiiiiic e 68
5.1.3.3 RAIONALESeoieieiiiiiieiee ettt 69

5.1.4 Utilization of the Knowledge Enriched Optimization Model for Model

DEPLOYIMENL. ...ttt 75

Vi

5.1.4.1. Interoperability Enabled by the Optimization Metamodelcccceevvenee. 76

5.1.4.2. Using the KECM to Support Model Deploymentcccccvevvvrveniniinnnnne. 77

5.2 A Methodology to Support the Combination of Computational Models........................ 80
5.2.1 Development of A Uniform Model for Model Combinations............c.cceeeuveruenne 81
5.2.2 Case StUAY SCONATIOeviuuriiiiirieitiieeiiieesitiessiteesbreesbaeesbeeesbee e ssbe e s ssbeesssbeesnsreeeees 86

5.2.2.1 Development of A Composed Agent-based and Decision Tree System for

Flexible Job Shop Scheduling.........cccoovuiiiiiiiiiiiiie e 88
5.2.3 Development of A Formal Representation for Agent-based Models 94
5.2.4 Development of A Formal Representation for Decision Tree Models 96
5.2.5 Development of A Composed Agent-based and Decision Tree Model................ 97
5.2.6 Utilization of the Composed Agent-based and Decision Tree Model................. 100

CHAPTER 6. Utilization of the Knowledge Enriched Computational Model for Model Retrieval

... 103
6.1 TNITOAUCTION ...ttt b e nb e 103
6.2 Model Retrieval with the Knowledge Enriched Computational Model 104
6.3 Model Retrieval and Combination for Dispatching Rule Modelsccccccoveiennnnn. 105
6.4 Problem FOrmalization...........ccooveiiiiiiiiiiiiiiii 108
6.5 A Semantics-based Methodology for Dispatching Rule Selection............cccccoevvirnnnnn. 110

6.5.1 Sustainable Manufacturing Ontology.........cccccceviiiiiiiniiiiiiiin e, 111
6.5.2 Semantic Expressions of Production Objectives and Dispatching Rules............ 113
6.5.3 Semantic Similarity M@asurementccoevevieiiiiieiieiiieeiese e 119
6.5.3.1 The Tree Structure of The Semantic EXpressions..........cccccocevvvvviiciiniieennnn. 120
6.5.3.2 Tree Matching Based Algorithm for Semantic Similarityccocevinnnnne. 121

6.5.3.3 Tree-based Semantic Similarity Measurement...............ccocvverieniicrinnnneenenn. 125

6.5.4 Combination of Dispatching Rules Generation..............ccocevvveiiiiiiiiiinicinenn, 127

6.6 Verification and RESULLScooiiiiiiiiiiiccc e 128
6.6.1 IMpPlementation...........cccciiiiiiiiiii e 128

vii

6.6.2 Simulation-Based EXPeriment...........cccceviiiiiiiiiiiiiiniiec e 130

6.6.3 Sensitivity Analysis to Configure the Threshold.............cccoviiiiiiiiiiiin, 132

6.6.4 RESUILSeiiiiiiii e 134
CHAPTER 7. CONCIUSION ...ttt ettt e e et e e e saeeeneesnnas 138
7 B 1 11110 T PSP PP PPPPPPPPPPRP 138

7.2 Research CONTIIDULIONeiiviiiiiiieiiie sttt n e 141

7.3 Discussion and LIMItationccoceiieiiiiiiieiiieeesee e 142
APPENDIX — A Lottt sttt et R et r e e Re et aneenreeneeneenre et 143
REFERENCES ... oottt bbbt b ettt b et nb e e b beenbe e b 145
V2 1 ST SPPSRTRSS 157

viii

LIST OF TABLES

Table 4.1 Parameters for modeling the Bayesian Network nodesococvviveiiiieiiiieiiiie i 31
Table 4.2 Equations for estimating energy consumption of injection moldingc.cccvvrueenne. 35
Table 6.1 Threshold VAIUEScoviiiiiiiice s 123
Table 6.2 Semantic similarity Within @ Jayerc.ccooviiiiiiiiii 126
Table 6.3 Performance measures used in the eXperimentcccvvvveiiieeniiie e 131

Table 6.4 Comparison between the results from the proposed approach and the ones from
STMULATION . ..ttt ettt e et e bt e e s e e e b e s rb e e nbe e e sb e e s be e e nr e e nneeanneenneas 135
Table 6.5 Semantics-based dispatching rule selection results with two production objectives.. 136

Table 0.1 Letter part production SEQUENCEueiivvieiiirieiiiresieeesieeesieessieessbeesssseessneessseesssnes 144

LIST OF FIGURES

Figure 3.1 Enriching standardized computational model with domain knowledge...................... 21
Figure 4.1 Development of computational models with the KECMcccooviiiiiiciicninn, 30
Figure 4.2 A BN structure learned from data............ccccoeiiiiiiiiiiiin e 33
Figure 4.3 Development process for the BN ..o 33

Figure 4.4 A UML Representation of the extended Sustainable Manufacturing Ontology (SMO)

... 39
Figure 4.5 OntoModel and its Connection to the SMOccccciiiiiiiiiiii 40
Figure 4.6 A Tree presentation of the OWL-based BN model...........cccooeiviiiiiiiiiiiiic 41
Figure 4.7 The Knowledge Enriched BN Model in protégé 5.2ccoviiiiiiiiienie e 47
Figure 4.8 Inferred whitelist and blacklist relationships in protégé 5.2........ccccccvvvvviviiiiienennenn 48
Figure 4.9 The final BN StIUCTUIEeiiiiiiiiiiiie e 49
Figure 4.10 Information exchange using the KECM...........ccociiiiiiiiiiiieeeee e 50
Figure 5.1 A general method to support the deployment of computational models 56
Figure 5.2 A UML representation of the Optimization Metamodel...............cccocoeviiiiiiiiiienn. 58

Figure 5.3 Representation of the MILP model using the Optimization Metamodel in protégé 5.2

Figure 5.4 XML representation of input data for variable Oi..............cccocoveiiiiiiiniiiiie, 64
Figure 5.5 A UML representation of the extended Sustainable Manufacturing Ontology (SMO) 68

Figure 5.6 Expansion of the Optimization Metamodel with respect to the CP model 69
Figure 5.7 Screenshot of the implemented Optimization Metamodel in protégé 5.2 75
Figure 5.8 Representation of the optimization result (schedule) in protégé 5.2..........ccccovevinnnnn. 76
Figure 5.9 Input data in B2MML and in the Knowledge Enriched Optimization Model............. 77
Figure 5.10 Loading the data from the SMO to the Optimization Metamodel................cc.ceenee. 78
Figure 5.11 Representing domain meaning of optimization model’s entitiescccocvrereennen. 79
Figure 5.12 Generating constraint instances with the rationalescccooiniiiiiiiiicinn, 79

Figure 5.13 General structure for modelscooviiiiiiiiiiiiiiii e 81

Figure 5.14 Methods for model combinationccccoiveiiiiiiiiiiieiine e 82
Figure 5.15 An example of the composition of combined modelscccevvviiiiiiniiieniiieniiees 83
Figure 5.16 Representation of the general combination mechanismsc.ccovvveiiiiiienennnn 84
Figure 5.17 Shop floor layout of the real-time scheduling scenario (Trentesaux et al., 2013)..... 87

Figure 5.18 Components, jobs, and products produced on the production line (Trentesaux et al.,

B I TSP P PP TP PP 88
Figure 5.19 Sequence diagram to represent system behavior..........c.ccocviieiiiiiniciincseee 89
Figure 5.20 Sequence diagram to represent the system behavior when an order is released 91
Figure 5.21 Representation of the Agent-based Modelccoceiiiiiiiiiciii e 95
Figure 5.22 Representation of the Decision Tree model in OWLccccoeviiiiiiiiiiciinn, 96
Figure 5.23 Development of the composed Agent-based and Decision Tree model.................... 97
Figure 5.24 Representation of the implemented combined modelccceviieiiiiiiiiiiieene. 98
Figure 5.25 Screenshot of the implemented model combination in protégé 5.2ccccevvennene 100
Figure 5.26 Using rationales to support model combinationscccccvvvvviieiiniiiniinieiinnns 101
Figure 5.27 Screenshot of the code generator in Netbeans 8...........cccocoeiiiiiiiiiiicncecee 102

Figure 6.1 Retrieving computational models with the Knowledge Enriched Computational Model

Figure 6.2 The semantics-based methodology for dispatching rule selectionccccvvvenee 110
Figure 6.3 UML class diagram for the extended Sustainable Manufacturing Ontology (SMO).112
Figure 6.4 Hierarchical tree for AdministrativeEntity.............cccovvviiviiiiiiiiiiieiiiiiien e, 113
Figure 6.5 Tree structure for the “Minimize Tardiness Penalty” objectiveccccovvviverennn. 120

Figure 6.6 Tree structure for a combined “Minimize Tardiness Penalty” and “Maximize Fairness”
g

0] o] <018 AP PR PSP 121
Figure 6.7 Tree traversal StrateZY.......coivueiiiiiiiiiiiie i 123
Figure 6.8 Pseudo codes for the calculateSemanticSimilarity functionc.ccooeveiiiiicnnnnn 123
Figure 6.9 Pseudo codes for the calculateLayerSimilarity function............ccocevveiiiiiiiiiiiiennns 124

xi

Figure 6.10 Architecture of the Implementationccccve e 129
Figure 6.11 Implementation of the Sustainable Manufacturing Ontology and the implemented
SCIMANTIC EXPIESSIOMIS 1.ttt uvteessteeessteeestteesssteesssseesssseesseeeabeeeasteeeasbeeeasbeeeasbeeeasbeeeasbeeensbeeensneensneenns 129
Figure 6.12 Sensitivity analysis to configure the thresholdscccooviiiiiiiiiiie 134
Figure 6.13 Simulation results for the combination of the “Maximize Fairness” and the

“Minimize Makespan™ ODJECHIVESueviiiiiiiiiiie e 137

Xii

CHAPTER 1. Introduction

In this chapter, an overview of the research in this dissertation is presented. This chapter
starts with research motivation. The research objective and proposed methodology are then

introduced. Finally, the structure of the dissertation is outlined.

1.1 Research Motivation

Due to advances in information technologies and artificial intelligence, the Smart
Manufacturing (SM) concept has emerged to lead a new paradigm of manufacturing. The SMLC
(Smart Manufacturing Leadership Coalition) has characterized the SM enterprises as data-driven,
knowledge-enabled, and model rich with visibility across the enterprise, such that all operating
actions are executed proactively by applying the best information and performance metrics
(Davis et al., 2015). To achieve this, computational models to be easily accessible and available
to a wide range of users across enterprises (SMLC., 2011). According to the SMLC, this calls for
the standardization of computational models to support plug-and-play capability and effective
data exchange for industrial users from small manufacturing enterprises to large ones. It also
requires human knowledge and decisions to be incorporated into decision models, which enables
faster, more disciplined decision making.

Computational models, which are the core components of enterprise decision tools, play
important roles in both business and engineering decision making at all levels of an enterprise’s
hierarchy from business planning and logistics through manufacturing operations control to

batch and unit process control. Here, the computational models can be the mathematical,

optimization, knowledge-based, data analytics/machine learning and rule models, etc. that are
used in enterprise decision making. To support their interoperability/accessibility, standardized
computational models have been developed to formally represent computational models in
text-based formats like XML (Extensible Markup Language) and JSON (JavaScript Object
Notation). For example, Mathematical Markup Language (MathML) (W3C, 2004) has been
developed to represent mathematical expressions using XML. The Predictive Model Markup
Language (PMML) (DMG, 2016) is a set of XML-based data models to represent statistical and
data mining models.

However, the current standardized computational models do not possess formally captured
domain knowledge which can be used to support the lifecycle activities of computational models.
The lifecycle activities that are focused in this dissertation are the development, deployment, and
retrieval of computational models. Here, the knowledge can be the domain meanings of the
entities in computational models, the physics or behavioral information about the application
domain where a computational model applies, the rationales or rules to describe the rationality of
a computational model or to guide the lifecycle activities of computational models. These types
of knowledge are very important to support lifecycle activities of computational models. The
domain meanings of a computational model’s entities are needed in all its lifecycle activities so
that the computational model can be understood. Physics or behavioral information about the
application domain of a computational model can be used to support the development of the
computational model. Rationales or rules can capture information about why a specific structure

of a computational model was developed or how a model parameter was defined, which are

useful when the computational model needs to be modified or updated. The rules can also be
used to guide the development, deployment, and retrieval of computational models. All these
types of knowledge need to be formally captured and integrated with the standardized
computational models so that software tools can be used to automate lifecycle activities of
computational models.

So, to support lifecycle activities of computational models, a methodology has been
proposed in this dissertation to formally capture knowledge and integrate the knowledge with

standardized computational models.

1.2 Research Objective and Proposed Methodology

According to the research motivation introduced in the last section, the research objective of
this dissertation is to develop a knowledge enriched computational model which formally
captures knowledge and integrates the knowledge with standardized computational models to

support lifecycle activities of computational models.

The proposed methodology in this dissertation is as follows:

A Knowledge Enriched Computational Model (KECM) has been proposed to capture
knowledge into information model(s), physics-based model(s) and rationales. The information
model(s) can be used to capture domain concepts and relationships. The physics-based model(s)
can be used to encapsulate the physical or behavioral information of a certain SM system (e.g., a
manufacturing process, a shop floor control system, a business planning system, etc.). The

rationales or rules can be used to provide rationality about computational models and to guide

lifecycle activities. Semantic links can be used to integrate these types of knowledge with the

standardized computational models.

An example of the KECM for developing a Bayesian Network (BN) model is provided as

follows.

A BN model needs to be developed for estimating the energy consumption of injection
molding processes. Due to the lack of formal information exchange between domain experts and
data analysts, a KECM which can formally represent the BN model and domain knowledge can
be used to support the formal information exchange. To formally represent the BN model, the
PMML — Bayesian Network Model (DMG, 2016) can be used as the standardized computational
model in the KECM. To capture domain meanings for the nodes in the BN, a Process-oriented
Information Model for Sustainable Manufacturing from a literature (Zhang et al., 2015) can be
used for the KECM. To generate the structure of the BN based on domain knowledge,
mathematical equations which calculate the energy consumption for injection molding processes
can be used. The OntoModel can be used to formally represent these equations as the
physics-based models in the KECM. Rationales/rules can be developed to describe how to use
the OntoModel-based equations to generate the BN structure. A detailed case study of this

example has been provided in Chapter 4.

The proposed KECM has been further validated in three distinct applications to demonstrate
the utilization of the KECM to support three different lifecycle activities for computational

models. The three applications are as follows:

1)

)

©)

(1)

(2)

(3)

implementing a KECM to support the development of a Bayesian Network model in a
distributed environment,

implementing KECMs to support the deployment of computational models: the deployment
of an optimization model in a manufacturing system and the combination of an Agent-based
model and a Decision Tree model for a real-time scheduling scenario, and

developing KECM rationales/rules that formally describe dispatching rule models for the

retrieval of dispatching rules.

With the proposed methodology, outcomes to be expected are:

For computational models that need to be developed in distributed environments, the
proposed methodology enables explicit and formal knowledge exchange between model
developers and further enhances the efficiency of distributed model development.

The proposed methodologies enable industrial users to define their own ways to deploy and
combine computational models in Smart Manufacturing systems.

The proposed methodology allows the retrieval of computational models according to users’

requirements for Smart Manufacturing applications.

1.3 Dissertation Outline

This dissertation is presented in seven chapters. The description of each chapter is narrated

below.

Chapter 2 reviews literature related to the research problem. It first reviews literature that

formally represents computational models and their relevant knowledge to support model

interoperability. The next section reviews literature that formalizes domain knowledge to support
lifecycle activities of computational models. This section is divided into three sub-sections. Each
sub-section reviews literature related to a specific lifecycle activity — model development, model
deployment, and model retrieval.

Chapter 3 proposes a Knowledge Enriched Computational Model (KECM) that explicitly
and formally enriches domain knowledge into standardized computational models to support the
lifecycle activities of computational models. The general description of the KECM is provided.

Chapter 4 discusses the utilization of the proposed KECM to support model development. A
general method to use the KECM in model development has been proposed. To validate the
proposed method, a case study has been presented to develop a Bayesian Network model with
the assistance of the KECM. The KECM for the Bayesian Network model has been developed.
The utilization of the KECM in supporting the development of the Bayesian Network model has
been discussed.

Chapter 5 discusses the utilization of the proposed KECM to support model deployment.
This chapter is divided into two parts. The first part covers the general method that using the
KECM to support the data integration between a computational model and the data system that
the computational model deploys. A case study has been provided to demonstrate the deployment
of an optimization model in a B2MML-based data system. Due to the lack of a standardized
model for optimization models, an Optimization Metamodel has been proposed. In the second
part, a general approach to formally represent model combinations is introduced. This model

combination method aims to extend the standardized computational model captured in the

KECM. As an example, a combination of an Agent-based model and a Decision Tree has been
carried out using the proposed modeling method.

Chapter 6 describes a method to retrieve computational models using the KECM. In this
chapter, the retrieval of dispatching rule models based on production objectives has been studied
as an example. To enable this retrieval, a semantics-based approach has been proposed. This
semantics-based approach first defines the formal semantic expression of dispatching rules and
production objectives. Then, a tree-based semantic similarity measurement has been presented to
calculate the similarities between the given production objectives and all the dispatching rules.
Based on the similarity values, the selected dispatching rule model can be combined. The
validation of the semantics-based dispatching rule selection approach has been provided at the
end of the chapter.

Chapter 7 concludes this dissertation. It starts with a summary of the whole dissertation.
Then, the research contributions are described. Finally, the limitations of the research work in the

dissertation are discussed.

CHAPTER 2. Literature Review

In this chapter, the literature related to the research problem that this dissertation focuses on
is reviewed. First, the literature that is related to formally representing computational models
and relevant knowledge is reviewed. Then, the literature that is related to formalizing knowledge

to support model development, deployment and retrieval, respectively are reviewed.

2.1 Formally Representing Computational Models and Relevant Knowledge to

Support Model Interoperability

To enable the accessibility and plug-and-play capability of computational models,
computational models must be formally represented to support their interoperability. Currently,
there are several industry standards that have been developed to support certain types of
computational models. For example, the MathML (W3C, 2004) is an XML-based language to
represent mathematical expressions. The MathML has two parts: the ContentML is used to
represent the meanings of mathematical expressions, and the PresentationML is used to capture
the presentation of mathematical expressions (e.g., matrix, vector, and tables, etc.). By using
MathML, mathematical expressions can be smoothly shared in web applications and text editing
tools like Microsoft Office. The PMML (DMG, 2016) is also an XML-based language to
formally represent statistical and data mining models. Models like Regression, Decision Tree,
Neural Network, and Bayesian Network, etc. can be represented in XML-based documents to
allow model exchange between different data analytics applications. The ECSS

E-TM-40-07/Simulation Model Portability 2 (ECSS, 2011) is a standard developed for

representing simulation models. Mappings of the metamodels, component models and simulation
services to the C++ platform have been developed.

There are also academic efforts to formally represent computational models and their
relevant knowledge. Witherell et al. (2007) presented an ontology for optimization (ONTOP) in
the engineering design domain to bridge the semantic gap in inconsistent optimization
terminologies across different software tools. Though formal semantics were used to capture the
overall structure and terminology of optimization models, entities like objective function and
constraints are represented in strings. This informal representation of mathematical expressions
created issues for effective data exchange. One issue raised is that there is a need to integrate
optimization models with knowledge like the engineers’ rationales in creating the models. Thus,
to capture the engineering design knowledge related to optimization models, the authors
proposed to include assumptions, model purposes, and related images, etc. in the ontology.
However, the assumptions, model descriptions, and associated images were captured either in
natural language-based strings or in formats that are difficult for software tools to process.
Although the developed ontology was implemented using the Web Ontology Language (OWL),
it 1s difficult for software tools to process and understand a whole optimization model. Moreover,
the parsing and utilization of the embedded domain knowledge rely on manual work.

Mufioz et al. (2014) proposed an ontological approach to represent optimization models and
manufacturing information. The representation of mathematical programming models was
achieved by using their previously developed Ontological Math Representation (Mufioz et al.,

2012) ontological model. The manufacturing information was captured by their Enterprise

10

Ontology Project (Mufioz et al., 2013) ontological model. However, there is no clear description
about how to use their model to represent optimization models and how to integrate the two
ontological models. Additionally, only information models (i.e. ontological model) were used as
domain knowledge.

Denno and Kim (2016) proposed a semantic web technology-based idea to integrate
predictive model equations (i.e. regression models) in unit manufacturing process models. The
authors argued that it is valuable to share predictive model equations among industrial users
because the equations reflect certain manufacturing knowledge that can be used elsewhere. They
utilized semantic web technology to semantically connect objects in equations to manufacturing
concepts. They claimed the proposed idea could benefit knowledge refinement and reuse,
traceability, model verification in production activities. However, there was no formal
representation of the equations shown to support the inoperability of the equations. Also, there
were no clear semantic links between the equation variables and manufacturing concepts
demonstrated in the paper. There was also no work to show how the proposed method supports
downstream activities (e.g., model verification, reuse) after model development.

To sum up, there is a lack of a uniform method to formally represent and integrate domain

knowledge with computational models in the current literature.

2.2 Formalizing Domain Knowledge to Support Lifecycle Activities of
Computational Models

In this section, literature about formalizing domain knowledge to support lifecycle activities

11

of computational models has been reviewed. This section has been divided into three
sub-sections that are related to the development, deployment and combination, and retrieval of

computational models.

2.2.1 Formalizing Knowledge for Computational Models’ Development

Recently, a lot of research has been carried out in bridging the semantic gap between data
and computational models. For example, Johnson et al. (2010) proposed using an ontology to
capture the domain concepts which are used to represent important variables for learning a
decision tree. In the learning process, the decision tree model was iteratively learned from data
and examined by domain experts. If the domain experts were not satisfied with the accuracy of
classification, suggestions like adding variables to the model, merging variables into a new one,
etc. were made. After that, the corresponding concepts were added to the ontology. Then the
updated ontology was used to guide data processing. Although this was a good attempt in using
ontologies to capture domain concepts for learning a decision tree, this study did not formally
formulate the rules for data processing in the ontology. It also did not explicitly represent the
decision tree and semantically connect the decision tree to the ontology. There is also similar
research on formulating domain knowledge to bridge semantic gaps by Perez-Rey et al. (2006),
Sinha and Zhao (2008), and Munger et al. (2015), etc. They also have problems in formally
representing rules and integrating knowledge with analytic models.

There are also studies on using domain knowledge to construct analytic models. Campos and

Castellano (2007) proposed learning a Bayesian Network structure by specifying the structural

12

restrictions from expert knowledge. The structural restrictions were defined as the existence of
arcs, the absence of arcs, and causal ordering restrictions. These restrictions were claimed to be
very useful in codifying the domain knowledge of a given domain. However, no specific domain
knowledge formalization and integration were shown in this research. Lechevalier et al. (2016)
introduced a domain-specific modeling approach to integrate a manufacturing system model with
data analytics to facilitate effective and efficient data analytics in manufacturing systems. In their
approach, the manufacturing meta-models, which define the concepts, rules, and constraints, are
first captured. Taking the manufacturing meta-models and data as inputs, a Neural Network
model builder computes the optimal number of hidden neurons and builds the optimal structure
of the neural network. The generated Neural Network structure was recorded using a Neural
Network meta-model. This meta-model was trained to obtain the final Neural Network model. In
this research, although the manufacturing domain knowledge was captured, and the knowledge
was used in creating a Neural Network structure, the domain knowledge and the Neural Network
model’s structure were loosely coupled. There were no mappings between the pieces of
knowledge used for creating the structure and the specific structures (e.g., input neurons, hidden
neurons, the structure of the neural network) that were captured explicitly and formally by the
manufacturing meta-model. Again, the semantic links between the manufacturing meta-model
and the Neural Network meta-model were missing. Kalet et al. (2017) proposed using a
dependency-layered ontology, which was implemented in OWL, to solve the inconsistency and
incompatibility between different Bayesian Network models in the medical domain. They

utilized software tools to extract concepts that were related by a certain object property from the

13

developed ontology. Then, they applied software to automatically generate Bayesian Network
topologies (i.e. nodes and arcs) based on the extracted concepts and relationships. However, the
Bayesian Network model was not formally represented. Also, there were no semantic links
between the developed Bayesian Network model and the ontology.

Hartmann et al. (2017) presented a model-driven analytics idea to emphasize the importance
of using properly formulated domain knowledge in data analytics. They proposed to use a
domain model to explicitly define the semantics of raw data in the form of metadata, domain
formula, mathematical models, and learning rules. The domain model is used to guide the
continuous refinement of the raw data to build a knowledge base. This knowledge base
consequently contains the insight of the application domain, and it can be used for other
applications. The advantages of applying the model-driven analytics are: (1) the modeled causal
relationships within the data allow the refinement of only the necessary parts of data instead of
recalculating everything; (2) it avoids the “store everything and analyze it later” strategy of
today’s pipeline-based analytics; (3) experts can describe their knowledge in the form of models,
which enables what-if analysis; (4) the learning rules are organized with the domain data
structure in a central place instead of being spread over the analytic tasks. However, the paper
does not specify in what format to capture the metadata, mathematical formulas, and learning
rules as well as how to integrate them. Also, the metadata model was not semantically connected
to the analytic model.

To sum up, there are research gaps in (1) properly formulating domain knowledge for the

development of computational models; and (2) integrating the formulated domain knowledge

14

with formally represented computational models to assist the construction of computational
models. Thus, a modeling framework which formalizes domain knowledge and integrates the

formalized knowledge and standardized computational models needs to be developed.

2.2.2 Formalizing Knowledge for Computational Models’ Deployment

Research has also been carried out to formalize knowledge to support the deployment of
computational models. The deployment of computational models in SM is a task that integrates
one or more computational models in a Smart Manufacturing system. This requires the input and
output data of computational models to be smoothly connected to the underlying system. Also, to
deploy more than one computational model for an SM application, a methodology to combine
the computational models needs to be developed. In this section, the literature that studies model
deployment and model combination are reviewed.

Industrial efforts have been made to support model combination and deployment. Pivarski et
al. (2016) introduced a new language, called the Portable Format for Analytics (PFA), for
deploying analytic models into products, services, and operational systems. The PFA, which is
currently under development by the Data Mining Group (DMQG), is a JSON-based language that
formally captures the analytic models along with the formalized functionalities of model
consumption like data transformation and data aggregation. In their paper, it is emphasized that
to use a programming language like JSON is safer than to use conventional programming
languages like C, Python, or Java. This is because those conventional programming languages

could access the underlying file system, operating system or network, which is not safe. The PFA

15

is expected to become a good tool to facilitate the deployment of analytic models. However, the
PFA only supports analytic models. The deployment of other models is not supported. Also, the
PFA does not provide a uniform way to model knowledge to support model deployment.

Another industrial effort that supports the interoperability of analytic models is the PMML
(DMG, 2016), which is also developed by the DMG. The PMML is an XML-based language that
enables the interoperability of analytic models. Currently, a lot of open source and commercial
software tools support PMML. In PMML, a model combination method is included. In this
method, several combination functions can be used like “majorityVote”, “average”, “max”,
“selectFirst”, and “modelChain”, etc. Although some combinations of analytic models can be
achieved using this method, a general approach to model the combination of all types of
computational models is lacking. Moreover, the PMML can only capture the analytic model, and
it lacks a mechanism to integrate domain knowledge with the analytic models.

There are also academic efforts towards formalizing domain knowledge and computational
models for model deployment. For example, Brodsky et al. (2016) proposed a Sustainable
Process Analytics Formalism (SPAF) to allow the formal modeling of modular, extensible, and
reusable manufacturing process components with sustainability performance evaluation using
mathematical programming-based optimization. The Optimization Programming Language (OPL)
was used as the modeling language to build individual manufacturing process models and
composite process models. Optimization models can be constructed based on the formalized

query in OPL and can be further executed in IBM CPLEX. Although both manufacturing

knowledge and the optimization model were formally represented and integrated by OPL, the

16

utilization of a specific modeling language (i.e. OPL) limits the reusability of such a model in
software tools other than IBM CPLEX. This raises barriers to applying this approach in the SM
systems which use assorted commercial and open-source software tools.

Kulkarni et al. (2016) proposed using a domain-specific modeling language to address
difficulties in model composition in multi-discipline engineering analysis. The proposed
domain-specific model language, which was named Model Composition and Analysis (MOCA),
formally captured the entities and relationships of a domain. The general MOCA model has
entities like Assembly, Component, Driver, DriverInterface, and DataPort. These entities can be
used to represent engineering model compositions. The authors used Generic Modeling
Language (GME) to implement the MOCA, and they developed a code generator which can
generate Python code to integrate the MOCA instance models into the OpenMDAO platform.
The OpenMDAO is an open-source computing platform for system analysis and
multidisciplinary optimization. However, the proposed domain-specific modeling language only
targets model composition. There are more types of model combinations that are not covered by
the proposed language. More importantly, the developed domain-specific modeling language is
developed to fit the framework of the OpenMDAO platform. This greatly limits the capability of
this proposed language to be used in other software tools.

Shao et al. (2016) presented a research report on implementing a new ISO 15746 standard
for chemical process optimization. The ISO 15746 standard describes a data model that
facilitates integration between the advanced process control tools and engineering optimization

tools. This research explored a Tennessee-Eastman chemical process in implementing the data

17

model defined in the standard. The populated data model was mapped to a metamodel of
optimization problems (Assouroko and Denno, 2016), which was further serialized in OPL code.
As mentioned in their work, there is no generic OptimizationDefinitionType defined in the
standard, even though three types of optimization (i.e. steady state optimization, dynamic
optimization, and expert system optimization) were captured. To use this standard, an
optimization model’s structures needed to be provided based on each optimization tool. The
problem of uniformly defining a standardized optimization model was not addressed in the
standard. Moreover, the integration between optimization models and manufacturing system
remains at level 2 (i.e. monitoring and control of the production process) and level 3 (i.e.
workflow/recipe control in production) of the ANSI/ISA-95 enterprise architecture (ANSI/ISA,
2010). A general integration framework was not provided.

In summary, there is a lack of a general method to model and integrate knowledge with
computational models to support model deployment. Also, a general way to deploy

computational models in different manufacturing systems is lacking.

2.2.3 Formalizing Knowledge for Computational Models’ Retrieval

Today, with the increasing complexity of industrial systems, researchers and industrial users
do not want to build their computational models of industrial systems from scratch. An
alternative approach is to seek for pieces of existing models in order to build their models and
build complex systems by combining smaller sub-models (Henkel et al., 2010). To facilitate this

model reuse, a model retrieval process that decides on potentially suitable models from a large

18

number of available computational models becomes an important activity.

Henkel et al. (2010) presented a model retrieval approach for computational models in the
biological domain. To enable the model retrieval, computational models in the biological
databases were first annotated with meta-information. MIRIAM (Minimum Information
Required in the Annotation of a Model) meta-information (Le Noveére et al., 2005) was used for
the annotation. The MIRIAM encompasses general information about a model like the model’s
name, author, and publication reference, etc. Their method also enabled queries based on model
context information like queries about species, compartment and reaction, etc. An example in the
paper showed their method can successfully retrieve models based on provided meta-information
like model constituents description, author, date, and reference publication. Schulz et al. (2011)
extended this research to apply a new semantic similarity measure to support model retrieval.
They implemented the semantic similarity-based model retrieval method in a BioModels
Database. The retrieved models were ranked by similarity scores, where higher scores indicated
the retrieved model were more similar. However, neither study provided validations to prove
their approach could accurately retrieve computational models based on queries.

Hoehndorf et al. (2011) proposed a framework to annotate system biology models with
biomedical ontologies. The proposed framework proved to possess the capability to support
model retrievals. They developed software tools to automatically convert annotated system
biology models into OWL. Then, queries that were formalized by formal semantics could be
performed in protégé. Although their approach proved to be able to discover computational

models with queries, their query-based approach could not find models that were similar to the

19

queries.

Szabo and Teo (2011) presented a model retrieval approach for component-based simulation
model development. To enable the retrieval, they first introduced an ontology that captures the
important concepts and relationships of the component-based simulation model. A matching
index to quantify the semantic relevance of the candidate simulation models from model
discovery was proposed for model retrieval. The matching index was developed based on three
parameters: model attributes, model component attributes, and model behavior. Ad hoc matching
index values had been defined based on different matching conditions of the three parameters
between a query and a model. However, verification and validation were not provided in the
paper. Furthermore, having the matching index defined in ad hoc fashion makes it very difficult
to apply the approach to other applications.

Li et al. (2017) proposed an ontology-based data mining model management method, and
their method supports model selection. A DMMM (Data Mining Model Management) ontology
had been developed to capture all the important concepts and relationships for all phases of a
data mining process from business understanding to model deployment. In the example provided
in the paper, an ontology-based data mining retrieval mechanism was demonstrated. By
implementing the DMMM ontology in protégé, a new class can be created to represent the query
and axioms can be developed for the class. Models that match the query can be inferred as a type
of the created class when the reasoning engine is operated. An alternative approach for model
retrieval is through developing Semantic Web Rule Language (SWRL) rules. Their approach can

only retrieve models that match exactly the given query. Fuzzy searches for similar models were

20

not enabled.

Kannan et al. (2014) proposed a semantic annotation-based approach to discover
environmental analytical models. They carried out their approach in two phases. In the first
phase, a semantic network (i.e. ontology) has been built to capture key concepts in the air
pollution domain. All the available analytic models were proposed to be modeled using the
traditional conventions of semantic web services (i.e. input, output, preconditions, and effects).
In the second phase, the concepts captured in the ontology and the types of the analytical model’s
entities were connected through relationships defined in the ontology. Such annotation enables
the retrieval of an analytical model based on domain requirements. Experiments had been carried
out and about 100% correct models were successfully retrieved based on given queries. However,
their approach only allows exact queries. Fuzzy searches that can find relevant or similar models
are not enabled.

To sum up, an ontology-based annotation approach for the retrieval of computational models
is popular. For some type of computational models, the retrieved models need to be further
combined. However, the current literature does not provide a method to support model retrieval
based on similarities. Fuzzy model search based on similarities is important because model users
may not always know the exact model they want to use. Similarity-based fuzzy search can
provide model users a list of models that are similar to the requirements given by the model users.
Also, the similarity values can provide model users with information about how related a model

1S.

21

CHAPTER 3. Proposed Methodology for the Knowledge Enriched

Computational Model

In this section, the Knowledge Enriched Computational Model to support lifecycle activities

of computational models is proposed.

3.1 General Description of the Knowledge Enriched Computational Model

UML Class Diagram,
Ontology, ...

RDB Schema Domain ; Standardized
4 »| Information PMML, PFA, ...
XML Schema, ... Data Model(s) Computational ' » Knovyledge
Models Model Enriched
Computational
A A Model
] — |
|
!
) If...then rules, |’ -
Physics- g ’ e {
MathM!., OFL, % Rationales/ Decision Trees, e 1,2) N
Modelica, ... based Rules XEXPR. SWRL N AN
Model(s) e \\(A)

Figure 3.1 Enriching the standardized computational model with domain knowledge

To support the lifecycle activities of a computational model, knowledge that is needed from
the SM domain can be: (1) the domain meanings of the computational model’s entities (e.g.,
nodes, arcs, variables, etc.), (2) the physical or behavioral information that provides insights of a
certain manufacturing system to which the computational model applies, and (3) descriptions or
rules about how a computational model is developed, deployed or can be retrieved. To

incorporate all these types of knowledge into a computational model and to enable the

22

interoperability and traceability of them, both knowledge and computational model should be
explicitly and formally captured. In this dissertation, the three types of knowledge are captured
into information model(s), physics-based model(s), and rationales, respectively. A standardized
computational model should be used to formally capture the entities and the structure of a
computational model. Figure 3.1 depicts the relationships between knowledge models and the
standardized computational model.

To provide accessibility and availability of computational models and their relevant domain
knowledge, the interoperability of this Knowledge Enriched Computational Model (KECM)
must be enabled. In this dissertation, the text-based model interchange languages like XML,
JSON, or OWL, etc. are used to formally represent the KECM. The advantages of using these
languages are: (1) these text-based formats allow all software tools to parse, and (2) these
languages cannot access the underlying manufacturing systems compared to C++, Java, and
Python, etc. (Pivarski et al., 2016). All models (i.e. the standardized computational model,
information model(s), physics-based model(s), and rationales) in the KECM should be
represented in a single selected language (e.g., XML, JSON, or OWL, etc.). To support the
traceability between different models within the KECM, the model entities which are related
across models should be semantically connected.

The detailed descriptions of the four models are narrated in the following sections.

3.2 Information Model

In software engineering, an information model is a representation of concepts, relationships,

23

constraints, rules, and operations to specify data semantics for a chosen domain of discourse
(Veryard, 1992). Here, the information model(s) provides a common terminology for the
application domain where the computational model applies. Compared to the data models, which
have implementation-specific details, information models define concepts and relationships in a
higher abstract level and they are protocol neutral (Pras and Schoenwaelder, 2003). In the
manufacturing domain, for example, the ANSI/ISA-95 standard is an information model that
defines the concepts and relationships to support the interfacing between the enterprise business
systems and the manufacturing control systems. The B2MML (Business To Manufacturing
Markup Language) (Mesa International, 2013) is an XML-based data model which implements
ANSIISA-95. Some examples of the other information models are: the MAnufacturing’s
Semantics ONtology (MASON) (Lemaignan et al., 2006), Manufacturing Reference Ontology
(MRO) (Usman et al., 2013), Platform Independent Model (PIM) (Chungoora et al., 2013), and
Process-oriented Information Model (PIM) (Zhang et al., 2015), etc.

Depending on the application domain, more than one information model may be needed if
the computational model is developed for a cross-domain application. In these cases, the
mappings between the information models should be explicitly defined to link concepts with the
same meanings. It is important to notice that the information model(s) captured in the KECM
should be the one(s) that are widely agreed to by the industrial community. This means that all
companies accept and understand the information model(s) in the KECM. The utilization of an
information model that is not agreed upon by the industrial community can bring difficulties in

carrying out lifecycle activities of the computational model.

24

To explicitly express the domain meanings of other models (i.e. physics-based model(s),
standardized computational model, and rationales), entities from other models need to be
semantically linked to the corresponding concepts defined in the information model(s). Moreover,
the information model(s) must possess the capability to be semantically connected to the domain

data model(s).

3.3 Standardized Computational Model

The standardized computational model captured here is the formal representation of a
computational model. Computational models like a rule model, an optimization model, a
Bayesian Network model, etc. need to be formally represented. The entities in the computational
model (e.g., nodes in a Bayesian Network) should be semantically connected to the
corresponding domain concepts as defined in the information model(s). Since computational
models can be developed for different domain applications, there are no semantic connections
between the generally defined classes/types (e.g., node, arc, variable) in a computational model
and the domain concepts (e.g., process, part, parameter, etc.). To enable semantic connections,
both the standardized computational model and the information model(s) should be instantiated
with respect to the domain application.

Currently, standards like MathML, PMML, and SMP2, etc. have already defined many
standardized computational models. Although these standards capture computational models in a
specific language like XML, their general model definitions (i.e. entity names and model

structures) can be used to represent the computational model in other languages. The

25

standardized computational model needs to be represented in the same language as other models.

3.4 Physics-based Models

The physics-based models are the mathematical, empirical, simulation-based, and Al-based
models, etc. that are developed to capture the physical mechanics of a phenomenon or the
behaviors of an SM system. For example, forecasting models have been created to predict
customer demand (Chapman, 2006) in the ERP level of a traditional hierarchical manufacturing
system. At the MES level, production scheduling models have been studied for shop floor
management (Pinedo, 2010). At the process level, cutting force models have been developed for
modeling the material removal processes (Oberg et al., 2004). Though the models are developed
for a certain manufacturing application, the physics/behavioral information in these models
captures valuable insights about the manufacturing system.

Sometimes, physics-based models can only be processed by specific software tools. This is
because these physics-based models are normally represented as application-specific languages.
For example, the mathematical optimization problems can be modeled by the AMPL (A
Mathematical Programming Language) and the OPL (Optimization Programming Language),
which are processable in optimization solvers like CPLEX. To model complex systems in
simulations, the object-oriented, declarative, multi-domain modeling language Modelica has
been developed. Modelica can be processable by commercial or open-source tools like AMESim,
Dymola, and Openmodelica. But it is very difficult to process the models outside these

application-specific tools.

26

To enable a universal method to extract information from the physics-based models, these
physics-based models need to be transformed into text-based formats (i.e. their standardized
models). The text-based formats are friendly for software tools to parse. It should be noted that,
no matter which text-based format (i.e. XML, JSON, or OWL, etc.) a physics-based model has,
to merge a physics-based model(s) into a computational model, the physics-based model(s)
should be finally transformed into the same format as the other models (i.e. information model(s),

standardized computational model, and rationales).

3.5 Rationales

The rationales or rules are used to describe the rationality of a computational model or to
guide the lifecycle activities of computational models.

For model development, rationales can be used to guide the development of computational
models. For knowledge from the application domain, the rationales need to have connections to
the related information models for obtaining the semantic meaning of the domain concepts. The
rationales may also need to be linked to the physics-based models to indicate the part of system
behavioral knowledge used in developing the computational model. Also, the rationales need to
connect to the standardized computational model to specify the links between the computational
model and the knowledge used in model development.

To facilitate the deployment of a computational model in a manufacturing system, the
rationales capture rules that can load data between the information model(s) and the standardized

computational model. The information model(s), which is accepted by the industrial community,

27

can be shared among different stakeholders without considering the specific data model(s).
Although information models are normally used to capture higher-level information, they can
also represent data when necessary.

To support the retrieval of computational models with similar functionalities, rationales
capture the formal description of the computational model. In this dissertation, the formal
description of a computational model is represented as formal semantic expressions. To retrieve
models, a semantics-based method has been proposed to measure the semantic similarity
between the semantic expression of a computational model and that of a model retrieval
requirement. Only computational models with high similarity values can be retrieved.

Like other individual models in the KECM, the rationales also needed to be formally
represented to make them processable and understandable by software tools. For rationales that
are in rule-like fashion, some technologies that formally express rules can be used. For example,
the XEXPR scripting language (W3C, 2000) enables the expression of rules in XML. JsonLogic
(Wadhams, 2015) allows the construction of complex rules and serialization of the rules in JSON.
In OWL, the SWRL (Semantic Web Rule Language) (W3C, 2004) language can be used to build
rules. For rationales that are model descriptions, the native XML, JSON, or OWL languages can

be used. The selection of the languages should conform to the overall representation technique.

28

CHAPTER 4. Utilization of the Knowledge Enriched Computational Model

for Model Development

This chapter presents a method to use the KECM to support the development of
computational models. A case study that develops a Bayesian Network to estimate energy
consumption of the injection molding process has been introduced to demonstrate the utilization
of the KECM. In the case study, the KECM for developing the Bayesian Network model has been

developed. Finally, the benefits of using the KECM to support model development are discussed.

4.1 Introduction

Domain knowledge is normally heavily used in developing computational models. However,
the knowledge is not properly captured and integrated with the standardized computational
models. The model development knowledge is normally documented in natural languages with
the computational models. However, no software tools can easily process and understand the
documented natural language-based knowledge. Model development knowledge is important for
downstream activities of computational models like model maintenance or model update. This is
because whenever a model needs to be updated or modified, it is crucial to understand how the
original model was developed. Domain knowledge brings the understanding of the domain
meanings of the computational model’s entities (e.g., nodes, arcs, variables, etc.) and means to
construct the computational model. Moreover, for computational models that have to be
developed in distributed environments, the interoperability of the domain knowledge used for

model development should be enabled. For example, without explicitly and formally captured

29

model development knowledge, developing a data analytics model with domain experts and data
analysts being at different locations relies solely on vocal discussions or written document

exchange.

4.2 Development of Computational Models with the Knowledge Enriched

Computational Model

The Knowledge Enriched Computational Model discussed in Chapter 3 possesses the
capability to support the development of computational models. The KECM, which formally
represents a computational model and its relevant domain knowledge, can be used as the medium
for information exchange between model developers located in different geographical places
(Figure 4.1). Model developers can directly work with the KECM to create or modify models
and to add the corresponding knowledge (i.e. physics-based models and rationales). To test the
model during development, parsers can be developed to transform the standardized
computational models from the model interchange language like XML, JSON, and OWL to the
means that software tools can consume.

To validate this, a case study has been created to utilize the proposed KECM to support the
development of a Bayesian Network model. In the next section, a case study scenario of
developing the Bayesian Network model without using the KECM is first introduced. Then, the

utilization of KECM to support the development of the Bayesian Network model is described.

30

[
Model Developer | Model Developer

|
[
|

() | (-
. | |
T a———— CStandard!zed' ~._ Creating model & :
Model(s) om&t:;:lona Knowledge h adding knowledge |
Enriched :

i i Computational ' L

= | =

Model = I —
— . | | | T :

4 | Modifying model &
_ | adding knowledge
BhyElES: Rationales/ : i

based Rules | L

= | e——|=

Model(s) = I =
|
. |
. |

Figure 4.1 Development of computational models with the KECM

4.3 Case Study Scenario

In a previous study (Li et al., 2017), a Bayesian network (BN) model has been developed to
predict the energy consumption of the injection molding process. The advantages of using a
Bayesian Network to predict the energy consumption of injection molding are: (1) BN is suitable
for small data sets. To train a BN model for energy estimation, data from part design, mold
design, material, and machine needs to be available. Although injection molding is one of the
mass-production processes, the collected data targeting at different products/parts may be limited.
(2) A BN allows efficient use of different sources of knowledge: knowledge provided by domain
experts and the knowledge learned from data. The ability to learn a BN structure from data can
help the user to identify new relationships between parameters, which in turn can be used for
process improvement. (3) A BN can answer queries based on incomplete information. A designer

may not possess all the information like the properties of the injection molding machine that will

31

be used for producing the part. A BN can provide an estimate for a query considering nearly all

possible values for that missing information based on the knowledge learned from data.

Table 4.1 Parameters for modeling the Bayesian Network nodes

Category Name Unit Description
Product v, m3 Volume of the part
A N/A Percentage of volume used for gating system
d mm Maximum depth of the part
n N/A Number of cavities
h, mm Maximum wall thickness
Material Materic N/A Material type for the injection molded material
p kg/m3 Specific density of polymer
14 (mm?)/s Thermal diffusivity of the material
Cp J/kg°C Heat capacity of the polymer
Hp kj/kg Heat of fusion
€ N/A Percentage shrinkage rate of the polymer
Machine Machin N/A Machine type for the injection molding machine
Py 1474 Power consumption when the machine is idling
s mm Maximum clamp stroke
tq s Dry cycle time
Pinj kW Machine injection power
Process pi MPa Injection pressure
T °C Recommended mold temperature
Tinj °C Injection temperature
Tej °C Ejection temperature
Environment Thol °C Initial temperature of the polymer
Others Q m3 Maximum flow rate for injection
Qavg m3 Average flow rate
P, kW Melting power
Vs m3 Volume of one shot including gating system
En kJ Energy consumption in melting
Ein; kJ Energy consumption of injection
tinj s Injection time
E, kJ Energy consumption in cooling
CopP N/A Coefficient of performance
E, kJ Energy consumption in resetting
t, s Resetting time
Esnot kJ Energy consumption of a shot
n N/A Efficiency
teye s Cycle time
Epart kJ Energy consumption of a part

32

To study the role of SM domain knowledge in developing the BN, a BN model was first
created by learning its structure and parameters from the data using the ‘bnlearn’ package
(Scutari and Denis, 2014) in R without the intervention of the domain knowledge. The BN nodes
were selected from the parameters related to the product, material, machine, process, and
environment, etc. (Table 4.1). The parameters were extracted from Nannapaneni et al. (2016).
After the learning process, the prediction accuracy was tested. It was achieved at 76.8%, which is
relatively low for effective prediction. By carefully studying the structure of the learned BN
(Figure 4.2), we found that the learned structure missed finding important relationships and
captured wrong/weak relationships instead. To improve the learned model, expert knowledge
was applied to identify the problems in the model. The BN development process is shown in
Figure 4.3.

Due to the lack of LCA (Life-cycle assessment) data from the real injection molding
processes, a simulation-based data generator had been developed to generate the data. This data
generator has been validated against experimental data from the literature (Ribeiro, 2012).
Before learning the structure from data, a whitelist which captures important relationships
between the parameters was created. A whitelist, which contains arcs (that need to be included in
the BN) was created based on the knowledge found from mathematical equations (shown in
Table 4.2) for calculating the energy consumption of the injection molding process. The
equations are extracted from Madan et al. (2013). An equation can be considered as defining the
parent/child relationships for the equation variables. The independent variables (i.e. variables on

the right-hand side of an equation) of an equation are treated as the parent of the dependent

variable (i.e. the variable on the left-hand side of an equation).

Figure 4.2 A BN structure learned from data

Validate against

Data Generator .
experimental data

Data

Whitelist Learn BN Structure [«

Black list

Learn the BN’s parameters
using the data

Verity the
BN model

BN Model

Figure 4.3 Development process for the BN

33

34

Additionally, a blacklist, which prevents the BN to create arcs between nodes, was created
from the problems identified in the learned BN structure. Through carefully examining the
learned BN structure (Figure 4.2), four problems were identified: (1) a parameter node (i.e. nodes
defined by the Parameter class in the SMO) from one of the 5 categories (i.e. product, process,
material, machine, and environment) should not have causal relationships with parameter nodes
from the other 4 categories. For example, material-related parameters like p and C, are found
not to depend on the material but are related to a product-related property h,,. Though there are
recommendations for the minimum wall thickness according to the injection molded materials,
the maximum wall thickness h,, are normally designed as thinner as possible. This is because
thinner walls require less material and less cooling time. However, there are no recommendations
for the h,, given different materials. (2) The concept nodes like Material and Machine should
not be related to the parameters from categories other than Material and Machine, respectively.
Figure 4.2 shows that machine property nodes s and P;y,; are found to be dependent on node
Material. However, the injection molding machine is selected based on the shot size and the
maximum clamp stroke, which are dependent on the product not material. (3) Parameter nodes
within a category should not have parent-child relationships. It is true that within some
categories like Machine and Material, parameter nodes are related. But, it is the material type or
the machine type which determines the properties. (4) The parameter nodes from the 5 categories
should not have any parent nodes other than the concept nodes. It can be observed in Figure 4.2
that parameter nodes from the 5 categories like Ti,; and T,; are found to have parent nodes in

the Others category like t;,;. There may be causal relationships between Tj,; and t;,;. But, it

35

should be t;,; to be dependent on Tj,;, if there are causal relationships, not the other way

around.

Table 4.2 Equations for estimating energy consumption of injection molding

Stage Equations
Melting Q = Pipj * 1000/pi
Qavg = 0.5Q

_ anngp(Tinj - Tpol) + anngf
1000

Pn

V—v(1+ c . A)
s = 100 " 100/ "

Em=FPn*%)/Q

Injection Einj = Pinjtinj
M P
Cooling g = PYCo(Tinj = Tej) + pViHy
° 1000 X COP
_ hrzn 4(Tinj —Tm)
¢ nzy Tej —Tn
Resetting E, = 0.25(Ei; + Ec + Ey)

2d +5
tr=1+175t; |—

0.75Em + Einj | By | Ee , 025En

Whole Process

77inj r e m

EShOt =1.2X% () + Pbtcyc
tcyc = tinj + tC + tT

E _ Eshot
part —

36

By utilizing the whitelist and the blacklist, an iterative approach to learn the BN structure
from data was applied (Figure 4.3). By using the iterative approach, the wrong arcs can be easily
identified and handled during each iteration. With the whitelist and the iteratively updated
blacklist, the learning procedure is repeated until no wrong arcs can be found in the BN structure.
After learning the BN parameters (i.e. conditional probability tables for discrete nodes and
Gaussian distributions for continuous nodes) and verifying the BN model, the development of
the BN is finalized. The prediction accuracy of the BN model developed with the domain

knowledge is achieved at 85%, which is satisfied and is higher than the learned BN model.

4.4 Development of the Knowledge Enriched Computational Model
In this section, the KECM for the BN is developed. The development of each individual
model and the integration between the models are introduced. In this paper, OWL 2 (W3C, 2012)

is used as the format for implementing all the models.

4.4.1 Information Model

As previously discussed, there are a lot of information models or ontologies developed in the
manufacturing domain like MASON and MRO. Since the application domain of this case study
is targeting estimating the energy consumption of the injection molding process, the information
model used in this paper is selected from a previous work (Zhang et al. 2015). This information
model was developed to facilitate the sustainability evaluation in the manufacturing domain. This
model was also extended with respect to the injection molding process. A compact version of the

information model, or the Sustainable Manufacturing Ontology (SMO), is extended for this case

37

study (Figure 4.4). A brief explanation of the concepts in the information model is narrated

below:

Product: A Product describes an object which is synthesized by a set of parts or
subassemblies (each subassembly itself is also a product). The spatial relationships and
contact constraints between parts are also defined within the Product class.

Part: A Part is a single component that is used to construct a Product. A Part is a minimal
functional unit of a product; thereby a part must be formed with a type of material and it has
a certain geometrical shape.

Material: A Material describes a kind of material associated with a Part. A Material has a
list of properties like mechanical properties, chemical properties, thermal properties, etc.
which are captured in the Parameter class.

State: The State class describes the status of a Product, Part or Material at a certain time
point. For example, a mechanical or a chemical property of a particular Material might have
different values under different conditions or by using different measuring methods. The
State class enables the SMO to capture the characteristics of any Product, Part or Material
at any important time point.

Process Plan: A ProcessPlan defines a sequence of manufacturing operations to produce a
Part. The types of processes, types of equipment and operation parameters are specified in a
ProcessPlan.

Process: A Process describes a series of operations that need to be carried out to produce the

final product. A Process can be a ManufacturingProcess or an AssemblyProcess. A

38

ManufacturingProcess is a process that transforms a raw material into a finished or a
semi-finished Part. It can be a machining process, a casting process, a forging process, or a
heat treatment process, etc. All the ManufacturingProcesses required to be carried out to
produce a Part construct a ProcessPlan.

Activity: An Activity is a minimal operational unit of a Process. For example, an Activity of
a typical machining process can be setting up the machine, fastening the workpiece,
positioning the cutting tool, injecting the cutting fluid, etc.

Environment: The Environment class describes the environment related concepts of an
Activity or a Process. All types of the environmental impacts are defined here, and each type
of impacts is represented as a sustainability indicator. The sustainability of a Part or a
Product can be further evaluated by considering the Processes that are carried out to produce
the Part or Product.

SustainabilityMetrics: The SustainabilityMetrics class is able to describe any of the
sustainability metrics published in the literature or applied in the industry. As previously
discussed, sustainability metrics are associated with their own evaluation methods (e.g.,
analytical models) and particular manufacturing processes. Thus, the SustainbilityMetrics
can be attached to a certain Process or an Activity.

Parameter: A Parameter represents an entity that describes a property of a manufacturing
concept. The properties of a Product, a Part, a Material, a Process, and an Activity are
modeled as Parameters.

Equipment: Equipment can be tools or machines on the shop floor.

State

Behavior LA

=

! Part

Product

T

Requirement

—

ProcessPlan

=]

Parameter

AssemblyProcess

l

N |

Equipment

Manufacturing _,—|> Process

Activity

Process

Environment

SustainabilityMetrics

39

Figure 4.4 A UML Representation of the extended Sustainable Manufacturing Ontology (SMO)

4.4.2 Physics-based Model

The physics-based models used in developing the BN are the mathematical equations which

estimate energy consumption of injection molding (Table 4.2). To represent mathematical

equations in OWL, the OntoModel proposed by Suresh et al. (2008) has been used. In
OntoModel (Figure 4.5), other than capturing the assumption, universal constant and dependent

variable, etc., an equation is represented using the Content ML in MathML. In Figure 4.5, the

black boxes represent owl.classes; the green boxes are datatypes; the pink arrows indicate the

hasSubClass relationships; the red arrows indicate the has-a object properties; the green arrows

indicate the data properties. The OntoModel is modified so that it can be connected to the

40

domain information model (i.e. SMO) as shown in Figure 4.4. The Variable class in the
OntoModel is connected to the Parameter class in the SMO, which connects the variables in an

equation to their domain meanings.

SuperModel

Y hasModelContainer
ModelContainer
v, hasModel

hasEquation hasAssumption hasUnii(;Zonst hasDepVar hasindepVar hasModParm
| Equation | [Assumption | [Universal Dependent | | Independent Model
Constant Variable Variable Parameter
T T T
| hasVar | hasVar | hasVar
Vv Vv Vv
\ Variable \ \ Variable \ \ Variable \

hasParameter -~
%

Parameter

Figure 4.5 OntoModel and its Connection to the SMO

4.4.3 Standardized Computational Model

To fully represent a BN (i.e. the standardized computational model) in an OWL ontology, an
OWL-based BN model is developed. Figure 4.6 demonstrates this OWL-based BN model in a
tree structure. The class names in this model are borrowed from the PMML 4.3 - Bayesian
Network Models (DMG, 2016). The structure of the PMML BN model is slightly modified (e.g.,
adding BayesianNetworkNode class, replacing the has-a relationship between
ContinuousDistribution and NormalDistribution with the hasSubClass relationship) to better fit
the OWL structure. This OWL-based BN model has been verified with the BN example provided
on the webpage of the PMML BN model. The verification proves the OWL-based BN model to

be capable of fully representing BNs.

41

l BayesianNetworkModel l
T

hasBayesianNetworkNode

N

l BayesianNetworkNode l
hasSubcmubC\ass\l

l DiscreteNode l lContinuousNodel

\
/' hasParentNode

-7 7 N T~
////’@/R/ hasSubWbCK \\\Oy\\\\\
-7 / -

- ’ l DiscretizedContinuousNodel N ~<_

—~ 7

~ T N =~

- /
hasStatePrabability hasDiscreteCo/ncfitionaIProbabiIity hasDiscrjetizeBin hasContinuou§Dlstribution hasContinGousQoDditionaIProbabilithy

L Q ~
l StateProbability l lDiscreteConditionaIProbabiIityl l DiscretizeBin l l NormalDistribution l l ContinuousConditionaIProbabiIityl
T
7N 7N V7N /N
hasState hasProbability hasParent§tafe hasStateProbability haslnjterval hasMean hasVa\riance hasContinuousDistribution hasParentState
X X\ D p/ >
‘ xsd:strmg‘ ‘ xsd:double HParentStatel l StateProbability l l Intervall l Mean l l Variance l l NormalDistribution l l ParentStatel
N T T
/ \; / N\
hasParent hasState hasLeftMargin lha\stght!\/largm hasExbression hasEprression
N / | N
/ | \ Vi
l DiscreteNode] ‘ xsd:string ‘ ‘ xsd:double ‘ :‘ xsd:double ‘ l Expression] l Expression k}
|
hasClosure has‘,Expression
I
NormalDistribution l V s A
Apply

TriangularDistribution l

7 7/ N
hasNumber hasFunction hasf’arent
7 7/
N,

ContinuousDistribution

LognormalDistribution l

UniformDistribution l ‘ xsd:double‘ ‘ xsd:string‘ l ContinuousNode l

Figure 4.6 A Tree presentation of the OWL-based BN model

All the parameters in Table 4.1 are modeled as the BayesianNetworkNode instances in the
OWL-based BN model. The semantic connection between a BayesianNetworkNode and a
manufacturing concept in the SMO is achieved by an isAssociateTo(BayesianNetworkNode,

domainConcept) object property.

4.4.4 Rationales

To improve the BN structure with domain knowledge, the rationales/rules to facilitate the
creation of the whitelist and the blacklist are developed. The whitelist rules/rationales are created
to capture the BN node relationships provided from the physics-based models (i.e. equations)
and domain rules. Based on the identified four problems of the learned BN structure (section 4.3),

blacklist rules/rationales are developed. The blacklist rules can be used to avoid the wrong

42

structures in the BN. All the whitelist and blacklist rules are modeled using SWRL in OWL. The
hasParentNode object properties represent the whitelist relationships. The hasWrongArc object
properties represent the blacklist relationships. To enhance the traceability of the rules, each rule
has its own corresponding numbered object property. For example, the hasParentNode object
property in whitelist rule 1 is hasParentNodel .

Whitelist Rule 1

This rule is created based on the physics-based models (equations in Table 4.2). As discussed
before, an equation can be considered as defining the parent/child relationships for the equation
variables. The independent variables (i.e. variables on the right-hand side of an equation) of an
equation are treated as the parents of the dependent variable (i.e. the variable on the left-hand
side of an equation). The hasParentNodel object property represents the parent/child relationship

between two BayesienNetworkNode.

DependentVariable(?dv), IndependentVariable(?iv), MathematicModel(?m), Variable(?v_dv),
Variable(?v_iv), Parameter(?pl), Parameter(?p2), BayesianNetworkNode(?nl),
BayesianNetworkNode(?n2), hasDependentVariable(?m, ?dv),

hasIndependentVariable(?m, ?iv), hasVariable(?dv, ?v_dv), hasVariable(?iv, ?v_iv),
isAssociatedWith(?nl, ?pl), isAssociatedWith(?n2, ?p2), isAssociatedWith(?v_dv, ?pl),

isAssociatedWith(?v_iv, ?p2) -> hasParentNodel (?nl, ?n2)

The meaning of this rule is: for any MathematicModel, if the Variables of its

IndependentVariable and its DependentVariable represent the same Parameters as two

43

BayesianNetworkNodes do, then the BayesianNetworkNode that can represent the
IndependentVariable in the MathematicModel should be the parent node of the

BayesianNetworkNode that represents the DependentVariable in the MathematicModel.

Whitelist Rule 2
According to the classification of the parameters in Table 4.1, the manufacturing concept
nodes (e.g., Machine and Process) should have parent-child relationships with their related

parameter nodes.

ManufacturingConcept(?mc), Parameter(?p), BayesianNetworkNode(?nl),
BayesianNetworkNode(?n2), isAssociatedWith(?nl, ?mc), isAssociated With(?n2, ?p),

hasParameter(?mc, ?p) -> hasParentNode2(?n2, ?nl)

The meaning of this rule is: for any ManufacturingConcept, which can be Machine, Product,
and Process, etc. because they are sub-classes of ManufacturingConcept, its corresponding
BayesianNetworkNode should be the parent node of the BayesianNetworkNode that represents

the Parameter of the ManufacturingConcept.

Whitelist Rule 3

Some process parameters in the injection molding process are selected according to the
material. For example, the selection of T, Tej, Tm, and p; are selected based on the material
type (Boothroyd et al., 2011). So, causal relationships between the Material node and these

process parameters should be captured.

44

Material(?m), Parameter(?pp), Process(?p), BayesianNetworkNode(?n_m),
BayesianNetworkNode(?n_pp), isAssociatedWith(?n_m, ?m), isAssociatedWith(?n_pp, ?pp),

hasParameter(?p, ?pp) -> hasParentNode3(?n_pp, ?n_m)

The meaning of this rule is: the BayesianNetworkNode which represents a Material should

be the parent node of the BayesianNetworkNode which represents a Parameter of a process.

Blacklist Rule 1
To address the first problem of the learned BN structure, a set of rules to prevent connecting
parameter nodes from different categories are created. Here, the rule to prevent parameter nodes

from the Material and Product categories to be connected is demonstrated.

Material(?material), Parameter(?p_material), Parameter(?p_product), Product(?product),
BayesianNetworkNode(?n_p material), BayesianNetworkNode(?n_p product),
isAssociatedWith(?n_p _material, ?p_material), isAssociatedWith(?n_p product, ?p_product),
hasParameter(?material, ?p_material), hasParameter(?product, ?p_product) ->

hasWrongArcl(?n_p_material, >n_p_product), hasWrongArcl(?n_p product, ?n_p_material)

The meaning of this rule is: Any BayesianNetworkNode that represents a Parameter of
Material should have hasWrongArcl relationships (i.e. two directions) with the
BayesianNetworkNode that represents a Parameter of Product.

From this rule, it can be observed that the Blacklist Rule 1 tries to enumerate all the wrong

arcs of problem #1.

45

Blacklist Rule 2
This blacklist rule addresses problem #2. It avoids the Material and the Machine nodes to be
connected to the parameter nodes from other categories. An example rule is shown below to

prevent the Material node to be connected to the machine-related parameter nodes.

Machine(?machine), Material(?material), Parameter(?p _machine),
BayesianNetworkNode(?n_material), BayesianNetworkNode(?n_p machine),
isAssociatedWith(?n_material, ?material), isAssociatedWith(?n_p_machine, ?p_machine),
hasParameter(?machine, ?p_machine) -> hasWrongArc2(?n_material, ?n_p _machine),

hasWrongArc2(?n_p_machine, ?n_material)

The meaning of this rule is: Any BayesianNetworkNode that represents a Parameter of
Machine should have hasWrongArc2 relationships (i.e. two directions) with the
BayesianNetworkNode that represents Material.

From this rule, it can be observed that the Blacklist Rule 2 tries to enumerate all the wrong

arcs of problem #2.

Blacklist Rule 3

Targeting at problem #3, this blacklist rule avoids the parameter nodes within one category
to be connected to each other. The example for the material category is shown below.

The meaning of this rule is: For any two different BayesianNetworkNodes that represent two
Parameters of Material, they should have the hasWrongArc3 relationships (i.e. two directions).

From this rule, it can be observed that the Blacklist Rule 3 tries to enumerate all the wrong

46

arcs of problem #3.

Material(?m), Parameter(?pl), Parameter(?p2), BayesianNetworkNode(?nl),
BayesianNetworkNode(?n2), isAssociatedWith(?nl, ?pl), isAssociatedWith(?n2, ?p2),
hasParameter(?m, ?pl), hasParameter(?m, ?p2), DifferentFrom (?nl, ?n2) ->

hasWrongArc3(?nl, ?n2)

Blacklist Rule 4

To prevent the parameter nodes from the 5 categories to have any parent nodes other than
their corresponding concept nodes (problem #4), an example rule is demonstrated below for the

process category. In this rule, the “hasTempParentNode” object property represents an arc

learned from data.

Process(?process), Parameter(?pm), hasParameter(?process, ?pm),
BayesianNetworkNode(?n_p _m), BayesianNetworkNode(?n_mc),
isAssociatedWith(?n_p_m, ?pm), hasTempParentNode(?n_p _m, ?n_mc) ->

hasWrongArc4(?n_p _m, ?n_mc)

The meaning of this rule is: If the BayesianNetworkNode that represents a Parameter of
Process has a temporary parent node (i.e. hasTempParentNode) with any BayesianNetworkNode,
then this arc (i.e. hasTempParentNode relationship) should be categorized as wrong arc type 4.
Since the hasTempParentNode is the arc learned from data, so the relationship between the

BayesianNetworkNode of a Parameter of Process and that of Process cannot be picked up again

47

by the learning algorithm (i.e. the relationship has already captured in the whitelist).

4.45 Representation of the Knowledge Enriched BN Model in OWL

Annotation properties Datatypes Individuals Rules: IS0
Classes Object properties Data properties s =
Machine(?machine), Parameter(?p_machine), Parameter(?p_product),

Product(?product), BayesianNetworkNode(?n_p_machine),
BayesianNetworkNode(?n_p_product), isAssociatedWith(?n_p_machine,
?p_machine), isAssociatedWith(?n_p_product, ?p_product),
hasParameter({?machine, ?p_machine), hasParameter(?product, ?p_product)
hasWrongArc1(?n_p_machine, ?n_p_product), hasWrongArc1({?n_p_product,

Asserted ¥

¥ owl:Thing -
Assumption
BayesianNetworkModel
V- & BayesianNetworkNode
4 ContinuousNode
0 DiscretizedContinuousNode
) DiscreteNode
Lo DiscretizedContinuousMode
ContinuousConditionalProbability
- ContinuousDistribution
; LognormalDistribution
NormalDistribution Envir t(Zenvir t), Parameter(?p_environment),
TriangularDistribution Parameter(?p_product), Product(?preduct),
Unlforlestrlbutlon BayesianNetworkNode(?n_p_environment}),

Imported ontologies: F M= m & fIndividuals by type: egnVs [X] = ®] (%] § Property assertions: eqnVs L] = (] [3¢]
= & 3 Data praperty assertions =

ManufacturingConcept{?mc), Parameter{?p), BayesianNetworkNode(?n1),
BayesianNetworkNode(?n2), isAssociatedWith(?n1, ?mc), isAssociatedWith(?n2,
7p), hasParameter{?mc, ?p) hasParentNode2(?n2, ?n1)

Material(?m), Parameter(?p1), Parameter(?p2), BayesianNetworkNode(?n1),

BayesianNetworkNode(?n2), isAssociatedWith(?n1, ?p1), isAssociatedWith(?n2,

?7p2), hasParameter(?m, ?p1), hasParameter(?m, ?p2), DifferentFrom (?n1, ?n2)
hasWrongArc2(?n1, ?n2)

Direct Imparts

ontologies/2017/8/5M0=

< Jannhrs

<http:/fwww.semanticweb, v--@ Equation (12) = = hasMathML “<math> L
arg/zh/ontologies/2017/8/0ntoModelModified> .4y eqnEc <apply>
OntoModelModified .4 egntr <eq><f|?q>
<cixVs</ci>
on v IRI: <http:iwww.semanticwehb. -4 eqntc
0 ntologies/201 7/8/0OntoModelModifieds -4 eqnEinj <:::Jilr)rll\|;:><ftimes>
Location: CMJsersizhiDesktopior thesisinew -4 eqnEpart <di>Vp</ci>
paperdemolOntoModelModified.owl ----=eanr <disn</cis
= -4 eqnEshot
<http://www.semanticweb, & <apply>
org/zh/ontologies/2017/9/8N> @ eqntcyc <plus></plus>
® eqnQ <cn type=\"integer\">1</cn>
. ; <apply>
Antaloay IRT: . eqntin g o
1) - = - -
TS . ¥ IndependentVariable (32) <ci»epsilon</ci>
Location: C\WsersizhiDesktop\for thesisinew _ <cn>100</cn>
paperidemalBi.owl -4 variableIndependentdelta </ Iy L
-4 variableIndependentd apply
<http:/fwww.semanticweb. — @ variableIndependenttc <EDPI,V> ..
arg/zh/entologies/2017/8/SMO> 4@ variableIndependentTpol “d_“’";j"l’“‘fd'_‘"d‘*’
SMO -4 variableIndependentEinj :EIn:;- lel:ltl:?:,{ll::::‘-
[y IRI: <httpdiwaw.semanticwsh. ~ @ variableIndependentn - </apply>
. —

Figure 4.7 The Knowledge Enriched BN Model in protégé 5.2

In the development of the Knowledge Enriched BN model, the individual models for the
information model, standardized computational model, and physics-based model are separately
created first. These models are generic and could be applied to any applications and do not have
any populated instances. After verifying that all the individual OWL-based model can

sufficiently represent the models, the KECM is created by importing the three OWL-based

models into the OWL-based KECM. Instances of the domain concepts in the SMO, the

48

BayesianNetworkNodes in the BN model, and the equations represented by the OntoModel are
populated. The whitelist and blacklist rules are then created using the SWRL. The screenshot of

the Knowledge Enriched BN model in protégé 5.2 is demonstrated in Figure 4.7.

Individuals: bayesianNetworkNodeCp (1 = @] [X] QESGEEREREMNIECETS

& ﬁ Annotations: bayesianNetworkNodeCp (7] [= (W]]
& bayesianNetworkNodeCOP 4| Annotations =
bayesianNetworkNodeCp

bayesianNetworkNoded

& bayesianNetworkNodedelta
& bayesianNetworkNodeEc

bayesianNetworkNodeEinj

& bayesianNetworkNodeEm

bayesianNetworkNodeEpart
& bayesianNetworkNodeepsilon
& bayesianNetworkNodeEr

bayesianNetworkNodeEshot
& bayesianNetworkNodeeta

& bayesianNetworkNodegamma
& bayesianNetworkNodeHf

& bayesianNetworkNodehm

bayesianNetworkNodeMachine
& bayesianNetworkNodeMaterial
& bayesianNetworkNoden

bayesianNetworkNodePb

& bayesianNetworkNodepi

bayesianNetworkNodePinj

& bayesianNetworkNodeQ

& bayesianNetworkModerho

bayesianNetworkNodes

& bayesianNetworkNodetc

bayesianNetworkNodetcyc

& bayesianNetworkNodetd

& bayesianNetworkNodeTej

bayesianNetworkNodeTinj

& bayesianNetworkNodetinj

& bayesianNetworkNodeTm

bayesianNetworkNodeTpol

& bayesianNetworkNodetr

& bayesianNetworkNodeVp

& bayesianNetworkNodeVs

& environment

& eqnEc

b oz

-

Description: bayesianMetworkModeCp

Types

BayesianNetworkNode

Ohject property assertions

Property assertions: bayesianMetworkMNodeCp

M isAssociatedWith paramtCp

M hasWrongArc3
M hasWrongArc3
M hasWrongArc3
M hasWrongArc3
. hasWrongArc2
™ hasWrongArcl
™ hasWrongArcl
M hasWrongArcl
M hasWrongArcl
. hasWwrongArcl
. hasWrongArcl
™ hasWrongArcl
M hasWrongArcl
M hasWrongArcl
M hasWrongArcl
. hasWrongArcl
. hasWrongArcl
™ hasWrongArcl
M hasWrongArcl

M hasParentNode? bayesianMNetworkModeMaterial

Data property assertions

bayesianMetworkNodeHf
bayesianNetworkNodegamma
bayesianNetworkMNoderho
bayesianNetworkNodeepsilon
bayesianNetworkNodeMachine
bayvesianNetworkMNodedelta
bayesianMetworkNoded
bayesianNetworkNodeTe)
bayesianNetworkNodeTpol
bayesianNetworkNodePinj
bayvesianNetworkMNodepi
bayesianNetworkModeTm
bayesianNetworkModeVp
bayesianNetworkMNodeTinj
bayesianNetworkNodetd
bayesianNetworkMNodeFPh
bayvesianNetworkMNodes
bayesianNetworkNodehm

bayesianNetworkNoden

Figure 4.8 Inferred whitelist and blacklist relationships in protégé 5.2

Figure 4.8 shows a screenshot of the reasoning of rationales/rules (i.e. whitelist and blacklist

rules). The object property assertions highlighted in light yellow are the inferred relationships

49

from reasoning the rationales/rules. It can be observed that the rationale/rule used to create or

eliminate an arc can be easily tracked by using the numbered object properties.

4.5 Utilization of the Knowledge Enriched Computational Model

Figure 4.9 The final BN structure

Following the manual development process (Figure 4.3), a BN is developed (Figure 4.9) by
utilizing the KECM. In the development process, the KECM has been used to exchange
information between a domain expert and a data analyst. The domain expert first models the
domain knowledge (integrating the information model, adding the physics-based model, creating

rationales) for the development of the BN. Then, the data analyst iteratively learns the BN

50

structure from data with the whitelist and the blacklist, which are extracted from the Knowledge
Enriched BN model through a parser (that has been developed for this purpose). Here, the
KECM is used to pass the BN along with its relevant domain knowledge between the domain
expert and the data analyst. After sending the KECM with the learned structures, the domain
experts can analyze the BN structure and add the corresponding rationales to improve the BN
structure. The domain expert can directly add or modify domain knowledge on the KECM in
GUI (Graphical User Interface) -based software tools like proté&gé Figure 4.10 is a sequence

diagram that shows the information exchange.

Domain Expert Data Analyst
| |

1. Build the KECM model from the fourJI_ JI_
individual models

2. Populate the KECM KECM Model
3. Add whitelist rules Extract whitelist from the KECM

4. Run the whitelist rules and add arcs model

alt)

[if more arcs are picked up]

loop J Data Mining/Machine Learning

Add temperory arcs to the
KECM Model

*[if wrong temperory arcs exist] | k& — — — KECM Model- — — — —
1. Add corresponding blacklist
rules]

2. Run blacklist rules and mark

on the wrong arcs —KECM Model——»
Extract wrong arcs from the

KECM model & add wrong arcs
to the blacklist

[if no more arcs are picked up]
& — —Finalized KECM Model— —

Figure 4.10 Information exchange using the KECM

51

4.6 Discussion

Two benefits have been identified during the development of the BN using the KECM: (1)
Shortened cycle time for model development. In this case study, with the assistance of automatic
processing and reasoning from the software tools, the development cycle time has been reduced
from 2 hours to 15 minutes. With the formally defined rationales/rules, the arcs captured by the
whitelist and the blacklist can be generated automatically instead of working manually. (2)
Eliminating human error. Through reasoning, the formally defined rationales/rules, more arcs in
the whitelist and the blacklist have been identified. Some of these arcs are missed by manual
work.

These two direct benefits are brought by the enhanced interoperability and traceability of the
KECM. From enhancing the interoperability perspective, the KECM can explicitly represent the
computational models with their relevant domain knowledge through capturing their concepts,
relationships, and rules, etc. without semantic ambiguity; the computational models and their
relevant domain knowledge are formally represented, which enables the automatic processing
through software tools. From enhancing the traceability perspective, the entities of a
computational model can be directly traced to its corresponding domain concepts; the
computational models’ structures can be easily traced to the rationales/rules which create these
structures. It can be expected that with the enhanced interoperability and traceability, more
effective and efficient information exchange can be achieved by using the KECM in the
distributed environment, where model developers are not in the same geographical area. The

information exchange between them can be made explicit and formal by using the KECM

52

instead of online vocal discussion and written document exchange.

The limitation of using the KECM for model development is that formulating the
physics-based models relies on their formal representations. In the case study, the representation
of mathematical equations in the OntoModel is demonstrated. Enabled by the PMML and the
PFA, formal representations of the predictive models can also be achieved. However, formal
representations of other types of models like optimization models and simulation models are
either limited or currently unavailable. Though the modeling languages for these models exist,
these languages are tool-specific. Without the corresponding software tools and their APIs, the
parsing of the programming language-based model is difficult. Thus, more work needs to be
done for standardizing the physics-based models. This will also improve the interoperability of

the physics-based models in their own domain applications.

53

CHAPTER 5. Utilization of the Knowledge Enriched Computational Model

for Model Deployment

This chapter presents general methods to support the deployment of computational models.
This chapter is divided into two main sections. The first section introduces a general method to
deploy computational models in manufacturing systems. An example of deploying an
optimization model in a B2MML-based system is illustrated. The second section describes a
general method to represent the combination of computational models. A case study that
demonstrates the combination of an Agent-based model and a Decision Tree model for a

real-time scheduling application has been developed to illustrate the proposed method.

5.1 Utilization of the Knowledge Enriched Computational Model to Support the
Deployment of Computational Models in Smart Manufacturing System
Currently, although the PFA has started to develop models to integrate standardized analytic

models and methods to deploy them, there is a lack of general methodology to support the

deployment of all types of computational models. However, to support the plug-and-play
capability of computational models as required by Smart Manufacturing, a general methodology
must be developed to integrate computational models with the necessary model deploying
knowledge to allow different manufacturing systems to easily deploy the computational models.

This knowledge includes the configuration of the model’s parameters, preprocessing of the data

to be consumed by the computational model, and storing the model results according to the SM

system’s underlying database or data exchange protocol, etc. In this dissertation, the data

54

integration between the computational models and the underlying SM system is focused on. The
data integration knowledge is crucial in deploying computational models in the SM environment.
For example, a computational model associated with a process control unit needs to be
re-executed based on the real-time or near real-time data of process changes. Without smooth
integration between the computational model and the SM system’s underlying information
system, the model solution may give wrong suggestions based on delayed data exchange.
Without the formally captured and integrated knowledge to go with the computational model, no
software tools can process and understand the model and its relevant knowledge. In this situation,
the deployment of computational models relies heavily on manual work. The necessity of
integrating model deployment knowledge into the standardized models comes from security
reasons. A model consumer implemented in conventional programming languages (e.g., C, Java,
or Python, etc.) could access the underlying file system, operating system, or network (Pivarski
et al., 2016). But a model consumer that deploys models by consuming the standardized models
can only transform the data that it is given. So, the security of an SM system that deploys a
computational model can be enhanced if the deployment knowledge can be integrated with the
standardized computational model.

In the following sub-sections, a model deployment methodology that conforms with the
KECM has been presented. As a proof-of-concept, a case study has been presented to
demonstrate the utilization of the proposed model deployment method to support the deployment
of optimization models. Due to the lack of a standardized model for optimization models, an

Optimization Metamodel that can formally represent optimization models has been developed.

55

5.1.1 A General Method to Support the Deployment of Computational Models
Based on the KECM, a general method has been developed (Figure 5.1) to support the
deployment of computational models. In Figure 5.1, the information model(s) to be included in a
KECM serves as a bridge to connect an SM system’s data and the computational model’s data.
As stated previously, the information model(s) in the KECMs should be agreed upon by the
industrial community. This means that all industrial users can understand and utilize the
information model(s). To semantically connect the KECM to the SM system, the mappings
between an industrial user’s SM system’s local data system (or its local data exchange protocol)
and the information model(s) should be defined by the industrial user. The mappings between the
standardized computational model and the information model(s) can be captured in the rules or
the semantic links between model entities. Through the information model(s) and the mappings,
the input/output data of a standardized computational model can be smoothly integrated with an
SM system’s data. The data from an SM system can first be loaded onto the information model(s)
through mappings defined by the industrial users. Then, the data stored with the information
model(s) can be loaded to the standardized computational model through the mappings between
them. So, as long as the industrial users have defined the mappings between their SM system’s
data system and several industry-accepted information models, all standardized computational
models that are integrated with these information models can be smoothly deployed in their SM

systems.

56

SM System TR
| Mappings ; Standardized
Local Data System [Infor?altlon Computational Knowledge
Model(s) Modal Enriched
Computational
A A Model
Or Mappings)
— — I
I
/ .
|
. o
Local Data FHYSIES Rationales/ —= | 7/ “\
based i NN N
Exchange Rules Sigg ot R NS
Model(s) S T3 (
Protocol () \

Figure 5.1 A general method to support the deployment of computational models

5.1.2 Development of A Standardized Model for Optimization Models

Among a variety of computational techniques, optimization plays an important role in both
business and engineering decision making at all levels of an enterprise’s hierarchy from business
planning and logistics, manufacturing operations and control to batch and unit process control.
However, due to the diversity of implementation environments of optimization applications,
modeling languages for operation problems are often tool-specific. For example, OPL is used in
the IBM CPLEX optimization solver; the AMPL supports more tools like the AMPL solver,
Gurobi optimizer, and CPLEX, etc.; the GAMS (General Algebraic Modeling System) language
can be connected to a group of optimization solvers like BARON, CONOPT, and CPLEX, etc.
through the GAMS integrated development environment (IDE); MATLAB’s Optimization
Toolbox uses MATLAB’s proprietary language; and the open source tool Google OR-Tools
utilizes general-purpose programming languages like C++, Python, C#, and Java. Although

efforts have been made to enhance the interoperability of some optimization modeling languages

57

like AMPL and GAMS, the interoperability is limited by the software tools supported by the
modeling language. Developing, integrating and reusing optimization models still rely on the
availability of specific software tools. This current situation hinders the accessibility and
availability required by the SM systems. Difficulties in enabling the interoperability among these
software tools result from information gaps in the inconsistent optimization terminologies, the
large number of optimization methods (e.g., mathematical programming, constraint
programming, and genetic algorithm etc.) that have been created, and the lack of communication
standards between existing optimization tools (Witherell et al., 2007).

This section first introduces the development of an Optimization Metamodel to formally
represent optimization models. Next, an example of a Mixed Integer Linear Programming (MILP)
optimization model to solve a Flexible Job Shop Scheduling (FJSS) problem is described to

demonstrate the representation of optimization models using the Optimization Metamodel.

5.1.2.1 Optimization Metamodel

The Optimization Metamodel is developed based on the compilation and organization of
optimization terminologies gathered from the literature. To represent the Optimization
Metamodel, machine-readable and understandable formats like XML, JSON, and OWL, etc. can
be used. Figure 5.2 shows the Optimization Metamodel represented in a UML class diagram. In
the UML notations, the black diamond arrows represent the “composition” relationships and the

hollow arrows represent the “inheritance” relationships.

58

[epowredy uoneziwndQ ayj Jo uonejuasaldar NNV TS IS

9A|0S BZIWIUIA ZIWIXBIA
3|gnop : anjea - an|ea -
Sulns : sweNJalaweled - v adAyeiep - 3|qeLeA : S3|qeLeA -
Japweledqwyplod|y aponuoneziwpido d|geleAuoIsIIaQg ndinQ
- E <
13 1
1318Wwelequyilos)y | sisiaweled - TNYIBI : UOISS3IdXa - anjea -
Fuiys : sawenwyyoSe - TAYIBA : uoIssaudxa - apouoneziwndQ : apow - adhelep- | . 3|qeLeA : S3|qeLeA -
wyod|y JUIRIISUOD uoIUN43AI33(q0 3|qeLep T indu
«T
1 L

adA| paziwoisn) : adA] paziwolsnd -
wylos)y : wyiose -
JUIBJISUOYD : SIUIBJISUOD -

adA] paziwoisn) uoaUN4aAIR3[qQ © uoIUN4aARIR(qO - *
i 3|qeLIBA S3|qRLIBA -
T

3|gelleAUOISIIa(Q : S3|qRUBAUOISIIRP - 1
ndinQ : yndino -

induj : induj -

adA]|apon : adA]jspow -

Juins : swen|spow -

adA]|apoy

|2ponuoneziwiRdo

59

In this model, the OptimizationModel class represents the highest-level entity of an
optimization model. All the information about an optimization model should be captured within
this class. To facilitate the definition of customized data types (i.e. data types other than double,
integer, string, etc.), the CustomizedType can be used to represent a user-defined data structure.
For example, an interval type, which can be used to solve scheduling optimization problems, can
be defined as a CustomizedType. The Variable class captures variables that are used in the
optimization model. A DecisionVariable, which needs to be determined to solve the optimization
problem, is a sub-type of a Variable. The variables, which are determined by the system
environment and have fixed values, should be modeled as Variables. The value field of a
Variable is used to contain the input value. The value field of a DecisionVariable is used for
capturing the resultant value of a determined decision variable after an optimization model is
resolved. The Input and Output classes indicate the list of input and output variables, respectively.
The ObjectiveFunction class represents an objective function that is to be optimized. More than
one ObjectiveFunction can be included in an OptimizationModel if the model is a multi-objective
optimization model. An ObjectiveFunction has an OptimizationMode to indicate the means to
achieve the objective function like Maximize, Minimize, or Solve. The Solve mode captured here
is targeting some of the problems which only find feasible solutions instead of optimal solutions
(e.g., Constraint satisfaction problems). The mathematical expression of the ObjectiveFunction is
captured in the expression field. The constraints are represented by the Constraint class. The
Algorithm class is used to indicate the specific algorithms to be used to resolve the optimization

model. An AlgorithmParameter represents a parameter configuration of a certain algorithm (e.g.,

60

tolerance in Newton’s method). The ModelType class represents the type of the optimization
model. Sub-types of ModelType can include LinearProgramming, IntegerProgramming,
NonlinearProgramming, etc.

To formally represent mathematical expressions in the Optimization Metamodel, MathML
has been used to capture the mathematical expressions of Constraints and ObjectiveFunctions.
Here, the Content ML, which represents the underlying mathematical structure of an expression,

is chosen to represent the mathematical expressions in the MILP model.

5.1.2.2 Representation of an MILP Model Using the Optimization Metamodel

In this paper, an FJSP problem is used to illustrate the utilization of the Optimization
Metamodel. The problem description and mathematical modeling are selected from Ozgiiven et
al. (2010). An FJSP consists of a set of n independent jobs J = {j;}=;, each having its own
processing order through a set of m machines M = {m;}j=,;. A number of #; ordered
operations (0Oy, ..., 0p;) need to be performed to complete job i. Operation j of job i(0;;)
can be processed by any machine in a given set M; & M for a given processing time t;j,. The
FISP is a routing as well as a sequencing problem: assigning each operation O;; to a machine
selected from the set M; and ordering operations on the machines so that Cyqy (i.€. makespan)
1s minimized.

The following notation is used for the MILP model.
Indices and sets

i the index of jobs (i,i' € J)

j the index of operations (j, j' € 0)

k the index of machines (k € M)

Ji the set of jobs

M the set of machines

0 the set of operations

0; ordered set of operations of job i (0; € 0), where Oif(i) is the first and Oi{(i) is

the last element of O;

M; the set of alternative machines on which operation j can be processed,(M; & M)

M; "' Mj the set of machines on which operations j and j' can be processed

Parameters
tijk the processing time of operation 0;; on machine k
L a large number

Decision variables

Xijk 1, if machine k is selected for operation 0;;; 0, otherwise

Sijk the starting time of operation O;; on machine k

Cijk the completion time of operation O;; on machine k

Yiiitik 1, if operation O;; precedes operation O on machine k; 0, otherwise
C; the completion time of job i

Cmax maximum completion time over all jobs (makespan)

The MILP model is defined as follows:

61

Objective function: Minimize C,,

Constraints:

and

Z Xijk =1 Vi E],Vj € Oi,

kEMj
Sije + Cije < (Xijx) - L Vi€J],Vj€0,Vk €M,

Cijie = Siji + tijx — (1 — Xijx) - L Vi€ J,Vj €0, Vk €M,

Sijie = Cirjrir — (Yyjurjre) - L Vi <i',Vj € 0,V € 0y, Yk € M N My,
Sije = Cije — (1 =Y

iji'j'k) L Vi< i’,Vj (= Oi,Vj, € Oi’,Vk € M] N Mj"

kEMj kEM]

Ci = Z Ci,Oi{J(i),k Vi E]l

kEMj

Cmax 2 Ci Vi E],

Xij €{0,1} Vi€, Vj€O0,Vk €M,
Sijk =0 Vi€]Vje€O0,Vk €M,
Cijx =0 Vi€],Vje€O;,Vk €M,

Y €{0,1} Vi<i',Vj€O0,Vj €0;,Vk € M;n M,

iji'j'k

C;>0 Vie].

(1)

2)
)
(4)
)
(6)

(7

(8)

62

Constraint (1) makes sure that operation O;; is assigned to only one machine. If operation

0;j is not assigned to machine k, constraint (2) sets its starting and completion times on

machine k to zero. Otherwise, constraint (3) guarantees that the differences between the starting

63

and the completion times is at least equal to the processing time on machine k. Constraints (4)
and (5) fulfill the requirement that operation O;; and operation O;; cannot be carried out at
the same time on any machine in the set M; N M. Constraint (6) captures the precedence
relationships between the operations of a job, i.e. the operation O;; cannot start before the
operation O;;_; has been completed. Constraint (7) determines the completion times (of the

final operations) of the jobs. Constraint (8) determines the makespan.

Class hierarchy (inferred) LT EIEERN=[ONEN | Annotations | Usage
s el & ;Si Description: constraint_ct® &l =]0je|
. C Types a
Asserted ¥ @ Cj Constraint
v owl:Thing @ Cmax . -
g * ConStra!"t—Ctl Property assertions: constraint_ct8 = m]]
CustomizedType @ constraint_ct2
Input & constraint_ct3 . -
ObjectiveFunction & constraint_ct4 Bata praperty assertions .
OptimizationMode & constraint_ct5 -hasMatlllML <math)
- Maximize & constraint_ct6 xmins="http:/ /www.w3.org/1998/Math/MathML">
Minimize LT <apply>
- Solve & constraint_ct7 <geq/>
OptimizationModel constraint_ct8 <apply> Individ (1 = ™1 %] W Description: input E =M
Output @ input <selector/> & | ; -
. - ypes
- Variable L B <ci>C</ci> Input
v-- @ DecisionVariable 4L <ci>max</ci> | @ constrair £ =
; oM </apply> @ constrair Property assertions: input [= [€]
& i <apply> | _input__|
.) <selector/> .] Object property assertions -~
@ objectiveFunctio <ci>C< fci> oL mm hasVariable O
P4 0i] ‘;C'HI‘:’C':’ om mm hasVariable L
</apply> & M ;
& optimizationMod: </apply> &0 -has\n‘ar!able M_
& optimizationMod: <forall/> @ objective W= hasVariable Oi
& output <apply> @ oi = hasVariable 3
®s <in/> antimizal T mm hasVariable Mj
ot <ci>i</ci> > ————trmianie & -
&x <ciz=l</ci=
< fapply=
*y < /math>""~"rdf:XMLLiteral
. » -

Figure 5.3 Representation of the MILP model using the Optimization Metamodel in protégé 5.2

To show an example of using the Optimization Metamodel to represent this MILP model, the
OWL language has been used. To capture the MILP model, the Optimization Metamodel is first

expanded to include the variables (e.g., X;jk, Sijk, and Cjjy, etc.), constraints (e.g., constraint (1)

64

to (8)), and objective function. Figure 5.3 shows a representation of the populated Optimization
Metamodel for the MILP model in protégé 5.2. An example of MathML representation for
constraint (8) is demonstrated in the figure. The relationships between a class and a member field

b

(Figure 1) are modeled as “has~” object properties. An example of the hasVariable object

property of the input instance is shown in the mini-window of Figure 5.3.

Individuals: Oi [=] (] Property assertions: Oi = 1 =]
o

. QE Data property assertions -

®c M hasInputData "<list>

®ci <array index = \"0\"> T

& Cmax <value index = \"0\">1</value>

& constraint_ctl
& constraint_ct2
& constraint_ct3
& constraint_ct4
& constraint_ct5
& constraint_cté
@ constraint_ct7
& constraint_ct8

<vialue index =\
<value index =\
<value index = \
<value index = \
<value index =\
<value index = \

<value index = \"
<vialue index = \"
<value index = \"

"1\">2<fvalue>
"2\"=>3</value>
"3\"=4</value>
"4\"=5</value>
"5\"=6</value>
"6\ ">7</value>
7\">8< /value>
8\">9< /value>
9\">10</value>

<value index = \"10\">11</value>

@ input <value index = \"11\">12</value>
® <value index = \"12\">13</value>
L <value index = \"13\">14</value>
oM < farray>

& Mj <array index = \"1\">

®o <vialue index = \"0\">15</value>

& objectiveFunction

& optimizationMode_mii
& optimizationModel_FJ

<value index = \"
<value index = \"

<value index =\

<value index = \"
<value index = \"

1\">16</value>
2\"=17</value>
"3\"=18</value>
A4\"=19</value>
5\"=>20< fvalue>

@ output <value index = \"6\">21</value>

&s <value index = \"7\">22</fvalue> |
&t <value index = \"8\">23</value>

®x <value index = \"9\">24</value>

o < /array>

g 5 < flist="~~pdf:XMLLiteral -

Figure 5.4 XML representation of input data for variable 0;

The built-in datatypes of OWL have been used to represent the datatypes of the decision

variables. For example, the X;;, and Y;;;s 1, variables are represented as xsd:Boolean because

iji'j
they only take values as 0 or 1. Decision variables S;jx, Cijx, and C; are represented as

xsd:nonNegativelnteger. Since OWL does not have primitive types for the multi-dimensional

65

array, XML is used to represent arrays for input and output data in this work. An example of the

input data for variable O; is shown in Figure 5.4.

5.1.3 Development of a Knowledge Enriched Optimization Model for Model
Deployment
To demonstrate the representational capability of the proposed Optimization Metamodel, the
Optimization Metamodel for a Constraint Programming (CP) model is developed. The CP model,
which solves the FJSP problem discussed in section 5.1.2.2, is selected from an example model
provided by IBM Cplex studio.
The notation of the model is described below.
Decision variables
Ops the array of operation intervals
Modes the array of alternative operation intervals on each machine for all the
operations
Mchs the array of machine schedule sequences

Indices and sets

i the index of Ops (i € [1, count(Ops)])

Ji the index of Modes (j € [1, count(Modes)])
k the index of Mchs (k € [1, count(Mchs)])
Parameters

opld(Ops;) the id of an operation; starting from 1

66

jobld(Ops;) the job id of an operation; starting from 1

pos(0ps;) the position of an operation in a job; starting from 0

opld(Mode;) the operation id of an alternative operation; the alternative operations of an
operation Ops; can be identified by opld(Mode;)

mch(Mode;) the machine id of an alternative operation

pt(Mode;) the processing time of an alternative operation
The CP model is defined as follows:

Objective function:
Minimize
max({end(Opsp)}) i € {ilvj €] n max({pos(Ops;)|jobld(Ops;) = j}}
Constraints:
endBeforeStart(Ops;, Ops;’) Vi' =i+ 1,jobld(Ops;) = jobld(Ops;’), (1)
alternative(Ops;,{Modes;|opld (Modesj) = opld(Ops;)}), (2)

noOverLap(Mchsy). 3)

Constraint (1) captures the precedence relationships between the operations. Constraint (2)
represents the alternative operation intervals that an operation can select from. Constraint (3)
makes sure that the operation intervals within a machine schedule do not overlap.

To demonstrate the utilization of the KECM, this section describes the development of a
Knowledge Enriched Optimization Model. An Optimization Metamodel which represents a

Constraint Programming model has been used as an example to show the enrichment. In the

67

following sections, the development and utilization of the information model and the
rationales/rules used in the Knowledge Enriched Optimization Metamodel are illustrated. In this
case study, the Optimization Metamodel, the information model, and the rationales/rules are

implemented using OWL. The rationales are implemented using the SWRL in OWL.

5.1.3.1 Information Model
The information model used in this paper is selected from a previous work (Zhang et al.

2015). This information model was developed to facilitate sustainability evaluation in the

manufacturing domain. A compact version of the information model, or the Sustainable

Manufacturing Ontology (SMO), is shown in Figure 5.5. A brief explanation of some important

concepts in the information model is narrated below:

e Equipment: Equipment can be a tool or a machine on the shop floor.

e Shop: A Shop represents a manufacturing facility in a factory. It has a set of Jobs that are to
be finished. A Shop has a variety of Equipment that is used to carry out the Jobs.

e Job: A Job defines a task that needs to be carried out to produce a Part. Each Job is
composed of a series of Operations.

e Operation: An Operation represents the task to be performed to produce a feature of a Part.
Each Operation contains a ManufacturingProcess. An Operation utilizes a certain type of
Equipment to carry out its task.

For more descriptions of the SMO, please refer to section 4.4.1.

68

[
‘7 State Behavior | Requirement
Material 1
' Shop
?— Part Product
I
Shape " ‘
—
L Job
Parameter AssemblyProcess

ProcessPlan

I . Operation
Process Activity
Manufacturing =

Process
L‘ r Equipment

Environment SustainabilityMetrics

Figure 5.5 A UML representation of the extended Sustainable Manufacturing Ontology (SMO)

5.1.3.2 Optimization Metamodel

The Optimization Metamodel has been expanded to represent this CP model (Figure 5.6).
OWL is also used to represent the Optimization Metamodel. In Figure 5.6, the black boxes
represent owl:classes; the green boxes are datatypes; the pink arrows indicate the hasSubClass
relationships; the red arrows indicate the ‘has-a’ object properties; the green arrows indicate the
data properties. Other than capturing the constraints and variables in the CP model, three
CustomizedTypes have been defined. An Interval is an entity that has a start time, end time, and
processing time. A Sequence is an entity that represents a schedule for a machine. It is composed
of an ordered set of Intervals. An AlternativeMachineSet represents the alternative machine set of

an operation. It is composed of a set of Modes.

69

DecisionVariable

Vi
NoOQverlap

A
Alternative

o
EndBeforeStart ‘ Ops ‘ | Mchs | ‘ Modes |
T T T
i NN | I | | |
hasAItematlveMachw/]eS/et hasOplnterval hasMchSequence hasPredecessor HasSuccessor hasOpt‘erat\'on hasSe‘quence hasMode
% ~ |
Q Y v
AIternativeMachineSetll Op | | Mch | | Op | | Op | | Op ‘ | Mch | ‘ Mode |
hasOptimizationMode hesExpressmn
e \Q
| Minimize ‘ | Makespan ‘ |Cust0mizedType|
Y N
‘ Mch Iﬂ——fSequenceH Mode | |Sequence| | Interval | |AItemativeMach'meSet|
T /I\
o |
hasOpld 1 haslobid hasMchld hasopld ﬁasPt\ haxMchId haslnterva\ hasStartTumE lasPt hasEndTnne hasAItematweMachme
has,IPos h \—‘;
| xsd:integer m xsd:integer ‘ | xsd:integer | | xsd:integer | ‘ xsd:integer ‘ | Interval | ‘ xsd: mteger ‘ ‘ xsd: \nteger | Mode
|

V

Figure 5.6 Expansion of the Optimization Metamodel with respect to the CP model

5.1.3.3 Rationales

This section presents examples to capture rationales/rules for the deployment and reuse of the
CP model presented in the last section. The SWRL language in OWL has been used to represent
the rationales/rules.

As discussed in section 5.1.1, to facilitate the deployment of an optimization model, this
paper proposes to first load data from the underlying SM system to the information model. Then,
the data stored with the information model are loaded to the Optimization Metamodel. The
following rationales/rules have been developed for capturing the mappings between the

information model and the Optimization Metamodel.

70

Load jobld for Op from Information Model

Job(?job), xsd:integer(?jobld), hasld(?job, ?jobld), Operation(?operation),

hasOperation(?job, ?operation), xsd:integer(?opld), hasld(?operation, ?opld), Op(?op),

hasOpld(?op, ?opld) -> hasJobld(?op, ?jobld)

The meaning of this rule is: If a Job has id ?jobld and it has an Operation which has

id ?opld, the Op which also has id ?opld should have job id ?jobld.

Load pos for Op from Information Model

Operation(?operation), xsd:integer(?id), hasld(?operation, ?id), Op(?op), hasOpld(?op, ?id),

xsd:integer(?position), hasPosition(?operation, ?position) -> hasPos(?op, ?position)

The meaning of this rule is: For an Operation that has id ?id and has a position ?position, the

corresponding Op which has the same id ?id should also have a position ?position.

Load mchld for Mode from Information Model

Operation(?operation), AlternativeOperation(?altOperation),
hasAlternativeOperation(?operation, ?altOperation), xsd:integer(?altOptld),
hasld(?altOperation, ?altOptld), Process(?process), hasProcess(?altOperation, ?process),

xsd:integer(?processType), hasProcessType(?process, ?processType), Mode(?mode),

hasModeld(?mode, ?altOptld) -> hasMchld(?mode, ?processType)

The meaning of this rule is: If an Operation has an AlternativeOperation which has

id ?altOptld, and the Process of the AlternativeOperation has process type ?processType, the

71

Mode (in the CP model) which has the same id as the AlternativeOperation should have

Mchld ?processType.

Load pt for Mode from Information Model

Operation(?operation), AlternativeOperation(?altOperation),
hasAlternativeOperation(?operation, ?altOperation), xsd:integer(?processingTime),
xsd:integer(?altOptld), hasld(?altOperation, ?altOptld),
hasProcessingTime(?altOperation, ?processingTime), Mode(?mode),

hasModeld(?mode, ?altOptld) -> hasPt(?mode, ?processingTime)

The meaning of this rule is: If an Operation has an AlternativeOperation which has
id ?altOptld, and the Process of the AlternativeOperation has processing time ?processingTime,
the Mode (in the CP model) which has the same id as the AlternativeOperation should have
pt ?processingTime.

Rationales are the reasons or descriptions about why or how a model is developed are
developed for the case study. In this case study, the rationales that formally define the semantics

of the three constraints have been developed.

Constraint (1) endBeforeStart

This constraint defines the precedence relationships between the adjacent operations in a job.
Two rules have been individually developed to capture the predecessor and/or successor of an
operation since the first/last operation of each job only has a successor/predecessor. This

constraint is defined such that an operation Op has a constraint endBeforeStart, and the constraint

72

endBeforeStart captures Op’s predecessor and/or successor. The swrib:add and the swrlb:equal
relationships are the built-in relationships in the SWRL language. swrlb:add is satisfied if and
only if the first argument is equal to the arithmetic sum of the second argument through the last
argument. swrilb:equal is satisfied if and only if the first argument and the second argument are

the same.

Op(?op), Op(?opl), Ops(dvar_ops), endBeforeStart(?endBeforeStart), xsd:integer(?jobld),
xsd:integer(?jobldl1), xsd:integer(?pos), xsd:integer(?posl),

hasConstraint(?op, ?endBeforeStart), hasOp(?ops, ?op), hasOp(?ops, ?opl),
hasJobld(?op, ?jobld), hasJobld(?opl, ?jobldl), hasPos(?op, ?pos), hasPos(?opl, ?posli),
swrilb:add(?pos, 1, ?posl), swrlb:equal(?jobld, ?jobldl) ->

hasPredecessor(?endBeforeStart, ?opl)

The meaning of this rule is: There are two Ops in dvar_ops: ?op and ?opl. They have the
same jobld. The position of ?op is greater than that of ?opl by 1. So, the endBeforeStart

constraint of ?op should have a predecessor Zop1.

Op(?op), Op(?opl), Ops(dvar_ops), endBeforeStart(?endBeforeStart), xsd:integer(?jobld),
xsd:integer(?jobld1),xsd:integer(?pos),xsd:integer(?posi),hasConstraint(? op, ?endBeforeStart)
, hasOp(?ops, ?op), hasOp(?ops, ?opl), hasJobld(?op, ?jobld), hasJobld(?opl, ?jobld]l),
hasPos(?op, ?pos), hasPos(?opl, ?posl), swrlb:add(?’posl, 1, ?pos),

swrilb:equal(?jobld, ?jobldl) -> hasSuccessor(?endBeforeStart, ?opl)

73

This rule is similar to the previous one. It adds the successors for any Op.

Constraint (2) alternative

This constraint defines the alternative machines for a certain operation. The first rule defines
a CustomizedType — AlternativeMachineSet. One AlternativeMachineSet is created for each Op.
The Modes, which have the same opld as an Op does, are added to the corresponding
AlternativeMachineSet. The second rule captures the relationship between an Op and its

AlternativeMachineSet in an alternative constraint.

AlternativeMachineSet(?altMachineSet), Mode(?mode), Modes(dvar_modes), Op(?op),
xsd:integer(?opld), hasMode(dvar_modes, ?mode), hasOpld(?mode, ?opld),
hasOpld(?op, ?opld), hasOpld(?altMachineSet, ?opld) ->

hasAlternativeMachine(?altMachineSet, ?mode)

The meaning of the first rule is: For an AlternativeMachineSet that has the same opld as a

Mode, the AlternativeMachineSet should have Mode as one of its AlternativeMachine.

AlternativeMachineSet(?altMachineSet), Op(?op), hasConstraint(?op, ?alternative),
alternative(?alternative), xsd:integer(?opld), hasOpld(?altMachineSet, ?opld),
hasOpld(?op, ?opld) -> hasAlternativeMachineSet(?alternative, ?altMachineSet),

hasOplnterval(?alternative, ?op)

The meaning of the second rule is: For an AlternativeMachineSet that has the same opld as

an Op, the alternative constraint of the Op should be related to the AlternativeMachineSet.

74

Constraint (3) noOverlap

This constraint defines that within a schedule (i.e. a Sequence), no Intervals can be overlaps.
The first rule defines that each Mch is composed of a set of alternative operations — Modes,
which have the same mchld as Mch does. The second rule describes that the noOverlap

constraint is applied to every individual Mch in the whole schedule.

Mch(?mch), Mchs(dvar_mchs), Mode(?mode), Modes(dvar _modes), xsd:integer(?mchldl),
xsd:integer(?mchld2), hasMch(dvar_mchs, ?mch), hasMode(dvar _modes, ?mode),
hasMchld(?mch, ?mchldl), hasMchld(?mode, ?mchld?2), swrlb:equal(?mchldl, ?mchld2) ->

hasInterval(?mch, ?mode)

The meaning of this rule is: For any Mch (in Mchs) has the same mchld with a Mode in

dvar_modes, the Mch should have the Mode as its Interval.

Mch(?mch), Mchs(dvar_mchs), noOverlap(?noOverlap), hasMch(dvar_mchs, ?mch) ->

hasMchSequence(?noOverlap, ?mch)

The meaning of this rule is: The constraint noOverlap should have all Mchs in dvar _mchs in

its MchSequence.

75

5.1.4 Utilization of the Knowledge Enriched Optimization Model for Model

Deployment

Class hierarchy | Class hierarchy (inferred)

Asserted

v owl: Thing
v Constraint
: alternative
noOverlap
A CustomizedType
- AlternativeMachineSet
Interval
Sequence
A ManufacturingConcept
- Activity
B AdministrativeEntity
- Behavior
Environment
¥~ Equipment
Material
L Operation
Part
b0 Process
ProcessPlan
Product
-~ Requirement
»-- 0 Schedule
Shape
- State
- Objective
¥-- & OptimizationMode
: Maximize
Minimize
Solve
OptimizationModel
¥-{ variable
- DecisionVariable
- Mch
Mode
Op

Individuals: const_endBeforeSt [= W]] | Rulex: [= (]]
¢ = Rules -
- TS Mch({?mch), Mchs(dvar_mchs), noOverlap(?noOverlap},

& const_alternative21
& const_alternative22
& const_alternative23
& const_alternative24
& const_endBeforeStart01
& const_endBeforeStart02
& const_endBeforeStart03

const_endBeforeStart04

& const_endBeforeStart0s
& const_endBeforeStart06
& const_endBeforeStart07
& const_endBeforeStart08
& const_endBeforeStart09
& const_endBeforeStart10
& const_endBeforeStart11
& const_endBeforeStart12
& const_endBeforeStart13
& const_endBeforeStart14
& const_endBeforeStartl5s
& const_endBeforeStart16
& const_endBeforeStart17
& const_endBeforeStart18
& const_endBeforeStart19
& const_endBeforeStart20
& const_endBeforeStart21
& const_endBeforeStart22
& const_endBeforeStart23
& const_endBeforeStart24
& const_ncOverlap

4 Constraint_Programming_M

& dvar_mchs
& dvar_modes
& dvar_ops
& job_1

@ job_2

{

hasMch(dvar_mchs, ?mch) hasMchSequence(?noOverlap, ?mch)
Job(?job), xsd:integer(?jobld), hasId(?job, ?jobId),
Operation(?operation), hasOperation{?job, ?operation),
xsd:integer(zopId), hasIid(?operation, 2opId), Op(Zop), hasOpId(Zop,
2opld) haslobId(?op, ?jobId)

Mch({?mch), Mchs{dvar_mchs), Mode(?mode), Modes(dvar_modes),
xsd:integer{?mchId1), xsd:integer(?mchId2), hasMch(dvar_mchs, ?mch),
hasMode(dvar_modes, ?mode), hasMchId({?mch, ?2mchId1),
hasMchId(?mode, ?mchId2), swrlb:equal{?mchIdl, ?mchId2)
hasInterval(?mch, ?mode)

Operation(?operation), AlternativeOperation(?altOperation),
hasAlternativeOperation(?operation, ?altOperation),

xsd:integer(?processingTime), xsd:integer(ZaltOptid),

hasId{?altOperation, ?altOptId), hasProcessingTime(?altOperation,

?processingTime), Mode(?mode), hasModeld(?mode, ?altOptId)

hasPt{?mode, ?processingTime)

Operation(?operation), xsd:integer(?id), hasId(?operation, ?id), Op(?op),

hasOpId(?op, ?id), xsd:integer(?position), hasPosition(?operation,

?position) hasPos(?op, ?position) -

ption: const_endBeforeStart(4

Constraint

endBeforeStart

Property assertions: const_endBeforeStart4

Ohject property asserions
= hasPredecessor var_op03
®= hasSuccessor var_op05

Data property assertions

Negative object property assertions

Figure 5.7 Screenshot of the implemented Optimization Metamodel in protégé 5.2

Figure 5.7 shows a representation of the developed Enriched Optimization Metamodel for the

CP model. The information model, Optimization Metamodel, and rationales are all represented in

protégé 5.2. This section discusses the utilization of the Enriched Optimization Metamodel from

two perspectives: interoperability enabled by the Optimization Metamodel and deploying the

Optimization Metamodel in a manufacturing system.

& interval_mch_0
& interval_mch_o0
& interval_mch_1
& interval_mch_1
& interval_mch_1
& interval_mch_2,
& interval_mch_2,
& interval_mch_3
& interval_mch_3
& interval_mch_4
& interval_mch_4
& interval_mch_5
& interval_mch_g6,
& interval_mch_s6,
@ interval_mch_6_

TE_

76

m hasMch var_mch07
|-hasMch var_mch08
mm hasMch var_mch09

Data property assertians

Negative object property assertions

Negative data property assertians

Individuals: dvar [T = W]] Property assertions: dvar_mchs [T =5 [¥]]
o+
& 3& Object property assertions Individuals: var_ [= W]]
@ const_endBefor(« ®m hasMch var_mch03 .+ 38i
& const_endBefor mm hasMch var_mcho4
& const_noOverla mm hasMch var_mch05 & var_mchos
Constraint_Prog mmhasMch var_mchD6 @ var_mchoe
mmhasMch var_mch10 @ var_mcho7
@ dvar_modes
@ dvar_ops mm hasMch var_mchO1 —
i v m= hasMch var_mch02 @ var_mchoo
@ interval_mch_o, - @ var_mch10

& var_modeD1
& var_modeD2
& var_moded3
& var_modeD4
& var_modeD5

Property assertions: var_mch(8

Object praperty assettians
- ® hasScheduledInterval interval_mch_7_pos_0
m hasScheduledInterval interval_mch_7 _pos 1
m hasScheduledInterval interval_mch_7_pos_2
-ha;suheduledrntervaq interval_mch_?_pos_d{

Interval var_mode24
hasInterval var_mode28

Data property assertions

mmhasMchid 8

HISI0lE]

Lk

& interval_mch_7_pos_2 =~
@& interval_mch_8_pos_2
& interval_mch_9_pos_1
& interval_mch_9_pos_3

,

Individuals: interval_mch_7 [I1 S ®1[¥] f property assertions: interval_mch_7_pos_4

Data property assertions
B hasStartTime 62
i hasPt 3
m= hasendTime 65

Negative object property assertians -

- 0000000000

Figure 5.8 Representation of the optimization result (schedule) in protégé 5.2

5.1.4.1. Interoperability Enabled by the Optimization Metamodel

In this case study, the interoperability of the CP model contained in the Optimization
Metamodel has been tested. After the instantiated Optimization Metamodel has been developed,
the metamodel is executed by two CP solvers: IBM Cplex CP solver and Google OR-Tools. The
metamodel is consumed by the Java APIs (Application Programming Interface) of the two tools
through a developed metamodel parser using OWLAPI (Horridge and Bechhofer, 2011). After
the metamodel has been executed, the optimization result — the schedule — is loaded back to the
metamodel (Figure 5.8) through the metamodel parser again. Both optimization results obtained
from the two tools appear to be the same and correct. In this test, the Optimization Metamodel is
proved to be capable of representing optimization models in a text-based format and is capable

of supporting the interoperability of the optimization models among different optimization tools.

77

5.1.4.2. Using the KECM to Support Model Deployment

<?xml version="1.8" encoding="UTF-8" standalone="yes"?> YT BRI =IC[E] | Annotations | Usage I
<0perationsDefinitionInformation xmlns="http://iaw.mesa.org/xml/B2MH
E P <ID>opt_def_info</ID> & 3 Annotations: operation_ 1 [Z] (] = (] €]
- <Ope “;;iunSD:Fi”iti;g> & job_1 P4 Description: operation_1 [Z1 [0 =][]
<ID>opt_def_1</ID>» .
== ob_2 -
<Description>product</Description> :]min_imize Types
<OperationsType»Production</OperationsType> & objective Operation e
= <OperationsSegment> L .
<ID51</ID> ﬁ Property assertions: operation_1 [=] []
<Description>job 1</Description> .operat!on_ltl - .
o <0per‘atior‘|552gment> . operation_11 Object property assertions

<ID>1</ID> & operation_12 m hasAlternativeOperation
<Description>job 1 opt 1</Descriptions & operation_13 alternativeOperation_1
operation_14 a ernativeOperation

peration_ hasAlt tiveO ti

= <OperationsSegment> r !
<ID>1</ID> & operation_15 alternativeOperation_2

<Description>job 1 opt 1 alternative machine 1.
<Duration»13</Duration>
<ProcessSegmentID>3</ProcessSegmentID>

- </OperationsSegment>

Data property assertions

mm hasPosition 0

= <OperationsSegment> — OPerat!‘J"_lg Shasid 1

<ID>2</ID> Individuals: alternativeOperz (1 5] [X] QESRETEEHERRVETTS

<Description»job 1 opt 1 alternative m XK ik Annotations: alternativeOperation_1 [Z] 11 H W] X]

<Duration»>12«</Durations>

<ProcessSegmentID>7</ProcessSegmentID> alternatveOperaton_l Description: altemativeOperation L 1[I B &
B </OperationsSegment> : a::erna:!vegpera:on_ig Types -
+ </OperationsSegment > aternativeOperation_ AlternativeOpera -
= <DperationsSegments ¥ alternativeOperation_12

<ID>2</ID> : alternativeOperation_13 Property assertions: alternativeOperatic [= W] (]
P - i s alternativeOperation_14
<Description>jeob 1 opt 2</Description: — .

= (Oper‘at?onsSeément> pt / P 4 alternativeOperation_15 Object property assertions

<ID>3</1D> 4 alternativeOperation_16 ™ hasProcess

<Description>job 1 opt 2 alternative machine] @ alternativeOperation_17 process_3

(Duratign >9(f€)u ratiox . alternativeoperatioﬂ713 Data propery assertions

alternativeOperation_19 = hasP: inaTi

<ProcessSegmentID>8</ProcessSegmentID> @ alternativeOperation_2 1335 rocessingTime
[<,’0per‘a1.:10n55egment> # alternativeOperation_20 = hasid 1
= <OperationsSegment> . neration 21 a

<ID>d4</ID> _ 1

<Description>job 1 opt 2 alternative machine 2< @ process_2

<Duration»>17</Durationy @ process_3

<ProcessSegmentID>9</ProcessSegmentID>

E Ooorationc amont

-
nencncc A
3

Figure 5.9 Input data in B2MML and in the Knowledge Enriched Optimization Model

The utilization of the Enriched Optimization Metamodel to support model deployment is
demonstrated by the using the first set of rationales. A scenario of deploying the model in an
ANSI/ISA-95-based scheduling system is assumed. In this scenario, data exchange between the
underlying information system and the optimization solution is achieved using B2ZMML. The
input data of the optimization model is imported from a B2MML-based XML file. Through a
defined mapping file between the B2ZMML (i.e. the data model) and the SMO (i.e. the

information model), the input data are first loaded to the SMO. Then, by turning on the reasoning

78

engine with the set of mapping rules (section 5.1.3.3), the data in the SMO are transferred onto
the Optimization Metamodel. After consuming the CP model with a developed parser in IBM
Cplex using its Java API, the scheduling result can be loaded back to the KECM again through
the parser. An example of the input data in B2ZMML and in the Knowledge Enriched

Optimization Metamodel is shown in Figure 5.9.

var_ops —
= hasOperation
@ job_2
& minimize Dats pagad
?b]ECthB . bt Individua [= @] [¥] |Annotat\ons ‘Usage |
- XX & & Annotations: var_op03
:omaration_!? | pAfhotations - @ var_model= Description: var_op03
operation_23 j
& oirati 24 Description: operation_3 @ var_mode: Types -
) $varmoder | @0p =
L 2 operatmnd Topes @ var_opo1 T ———
operation_5 © Operation & var_op02 Property assertions: var_op03
operation_6 Object property assettions -

®m hasConstraint const_endBeforeStart03
mm hasConstraint const_alternatived3

Property assertions: ope

operation_8 = & var_op05

. operation_7 . var_opD4
- Object property assertions var_op06

operation_9
% ope == hasAlternativeOperation

: z::; alternative(-)peration_-ﬁ Data property assertions
& process_ . & var_op09 mmhasOpld 3
& process_10 @ var_op10
@ process_ || | @ var op mhaslobld 1
o hrocess- T , =

nrocpcs 5 i
o L | ’

alternativeOperation_35
& alternativeOperation_4
alternativeOperation_5

5] Individuals: v [= W] E] ‘Annutatiuns |Usige |

Types & 385 Annotations: var_mode)3
 AlternativeOperation

Description: var_model5

& var_mode03 ~

& alternativeOperation_6 Property assertions: alternativeQperation_5 [T = =1 (] & var_mode0a Types o
! Y

& alternativeOperation_8 & var_mode06

:alternativeoueration 9 & var_mode07 Property assertions: var_mode05
Cmax
var_mode08
& const_alternative01 Data property assegidfs * Object property assertions o
@ const_alternative0z -h & var_mode09
const_alternative! askd ¢
. var_model0
@ const_alternative03 - asProcessingTime 16 | ode Data propery assertions
T » } asProcessingTime 16 | = ar—mod
mm hasModeld 5
Individuals: [T =5] &) e % var_mode12 |
S & var_mode13 = hasOpld 3
adlE: e = @ var_mode14 W hasMchid 7
@ process < @ Process < <.r mode W hasPt 16 =

@ process 4 Property assertions: process

IS0
: =

Dat3

& process_8 apel cone o 7|
D pss Q|7 hasProcessType 7
<[3

-

Figure 5.10 Loading the data from the SMO to the Optimization Metamodel

Figure 5.10 demonstrates the utilization of the rules to load data from the SMO to the

Optimization Metamodel. The entities highlighted in light yellow are inferred using the pellet

79

reasoner in protégé 5.2. The red boxes and arrows indicate the related data in the SMO and the

Optimization Metamodel.

| Class hierarchy | WEEL I EE A GG W Individuals: var_op01 [H M1l f Description: var_op01

I -
%% o+ | Asseried ¥| W vail_imvuess = ©op 2
- 4 var_mode24 © relatesTo exactly 1 Operation
o ~ & var_mode2s -~
seE @ var_mode26 Property assertions: var_op01
£ OptimizationMode z =
""" @ Maximize : :::::ﬁz;; Object property assettions -
& var_mode29 mm hasConstraint
& var_mode30 const_alternative01
& var_mode31 mm hasConstraint
& var_mode32 const_endBeforeStart01
& var_mode33
& var_mode34 Data property assartions
@ var_mode3s == hasJobId 1
7 3 : 3 mmhasPos 0 =

Figure 5.11 Representing domain meaning of optimization model’s entities

ndividuals: const_alternative0]] = M X f§ p.o perty assertions: const_alternativell

o+
. 385 Object property asserions
const alternative01 - - hasAIternativeMachineSetI alternativeMachineSet01
& const_alternative02 - hasOpIntervaIl var_op01 I

. const_alternapian

Individuals: alternativeMachine (] = W1] 8 proper', assertions: alternativeMachineSet)1

& const_alterna
& const_alternal ¢ B

& const_alterna
& const_alterna alternativeMachineSet01 Kk

& const_alternal ® alternativeMachineSet02]

.mnst_a":erna .alte“um:...."... = _. “v‘ =
@ const_alterna @ alternativeMad Individuals: var_op(il

& const_alternal ® alternativeMac
@ const_alterna] ‘® alternativeMa
& const_alternal ‘® alternativeMac
] & alternativeMas

& alternativeMas

Objfet property assertions

mm hasAlternativeMachine
m hasAlternativeMaghifie var_mode01

MNEEE gpr perty assertions: var_opll

Object property assertions
a = hasConstraint const_alternative01
m hasConstraint const_endBeforeStart01

Individuals: var_ 1] = @[] Data property assertions

& | M= hasJobld 1

) -
Cata property asserions == hasOpId 1
]
& var_mode0 hasMchid M hasPos 0
var_mode02 m=hasPt 12

& var_mode03 = hasOplId

& var_modena 1 Negative object property assertions
@ var_mode05 | _

Emm—— , Negative object property assertions - - Negative data propery assertions

| Ll

Figure 5.12 Generating constraint instances with the rationales

The knowledge, which captures the domain meanings and model explanations, implemented

in this case study contains: expressing the domain meanings of variables using an information

80

model and generally capturing the semantics of the constraints in the CP model. Using the
information model to express the domain meanings of variables is achieved by semantically
connecting the variables defined in the Optimization Metamodel and the domain concept
captured by the information model. An example of expressing the domain meanings of an Op
variable using the Operation concept in the SMO is shown in Figure 5.11.

The generally defined semantics of the constraints in the CP model is described in section
5.1.3.3. Whenever the input data is loaded to the KECM, these sets of rationales can be executed
to construct the constraint instances. The metamodel with the generated constraint instances can
then be parsed and executed in optimization tools. Figure 5.12 shows an example of the

constraint instances generated by reasoning the rationales.

5.2 A Methodology to Support the Combination of Computational Models

Normally, each computational model is developed to address a specific set of industrial
issues, and it can only apply to a small portion of a complex Smart Manufacturing system. To
allow the SM systems to solve more complex problems, individual computational models that
were developed for different domain applications must be properly combined: (1) to simplify the
original complex problem, individual computational models that solve different small problems
can be combined to collaboratively solve the bigger problem of the systems; (2) to enhance
computing performance, predictive models may be combined to reduce the prediction variance
and bias; (3) if there are no dependencies between the individual computational models or the

size of the data set is too large for one model to process, models can be combined to support

81

parallel computations. It is important to address the problem of model combination for the
KECM. This is because a model combination represents the overall goal of a domain application;
the sub-models can only represent the sub-goals to achieve the overall goal.

Thus, this chapter presents an approach to uniformly represent model combinations that are
compatible with the KECM. To validate the proposed approach, a case study that combines an
Agent-based model and a Decision Tree model has been developed for the utilization of the

model combination representation in a real-time scheduling scenario.

5.2.1 Development of A Uniform Model for Model Combinations

Before uniformly representing model combinations, a general structure for computational
models is defined (Figure 5.13). A model can be an individual computational model or a
combined model that combines several individual models. A model should have its input(s) and
output(s). Computational models can be normally combined in three methods: sequential models,

parallel models, and composed models (Figure 5.14).

Input —»| Model —» Output

Figure 5.13 General structure for models

Sequential models are models that are combined sequentially: the outputs of one model are
the inputs of another. The inputs of the combined model are the inputs of the first model, and the
outputs of the combined model are the outputs of the last model.

Parallel models are parallelly combined. Depending on the application, the input data of the

82

combined model may be divided, and the divided data are consumed by the sub-models; the
input data of the combined model can also be the same for all sub-models. The outputs from
sub-models are normally combined according to the application. For example, if the outputs
from the sub-models are all real numbers, the methods to combine the outputs can be weighted

average, maximum, minimum, and summation, etc.

Combined Model

» Model 1 » Model 2 » Sequential Models

Combined Model

Model 1
— —
Parallel Models
Model 2

Combined Model

» Model 1 >

Composed Models

—»| Model 2

Figure 5.14 Methods for model combination

Composed models are models combined through composition. The functionality of one
model is included in another model. The model being composed receives inputs from the
external model; it outputs results to the external model.

More complex model combinations can be combined using these three basic model
combination methods. Figure 5.15 demonstrates an example of the composition of combined

models. In this figure, combined model 1 combines models (i.e. individual models or combined

83

models) by means of composed models; combined model 2 combines models through sequential

models; combined model 3 combines models through parallel models.

Combined Model 1

» Model 1

\

Combined

Model 2 Combined

Model 3

Model 3 \
» Model 2 /—->

Model 4

Figure 5.15 An example of the composition of combined models

A model composition representation has been developed to formally represent model
compositions (Figure 5.16). Since the representation technology selected in this dissertation is
OWL, this figure demonstrates representation that is compliant with OWL. In this figure, the
purple arrows indicate the hasSubClass relationships; the red dashed arrows are has-a

relationships.

84

SWISIUBYOIW UONBUIQUIOD [eI0UdT oY) JO uonejuasardoy 91°S d1nsig

_ syndu _ _ S58[2:|MO _ _33330_ _ sse|2:|MO _ _ $58]2:|MO _
ﬂ/ \Qd/ \Q D D
UORJIBUUO)IIOdSBY gigelieASEY UONIBUUODMOGSEY w_nmc_m>mm: w_nm_._m_>mmg
Bgsad R
1 1
_mSQSOton__ _ sindujiog _ _m..S&:o _ _ syndu) _ _ ﬂ:&:o_ _ syndu) _ _333:0 _ _ syndu| _ _mu:&:o _ _ synduj _
A%} 7 V/ < A% < Vz < A% <7
sindinpsey sindujsey sindinosey synduisey sindindsey sindujsey sindindsey sindujsey s;ndinpsey syndujsey
// \\ //(\ //(\\ // \\ Lo~ // \\ .
\
Uod Jekegnar |2POoN[eUOIEINdWO) _ _ |2po[euoiEINdWOo) _ __wvos__m:o:ﬁ:anu To&SSin _muo_\,__m:o_uﬁzn_Eou_ Jossarapaldsey
4// 7 A /!Q\\\\)\D/Tl// L
s # | P | "
[9PON|RUIaIXISRY [9POIA|RUIRIUISEY - ~
% B IRPOINQNSSEY IopoiseTsey _mno_\ﬁw:mmms _wvo_\mwm‘immz
S p ! lllllll !“l \\\\\\
|2popasodwo) _ |9po|a||eled _ |9pon|enuanbas _

//

| 12ponpauiquiod

_ |9POIAI93. L UOISIIaQ |opoAjeuoieINdwo)

_ |[opouoneziwido

[1spoaInyBuIytedsia

85

Other than the individual types of computational models like OptimizationModel,
DecisionTreeModel, and DispatchingRuleModel, etc., CombinedModel is also considered as an
inherited type of ComputationalModel. All ComputationalModels should have Inputs and
Outputs to represent the collections of input and output variables. Each variable which has a
domain meaning and is contained in Inputs and Outputs is represented as an owl:class. The
inputs-variable relationships are captured in the hasVariable relationships.

A CombinedModel has three sub-types: SequentialModel, ParallelModel, and
ComposedModel. The SequentialModel has a sequence of ComputationalModels. To represent
the model sequence, each ComputationalModel can have hasPredecessor and hasSuccessor
relationships to indicate its neighbor models. To specify the first and last model in a
SequentialModel, the hasFirstModel and hasLastModel relationships can be used. For a model
that is neither at the first nor the last position of the model sequence, its relationship within
SequentialModel is represented using the hasSubModel relationships. The ParallelModel has a
set of ComputationlModels that are parallelly combined. Their relationships are represented
using the hasSubModel relationships. The ComposedModel uses hasExternalModel and
hasInternalModel relationships to indicate the external model and the internal model. For each
external model, it has a Port to define the inputs/outputs between it and an internal model. Each
Port has Portlnputs and PortOutputs entities to denote the expected inputs from an internal
model and the outputs to an internal model. Like Inputs and Outputs, the Portlnputs and
PortOutputs are entities to represent the collection of input and output variables. Each variable is

also represented as an owl:class which has a domain meaning. To explicitly represent the

86

connections between the inputs and outputs of the composed models, relationship
hasPortConnection can be used to connect Portlnputs (or PortOutputs) of an external model to

Outputs (or Inputs) of an internal model.

5.2.2 Case Study Scenario

To validate the developed model combination representation introduced in the last section, a
case study has been developed to utilize a composed Agent-based model and a Decision Tree
model in a real-time scheduling scenario. A real-time flexible job-shop scheduling scenario has
been created based on an automated assembly line setup (Figure 5.17) selected from the
literature (Trentesaux et al., 2013). In Figure 5.17, other than M5 and M6, all the workstations
can carry out more than one type of job. Shuttles can travel between the workstations on a track
following the arrow directions. The products produced by this assembly line are words formed
by different parts (Figure 5.18). The parts are letters that are assembled using different shapes of
components.

The scheduling scenario proposed in Trentesaux et al. (2013) has been extended in this case
study. The parts made in the literature are only “A”, “B”, “E”, “I”, “L”, “P”, and “T”. In this case
study, the parts have been expanded to all 26 English letters. Instead of the MILP problem
presented in this literature, this case study adopts an Agent-based scheduling approach. This is
because the Agent-based scheduling approach can rapidly respond to orders released in real-time
although it cannot guarantee optimal solutions. For information about the production sequence of

the 26 letters, please refer to the APPENDIX — A. For more information about the products and

assembly line configuration in this case study, please refer to Trentesaux et al. (2013).

Part subject to failure
(Table 5).

Finished Empt
Jobs Pla't)e:
(plates)
:l KUKA KUKA
| Robot 3 Robot 1

<—— Storage
areas

E% Machine O Divergent Input storage area
node Routing node - For jobs

Figure 5.17 Shop floor layout of the real-time scheduling scenario (Trentesaux et al., 2013)

87

88

I_comp r_comp
L_comp Screw_comp

3&?'

Components

L ~ N - - ‘ O 5 .
«T » } \ - v — >)
Products

Manufactured Sub-assemblies / Jobs
Figure 5.18 Components, jobs, and products produced on the production line (Trentesaux et al.,

2013)

5.2.2.1 Development of A Composed Agent-based and Decision Tree System for
Flexible Job Shop Scheduling

To achieve real-time scheduling for the assembly line discussed in the last section, an
Agent-based system was first developed using an open source tool — JADE (Java Agent
Development Framework) (Bellifemine et al., 2005). Four types of agents had been developed:
shop floor agent, supervisor agent, product agent, and machine agent. The shop floor agent is
responsible to monitor the status of the jobs and machines on the shop floor and to dispatch
shuttles to workstations. The supervisor agent, product agents, and machine agents form a group
to carry out scheduling and routing decisions. Each product agent represents a job (i.e. a letter)

that needs to be assembled on the assembly line. Each machine agent represents a workstation on

89

the assembly line. The product agents and the machine agents are virtual entities that can
communicate with each other and make decisions. The supervisor agent manages the activities of
product agents and machine agents. It is responsible for instructing the shop floor agent to
release and dispatch job shuttles to workstations.

Figure 5.19 demonstrates the basic system behavior. Once in every second, the shop floor
agent sends a message (i.e. a red arrow in the diagram) to the supervisor agent, each product
agent, and each machine agent to report the status of the shop floor. The SUBSCRIBE on each

message is the communicative act which indicates the purpose of the message.

ShopFloorAgent SupervisorAgent ProductAgent MachineAgent
[[| [
! } ! !
loop J | | |
|
[every 1 second] : :
Added to consume the Decision Tree
SHASCHIBE dispatchingRule =	h/	
queryDecisionTree()		
]		
I : f d	- I I	
[SUB§CRIB.. g : I		
(jobStatus) Agent.JopStatus		
i = jobStatus		
I t SUBSCRIBE P ;		
	(machinestatus) Agent.machlneStatus	
		= machineStatus
l] l |
1 1 1

Figure 5.19 Sequence diagram to represent system behavior

Figure 5.20 shows the system behavior whenever a product order is released. Whenever the
supervisor agent receives a REQUEST message which contains the requested product
information (i.e. a list of letters that needs to make) from the outside of the Agent-based system,
the supervisor agent will instruct the agent platform to create a set of product agents (i.e. each

agent for a letter). Then, the supervisor agent informs the shop floor agent to release the raw

90

materials (i.e. the plate in Figure 5.18) for the parts. After a product agent has been created, it can
receive the CFP (Call For Proposal) messages from the active machine agents. If the product
agent is waiting and the machine(s) is capable of performing the activity requested by the part
(e.g., assembling an L comp onto the plate), it will calculate the priority value based on the
dispatching rule selected, and send the priority value to the machine agent(s), which have just
sent the CFP message, in a PROPOSE message. Otherwise, the product agent will send a
REFUSE message to the machine agent. After each active machine agent receives all the
REFUSE and PROPOSE messages, it evaluates all the proposals which contain the priority
values sent from each product agent. After the machine agent has selected the best proposal with
the lowest priority value, it replies to the product agent which has the best proposal with an
ACCEPT PROPOSAL message and sends other product agents REJECT PROPOSAL messages.
Then, each product agent which receives at least one ACCEPT PROPOSAL message evaluates
all the machines (which just accepted its proposal) and finds the nearest machine. Finally, the
product agent replies to the nearest machine agent with an /INFORM message and the others with
FAILURE messages. At this point, the decision process for a product agent is completed. The
whole process is developed based on the Contract Net Protocol defined by the FIPA standard
(FIPA, 2002). After the decision, the product agent sends the machine allocation information to
the supervisor agent, and then the supervisor agent instructs the shop floor agent to dispatch the

job shuttle to go to the assigned machine.

91

PISBI[AI SI JOPIO UB UM JOIABYDQ W)SAS) Judsaidar 0} weigerp ooudanbag ¢z°s dan3ig

|
|
|
|
ButyTem _._._
= snjejsautyoew _
|
|

(autydew o3
gol ysjedstp)

|
|
|
|
|
|
WYHOANI 2|

|
|
|
|
(uot3yed0TTE DUTYdERW) WYOIN} V“
WYHOINI |
[1s2420U 23 | |
s aulyIewWw 1] | |
| ()autyoepysadeaniad | |
_m 34Nv4 = auTyoeplsaJesu | |
| | |
“ saA WSOd0Yd 1d3DJV _ “ "
| [1esodoid 3s8q ayy | | |
sey juadylonpoud J1j | | |
OoN =
()Tesodoudisagias WSOdOYd 123r34— “ “
= Tesodoudisaq “ | |
(anTeAL3tuoTud) I | |
350d404d saA I | |
| | | |
“ [Buiyiem si gof yi] “ _
[&—35N43Y4 o ()anTeAL3ITUOTUdIDS | I
| = anrepfytyotad | (Tetuaieuw |
[91qeTTEAR | | MBJ 3SEITAJ) |
== snjejisautydew 41] I d4D WYHOANI P
pue pani2dal | ()zus8yaonpoudazesus _ _ |
s1 8sw 3g1¥ISENS UAYM | “ _ 1S3NDIY— |
“ Juabyonpo.d “ [paseajai st 1apio ue i]
| | e
} } T
| | |
abyaulyann uabyiosiniadng uaby.iooj4doys

92

This agent-based system was first developed to use a single dispatching rule — SPT (Shortest
Processing Time) — to calculate the priority value. The problem of using a single dispatching rule
is that a certain rule may perform well in some situations but may perform very badly in some
other cases. To overcome this shortcoming, a dispatching rule selection module has been applied
in this agent-based system to automatically select dispatching rules according to the system
status. This dispatching rule selection module has been realized by a Decision Tree model. This
Decision Tree has been trained to select the best dispatching rule among SPT (Shortest
Processing Time), LPT (Longest Processing Time), LWKR (Least Work Remaining), and
MWKR (Most Work Remaining) based on three system status parameters: system utilization,
average flow allowance, and percentage of unfinished jobs. For more information about the
dispatching rules, please refer to Panwalkar and Iskander (1977). The three parameters are
calculated as follows.

numberOfWorkingMachines
numberOf AllMachines

» jobDueDate — currentTime
jobRemainingWork

numberOfUnfinished]obs
numberOfUnfinished]obs
numberOf AllJobsInOrder

system utilization =

average flow allowance =

percentage of unfinished jobs =

Before training the Decision Tree, a data set of 1000 records had been generated. Orders that
had 2 to 10 letters had been randomly generated. For each order, the four dispatching rules (i.e.
SPT, LPT, LWKR, and MWKR) had been respectively applied. Whenever a dispatching decision
(i.e. sending a part shuttle to a machine) had been made, data that contained the name of the

dispatching rule and values of the three system status parameters were recorded. When the order

93

was finished, the makespan for the order was recorded. To find the best dispatching rule for each
order, only the data for a dispatching rule that had the minimum makespan were kept for training
the Decision Tree. The training of the Decision Tree had been carried out in RapidMiner 8. The
input fields for the Decision Tree were the three system parameters. The output of the Decision
Tree was the selection of the dispatching rule. A test data set of 100 records had been generated
to verify and the validate the Decision Tree embedded in the agent-based system. The prediction
correctness rate of Decision Tree was achieved at 93%. The test cases also showed that the
average makespan with the Decision Tree-based dispatching rule module was reduced compared
to the application of any individual dispatching rule (i.e. SPT, LPT, LWKR, and MWKR).

It can be observed that the Agent-based scheduling system was improved by embedding a
Decision Tree-based dispatching rule selection module. However, this system has been
developed using specific software tools like JADE and RapidMiner. This makes it impossible for
other manufacturers, who do not possess the tools, to make use of the developed system. To
allow other industrial users to be able to access and make use of this computational platform, a
KECM that combines the standardized Agent-based model and the standardized Decision Tree
model must be developed. Moreover, these two standardized models must be combined, and this
model combination must be formally represented to allow industrial users to access the two
models as a whole. This is because the combined model serves the whole functionality of
real-time scheduling; while the individual models cannot.

In the following sections, the standardized models for the Agent-based model and the

Decision Tree model are developed, respectively. Then, the combined model is developed.

94

Finally, the utilization of the combined model in the real-time scheduling scenario described in
the previous section is discussed. Since the technology selected to represent the KECM is OWL,

all the models are represented in OWL.

5.2.3 Development of A Formal Representation for Agent-based Models

Figure 5.21 presents the representation of the developed standardized agent-based model.
This model has been created based on the JADE Agent-based system. An agent is a
computational module that inhabits an agent platform and typically offers one or more
computational services (Bellifemine et al., 2007). The AgentBasedModel is the entity that
represents the model of an Agent-based system. An AgentBasedModel should have at least one
Agent. Each Agent must have an Agent Identifier (AID) for its notion of identity. Any parameter
of the Agent is captured in AgentParameter. If the AgentParameter has a domain meaning, it can
be connected to a domain concept (i.e. owl:class) through the hasParameter relationship. Any
task that is carried out by an Agent is captured in Behaviours. Each Behaviour defines the
general framework of a task. For example, a Behaviour can be categorized into SimpleBehaviour
and CompositeBehaviour. SimpleBehaviour can be further classified into OneShopBehaviour that
only executes once, CyclicBehaviour that executes repeatedly until a certain condition is
matched, and TickerBehaviour that executes whenever a certain time passes, etc. The actual
operation that needs to be carried out in a Behaviour is defined in an Action. Figure 5.21
demonstrates some examples of Actions like CreateAgentAction, ReceiveMessageAction, and

SendMessageAction, etc. Another feature of an Agent-based system is the message

95

communication between agents. The ACLMessage (Agent Communication Language Message)
represents the messages exchanged between agents. Each ACLMessage has a Sender and a
Receiver which are Agents. Any ACLMessage has a CommunicativeAct that captures the general
function or action of the message. A CommunicativeAct is represented as a string like CONFIRM,
CFP, and INFORM, etc. The dotted green arrows indicate the enumeration values of a data
property. An ACLMessage also has a MessageContent which can be a string or an instance of an
owl:class. For any Action related to a message communication like SendMessageAction, the
corresponding ACLMessage should be connected to the Action through a hasMessage

relationship.

4| OneShotBehaviour

CyclicBehaviour
[I SimpleBehaviour ’éﬁi WakerBehaviour I

hasAgent / 2
TickerBehaviour

| AgentBasedModeI |

‘4 SequentialBehaviour I

|
hasAgentFI’arameter : g SerialBehaviour [
v | &1 CompositeBehaviour Q{ FSMBehaviour I
I z
AgentParameter hasA'ctuon ParallelBehaviour I
! | /J CreateAgentAction |
hasParzlameter : 4
v : ReceiveMessageAction |~\ '
v h I\;I\\ hasSender
| Action ReplyMessageAction il Lo é ACLMessage
/,/’ 7 Y hasRecelver
- / \ AN
\ SendMessageAction |' % Ne
/ \
\ 1asCommunicativeAct hasMessageContent
: / \\
| | MessageContent l
[AccepT_proPosAL| [conrirm] [crp| [inFoRM | . [REFUSE | [REQUEST | [REJECT_PROPOSA

Figure 5.21 Representation of the Agent-based Model

96

5.2.4 Development of A Formal Representation for Decision Tree Models

TreeModel

xsa:string =g. I
ol hasNode
vasld
—_— s |
xsd:string |<I-- hasScore_ _ ~~- V £ ‘\\
e | s fRode] stoce
hasDefaultChild -~~~ ~-7
xsd:string L2~ i // LA
AFAIATLT 5o y \ \\
hasRecordCount r X % J CompoundPredicate I
«<d:integer K~ 2 W L. :
| Xsd:integer hasScoreDistribution hasPartition hasPredicate /
/// \\ \\\ / ’ SimpleSetPredicate |

e
ScoreDistribution | | Partition | |Predicate|< [T% True
AN \

i

Valye RasRecordCount 1‘;1‘)Lﬁ\)f‘4'ritf«:¥:t(_‘\“H\SP?‘C)I):‘UH‘I‘y‘ - >
/ ~ SimplePredicate

I\

xsd:integer xsd:double ‘ ’ xsd:double

hasField ‘hasOperator hasValue

‘ xsd:string ‘ xsd:string ’ xsd:string |

Figure 5.22 Representation of the Decision Tree model in OWL

Figure 5.22 presents a representation of the developed Decision Tree model. This model is
developed based on the PMML — Tree Model (DMG, 2016). The entity names are borrowed
from the PMML. Object properties have been added to better fit the Decision Tree model in the
OWL language. The TreeModel represents the overall entity of a Decision Tree. The Node
element is an encapsulation for either defining a split or a leaf in a tree model. Every Node has a
Predicate that identifies a rule for choosing itself or any of its siblings. The SimplePredicate
defines a rule in the form of a Boolean expression. The rule has attributes through hasField,
hasOperator, and hasValue data properties. The hasField property captures the name of an input
attribute of the TreeModel. The hasOperator property represents mathematical symbols like

equal, notEqual, lessThan, lessOrEqual, greaterThan, or greaterOrEqual. The hasValue property

97

captures the value for the Boolean expression. A ScoreDistribution is an element of Node to
represent segments of the score that a Node predicts in a classification. The Partition provides
distribution information for all records for a Node. For more information about the entities of this

model, please refer to (DMG, 2016).

5.2.5 Development of A Composed Agent-based and Decision Tree Model

In the previous sections, the individual computational models for the Agent-based model and
the Decision Tree model have been developed. In this section, the model combination for these
two models has been developed. Based on the previous definition of the combined computational
model, a combined model is also a computational model. So, the combined computational
models can be easily integrated into the KECM. Figure 5.23 demonstrates the KECM model for

the case study.

—‘l Knowledge
Enriched
Computational

Information «4— Combined Model
Model Model

|

I

I
: : _ J - /]

Software Tools

Rationales/
Rules

Figure 5.23 Development of the composed Agent-based and Decision Tree model

Figure 5.24 presents a representation of the implemented composed Agent-based and

98

Decision Tree model. The purple boxes represent the instances that are generated based on the

defined classes introduced in the previous sections. In this case study, the output of the Decision

Tree model is a string of the name of a dispatching rule selected like “SPT”, “LPT”, or “LWKR”;

the input of the agent-based model from the Decision Tree model is an integer value. So, their

input and output are not directly connected but are separately represented by their domain

concept instances: dispatchingRule output and dispatchingRule input. The mappings between

the name string of the dispatching rules and the integer values are SPT — 1, LPT — 2, LWKR - 3,

and MWKR — 4.

has,lnputs’v|

input_composedModel ‘

| composedModel

-

w N
- ~

& ~

&

haslnternalModel

e
P

hasOutputs

~

output_composedModel |

hasExter\nalModel

~
S

N

A

4 1\

A
| agentBasedModel |_ha_sP_oLt_‘>| Port_agentBasedModel)
7N " N # ~
& S 7 N § B
has/lnputs hasOuEputs haslnputs hasOutputs hasPortI/nputs hasPortOutputs
L Q X
ﬁ{ input_treeModel H output_treeModel |<1—\ input_agent output_agent Input_port
/ PN % \ | BasedModel BasedModel]
/// "4 : -8 & \‘ T T %
, hasVarjable | hasVariable hasVariable \ ! ; ‘.
|/ 7 : L7 \ \ hasVariable hasVariable /I has\Variable
| g | Q Q A v / |
: variable_system| I [variable_avgFlow]| [dispatchingRule_|\ | product | | schedule | | |dispatchingRule_
I Utilization : Allowance output ‘\ / input
| e T s / T
: //ﬁ haSV%‘lable §\ hasDispatchingRule ' ___hasPortConnection__ _ _ _ ! hasDispat;chngu\e
[a - : Vi Vv
[oy variable_percentage| - o ——
T 0 pa 1 5 sa:intege
: : OfUnfinishedJobs Ne \M hasVariable lw
B orreereteesess S0 R e e et
- N L L S i AR d
| |
I | hasVariable
I
I

Figure 5.24 Representation of the implemented combined model

Rationales/rules have been developed to support this model combination. In this case study,

99

two types of rules have been created. First, rules have been developed to connect the input and
output of the composed model to those of the external model (i.e. the Agent-based model).
Second, rules have been developed to describe the mappings between a string output from the
Decision Tree model and the integer port input of the Agent-based model. Likewise, all the rules
are implemented in SWRL rules. An example of the rule of the first type is given as follows.

The meaning of this rule is: if the agentBasedModel has Inputs and the Inputs has a variable
that has a manufacturing domain meaning, then the composedModel should have the same

variable. An example of the second type of rule is given as follows.

Inputs(?inputs), haslnputs(composedModel, ?inputs), Inputs(?inputs _ex),
ComputationalModel(? computationalModel),

hasExternalModel(? composedModel, ?computationalModel),
hasInputs(?computationalModel, ?inputs _ex), ManufacturingConcept(?mc),

hasVariable(?inputs _ex, ?mc) -> hasVariable(?inputs, ?mc)

Outputs(?outputs), hasOutputs(treeModel, ?outputs), DispatchingRule(?drli),
hasVariable(?outputs, ?drl), xsd:string(?drName), swrlb:equal(?drName, “SPT”),
hasDispatchingRule(?dr1, ?drName), Port(?port), Portlnputs(?portinputs),
hasPort(agentBasedModel, ?port), hasPortInputs(?port, ?portinputs), DispatchingRule(?dr2),

hasVariable(?portinputs, ?dr2) -> hasDispatchingRule(?dr2, 1)

100

The meaning of this rule is: if the output string of the freeModel equals “SPT”, then the
integer value for the portInputs of the agentBasedModel should be 1. The screenshot of the

implemented KECM, whose core is the composed model in protégé 5.2 is shown in Figure 5.25.

Annotation properties | Datatypes | Individuals | RafeNIe Ve AT CariREe LY tofs I][ISR [OIEES = m] x]
Clesses (0N eI R e IR B L ﬁ Outputs(?outputs), hasOutputs(treeModel, ?outputs), -~
DispatchingRule(?dr1), hasVariable(?outputs, ?dr1),
. agentBasModel - xsd:string(?drName), swrlb:equal{?drName, "SPT"),
Asserted ~| @ agentMachineM2 E hasDispatchingRule(2dr1, 2drName), Port(2port),
v--® owl:Thing = & agentMachineM3 PortInputs{?portInputs), hasPort(agentBasedModel,
- ACLMessage | 4 agentMachineMa ?port), hasPortInputs(?port, ?portInputs),
v Action @ agentProductR DispatchingRule(?dr2), hasvariable(?portInputs, ?dr2)
; CreateAgentAction & agentProducts hasDispatchingRule(?dr2, 1)
ReceiveMessageAction & agentProducty Input_s(?input_s), hasInputs(composedModel, Zinputs),
ReplvMessageAl:Fion @ agentShopfloor Input_-;(?"_lput_?fmf),”, o
i, SetndMessageAl:tlon @ agentSupervisor ﬁaogé::ml nalM "-,E‘.l:ulllpu:nl. ona)
; EIE|\4r|la|:hine,l\gent @ combinedModel '-’l:omp;tlationalMo:j.el) ’
ProductAgent * l:l.)mpose.dModeI . hasInputs(?computationalModel, ?inputs_ex),
ShopfloorAgent & dispatchingRule_input_port ManufacturingConcept(?mc), hasVariable(Zinputs_ex,
SupervisorAgent & dispatchingRule_output ?mc) hasvariable(?inputs, ?mc) -
AentParemetor g
AgentParameter @ input_composedModel Description: agentBasedModel 2] [=]]
JobStatus & input_port - a
: . — ypes
- MachineStatus :
v--® Behaviour & input_treeModel AgentBasedModel
: CompositeBehaviour @ node_01 =4
SimpleBehaviour Property assertions: agentBasedModel [= (W] (%]
' ComputationalModel
: AgentBasedModel Object property assertions |~
Bave_‘._ianNetwurkModel @& node_05 mmhasAgent agentMachineM2
CombinedModel @ node_06 ® hasInputs input_agentBasedModel
ComposedModel @ node_07
ParallelModel & node_08 mm hasAgent agentShopfloor
SequentialModel pe node 00 mm hasAgent agentMachineM3
DedisionTreeModel 3 = hasAgent agentSupervisor
DispatchingRuleModel @ node_10
\...() OptimizationModel :node_ll mm hasAgent agentMachineM4
Inputs node_12 mm hasAgent agentProductY
b :a:ufacturmgConcept :no:e_IB mmhasAgent agentProductS
ode 14
Outputs e :de_IS ®m hasOutputs output _agentBasedModel
Port S node_lﬁ mm hasAgent agentProductR .
zz:ttglli;t:t_s & node:l? m= hasPort port_agentBasedModel_treeModel
- Predicate L @ node_18 =

ScoreDistribution = ¥ Dsts propery sssstians =

P |

Figure 5.25 Screenshot of the implemented model combination in protégé 5.2

5.2.6 Utilization of the Composed Agent-based and Decision Tree Model

In this case study, the combined model developed in the last section has been used in the
real-time scheduling scenario described in section 5.2. To support model combination,
rationales/rules have been developed to automatically generate the input and output of the

composed model and to automatically map the data of different types between the two models.

101

Figure 5.26 shows some results of reasoning the rationales/rules. The orange arrows indicate the

corresponding rationale/rule that produced the reasoning results. The rules supporting the model

combination can significantly enhance efficiency in manipulating the KECM model.

Classes | Object properties

¥4 owl:Thing
ACLMessage
¥ Action
CreateAgentAction
ReceiveMessageAction
ReplyMessageAction
SendMessageAction
¥--0 Agent
: MachineAgent
ProductAgent
ShopfloorAgent
SupervisorAgent
AgentBasedMaodel
¥--0 AgentParameter
JobStatus
MachineStatus
-0 Behaviour
CompositeBehaviour
SimpleBehaviour
¥--{ ComputationalModel
AgentBasedModel
BayesianNetworkModel
CombinedModel
ComposedModel
ParallelModel
SequentialModel
DecisionTreeModel
DispatchingRuleModel
OptimizationModel
- Inputs
> ManufacturingConcept
- Node
Outputs
Port
PortInputs
; PortOutputs
» Predicate
; ScoreDistribution
TreeModel

Annotation properties | Datatypes | Individuals
Data properties

Asserted >

Individuals: dispatchingRule_input [=] 5]

Lk
¥ agentProductS
4 agentProducty
& agentshopfloor
agentSupervisor
& combinedModel
& composedMmodel

dispatchingRule_input_port

& dispatchingRule_output_port

input_agentBasedModel
& input_composedModel

4 input_port
& input_treeModel
& node_o01
& node_02 Types
& node_o3
& node_04
& node_o0s
& node_o6
& node_07 Object property assertions
& node_o08
& node_o09 Data property assettions
& node_10
& node_11
& node_12
& node_13
& node_14
& node_ input_composedModel
@ node_| 4 input_port
@ node_| @ input_treeModel
& node_ & node_p1
@ node_ & node_02
: "":E— & node_03
note_| & node_04
& node_
& node_05
& node
& node_p6
& node_
& node_07
14 & node_0s8

Property assertions: dispatchingRule_input_port

Nepative object property assertions

Rules: NS0

Outputs(?outputs), hasOutputs(treeModel, ?outputs),
DispatchingRule(?dr1), hasVariable(?outputs, ?dr1),
xsd:string{?drName), swrlb:equal(?drName, "SPT"),
hasDispatchingRule(?dr1, ?drName), Port(?port),
PortInputs(?portInputs), hasPort{agentBasedModel, ?port),
hasPortInputs(?port, ?portInputs), DispatchingRule(?dr2),
hasVariable(?portInputs, ?dr2) hasDispatchingRule(?dr2, 1)
Inputs(?inputs), hasInputs{composedModel, ?inputs),
Inputs(?inputs_ex), ComputationalModel(?computationalMode
hasExternalModel({?c: dModel, ?computationalModel),
hasInputs(?computationalModel, ?inputs_ex),
ManufacturingConcept(?mc), hasVariable(?inputs_ex, ?m:
hasVariable(?inputs, ?mc)

)

ption: dispatchingRule_input_port

DispatchingRule

®m hasDispatchingRule 1

Property assertions: input_composedModel

Object property assertions

M hasVariable product

Data property assertions

Figure 5.26 Using rationales to support model combinations

Currently, there are no free/open-source software tools (e.g., R, RapidMiner, and Knime, etc.)

that can consume Decision Tree models represented in PMML. To further validate the idea of

using the KECM to support model deployment, the consumption of the model composition has

also been partially implemented. To consume the internal Decision Tree model, a parser that can

process the Decision Tree model in OWL has been developed using the OWLAPI; and a code

generator that can automatically generate Java code based on the Decision Tree model has been

102

developed. Figure 5.27 shows a screenshot of the code generator. It proves that the developed
KECM can be easily consumed by computational platforms. The accessibility of computational
models is also enabled, which is required by Smart Manufacturing. The plug-and-play capability

of the computational models has been partially achieved by the proposed KECM.

[&) DecisionTresTolThen. java |[&] ONLParser. java | : Output - DecisionTreeTolfThen (run) =
Sowce | History @ -0 Q SFBH|F S % ewo o eb| =
35 B private static void treeToCode(OWLParser op) { I if (avgflowallowance<=4.204) { |
36 if (percentageofunfinishedjobs>0.938) { 1
37 OMLNamedIndlvldl:la__l treeModel = op.getIndlvldualByNa% return “SPT”: L
38 Set<OWLMamedIndividual> node_root_set = op.getRelat
39 Iterator iterator_root = node_root_set.iterator():; H
40 OkLNamedIndividual node_root = (OWLMNamedIndividual) else if (percentageofunfinishedjobs<=0.933) {
< recurse(op, node_root,1,1); if (percentageofunfinishedjobs0.812) [

42 -
43 } if (avgflowallowance>3.B878) {
44| B private static void recurse(OWLParser op, OWLNamedIndi return “LWER";
45 '
46 int numOfSpace = depth¥*4;
. . . . R - 1 f (avgflowall <=3.879
47 String indent = String.format("%1%"+numOfSpace+"s", siss la’% Wi owanee i
43 Set<OWLMamedIndividual> sublode_set = op.getRelated return MWER
49 Iterator iterator_subNode = subNode_set.iterator(); i
50 Set<OWLMamedIndividual> simplePredicate_set = op.ge }
51 Iterator iterator = simplePredicate_set.iterator(); L o =)
52 OWLNamedIndividual predicate = (OWLNamedIndividual) else if (percentageofunfinishedjobs¢=0.812) |
53 if (op.getBottomTypeFromIndividual{predicate).equal if (avgflowallowance<=3.514) {
54 String field = op.getDataFromDataProperty(predi if (avgflowallowance<=3.778) {
55 String field_str = field.replaceAll("\\s+",""); .
. Iy 5 »3. 24
i3} String operator = op.getDataFromDataProperty(p if (avgflovallowance’3. 248) 1
57 String operator_str = " if (avgflowallowance?3. 733) |
58 if (operator.equals('g Than")) return “SPT”:
59 operator_str = "»"; }
&0 else if (operator.equals("lessOrEgual™))
61 operator_str = "<-"; else if (aveflowallowance<=3.733) {
62 String value = op.getDataFromDataProperty(predi| if (systemutilization>0.667) {
63 if (num == 1) { if (avgflowallowance>3. 5710 {
64 system.out.println{indent + "if (" + field | P—
65 } else { return e
< } o
B decisiontrestoifthen DecisionTreeToIfThen » &) recurse P if (op. getBottomTypeFrom « i y

Figure 5.27 Screenshot of the code generator in Netbeans 8

103

CHAPTER 6. Utilization of the Knowledge Enriched Computational Model

for Model Retrieval

In this chapter, an application of utilizing the KECM for model retrieval is introduced.
Through modeling rationales to formally describe computational models, a semantics-based
approach can be applied to measure the similarity between the semantic descriptions of the
candidate computational models and that of the model retrieval requirements. In this chapter, the

study of retrieving dispatching rule models is presented.

6.1 Introduction

Today, with the increasing complexity of industrial systems, researchers and industrial users
do not want to build their computational models of industrial systems from scratch. An
alternative approach is to seek for pieces of existing models to build their models and build
complex systems by combining smaller sub-models (Henkel et al., 2010). To facilitate model
reuse, the retrieval of models, which decides for potentially suitable models from a large number
of available computational models becomes an important activity. It is important to rank the
computational models based on their relatedness to the requirements given by the model user.
Before the computational models can be deployed in an SM system, the ranked models should be
selected and possibly combined to fulfill the user’s requirements. Thus, a systematic approach to
retrieve/select computational models and possibly combine models should be developed. In this
chapter, a model retrieval and combination method, which conforms to the KECM, has been

developed for retrieving dispatching rule models based on user-selected production objectives.

104

6.2 Model Retrieval with the Knowledge Enriched Computational Model

Iiforriatien Standardized Knowledge Model User

Computational Enriched
Model(s) Model Computational
Model (@)

Y l

Physics ; Semantic Semantic
szed Rationales/ [= — 7:"_ — —| Description of Description of
Rules the Model
Model(s) .
/ Computational Retrieval
Model Requirements

\ /

Semantic Similarity -
based Measurement

Model not
selected

Model is
selected

Figure 6.1 Retrieving computational models with the Knowledge Enriched Computational

Model

Figure 6.1 presents a methodology to retrieve computational models with the proposed
Knowledge Enriched Computational Model. To support model retrieval, rationales/rules are used
to semantically describe the computational models. The model user, who intends to retrieve
suitable models, provides the semantic description of the requirements for model retrieval.
Through semantic similarity-based measurement, the semantic similarity values between the
model retrieval requirements and the computational models can be calculated. If the similarity

value is greater or equal to the threshold defined, the model can be selected. It is important to

105

note that the semantic description of the computational models and that of the model requirement
should be defined in the similar fashion or structure. In this chapter, the study of retrieving

dispatching rule models based on given production objectives is introduced.

6.3 Model Retrieval and Combination for Dispatching Rule Models

Literature about job shop scheduling, which studies how to appropriately allocate
manufacturing resources to production tasks in traditional job shops, have been investigating
better solutions for decades. Among various approaches (e.g., Branch and bound algorithm,
meta-heuristics-based algorithms, and dispatching rules) used to solve the job shop scheduling
problem, dispatching rules have been widely used in the industry. This is because they are easier
to implement, and they yield reasonable solutions within a very short computational time.
Normally, each one of the dispatching rules developed and utilized in today’s scheduling systems
only targets at one fixed production objective. To overcome the limitation of pursuing just one
objective, combinations of dispatching rules, which combine two or more dispatching rules
together, have been developed. But the combinations of dispatching rules are still fixed towards
certain objectives, since either a single rule or a combination of rules, is pre-set by the scheduler.
Thus, a lot of research effort has been made on the selection of dispatching rules with respect to
three or four production objectives (Geiger et al., 2006; El-Bouri and Shah, 2006; Azadeh et al.,
2012; Mouelhi-Chibani and Pierreval, 2010; Shiue, 2009; Baykasoglu et al., 2010; Scholz-Reiter
et al., 2010; Heger et al., 2015; Chen et al., 2012; El-Bouri and Amin, 2015; Lin et al., 2008;

Azadeh et al., 2015; Liu and Dong, 1996; Kizil et al., 2006; Zhong et al., 2014; Shafiq et al.,

106

2010; Joseph and Sridharan, 2011; Kashfi and Javadi, 2015).

Recently, due to the highly competitive and globalized markets, manufacturers are facing the
problem of constantly changing needs from a variety of customers. This requires manufacturers
to acquire the ability to react fast and to adapt to the new customers’ requests. Facing different
customers, a manufacturer may have to achieve two or three production objectives at the same
time. In the meantime, they need to manage their production resources as efficiently as possible.
In the context of dispatching rule selection, this means suitable dispatching rules/combinations
need to be selected/constructed for a user selected production objective or a combination of
production objectives, especially for a randomly selected combination of objectives. However,
the current dispatching rule studies are not sufficient to solve this problem. The current
simulation-based or machine learning-based approaches have difficulties when facing new
combinations of the objectives. This is because that to select dispatching rules, both simulation
and machine learning-based approaches need to (1) enumerate the candidate individual
dispatching rules and the combinations of the dispatching rules, and (2) collect data from
executing the simulation models or from real production scheduling cases, and then (3) analyzing
the simulation results or training the predictive model. However, these processes always require
a lot of time, which makes it difficult to face the constantly changing needs of the customers.

A new approach that addresses the above-mentioned problems needs to be developed. In this
dissertation, a novel semantics-based approach to retrieve a combination of dispatching rules
given randomly selected combination of objectives has been proposed. Each of the dispatching

rules and production objectives relates to a set of scheduling parameters like processing time,

107

remaining work, total work, job due date, operation due date, finish time, release date, tardiness,
etc. These parameters are semantically interrelated. For example, tardiness is a quantity that
measures the difference between a late job’s finish time and its due date. Given a production
objective that minimizes the total tardiness, it is better to finish jobs before their due dates. So,
any dispatching rule that is related to prioritize jobs or operations with early due dates should be
preferred. For a more complex objective that minimizes tardiness penalty, parameters like job’s
or operation’s due date, finish time and job’s late penalty should be considered at the same time.
Here, there are 5 scheduling parameters in total (i.e. job due date, operation due date, job finish
time, operation finish time, job’s late penalty) related to the production objective through an “and”
or an “or” relationship. When multiple production objectives are selected, it is even more
important to sort out the interrelationships of the scheduling parameters. By formally defining all
the scheduling parameters using semantic terms, all the production objectives and dispatching
rules can be transformed into semantic expressions. Further, by comparing the formal semantic
expressions between a production objective and each of the dispatching rules, dispatching rules
that are more semantically similar can be selected to construct a combination of dispatching rules.
With this idea, the semantic similarity-based approach can be put forward as a solution to
measure the semantic similarity between the semantic expression of the production objectives
and that of the dispatching rules (Zhang and Roy, 2018).

The semantics-based techniques originate from the exploration of the semantic web.
Compared to the traditional web, the semantic web has enriched information (i.e. semantics) like

class hierarchy, object properties, axioms, etc., which provides a formal description of concepts

108

and relationships within a given knowledge domain. Here, ontologies play a key role to define
the precise vocabulary. A related technique - semantic similarity, which is also a measurement,
defines the likeness between a set of concepts based on their semantic content, which is normally
governed by an ontology (Harispe et al., 2017). In consideration of the dispatching rule selection
problem, if the scheduling related concepts are formally defined in an ontology, semantic
similarity technique can be applied to measure the similarity between a dispatching rule and a
production objective (or a combination of production objectives). The similarity values can

further be used for the selection of the suitable dispatching rules.

6.4 Problem Formalization
Each of the production objectives and the dispatching rules relates to one or more scheduling

concepts, so a production objective (PO) and a dispatching rule (DR) can be represented as

PO « f(Py,P,, ..., By)

DR « f(Q1,Qz -, Qn)

P, Qy € {Scheduling Concepts}
x€l2,..my€el2..,n

Where P, or Q,, represents a scheduling concept; and f represents the logical combination of all
the P, that can describe a PO or a DR. The two basic logic combination types are AND and OR;
and the combination can be mixed. Each concept P, or @, can be further described by other
concepts in a similar fashion as

P, < f(Ry, Ry, ..., Rpy)

109

Qy < f (81,82, ., 8n1)
Ry, Sy € {Scheduling Concepts}
x€12,..,.m;yelz..,n
Where R, orS, represents a scheduling concept that used to describe a P, or a @,. Then the
R, or S, can also be further defined by other concepts until all the concepts are well described.
Thus, a PO or a DR is described by a set of semantic terms. For example, a PO and a DR can be

described as

(PO < f(Py,P;))
Py « f(Ry,Ry) DR < f(Q1)
_ P, < f(R3) _) Q1< f(51,52)
PO= 4 Ry (T { PR7\s, e F(ty uy)
R, « f(T3) Sy < f(Us3)
\R3 < f (T4, Ts, Tg)/

Where all the T's and Us are the concepts do not need to be further described.

By formally capturing the scheduling concepts that are included in the above logical
expressions, a semantic similarity between two single concepts can be directly calculated. Then
the semantic similarity between a PO and a DR can be further evaluated by calculating the
similarities between their semantic expressions. In order to identify the concepts, this paper
proposes an extended Sustainable Manufacturing Ontology which captures the scheduling related
concepts and relationships. Then the semantic expressions of all the production objectives and
the dispatching rules can be presented using the semantic terms identified in the ontology. A tree
matching based algorithm is proposed next to calculate the semantic similarity between the set of
logical expressions of a PO and that of a DR. Finally, a way of generating the proper dispatching

rule for a given production objective is described.

110

6.5 A Semantics-based Methodology for Dispatching Rule Selection

Semantic Expressions
Production Objective Dispatching Rule
. SPT (Shortest Processing Time)
‘/ : max:h.roughput . LPT (Longest Processing Time)
- M?xMawn;SSd_ . EDD (Earliest Due Date) Basad o -
l/ myadarciness . MWAKR (Most Work Remaining)
L]
. Ontology
Semantic Similarity based
Dispatching Rule Ranking
Production Objective | Dispatching | Semantic
Rules Similarity
SPT 0.45 Combination of Dispatching (ob St
Max Throughput | LPT 0 Rule Generator Sched I'p
. EDD 0.16 Rule = a x SPT + b x EDD + ¢ X .. cheduling
Min Max Tardiness MWKR 0

Figure 6.2 The semantics-based methodology for dispatching rule selection

Figure 6.2 demonstrates the proposed semantics-based methodology to solve the dispatching
rule selection problem. The framework has the selected production objectives from the user as
system inputs and a single dispatching rule/combination of dispatching rules which can be used
directly in the job shop scheduling as an output. The proposed system includes four parts: (1) an
ontology, (2) the semantic expressions of the production objectives and the dispatching rules, (3)
a semantic similarity based dispatching rule ranking system, and (4) a generator to construct a
combination of dispatching rules. The ontology defines basic manufacturing concepts,
scheduling concepts and the relationship between concepts. The semantic expression of each

production objective or each dispatching rule is defined using the concepts from the ontology. So,

111

this ontology serves as a concept repository to provide the semantic expressions of the
production objectives and the dispatching rules with basic semantic terms. After the production
objectives (one or more) have been selected by the user, all the dispatching rules will be ranked
based on the semantic similarity values obtained by comparing the semantic expressions between
the combination of the production objectives and each dispatching rule. The similarity values
obtained will then be used to calculate the weights for each single dispatching rule to generate
the final dispatching rule combination. The detailed descriptions about each part will be provided
in the following sections.

This methodology conforms to the overall knowledge integration framework. All the
semantic expressions for the dispatching rules and the production objectives can be captured into
the rationales/rules in the overall framework. These rationales/rules that describe the domain
meanings of the dispatching rules and the production objectives can be defined during model
development. The underlying ontology that needed by the proposed semantics-based approach is

the information model(s) that captured by the overall framework.

6.5.1 Sustainable Manufacturing Ontology

This section introduces the ontology that defines all the scheduling related concepts and their
relations. The proposed ontology is based on one earlier work reported in Zhang et al. (2015).
The earlier information model has been extended to include information that relates to job shop
scheduling. Figure 6.3 presents a UML Class Diagram that represents the extended Sustainable

Manufacturing Ontology. Concepts represented in black boxes are defined in the original

112

information model. The concepts represented in blue boxes are the extended concepts with
respect to job shop scheduling domain. A concept has been added to the SMO:
AdministrativeEntity. This concept represents an abstract entity of all the administrative concepts.

Figure 6.4 expands the AdministrativeEntity concept into a hierarchical tree.

State Behavior

s i |

Material Part Product

— | |

ProcessPlan
Shape :
P AssemblyProcess Requirement
Manufacturing :
Process Activit
Process [|—T— ™ ¥
Alz
AdministrativeEntity al. 3|5
i Environment SustainabilityMetrics
A ‘ i; 3
S|y
Shop composes b Job composes P Operation ises B Equipment
< isComposedBy « isComposedBy « isUsedBy

Figure 6.3 UML class diagram for the extended Sustainable Manufacturing Ontology (SMO)

For more information about the SMO, please refer to section 4.4.1.

113

Administrative
Entity
Attribute Variable DispatchingRule ProductionObjective
l [F 1 JobPriority SPT MaximizeThroughput
NumberOfRemaing - y
PositiveAttr NegativeAttr Operations LPT MaximizeFairness
A A Tardiness EDD MaximizeFairness
Penalty
— AmoutPos —— AmoutNeg
Time
ZL More L Less T‘ 1
Duration Moment
! DurationPos —— DurationNeg A CompletionRelated I DueRelated
Duration Moment
L JobFlowTime JobDueDate
Long Short
= WorkRelated Operation
Duration DueDate
MomentPos —— MomentNeg - Release
JobRemainingWork RelatedMoimiaht
Early Late JobTotalWork JobReleaseDate
OperationProcessing Operation
RelatedDuration ReleaseDate
‘—— PriorityPos “—— PriorityNeg {\ Operation TaskStart
ProcessingTime RelatedMoment
. OperationSetup X
High Low ™| RelatedDuration JobStartTime
ZE Operation Operation
SetupTime StartTime
OperationWaiting TaskFinish
RelatedDuration RelatedMoment
Zé Operation JobCompletion
WaitingTime Time
JobDueRelated Operation
Duration FinishTime
JobTardiness
JobLateness

Figure 6.4 Hierarchical tree for AdministrativeEntity

6.5.2 Semantic Expressions of Production Objectives and Dispatching Rules
After the ontology has been introduced, the semantic expressions of the production
objectives and the dispatching rules are presented in this section. In this work, we have studied

and explored the semantic expressions for 10 production objectives and 16 dispatching rules.

114

These semantic expressions are written in the Manchester OWL Syntax (W3C Working Group,

2012).

The semantic expressions for the production objectives are listed below.

Maximize Fairness

Minimize Response Time

Maximize Priority Conformity

Minimize Waiting Time Variance

Maximize Throughput

Minimize Tardiness

ProductionObjective
and (relatesTo some (Job
and (hasTime some (JobReleaseDate
and (hasAttr only Early)))))

ProductionObjective
and (relatesTo some (Job
and (hasTime some (JobReleaseDate
and (hasAttr only Late)))))

ProductionObjective
and (relatesTo some (Job
and (hasWeight some (JobWeight
and (hasAttr only High)))))

ProductionObjective
and (relatesTo some (Operation
and (hasTime some (OperationWaitingTime
and (hasAttr only Long)))))

ProductionObjective
and (relatesTo some (Operation
and (hasTime some (OperationProcessingTime
and (hasAttr only Short)))))

ProductionObjective
and ((relatesTo some (Job
and (hasTime some (JobDueDate
and (hasAttr only Early)))
or (relatesTo some (Operation
and (hasTime some (OperationDueDate
and (hasAttr only Early))))))

115

e Minimize Job Lateness Variance ProductionObjective
and (relatesTo some (Operation
and (hasTime some (OperationDueDate
and (hasAttr only Early)))))

e Minimize Setup Time ProductionObjective
and (relatesTo some (Operation
and (hasTime some (OperationSetupTime
and (hasAttr only Short)))))

e Minimize Tardiness Penalty ProductionObjective
and ((relatesTo some (Job
and ((hasPenalty some (TardinessPenalty
and (hasAttr only More)))
or (hasTime some (JobDueDate
and (hasAttr only Early))))))
or (relatesTo some (Operation
and (hasTime some (OperationDueDate
and (hasAttr only Early))))))

e Minimize Makespan ProductionObjective
and (relatesTo some (Job
and ((hasTime some (JobRemainingWork
and (hasAttr only Long)))
or (hasTime some (NumberOfRemainingOperations
and (hasAttr only More))))))

The semantic expressions for the dispatching rules are listed below.

e 1/C DispatchingRule
(C: Tardiness penalty) and (prioritizes some (Job
and ((hasPenalty some (TardinessPenalty
and (hasAttr only More)))
or (hasTime some (JobDueDate
and (hasAttr only Early))))))

EDD
(Earliest Due Date)

MST
(Minimum Slack Time)

OSL
(Operation Slack)

FCFS
(First Come First Serve)

MWKR
(Most Work Remaing)

FOPNR
(Fewest Operation
Number Remaining)

DispatchingRule
and (prioritizes some (Job
and (hasTime some (JobDueDate
and (hasAttr only Early)))
and (hasTime some (JobRemainingWork
and (hasAttr only Long)))))

DispatchingRule
and (prioritizes some (Job
and (hasTime some (JobDueDate
and (hasAttr only Early)))

and (hasTime some (JobReleaseDate
and (hasAttr only Late)))

and (hasTime some (JobRemainingWork
and (hasAttr only Long)))))

DispatchingRule
and (prioritizes some (Operation
and (hasTime some (OperationDueDate
and (hasAttr only Early)))

and (hasTime some (OperationProcessingTime
and (hasAttr only Long)))

and (hasTime some (OperationReleaseDate
and (hasAttr only Late)))))

DispatchingRule
and (prioritizes some (Job
and (hasTime some (JobReleaseDate
and (hasAttr only Early)))))

DispatchingRule
and (prioritizes some (Job
and (hasTime some (JobRemainingWork
and (hasAttr only Long)))))

DispatchingRule
and (prioritizes some (Job

116

and (hasNumber some (NumberOfRemainingOperations

and (hasAttr only Less)))))

ODD
(Operation Due Date)

LCFS
(Last Come First Serve)

MOPNR
(Most Operation
Number Remaining)

LPT

(Longest Processing Time)

SPT

(Shortest Processing Time)

LWKR
(Least Work Remaining)

SST
(Shortest Setup Time)

LWT
(Longest Waiting Time)

117

DispatchingRule
and (prioritizes some (Operation
and (hasTime some (OperationDueDate
and (hasAttr only Early)))))

DispatchingRule
and (prioritizes some (Job
and (hasTime some (JobReleaseDate
and (hasAttr only Late)))))

DispatchingRule
and (prioritizes some (Job
and (hasNumber some (NumberOfRemainingOperations
and (hasAttr only More)))))

DispatchingRule
and (prioritizes some (Operation
and (hasTime some (OperationProcessingTime
and (hasAttr only Long)))))

DispatchingRule
and (prioritizes some (Operation
and (hasTime some (OperationProcessingTime
and (hasAttr only Short)))))

DispatchingRule
and (prioritizes some (Job
and (hasTime some (JobRemainingWork
and (hasAttr only Short)))))

DispatchingRule
and (prioritizes some (Operation
and (hasTime some (OperationSetupTime
and (hasAttr only Short)))))

DispatchingRule
and (prioritizes some (Operation
and (hasTime some (OperationWaitingTime
and (hasAttr only Long)))))

118

e W DispatchingRule
(Weight) and (prioritizes some (Job
and (hasWeight some (JobWeight
and (hasAttr only High)))))

The semantic expression of each production objective is created based on its related
scheduling parameters to best describe the objective. The descriptions of each production
objective are given as follows:

e Maximize Fairness: In the absence of guidance from the user or other performance related
guidance, all the jobs should be treated equally, which means jobs should be sequenced in a “first
come first serve” order;

e Maximize Priority Conformity: When the priorities of jobs are assigned, scheduling should
favor the jobs with higher priority;

e Maximize Throughput: Maximizing the number of finished operations for a given length of
time;

e Minimize Job Lateness Variance: Balance the lateness of all the jobs. The case of finishing
some jobs early but having several very late jobs is not preferred.

e Minimize the Makespan: Minimizing the total time length of the schedule;

e Minimize Tardiness: Minimizing the tardiness of jobs by focusing on the due dates;

e Minimize Response Time: The scheduling discipline should attempt to achieve low response
time by processing the newly released jobs as soon as possible;

e Minimize Setup Time: Focusing on minimizing the setup time;

e Minimize Tardiness Penalty: Considering due dates and the tardiness penalty in scheduling;

119

e Minimize Waiting Time Variance: Waiting should be fair too. Minimizing the difference
between the operation waiting time.

The semantic expression of each dispatching rule is, however, described based on how the
dispatching rule should be applied in scheduling. The detailed discussion about each dispatching
rule can be found in Panwalkar and Iskander (1977) and Haupt (1989).

When multiple production objectives are selected, the semantic expression should be
constructed by combining the semantic expression of each individual objective through an “and”
relationship. As an example, the semantic expression of combining the “Maximize fairness”
objective and the “Minimize Tardiness Penalty” objective is presented below.

e Maximize Fairness ProductionObjective
+ Minimize Tardiness Penalty and ((relatesTo some (Job
and (hasTime some (JobReleaseDate
and (hasAttr only Early)))))
and ((relatesTo some (Job
and ((hasPenalty some (TardinessPenalty
and (hasAttr only More)))
or (hasTime some (JobDueDate
and (hasAttr only Early))))))
or (relatesTo some (Operation

and (hasTime some (OperationDueDate
and (hasAttr only Early)))))))

6.5.3 Semantic Similarity Measurement

With the semantic definitions of all the production objectives and dispatching rules, semantic
similarity measurement can then be carried out to calculate the similarity between the
user-selected production objectives (one or more) and each of the dispatching rules. In order to

do this, a tree structure of the semantic expression will be discussed; a tree matching based

120

algorithm and a semantic similarity measurement are introduced in this section. The semantic
similarity values (output of the measurement) can then be used for generating the combination of

dispatching rules.

6.5.3.1 The Tree Structure of The Semantic Expressions

ProductionObjective

/ A N
A %

or N

~
relatesTo,/ “_relatesTo
Job Operation
hasTime - SO -—;"\basPe nalty hasTime
,// or AN

y Ad Y
Tardiness Operation
{oERuekate Penalty DueDate

hasAtt ri hasAttr hasAttr
\ 4

Early More Early

Figure 6.5 Tree structure for the “Minimize Tardiness Penalty” objective

The semantic expression of each production objective or dispatching rule written in the
Manchester OWL syntax forms a tree structure: each concept can be represented as a node; each
relationship can be represented as an edge, and the relationships between all the edges leaving
from the same node are represented as the “and/or” relationships. Figure 6.5 presents the tree
structures for a single objective “Minimize the Tardiness Penalty” and Figure 6.6 presents the
structure of a combined objective “Maximize Fairness + Minimize Tardiness Penalty”. So, the
comparison between the semantic expressions can be transformed to the comparison between the

two trees which contain the semantic nodes. Next section illustrates a tree matching based

121

algorithm for measuring semantic similarity.

ProductionObjective

relatesTo ,/'/ \o’r—" N \j\ relatesTo
S ST \—\\\
5 and. relatesTo
/ : _
4 '
Job Operation ‘ Job
hasTimg/"i\,,/\>\basPenaIty hasTime hasTime i
A or R
y 3 a v
JobDueDate Farslininsy Operation JobReleaseDate
Penalty DueDate
hasAttrl hasAttr hasAttr hasAttri
Y
Early ’ More Early ‘ ’ Early ’

Figure 6.6 Tree structure for a combined “Minimize Tardiness Penalty” and “Maximize Fairness”

objective

6.5.3.2 Tree Matching Based Algorithm for Semantic Similarity

A tree matching based algorithm has been developed to calculate the semantic similarity
between a dispatching rule tree and a production objective tree. The algorithm starts from the
roots of the two trees. The nodes from a dispatching rule’s tree are compared with the nodes from
a production objective’s tree from the top layer to the bottom layer. All the trees have three layers
from top to bottom: (1) a dispatching rule/production objective layer, (2) a job/operation layer, (3)
a scheduling parameters layer and (4) an attributes layer. The similarity between the two whole
trees can then be calculated by summing up the similarities of all the layers. However, the
similarities of different layers should not have the same weight. A similarity between two

concepts which have higher positions on the tree should have larger weights than the ones have

122

lower positions. The reason is that the concepts in the upper layers are more general and are
more important than the ones in the lower layers. On the contrary, concepts in the lower layers
include more specific and detailed information so that they have less influence on the similarity
measurement. So, based on this idea, the weight of different layers has been developed as

follows:

1
_ depth(l) +1
depth(ly) +1 * depth(ly) +1 depth(l,) +1

Where [represents the current layer, depth(l) is the depth of the /th layer in the tree. [, is
the root layer which has depth(ly) = 0. [, is the deepest layer. The increment of the depth
between each two layers is 1. It can be observed that u(ly) + u(ly) + -+ + u(ly) = 1. The final

similarity between the two trees will then be given by
SiMpingr = U1 X Simy, + Uy X simy, + -+ py X simy,

Where sim,;_ is the similarity value of layer x.

When the algorithm traverses the trees, not all the branches will be visited. For the edges
leaving from the same node, if their relationship is an “and”, then all these edges will be visited;
if their relationship is an “or”, then only one edge will be visited (The edge which has the highest
similarity valued ending node will be visited). Figure 6.7 shows an example of the tree traversal
strategy. Next section will present the detail of how to calculate the semantic similarity within a

layer.

123

and

and and or and

Figure 6.7 Tree traversal strategy

Table 6.1 Threshold values

Number of Objectives Combined Threshold Values

1 0.8
2 0.7
3 05

function calculateSemanticSimilarity {
sim = 0;
maxDepth = getMaxDepth(ruleTree);
for (i = 0; i <depth of the dispatching rule tree; i++) {
layerWeight = calculateLayerWeight(i, maxDepth);
layerSim = calculateLayerSimilarity(ruleTree, ObjTree, 1);
if layerSim >= threshold {

sim = sim + layerWeight * layerSim;

} else {
Break;}
b
return sim;}

Figure 6.8 Pseudo codes for the calculateSemanticSimilarity function

124

function calculateLayerSimilarity(ruleTree, ObjTree, depth) {
layerSim = 0;
objNodeList = objTree.getVisitNodesInLayer(depth);
ruleNodeList = ruleTree.getVisitNodesInLayer(depth);
if size of objNodeList >= size of ruleNodeList {
for objNode in objNodeList {
simMax = 0;
for ruleNode in ruleNodeList {
nodeSim = calculateNodeSimilarity(objNode, ruleNode);
if (nodeSim > simMax) {
simMax = simNode; }
} layerSim = layerSim + simMax/size of objNodeList; }
} else {
for ruleNode in ruleNodeList {
simMax = 0;
for objNode in objNodeList {
nodeSim = calculateNodeSimilarity(objNode, ruleNode);
if (nodeSim > simMax) {
simMax = simNode; }
} layerSim = layerSim + simMax/size of ruleNodeList;

}

} Return layerSim;

Figure 6.9 Pseudo codes for the calculateLayerSimilarity function

125

The traversal of the trees will stop either when it reaches the bottom layer, or the similarity
value of a certain layer is too low so that there is no necessity to go to the next layer. Threshold
values have been defined to govern the stop of the traverse. The thresholds are configured with a
sensitivity analysis of the semantic similarity values (will be discussed in section 6.6.3). The
definition of the threshold relates to the number of the objectives combined. When more
objectives are combined, the semantic measure in a certain layer includes more concepts, which
can lead to lower semantic similarity value. So, the threshold value is lower when more
objectives are combined. The threshold values are shown in Table 6.1. If the semantic similarity
value falls below the threshold, the tree traversal will be stopped.

The pseudo code of the tree matching algorithm is provided in Figure 6.8 and Figure 6.9 to
illustrate the process. In the pseudo code, the getMaxDepth function calculates the maximum
depth of the trees. The calculateLayerWeight function calculates the layer weight based on the

equation given above. The function calculateNodeSimilarity is described in the next section.

6.5.3.3 Tree-based Semantic Similarity Measurement

The semantic similarity measurement between the nodes in one layer is presented in Table
6.2. The semantic similarity between every two nodes is calculated based on the similarity of
their children nodes. The sim(P, Q) in the table represents the semantic similarity between the
two concepts P and Q. It is a value that ranges from 0 to 1, in which 0 means the two concepts
are totally different concepts and 1 means they are the same concept. In this paper, the similarity

measurement between every two nodes is achieved through an edge-based semantic similarity

126

measurement proposed by Wu and Palmer (1994).

Table 6.2 Semantic similarity within a layer

Relation Graph Presentation Semantic Similarity Measurement

® O

None - or, and

any @

SiMpone(P,Q) =0

SiMeror (P, Q) =

(sim(Py,Q,),sim(Py, Qy), ..., sim(Py, Q;), \

or - or J sim(P,, Q1), sim(P,, Q3), ..., sim(P,, Qy,), !
Max
Lsim(Pm, Q.), sim(P,,;.,.Qz), e, SIM(Byy, Qn)J
SiMyrana (P,Q)
or - and

{Si”lonlyand (P, Q), SiMoniyand (P, Q), }
= Max .
(N Sl”lonlyand (Bn: Q)

Ifm>n,

Simandand (P» Q)

Max{sim(P;,Q,) + sim(P;,Q,) + ---+ sim(P;, Q) } +
Max{sim(P,, Q) + sim(P,,Q,) + -+ + sim(P,, Q,)} +

_ Max{sim(By, Q) + sim(F.’;l, Q) + -+ sim(By, Q)}
m

Else,

Simandand (P: Q)

Max{sim(Qq, P;) + sim(Qq, P,) + ---+ sim(Q4,B,)} +
Max{sim(Q,, P;) + sim(Q,, P,) + -+ + sim(Q,, B)} +

_ Max{sim(Q,,, P;) + sim(é,.n,Pz) + -+ sim(Q,, B}
n

127

The Wu and Palmer’s measurement is utilized to calculate the semantic similarity between
the two concepts on the extended Sustainable Manufacturing Ontology’s taxonomy hierarchy.
Wu and Palmer’s method considered the position relation of two concepts P and Q to their
nearest common ancestor C to calculate similarity. Here, C is located at the lowest position on
the ontology hierarchy among all the common ancestors of P and Q. The mathematical formula

for calculating the similarity between P and Q is given by

im(P, Q) = 2H
sim(P, Q) = D, + D, + 2H
where D, and D, are the minimum edge (is-a edge) counts from P to C and Q to C

respectively. H is the minimum edge count from C to the root node of the ontology.

6.5.4 Combination of Dispatching Rules Generation

Once the semantic similarity between the user-selected production objectives and each of the
dispatching rules have been calculated, dispatching rules that have higher similarity values will
be selected for generating the combination of dispatching rules. This combination of dispatching
rules can then be used directly in job shop scheduling. Dispatching rules with the similarity
values greater than a threshold will be selected. This threshold is defined as same as the threshold
for traversing the tree (Table 6.1). Then the combination of dispatching rules can be formed as

follows:

f = piRank(rule;) + p,Rank(rule,) + --- + p,Rank(rule,)

sim;

Pi sim; + simy, + --- + sim,,

128

Where f represents the ranking value of a job; the smaller this value is, the more priority this job
has. Rank(rule;) returns a ranking value of the job according to the priority value given by
rule;. p; is the coefficient associated with each dispatching rule. A dispatching rule that has

higher similarity value has higher p; value.

6.6 Verification and Results

As a proof-of-concept, this section provides a verification of the proposed semantics based
dispatching rule selection approach. The implementation has been developed and the dispatching
rule selection results of the implementation have been compared to their performances from
simulation. The next two sections give a brief introduction to the implementation of the proposed

approach and the simulation-based experiment.

6.6.1 Implementation

Figure 6.10 demonstrates the architecture of the implementation. Figure 6.11 shows the
screenshot of the implemented extend Sustainable Manufacturing Ontology in protégé (BMIR,
2018) The proposed semantic expressions of the dispatching rules and production objectives are
implemented as an “Equivalent To” class in protégé. Apache Jena (2018), which is an open
source Java framework for semantic web related applications, has been used to access the OWL
file generated from protégé. The application of semantics-based dispatching rule selection
including the semantic similarity measurement and generation of the combination of dispatching

rules is programmed in Java on top of Apache Jena.

129

e Semantic Similarity
e Dispatching Rule Combination
Generation
Apache Jena

Extended Sustainable

anufacturing Ontolog
in protégé

Figure 6.10 Architecture of the implementation

ion Properties | | owLviz | DL uery | OntoGraf | Ontology Differences | SPARQL Query |
[Class hi " class hi i | [Annatations I Usage
!; -:“ ﬁ Annotations |~
v . Thing]
¥ @ ManufacturingConcept
----- @ Activity
V- AdministrativeEntity
p-- @ Attribute
¥-- 0 DispatchingRule
..... e1/c -
..... ~ EDD
..... S FCES o Description: EDD MEEE
----- SFOPNR - =
_____ S LCES E.]ulualent-To)
..... SLPT @ DispatchingRule
..... = LWKR and (prioritizes some
..... SLWT (Job
..... = MOPNR and (hasTime some
..... SMST (JobDueDate
..... & MWKR and (hasAttr only Early)))
..... = 0DD and (hasTime some
..... = 0SL (JobRemainingWork
..... =spT and (hasAttr only Long)))))
..... e S5T
v .P?t:‘ ctionObiecti SubClass Of
uctionObjective . .
----- & MaximizeFairness @ DispatchingRule
----- = MaximizePriorityConform
""" = MaximizeThroughput — SubClass Of (Anonymous Ancestor)
..... £ Minimi Il
4] —
To use the reasoner click Reasoner-=5Start reasoner Show Inferences

Figure 6.11 Implementation of the Sustainable Manufacturing Ontology and the implemented

semantic expressions

130

6.6.2 Simulation-Based Experiment

A simulation program for dispatching rule-based scheduling has been developed to test the
performance of the selected dispatching rules. Job shop scheduling problems with 8 machines
and 50 jobs are randomly generated. Wilbrecht and Prescott (1969) have demonstrated that 6
machines were adequate to represent the complex structure of a job shop. The number of
operations for each job is uniformly distributed between 1 and 8. The processing times are drawn
from a uniform distribution between 3 and 10. The release date is uniformly distributed between
0 to 100. The due dates of jobs are assigned based on the method of total work-content (TWK)
(Blackstone et al., 1982). In this study, the due date of a job is set at 5 times of a random number
which is between its TWK and 3 times of its TWK. The due date setting can be represented

formally as follows:

D; = R; + 5 X random(TWK,3 X TWK)

where R; is the release date. By assigning due dates according to the random number generated
from total work-content, the original strong connect between the release date and the due date in
Wilbrecht and Prescott’s work can be eliminated. This simulation has 50 replications and each
replication has 50000 Monte Carlo trials. The measurement of the performances for the selected

10 production objectives is summarized in Table 6.3.

131

Table 6.3 Performance measures used in the experiment

Performance
Performance Measurement
Name
. = |[jobReleaseOrderindex; — jobStartOrderIndex;|
Fairness Z
n
i=1
Priority i |[jobPriority; — jobStartOrderindex;|
Conformity = n
1=
Job Lateness <~ (jobDueDate; — jobCompletionTime; — Z?ﬂjobDueDatei —onCompletionTimei)z
Variance n
i=1
Makespan completionTimeOfLastFinished]ob — startTimeOfFirstReleasedob
. Max{0, |jobCompletionTime,; — jobDueDate, |}
Maximum Max] Max{0,|jobCompletionTime, — jobDueDate,|}
Tardiness

Mean Respond
Time
Mean Setup
Time

Waiting Time
Variance

Max{0, |jobCompletionTime,, — jobDueDate,,|}

i jobStartTime; — jobReleaseDate;

n

i=1

n

jobSetupTime;
n

i=1

zn: (jobWaitingTime; — 2?21]0bWaltTllnngmei)2
n

i=1

The performance measurements are all designed to have a lower value for better

performances so that the performance measurements can be easily combined. Additionally, all

the performance measurement values are rounded to between 0 and 1. This is because when the

combined objectives are used, the performance measures from different objectives should have

the same scale. The explanation of each performance measure is narrated below.

e Fairness: defined for identifying the FCFS rule. It measures the average differences

132

between the release order number and the start order number of jobs.

e Priority conformity: defined for identifying the W (weight) rule. It measures the
average differences between the jobs’ priority value (or weight) and their start order number.

e Job lateness variance: defined for identifying the ODD rule. It measures the
variance of the jobs’ lateness.

e Makespan: defined for identifying the MWKR rule and the MOPNR rule. It
measures the difference between the start time of the first release job and the completion
time of the last finished job.

e Maximum Tardiness: defined for identifying the EDD rule and the ODD rule. It
measures maximum tardiness of all jobs.

e Mean respond time: defined for identifying the LCFS rule. It measures the mean
difference between the jobs’ start time and release time.

e Mean setup time: defined for identifying the SST rule. It measures the mean setup
time for all the jobs.

e Waiting time variance: defined for identifying the LWT rule. It measures the

waiting time variance among all jobs.

6.6.3 Sensitivity Analysis to Configure the Threshold
To configure the threshold values for controlling the tree traversal algorithm, sensitivity
analysis has been carried out to test the semantic similarities for different threshold values. The

sensitivity analysis tested all the production objectives against each one of the dispatching rules.

133

The combinations of two individual objectives and the combinations of three individual
objectives are also tested. The threshold values tested are selected between 0.1 and 1.1.
According to the simulation-based dispatching rule selection results, the threshold can be
configured so that the better rules can be selected. Table 6.4 shows the results for dispatching
rule selection with one production objective with the simulation results. For simplicity, Table 6.5
only shows the semantics-based dispatching rule selection results. In Table 6.4, the first line for
each production objective represents the simulation results (i.e. performances listed in Table 6.3)
and the second line shows the semantic similarity values and the selection of dispatching rules
(shown in bold). From the simulation results captured in the first lines of each objective, the best
dispatching rule can be identified. Based on the simulation results, the threshold values can be
defined.

For example, a sensitivity analysis for the combination of the “Maximize Fairness” objective
and the “Minimize Makespan” objective is shown in Figure 6.12. For this combined objective,
the FCFS, the MWKR, and the MOPNR rules have relatively higher semantic similarity values.
According to the simulation results with one objective shown in Table 6.4, the FCFS rule has
good performance for the “Maximize Fairness” objective. The MWKR rule and the MOPNR rule
have good performances for the “Minimize Makespan” objective. Therefore, the threshold
should be defined so that only these three rules can be selected. In this case, the threshold value

selected is 0.7. The same process is repeated for all other combinations of the objectives.

134

Maximize Fairness + Minimize Makespan

A AR VY

=@=—threshold e=@=sim

™~
‘
S i M
‘
T~
S W
N~

2

mmmmmmmmmmm

Figure 6.12 Sensitivity analysis to configure the thresholds

6.6.4 Results

As mentioned, the dispatching rule selection results for one objective are shown in Table 6.4.
The performances of the combination of dispatching rules are also tested. Using the combined
“Maximize Fairness” and the “Minimize Makespan” objective as an example, Figure 6.13 shows
the performances of each individual dispatching rules and the combined rule. Based on the

semantic similarity values listed in Table 6.5, the combination of the dispatching rule is

f = 0.334rank(FCFS) + 0.332rank(MOPNR) + 0.334rank(MWKR)

It can be observed from the simulation results in Figure 6.13, the combination of the dispatching

rule has better performance than the individual rules.

135

0 5290 9294 5290 9294 0 0 0 01 0 290 0 0 0 0 0 TeA
P16l Ssvl L'S91 PeCl €901 L'OLE Pl (4143 [L'86 6'VET I'1ie L'€01 6671 Se0l Tl6l dwn3uniepm Urinl
0 0'r 9294 9290 5294 0 0 0 SYS0 0 9290 0 0 0 0 0
€8¢ 0T €8T £8'C €8T €8T £8°C €8T €8¢ €8°C €8T €8°C €8¢ £8°C £8°C €8T swiy, dig ury
9290 0 0 0 0 0 9290 5294 0 5294 0 0l 9290 5294 5294 S¥S0
443 I'LT SYve 8'LT §'st [4%3 1'ee e L0T e [4%3 €Cl 543 (44 9T Tre sy, dsoy Uy
S¥S°0 S¥S°0 S¥S0 S¥S0 0T S¥S°0 S¥S0 5294 9290 5294 9290 5294 9290 5294 0'r SYS0
§20e 0162 I'vLT 990¢ 9002 T8LT cloc L'ELT 1'LST §'99¢ 66T 8'¥8¢ ¥'SLT ¥'20¢ 120t §T0¢ SsaulpIe], UIjN
9290 0 0 0 0 0'r 9290 0L 0 5294 0 5294 9290 5294 S¥S0 S¥S0
8'08C §'69¢ €9LT 9v6T 0'88¢ L'09T L'L8T ¥'09¢ £69C £70¢ $'98¢ 9YLT ¥'20¢ L'18T ¥'16T 8°08C uedsodyeN Ul
0 9290 9294 9290 0’1 0 0 0 9290 0 9290 0 0 0 0 0
L0l 9'T6 €'e8 ¥'6C 99T 811 8'LT 8111 STL LTL 801 766 9'LL 16 9LT 8701 TBA SsauajeT Ul
0'r 0 0 0 0 9290 9290 0 0 5294 0 5294 SYS0 S¥S0 Svs'o S¥S0
9 8'0¢ 8'0C 8'0¢ 8'0¢ 8'0¢ 8'0¢ 8'0¢ 8'0¢ 8'0¢ 8'0¢ 8'0¢ 8'0¢ 8'0¢ 8°0C 8°0¢ wyuo)) AJIOL] XN
9290 0 0 0 0 9290 9290 9294 0 9294 0 9294 9290 0'r 9290 S¥S0
SOLL '8 8'88 S't6 V'LL L'LOT 0'¥8 e SIS Lol 6°¢ll 1'89 L4U8! L'ty S'T8 oLt Ssoulte] XeJN
M 1SS Lds SO aao WIMN LS ANdOW LIMT AAMT Ld1 S401 AINdOA S404 aas /1

uonenwiIs woij sauo Ay} pue yoeoidde pasodoid oy wog synsax o) udamiaq uostredwo)) $°9 Jjqe],

136

owr], dmog ‘U urj

0 $58°0 SPS0 SPS0 $58'0 0 VS0 0 SPS0 0 $PS0 0 0 0 0 0
+ ssourpie], Xe|N U
SSoUITe,] XBJA
SPS0 0 0 0 0 £L8°0 SPS0 898°0 0 SPS0 0 $pS0 $PS0 £L8°0 SPS0 SPS0
+ uedsayeN UIN
o], ‘dsoy ‘U Uy
6v8°0 0 0 0 0 SPS0 SKS0 SPS0 0 SPS0 0 6v8°0 $pS0 $PS0 SPS0 SPS0
+ JUOD "Lid XeN
o], dnjog "ujA Uy
0 $58'0 SPS0 SPS0 $58'0 0 0 0 SPS0 0 $pS0 0 0 0 0 0
+ JeA SSQUdIET UIN
AuIoyuo)) ‘Lid Xep
898°0 0 0 0 0 SPS0 SPS0 SPS0 0 SPS0 0 $pS0 $pS0 898°0 SPS0 SPS0
+ ssouIre,] Xe
M AN Lds 150 aao WM ISW INJOW IMNT DIMT 1d1 SIDT UNdOA Sd04 aad on

SoA1399[qo uononpod om3 YIIM S)NSAT UOIIII[IS d[NI FuIydIedsIp paseq-sonuewas §°9 el

18
16
14
1.2

0.8
0.6
0.4
0.2

Maximize Faireness + Minimize Makespan

9 Q 5 & o & & A - Q ~ A A Q >
S &£ & S S L & S & 4 $ & ¢
& &

Figure 6.13 Simulation results for the combination of the “Maximize Fairness” and the

“Minimize Makespan” objectives

137

138

CHAPTER 7. Conclusion

In this chapter, the conclusion of this dissertation is presented. The research work presented
in this dissertation is first summarized. Then the research contributions of this dissertation are

described. Finally, the limitation of the research work is discussed.

7.1 Summary

Smart Manufacturing (SM) has become a new production paradigm that is pursued by both
industry and academia. It requires to develop standardized models to enable the accessibility and
availability of computational models to a wide range of industrial users. It also requires
computational models to be smoothly integrated with enterprise-wide data and to be properly
incorporated human knowledge for efficient decision-making.

To achieve this, it is crucial to develop a method to support the lifecycle activities of
computational models like model development, deployment, and retrieval. However, the current
standardized computational models can only capture the computational models, and they do not
capture the corresponding domain knowledge that can support their lifecycle activities. The lack
of interoperability and traceability of domain knowledge in standardized computational models
greatly limits the lifecycle activities of computational models by industrial users. The major
reason is that the lack of formally represented knowledge in standardized computational models
makes the development, deployment, and retrieval of computational models difficult for software
tools to carry out automatically and it leaves these lifecycle activities to manual work.

This dissertation proposes a Knowledge Enriched Computational Model (KECM) to

139

formally capture domain knowledge and integrate that knowledge with standardized
computational models to support lifecycle activities of computational models. In this model, the
domain knowledge is captured into information model(s), physics-based model(s) and
rationales/rules. The information model(s) can be used to explicitly express the domain meaning
of a computational model’s entities. The physics-based model(s) can capture the physics or
behavioral information of an SM system. The rationales/rules can be used to describe the
rationality of a computational model and to guide the lifecycle activities of computational
models. Semantic links are used to connect these models to the standardized computational
model. To implement the KECM, text-based information interchange languages like XML,
JSON, and OWL can be used.

To support the development of computational models in distributed environments, the
KECM is used as a medium to support formal communication between model developers. Each
model developer can update a computational model and add the corresponding knowledge. A
case study scenario, which developed a Bayesian Network (BN) model, has been used to validate
the proposed method. A KECM model has been developed to support the information exchange
between domain experts and data analysts. Due to the BN model and the knowledge used to
develop the BN being formally represented, automation of the BN construction has been enabled.
The BN can also be extracted by developed parsers for further learning and testing. The
utilization of the proposed KECM has reduced the cycle time for the development of the BN and
it can eliminate human errors.

This dissertation has discussed two perspectives of model deployment. The first perspective

140

discusses the data integration between a computational model and an SM system using the
KECM. Through the KECM, data in manufacturing systems can be smoothly integrated with the
input/output data of a computational model. A case study was developed to deploy a Constraint
Programming scheduling optimization model in a B2MML-based system. Through the KECM,
input data like job and machine information can be successfully loaded to the standardized
computational model; and the output schedule can be also loaded back to the B2MML-based
system. The second perspective of model deployment that this dissertation discusses is the
combination of multiple models. Three basic types of model combination have been discussed:
sequential models, parallel models, and composed models. A general method to formally
represent model combinations has been presented. A case study has been developed to
demonstrate the composition of an Agent-based model and a Decision Tree model for real-time
scheduling. In the case study, the Decision Tree selects the dispatching rule according to the
system status. Different data types for representing dispatching rules of the two models have
been connected through modeling rules. The consumption of the KECM has been partially
implemented, and it proves that the proposed KECM can be easily consumed by software tools.
To support model retrieval, this dissertation proposes a semantics-based method. By
formally describing the computational models and the model retrieval requirements in formal
semantic expressions, a semantic similarity-based method can be enabled to measure the
similarity between them. If the similarity value can satisfy the threshold as defined, the
computational model can be retrieved. To support this method, a semantics-based dispatching

rule model selection approach has been presented. The formal semantic expressions of

141

dispatching rules and production objectives have been developed. A tree-based semantic
similarity measure has been proposed to calculate the similarity between the given production
objective(s) and each single dispatching rule. A combination of dispatching rule method has also
been introduced to combine the retrieved individual dispatching rules. This semantics-based
dispatching rule model retrieval method has been validated with simulation-based experiments

and sensitivity analysis.

7.2 Research Contribution

This dissertation proposes a Knowledge Enriched Computational Model (KECM) to capture
and integrate domain knowledge with standardized computational models to support the lifecycle
activities of computational models. It fills the research gap of a lack of formally represented
domain knowledge integrated with standardized computational models. KECMs have been
developed to support several lifecycle applications of computational models. In these
applications, the KECM demonstrates the capability to support the development, deployment,

and retrieval of computational models. The contributions of these individual applications are:

Implementation of a KECM to support the development of a Bayesian Network model;

e Implementation of a KECM to support the data integration between an optimization model
and a B2MML-based manufacturing system;

e Implementation of a KECM to support the model combination between an Agent-based

model and a Decision Tree model;

e Development of a dispatching rule model retrieval method for job shop scheduling using

142

the KECM.

7.3 Discussion and Limitation

This dissertation proposes a Knowledge Enriched Computational Model to support lifecycle
activities of computational models. This dissertation selects OWL as the implementation to
implement the KECM. Even though OWL has richer semantics than XML and JSON, OWL also
has limitations. OWL does not provide primitive support for managing processes (e.g.,
workflows) and collection types (e.g., arrays, lists, and hash tables, etc.). It is true that they can
be defined in OWL by users, but the reasoning about them is limited. This calls for more plug-ins
or official releases to be developed for richer semantics.

This work greatly relies on standardized models. However, currently, not all computational
models have their own standardized models in text-based model interchange formats. This means
that there is no uniform way to enable the interoperability of these models. But to achieve the
Smart Manufacturing’s goal to have accessibility and availability of computational models, the
standardized computational models must be developed. To allow plug-and-play capability, the
interoperability of a type of computational model among only two or three specific software
tools is not acceptable. This calls for the development of more standardized computational

models.

143

APPENDIX - A

To facilitate the production of all 26 letters on the production line (as mentioned in section
Error! Reference source not found.), the production sequences of all 26 letters are listed in
REF Ref517010411 \h * MERGEFORMAT Table 0.1. Trentesaux et al. (2013) presented
the production sequences of 7 letters. This dissertation expands their production sequences of 7

letters to cover all 26 letters.

144

dwoo ma108

dwoo 1 dwoo | dwoo 1 dwoo)
dwoo 1 dwoo dwoo dwoo 1 dwoo maI108 dwoo™)
dwoo 1 dwoo dwoo dwoo 1 dwoo 1 dwoo | dwoa™)
dwoo” sIxy dwoo 1 dwoo dwoo sixy dwoo 1 dwoo dwoo dwoo sixy
dwoo” sIxy dwoo sixy dwoo dwoo sixy dwos sixy dwoo” sixy dwoo 1 dwoo sIxy
dwoo” srxy dwoo sixy dwos sixy dwoo sixy dwos sixy dwoo” sixy dwos sixy dwod sIxy
dwoo” sIxy dwoo sixy dwos sixy dwoo sixy dwos sixy dwoo” sixy dwos sixy dwoo sixy dudanbag
y/ A X M A n L S 1913977
dwoo marog
dwoo moa1og dwoo | dwoo ma1og dwoo marog
dwoo | dwoo dwoo ma1og dwoo dwoo ma1og dwoo |
dwoo 1 dwoo dwoo | dwoo 1 dwoo | dwoo 1
dwoo 1 dwoo 1 dwoo dwoo 1 dwoo dwoo sixy dwoo | dwoo 1
dwoo sixy dwoo sixy dwoo 1 dwoo dwoo sixy dwoo sixy dwoo sixy dwoo sixy dwoo
dwoo sixy dwoo sixy dwoo sixy dwoo sixy dwoo sixy dwoo sixy dwoo sixy dwoo sixy dwoo sixy
dwoo sixy dwoo sixy dwoo sixy dwoo sixy dwoo sixy dwoo sixy dwoo sixy dwoo sixy dwoo sixy 9duanbag
i | (o} d o N N 1 b | r TNy
dwoo™ morog
dwoo mo10§
dwoo | dwoo ma1og dwoo moa1og dwoo ma10§
dwoo | dwoo dwoo | dwoo | dwoo |
dwoo 1 dwoo dwoo 1 dwoo 1 dwoo 1 dwoo
dwoo ma1og dwoo sixy dwoo 1 dwoo 1 dwoo 1 dwoo 1 dwoo dwoo 1 dwoo 1
dwoo | dwoo sixy dwoo sixy dwoo dwoo sixy dwoo sixy dwoo dwoo sixy dwoo sixy
dwoo sixy dwoo sixy dwoo sixy dwoo sixy dwoo sixy dwoo sixy dwoo sixy dwoo sixy dwoo sixy
dwoo sixy dwoo sixy dwoo sixy dwoo sixy dwoo sixy dwoo sixy dwoo sixy dwoo sixy dwoo sixy 9duanbag
I H D K | q a J q v REAIL |

9ouanbas uononpoid jred 101397 1°(dqeL

145

REFERENCES

ANSIISA (2010). ANSI/ISA-95.00.01-2010 (IEC 62264-1 Mod) Enterprise-Control System
Integration - Part 1: Models and Terminology. USA: ANSI/ISA.

Assouroko, I, & Denno, P. (2016). A metamodel for optimization problems. NIST
Interagency/Internal Report (NISTIR) — 8096.

Azadeh, A., Hosseini, N., Abdolhossein Zadeh, S., & Jalalvand, F. (2015). A hybrid computer
simulation-adaptive neuro-fuzzy inference system algorithm for optimization of
dispatching rule selection in job shop scheduling problems under uncertainty. The
International Journal of Advanced Manufacturing Technology, 79(1), 135-145.

Azadeh, A., Negahban, A., & Moghaddam, M. (2012). A hybrid computer simulation-artificial
neural network algorithm for optimization of dispatching rule selection in stochastic job
shop scheduling problems. International Journal of Production Research, 50(2), 551—
566.

Baykasoglu, A., Gocken, M., & Ozbakir, L. (2010). Genetic programming based data mining
approach to dispatching rule selection in a simulated job shop. Simulation, 86(12), 715—
728.

Bellifemine, F. L., Caire, G., & Greenwood, D. (2007). Developing multi-agent systems with
JADE. Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate,
Chichester, West Sussex PO19 8SQ, England: John Wiley & Sons Ltd.

Bellifemine, F., Bergenti, F., Caire, G., & Poggi A. (2005). Jade - A Java Agent Development

146

Framework. In: Bordini R.H., Dastani M., Dix J., El Fallah Seghrouchni A. (eds),
Multi-Agent Programming. Multiagent Systems, Artificial Societies, and Simulated
Organizations (International Book Series) (vol 15). Boston: Springer.

Blackstone, J. H., Phillips, D. T., & Hogg, G. L. (1982). A state-of-the-art survey of dispatching
rules for manufacturing job shop operations. International Journal of Production
Research, 20(1), 27-45.

Boothroyd, G., Dewhurst, P., & Knight, W. A. (2011). Product Design for Manufacture and
Assembly (3rd ed.). Boca Raton, FL: CRC Press.

Brodsky, A., Shao, G., & Riddick, F. (2016). Process analytics formalism for decision guidance
in sustainable manufacturing. Journal of Intelligent Manufacturing, 27, 561-580.

Campos, L. M., & Castellano, J. G. (2007). Bayesian network learning algorithms using
structural restrictions. International Journal of Approximate Reasoning, 45(2), 233-254.

Chapman, S. N. (2006). Fundamentals of production planning and control. Upper Saddle River,
New Jersey, 07458: Pearson Education, Inc.

Chen, X., Wen, L. H., & Murata, T. (2012). Composite dispatching rule design for dynamic
scheduling with customer-oriented production priority control. /EEJ Transactions on
Electrical and Electronic Engineering, 7(1), 53-61.

Chungoora, N., Young, R. I, Gunendran, G., Palmer, C., Usman, Z., Anjum, N. A.,
Cutting-Decelle, A., Harding, J. A., & Case, K. (2013). A model-driven ontology
approach for manufacturing system interoperability and knowledge sharing. Computers in

Industry, 64(4), 392-401.

147

Davis, J., Edgar, T., Graybill, R., Korambath, P., Schott, B., Swink, D., Wang, J., & Wetzel, J.
(2015). Smart manufacturing. Annual Review of Chemical and Biomolecular Engineering,
6, 141-160.

Denno, P., & Kim, D. B. (2016). Integrating views of properties in models of unit manufacturing
processes. [International Journal of Computer Integrated Manufacturing, 29(9),
996-1006.

DMG (2015, November 10). Portable Format for Analytics (PFA). Retrieved from

http://dmg.org/pfa/index.html.

DMG (2016, August). PMML Version 4.3. Retrieved from http://dmg.org/pmml/pmml-v4-3.html.

ECSS (2011, January 25). Simulation modelling platform — Volume 1: Principles and
requirements. Retrieved from

http://www.ecss.nl/wp-content/uploads/standards/ecss-e/ECSS-E-TM-40-07-Volume1 A2

S5January2011.pdf.

El-Bouri, A., & Amin, G.R. (2015). A combined OWA-DEA method for dispatching rule
selection. Computers & Industrial Engineering, 88, 470—478.

El-Bouri, A., & Shah, P. (2006). A neural network for dispatching rule selection in a job shop.
The International Journal of Advanced Manufacturing Technology, 31(3), 342-349.

FIPA (2002). FIPA Contract Net Interaction Protocol Specification. Geneva, Switzerland: FIPA.

Geiger, C. D., Uzsoy, R., & Aytug, H. (2006). Rapid modeling and discovery of priority
dispatching rules: An autonomous learning approach. Journal of Scheduling, 9(1), 7-34.

Harispe, S., Ranwez, S., Janaqi, S., & Montmain, J. (2017). Semantic similarity from natural

http://dmg.org/pfa/index.html
http://dmg.org/pmml/pmml-v4-3.html
http://www.ecss.nl/wp-content/uploads/standards/ecss-e/ECSS-E-TM-40-07-Volume1A25January2011.pdf
http://www.ecss.nl/wp-content/uploads/standards/ecss-e/ECSS-E-TM-40-07-Volume1A25January2011.pdf

148

language and ontology analysis. arXiv:1704.05295.

Hartmann, T., Moawad, A., Fouquet, F., Nain, G., Klein, J., Traon, Y. L., & Jezequel, J. M.
(2017). Model-driven analytics: connecting data, domain knowledge, and learning.
arXiv:1704.01320.

Haupt, R. (1989). A survey of priority rule-based scheduling. Operations-Research-Spektrum,
11(1), 3-16.

Heger, J., Hildebrandt, T., & Scholz-Reiter, B. (2015). Dispatching rule selection with Gaussian
processes. Central European Journal of Operations Research, 23(1), 235-249.

Henkel, R., Endler, L., Peters, A., Le Novére, N., & Waltemath, D. (2010). Ranked retrieval of
Computational Biology models. BMC Bioinformatics, 11:423.

Hoehndorf, R., Dumontier, M., Gennari, J. H., Wimalaratne, S., de Bono, B., Cook, D. L., &
Gkoutos, G. (2011). Integrating systems biology models and biomedical ontologies. BMC
Systems Biology, 5:124.

Horridge, M., & Bechhofer, S. (2011). The OWL API: A Java API for OWL ontologies. Semantic
Web, 2(1), 11-21.

Johnson, 1., Abécassis, J., Charnomordic, B., Destercke, S., & Thomopoulos, R. (2010). Making
ontology-based knowledge and decision trees interact: An approach to enrich knowledge
and increase expert confidence in data-driven models. In: Bi Y., Williams MA. (eds),
Knowledge Science, Engineering and Management. KSEM 2010. Lecture Notes in
Computer Science (vol. 6291). Berlin: Springer.

Joseph, O. A., & Sridharan, R. (2011). Effects of routing flexibility, sequencing flexibility and

149

scheduling decision rules on the performance of a flexible manufacturing system. The
International Journal of Advanced Manufacturing Technology, 56(1), 291-306.

Kalet, A. M., Doctor, J. N., Gennari, J. H., & Phillips, M. H. (2017). Developing Bayesian
networks from a dependency-layered ontology: A proof-of-concept in radiation oncology.
Medical Physics, 44(8), 4350-4359.

Kannan, K., Srivastava, B., -Sosa, R. U., Schloss, R. J., & Liu, X. (2014). SemEnAl: using
semantics for accelerating environmental analytical model discovery. In: Srinivasa S.,
Mehta S. (eds), Big Data Analytics. BDA 2014. Lecture Notes in Computer Science (vol
8883). Cham: Springer.

Kashfi, M. A., & Javadi, M. (2015). A model for selecting suitable dispatching rule in FMS
based on fuzzy multi attribute group decision making. Production Engineering, 9(2),
237-246.

Kizil, M., Ozbayrak, M., & Papadopoulou, T. C. (2006). Evaluation of dispatching rules for
cellular manufacturing. The International Journal of Advanced Manufacturing
Technology, 28(9), 985-992.

Kulkarni, A., Balasubramanian, D., Karsai, G., Narayanan, A., & Denno, P. (2016). A
domain-specific language for model composition and verification of multidisciplinary
models. Paper presented at 2016 Conference on Systems Engineering Research,
Huntsville, AL, USA.

Le Novere, N., Finney, A., Hucka. M., Bhalla. U. S., Campagne F., Collado-Vides, J., Crampin,

E. J., Halstead, M., Klipp, E., Mendes, P., Nielsen, P., Sauro, H., Shapiro, B., Snoep, J. L.,

150

Spence, H. D., & Wanner, B. L. (2005). Minimum information requested in the
annotation of biochemical models (MIRIAM). Nature Biotechnology, 23(12), 1509-1515.

Lechevalier, D., Narayanan, A., Rachuri, S., Foufou, S., & Lee Y. T. (2016). Model-based
engineering for the integration of manufacturing systems with advanced analytics. In:
Harik R., Rivest L., Bernard A., Eynard B., Bouras A. (eds), Product Lifecycle
Management for Digital Transformation of Industries. PLM 2016. IFIP Advances in
Information and Communication Technology (vol. 492). Cham: Springer.

Lemaignan, S., Siadat, A., Dantan, A. -Y., & Semenenko, A. (2006). Mason: a proposal for an
ontology of manufacturing domain. Paper presented at IEEE Workshop on Distributed
Intelligent Systems: Collective Intelligence and Its Applications (DIS'06), Prague, Czech
Republic. doi: 10.1109/DIS.2006.48.

Li, Y, Thomas, M. A., & Osei-Bryson, K. (2017). Ontology-based data mining model
management for self-service knowledge discovery. Information Systems Frontiers, 19(4),
925-943.

Li, Y., Zhang, H., Roy, U., & Lee, Y. T. (2017). A data-driven approach for improving
sustainability assessment in advanced manufacturing. Paper presented at 2017 IEEE
International Conference on Big Data (BigData 2017), Boston, MA, USA.

Lin, Y., Chiu, C., & Tsai, C. (2008). The study of applying ANP model to assess dispatching
rules for wafer fabrication. Expert Systems with Applications, 34(3), 2148-2163.

Liu, H., & Dong, J. (1996). Dispatching rule selection using artificial neural networks for

dynamic planning and scheduling. Journal of Intelligent Manufacturing, 7, 243-250.

151

Madan, J., Mani, M., & Lyons, K. W. (2013). Characterizing energy consumption of the injection
molding process. Paper presented at Proceedings from ASME 2013: Manufacturing
Science and Engineering Conference, Madison, W1, USA. doi:
10.1115/MSEC2013-1222.

MESA International (2013). B2MML V0600. Retrieved from

https://services.mesa.org/Resourcelibrary/ShowResource/0f47758b-6010-40c6-a71b-fa7

b2363fb3a.

Mouelhi-Chibani, W., & Pierreval, H. (2010). Training a neural network to select dispatching
rules in real time. Computers & Industrial Engineering, 58(2), 249-256.

Munger, T., Desa, S., & Wong, C. (2015). The use of domain knowledge models for effective
data mining of unstructured customer service data in engineering applications. Paper
presented at 2015 IEEE First International Conference on Big Data Computing Service
and Applications, Redwood City, CA, USA. doi: 10.1109/BigDataService.2015.46.

Muioz, E., Capon-Garcia, E., Lainez-Aguirre, J. M., Espuiia, A., & Puigjaner, L. (2014). Using
mathematical knowledge management to support integrated decision-making in the
enterprise. Computers and Chemical Engineering, 66, 139-150.

Muioz, E., Capon-Garcia, E., Lainez-Aguirre, J. M., Espuia, A., & Puigjaner, L. (2012).
Mathematical knowledge management for enterprise decision making, Computer Aided
Chemical Engineering, 32, 637-642.

Muioz, E., Capon-Garcia, E., Lainez-Aguirre, J. M., Espuia, A., & Puigjaner, L. (2013).

Integration of enterprise levels based on an ontological framework. Chemical

https://services.mesa.org/ResourceLibrary/ShowResource/0f47758b-60f0-40c6-a71b-fa7b2363fb3a
https://services.mesa.org/ResourceLibrary/ShowResource/0f47758b-60f0-40c6-a71b-fa7b2363fb3a

152

Engineering Research and Design, 91, 1542-1556.

Nannapaneni, S., Mahadevan, S., & Rachuri, S. (2016). Performance evaluation of a
manufacturing process under uncertainty using Bayesian networks. Journal of Cleaner
Production, 113(1), 947-959.

Oberg, E., Jones, F. D., Horton, H. L., Ryffel, H. H., & McCauley, C. J. (2004). Machinery's
handbook (27th ed.). New York, NY: Industrial Press, Inc.

Ozgiiven, C., Ozbakir, L., & Yavuz, Y. (2010). Mathematical models for job-shop scheduling
problems with routing and process plan flexibility. Applied Mathematical Modelling, 34,
1539-1548.

Panwalkar, S. S., & Iskander, W. (1977). A survey of scheduling rules. Operations Research,
25(1), 45-61.

Perez-Rey, D., Anguita, A., & Crespo, J. (2006). OntoDataClean: Ontology-based integration and
preprocessing of distributed data. In: Maglaveras N., Chouvarda I., Koutkias V., Brause R.
(eds), Biological and Medical Data Analysis. ISBMDA 2006. Lecture Notes in Computer
Science (vol. 4345). Berlin Springer.

Pinedo, M. L. (2010). Scheduling theory, algorithms, and systems (4th ed.). 223 Spring Street,
New York, NY 10013, USA: Springer Science+Business Media, LLC.

Pivarski, J., Bennett, C., & Grossman, R. L. (2016). Deploying Analytics with the Portable
Format for Analytics (PFA). Paper presented at Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, San Francisco, CA,

USA. doi: 10.1145/2939672.2939731.

153

Pras, A., & Schoenwaelder, J. (2003). On the difference between information models and data
models. RFC 3444, Jan. 2003.

Ribeiro, 1., Pecas, P., & Henriques, E. (2012). Assessment of energy consumption in injection
moulding process. In: Dornfeld, D., and Linke B. (eds.), Leveraging Technology for a
Sustainable World. Berlin, Springer.

Scholz-Reiter, B., Heger, J., & Hildebrandt, T. (2010). Gaussian processes for dispatching rule
selection in production scheduling: Comparison of learning techniques. Paper presented
at 2010 IEEE International Conference on Data Mining Workshops, Sydney, NSW,
Australia. https://doi.org/10.1109/ICDMW.2010.19.

Schulz, M., Krause, F., Le Novére, N., Klipp, E., & Liebermeister, W. (2011). Retrieval,
alignment, and clustering of computational models based on semantic annotations.
Molecular Systems Biology, 7:512.

Scutari, M., & Denis, J. B. (2014). Bayesian networks with examples in R. Boca Raton, FL:
Taylor & Francis Group.

Shafiq, S. 1., Faheem, M., & Ali, M. (2010). Effect of scheduling and manufacturing flexibility
on the performance of FMS. Global Journal of Flexible Systems Management, 11(3), 21—
38.

Shao G., Denno, P., Jones, A., & Lu, Y. (2016). Implementing the ISO 15746 standard for
chemical process optimization. Paper presented at ASME 2016 11th International
Manufacturing Science and Engineering Conference, Blacksburg, Virginia, USA. doi:

10.1115/MSEC2016-8635.

154

Shiue, Y. (2009). Data-mining-based dynamic dispatching rule selection mechanism for shop
floor control systems using a support vector machine approach. International Journal of
Production Research, 47(13), 3669—-3690.

Sinha, A.P., & Zhao, H. (2008). Incorporating domain knowledge into data mining classifiers: An
application in indirect lending. Decision Support Systems, 46(1), 287-299.

SMLC (2011). Implementing 21 Century Smart Manufacturing, workshop summary report.

Retrieved from https://smartmanufacturingcoalition.org/sites/default/files/

implementing_21st_century _smart_manufacturing_report 2011 _0.pdf.

Stanford Center for Biomedical Informatics Research (BMIR). (2018). Protégé: A free,
open-source ontology editor and framework for building intelligent systems.
http://protege.stanford.edu/. Accessed on 29 Jan 2018.

Suresh, P., Joglekar, G., Hsu, S., Akkisetty, P., Hailemariam, L., Jain, A., Reklaitis, G., &
Venkatasubramanian, V. (2008). Onto MODEL: Ontological mathematical modeling
knowledge management. Computer Aided Chemical Engineering, 25, 985-990.

Szabo, C., & Teo, Y. M. (2011). An approach to semantic-based model discovery and selection.
Paper presented at Proceedings of the 2011 Winter Simulation Conference, Phoenix,
Arizona, USA.

The Apache Software Foundation. (2018). Apache jena: A free and open source java framework
for building semantic web and linked data application. https://jena.apache.org/. Accessed
on 29 Jan 2018.

Trentesaux, D., Pach, C., Bekrar, A., Sallez, Y., Berger, T., Bonte, T., Leitao, P., & Barbosa, J.

https://smartmanufacturingcoalition.org/sites/default/files/%20implementing_21st_century_smart_manufacturing_report_2011_0.pdf
https://smartmanufacturingcoalition.org/sites/default/files/%20implementing_21st_century_smart_manufacturing_report_2011_0.pdf
http://protege.stanford.edu/

155

(2013). Benchmarking flexible job-shop scheduling and control systems. Control
Engineering Practice, 21, 1204-1225.

Usman, Z. (2013). Towards a formal manufacturing reference ontology. International Journal of
Production Research, 51(22), 6553-6572.

Veryard, R. (1992). Information modelling: practical guidance. New York: Prentice Hall.

W3C (2000, Nov. 21). XEXPR - A Scripting Language for XML. Retrieved from

https://www.w3.0rg/TR/2000/NOTE-xexpr-20001121/.

W3C (2004, April 10). Mathematical Markup Language (MathML) Version 3.0 2nd Edition.

Retrieved from https://www.w3.org/TR/MathML3/.

W3C (2004, May 21). SWRL: A Semantic Web Rule Language Combining OWL and RuleML.

Retrieved from https://www.w3.org/Submission/SWRL/.

W3C (2012, Dec. 11). OWL 2 Web Ontology Language Primer (Second Edition). Retrieved from

https://www.w3.org/TR/owl2-primer/.

W3C Working Group. (2012). OWL 2 Web Ontology language Manchester syntax (2™ ed.).
W3C Recommendation.
Wadhams, J. (2015, Oct. 20). JsonLogic - Build complex rules, serialize them as JSON, share

them between front-end and back-end. Retrieved from http://jsonlogic.com/.

Wilbrecht, J. K., & Prescott, W. B. (1969). The influence of setup time on job shop performance.
Management Science, 16(4), 274-280.
Witherell, P., Krishnamurty, S., & Grosse, I. R. (2007). Ontologies for supporting engineering

design optimization. Journal of Computing and Information Science in Engineering, 7,

https://www.w3.org/TR/2000/NOTE-xexpr-20001121/
https://www.w3.org/TR/MathML3/
https://www.w3.org/Submission/SWRL/
https://www.w3.org/TR/owl2-primer/
http://jsonlogic.com/

156

141-150.

Wu, Z., & Palmer, M. (1994). Verb semantics and lexical selection. Paper presented at
Proceeding ACL ’94 Proceedings of the 32nd Annual Meeting on Association for
Computational Linguistics, Las Cruces, New Mexico, USA.

Zhang, H., & Roy, U. (2018). A semantics-based dispatching rule selection approach for job shop
scheduling. Journal of Intelligent Manufacturing.

https://doi.org/10.1007/s10845-018-1421-z.

Zhang, H., Zhu, B., Li, Y., Yaman, O., & Roy, U. (2015). Development and utilization of a
Process-oriented Information Model for sustainable manufacturing. Journal of
Manufacturing Systems, 37(2), 459-466.

Zhong, R. Y., Huang, G. Q., Dai, Q. Y., & Zhang, T. (2014). Mining SOTs and dispatching rules
from RFID-enabled real-time shopfloor production data. Journal of Intelligent

Manufacturing, 25, 825-843.

https://doi.org/10.1007/s10845-018-1421-z

157

VITA

HENG ZHANG

211 Lafayette Rd Apt 620 Email: hzhang33@syr.edu
Syracuse, NY 13205 Phone: 315-289-8288
EDUCATION

Doctor of Philosophy in Mechanical Engineering 01/2013 — 08/2018
College of Engineering & Computer Science, Syracuse University

Master of Science in Mechanical Engineering 08/2011 — 12/2012

College of Engineering & Computer Science, Syracuse University

Bachelor of Engineering in Mechanical Engineering 09/2006 — 06/2010
School of Mechanical Engineering, Hebei University of Technology

WORK EXPERIENCE

Research Assistant at College of Engineering & Computer Science, Syracuse University
01/2018 — Present

Teaching Assistant at College of Engineering & Computer Science, Syracuse University
09/2013 — 05/2017

Research Assistant at College of Engineering & Computer Science, Syracuse University
01/2013 — 05/2013

ACADEMIC PUBLICATIONS

1.

Zhang, H., & Roy, U. (2018). A semantics-based dispatching rule selection approach for job shop
scheduling. Journal of Intelligent Manufacturing. https://doi.org/10.1007/s10845-018-1421-z.

Li, Y., Zhang, H., Roy, U., & Lee, Y.T. (2017). A Data-Driven Approach for Improving Sustainability
Assessment in Advanced Manufacturing. Paper presented at 2017 IEEE International Conference on
Big Data, Boston, MA, USA.

Zhang, H., & Roy, U. (2017). An Ontology based Information Framework for Smart Manufacturing
Systems Interoperability. C+CA: Progress in Engineering and Science, 42(4), 1572-15717.

Zhang, H., Zhu, B., Li, Y., Yaman, O., & Roy, U. (2015). Development and Utilization of A
Process-oriented Information Model for Sustainable Manufacturing. Journal of Manufacturing
Systems, 37(2), 459-466.

Zhang, H., & Roy, U. (2015). A Semantic Similarity Based Dispatching Rule Selection System for
Job Shop Scheduling with Multiple Production Objectives. Proceedings of the ASME 2015
International Design Engineering Technical Conferences and Computers and Information in
Engineering Conference (ASME), August 2-5, 2015, Boston, Massachusetts, USA.

Zhang, H., & Roy, U. (2014). Development of An Information Model for the Integration of Product
Design and Sustainability Evaluation. Proceedings of the ASME 2014 International Design
Engineering Technical Conferences and Computers and Information in Engineering Conference,
August 17-20, 2014, Buffalo, New York, USA.

158

7. Roy, U., Zhu, B., Li, Y., Zhang, H., & Yaman, O. (2014). Mining Big Data in Manufacturing:
Requirement Analysis, Tools and Techniques. Proceedings of the ASME 2014 International
Mechanical Engineering Congress and Exposition, November 14-20, 2014, Montreal, Canada.

	A Knowledge Enriched Computational Model to Support Lifecycle Activities of Computational Models in Smart Manufacturing
	Recommended Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER 1. Introduction
	1.1 Research Motivation
	1.2 Research Objective and Proposed Methodology
	1.3 Dissertation Outline

	CHAPTER 2. Literature Review
	2.1 Formally Representing Computational Models and Relevant Knowledge to Support Model Interoperability
	2.2 Formalizing Domain Knowledge to Support Lifecycle Activities of Computational Models
	2.2.1 Formalizing Knowledge for Computational Models’ Development
	2.2.2 Formalizing Knowledge for Computational Models’ Deployment
	2.2.3 Formalizing Knowledge for Computational Models’ Retrieval

	CHAPTER 3. Proposed Methodology for the Knowledge Enriched Computational Model
	3.1 General Description of the Knowledge Enriched Computational Model
	3.2 Information Model
	3.3 Standardized Computational Model
	3.4 Physics-based Models
	3.5 Rationales

	CHAPTER 4. Utilization of the Knowledge Enriched Computational Model for Model Development
	4.1 Introduction
	4.2 Development of Computational Models with the Knowledge Enriched Computational Model
	4.3 Case Study Scenario
	4.4 Development of the Knowledge Enriched Computational Model
	4.4.1 Information Model
	4.4.2 Physics-based Model
	4.4.3 Standardized Computational Model
	4.4.4 Rationales
	4.4.5 Representation of the Knowledge Enriched BN Model in OWL

	4.5 Utilization of the Knowledge Enriched Computational Model
	4.6 Discussion

	CHAPTER 5. Utilization of the Knowledge Enriched Computational Model for Model Deployment
	5.1 Utilization of the Knowledge Enriched Computational Model to Support the Deployment of Computational Models in Smart Manufacturing System
	5.1.1 A General Method to Support the Deployment of Computational Models
	5.1.2 Development of A Standardized Model for Optimization Models
	5.1.2.1 Optimization Metamodel
	5.1.2.2 Representation of an MILP Model Using the Optimization Metamodel

	5.1.3 Development of a Knowledge Enriched Optimization Model for Model Deployment
	5.1.3.1 Information Model
	5.1.3.2 Optimization Metamodel
	5.1.3.3 Rationales

	5.1.4 Utilization of the Knowledge Enriched Optimization Model for Model Deployment
	5.1.4.1. Interoperability Enabled by the Optimization Metamodel
	5.1.4.2. Using the KECM to Support Model Deployment

	5.2 A Methodology to Support the Combination of Computational Models
	5.2.1 Development of A Uniform Model for Model Combinations
	5.2.2 Case Study Scenario
	5.2.2.1 Development of A Composed Agent-based and Decision Tree System for Flexible Job Shop Scheduling

	5.2.3 Development of A Formal Representation for Agent-based Models
	5.2.4 Development of A Formal Representation for Decision Tree Models
	5.2.5 Development of A Composed Agent-based and Decision Tree Model
	5.2.6 Utilization of the Composed Agent-based and Decision Tree Model

	CHAPTER 6. Utilization of the Knowledge Enriched Computational Model for Model Retrieval
	6.1 Introduction
	6.2 Model Retrieval with the Knowledge Enriched Computational Model
	6.3 Model Retrieval and Combination for Dispatching Rule Models
	6.4 Problem Formalization
	6.5 A Semantics-based Methodology for Dispatching Rule Selection
	6.5.1 Sustainable Manufacturing Ontology
	6.5.2 Semantic Expressions of Production Objectives and Dispatching Rules
	6.5.3 Semantic Similarity Measurement
	6.5.3.1 The Tree Structure of The Semantic Expressions
	6.5.3.2 Tree Matching Based Algorithm for Semantic Similarity
	6.5.3.3 Tree-based Semantic Similarity Measurement

	6.5.4 Combination of Dispatching Rules Generation

	6.6 Verification and Results
	6.6.1 Implementation
	6.6.2 Simulation-Based Experiment
	6.6.3 Sensitivity Analysis to Configure the Threshold
	6.6.4 Results

	CHAPTER 7. Conclusion
	7.1 Summary
	7.2 Research Contribution
	7.3 Discussion and Limitation

	APPENDIX – A
	REFERENCES
	VITA

