
Syracuse University Syracuse University 

SURFACE SURFACE 

Dissertations - ALL SURFACE 

August 2018 

A Knowledge Enriched Computational Model to Support Lifecycle A Knowledge Enriched Computational Model to Support Lifecycle 

Activities of Computational Models in Smart Manufacturing Activities of Computational Models in Smart Manufacturing 

Heng Zhang 
Syracuse University 

Follow this and additional works at: https://surface.syr.edu/etd 

 Part of the Engineering Commons 

Recommended Citation Recommended Citation 
Zhang, Heng, "A Knowledge Enriched Computational Model to Support Lifecycle Activities of 
Computational Models in Smart Manufacturing" (2018). Dissertations - ALL. 947. 
https://surface.syr.edu/etd/947 

This Dissertation is brought to you for free and open access by the SURFACE at SURFACE. It has been accepted for 
inclusion in Dissertations - ALL by an authorized administrator of SURFACE. For more information, please contact 
surface@syr.edu. 

https://surface.syr.edu/
https://surface.syr.edu/etd
https://surface.syr.edu/
https://surface.syr.edu/etd?utm_source=surface.syr.edu%2Fetd%2F947&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=surface.syr.edu%2Fetd%2F947&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/etd/947?utm_source=surface.syr.edu%2Fetd%2F947&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu


ABSTRACT 

Due to the needs in supporting lifecycle activities of computational models in Smart 

Manufacturing (SM), a Knowledge Enriched Computational Model (KECM) is proposed in this 

dissertation to capture and integrate domain knowledge with standardized computational models. 

The KECM captures domain knowledge into information model(s), physics-based model(s), and 

rationales. To support model development in a distributed environment, the KECM can be used 

as the medium for formal information sharing between model developers. A case study has been 

developed to demonstrate the utilization of the KECM in supporting the construction of a 

Bayesian Network model. To support the deployment of computational models in SM systems, 

the KECM can be used for data integration between computational models and SM systems. A 

case study has been developed to show the deployment of a Constraint Programming 

optimization model into a Business To Manufacturing Markup Language (B2MML) -based 

system. In another situation where multiple computational models need to be deployed, the 

KECM can be used to support the combination of computational models. A case study has been 

developed to show the combination of an Agent-based model and a Decision Tree model using 

the KECM. To support model retrieval, a semantics-based method is suggested in this 

dissertation. As an example, a dispatching rule model retrieval problem has been addressed with 

a semantics-based approach. The semantics-based approach has been verified and it 

demonstrates good capability in using the KECM to retrieve computational models.  



 

 

 

 

 

A KNOWLEDGE ENRICHED COMPUTATIONAL MODEL TO SUPPORT 

LIFECYCLE ACTIVITIES OF COMPUTATIONAL MODELS IN SMART 

MANUFACTURING 

 

 

 

 

By 

 

Heng Zhang 

 

 

 

B.S., Hebei University of Technology, 2010 

M.S., Syracuse University, 2012 

 

 

 

Dissertation 

Submitted in partial fulfillment of the requirements for the degree of 

Doctor of Philosophy in Mechanical and Aerospace Engineering 

 

 

 

Syracuse University 

 

August 2018 

 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright © Heng Zhang 2018 

All Rights Reserved 



iv 

 

ACKNOWLEDGMENTS 

First, I would like to express my deepest appreciation to my advisor, Dr. Utpal Roy, for his 

continuous help in guiding me throughout my doctoral studies. I am also very grateful for the 

opportunities for international conferences, NIST research workshop, and industrial company 

collaboration that Dr. Roy provided to make me a better researcher.  

I also would like to thank Dr. Riyad S. Aboutaha, Dr. Jianshun Zhang, Dr. Jeffrey S. Saltz, 

Dr. Michael N. Roppo, and Dr. Teng Zhang for serving as my committee members and providing 

valuable suggestions and comments for this dissertation. 

A big “thank you” goes to Dr. Bicheng Zhu for all his help in fundamental research problem 

discussions, encouragement, and suggestions for life. Further thanks go to the lab colleagues and 

friends, including Omer Yaman, Yunpeng Li, Hang Yin, and Kai Sun, for their good suggestions 

in my research work. 

Special thanks go to Dr. Xianrui Wang and Dr. Xu Yan, for their friendship and support 

across the world. I also want to thank my friends Dr. Jing Wang, Zhengyi Song, and Daiyang 

Gao for their companionship in graduate school. 

Finally, I would like to acknowledge the most important persons in my life – my parents 

Zhijian Zhang and Huiying Jia for their unconditional love. Without their support, I could not 

overcome all the challenges I faced all these years. 

 

  



v 

 

TABLE OF CONTENTS 

ABSTRACT ..................................................................................................................................... i 

ACKNOWLEDGMENTS ............................................................................................................. iv 

TABLE OF CONTENTS ................................................................................................................ v 

LIST OF TABLES ......................................................................................................................... ix 

LIST OF FIGURES ........................................................................................................................ x 

CHAPTER 1. Introduction.............................................................................................................. 1 

 Research Motivation ......................................................................................................... 1 

 Research Objective and Proposed Methodology .............................................................. 3 

 Dissertation Outline .......................................................................................................... 5 

CHAPTER 2. Literature Review .................................................................................................... 8 

2.1 Formally Representing Computational Models and Relevant Knowledge to Support 

Model Interoperability .............................................................................................................. 8 

2.2 Formalizing Domain Knowledge to Support Lifecycle Activities of Computational 

Models..................................................................................................................................... 10 

2.2.1 Formalizing Knowledge for Computational Models’ Development .....................11 

2.2.2 Formalizing Knowledge for Computational Models’ Deployment ...................... 14 

2.2.3 Formalizing Knowledge for Computational Models’ Retrieval ........................... 17 

CHAPTER 3. Proposed Methodology for the Knowledge Enriched Computational Model ....... 21 

3.1 General Description of the Knowledge Enriched Computational Model ....................... 21 

3.2 Information Model .......................................................................................................... 22 

3.3 Standardized Computational Model ............................................................................... 24 

3.4 Physics-based Models ..................................................................................................... 25 

3.5 Rationales ........................................................................................................................ 26 

CHAPTER 4. Utilization of the Knowledge Enriched Computational Model for Model 

Development ................................................................................................................................. 28 



vi 

 

4.1 Introduction ..................................................................................................................... 28 

4.2 Development of Computational Models with the Knowledge Enriched Computational 

Model ...................................................................................................................................... 29 

4.3 Case Study Scenario ....................................................................................................... 30 

4.4 Development of the Knowledge Enriched Computational Model .................................. 36 

4.4.1 Information Model ............................................................................................... 36 

4.4.2 Physics-based Model ............................................................................................ 39 

4.4.3 Standardized Computational Model ..................................................................... 40 

4.4.4 Rationales ............................................................................................................. 41 

4.4.5 Representation of the Knowledge Enriched BN Model in OWL ......................... 47 

4.5 Utilization of the Knowledge Enriched Computational Model ...................................... 49 

4.6 Discussion ....................................................................................................................... 51 

CHAPTER 5. Utilization of the Knowledge Enriched Computational Model for Model 

Deployment ................................................................................................................................... 53 

5.1 Utilization of the Knowledge Enriched Computational Model to Support the 

Deployment of Computational Models in Smart Manufacturing System .............................. 53 

5.1.1 A General Method to Support the Deployment of Computational Models .......... 55 

5.1.2 Development of A Standardized Model for Optimization Models ....................... 56 

5.1.2.1 Optimization Metamodel ................................................................................ 57 

5.1.2.2 Representation of an MILP Model Using the Optimization Metamodel ........ 60 

5.1.3 Development of a Knowledge Enriched Optimization Model for Model 

Deployment ....................................................................................................................... 65 

5.1.3.1 Information Model .......................................................................................... 67 

5.1.3.2 Optimization Metamodel ................................................................................ 68 

5.1.3.3 Rationales ....................................................................................................... 69 

5.1.4 Utilization of the Knowledge Enriched Optimization Model for Model 

Deployment ....................................................................................................................... 75 



vii 

 

5.1.4.1. Interoperability Enabled by the Optimization Metamodel ............................ 76 

5.1.4.2. Using the KECM to Support Model Deployment ......................................... 77 

5.2 A Methodology to Support the Combination of Computational Models ........................ 80 

5.2.1 Development of A Uniform Model for Model Combinations .............................. 81 

5.2.2 Case Study Scenario ............................................................................................. 86 

5.2.2.1 Development of A Composed Agent-based and Decision Tree System for 

Flexible Job Shop Scheduling ..................................................................................... 88 

5.2.3 Development of A Formal Representation for Agent-based Models ................... 94 

5.2.4 Development of A Formal Representation for Decision Tree Models ................. 96 

5.2.5 Development of A Composed Agent-based and Decision Tree Model ................ 97 

5.2.6 Utilization of the Composed Agent-based and Decision Tree Model ................ 100 

CHAPTER 6. Utilization of the Knowledge Enriched Computational Model for Model Retrieval

..................................................................................................................................................... 103 

6.1 Introduction ................................................................................................................... 103 

6.2 Model Retrieval with the Knowledge Enriched Computational Model ....................... 104 

6.3 Model Retrieval and Combination for Dispatching Rule Models ................................ 105 

6.4 Problem Formalization.................................................................................................. 108 

6.5 A Semantics-based Methodology for Dispatching Rule Selection ................................110 

6.5.1 Sustainable Manufacturing Ontology .................................................................. 111 

6.5.2 Semantic Expressions of Production Objectives and Dispatching Rules ............113 

6.5.3 Semantic Similarity Measurement ......................................................................119 

6.5.3.1 The Tree Structure of The Semantic Expressions ......................................... 120 

6.5.3.2 Tree Matching Based Algorithm for Semantic Similarity ............................ 121 

6.5.3.3 Tree-based Semantic Similarity Measurement ............................................. 125 

6.5.4 Combination of Dispatching Rules Generation .................................................. 127 

6.6 Verification and Results ................................................................................................ 128 

6.6.1 Implementation ................................................................................................... 128 



viii 

 

6.6.2 Simulation-Based Experiment ............................................................................ 130 

6.6.3 Sensitivity Analysis to Configure the Threshold ................................................ 132 

6.6.4 Results ................................................................................................................ 134 

CHAPTER 7. Conclusion ........................................................................................................... 138 

7.1 Summary ....................................................................................................................... 138 

7.2 Research Contribution .................................................................................................. 141 

7.3 Discussion and Limitation ............................................................................................ 142 

APPENDIX – A .......................................................................................................................... 143 

REFERENCES ........................................................................................................................... 145 

VITA ........................................................................................................................................... 157 

  



ix 

 

LIST OF TABLES 

Table 4.1 Parameters for modeling the Bayesian Network nodes ................................................ 31 

Table 4.2 Equations for estimating energy consumption of injection molding ............................ 35 

Table 6.1 Threshold values ......................................................................................................... 123 

Table 6.2 Semantic similarity within a layer .............................................................................. 126 

Table 6.3 Performance measures used in the experiment ........................................................... 131 

Table 6.4 Comparison between the results from the proposed approach and the ones from 

simulation .................................................................................................................................... 135 

Table 6.5 Semantics-based dispatching rule selection results with two production objectives .. 136 

Table 0.1 Letter part production sequence .................................................................................. 144 

 

  



x 

 

LIST OF FIGURES 

Figure 3.1 Enriching standardized computational model with domain knowledge...................... 21 

Figure 4.1 Development of computational models with the KECM ............................................ 30 

Figure 4.2 A BN structure learned from data ................................................................................ 33 

Figure 4.3 Development process for the BN ................................................................................ 33 

Figure 4.4 A UML Representation of the extended Sustainable Manufacturing Ontology (SMO)

....................................................................................................................................................... 39 

Figure 4.5 OntoModel and its Connection to the SMO ................................................................ 40 

Figure 4.6 A Tree presentation of the OWL-based BN model ...................................................... 41 

Figure 4.7 The Knowledge Enriched BN Model in protégé 5.2 ................................................... 47 

Figure 4.8 Inferred whitelist and blacklist relationships in protégé 5.2 ........................................ 48 

Figure 4.9 The final BN structure ................................................................................................. 49 

Figure 4.10 Information exchange using the KECM .................................................................... 50 

Figure 5.1 A general method to support the deployment of computational models ..................... 56 

Figure 5.2 A UML representation of the Optimization Metamodel .............................................. 58 

Figure 5.3 Representation of the MILP model using the Optimization Metamodel in protégé 5.2

....................................................................................................................................................... 63 

Figure 5.4 XML representation of input data for variable 𝑶𝒊...................................................... 64 

Figure 5.5 A UML representation of the extended Sustainable Manufacturing Ontology (SMO) 68 

Figure 5.6 Expansion of the Optimization Metamodel with respect to the CP model ................. 69 

Figure 5.7 Screenshot of the implemented Optimization Metamodel in protégé 5.2 ................... 75 

Figure 5.8 Representation of the optimization result (schedule) in protégé 5.2 ........................... 76 

Figure 5.9 Input data in B2MML and in the Knowledge Enriched Optimization Model ............. 77 

Figure 5.10 Loading the data from the SMO to the Optimization Metamodel ............................. 78 

Figure 5.11 Representing domain meaning of optimization model’s entities .............................. 79 

Figure 5.12 Generating constraint instances with the rationales .................................................. 79 



xi 

 

Figure 5.13 General structure for models ..................................................................................... 81 

Figure 5.14 Methods for model combination ............................................................................... 82 

Figure 5.15 An example of the composition of combined models ............................................... 83 

Figure 5.16 Representation of the general combination mechanisms .......................................... 84 

Figure 5.17 Shop floor layout of the real-time scheduling scenario (Trentesaux et al., 2013) ..... 87 

Figure 5.18 Components, jobs, and products produced on the production line (Trentesaux et al., 

2013) ............................................................................................................................................. 88 

Figure 5.19 Sequence diagram to represent system behavior ....................................................... 89 

Figure 5.20 Sequence diagram to represent the system behavior when an order is released ....... 91 

Figure 5.21 Representation of the Agent-based Model ................................................................ 95 

Figure 5.22 Representation of the Decision Tree model in OWL ................................................ 96 

Figure 5.23 Development of the composed Agent-based and Decision Tree model .................... 97 

Figure 5.24 Representation of the implemented combined model ............................................... 98 

Figure 5.25 Screenshot of the implemented model combination in protégé 5.2 ........................ 100 

Figure 5.26 Using rationales to support model combinations .................................................... 101 

Figure 5.27 Screenshot of the code generator in Netbeans 8 ...................................................... 102 

Figure 6.1 Retrieving computational models with the Knowledge Enriched Computational Model

..................................................................................................................................................... 104 

Figure 6.2 The semantics-based methodology for dispatching rule selection .............................110 

Figure 6.3 UML class diagram for the extended Sustainable Manufacturing Ontology (SMO) .112 

Figure 6.4 Hierarchical tree for AdministrativeEntity ..................................................................113 

Figure 6.5 Tree structure for the “Minimize Tardiness Penalty” objective ................................ 120 

Figure 6.6 Tree structure for a combined “Minimize Tardiness Penalty” and “Maximize Fairness” 

objective ...................................................................................................................................... 121 

Figure 6.7 Tree traversal strategy................................................................................................ 123 

Figure 6.8 Pseudo codes for the calculateSemanticSimilarity function ..................................... 123 

Figure 6.9 Pseudo codes for the calculateLayerSimilarity function ........................................... 124 



xii 

 

Figure 6.10 Architecture of the implementation ......................................................................... 129 

Figure 6.11 Implementation of the Sustainable Manufacturing Ontology and the implemented 

semantic expressions ................................................................................................................... 129 

Figure 6.12 Sensitivity analysis to configure the thresholds ...................................................... 134 

Figure 6.13 Simulation results for the combination of the “Maximize Fairness” and the 

“Minimize Makespan” objectives ............................................................................................... 137 

 



1 

 

 

CHAPTER 1.  Introduction 

In this chapter, an overview of the research in this dissertation is presented. This chapter 

starts with research motivation. The research objective and proposed methodology are then 

introduced. Finally, the structure of the dissertation is outlined.  

 Research Motivation 

Due to advances in information technologies and artificial intelligence, the Smart 

Manufacturing (SM) concept has emerged to lead a new paradigm of manufacturing. The SMLC 

(Smart Manufacturing Leadership Coalition) has characterized the SM enterprises as data-driven, 

knowledge-enabled, and model rich with visibility across the enterprise, such that all operating 

actions are executed proactively by applying the best information and performance metrics 

(Davis et al., 2015). To achieve this, computational models to be easily accessible and available 

to a wide range of users across enterprises (SMLC., 2011). According to the SMLC, this calls for 

the standardization of computational models to support plug-and-play capability and effective 

data exchange for industrial users from small manufacturing enterprises to large ones. It also 

requires human knowledge and decisions to be incorporated into decision models, which enables 

faster, more disciplined decision making. 

Computational models, which are the core components of enterprise decision tools, play 

important roles in both business and engineering decision making at all levels of an enterprise’s 

hierarchy from business planning and logistics through manufacturing operations control to 

batch and unit process control. Here, the computational models can be the mathematical, 
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optimization, knowledge-based, data analytics/machine learning and rule models, etc. that are 

used in enterprise decision making. To support their interoperability/accessibility, standardized 

computational models have been developed to formally represent computational models in 

text-based formats like XML (Extensible Markup Language) and JSON (JavaScript Object 

Notation). For example, Mathematical Markup Language (MathML) (W3C, 2004) has been 

developed to represent mathematical expressions using XML. The Predictive Model Markup 

Language (PMML) (DMG, 2016) is a set of XML-based data models to represent statistical and 

data mining models.  

However, the current standardized computational models do not possess formally captured 

domain knowledge which can be used to support the lifecycle activities of computational models. 

The lifecycle activities that are focused in this dissertation are the development, deployment, and 

retrieval of computational models. Here, the knowledge can be the domain meanings of the 

entities in computational models, the physics or behavioral information about the application 

domain where a computational model applies, the rationales or rules to describe the rationality of 

a computational model or to guide the lifecycle activities of computational models. These types 

of knowledge are very important to support lifecycle activities of computational models. The 

domain meanings of a computational model’s entities are needed in all its lifecycle activities so 

that the computational model can be understood. Physics or behavioral information about the 

application domain of a computational model can be used to support the development of the 

computational model. Rationales or rules can capture information about why a specific structure 

of a computational model was developed or how a model parameter was defined, which are 
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useful when the computational model needs to be modified or updated. The rules can also be 

used to guide the development, deployment, and retrieval of computational models. All these 

types of knowledge need to be formally captured and integrated with the standardized 

computational models so that software tools can be used to automate lifecycle activities of 

computational models. 

So, to support lifecycle activities of computational models, a methodology has been 

proposed in this dissertation to formally capture knowledge and integrate the knowledge with 

standardized computational models. 

 Research Objective and Proposed Methodology 

According to the research motivation introduced in the last section, the research objective of 

this dissertation is to develop a knowledge enriched computational model which formally 

captures knowledge and integrates the knowledge with standardized computational models to 

support lifecycle activities of computational models.  

 The proposed methodology in this dissertation is as follows: 

A Knowledge Enriched Computational Model (KECM) has been proposed to capture 

knowledge into information model(s), physics-based model(s) and rationales. The information 

model(s) can be used to capture domain concepts and relationships. The physics-based model(s) 

can be used to encapsulate the physical or behavioral information of a certain SM system (e.g., a 

manufacturing process, a shop floor control system, a business planning system, etc.). The 

rationales or rules can be used to provide rationality about computational models and to guide 
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lifecycle activities. Semantic links can be used to integrate these types of knowledge with the 

standardized computational models.  

An example of the KECM for developing a Bayesian Network (BN) model is provided as 

follows. 

A BN model needs to be developed for estimating the energy consumption of injection 

molding processes. Due to the lack of formal information exchange between domain experts and 

data analysts, a KECM which can formally represent the BN model and domain knowledge can 

be used to support the formal information exchange. To formally represent the BN model, the 

PMML – Bayesian Network Model (DMG, 2016) can be used as the standardized computational 

model in the KECM. To capture domain meanings for the nodes in the BN, a Process-oriented 

Information Model for Sustainable Manufacturing from a literature (Zhang et al., 2015) can be 

used for the KECM. To generate the structure of the BN based on domain knowledge, 

mathematical equations which calculate the energy consumption for injection molding processes 

can be used. The OntoModel can be used to formally represent these equations as the 

physics-based models in the KECM. Rationales/rules can be developed to describe how to use 

the OntoModel-based equations to generate the BN structure. A detailed case study of this 

example has been provided in Chapter 4.  

The proposed KECM has been further validated in three distinct applications to demonstrate 

the utilization of the KECM to support three different lifecycle activities for computational 

models. The three applications are as follows:  
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(1) implementing a KECM to support the development of a Bayesian Network model in a 

distributed environment, 

(2) implementing KECMs to support the deployment of computational models: the deployment 

of an optimization model in a manufacturing system and the combination of an Agent-based 

model and a Decision Tree model for a real-time scheduling scenario, and  

(3) developing KECM rationales/rules that formally describe dispatching rule models for the 

retrieval of dispatching rules. 

With the proposed methodology, outcomes to be expected are: 

(1) For computational models that need to be developed in distributed environments, the 

proposed methodology enables explicit and formal knowledge exchange between model 

developers and further enhances the efficiency of distributed model development. 

(2) The proposed methodologies enable industrial users to define their own ways to deploy and 

combine computational models in Smart Manufacturing systems. 

(3) The proposed methodology allows the retrieval of computational models according to users’ 

requirements for Smart Manufacturing applications. 

 Dissertation Outline 

This dissertation is presented in seven chapters. The description of each chapter is narrated 

below. 

Chapter 2 reviews literature related to the research problem. It first reviews literature that 

formally represents computational models and their relevant knowledge to support model 



6 

 

 

interoperability. The next section reviews literature that formalizes domain knowledge to support 

lifecycle activities of computational models. This section is divided into three sub-sections. Each 

sub-section reviews literature related to a specific lifecycle activity – model development, model 

deployment, and model retrieval. 

Chapter 3 proposes a Knowledge Enriched Computational Model (KECM) that explicitly 

and formally enriches domain knowledge into standardized computational models to support the 

lifecycle activities of computational models. The general description of the KECM is provided. 

Chapter 4 discusses the utilization of the proposed KECM to support model development. A 

general method to use the KECM in model development has been proposed. To validate the 

proposed method, a case study has been presented to develop a Bayesian Network model with 

the assistance of the KECM. The KECM for the Bayesian Network model has been developed. 

The utilization of the KECM in supporting the development of the Bayesian Network model has 

been discussed. 

Chapter 5 discusses the utilization of the proposed KECM to support model deployment. 

This chapter is divided into two parts. The first part covers the general method that using the 

KECM to support the data integration between a computational model and the data system that 

the computational model deploys. A case study has been provided to demonstrate the deployment 

of an optimization model in a B2MML-based data system. Due to the lack of a standardized 

model for optimization models, an Optimization Metamodel has been proposed. In the second 

part, a general approach to formally represent model combinations is introduced. This model 

combination method aims to extend the standardized computational model captured in the 
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KECM. As an example, a combination of an Agent-based model and a Decision Tree has been 

carried out using the proposed modeling method. 

Chapter 6 describes a method to retrieve computational models using the KECM. In this 

chapter, the retrieval of dispatching rule models based on production objectives has been studied 

as an example. To enable this retrieval, a semantics-based approach has been proposed. This 

semantics-based approach first defines the formal semantic expression of dispatching rules and 

production objectives. Then, a tree-based semantic similarity measurement has been presented to 

calculate the similarities between the given production objectives and all the dispatching rules. 

Based on the similarity values, the selected dispatching rule model can be combined. The 

validation of the semantics-based dispatching rule selection approach has been provided at the 

end of the chapter. 

Chapter 7 concludes this dissertation. It starts with a summary of the whole dissertation. 

Then, the research contributions are described. Finally, the limitations of the research work in the 

dissertation are discussed.  
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CHAPTER 2.  Literature Review 

In this chapter, the literature related to the research problem that this dissertation focuses on 

is reviewed. First, the literature that is related to formally representing computational models 

and relevant knowledge is reviewed. Then, the literature that is related to formalizing knowledge 

to support model development, deployment and retrieval, respectively are reviewed. 

2.1 Formally Representing Computational Models and Relevant Knowledge to 

Support Model Interoperability 

To enable the accessibility and plug-and-play capability of computational models, 

computational models must be formally represented to support their interoperability. Currently, 

there are several industry standards that have been developed to support certain types of 

computational models. For example, the MathML (W3C, 2004) is an XML-based language to 

represent mathematical expressions. The MathML has two parts: the ContentML is used to 

represent the meanings of mathematical expressions, and the PresentationML is used to capture 

the presentation of mathematical expressions (e.g., matrix, vector, and tables, etc.). By using 

MathML, mathematical expressions can be smoothly shared in web applications and text editing 

tools like Microsoft Office. The PMML (DMG, 2016) is also an XML-based language to 

formally represent statistical and data mining models. Models like Regression, Decision Tree, 

Neural Network, and Bayesian Network, etc. can be represented in XML-based documents to 

allow model exchange between different data analytics applications. The ECSS 

E-TM-40-07/Simulation Model Portability 2 (ECSS, 2011) is a standard developed for 
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representing simulation models. Mappings of the metamodels, component models and simulation 

services to the C++ platform have been developed.  

There are also academic efforts to formally represent computational models and their 

relevant knowledge. Witherell et al. (2007) presented an ontology for optimization (ONTOP) in 

the engineering design domain to bridge the semantic gap in inconsistent optimization 

terminologies across different software tools. Though formal semantics were used to capture the 

overall structure and terminology of optimization models, entities like objective function and 

constraints are represented in strings. This informal representation of mathematical expressions 

created issues for effective data exchange. One issue raised is that there is a need to integrate 

optimization models with knowledge like the engineers’ rationales in creating the models. Thus, 

to capture the engineering design knowledge related to optimization models, the authors 

proposed to include assumptions, model purposes, and related images, etc. in the ontology. 

However, the assumptions, model descriptions, and associated images were captured either in 

natural language-based strings or in formats that are difficult for software tools to process. 

Although the developed ontology was implemented using the Web Ontology Language (OWL), 

it is difficult for software tools to process and understand a whole optimization model. Moreover, 

the parsing and utilization of the embedded domain knowledge rely on manual work.  

Muñoz et al. (2014) proposed an ontological approach to represent optimization models and 

manufacturing information. The representation of mathematical programming models was 

achieved by using their previously developed Ontological Math Representation (Muñoz et al., 

2012) ontological model. The manufacturing information was captured by their Enterprise 
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Ontology Project (Muñoz et al., 2013) ontological model. However, there is no clear description 

about how to use their model to represent optimization models and how to integrate the two 

ontological models. Additionally, only information models (i.e. ontological model) were used as 

domain knowledge. 

Denno and Kim (2016) proposed a semantic web technology-based idea to integrate 

predictive model equations (i.e. regression models) in unit manufacturing process models. The 

authors argued that it is valuable to share predictive model equations among industrial users 

because the equations reflect certain manufacturing knowledge that can be used elsewhere. They 

utilized semantic web technology to semantically connect objects in equations to manufacturing 

concepts. They claimed the proposed idea could benefit knowledge refinement and reuse, 

traceability, model verification in production activities. However, there was no formal 

representation of the equations shown to support the inoperability of the equations. Also, there 

were no clear semantic links between the equation variables and manufacturing concepts 

demonstrated in the paper. There was also no work to show how the proposed method supports 

downstream activities (e.g., model verification, reuse) after model development.  

To sum up, there is a lack of a uniform method to formally represent and integrate domain 

knowledge with computational models in the current literature.  

2.2 Formalizing Domain Knowledge to Support Lifecycle Activities of 

Computational Models 

In this section, literature about formalizing domain knowledge to support lifecycle activities 
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of computational models has been reviewed. This section has been divided into three 

sub-sections that are related to the development, deployment and combination, and retrieval of 

computational models.  

2.2.1 Formalizing Knowledge for Computational Models’ Development 

Recently, a lot of research has been carried out in bridging the semantic gap between data 

and computational models. For example, Johnson et al. (2010) proposed using an ontology to 

capture the domain concepts which are used to represent important variables for learning a 

decision tree. In the learning process, the decision tree model was iteratively learned from data 

and examined by domain experts. If the domain experts were not satisfied with the accuracy of 

classification, suggestions like adding variables to the model, merging variables into a new one, 

etc. were made. After that, the corresponding concepts were added to the ontology. Then the 

updated ontology was used to guide data processing. Although this was a good attempt in using 

ontologies to capture domain concepts for learning a decision tree, this study did not formally 

formulate the rules for data processing in the ontology. It also did not explicitly represent the 

decision tree and semantically connect the decision tree to the ontology. There is also similar 

research on formulating domain knowledge to bridge semantic gaps by Perez-Rey et al. (2006), 

Sinha and Zhao (2008), and Munger et al. (2015), etc. They also have problems in formally 

representing rules and integrating knowledge with analytic models. 

There are also studies on using domain knowledge to construct analytic models. Campos and 

Castellano (2007) proposed learning a Bayesian Network structure by specifying the structural 
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restrictions from expert knowledge. The structural restrictions were defined as the existence of 

arcs, the absence of arcs, and causal ordering restrictions. These restrictions were claimed to be 

very useful in codifying the domain knowledge of a given domain. However, no specific domain 

knowledge formalization and integration were shown in this research. Lechevalier et al. (2016) 

introduced a domain-specific modeling approach to integrate a manufacturing system model with 

data analytics to facilitate effective and efficient data analytics in manufacturing systems. In their 

approach, the manufacturing meta-models, which define the concepts, rules, and constraints, are 

first captured. Taking the manufacturing meta-models and data as inputs, a Neural Network 

model builder computes the optimal number of hidden neurons and builds the optimal structure 

of the neural network. The generated Neural Network structure was recorded using a Neural 

Network meta-model. This meta-model was trained to obtain the final Neural Network model. In 

this research, although the manufacturing domain knowledge was captured, and the knowledge 

was used in creating a Neural Network structure, the domain knowledge and the Neural Network 

model’s structure were loosely coupled. There were no mappings between the pieces of 

knowledge used for creating the structure and the specific structures (e.g., input neurons, hidden 

neurons, the structure of the neural network) that were captured explicitly and formally by the 

manufacturing meta-model. Again, the semantic links between the manufacturing meta-model 

and the Neural Network meta-model were missing. Kalet et al. (2017) proposed using a 

dependency-layered ontology, which was implemented in OWL, to solve the inconsistency and 

incompatibility between different Bayesian Network models in the medical domain. They 

utilized software tools to extract concepts that were related by a certain object property from the 
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developed ontology. Then, they applied software to automatically generate Bayesian Network 

topologies (i.e. nodes and arcs) based on the extracted concepts and relationships. However, the 

Bayesian Network model was not formally represented. Also, there were no semantic links 

between the developed Bayesian Network model and the ontology. 

Hartmann et al. (2017) presented a model-driven analytics idea to emphasize the importance 

of using properly formulated domain knowledge in data analytics. They proposed to use a 

domain model to explicitly define the semantics of raw data in the form of metadata, domain 

formula, mathematical models, and learning rules. The domain model is used to guide the 

continuous refinement of the raw data to build a knowledge base. This knowledge base 

consequently contains the insight of the application domain, and it can be used for other 

applications. The advantages of applying the model-driven analytics are: (1) the modeled causal 

relationships within the data allow the refinement of only the necessary parts of data instead of 

recalculating everything; (2) it avoids the “store everything and analyze it later” strategy of 

today’s pipeline-based analytics; (3) experts can describe their knowledge in the form of models, 

which enables what-if analysis; (4) the learning rules are organized with the domain data 

structure in a central place instead of being spread over the analytic tasks. However, the paper 

does not specify in what format to capture the metadata, mathematical formulas, and learning 

rules as well as how to integrate them. Also, the metadata model was not semantically connected 

to the analytic model.  

To sum up, there are research gaps in (1) properly formulating domain knowledge for the 

development of computational models; and (2) integrating the formulated domain knowledge 
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with formally represented computational models to assist the construction of computational 

models. Thus, a modeling framework which formalizes domain knowledge and integrates the 

formalized knowledge and standardized computational models needs to be developed. 

2.2.2 Formalizing Knowledge for Computational Models’ Deployment 

Research has also been carried out to formalize knowledge to support the deployment of 

computational models. The deployment of computational models in SM is a task that integrates 

one or more computational models in a Smart Manufacturing system. This requires the input and 

output data of computational models to be smoothly connected to the underlying system. Also, to 

deploy more than one computational model for an SM application, a methodology to combine 

the computational models needs to be developed. In this section, the literature that studies model 

deployment and model combination are reviewed. 

Industrial efforts have been made to support model combination and deployment. Pivarski et 

al. (2016) introduced a new language, called the Portable Format for Analytics (PFA), for 

deploying analytic models into products, services, and operational systems. The PFA, which is 

currently under development by the Data Mining Group (DMG), is a JSON-based language that 

formally captures the analytic models along with the formalized functionalities of model 

consumption like data transformation and data aggregation. In their paper, it is emphasized that 

to use a programming language like JSON is safer than to use conventional programming 

languages like C, Python, or Java. This is because those conventional programming languages 

could access the underlying file system, operating system or network, which is not safe. The PFA 
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is expected to become a good tool to facilitate the deployment of analytic models. However, the 

PFA only supports analytic models. The deployment of other models is not supported. Also, the 

PFA does not provide a uniform way to model knowledge to support model deployment.  

 Another industrial effort that supports the interoperability of analytic models is the PMML 

(DMG, 2016), which is also developed by the DMG. The PMML is an XML-based language that 

enables the interoperability of analytic models. Currently, a lot of open source and commercial 

software tools support PMML. In PMML, a model combination method is included. In this 

method, several combination functions can be used like “majorityVote”, “average”, “max”, 

“selectFirst”, and “modelChain”, etc. Although some combinations of analytic models can be 

achieved using this method, a general approach to model the combination of all types of 

computational models is lacking. Moreover, the PMML can only capture the analytic model, and 

it lacks a mechanism to integrate domain knowledge with the analytic models. 

There are also academic efforts towards formalizing domain knowledge and computational 

models for model deployment. For example, Brodsky et al. (2016) proposed a Sustainable 

Process Analytics Formalism (SPAF) to allow the formal modeling of modular, extensible, and 

reusable manufacturing process components with sustainability performance evaluation using 

mathematical programming-based optimization. The Optimization Programming Language (OPL) 

was used as the modeling language to build individual manufacturing process models and 

composite process models. Optimization models can be constructed based on the formalized 

query in OPL and can be further executed in IBM CPLEX. Although both manufacturing 

knowledge and the optimization model were formally represented and integrated by OPL, the 
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utilization of a specific modeling language (i.e. OPL) limits the reusability of such a model in 

software tools other than IBM CPLEX. This raises barriers to applying this approach in the SM 

systems which use assorted commercial and open-source software tools.  

Kulkarni et al. (2016) proposed using a domain-specific modeling language to address 

difficulties in model composition in multi-discipline engineering analysis. The proposed 

domain-specific model language, which was named Model Composition and Analysis (MOCA), 

formally captured the entities and relationships of a domain. The general MOCA model has 

entities like Assembly, Component, Driver, DriverInterface, and DataPort. These entities can be 

used to represent engineering model compositions. The authors used Generic Modeling 

Language (GME) to implement the MOCA, and they developed a code generator which can 

generate Python code to integrate the MOCA instance models into the OpenMDAO platform. 

The OpenMDAO is an open-source computing platform for system analysis and 

multidisciplinary optimization. However, the proposed domain-specific modeling language only 

targets model composition. There are more types of model combinations that are not covered by 

the proposed language. More importantly, the developed domain-specific modeling language is 

developed to fit the framework of the OpenMDAO platform. This greatly limits the capability of 

this proposed language to be used in other software tools. 

Shao et al. (2016) presented a research report on implementing a new ISO 15746 standard 

for chemical process optimization. The ISO 15746 standard describes a data model that 

facilitates integration between the advanced process control tools and engineering optimization 

tools. This research explored a Tennessee-Eastman chemical process in implementing the data 
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model defined in the standard. The populated data model was mapped to a metamodel of 

optimization problems (Assouroko and Denno, 2016), which was further serialized in OPL code. 

As mentioned in their work, there is no generic OptimizationDefinitionType defined in the 

standard, even though three types of optimization (i.e. steady state optimization, dynamic 

optimization, and expert system optimization) were captured. To use this standard, an 

optimization model’s structures needed to be provided based on each optimization tool. The 

problem of uniformly defining a standardized optimization model was not addressed in the 

standard. Moreover, the integration between optimization models and manufacturing system 

remains at level 2 (i.e. monitoring and control of the production process) and level 3 (i.e. 

workflow/recipe control in production) of the ANSI/ISA-95 enterprise architecture (ANSI/ISA, 

2010). A general integration framework was not provided.  

In summary, there is a lack of a general method to model and integrate knowledge with 

computational models to support model deployment. Also, a general way to deploy 

computational models in different manufacturing systems is lacking. 

2.2.3 Formalizing Knowledge for Computational Models’ Retrieval 

Today, with the increasing complexity of industrial systems, researchers and industrial users 

do not want to build their computational models of industrial systems from scratch. An 

alternative approach is to seek for pieces of existing models in order to build their models and 

build complex systems by combining smaller sub-models (Henkel et al., 2010). To facilitate this 

model reuse, a model retrieval process that decides on potentially suitable models from a large 
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number of available computational models becomes an important activity.  

Henkel et al. (2010) presented a model retrieval approach for computational models in the 

biological domain. To enable the model retrieval, computational models in the biological 

databases were first annotated with meta-information. MIRIAM (Minimum Information 

Required in the Annotation of a Model) meta-information (Le Novère et al., 2005) was used for 

the annotation. The MIRIAM encompasses general information about a model like the model’s 

name, author, and publication reference, etc. Their method also enabled queries based on model 

context information like queries about species, compartment and reaction, etc. An example in the 

paper showed their method can successfully retrieve models based on provided meta-information 

like model constituents description, author, date, and reference publication. Schulz et al. (2011) 

extended this research to apply a new semantic similarity measure to support model retrieval. 

They implemented the semantic similarity-based model retrieval method in a BioModels 

Database. The retrieved models were ranked by similarity scores, where higher scores indicated 

the retrieved model were more similar. However, neither study provided validations to prove 

their approach could accurately retrieve computational models based on queries. 

Hoehndorf et al. (2011) proposed a framework to annotate system biology models with 

biomedical ontologies. The proposed framework proved to possess the capability to support 

model retrievals. They developed software tools to automatically convert annotated system 

biology models into OWL. Then, queries that were formalized by formal semantics could be 

performed in protégé. Although their approach proved to be able to discover computational 

models with queries, their query-based approach could not find models that were similar to the 
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queries. 

Szabo and Teo (2011) presented a model retrieval approach for component-based simulation 

model development. To enable the retrieval, they first introduced an ontology that captures the 

important concepts and relationships of the component-based simulation model. A matching 

index to quantify the semantic relevance of the candidate simulation models from model 

discovery was proposed for model retrieval. The matching index was developed based on three 

parameters: model attributes, model component attributes, and model behavior. Ad hoc matching 

index values had been defined based on different matching conditions of the three parameters 

between a query and a model. However, verification and validation were not provided in the 

paper. Furthermore, having the matching index defined in ad hoc fashion makes it very difficult 

to apply the approach to other applications.  

Li et al. (2017) proposed an ontology-based data mining model management method, and 

their method supports model selection. A DMMM (Data Mining Model Management) ontology 

had been developed to capture all the important concepts and relationships for all phases of a 

data mining process from business understanding to model deployment. In the example provided 

in the paper, an ontology-based data mining retrieval mechanism was demonstrated. By 

implementing the DMMM ontology in protégé, a new class can be created to represent the query 

and axioms can be developed for the class. Models that match the query can be inferred as a type 

of the created class when the reasoning engine is operated. An alternative approach for model 

retrieval is through developing Semantic Web Rule Language (SWRL) rules. Their approach can 

only retrieve models that match exactly the given query. Fuzzy searches for similar models were 
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not enabled.  

Kannan et al. (2014) proposed a semantic annotation-based approach to discover 

environmental analytical models. They carried out their approach in two phases. In the first 

phase, a semantic network (i.e. ontology) has been built to capture key concepts in the air 

pollution domain. All the available analytic models were proposed to be modeled using the 

traditional conventions of semantic web services (i.e. input, output, preconditions, and effects). 

In the second phase, the concepts captured in the ontology and the types of the analytical model’s 

entities were connected through relationships defined in the ontology. Such annotation enables 

the retrieval of an analytical model based on domain requirements. Experiments had been carried 

out and about 100% correct models were successfully retrieved based on given queries. However, 

their approach only allows exact queries. Fuzzy searches that can find relevant or similar models 

are not enabled. 

To sum up, an ontology-based annotation approach for the retrieval of computational models 

is popular. For some type of computational models, the retrieved models need to be further 

combined. However, the current literature does not provide a method to support model retrieval 

based on similarities. Fuzzy model search based on similarities is important because model users 

may not always know the exact model they want to use. Similarity-based fuzzy search can 

provide model users a list of models that are similar to the requirements given by the model users. 

Also, the similarity values can provide model users with information about how related a model 

is.  
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CHAPTER 3.  Proposed Methodology for the Knowledge Enriched 

Computational Model 

In this section, the Knowledge Enriched Computational Model to support lifecycle activities 

of computational models is proposed.  

3.1 General Description of the Knowledge Enriched Computational Model 

 

Figure 3.1 Enriching the standardized computational model with domain knowledge 

To support the lifecycle activities of a computational model, knowledge that is needed from 

the SM domain can be: (1) the domain meanings of the computational model’s entities (e.g., 

nodes, arcs, variables, etc.), (2) the physical or behavioral information that provides insights of a 

certain manufacturing system to which the computational model applies, and (3) descriptions or 

rules about how a computational model is developed, deployed or can be retrieved. To 

incorporate all these types of knowledge into a computational model and to enable the 
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interoperability and traceability of them, both knowledge and computational model should be 

explicitly and formally captured. In this dissertation, the three types of knowledge are captured 

into information model(s), physics-based model(s), and rationales, respectively. A standardized 

computational model should be used to formally capture the entities and the structure of a 

computational model. Figure 3.1 depicts the relationships between knowledge models and the 

standardized computational model.  

To provide accessibility and availability of computational models and their relevant domain 

knowledge, the interoperability of this Knowledge Enriched Computational Model (KECM) 

must be enabled. In this dissertation, the text-based model interchange languages like XML, 

JSON, or OWL, etc. are used to formally represent the KECM. The advantages of using these 

languages are: (1) these text-based formats allow all software tools to parse, and (2) these 

languages cannot access the underlying manufacturing systems compared to C++, Java, and 

Python, etc. (Pivarski et al., 2016). All models (i.e. the standardized computational model, 

information model(s), physics-based model(s), and rationales) in the KECM should be 

represented in a single selected language (e.g., XML, JSON, or OWL, etc.). To support the 

traceability between different models within the KECM, the model entities which are related 

across models should be semantically connected.  

The detailed descriptions of the four models are narrated in the following sections. 

3.2 Information Model 

In software engineering, an information model is a representation of concepts, relationships, 
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constraints, rules, and operations to specify data semantics for a chosen domain of discourse 

(Veryard, 1992). Here, the information model(s) provides a common terminology for the 

application domain where the computational model applies. Compared to the data models, which 

have implementation-specific details, information models define concepts and relationships in a 

higher abstract level and they are protocol neutral (Pras and Schoenwaelder, 2003). In the 

manufacturing domain, for example, the ANSI/ISA-95 standard is an information model that 

defines the concepts and relationships to support the interfacing between the enterprise business 

systems and the manufacturing control systems. The B2MML (Business To Manufacturing 

Markup Language) (Mesa International, 2013) is an XML-based data model which implements 

ANSI/ISA-95. Some examples of the other information models are: the MAnufacturing’s 

Semantics ONtology (MASON) (Lemaignan et al., 2006), Manufacturing Reference Ontology 

(MRO) (Usman et al., 2013), Platform Independent Model (PIM) (Chungoora et al., 2013), and 

Process-oriented Information Model (PIM) (Zhang et al., 2015), etc.  

Depending on the application domain, more than one information model may be needed if 

the computational model is developed for a cross-domain application. In these cases, the 

mappings between the information models should be explicitly defined to link concepts with the 

same meanings. It is important to notice that the information model(s) captured in the KECM 

should be the one(s) that are widely agreed to by the industrial community. This means that all 

companies accept and understand the information model(s) in the KECM. The utilization of an 

information model that is not agreed upon by the industrial community can bring difficulties in 

carrying out lifecycle activities of the computational model. 
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To explicitly express the domain meanings of other models (i.e. physics-based model(s), 

standardized computational model, and rationales), entities from other models need to be 

semantically linked to the corresponding concepts defined in the information model(s). Moreover, 

the information model(s) must possess the capability to be semantically connected to the domain 

data model(s).  

3.3 Standardized Computational Model 

The standardized computational model captured here is the formal representation of a 

computational model. Computational models like a rule model, an optimization model, a 

Bayesian Network model, etc. need to be formally represented. The entities in the computational 

model (e.g., nodes in a Bayesian Network) should be semantically connected to the 

corresponding domain concepts as defined in the information model(s). Since computational 

models can be developed for different domain applications, there are no semantic connections 

between the generally defined classes/types (e.g., node, arc, variable) in a computational model 

and the domain concepts (e.g., process, part, parameter, etc.). To enable semantic connections, 

both the standardized computational model and the information model(s) should be instantiated 

with respect to the domain application.  

Currently, standards like MathML, PMML, and SMP2, etc. have already defined many 

standardized computational models. Although these standards capture computational models in a 

specific language like XML, their general model definitions (i.e. entity names and model 

structures) can be used to represent the computational model in other languages. The 



25 

 

 

standardized computational model needs to be represented in the same language as other models. 

3.4 Physics-based Models 

The physics-based models are the mathematical, empirical, simulation-based, and AI-based 

models, etc. that are developed to capture the physical mechanics of a phenomenon or the 

behaviors of an SM system. For example, forecasting models have been created to predict 

customer demand (Chapman, 2006) in the ERP level of a traditional hierarchical manufacturing 

system. At the MES level, production scheduling models have been studied for shop floor 

management (Pinedo, 2010). At the process level, cutting force models have been developed for 

modeling the material removal processes (Oberg et al., 2004). Though the models are developed 

for a certain manufacturing application, the physics/behavioral information in these models 

captures valuable insights about the manufacturing system.  

Sometimes, physics-based models can only be processed by specific software tools. This is 

because these physics-based models are normally represented as application-specific languages. 

For example, the mathematical optimization problems can be modeled by the AMPL (A 

Mathematical Programming Language) and the OPL (Optimization Programming Language), 

which are processable in optimization solvers like CPLEX. To model complex systems in 

simulations, the object-oriented, declarative, multi-domain modeling language Modelica has 

been developed. Modelica can be processable by commercial or open-source tools like AMESim, 

Dymola, and Openmodelica. But it is very difficult to process the models outside these 

application-specific tools.  
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To enable a universal method to extract information from the physics-based models, these 

physics-based models need to be transformed into text-based formats (i.e. their standardized 

models). The text-based formats are friendly for software tools to parse. It should be noted that, 

no matter which text-based format (i.e. XML, JSON, or OWL, etc.) a physics-based model has, 

to merge a physics-based model(s) into a computational model, the physics-based model(s) 

should be finally transformed into the same format as the other models (i.e. information model(s), 

standardized computational model, and rationales).  

3.5 Rationales 

The rationales or rules are used to describe the rationality of a computational model or to 

guide the lifecycle activities of computational models.  

For model development, rationales can be used to guide the development of computational 

models. For knowledge from the application domain, the rationales need to have connections to 

the related information models for obtaining the semantic meaning of the domain concepts. The 

rationales may also need to be linked to the physics-based models to indicate the part of system 

behavioral knowledge used in developing the computational model. Also, the rationales need to 

connect to the standardized computational model to specify the links between the computational 

model and the knowledge used in model development.  

To facilitate the deployment of a computational model in a manufacturing system, the 

rationales capture rules that can load data between the information model(s) and the standardized 

computational model. The information model(s), which is accepted by the industrial community, 
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can be shared among different stakeholders without considering the specific data model(s). 

Although information models are normally used to capture higher-level information, they can 

also represent data when necessary.  

To support the retrieval of computational models with similar functionalities, rationales 

capture the formal description of the computational model. In this dissertation, the formal 

description of a computational model is represented as formal semantic expressions. To retrieve 

models, a semantics-based method has been proposed to measure the semantic similarity 

between the semantic expression of a computational model and that of a model retrieval 

requirement. Only computational models with high similarity values can be retrieved. 

Like other individual models in the KECM, the rationales also needed to be formally 

represented to make them processable and understandable by software tools. For rationales that 

are in rule-like fashion, some technologies that formally express rules can be used. For example, 

the XEXPR scripting language (W3C, 2000) enables the expression of rules in XML. JsonLogic 

(Wadhams, 2015) allows the construction of complex rules and serialization of the rules in JSON. 

In OWL, the SWRL (Semantic Web Rule Language) (W3C, 2004) language can be used to build 

rules. For rationales that are model descriptions, the native XML, JSON, or OWL languages can 

be used. The selection of the languages should conform to the overall representation technique. 
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CHAPTER 4.  Utilization of the Knowledge Enriched Computational Model 

for Model Development 

This chapter presents a method to use the KECM to support the development of 

computational models. A case study that develops a Bayesian Network to estimate energy 

consumption of the injection molding process has been introduced to demonstrate the utilization 

of the KECM. In the case study, the KECM for developing the Bayesian Network model has been 

developed. Finally, the benefits of using the KECM to support model development are discussed. 

4.1 Introduction 

Domain knowledge is normally heavily used in developing computational models. However, 

the knowledge is not properly captured and integrated with the standardized computational 

models. The model development knowledge is normally documented in natural languages with 

the computational models. However, no software tools can easily process and understand the 

documented natural language-based knowledge. Model development knowledge is important for 

downstream activities of computational models like model maintenance or model update. This is 

because whenever a model needs to be updated or modified, it is crucial to understand how the 

original model was developed. Domain knowledge brings the understanding of the domain 

meanings of the computational model’s entities (e.g., nodes, arcs, variables, etc.) and means to 

construct the computational model. Moreover, for computational models that have to be 

developed in distributed environments, the interoperability of the domain knowledge used for 

model development should be enabled. For example, without explicitly and formally captured 
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model development knowledge, developing a data analytics model with domain experts and data 

analysts being at different locations relies solely on vocal discussions or written document 

exchange.  

4.2 Development of Computational Models with the Knowledge Enriched 

Computational Model 

The Knowledge Enriched Computational Model discussed in Chapter 3 possesses the 

capability to support the development of computational models. The KECM, which formally 

represents a computational model and its relevant domain knowledge, can be used as the medium 

for information exchange between model developers located in different geographical places 

(Figure 4.1). Model developers can directly work with the KECM to create or modify models 

and to add the corresponding knowledge (i.e. physics-based models and rationales). To test the 

model during development, parsers can be developed to transform the standardized 

computational models from the model interchange language like XML, JSON, and OWL to the 

means that software tools can consume.  

To validate this, a case study has been created to utilize the proposed KECM to support the 

development of a Bayesian Network model. In the next section, a case study scenario of 

developing the Bayesian Network model without using the KECM is first introduced. Then, the 

utilization of KECM to support the development of the Bayesian Network model is described. 



30 

 

 

 

Figure 4.1 Development of computational models with the KECM 

4.3 Case Study Scenario 

In a previous study (Li et al., 2017), a Bayesian network (BN) model has been developed to 

predict the energy consumption of the injection molding process. The advantages of using a 

Bayesian Network to predict the energy consumption of injection molding are: (1) BN is suitable 

for small data sets. To train a BN model for energy estimation, data from part design, mold 

design, material, and machine needs to be available. Although injection molding is one of the 

mass-production processes, the collected data targeting at different products/parts may be limited. 

(2) A BN allows efficient use of different sources of knowledge: knowledge provided by domain 

experts and the knowledge learned from data. The ability to learn a BN structure from data can 

help the user to identify new relationships between parameters, which in turn can be used for 

process improvement. (3) A BN can answer queries based on incomplete information. A designer 

may not possess all the information like the properties of the injection molding machine that will 
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be used for producing the part. A BN can provide an estimate for a query considering nearly all 

possible values for that missing information based on the knowledge learned from data.  

 

Table 4.1 Parameters for modeling the Bayesian Network nodes 

Category Name Unit Description 

Product 𝑉𝑝 𝑚3 Volume of the part 

 ∆ 𝑁/𝐴 Percentage of volume used for gating system 

 𝑑 𝑚𝑚 Maximum depth of the part 

 𝑛 N/A Number of cavities 

 ℎ𝑚 𝑚𝑚 Maximum wall thickness 

Material 𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑁/𝐴 Material type for the injection molded material 

 𝜌 𝑘𝑔/𝑚3  Specific density of polymer 

 𝛾 (𝑚𝑚2)/𝑠 Thermal diffusivity of the material 

 𝐶𝑝 𝐽/𝑘𝑔℃ Heat capacity of the polymer 

 𝐻𝑓 𝑘𝐽/𝑘𝑔 Heat of fusion 

 𝜖 𝑁/𝐴 Percentage shrinkage rate of the polymer 

Machine 𝑀𝑎𝑐ℎ𝑖𝑛𝑒 𝑁/𝐴 Machine type for the injection molding machine 

 𝑃𝑏 𝑘𝑊 Power consumption when the machine is idling 

 𝑠 𝑚𝑚 Maximum clamp stroke 

 𝑡𝑑 𝑠 Dry cycle time 

 𝑃𝑖𝑛𝑗 𝑘𝑊 Machine injection power 

Process 𝑝𝑖 𝑀𝑃𝑎 Injection pressure 

 𝑇𝑚 ℃ Recommended mold temperature 

 𝑇𝑖𝑛𝑗 ℃ Injection temperature 

 𝑇𝑒𝑗 ℃ Ejection temperature 

Environment 𝑇𝑝𝑜𝑙 ℃ Initial temperature of the polymer 

Others 𝑄 𝑚3 Maximum flow rate for injection 

 𝑄𝑎𝑣𝑔 𝑚3 Average flow rate 

 𝑃𝑚 𝑘𝑊 Melting power 

 𝑉𝑠 𝑚3 Volume of one shot including gating system 

 𝐸𝑚 𝑘𝐽 Energy consumption in melting 

 𝐸𝑖𝑛𝑗 𝑘𝐽 Energy consumption of injection 

 𝑡𝑖𝑛𝑗 𝑠 Injection time 

 𝐸𝑐 𝑘𝐽 Energy consumption in cooling 

 𝐶𝑂𝑃 𝑁/𝐴 Coefficient of performance 

 𝐸𝑟 𝑘𝐽 Energy consumption in resetting 

 𝑡𝑟 𝑠 Resetting time 

 𝐸𝑠ℎ𝑜𝑡 𝑘𝐽 Energy consumption of a shot 

 η 𝑁/𝐴 Efficiency 

 𝑡𝑐𝑦𝑐 𝑠 Cycle time 

 𝐸𝑝𝑎𝑟𝑡 𝑘𝐽 Energy consumption of a part 
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To study the role of SM domain knowledge in developing the BN, a BN model was first 

created by learning its structure and parameters from the data using the ‘bnlearn’ package 

(Scutari and Denis, 2014) in R without the intervention of the domain knowledge. The BN nodes 

were selected from the parameters related to the product, material, machine, process, and 

environment, etc. (Table 4.1). The parameters were extracted from Nannapaneni et al. (2016). 

After the learning process, the prediction accuracy was tested. It was achieved at 76.8%, which is 

relatively low for effective prediction. By carefully studying the structure of the learned BN 

(Figure 4.2), we found that the learned structure missed finding important relationships and 

captured wrong/weak relationships instead. To improve the learned model, expert knowledge 

was applied to identify the problems in the model. The BN development process is shown in 

Figure 4.3.  

Due to the lack of LCA (Life-cycle assessment) data from the real injection molding 

processes, a simulation-based data generator had been developed to generate the data. This data 

generator has been validated against experimental data from the literature (Ribeiro, 2012). 

Before learning the structure from data, a whitelist which captures important relationships 

between the parameters was created. A whitelist, which contains arcs (that need to be included in 

the BN) was created based on the knowledge found from mathematical equations (shown in 

Table 4.2) for calculating the energy consumption of the injection molding process. The 

equations are extracted from Madan et al. (2013). An equation can be considered as defining the 

parent/child relationships for the equation variables. The independent variables (i.e. variables on 

the right-hand side of an equation) of an equation are treated as the parent of the dependent 
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variable (i.e. the variable on the left-hand side of an equation).  

 

Figure 4.2 A BN structure learned from data 

 

Figure 4.3 Development process for the BN 
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Additionally, a blacklist, which prevents the BN to create arcs between nodes, was created 

from the problems identified in the learned BN structure. Through carefully examining the 

learned BN structure (Figure 4.2), four problems were identified: (1) a parameter node (i.e. nodes 

defined by the Parameter class in the SMO) from one of the 5 categories (i.e. product, process, 

material, machine, and environment) should not have causal relationships with parameter nodes 

from the other 4 categories. For example, material-related parameters like 𝜌 and 𝐶𝑝 are found 

not to depend on the material but are related to a product-related property ℎ𝑚. Though there are 

recommendations for the minimum wall thickness according to the injection molded materials, 

the maximum wall thickness ℎ𝑚 are normally designed as thinner as possible. This is because 

thinner walls require less material and less cooling time. However, there are no recommendations 

for the ℎ𝑚 given different materials. (2) The concept nodes like Material and Machine should 

not be related to the parameters from categories other than Material and Machine, respectively. 

Figure 4.2 shows that machine property nodes 𝑠 and 𝑃𝑖𝑛𝑗 are found to be dependent on node 

Material. However, the injection molding machine is selected based on the shot size and the 

maximum clamp stroke, which are dependent on the product not material. (3) Parameter nodes 

within a category should not have parent-child relationships. It is true that within some 

categories like Machine and Material, parameter nodes are related. But, it is the material type or 

the machine type which determines the properties. (4) The parameter nodes from the 5 categories 

should not have any parent nodes other than the concept nodes. It can be observed in Figure 4.2 

that parameter nodes from the 5 categories like 𝑇𝑖𝑛𝑗 and 𝑇𝑒𝑗 are found to have parent nodes in 

the Others category like 𝑡𝑖𝑛𝑗. There may be causal relationships between 𝑇𝑖𝑛𝑗 and 𝑡𝑖𝑛𝑗. But, it 
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should be 𝑡𝑖𝑛𝑗 to be dependent on 𝑇𝑖𝑛𝑗, if there are causal relationships, not the other way 

around. 

 

Table 4.2 Equations for estimating energy consumption of injection molding 

Stage Equations 

Melting 𝑄 = 𝑃𝑖𝑛𝑗 ∗ 1000/𝑝𝑖 

𝑄𝑎𝑣𝑔 = 0.5𝑄 

𝑃𝑚 =
𝜌𝑄𝑎𝑣𝑔𝐶𝑝(𝑇𝑖𝑛𝑗 − 𝑇𝑝𝑜𝑙) + 𝜌𝑄𝑎𝑣𝑔𝐻𝑓

1000
 

𝑉𝑠 = 𝑉𝑝 (1 +
𝜖

100
+

∆

100
)𝑛 

𝐸𝑚 = (𝑃𝑚 ∗ 𝑉𝑠)/𝑄 

Injection 𝐸𝑖𝑛𝑗 = 𝑃𝑖𝑛𝑗𝑡𝑖𝑛𝑗 

𝑡𝑖𝑛𝑗 =
2𝑉𝑠𝑝𝑖
𝑃𝑖𝑛𝑗

 

Cooling 
𝐸𝑐 =

𝜌𝑉𝑠𝐶𝑝(𝑇𝑖𝑛𝑗 − 𝑇𝑒𝑗) + 𝜌𝑉𝑠𝐻𝑓

1000 × 𝐶𝑂𝑃
 

𝑡𝑐 =
ℎ𝑚
2

𝜋2𝛾

4(𝑇𝑖𝑛𝑗 − 𝑇𝑚)

𝑇𝑒𝑗 − 𝑇𝑚
 

Resetting 𝐸𝑟 = 0.25(𝐸𝑖𝑛𝑗 + 𝐸𝑐 + 𝐸𝑚) 

𝑡𝑟 = 1 + 1.75𝑡𝑑√
2𝑑 + 5

𝑠
 

Whole Process 
𝐸𝑠ℎ𝑜𝑡 = 1.2 × (

0.75𝐸𝑚 + 𝐸𝑖𝑛𝑗

η𝑖𝑛𝑗
+
𝐸𝑟
η𝑟
+
𝐸𝑐
η𝑐
+
0.25𝐸𝑚
η𝑚

) + 𝑃𝑏𝑡𝑐𝑦𝑐 

𝑡𝑐𝑦𝑐 = 𝑡𝑖𝑛𝑗 + 𝑡𝑐 + 𝑡𝑟 

𝐸𝑝𝑎𝑟𝑡 =
𝐸𝑠ℎ𝑜𝑡
𝑛
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 By utilizing the whitelist and the blacklist, an iterative approach to learn the BN structure 

from data was applied (Figure 4.3). By using the iterative approach, the wrong arcs can be easily 

identified and handled during each iteration. With the whitelist and the iteratively updated 

blacklist, the learning procedure is repeated until no wrong arcs can be found in the BN structure. 

After learning the BN parameters (i.e. conditional probability tables for discrete nodes and 

Gaussian distributions for continuous nodes) and verifying the BN model, the development of 

the BN is finalized. The prediction accuracy of the BN model developed with the domain 

knowledge is achieved at 85%, which is satisfied and is higher than the learned BN model. 

4.4 Development of the Knowledge Enriched Computational Model 

In this section, the KECM for the BN is developed. The development of each individual 

model and the integration between the models are introduced. In this paper, OWL 2 (W3C, 2012) 

is used as the format for implementing all the models. 

4.4.1 Information Model 

As previously discussed, there are a lot of information models or ontologies developed in the 

manufacturing domain like MASON and MRO. Since the application domain of this case study 

is targeting estimating the energy consumption of the injection molding process, the information 

model used in this paper is selected from a previous work (Zhang et al. 2015). This information 

model was developed to facilitate the sustainability evaluation in the manufacturing domain. This 

model was also extended with respect to the injection molding process. A compact version of the 

information model, or the Sustainable Manufacturing Ontology (SMO), is extended for this case 
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study (Figure 4.4). A brief explanation of the concepts in the information model is narrated 

below: 

• Product: A Product describes an object which is synthesized by a set of parts or 

subassemblies (each subassembly itself is also a product). The spatial relationships and 

contact constraints between parts are also defined within the Product class.  

• Part: A Part is a single component that is used to construct a Product. A Part is a minimal 

functional unit of a product; thereby a part must be formed with a type of material and it has 

a certain geometrical shape.  

• Material: A Material describes a kind of material associated with a Part. A Material has a 

list of properties like mechanical properties, chemical properties, thermal properties, etc. 

which are captured in the Parameter class. 

• State: The State class describes the status of a Product, Part or Material at a certain time 

point. For example, a mechanical or a chemical property of a particular Material might have 

different values under different conditions or by using different measuring methods. The 

State class enables the SMO to capture the characteristics of any Product, Part or Material 

at any important time point. 

• Process Plan: A ProcessPlan defines a sequence of manufacturing operations to produce a 

Part. The types of processes, types of equipment and operation parameters are specified in a 

ProcessPlan.  

• Process: A Process describes a series of operations that need to be carried out to produce the 

final product. A Process can be a ManufacturingProcess or an AssemblyProcess. A 
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ManufacturingProcess is a process that transforms a raw material into a finished or a 

semi-finished Part. It can be a machining process, a casting process, a forging process, or a 

heat treatment process, etc. All the ManufacturingProcesses required to be carried out to 

produce a Part construct a ProcessPlan. 

• Activity: An Activity is a minimal operational unit of a Process. For example, an Activity of 

a typical machining process can be setting up the machine, fastening the workpiece, 

positioning the cutting tool, injecting the cutting fluid, etc.  

• Environment: The Environment class describes the environment related concepts of an 

Activity or a Process. All types of the environmental impacts are defined here, and each type 

of impacts is represented as a sustainability indicator. The sustainability of a Part or a 

Product can be further evaluated by considering the Processes that are carried out to produce 

the Part or Product.  

• SustainabilityMetrics: The SustainabilityMetrics class is able to describe any of the 

sustainability metrics published in the literature or applied in the industry. As previously 

discussed, sustainability metrics are associated with their own evaluation methods (e.g., 

analytical models) and particular manufacturing processes. Thus, the SustainbilityMetrics 

can be attached to a certain Process or an Activity. 

• Parameter: A Parameter represents an entity that describes a property of a manufacturing 

concept. The properties of a Product, a Part, a Material, a Process, and an Activity are 

modeled as Parameters. 

• Equipment: Equipment can be tools or machines on the shop floor. 
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Figure 4.4 A UML Representation of the extended Sustainable Manufacturing Ontology (SMO) 

4.4.2 Physics-based Model 

The physics-based models used in developing the BN are the mathematical equations which 

estimate energy consumption of injection molding (Table 4.2). To represent mathematical 

equations in OWL, the OntoModel proposed by Suresh et al. (2008) has been used. In 

OntoModel (Figure 4.5), other than capturing the assumption, universal constant and dependent 

variable, etc., an equation is represented using the Content ML in MathML. In Figure 4.5, the 

black boxes represent owl:classes; the green boxes are datatypes; the pink arrows indicate the 

hasSubClass relationships; the red arrows indicate the has-a object properties; the green arrows 

indicate the data properties. The OntoModel is modified so that it can be connected to the 
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domain information model (i.e. SMO) as shown in Figure 4.4. The Variable class in the 

OntoModel is connected to the Parameter class in the SMO, which connects the variables in an 

equation to their domain meanings.  

SuperModel

ModelContainer

Model

Equation Assumption Universal 
Constant

Dependent 
Variable

Independent 
Variable

Model 
Parameter

VariableVariable
MathML

Parameter

hasModelContainer

hasModel

hasEquation hasAssumption

hasML

MathML

hasSymbolhasParameter

hasUnivConst hasDepVar hasIndepVar hasModParm

hasVarhasVar

Variable

hasVar

 

Figure 4.5 OntoModel and its Connection to the SMO 

4.4.3 Standardized Computational Model 

To fully represent a BN (i.e. the standardized computational model) in an OWL ontology, an 

OWL-based BN model is developed. Figure 4.6 demonstrates this OWL-based BN model in a 

tree structure. The class names in this model are borrowed from the PMML 4.3 - Bayesian 

Network Models (DMG, 2016). The structure of the PMML BN model is slightly modified (e.g., 

adding BayesianNetworkNode class, replacing the has-a relationship between 

ContinuousDistribution and NormalDistribution with the hasSubClass relationship) to better fit 

the OWL structure. This OWL-based BN model has been verified with the BN example provided 

on the webpage of the PMML BN model. The verification proves the OWL-based BN model to 

be capable of fully representing BNs.  
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Figure 4.6 A Tree presentation of the OWL-based BN model 

All the parameters in Table 4.1 are modeled as the BayesianNetworkNode instances in the 

OWL-based BN model. The semantic connection between a BayesianNetworkNode and a 

manufacturing concept in the SMO is achieved by an isAssociateTo(BayesianNetworkNode, 

domainConcept) object property.  

4.4.4 Rationales 

 To improve the BN structure with domain knowledge, the rationales/rules to facilitate the 

creation of the whitelist and the blacklist are developed. The whitelist rules/rationales are created 

to capture the BN node relationships provided from the physics-based models (i.e. equations) 

and domain rules. Based on the identified four problems of the learned BN structure (section 4.3), 

blacklist rules/rationales are developed. The blacklist rules can be used to avoid the wrong 
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structures in the BN. All the whitelist and blacklist rules are modeled using SWRL in OWL. The 

hasParentNode object properties represent the whitelist relationships. The hasWrongArc object 

properties represent the blacklist relationships. To enhance the traceability of the rules, each rule 

has its own corresponding numbered object property. For example, the hasParentNode object 

property in whitelist rule 1 is hasParentNode1. 

 Whitelist Rule 1 

 This rule is created based on the physics-based models (equations in Table 4.2). As discussed 

before, an equation can be considered as defining the parent/child relationships for the equation 

variables. The independent variables (i.e. variables on the right-hand side of an equation) of an 

equation are treated as the parents of the dependent variable (i.e. the variable on the left-hand 

side of an equation). The hasParentNode1 object property represents the parent/child relationship 

between two BayesienNetworkNode. 

DependentVariable(?dv), IndependentVariable(?iv), MathematicModel(?m), Variable(?v_dv), 

Variable(?v_iv), Parameter(?p1), Parameter(?p2), BayesianNetworkNode(?n1), 

BayesianNetworkNode(?n2), hasDependentVariable(?m, ?dv), 

hasIndependentVariable(?m, ?iv), hasVariable(?dv, ?v_dv), hasVariable(?iv, ?v_iv), 

isAssociatedWith(?n1, ?p1), isAssociatedWith(?n2, ?p2), isAssociatedWith(?v_dv, ?p1), 

isAssociatedWith(?v_iv, ?p2) -> hasParentNode1(?n1, ?n2) 

 The meaning of this rule is: for any MathematicModel, if the Variables of its 

IndependentVariable and its DependentVariable represent the same Parameters as two 
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BayesianNetworkNodes do, then the BayesianNetworkNode that can represent the 

IndependentVariable in the MathematicModel should be the parent node of the 

BayesianNetworkNode that represents the DependentVariable in the MathematicModel.  

 Whitelist Rule 2 

 According to the classification of the parameters in Table 4.1, the manufacturing concept 

nodes (e.g., Machine and Process) should have parent-child relationships with their related 

parameter nodes. 

ManufacturingConcept(?mc), Parameter(?p), BayesianNetworkNode(?n1), 

BayesianNetworkNode(?n2), isAssociatedWith(?n1, ?mc), isAssociatedWith(?n2, ?p), 

hasParameter(?mc, ?p) -> hasParentNode2(?n2, ?n1) 

 The meaning of this rule is: for any ManufacturingConcept, which can be Machine, Product, 

and Process, etc. because they are sub-classes of ManufacturingConcept, its corresponding 

BayesianNetworkNode should be the parent node of the BayesianNetworkNode that represents 

the Parameter of the ManufacturingConcept. 

 Whitelist Rule 3 

 Some process parameters in the injection molding process are selected according to the 

material. For example, the selection of 𝑇𝑖𝑛𝑗, 𝑇𝑒𝑗, 𝑇𝑚, and 𝑝𝑖 are selected based on the material 

type (Boothroyd et al., 2011). So, causal relationships between the Material node and these 

process parameters should be captured. 
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Material(?m), Parameter(?pp), Process(?p), BayesianNetworkNode(?n_m), 

BayesianNetworkNode(?n_pp), isAssociatedWith(?n_m, ?m), isAssociatedWith(?n_pp, ?pp), 

hasParameter(?p, ?pp) -> hasParentNode3(?n_pp, ?n_m) 

 The meaning of this rule is: the BayesianNetworkNode which represents a Material should 

be the parent node of the BayesianNetworkNode which represents a Parameter of a process. 

Blacklist Rule 1 

 To address the first problem of the learned BN structure, a set of rules to prevent connecting 

parameter nodes from different categories are created. Here, the rule to prevent parameter nodes 

from the Material and Product categories to be connected is demonstrated.  

Material(?material), Parameter(?p_material), Parameter(?p_product), Product(?product), 

BayesianNetworkNode(?n_p_material), BayesianNetworkNode(?n_p_product), 

isAssociatedWith(?n_p_material, ?p_material), isAssociatedWith(?n_p_product, ?p_product), 

hasParameter(?material, ?p_material), hasParameter(?product, ?p_product) -> 

hasWrongArc1(?n_p_material, ?n_p_product), hasWrongArc1(?n_p_product, ?n_p_material) 

The meaning of this rule is: Any BayesianNetworkNode that represents a Parameter of 

Material should have hasWrongArc1 relationships (i.e. two directions) with the 

BayesianNetworkNode that represents a Parameter of Product. 

From this rule, it can be observed that the Blacklist Rule 1 tries to enumerate all the wrong 

arcs of problem #1. 
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Blacklist Rule 2 

This blacklist rule addresses problem #2. It avoids the Material and the Machine nodes to be 

connected to the parameter nodes from other categories. An example rule is shown below to 

prevent the Material node to be connected to the machine-related parameter nodes. 

Machine(?machine), Material(?material), Parameter(?p_machine), 

BayesianNetworkNode(?n_material), BayesianNetworkNode(?n_p_machine), 

isAssociatedWith(?n_material, ?material), isAssociatedWith(?n_p_machine, ?p_machine), 

hasParameter(?machine, ?p_machine) -> hasWrongArc2(?n_material, ?n_p_machine), 

hasWrongArc2(?n_p_machine, ?n_material) 

The meaning of this rule is: Any BayesianNetworkNode that represents a Parameter of 

Machine should have hasWrongArc2 relationships (i.e. two directions) with the 

BayesianNetworkNode that represents Material. 

From this rule, it can be observed that the Blacklist Rule 2 tries to enumerate all the wrong 

arcs of problem #2. 

Blacklist Rule 3 

Targeting at problem #3, this blacklist rule avoids the parameter nodes within one category 

to be connected to each other. The example for the material category is shown below. 

The meaning of this rule is: For any two different BayesianNetworkNodes that represent two 

Parameters of Material, they should have the hasWrongArc3 relationships (i.e. two directions). 

From this rule, it can be observed that the Blacklist Rule 3 tries to enumerate all the wrong 
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arcs of problem #3. 

Material(?m), Parameter(?p1), Parameter(?p2), BayesianNetworkNode(?n1), 

BayesianNetworkNode(?n2), isAssociatedWith(?n1, ?p1), isAssociatedWith(?n2, ?p2), 

hasParameter(?m, ?p1), hasParameter(?m, ?p2),  DifferentFrom (?n1, ?n2) -> 

hasWrongArc3(?n1, ?n2) 

Blacklist Rule 4 

To prevent the parameter nodes from the 5 categories to have any parent nodes other than 

their corresponding concept nodes (problem #4), an example rule is demonstrated below for the 

process category. In this rule, the “hasTempParentNode” object property represents an arc 

learned from data.  

Process(?process), Parameter(?pm), hasParameter(?process, ?pm), 

BayesianNetworkNode(?n_p_m), BayesianNetworkNode(?n_mc), 

isAssociatedWith(?n_p_m, ?pm), hasTempParentNode(?n_p_m, ?n_mc) -> 

hasWrongArc4(?n_p_m, ?n_mc) 

The meaning of this rule is: If the BayesianNetworkNode that represents a Parameter of 

Process has a temporary parent node (i.e. hasTempParentNode) with any BayesianNetworkNode, 

then this arc (i.e. hasTempParentNode relationship) should be categorized as wrong arc type 4. 

Since the hasTempParentNode is the arc learned from data, so the relationship between the 

BayesianNetworkNode of a Parameter of Process and that of Process cannot be picked up again 
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by the learning algorithm (i.e. the relationship has already captured in the whitelist). 

4.4.5 Representation of the Knowledge Enriched BN Model in OWL 

 

Figure 4.7 The Knowledge Enriched BN Model in protégé 5.2 

In the development of the Knowledge Enriched BN model, the individual models for the 

information model, standardized computational model, and physics-based model are separately 

created first. These models are generic and could be applied to any applications and do not have 

any populated instances. After verifying that all the individual OWL-based model can 

sufficiently represent the models, the KECM is created by importing the three OWL-based 

models into the OWL-based KECM. Instances of the domain concepts in the SMO, the 
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BayesianNetworkNodes in the BN model, and the equations represented by the OntoModel are 

populated. The whitelist and blacklist rules are then created using the SWRL. The screenshot of 

the Knowledge Enriched BN model in protégé 5.2 is demonstrated in Figure 4.7. 

 

Figure 4.8 Inferred whitelist and blacklist relationships in protégé 5.2 

Figure 4.8 shows a screenshot of the reasoning of rationales/rules (i.e. whitelist and blacklist 

rules). The object property assertions highlighted in light yellow are the inferred relationships 
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from reasoning the rationales/rules. It can be observed that the rationale/rule used to create or 

eliminate an arc can be easily tracked by using the numbered object properties. 

4.5 Utilization of the Knowledge Enriched Computational Model 

 

Figure 4.9 The final BN structure 

Following the manual development process (Figure 4.3), a BN is developed (Figure 4.9) by 

utilizing the KECM. In the development process, the KECM has been used to exchange 

information between a domain expert and a data analyst. The domain expert first models the 

domain knowledge (integrating the information model, adding the physics-based model, creating 

rationales) for the development of the BN. Then, the data analyst iteratively learns the BN 
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structure from data with the whitelist and the blacklist, which are extracted from the Knowledge 

Enriched BN model through a parser (that has been developed for this purpose). Here, the 

KECM is used to pass the BN along with its relevant domain knowledge between the domain 

expert and the data analyst. After sending the KECM with the learned structures, the domain 

experts can analyze the BN structure and add the corresponding rationales to improve the BN 

structure. The domain expert can directly add or modify domain knowledge on the KECM in 

GUI (Graphical User Interface) -based software tools like protégé. Figure 4.10 is a sequence 

diagram that shows the information exchange.  

 

Figure 4.10 Information exchange using the KECM 
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4.6 Discussion 

 Two benefits have been identified during the development of the BN using the KECM: (1) 

Shortened cycle time for model development. In this case study, with the assistance of automatic 

processing and reasoning from the software tools, the development cycle time has been reduced 

from 2 hours to 15 minutes. With the formally defined rationales/rules, the arcs captured by the 

whitelist and the blacklist can be generated automatically instead of working manually. (2) 

Eliminating human error. Through reasoning, the formally defined rationales/rules, more arcs in 

the whitelist and the blacklist have been identified. Some of these arcs are missed by manual 

work.  

 These two direct benefits are brought by the enhanced interoperability and traceability of the 

KECM. From enhancing the interoperability perspective, the KECM can explicitly represent the 

computational models with their relevant domain knowledge through capturing their concepts, 

relationships, and rules, etc. without semantic ambiguity; the computational models and their 

relevant domain knowledge are formally represented, which enables the automatic processing 

through software tools. From enhancing the traceability perspective, the entities of a 

computational model can be directly traced to its corresponding domain concepts; the 

computational models’ structures can be easily traced to the rationales/rules which create these 

structures. It can be expected that with the enhanced interoperability and traceability, more 

effective and efficient information exchange can be achieved by using the KECM in the 

distributed environment, where model developers are not in the same geographical area. The 

information exchange between them can be made explicit and formal by using the KECM 
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instead of online vocal discussion and written document exchange. 

 The limitation of using the KECM for model development is that formulating the 

physics-based models relies on their formal representations. In the case study, the representation 

of mathematical equations in the OntoModel is demonstrated. Enabled by the PMML and the 

PFA, formal representations of the predictive models can also be achieved. However, formal 

representations of other types of models like optimization models and simulation models are 

either limited or currently unavailable. Though the modeling languages for these models exist, 

these languages are tool-specific. Without the corresponding software tools and their APIs, the 

parsing of the programming language-based model is difficult. Thus, more work needs to be 

done for standardizing the physics-based models. This will also improve the interoperability of 

the physics-based models in their own domain applications. 
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CHAPTER 5.  Utilization of the Knowledge Enriched Computational Model 

for Model Deployment 

This chapter presents general methods to support the deployment of computational models. 

This chapter is divided into two main sections. The first section introduces a general method to 

deploy computational models in manufacturing systems. An example of deploying an 

optimization model in a B2MML-based system is illustrated. The second section describes a 

general method to represent the combination of computational models. A case study that 

demonstrates the combination of an Agent-based model and a Decision Tree model for a 

real-time scheduling application has been developed to illustrate the proposed method. 

5.1 Utilization of the Knowledge Enriched Computational Model to Support the 

Deployment of Computational Models in Smart Manufacturing System 

Currently, although the PFA has started to develop models to integrate standardized analytic 

models and methods to deploy them, there is a lack of general methodology to support the 

deployment of all types of computational models. However, to support the plug-and-play 

capability of computational models as required by Smart Manufacturing, a general methodology 

must be developed to integrate computational models with the necessary model deploying 

knowledge to allow different manufacturing systems to easily deploy the computational models. 

This knowledge includes the configuration of the model’s parameters, preprocessing of the data 

to be consumed by the computational model, and storing the model results according to the SM 

system’s underlying database or data exchange protocol, etc. In this dissertation, the data 
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integration between the computational models and the underlying SM system is focused on. The 

data integration knowledge is crucial in deploying computational models in the SM environment. 

For example, a computational model associated with a process control unit needs to be 

re-executed based on the real-time or near real-time data of process changes. Without smooth 

integration between the computational model and the SM system’s underlying information 

system, the model solution may give wrong suggestions based on delayed data exchange. 

Without the formally captured and integrated knowledge to go with the computational model, no 

software tools can process and understand the model and its relevant knowledge. In this situation, 

the deployment of computational models relies heavily on manual work. The necessity of 

integrating model deployment knowledge into the standardized models comes from security 

reasons. A model consumer implemented in conventional programming languages (e.g., C, Java, 

or Python, etc.) could access the underlying file system, operating system, or network (Pivarski 

et al., 2016). But a model consumer that deploys models by consuming the standardized models 

can only transform the data that it is given. So, the security of an SM system that deploys a 

computational model can be enhanced if the deployment knowledge can be integrated with the 

standardized computational model. 

In the following sub-sections, a model deployment methodology that conforms with the 

KECM has been presented. As a proof-of-concept, a case study has been presented to 

demonstrate the utilization of the proposed model deployment method to support the deployment 

of optimization models. Due to the lack of a standardized model for optimization models, an 

Optimization Metamodel that can formally represent optimization models has been developed. 
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5.1.1 A General Method to Support the Deployment of Computational Models 

Based on the KECM, a general method has been developed (Figure 5.1) to support the 

deployment of computational models. In Figure 5.1, the information model(s) to be included in a 

KECM serves as a bridge to connect an SM system’s data and the computational model’s data. 

As stated previously, the information model(s) in the KECMs should be agreed upon by the 

industrial community. This means that all industrial users can understand and utilize the 

information model(s). To semantically connect the KECM to the SM system, the mappings 

between an industrial user’s SM system’s local data system (or its local data exchange protocol) 

and the information model(s) should be defined by the industrial user. The mappings between the 

standardized computational model and the information model(s) can be captured in the rules or 

the semantic links between model entities. Through the information model(s) and the mappings, 

the input/output data of a standardized computational model can be smoothly integrated with an 

SM system’s data. The data from an SM system can first be loaded onto the information model(s) 

through mappings defined by the industrial users. Then, the data stored with the information 

model(s) can be loaded to the standardized computational model through the mappings between 

them. So, as long as the industrial users have defined the mappings between their SM system’s 

data system and several industry-accepted information models, all standardized computational 

models that are integrated with these information models can be smoothly deployed in their SM 

systems. 
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Figure 5.1 A general method to support the deployment of computational models 

5.1.2 Development of A Standardized Model for Optimization Models 

Among a variety of computational techniques, optimization plays an important role in both 

business and engineering decision making at all levels of an enterprise’s hierarchy from business 

planning and logistics, manufacturing operations and control to batch and unit process control. 

However, due to the diversity of implementation environments of optimization applications, 

modeling languages for operation problems are often tool-specific. For example, OPL is used in 

the IBM CPLEX optimization solver; the AMPL supports more tools like the AMPL solver, 

Gurobi optimizer, and CPLEX, etc.; the GAMS (General Algebraic Modeling System) language 

can be connected to a group of optimization solvers like BARON, CONOPT, and CPLEX, etc. 

through the GAMS integrated development environment (IDE); MATLAB’s Optimization 

Toolbox uses MATLAB’s proprietary language; and the open source tool Google OR-Tools 

utilizes general-purpose programming languages like C++, Python, C#, and Java. Although 

efforts have been made to enhance the interoperability of some optimization modeling languages 
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like AMPL and GAMS, the interoperability is limited by the software tools supported by the 

modeling language. Developing, integrating and reusing optimization models still rely on the 

availability of specific software tools. This current situation hinders the accessibility and 

availability required by the SM systems. Difficulties in enabling the interoperability among these 

software tools result from information gaps in the inconsistent optimization terminologies, the 

large number of optimization methods (e.g., mathematical programming, constraint 

programming, and genetic algorithm etc.) that have been created, and the lack of communication 

standards between existing optimization tools (Witherell et al., 2007).  

This section first introduces the development of an Optimization Metamodel to formally 

represent optimization models. Next, an example of a Mixed Integer Linear Programming (MILP) 

optimization model to solve a Flexible Job Shop Scheduling (FJSS) problem is described to 

demonstrate the representation of optimization models using the Optimization Metamodel.  

5.1.2.1 Optimization Metamodel 

The Optimization Metamodel is developed based on the compilation and organization of 

optimization terminologies gathered from the literature. To represent the Optimization 

Metamodel, machine-readable and understandable formats like XML, JSON, and OWL, etc. can 

be used. Figure 5.2 shows the Optimization Metamodel represented in a UML class diagram. In 

the UML notations, the black diamond arrows represent the “composition” relationships and the 

hollow arrows represent the “inheritance” relationships.  
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In this model, the OptimizationModel class represents the highest-level entity of an 

optimization model. All the information about an optimization model should be captured within 

this class. To facilitate the definition of customized data types (i.e. data types other than double, 

integer, string, etc.), the CustomizedType can be used to represent a user-defined data structure. 

For example, an interval type, which can be used to solve scheduling optimization problems, can 

be defined as a CustomizedType. The Variable class captures variables that are used in the 

optimization model. A DecisionVariable, which needs to be determined to solve the optimization 

problem, is a sub-type of a Variable. The variables, which are determined by the system 

environment and have fixed values, should be modeled as Variables. The value field of a 

Variable is used to contain the input value. The value field of a DecisionVariable is used for 

capturing the resultant value of a determined decision variable after an optimization model is 

resolved. The Input and Output classes indicate the list of input and output variables, respectively. 

The ObjectiveFunction class represents an objective function that is to be optimized. More than 

one ObjectiveFunction can be included in an OptimizationModel if the model is a multi-objective 

optimization model. An ObjectiveFunction has an OptimizationMode to indicate the means to 

achieve the objective function like Maximize, Minimize, or Solve. The Solve mode captured here 

is targeting some of the problems which only find feasible solutions instead of optimal solutions 

(e.g., Constraint satisfaction problems). The mathematical expression of the ObjectiveFunction is 

captured in the expression field. The constraints are represented by the Constraint class. The 

Algorithm class is used to indicate the specific algorithms to be used to resolve the optimization 

model. An AlgorithmParameter represents a parameter configuration of a certain algorithm (e.g., 
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tolerance in Newton’s method). The ModelType class represents the type of the optimization 

model. Sub-types of ModelType can include LinearProgramming, IntegerProgramming, 

NonlinearProgramming, etc.  

To formally represent mathematical expressions in the Optimization Metamodel, MathML 

has been used to capture the mathematical expressions of Constraints and ObjectiveFunctions. 

Here, the Content ML, which represents the underlying mathematical structure of an expression, 

is chosen to represent the mathematical expressions in the MILP model.  

5.1.2.2 Representation of an MILP Model Using the Optimization Metamodel 

In this paper, an FJSP problem is used to illustrate the utilization of the Optimization 

Metamodel. The problem description and mathematical modeling are selected from Özgüven et 

al. (2010). An FJSP consists of a set of 𝑛 independent jobs 𝐽 = {𝑗𝑖}𝑖=1
𝑛 , each having its own 

processing order through a set of 𝑚  machines 𝑀 = {𝑚𝑘}𝑘=1
𝑚 . A number of ℓ𝑖  ordered 

operations (𝑂𝑖1, … , 𝑂𝑖ℓ𝑖) need to be performed to complete job 𝑖. Operation 𝑗 of job 𝑖(𝑂𝑖𝑗) 

can be processed by any machine in a given set 𝑀𝑗 ⊆ 𝑀 for a given processing time 𝑡𝑖𝑗𝑘. The 

FJSP is a routing as well as a sequencing problem: assigning each operation 𝑂𝑖𝑗 to a machine 

selected from the set 𝑀𝑗 and ordering operations on the machines so that C𝑚𝑎𝑥 (i.e. makespan) 

is minimized.  

The following notation is used for the MILP model.  

Indices and sets 

𝑖 the index of jobs (𝑖, 𝑖′ ∈ 𝐽) 
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𝑗 the index of operations (𝑗, 𝑗′ ∈ 𝑂) 

𝑘 the index of machines (𝑘 ∈ 𝑀) 

𝐽 the set of jobs 

𝑀 the set of machines 

𝑂 the set of operations 

𝑂𝑖 ordered set of operations of job 𝑖 (𝑂𝑖 ⊆ 𝑂), where 𝑂𝑖𝑓(𝑖) is the first and 𝑂𝑖ℓ(𝑖) is 

the last element of 𝑂𝑖 

𝑀𝑗 the set of alternative machines on which operation j can be processed,(𝑀𝑗 ⊆ 𝑀) 

𝑀𝑗 ∩𝑀𝑗’ the set of machines on which operations 𝑗 and 𝑗′ can be processed 

Parameters 

𝑡𝑖𝑗𝑘 the processing time of operation 𝑂𝑖𝑗 on machine 𝑘 

𝐿 a large number 

Decision variables 

𝑋𝑖𝑗𝑘 1, if machine 𝑘 is selected for operation 𝑂𝑖𝑗; 0, otherwise 

𝑆𝑖𝑗𝑘 the starting time of operation 𝑂𝑖𝑗 on machine 𝑘 

𝐶𝑖𝑗𝑘 the completion time of operation 𝑂𝑖𝑗 on machine 𝑘 

𝑌𝑖𝑗𝑖′𝑗′𝑘 1, if operation 𝑂𝑖𝑗 precedes operation 𝑂𝑖′𝑗′  on machine 𝑘; 0, otherwise 

𝐶𝑖 the completion time of job 𝑖 

𝐶𝑚𝑎𝑥 maximum completion time over all jobs (makespan) 

The MILP model is defined as follows: 
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𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛: Minimize 𝐶𝑚𝑎𝑥 

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠: 

∑ 𝑋𝑖𝑗𝑘
𝑘∈𝑀𝑗

= 1   ∀𝑖 ∈ 𝐽, ∀𝑗 ∈ 𝑂𝑖, (1) 

𝑆𝑖𝑗𝑘 + 𝐶𝑖𝑗𝑘 ≤ (𝑋𝑖𝑗𝑘) ⋅ 𝐿   ∀𝑖 ∈ 𝐽, ∀𝑗 ∈ 𝑂𝑖, ∀𝑘 ∈ 𝑀𝑗 , (2) 

𝐶𝑖𝑗𝑘 ≥ 𝑆𝑖𝑗𝑘 + 𝑡𝑖𝑗𝑘 − (1 − 𝑋𝑖𝑗𝑘) ⋅ 𝐿   ∀𝑖 ∈ 𝐽, ∀𝑗 ∈ 𝑂𝑖, ∀𝑘 ∈ 𝑀𝑗 , (3) 

𝑆𝑖𝑗𝑘 ≥ 𝐶𝑖′𝑗′𝑘′ − (𝑌𝑖𝑗𝑖′𝑗′𝑘) ⋅ 𝐿   ∀𝑖 < 𝑖
′, ∀𝑗 ∈ 𝑂𝑖, ∀𝑗′ ∈ 𝑂𝑖′ , ∀𝑘 ∈ 𝑀𝑗 ∩𝑀𝑗′ , (4) 

𝑆𝑖′𝑗′𝑘′ ≥ 𝐶𝑖𝑗𝑘 − (1 − 𝑌𝑖𝑗𝑖′𝑗′𝑘) ⋅ 𝐿   ∀𝑖 < 𝑖
′, ∀𝑗 ∈ 𝑂𝑖, ∀𝑗′ ∈ 𝑂𝑖′ , ∀𝑘 ∈ 𝑀𝑗 ∩𝑀𝑗′ , (5) 

∑ 𝑆𝑖𝑗𝑘
𝑘∈𝑀𝑗

≥ ∑ 𝐶𝑖,𝑗−1,𝑘
𝑘∈𝑀𝑗

   ∀𝑖 ∈ 𝐽, ∀𝑗 ∈ 𝑂𝑖 − {𝑂𝑖𝑓(𝑖)}, (6) 

𝐶𝑖 ≥ ∑ 𝐶𝑖,𝑂𝑖ℓ(𝑖) ,𝑘
𝑘∈𝑀𝑗

   ∀𝑖 ∈ 𝐽,  (7) 

𝐶𝑚𝑎𝑥 ≥ 𝐶𝑖    ∀𝑖 ∈ 𝐽,  
(8) 

and 

𝑋𝑖𝑗𝑘 ∈ {0,1}   ∀𝑖 ∈ 𝐽, ∀𝑗 ∈ 𝑂𝑖, ∀𝑘 ∈ 𝑀𝑗 ,  

𝑆𝑖𝑗𝑘 ≥ 0   ∀𝑖 ∈ 𝐽, ∀𝑗 ∈ 𝑂𝑖, ∀𝑘 ∈ 𝑀𝑗 ,  

𝐶𝑖𝑗𝑘 ≥ 0   ∀𝑖 ∈ 𝐽, ∀𝑗 ∈ 𝑂𝑖, ∀𝑘 ∈ 𝑀𝑗 ,  

𝑌𝑖𝑗𝑖′𝑗′𝑘 ∈ {0,1}   ∀𝑖 < 𝑖′, ∀𝑗 ∈ 𝑂𝑖, ∀𝑗′ ∈ 𝑂𝑖′ , ∀𝑘 ∈ 𝑀𝑗 ∩𝑀𝑗′ ,  

𝐶𝑖 ≥ 0   ∀𝑖 ∈ 𝐽.  

 Constraint (1) makes sure that operation 𝑂𝑖𝑗 is assigned to only one machine. If operation 

𝑂𝑖𝑗 is not assigned to machine 𝑘, constraint (2) sets its starting and completion times on 

machine 𝑘 to zero. Otherwise, constraint (3) guarantees that the differences between the starting 
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and the completion times is at least equal to the processing time on machine 𝑘. Constraints (4) 

and (5) fulfill the requirement that operation 𝑂𝑖𝑗 and operation 𝑂𝑖′𝑗′ cannot be carried out at 

the same time on any machine in the set 𝑀𝑗 ∩𝑀𝑗′ . Constraint (6) captures the precedence 

relationships between the operations of a job, i.e. the operation 𝑂𝑖𝑗 cannot start before the 

operation 𝑂𝑖,𝑗−1 has been completed. Constraint (7) determines the completion times (of the 

final operations) of the jobs. Constraint (8) determines the makespan. 

 

Figure 5.3 Representation of the MILP model using the Optimization Metamodel in protégé 5.2 

To show an example of using the Optimization Metamodel to represent this MILP model, the 

OWL language has been used. To capture the MILP model, the Optimization Metamodel is first 

expanded to include the variables (e.g., 𝑋𝑖𝑗𝑘, 𝑆𝑖𝑗𝑘, and 𝐶𝑖𝑗𝑘, etc.), constraints (e.g., constraint (1) 
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to (8)), and objective function. Figure 5.3 shows a representation of the populated Optimization 

Metamodel for the MILP model in protégé 5.2. An example of MathML representation for 

constraint (8) is demonstrated in the figure. The relationships between a class and a member field 

(Figure 1) are modeled as “has~” object properties. An example of the hasVariable object 

property of the input instance is shown in the mini-window of Figure 5.3.  

 

Figure 5.4 XML representation of input data for variable 𝑶𝒊 

The built-in datatypes of OWL have been used to represent the datatypes of the decision 

variables. For example, the 𝑋𝑖𝑗𝑘 and 𝑌𝑖𝑗𝑖′𝑗′𝑘 variables are represented as xsd:Boolean because 

they only take values as 0 or 1. Decision variables 𝑆𝑖𝑗𝑘 , 𝐶𝑖𝑗𝑘 , and 𝐶𝑖  are represented as 

xsd:nonNegativeInteger. Since OWL does not have primitive types for the multi-dimensional 
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array, XML is used to represent arrays for input and output data in this work. An example of the 

input data for variable 𝑂𝑖 is shown in Figure 5.4.  

5.1.3 Development of a Knowledge Enriched Optimization Model for Model 

Deployment 

To demonstrate the representational capability of the proposed Optimization Metamodel, the 

Optimization Metamodel for a Constraint Programming (CP) model is developed. The CP model, 

which solves the FJSP problem discussed in section 5.1.2.2, is selected from an example model 

provided by IBM Cplex studio.  

The notation of the model is described below.  

Decision variables 

𝑂𝑝s the array of operation intervals 

𝑀𝑜𝑑𝑒𝑠 the array of alternative operation intervals on each machine for all the 

operations 

𝑀𝑐ℎ𝑠 the array of machine schedule sequences 

Indices and sets 

𝑖 the index of 𝑂𝑝𝑠 (𝑖 ∈ [1, 𝑐𝑜𝑢𝑛𝑡(𝑂𝑝𝑠)]) 

𝑗 the index of 𝑀𝑜𝑑𝑒𝑠 (𝑗 ∈ [1, 𝑐𝑜𝑢𝑛𝑡(𝑀𝑜𝑑𝑒𝑠)]) 

𝑘 the index of 𝑀𝑐ℎ𝑠 (𝑘 ∈ [1, 𝑐𝑜𝑢𝑛𝑡(𝑀𝑐ℎ𝑠)]) 

Parameters 

𝑜𝑝𝐼𝑑(𝑂𝑝𝑠𝑖) the id of an operation; starting from 1 
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𝑗𝑜𝑏𝐼𝑑(𝑂𝑝𝑠𝑖) the job id of an operation; starting from 1 

𝑝𝑜𝑠(𝑂𝑝𝑠𝑖) the position of an operation in a job; starting from 0 

𝑜𝑝𝐼𝑑(𝑀𝑜𝑑𝑒𝑗) the operation id of an alternative operation; the alternative operations of an 

operation 𝑂𝑝𝑠𝑖 can be identified by 𝑜𝑝𝐼𝑑(𝑀𝑜𝑑𝑒𝑗) 

𝑚𝑐ℎ(𝑀𝑜𝑑𝑒𝑗) the machine id of an alternative operation 

𝑝𝑡(𝑀𝑜𝑑𝑒𝑗) the processing time of an alternative operation 

The CP model is defined as follows: 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛:  

Minimize 

𝑚𝑎𝑥({𝑒𝑛𝑑(𝑂𝑝𝑠𝑖)})    𝑖 ∈ {𝑖|∀𝑗 ∈ 𝐽 ∩ 𝑚𝑎𝑥({𝑝𝑜𝑠(𝑂𝑝𝑠𝑖)|𝑗𝑜𝑏𝐼𝑑(𝑂𝑝𝑠𝑖) = 𝑗})} 

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠: 

𝑒𝑛𝑑𝐵𝑒𝑓𝑜𝑟𝑒𝑆𝑡𝑎𝑟𝑡(𝑂𝑝𝑠𝑖, 𝑂𝑝𝑠𝑖′)   ∀𝑖
′ = 𝑖 + 1, 𝑗𝑜𝑏𝐼𝑑(𝑂𝑝𝑠𝑖) = 𝑗𝑜𝑏𝐼𝑑(𝑂𝑝𝑠𝑖′), (1) 

𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒(𝑂𝑝𝑠𝑖, {𝑀𝑜𝑑𝑒𝑠𝑗|𝑜𝑝𝐼𝑑(𝑀𝑜𝑑𝑒𝑠𝑗) = 𝑜𝑝𝐼𝑑(𝑂𝑝𝑠𝑖)}), (2) 

𝑛𝑜𝑂𝑣𝑒𝑟𝐿𝑎𝑝(𝑀𝑐ℎ𝑠𝑘). (3) 

Constraint (1) captures the precedence relationships between the operations. Constraint (2) 

represents the alternative operation intervals that an operation can select from. Constraint (3) 

makes sure that the operation intervals within a machine schedule do not overlap.  

To demonstrate the utilization of the KECM, this section describes the development of a 

Knowledge Enriched Optimization Model. An Optimization Metamodel which represents a 

Constraint Programming model has been used as an example to show the enrichment. In the 
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following sections, the development and utilization of the information model and the 

rationales/rules used in the Knowledge Enriched Optimization Metamodel are illustrated. In this 

case study, the Optimization Metamodel, the information model, and the rationales/rules are 

implemented using OWL. The rationales are implemented using the SWRL in OWL. 

5.1.3.1 Information Model 

The information model used in this paper is selected from a previous work (Zhang et al. 

2015). This information model was developed to facilitate sustainability evaluation in the 

manufacturing domain. A compact version of the information model, or the Sustainable 

Manufacturing Ontology (SMO), is shown in Figure 5.5. A brief explanation of some important 

concepts in the information model is narrated below: 

• Equipment: Equipment can be a tool or a machine on the shop floor. 

• Shop: A Shop represents a manufacturing facility in a factory. It has a set of Jobs that are to 

be finished. A Shop has a variety of Equipment that is used to carry out the Jobs. 

• Job: A Job defines a task that needs to be carried out to produce a Part. Each Job is 

composed of a series of Operations. 

• Operation: An Operation represents the task to be performed to produce a feature of a Part. 

Each Operation contains a ManufacturingProcess. An Operation utilizes a certain type of 

Equipment to carry out its task. 

For more descriptions of the SMO, please refer to section 4.4.1.  
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Figure 5.5 A UML representation of the extended Sustainable Manufacturing Ontology (SMO) 

5.1.3.2 Optimization Metamodel 

The Optimization Metamodel has been expanded to represent this CP model (Figure 5.6). 

OWL is also used to represent the Optimization Metamodel. In Figure 5.6, the black boxes 

represent owl:classes; the green boxes are datatypes; the pink arrows indicate the hasSubClass 

relationships; the red arrows indicate the ‘has-a’ object properties; the green arrows indicate the 

data properties. Other than capturing the constraints and variables in the CP model, three 

CustomizedTypes have been defined. An Interval is an entity that has a start time, end time, and 

processing time. A Sequence is an entity that represents a schedule for a machine. It is composed 

of an ordered set of Intervals. An AlternativeMachineSet represents the alternative machine set of 

an operation. It is composed of a set of Modes.  
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Figure 5.6 Expansion of the Optimization Metamodel with respect to the CP model 

5.1.3.3 Rationales 

This section presents examples to capture rationales/rules for the deployment and reuse of the 

CP model presented in the last section. The SWRL language in OWL has been used to represent 

the rationales/rules. 

As discussed in section 5.1.1, to facilitate the deployment of an optimization model, this 

paper proposes to first load data from the underlying SM system to the information model. Then, 

the data stored with the information model are loaded to the Optimization Metamodel. The 

following rationales/rules have been developed for capturing the mappings between the 

information model and the Optimization Metamodel.  
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Load jobId for Op from Information Model 

Job(?job), xsd:integer(?jobId), hasId(?job, ?jobId), Operation(?operation), 

hasOperation(?job, ?operation), xsd:integer(?opId), hasId(?operation, ?opId), Op(?op), 

hasOpId(?op, ?opId) -> hasJobId(?op, ?jobId) 

The meaning of this rule is: If a Job has id ?jobId and it has an Operation which has 

id ?opId, the Op which also has id ?opId should have job id ?jobId. 

Load pos for Op from Information Model 

Operation(?operation), xsd:integer(?id), hasId(?operation, ?id), Op(?op), hasOpId(?op, ?id), 

xsd:integer(?position), hasPosition(?operation, ?position) -> hasPos(?op, ?position) 

The meaning of this rule is: For an Operation that has id ?id and has a position ?position, the 

corresponding Op which has the same id ?id should also have a position ?position. 

Load mchId for Mode from Information Model 

Operation(?operation), AlternativeOperation(?altOperation), 

hasAlternativeOperation(?operation, ?altOperation), xsd:integer(?altOptId), 

hasId(?altOperation, ?altOptId), Process(?process), hasProcess(?altOperation, ?process), 

xsd:integer(?processType), hasProcessType(?process, ?processType), Mode(?mode), 

hasModeId(?mode, ?altOptId) -> hasMchId(?mode, ?processType) 

The meaning of this rule is: If an Operation has an AlternativeOperation which has 

id ?altOptId, and the Process of the AlternativeOperation has process type ?processType, the 
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Mode (in the CP model) which has the same id as the AlternativeOperation should have 

MchId ?processType. 

Load pt for Mode from Information Model 

Operation(?operation), AlternativeOperation(?altOperation), 

hasAlternativeOperation(?operation, ?altOperation), xsd:integer(?processingTime), 

xsd:integer(?altOptId), hasId(?altOperation, ?altOptId), 

hasProcessingTime(?altOperation, ?processingTime), Mode(?mode), 

hasModeId(?mode, ?altOptId) -> hasPt(?mode, ?processingTime) 

The meaning of this rule is: If an Operation has an AlternativeOperation which has 

id ?altOptId, and the Process of the AlternativeOperation has processing time ?processingTime, 

the Mode (in the CP model) which has the same id as the AlternativeOperation should have 

pt ?processingTime. 

Rationales are the reasons or descriptions about why or how a model is developed are 

developed for the case study. In this case study, the rationales that formally define the semantics 

of the three constraints have been developed.  

Constraint (1) endBeforeStart 

This constraint defines the precedence relationships between the adjacent operations in a job. 

Two rules have been individually developed to capture the predecessor and/or successor of an 

operation since the first/last operation of each job only has a successor/predecessor. This 

constraint is defined such that an operation Op has a constraint endBeforeStart, and the constraint 
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endBeforeStart captures Op’s predecessor and/or successor. The swrlb:add and the swrlb:equal 

relationships are the built-in relationships in the SWRL language. swrlb:add is satisfied if and 

only if the first argument is equal to the arithmetic sum of the second argument through the last 

argument. swrlb:equal is satisfied if and only if the first argument and the second argument are 

the same.  

Op(?op), Op(?op1), Ops(dvar_ops), endBeforeStart(?endBeforeStart), xsd:integer(?jobId), 

xsd:integer(?jobId1), xsd:integer(?pos), xsd:integer(?pos1), 

hasConstraint(?op, ?endBeforeStart), hasOp(?ops, ?op), hasOp(?ops, ?op1), 

hasJobId(?op, ?jobId), hasJobId(?op1, ?jobId1), hasPos(?op, ?pos), hasPos(?op1, ?pos1), 

swrlb:add(?pos, 1, ?pos1), swrlb:equal(?jobId, ?jobId1) -> 

hasPredecessor(?endBeforeStart, ?op1) 

The meaning of this rule is: There are two Ops in dvar_ops: ?op and ?op1. They have the 

same jobId. The position of ?op is greater than that of ?op1 by 1. So, the endBeforeStart 

constraint of ?op should have a predecessor ?op1. 

Op(?op), Op(?op1), Ops(dvar_ops), endBeforeStart(?endBeforeStart), xsd:integer(?jobId), 

xsd:integer(?jobId1),xsd:integer(?pos),xsd:integer(?pos1),hasConstraint(?op, ?endBeforeStart)

, hasOp(?ops, ?op), hasOp(?ops, ?op1), hasJobId(?op, ?jobId), hasJobId(?op1, ?jobId1), 

hasPos(?op, ?pos), hasPos(?op1, ?pos1), swrlb:add(?pos1, 1, ?pos), 

swrlb:equal(?jobId, ?jobId1) -> hasSuccessor(?endBeforeStart, ?op1) 
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This rule is similar to the previous one. It adds the successors for any Op.  

Constraint (2) alternative 

This constraint defines the alternative machines for a certain operation. The first rule defines 

a CustomizedType – AlternativeMachineSet. One AlternativeMachineSet is created for each Op. 

The Modes, which have the same opId as an Op does, are added to the corresponding 

AlternativeMachineSet. The second rule captures the relationship between an Op and its 

AlternativeMachineSet in an alternative constraint.  

AlternativeMachineSet(?altMachineSet), Mode(?mode), Modes(dvar_modes), Op(?op), 

xsd:integer(?opId), hasMode(dvar_modes, ?mode), hasOpId(?mode, ?opId), 

hasOpId(?op, ?opId), hasOpId(?altMachineSet, ?opId) -> 

hasAlternativeMachine(?altMachineSet, ?mode) 

The meaning of the first rule is: For an AlternativeMachineSet that has the same opId as a 

Mode, the AlternativeMachineSet should have Mode as one of its AlternativeMachine. 

AlternativeMachineSet(?altMachineSet), Op(?op), hasConstraint(?op, ?alternative), 

alternative(?alternative), xsd:integer(?opId), hasOpId(?altMachineSet, ?opId), 

hasOpId(?op, ?opId) -> hasAlternativeMachineSet(?alternative, ?altMachineSet), 

hasOpInterval(?alternative, ?op) 

The meaning of the second rule is: For an AlternativeMachineSet that has the same opId as 

an Op, the alternative constraint of the Op should be related to the AlternativeMachineSet. 
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Constraint (3) noOverlap 

This constraint defines that within a schedule (i.e. a Sequence), no Intervals can be overlaps. 

The first rule defines that each Mch is composed of a set of alternative operations – Modes, 

which have the same mchId as Mch does. The second rule describes that the noOverlap 

constraint is applied to every individual Mch in the whole schedule.  

Mch(?mch), Mchs(dvar_mchs), Mode(?mode), Modes(dvar_modes), xsd:integer(?mchId1), 

xsd:integer(?mchId2), hasMch(dvar_mchs, ?mch), hasMode(dvar_modes, ?mode), 

hasMchId(?mch, ?mchId1), hasMchId(?mode, ?mchId2), swrlb:equal(?mchId1, ?mchId2) -> 

hasInterval(?mch, ?mode) 

The meaning of this rule is: For any Mch (in Mchs) has the same mchId with a Mode in 

dvar_modes, the Mch should have the Mode as its Interval.  

Mch(?mch), Mchs(dvar_mchs), noOverlap(?noOverlap), hasMch(dvar_mchs, ?mch) -> 

hasMchSequence(?noOverlap, ?mch) 

 The meaning of this rule is: The constraint noOverlap should have all Mchs in dvar_mchs in 

its MchSequence. 
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5.1.4 Utilization of the Knowledge Enriched Optimization Model for Model 

Deployment 

 

Figure 5.7 Screenshot of the implemented Optimization Metamodel in protégé 5.2 

Figure 5.7 shows a representation of the developed Enriched Optimization Metamodel for the 

CP model. The information model, Optimization Metamodel, and rationales are all represented in 

protégé 5.2. This section discusses the utilization of the Enriched Optimization Metamodel from 

two perspectives: interoperability enabled by the Optimization Metamodel and deploying the 

Optimization Metamodel in a manufacturing system.  
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Figure 5.8 Representation of the optimization result (schedule) in protégé 5.2 

5.1.4.1. Interoperability Enabled by the Optimization Metamodel 

In this case study, the interoperability of the CP model contained in the Optimization 

Metamodel has been tested. After the instantiated Optimization Metamodel has been developed, 

the metamodel is executed by two CP solvers: IBM Cplex CP solver and Google OR-Tools. The 

metamodel is consumed by the Java APIs (Application Programming Interface) of the two tools 

through a developed metamodel parser using OWLAPI (Horridge and Bechhofer, 2011). After 

the metamodel has been executed, the optimization result – the schedule – is loaded back to the 

metamodel (Figure 5.8) through the metamodel parser again. Both optimization results obtained 

from the two tools appear to be the same and correct. In this test, the Optimization Metamodel is 

proved to be capable of representing optimization models in a text-based format and is capable 

of supporting the interoperability of the optimization models among different optimization tools. 
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5.1.4.2. Using the KECM to Support Model Deployment 

 

Figure 5.9 Input data in B2MML and in the Knowledge Enriched Optimization Model 

The utilization of the Enriched Optimization Metamodel to support model deployment is 

demonstrated by the using the first set of rationales. A scenario of deploying the model in an 

ANSI/ISA-95-based scheduling system is assumed. In this scenario, data exchange between the 

underlying information system and the optimization solution is achieved using B2MML. The 

input data of the optimization model is imported from a B2MML-based XML file. Through a 

defined mapping file between the B2MML (i.e. the data model) and the SMO (i.e. the 

information model), the input data are first loaded to the SMO. Then, by turning on the reasoning 
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engine with the set of mapping rules (section 5.1.3.3), the data in the SMO are transferred onto 

the Optimization Metamodel. After consuming the CP model with a developed parser in IBM 

Cplex using its Java API, the scheduling result can be loaded back to the KECM again through 

the parser. An example of the input data in B2MML and in the Knowledge Enriched 

Optimization Metamodel is shown in Figure 5.9. 

 

Figure 5.10 Loading the data from the SMO to the Optimization Metamodel 

Figure 5.10 demonstrates the utilization of the rules to load data from the SMO to the 

Optimization Metamodel. The entities highlighted in light yellow are inferred using the pellet 
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reasoner in protégé 5.2. The red boxes and arrows indicate the related data in the SMO and the 

Optimization Metamodel. 

 

Figure 5.11 Representing domain meaning of optimization model’s entities 

 

Figure 5.12 Generating constraint instances with the rationales 

The knowledge, which captures the domain meanings and model explanations, implemented 

in this case study contains: expressing the domain meanings of variables using an information 
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model and generally capturing the semantics of the constraints in the CP model. Using the 

information model to express the domain meanings of variables is achieved by semantically 

connecting the variables defined in the Optimization Metamodel and the domain concept 

captured by the information model. An example of expressing the domain meanings of an Op 

variable using the Operation concept in the SMO is shown in Figure 5.11.  

The generally defined semantics of the constraints in the CP model is described in section 

5.1.3.3. Whenever the input data is loaded to the KECM, these sets of rationales can be executed 

to construct the constraint instances. The metamodel with the generated constraint instances can 

then be parsed and executed in optimization tools. Figure 5.12 shows an example of the 

constraint instances generated by reasoning the rationales. 

5.2 A Methodology to Support the Combination of Computational Models 

Normally, each computational model is developed to address a specific set of industrial 

issues, and it can only apply to a small portion of a complex Smart Manufacturing system. To 

allow the SM systems to solve more complex problems, individual computational models that 

were developed for different domain applications must be properly combined: (1) to simplify the 

original complex problem, individual computational models that solve different small problems 

can be combined to collaboratively solve the bigger problem of the systems; (2) to enhance 

computing performance, predictive models may be combined to reduce the prediction variance 

and bias; (3) if there are no dependencies between the individual computational models or the 

size of the data set is too large for one model to process, models can be combined to support 
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parallel computations. It is important to address the problem of model combination for the 

KECM. This is because a model combination represents the overall goal of a domain application; 

the sub-models can only represent the sub-goals to achieve the overall goal.  

Thus, this chapter presents an approach to uniformly represent model combinations that are 

compatible with the KECM. To validate the proposed approach, a case study that combines an 

Agent-based model and a Decision Tree model has been developed for the utilization of the 

model combination representation in a real-time scheduling scenario.  

5.2.1 Development of A Uniform Model for Model Combinations 

Before uniformly representing model combinations, a general structure for computational 

models is defined (Figure 5.13). A model can be an individual computational model or a 

combined model that combines several individual models. A model should have its input(s) and 

output(s). Computational models can be normally combined in three methods: sequential models, 

parallel models, and composed models (Figure 5.14).  

 

Figure 5.13 General structure for models 

Sequential models are models that are combined sequentially: the outputs of one model are 

the inputs of another. The inputs of the combined model are the inputs of the first model, and the 

outputs of the combined model are the outputs of the last model.  

Parallel models are parallelly combined. Depending on the application, the input data of the 
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combined model may be divided, and the divided data are consumed by the sub-models; the 

input data of the combined model can also be the same for all sub-models. The outputs from 

sub-models are normally combined according to the application. For example, if the outputs 

from the sub-models are all real numbers, the methods to combine the outputs can be weighted 

average, maximum, minimum, and summation, etc. 

 

Figure 5.14 Methods for model combination 

Composed models are models combined through composition. The functionality of one 

model is included in another model. The model being composed receives inputs from the 

external model; it outputs results to the external model.  

More complex model combinations can be combined using these three basic model 

combination methods. Figure 5.15 demonstrates an example of the composition of combined 

models. In this figure, combined model 1 combines models (i.e. individual models or combined 
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models) by means of composed models; combined model 2 combines models through sequential 

models; combined model 3 combines models through parallel models. 

 

Figure 5.15 An example of the composition of combined models 

A model composition representation has been developed to formally represent model 

compositions (Figure 5.16). Since the representation technology selected in this dissertation is 

OWL, this figure demonstrates representation that is compliant with OWL. In this figure, the 

purple arrows indicate the hasSubClass relationships; the red dashed arrows are has-a 

relationships.  
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Other than the individual types of computational models like OptimizationModel, 

DecisionTreeModel, and DispatchingRuleModel, etc., CombinedModel is also considered as an 

inherited type of ComputationalModel. All ComputationalModels should have Inputs and 

Outputs to represent the collections of input and output variables. Each variable which has a 

domain meaning and is contained in Inputs and Outputs is represented as an owl:class. The 

inputs-variable relationships are captured in the hasVariable relationships.  

A CombinedModel has three sub-types: SequentialModel, ParallelModel, and 

ComposedModel. The SequentialModel has a sequence of ComputationalModels. To represent 

the model sequence, each ComputationalModel can have hasPredecessor and hasSuccessor 

relationships to indicate its neighbor models. To specify the first and last model in a 

SequentialModel, the hasFirstModel and hasLastModel relationships can be used. For a model 

that is neither at the first nor the last position of the model sequence, its relationship within 

SequentialModel is represented using the hasSubModel relationships. The ParallelModel has a 

set of ComputationlModels that are parallelly combined. Their relationships are represented 

using the hasSubModel relationships. The ComposedModel uses hasExternalModel and 

hasInternalModel relationships to indicate the external model and the internal model. For each 

external model, it has a Port to define the inputs/outputs between it and an internal model. Each 

Port has PortInputs and PortOutputs entities to denote the expected inputs from an internal 

model and the outputs to an internal model. Like Inputs and Outputs, the PortInputs and 

PortOutputs are entities to represent the collection of input and output variables. Each variable is 

also represented as an owl:class which has a domain meaning. To explicitly represent the 
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connections between the inputs and outputs of the composed models, relationship 

hasPortConnection can be used to connect PortInputs (or PortOutputs) of an external model to 

Outputs (or Inputs) of an internal model.  

5.2.2 Case Study Scenario 

To validate the developed model combination representation introduced in the last section, a 

case study has been developed to utilize a composed Agent-based model and a Decision Tree 

model in a real-time scheduling scenario. A real-time flexible job-shop scheduling scenario has 

been created based on an automated assembly line setup (Figure 5.17) selected from the 

literature (Trentesaux et al., 2013). In Figure 5.17, other than M5 and M6, all the workstations 

can carry out more than one type of job. Shuttles can travel between the workstations on a track 

following the arrow directions. The products produced by this assembly line are words formed 

by different parts (Figure 5.18). The parts are letters that are assembled using different shapes of 

components.  

The scheduling scenario proposed in Trentesaux et al. (2013) has been extended in this case 

study. The parts made in the literature are only “A”, “B”, “E”, “I”, “L”, “P”, and “T”. In this case 

study, the parts have been expanded to all 26 English letters. Instead of the MILP problem 

presented in this literature, this case study adopts an Agent-based scheduling approach. This is 

because the Agent-based scheduling approach can rapidly respond to orders released in real-time 

although it cannot guarantee optimal solutions. For information about the production sequence of 

the 26 letters, please refer to the APPENDIX – A. For more information about the products and 
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assembly line configuration in this case study, please refer to Trentesaux et al. (2013). 

 

Figure 5.17 Shop floor layout of the real-time scheduling scenario (Trentesaux et al., 2013) 
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Figure 5.18 Components, jobs, and products produced on the production line (Trentesaux et al., 

2013) 

5.2.2.1 Development of A Composed Agent-based and Decision Tree System for 

Flexible Job Shop Scheduling 

To achieve real-time scheduling for the assembly line discussed in the last section, an 

Agent-based system was first developed using an open source tool – JADE (Java Agent 

Development Framework) (Bellifemine et al., 2005). Four types of agents had been developed: 

shop floor agent, supervisor agent, product agent, and machine agent. The shop floor agent is 

responsible to monitor the status of the jobs and machines on the shop floor and to dispatch 

shuttles to workstations. The supervisor agent, product agents, and machine agents form a group 

to carry out scheduling and routing decisions. Each product agent represents a job (i.e. a letter) 

that needs to be assembled on the assembly line. Each machine agent represents a workstation on 
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the assembly line. The product agents and the machine agents are virtual entities that can 

communicate with each other and make decisions. The supervisor agent manages the activities of 

product agents and machine agents. It is responsible for instructing the shop floor agent to 

release and dispatch job shuttles to workstations.  

Figure 5.19 demonstrates the basic system behavior. Once in every second, the shop floor 

agent sends a message (i.e. a red arrow in the diagram) to the supervisor agent, each product 

agent, and each machine agent to report the status of the shop floor. The SUBSCRIBE on each 

message is the communicative act which indicates the purpose of the message.  

Figure 5.19 Sequence diagram to represent system behavior 

Figure 5.20 shows the system behavior whenever a product order is released. Whenever the 

supervisor agent receives a REQUEST message which contains the requested product 

information (i.e. a list of letters that needs to make) from the outside of the Agent-based system, 

the supervisor agent will instruct the agent platform to create a set of product agents (i.e. each 

agent for a letter). Then, the supervisor agent informs the shop floor agent to release the raw 

Added to consume the Decision Tree 
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materials (i.e. the plate in Figure 5.18) for the parts. After a product agent has been created, it can 

receive the CFP (Call For Proposal) messages from the active machine agents. If the product 

agent is waiting and the machine(s) is capable of performing the activity requested by the part 

(e.g., assembling an L_comp onto the plate), it will calculate the priority value based on the 

dispatching rule selected, and send the priority value to the machine agent(s), which have just 

sent the CFP message, in a PROPOSE message. Otherwise, the product agent will send a 

REFUSE message to the machine agent. After each active machine agent receives all the 

REFUSE and PROPOSE messages, it evaluates all the proposals which contain the priority 

values sent from each product agent. After the machine agent has selected the best proposal with 

the lowest priority value, it replies to the product agent which has the best proposal with an 

ACCEPT_PROPOSAL message and sends other product agents REJECT_PROPOSAL messages. 

Then, each product agent which receives at least one ACCEPT_PROPOSAL message evaluates 

all the machines (which just accepted its proposal) and finds the nearest machine. Finally, the 

product agent replies to the nearest machine agent with an INFORM message and the others with 

FAILURE messages. At this point, the decision process for a product agent is completed. The 

whole process is developed based on the Contract Net Protocol defined by the FIPA standard 

(FIPA, 2002). After the decision, the product agent sends the machine allocation information to 

the supervisor agent, and then the supervisor agent instructs the shop floor agent to dispatch the 

job shuttle to go to the assigned machine. 
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This agent-based system was first developed to use a single dispatching rule – SPT (Shortest 

Processing Time) – to calculate the priority value. The problem of using a single dispatching rule 

is that a certain rule may perform well in some situations but may perform very badly in some 

other cases. To overcome this shortcoming, a dispatching rule selection module has been applied 

in this agent-based system to automatically select dispatching rules according to the system 

status. This dispatching rule selection module has been realized by a Decision Tree model. This 

Decision Tree has been trained to select the best dispatching rule among SPT (Shortest 

Processing Time), LPT (Longest Processing Time), LWKR (Least Work Remaining), and 

MWKR (Most Work Remaining) based on three system status parameters: system utilization, 

average flow allowance, and percentage of unfinished jobs. For more information about the 

dispatching rules, please refer to Panwalkar and Iskander (1977). The three parameters are 

calculated as follows. 

system utilization =  
𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑊𝑜𝑟𝑘𝑖𝑛𝑔𝑀𝑎𝑐ℎ𝑖𝑛𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝐴𝑙𝑙𝑀𝑎𝑐ℎ𝑖𝑛𝑒𝑠
 

average flow allowance =  
∑
𝑗𝑜𝑏𝐷𝑢𝑒𝐷𝑎𝑡𝑒 − 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑖𝑚𝑒

𝑗𝑜𝑏𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝑊𝑜𝑟𝑘

𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑈𝑛𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑑𝐽𝑜𝑏𝑠
 

percentage of unfinished jobs =  
𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑈𝑛𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑑𝐽𝑜𝑏𝑠

𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝐴𝑙𝑙𝐽𝑜𝑏𝑠𝐼𝑛𝑂𝑟𝑑𝑒𝑟
 

Before training the Decision Tree, a data set of 1000 records had been generated. Orders that 

had 2 to 10 letters had been randomly generated. For each order, the four dispatching rules (i.e. 

SPT, LPT, LWKR, and MWKR) had been respectively applied. Whenever a dispatching decision 

(i.e. sending a part shuttle to a machine) had been made, data that contained the name of the 

dispatching rule and values of the three system status parameters were recorded. When the order 
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was finished, the makespan for the order was recorded. To find the best dispatching rule for each 

order, only the data for a dispatching rule that had the minimum makespan were kept for training 

the Decision Tree. The training of the Decision Tree had been carried out in RapidMiner 8. The 

input fields for the Decision Tree were the three system parameters. The output of the Decision 

Tree was the selection of the dispatching rule. A test data set of 100 records had been generated 

to verify and the validate the Decision Tree embedded in the agent-based system. The prediction 

correctness rate of Decision Tree was achieved at 93%. The test cases also showed that the 

average makespan with the Decision Tree-based dispatching rule module was reduced compared 

to the application of any individual dispatching rule (i.e. SPT, LPT, LWKR, and MWKR).  

It can be observed that the Agent-based scheduling system was improved by embedding a 

Decision Tree-based dispatching rule selection module. However, this system has been 

developed using specific software tools like JADE and RapidMiner. This makes it impossible for 

other manufacturers, who do not possess the tools, to make use of the developed system. To 

allow other industrial users to be able to access and make use of this computational platform, a 

KECM that combines the standardized Agent-based model and the standardized Decision Tree 

model must be developed. Moreover, these two standardized models must be combined, and this 

model combination must be formally represented to allow industrial users to access the two 

models as a whole. This is because the combined model serves the whole functionality of 

real-time scheduling; while the individual models cannot. 

In the following sections, the standardized models for the Agent-based model and the 

Decision Tree model are developed, respectively. Then, the combined model is developed. 
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Finally, the utilization of the combined model in the real-time scheduling scenario described in 

the previous section is discussed. Since the technology selected to represent the KECM is OWL, 

all the models are represented in OWL. 

5.2.3 Development of A Formal Representation for Agent-based Models 

Figure 5.21 presents the representation of the developed standardized agent-based model. 

This model has been created based on the JADE Agent-based system. An agent is a 

computational module that inhabits an agent platform and typically offers one or more 

computational services (Bellifemine et al., 2007). The AgentBasedModel is the entity that 

represents the model of an Agent-based system. An AgentBasedModel should have at least one 

Agent. Each Agent must have an Agent Identifier (AID) for its notion of identity. Any parameter 

of the Agent is captured in AgentParameter. If the AgentParameter has a domain meaning, it can 

be connected to a domain concept (i.e. owl:class) through the hasParameter relationship. Any 

task that is carried out by an Agent is captured in Behaviours. Each Behaviour defines the 

general framework of a task. For example, a Behaviour can be categorized into SimpleBehaviour 

and CompositeBehaviour. SimpleBehaviour can be further classified into OneShopBehaviour that 

only executes once, CyclicBehaviour that executes repeatedly until a certain condition is 

matched, and TickerBehaviour that executes whenever a certain time passes, etc. The actual 

operation that needs to be carried out in a Behaviour is defined in an Action. Figure 5.21 

demonstrates some examples of Actions like CreateAgentAction, ReceiveMessageAction, and 

SendMessageAction, etc. Another feature of an Agent-based system is the message 
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communication between agents. The ACLMessage (Agent Communication Language Message) 

represents the messages exchanged between agents. Each ACLMessage has a Sender and a 

Receiver which are Agents. Any ACLMessage has a CommunicativeAct that captures the general 

function or action of the message. A CommunicativeAct is represented as a string like CONFIRM, 

CFP, and INFORM, etc. The dotted green arrows indicate the enumeration values of a data 

property. An ACLMessage also has a MessageContent which can be a string or an instance of an 

owl:class. For any Action related to a message communication like SendMessageAction, the 

corresponding ACLMessage should be connected to the Action through a hasMessage 

relationship.  

 

Figure 5.21 Representation of the Agent-based Model 
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5.2.4 Development of A Formal Representation for Decision Tree Models 

 

Figure 5.22 Representation of the Decision Tree model in OWL 

Figure 5.22 presents a representation of the developed Decision Tree model. This model is 

developed based on the PMML – Tree Model (DMG, 2016). The entity names are borrowed 

from the PMML. Object properties have been added to better fit the Decision Tree model in the 

OWL language. The TreeModel represents the overall entity of a Decision Tree. The Node 

element is an encapsulation for either defining a split or a leaf in a tree model. Every Node has a 

Predicate that identifies a rule for choosing itself or any of its siblings. The SimplePredicate 

defines a rule in the form of a Boolean expression. The rule has attributes through hasField, 

hasOperator, and hasValue data properties. The hasField property captures the name of an input 

attribute of the TreeModel. The hasOperator property represents mathematical symbols like 

equal, notEqual, lessThan, lessOrEqual, greaterThan, or greaterOrEqual. The hasValue property 
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captures the value for the Boolean expression. A ScoreDistribution is an element of Node to 

represent segments of the score that a Node predicts in a classification. The Partition provides 

distribution information for all records for a Node. For more information about the entities of this 

model, please refer to (DMG, 2016).  

5.2.5 Development of A Composed Agent-based and Decision Tree Model 

In the previous sections, the individual computational models for the Agent-based model and 

the Decision Tree model have been developed. In this section, the model combination for these 

two models has been developed. Based on the previous definition of the combined computational 

model, a combined model is also a computational model. So, the combined computational 

models can be easily integrated into the KECM. Figure 5.23 demonstrates the KECM model for 

the case study.  

 

Figure 5.23 Development of the composed Agent-based and Decision Tree model 

Figure 5.24 presents a representation of the implemented composed Agent-based and 
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Decision Tree model. The purple boxes represent the instances that are generated based on the 

defined classes introduced in the previous sections. In this case study, the output of the Decision 

Tree model is a string of the name of a dispatching rule selected like “SPT”, “LPT”, or “LWKR”; 

the input of the agent-based model from the Decision Tree model is an integer value. So, their 

input and output are not directly connected but are separately represented by their domain 

concept instances: dispatchingRule_output and dispatchingRule_input. The mappings between 

the name string of the dispatching rules and the integer values are SPT – 1, LPT – 2, LWKR – 3, 

and MWKR – 4.  

 

Figure 5.24 Representation of the implemented combined model 

Rationales/rules have been developed to support this model combination. In this case study, 



99 

 

 

two types of rules have been created. First, rules have been developed to connect the input and 

output of the composed model to those of the external model (i.e. the Agent-based model). 

Second, rules have been developed to describe the mappings between a string output from the 

Decision Tree model and the integer port input of the Agent-based model. Likewise, all the rules 

are implemented in SWRL rules. An example of the rule of the first type is given as follows. 

The meaning of this rule is: if the agentBasedModel has Inputs and the Inputs has a variable 

that has a manufacturing domain meaning, then the composedModel should have the same 

variable. An example of the second type of rule is given as follows. 

Inputs(?inputs), hasInputs(composedModel, ?inputs), Inputs(?inputs_ex), 

ComputationalModel(?computationalModel), 

hasExternalModel(?composedModel, ?computationalModel), 

hasInputs(?computationalModel, ?inputs_ex), ManufacturingConcept(?mc), 

hasVariable(?inputs_ex, ?mc) -> hasVariable(?inputs, ?mc) 

 

Outputs(?outputs), hasOutputs(treeModel, ?outputs), DispatchingRule(?dr1), 

hasVariable(?outputs, ?dr1), xsd:string(?drName), swrlb:equal(?drName, “SPT”), 

hasDispatchingRule(?dr1, ?drName), Port(?port), PortInputs(?portInputs), 

hasPort(agentBasedModel, ?port), hasPortInputs(?port, ?portInputs), DispatchingRule(?dr2), 

hasVariable(?portInputs, ?dr2) -> hasDispatchingRule(?dr2, 1) 
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The meaning of this rule is: if the output string of the treeModel equals “SPT”, then the 

integer value for the portInputs of the agentBasedModel should be 1. The screenshot of the 

implemented KECM, whose core is the composed model in protégé 5.2 is shown in Figure 5.25. 

 

Figure 5.25 Screenshot of the implemented model combination in protégé 5.2 

5.2.6 Utilization of the Composed Agent-based and Decision Tree Model 

In this case study, the combined model developed in the last section has been used in the 

real-time scheduling scenario described in section 5.2. To support model combination, 

rationales/rules have been developed to automatically generate the input and output of the 

composed model and to automatically map the data of different types between the two models. 
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Figure 5.26 shows some results of reasoning the rationales/rules. The orange arrows indicate the 

corresponding rationale/rule that produced the reasoning results. The rules supporting the model 

combination can significantly enhance efficiency in manipulating the KECM model.  

 

Figure 5.26 Using rationales to support model combinations 

Currently, there are no free/open-source software tools (e.g., R, RapidMiner, and Knime, etc.) 

that can consume Decision Tree models represented in PMML. To further validate the idea of 

using the KECM to support model deployment, the consumption of the model composition has 

also been partially implemented. To consume the internal Decision Tree model, a parser that can 

process the Decision Tree model in OWL has been developed using the OWLAPI; and a code 

generator that can automatically generate Java code based on the Decision Tree model has been 
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developed. Figure 5.27 shows a screenshot of the code generator. It proves that the developed 

KECM can be easily consumed by computational platforms. The accessibility of computational 

models is also enabled, which is required by Smart Manufacturing. The plug-and-play capability 

of the computational models has been partially achieved by the proposed KECM.  

 

Figure 5.27 Screenshot of the code generator in Netbeans 8 
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CHAPTER 6.  Utilization of the Knowledge Enriched Computational Model 

for Model Retrieval 

In this chapter, an application of utilizing the KECM for model retrieval is introduced. 

Through modeling rationales to formally describe computational models, a semantics-based 

approach can be applied to measure the similarity between the semantic descriptions of the 

candidate computational models and that of the model retrieval requirements. In this chapter, the 

study of retrieving dispatching rule models is presented. 

6.1 Introduction 

Today, with the increasing complexity of industrial systems, researchers and industrial users 

do not want to build their computational models of industrial systems from scratch. An 

alternative approach is to seek for pieces of existing models to build their models and build 

complex systems by combining smaller sub-models (Henkel et al., 2010). To facilitate model 

reuse, the retrieval of models, which decides for potentially suitable models from a large number 

of available computational models becomes an important activity. It is important to rank the 

computational models based on their relatedness to the requirements given by the model user. 

Before the computational models can be deployed in an SM system, the ranked models should be 

selected and possibly combined to fulfill the user’s requirements. Thus, a systematic approach to 

retrieve/select computational models and possibly combine models should be developed. In this 

chapter, a model retrieval and combination method, which conforms to the KECM, has been 

developed for retrieving dispatching rule models based on user-selected production objectives.  
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6.2 Model Retrieval with the Knowledge Enriched Computational Model 

 

Figure 6.1 Retrieving computational models with the Knowledge Enriched Computational 

Model 

Figure 6.1 presents a methodology to retrieve computational models with the proposed 

Knowledge Enriched Computational Model. To support model retrieval, rationales/rules are used 

to semantically describe the computational models. The model user, who intends to retrieve 

suitable models, provides the semantic description of the requirements for model retrieval. 

Through semantic similarity-based measurement, the semantic similarity values between the 

model retrieval requirements and the computational models can be calculated. If the similarity 

value is greater or equal to the threshold defined, the model can be selected. It is important to 
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note that the semantic description of the computational models and that of the model requirement 

should be defined in the similar fashion or structure. In this chapter, the study of retrieving 

dispatching rule models based on given production objectives is introduced.  

6.3 Model Retrieval and Combination for Dispatching Rule Models 

Literature about job shop scheduling, which studies how to appropriately allocate 

manufacturing resources to production tasks in traditional job shops, have been investigating 

better solutions for decades. Among various approaches (e.g., Branch and bound algorithm, 

meta-heuristics-based algorithms, and dispatching rules) used to solve the job shop scheduling 

problem, dispatching rules have been widely used in the industry. This is because they are easier 

to implement, and they yield reasonable solutions within a very short computational time. 

Normally, each one of the dispatching rules developed and utilized in today’s scheduling systems 

only targets at one fixed production objective. To overcome the limitation of pursuing just one 

objective, combinations of dispatching rules, which combine two or more dispatching rules 

together, have been developed. But the combinations of dispatching rules are still fixed towards 

certain objectives, since either a single rule or a combination of rules, is pre-set by the scheduler. 

Thus, a lot of research effort has been made on the selection of dispatching rules with respect to 

three or four production objectives (Geiger et al., 2006; El-Bouri and Shah, 2006; Azadeh et al., 

2012; Mouelhi-Chibani and Pierreval, 2010; Shiue, 2009; Baykasoglu et al., 2010; Scholz-Reiter 

et al., 2010; Heger et al., 2015; Chen et al., 2012; El-Bouri and Amin, 2015; Lin et al., 2008; 

Azadeh et al., 2015; Liu and Dong, 1996; Kızıl et al., 2006; Zhong et al., 2014; Shafiq et al., 
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2010; Joseph and Sridharan, 2011; Kashfi and Javadi, 2015).  

Recently, due to the highly competitive and globalized markets, manufacturers are facing the 

problem of constantly changing needs from a variety of customers. This requires manufacturers 

to acquire the ability to react fast and to adapt to the new customers’ requests. Facing different 

customers, a manufacturer may have to achieve two or three production objectives at the same 

time. In the meantime, they need to manage their production resources as efficiently as possible. 

In the context of dispatching rule selection, this means suitable dispatching rules/combinations 

need to be selected/constructed for a user selected production objective or a combination of 

production objectives, especially for a randomly selected combination of objectives. However, 

the current dispatching rule studies are not sufficient to solve this problem. The current 

simulation-based or machine learning-based approaches have difficulties when facing new 

combinations of the objectives. This is because that to select dispatching rules, both simulation 

and machine learning-based approaches need to (1) enumerate the candidate individual 

dispatching rules and the combinations of the dispatching rules, and (2) collect data from 

executing the simulation models or from real production scheduling cases, and then (3) analyzing 

the simulation results or training the predictive model. However, these processes always require 

a lot of time, which makes it difficult to face the constantly changing needs of the customers. 

A new approach that addresses the above-mentioned problems needs to be developed. In this 

dissertation, a novel semantics-based approach to retrieve a combination of dispatching rules 

given randomly selected combination of objectives has been proposed. Each of the dispatching 

rules and production objectives relates to a set of scheduling parameters like processing time, 
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remaining work, total work, job due date, operation due date, finish time, release date, tardiness, 

etc. These parameters are semantically interrelated. For example, tardiness is a quantity that 

measures the difference between a late job’s finish time and its due date. Given a production 

objective that minimizes the total tardiness, it is better to finish jobs before their due dates. So, 

any dispatching rule that is related to prioritize jobs or operations with early due dates should be 

preferred. For a more complex objective that minimizes tardiness penalty, parameters like job’s 

or operation’s due date, finish time and job’s late penalty should be considered at the same time. 

Here, there are 5 scheduling parameters in total (i.e. job due date, operation due date, job finish 

time, operation finish time, job’s late penalty) related to the production objective through an “and” 

or an “or” relationship. When multiple production objectives are selected, it is even more 

important to sort out the interrelationships of the scheduling parameters. By formally defining all 

the scheduling parameters using semantic terms, all the production objectives and dispatching 

rules can be transformed into semantic expressions. Further, by comparing the formal semantic 

expressions between a production objective and each of the dispatching rules, dispatching rules 

that are more semantically similar can be selected to construct a combination of dispatching rules. 

With this idea, the semantic similarity-based approach can be put forward as a solution to 

measure the semantic similarity between the semantic expression of the production objectives 

and that of the dispatching rules (Zhang and Roy, 2018).  

The semantics-based techniques originate from the exploration of the semantic web. 

Compared to the traditional web, the semantic web has enriched information (i.e. semantics) like 

class hierarchy, object properties, axioms, etc., which provides a formal description of concepts 
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and relationships within a given knowledge domain. Here, ontologies play a key role to define 

the precise vocabulary. A related technique - semantic similarity, which is also a measurement, 

defines the likeness between a set of concepts based on their semantic content, which is normally 

governed by an ontology (Harispe et al., 2017). In consideration of the dispatching rule selection 

problem, if the scheduling related concepts are formally defined in an ontology, semantic 

similarity technique can be applied to measure the similarity between a dispatching rule and a 

production objective (or a combination of production objectives). The similarity values can 

further be used for the selection of the suitable dispatching rules. 

6.4 Problem Formalization 

Each of the production objectives and the dispatching rules relates to one or more scheduling 

concepts, so a production objective (PO) and a dispatching rule (DR) can be represented as 

𝑃𝑂 ← 𝑓(𝑃1, 𝑃2, … , 𝑃𝑚) 

𝐷𝑅 ← 𝑓(𝑄1, 𝑄2, … , 𝑄𝑛) 

𝑃𝑥, 𝑄𝑦 ∈ {𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑖𝑛𝑔 𝐶𝑜𝑛𝑐𝑒𝑝𝑡𝑠} 

𝑥 ∈ 1,2, … ,𝑚; 𝑦 ∈ 1,2, … , 𝑛 

Where 𝑃𝑥  or 𝑄𝑦 represents a scheduling concept; and f represents the logical combination of all 

the 𝑃𝑥 that can describe a PO or a DR. The two basic logic combination types are AND and OR; 

and the combination can be mixed. Each concept 𝑃𝑥  or 𝑄𝑦 can be further described by other 

concepts in a similar fashion as 

𝑃𝑥 ← 𝑓(𝑅1, 𝑅2, … , 𝑅𝑚′) 
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𝑄𝑦 ← 𝑓(𝑆1, 𝑆2, … , 𝑆𝑛′) 

𝑅𝑥, 𝑆𝑦 ∈ {𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑖𝑛𝑔 𝐶𝑜𝑛𝑐𝑒𝑝𝑡𝑠} 

𝑥 ∈ 1,2, … ,𝑚′; 𝑦 ∈ 1,2, … , 𝑛′ 

Where 𝑅𝑥 or 𝑆𝑦 represents a scheduling concept that used to describe a 𝑃𝑥 or a 𝑄𝑦. Then the 

𝑅𝑥 or 𝑆𝑦 can also be further defined by other concepts until all the concepts are well described. 

Thus, a PO or a DR is described by a set of semantic terms. For example, a PO and a DR can be 

described as 

PO = 

{
 
 

 
 
𝑃𝑂 ← 𝑓(𝑃1, 𝑃2) 
𝑃1 ← 𝑓(𝑅1, 𝑅2)
𝑃2 ← 𝑓(𝑅3)
𝑅1 ← 𝑓(𝑇1, 𝑇2)
𝑅2 ← 𝑓(𝑇3)

𝑅3 ← 𝑓(𝑇4, 𝑇5, 𝑇6)}
 
 

 
 

  DR = {

𝐷𝑅 ← 𝑓(𝑄1) 
𝑄1 ← 𝑓(𝑆1, 𝑆2)
𝑆1 ← 𝑓(𝑈1, 𝑈2)
𝑆2 ← 𝑓(𝑈3)

} 

Where all the 𝑇s and 𝑈s are the concepts do not need to be further described.  

By formally capturing the scheduling concepts that are included in the above logical 

expressions, a semantic similarity between two single concepts can be directly calculated. Then 

the semantic similarity between a PO and a DR can be further evaluated by calculating the 

similarities between their semantic expressions. In order to identify the concepts, this paper 

proposes an extended Sustainable Manufacturing Ontology which captures the scheduling related 

concepts and relationships. Then the semantic expressions of all the production objectives and 

the dispatching rules can be presented using the semantic terms identified in the ontology. A tree 

matching based algorithm is proposed next to calculate the semantic similarity between the set of 

logical expressions of a PO and that of a DR. Finally, a way of generating the proper dispatching 

rule for a given production objective is described. 
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6.5 A Semantics-based Methodology for Dispatching Rule Selection 

  

Figure 6.2 The semantics-based methodology for dispatching rule selection 

Figure 6.2 demonstrates the proposed semantics-based methodology to solve the dispatching 

rule selection problem. The framework has the selected production objectives from the user as 

system inputs and a single dispatching rule/combination of dispatching rules which can be used 

directly in the job shop scheduling as an output. The proposed system includes four parts: (1) an 

ontology, (2) the semantic expressions of the production objectives and the dispatching rules, (3) 

a semantic similarity based dispatching rule ranking system, and (4) a generator to construct a 

combination of dispatching rules. The ontology defines basic manufacturing concepts, 

scheduling concepts and the relationship between concepts. The semantic expression of each 

production objective or each dispatching rule is defined using the concepts from the ontology. So, 



111 

 

 

this ontology serves as a concept repository to provide the semantic expressions of the 

production objectives and the dispatching rules with basic semantic terms. After the production 

objectives (one or more) have been selected by the user, all the dispatching rules will be ranked 

based on the semantic similarity values obtained by comparing the semantic expressions between 

the combination of the production objectives and each dispatching rule. The similarity values 

obtained will then be used to calculate the weights for each single dispatching rule to generate 

the final dispatching rule combination. The detailed descriptions about each part will be provided 

in the following sections. 

This methodology conforms to the overall knowledge integration framework. All the 

semantic expressions for the dispatching rules and the production objectives can be captured into 

the rationales/rules in the overall framework. These rationales/rules that describe the domain 

meanings of the dispatching rules and the production objectives can be defined during model 

development. The underlying ontology that needed by the proposed semantics-based approach is 

the information model(s) that captured by the overall framework.  

6.5.1 Sustainable Manufacturing Ontology 

This section introduces the ontology that defines all the scheduling related concepts and their 

relations. The proposed ontology is based on one earlier work reported in Zhang et al. (2015). 

The earlier information model has been extended to include information that relates to job shop 

scheduling. Figure 6.3 presents a UML Class Diagram that represents the extended Sustainable 

Manufacturing Ontology. Concepts represented in black boxes are defined in the original 
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information model. The concepts represented in blue boxes are the extended concepts with 

respect to job shop scheduling domain. A concept has been added to the SMO: 

AdministrativeEntity. This concept represents an abstract entity of all the administrative concepts. 

Figure 6.4 expands the AdministrativeEntity concept into a hierarchical tree. 

 

Figure 6.3 UML class diagram for the extended Sustainable Manufacturing Ontology (SMO) 

 For more information about the SMO, please refer to section 4.4.1.  
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Figure 6.4 Hierarchical tree for AdministrativeEntity 

6.5.2 Semantic Expressions of Production Objectives and Dispatching Rules 

After the ontology has been introduced, the semantic expressions of the production 

objectives and the dispatching rules are presented in this section. In this work, we have studied 

and explored the semantic expressions for 10 production objectives and 16 dispatching rules. 
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These semantic expressions are written in the Manchester OWL Syntax (W3C Working Group, 

2012). 

The semantic expressions for the production objectives are listed below. 

• Maximize Fairness     ProductionObjective  

and (relatesTo some (Job  

and (hasTime some (JobReleaseDate  

and (hasAttr only Early))))) 

• Minimize Response Time   ProductionObjective 

and (relatesTo some (Job 

and (hasTime some (JobReleaseDate 

and (hasAttr only Late))))) 

• Maximize Priority Conformity   ProductionObjective 

and (relatesTo some (Job 

and (hasWeight some (JobWeight 

and (hasAttr only High))))) 

• Minimize Waiting Time Variance  ProductionObjective 

and (relatesTo some (Operation 

and (hasTime some (OperationWaitingTime 

and (hasAttr only Long))))) 

• Maximize Throughput    ProductionObjective 

and (relatesTo some (Operation 

and (hasTime some (OperationProcessingTime 

and (hasAttr only Short))))) 

• Minimize Tardiness     ProductionObjective 

and ((relatesTo some (Job 

and (hasTime some (JobDueDate 

and (hasAttr only Early))) 

or (relatesTo some (Operation 

and (hasTime some (OperationDueDate 

and (hasAttr only Early)))))) 
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• Minimize Job Lateness Variance  ProductionObjective 

and (relatesTo some (Operation 

and (hasTime some (OperationDueDate 

and (hasAttr only Early))))) 

• Minimize Setup Time     ProductionObjective 

and (relatesTo some (Operation 

and (hasTime some (OperationSetupTime 

and (hasAttr only Short))))) 

• Minimize Tardiness Penalty   ProductionObjective 

             and ((relatesTo some (Job 

and ((hasPenalty some (TardinessPenalty 

and (hasAttr only More))) 

or (hasTime some (JobDueDate 

and (hasAttr only Early)))))) 

or (relatesTo some (Operation 

and (hasTime some (OperationDueDate 

and (hasAttr only Early)))))) 

• Minimize Makespan    ProductionObjective 

and (relatesTo some (Job 

and ((hasTime some (JobRemainingWork 

and (hasAttr only Long))) 

or (hasTime some (NumberOfRemainingOperations 

and (hasAttr only More)))))) 

The semantic expressions for the dispatching rules are listed below. 

• 1/C      DispatchingRule 

(C: Tardiness penalty)    and (prioritizes some (Job 

and ((hasPenalty some (TardinessPenalty 

and (hasAttr only More))) 

or (hasTime some (JobDueDate 

and (hasAttr only Early)))))) 

 

 

 



116 

 

 

• EDD      DispatchingRule 

(Earliest Due Date)     and (prioritizes some (Job 

and (hasTime some (JobDueDate 

and (hasAttr only Early))) 

and (hasTime some (JobRemainingWork 

and (hasAttr only Long))))) 

• MST      DispatchingRule  

(Minimum Slack Time)   and (prioritizes some (Job 

and (hasTime some (JobDueDate 

and (hasAttr only Early))) 

and (hasTime some (JobReleaseDate 

and (hasAttr only Late))) 

and (hasTime some (JobRemainingWork 

and (hasAttr only Long))))) 

• OSL      DispatchingRule 

(Operation Slack)      and (prioritizes some (Operation 

and (hasTime some (OperationDueDate 

and (hasAttr only Early))) 

and (hasTime some (OperationProcessingTime 

and (hasAttr only Long))) 

and (hasTime some (OperationReleaseDate 

and (hasAttr only Late))))) 

• FCFS       DispatchingRule 

(First Come First Serve)     and (prioritizes some (Job 

and (hasTime some (JobReleaseDate 

and (hasAttr only Early))))) 

• MWKR       DispatchingRule 

(Most Work Remaing)     and (prioritizes some (Job 

and (hasTime some (JobRemainingWork 

and (hasAttr only Long))))) 

• FOPNR      DispatchingRule 

(Fewest Operation     and (prioritizes some (Job 

Number Remaining)    and (hasNumber some (NumberOfRemainingOperations 

and (hasAttr only Less))))) 
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• ODD      DispatchingRule 

(Operation Due Date)     and (prioritizes some (Operation 

and (hasTime some (OperationDueDate 

and (hasAttr only Early))))) 

• LCFS      DispatchingRule 

(Last Come First Serve)    and (prioritizes some (Job  

and (hasTime some (JobReleaseDate 

and (hasAttr only Late))))) 

• MOPNR     DispatchingRule 

(Most Operation      and (prioritizes some (Job 

Number Remaining)    and (hasNumber some (NumberOfRemainingOperations 

and (hasAttr only More))))) 

• LPT       DispatchingRule 

(Longest Processing Time)   and (prioritizes some (Operation 

and (hasTime some (OperationProcessingTime 

and (hasAttr only Long))))) 

• SPT       DispatchingRule 

(Shortest Processing Time)   and (prioritizes some (Operation 

and (hasTime some (OperationProcessingTime 

and (hasAttr only Short))))) 

• LWKR      DispatchingRule  

(Least Work Remaining)    and (prioritizes some (Job 

and (hasTime some (JobRemainingWork 

and (hasAttr only Short))))) 

• SST       DispatchingRule 

(Shortest Setup Time)     and (prioritizes some (Operation 

and (hasTime some (OperationSetupTime 

and (hasAttr only Short))))) 

• LWT      DispatchingRule 

(Longest Waiting Time)    and (prioritizes some (Operation 

and (hasTime some (OperationWaitingTime 

and (hasAttr only Long))))) 
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• W       DispatchingRule 

(Weight)        and (prioritizes some (Job 

and (hasWeight some (JobWeight 

and (hasAttr only High))))) 

The semantic expression of each production objective is created based on its related 

scheduling parameters to best describe the objective. The descriptions of each production 

objective are given as follows: 

• Maximize Fairness: In the absence of guidance from the user or other performance related 

guidance, all the jobs should be treated equally, which means jobs should be sequenced in a “first 

come first serve” order; 

• Maximize Priority Conformity: When the priorities of jobs are assigned, scheduling should 

favor the jobs with higher priority; 

• Maximize Throughput: Maximizing the number of finished operations for a given length of 

time; 

• Minimize Job Lateness Variance: Balance the lateness of all the jobs. The case of finishing 

some jobs early but having several very late jobs is not preferred. 

• Minimize the Makespan: Minimizing the total time length of the schedule; 

• Minimize Tardiness: Minimizing the tardiness of jobs by focusing on the due dates; 

• Minimize Response Time: The scheduling discipline should attempt to achieve low response 

time by processing the newly released jobs as soon as possible; 

• Minimize Setup Time: Focusing on minimizing the setup time; 

• Minimize Tardiness Penalty: Considering due dates and the tardiness penalty in scheduling; 
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• Minimize Waiting Time Variance: Waiting should be fair too. Minimizing the difference 

between the operation waiting time. 

The semantic expression of each dispatching rule is, however, described based on how the 

dispatching rule should be applied in scheduling. The detailed discussion about each dispatching 

rule can be found in Panwalkar and Iskander (1977) and Haupt (1989).  

When multiple production objectives are selected, the semantic expression should be 

constructed by combining the semantic expression of each individual objective through an “and” 

relationship. As an example, the semantic expression of combining the “Maximize fairness” 

objective and the “Minimize Tardiness Penalty” objective is presented below. 

• Maximize Fairness    ProductionObjective 

+ Minimize Tardiness Penalty   and ((relatesTo some (Job 

and (hasTime some (JobReleaseDate 

and (hasAttr only Early))))) 

and ((relatesTo some (Job 

and ((hasPenalty some (TardinessPenalty 

and (hasAttr only More))) 

or (hasTime some (JobDueDate 

and (hasAttr only Early)))))) 

or (relatesTo some (Operation 

and (hasTime some (OperationDueDate 

and (hasAttr only Early))))))) 

6.5.3 Semantic Similarity Measurement 

With the semantic definitions of all the production objectives and dispatching rules, semantic 

similarity measurement can then be carried out to calculate the similarity between the 

user-selected production objectives (one or more) and each of the dispatching rules. In order to 

do this, a tree structure of the semantic expression will be discussed; a tree matching based 
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algorithm and a semantic similarity measurement are introduced in this section. The semantic 

similarity values (output of the measurement) can then be used for generating the combination of 

dispatching rules. 

6.5.3.1 The Tree Structure of The Semantic Expressions 

 

Figure 6.5 Tree structure for the “Minimize Tardiness Penalty” objective 

The semantic expression of each production objective or dispatching rule written in the 

Manchester OWL syntax forms a tree structure: each concept can be represented as a node; each 

relationship can be represented as an edge, and the relationships between all the edges leaving 

from the same node are represented as the “and/or” relationships. Figure 6.5 presents the tree 

structures for a single objective “Minimize the Tardiness Penalty” and Figure 6.6 presents the 

structure of a combined objective “Maximize Fairness + Minimize Tardiness Penalty”. So, the 

comparison between the semantic expressions can be transformed to the comparison between the 

two trees which contain the semantic nodes. Next section illustrates a tree matching based 
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algorithm for measuring semantic similarity. 

 

Figure 6.6 Tree structure for a combined “Minimize Tardiness Penalty” and “Maximize Fairness” 

objective 

6.5.3.2 Tree Matching Based Algorithm for Semantic Similarity 

A tree matching based algorithm has been developed to calculate the semantic similarity 

between a dispatching rule tree and a production objective tree. The algorithm starts from the 

roots of the two trees. The nodes from a dispatching rule’s tree are compared with the nodes from 

a production objective’s tree from the top layer to the bottom layer. All the trees have three layers 

from top to bottom: (1) a dispatching rule/production objective layer, (2) a job/operation layer, (3) 

a scheduling parameters layer and (4) an attributes layer. The similarity between the two whole 

trees can then be calculated by summing up the similarities of all the layers. However, the 

similarities of different layers should not have the same weight. A similarity between two 

concepts which have higher positions on the tree should have larger weights than the ones have 



122 

 

 

lower positions. The reason is that the concepts in the upper layers are more general and are 

more important than the ones in the lower layers. On the contrary, concepts in the lower layers 

include more specific and detailed information so that they have less influence on the similarity 

measurement. So, based on this idea, the weight of different layers has been developed as 

follows: 

𝜇𝑙 =

1
𝑑𝑒𝑝𝑡ℎ(𝑙) + 1

1
𝑑𝑒𝑝𝑡ℎ(𝑙0) + 1

+
1

𝑑𝑒𝑝𝑡ℎ(𝑙1) + 1
+⋯+

1
𝑑𝑒𝑝𝑡ℎ(𝑙𝑘) + 1

 

Where l represents the current layer, 𝑑𝑒𝑝𝑡ℎ(𝑙) is the depth of the lth layer in the tree. 𝑙0 is 

the root layer which has 𝑑𝑒𝑝𝑡ℎ(𝑙0) = 0. 𝑙𝑘 is the deepest layer. The increment of the depth 

between each two layers is 1. It can be observed that 𝜇(𝑙0) + 𝜇(𝑙1) + ⋯+ 𝜇(𝑙𝑘) = 1. The final 

similarity between the two trees will then be given by 

𝑠𝑖𝑚𝑓𝑖𝑛𝑎𝑙 = 𝜇1 × 𝑠𝑖𝑚𝑙1 + 𝜇2 × 𝑠𝑖𝑚𝑙2 +⋯+ 𝜇𝑘 × 𝑠𝑖𝑚𝑙𝑘 

Where 𝑠𝑖𝑚𝑙𝑥 is the similarity value of layer x. 

When the algorithm traverses the trees, not all the branches will be visited. For the edges 

leaving from the same node, if their relationship is an “and”, then all these edges will be visited; 

if their relationship is an “or”, then only one edge will be visited (The edge which has the highest 

similarity valued ending node will be visited). Figure 6.7 shows an example of the tree traversal 

strategy. Next section will present the detail of how to calculate the semantic similarity within a 

layer. 
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Figure 6.7 Tree traversal strategy 

 

function calculateSemanticSimilarity { 

 sim = 0; 

 maxDepth = getMaxDepth(ruleTree); 

 for (i = 0; i < depth of the dispatching rule tree; i++) { 

  layerWeight = calculateLayerWeight(i, maxDepth); 

  layerSim = calculateLayerSimilarity(ruleTree, ObjTree, i); 

  if layerSim >= threshold { 

   sim = sim + layerWeight * layerSim; 

  } else { 

   Break;} 

 } 

return sim;} 

Figure 6.8 Pseudo codes for the calculateSemanticSimilarity function 

Table 6.1 Threshold values 

Number of Objectives Combined Threshold Values 

1 0.8 

2 0.7 

3 0.5 
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function calculateLayerSimilarity(ruleTree, ObjTree, depth) { 

layerSim = 0; 

objNodeList = objTree.getVisitNodesInLayer(depth); 

ruleNodeList = ruleTree.getVisitNodesInLayer(depth); 

if size of objNodeList >= size of ruleNodeList { 

for objNode in objNodeList { 

simMax = 0; 

for ruleNode in ruleNodeList { 

nodeSim = calculateNodeSimilarity(objNode, ruleNode); 

if (nodeSim > simMax) { 

simMax = simNode; } 

} layerSim = layerSim + simMax/size of objNodeList; } 

} else { 

for ruleNode in ruleNodeList { 

simMax = 0; 

for objNode in objNodeList { 

nodeSim = calculateNodeSimilarity(objNode, ruleNode); 

if (nodeSim > simMax) { 

simMax = simNode; } 

} layerSim = layerSim + simMax/size of ruleNodeList; 

} 

} Return layerSim; 

} 

Figure 6.9 Pseudo codes for the calculateLayerSimilarity function 
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The traversal of the trees will stop either when it reaches the bottom layer, or the similarity 

value of a certain layer is too low so that there is no necessity to go to the next layer. Threshold 

values have been defined to govern the stop of the traverse. The thresholds are configured with a 

sensitivity analysis of the semantic similarity values (will be discussed in section 6.6.3). The 

definition of the threshold relates to the number of the objectives combined. When more 

objectives are combined, the semantic measure in a certain layer includes more concepts, which 

can lead to lower semantic similarity value. So, the threshold value is lower when more 

objectives are combined. The threshold values are shown in Table 6.1. If the semantic similarity 

value falls below the threshold, the tree traversal will be stopped. 

The pseudo code of the tree matching algorithm is provided in Figure 6.8 and Figure 6.9 to 

illustrate the process. In the pseudo code, the getMaxDepth function calculates the maximum 

depth of the trees. The calculateLayerWeight function calculates the layer weight based on the 

equation given above. The function calculateNodeSimilarity is described in the next section. 

6.5.3.3 Tree-based Semantic Similarity Measurement 

The semantic similarity measurement between the nodes in one layer is presented in Table 

6.2. The semantic similarity between every two nodes is calculated based on the similarity of 

their children nodes. The 𝑠𝑖𝑚(𝑃, 𝑄) in the table represents the semantic similarity between the 

two concepts P and Q. It is a value that ranges from 0 to 1, in which 0 means the two concepts 

are totally different concepts and 1 means they are the same concept. In this paper, the similarity 

measurement between every two nodes is achieved through an edge-based semantic similarity 
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measurement proposed by Wu and Palmer (1994).  

Table 6.2 Semantic similarity within a layer 

Relation Graph Presentation Semantic Similarity Measurement 

None - 

any 

 

𝑠𝑖𝑚𝑛𝑜𝑛𝑒(𝑃, 𝑄) = 0  

or - or 

 

𝑠𝑖𝑚𝑜𝑟𝑜𝑟(𝑃, 𝑄) =

𝑀𝑎𝑥

{
 
 

 
 𝑠𝑖𝑚

(𝑃1, 𝑄1), 𝑠𝑖𝑚(𝑃1, 𝑄2),… , 𝑠𝑖𝑚(𝑃1, 𝑄𝑛),

𝑠𝑖𝑚(𝑃2, 𝑄1), 𝑠𝑖𝑚(𝑃2, 𝑄2),… , 𝑠𝑖𝑚(𝑃2, 𝑄𝑛),…
…

𝑠𝑖𝑚(𝑃𝑚, 𝑄1), 𝑠𝑖𝑚(𝑃𝑚, 𝑄2), … , 𝑠𝑖𝑚(𝑃𝑚, 𝑄𝑛)}
 
 

 
 

  

or - and 

 

𝑠𝑖𝑚𝑜𝑟𝑎𝑛𝑑(𝑃, 𝑄)

= 𝑀𝑎𝑥 {
𝑠𝑖𝑚𝑜𝑛𝑙𝑦𝑎𝑛𝑑(𝑃1, 𝑄), 𝑠𝑖𝑚𝑜𝑛𝑙𝑦𝑎𝑛𝑑(𝑃2, 𝑄), …

… , 𝑠𝑖𝑚𝑜𝑛𝑙𝑦𝑎𝑛𝑑(𝑃𝑚, 𝑄)
} 

and - and 

 

If m > n, 

𝑠𝑖𝑚andand(𝑃, 𝑄)  

=

𝑀𝑎𝑥{𝑠𝑖𝑚(𝑃1, 𝑄1) + 𝑠𝑖𝑚(𝑃1, 𝑄2) + ⋯+ 𝑠𝑖𝑚(𝑃1, 𝑄𝑛)} +

𝑀𝑎𝑥{𝑠𝑖𝑚(𝑃2, 𝑄1) + 𝑠𝑖𝑚(𝑃2, 𝑄2) + ⋯+ 𝑠𝑖𝑚(𝑃2, 𝑄𝑛)} +
…

𝑀𝑎𝑥{𝑠𝑖𝑚(𝑃𝑚, 𝑄1) + 𝑠𝑖𝑚(𝑃𝑚, 𝑄2) + ⋯+ 𝑠𝑖𝑚(𝑃𝑚, 𝑄𝑛)}

𝑚
 

Else, 

𝑠𝑖𝑚andand(𝑃, 𝑄)

=  

𝑀𝑎𝑥{𝑠𝑖𝑚(𝑄1, 𝑃1) + 𝑠𝑖𝑚(𝑄1, 𝑃2) + ⋯+ 𝑠𝑖𝑚(𝑄1, 𝑃𝑛)} +

𝑀𝑎𝑥{𝑠𝑖𝑚(𝑄2, 𝑃1) + 𝑠𝑖𝑚(𝑄2, 𝑃2) + ⋯+ 𝑠𝑖𝑚(𝑄2, 𝑃𝑛)} +
…

𝑀𝑎𝑥{𝑠𝑖𝑚(𝑄𝑚, 𝑃1) + 𝑠𝑖𝑚(𝑄𝑚, 𝑃2) + ⋯+ 𝑠𝑖𝑚(𝑄𝑚, 𝑃𝑛)}

𝑛
 

 

P

Q1

Q

or, and

P1

P

P2 ...

or

Pm Q1

Q

Q2 ...

or

Qn

P1

P

P2 ...

or

Pm Q1

Q

Q2 ...

and

Qn

P1

P

P2 ...

and

Pm Q1

Q

Q2 ...

and

Qn
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The Wu and Palmer’s measurement is utilized to calculate the semantic similarity between 

the two concepts on the extended Sustainable Manufacturing Ontology’s taxonomy hierarchy. 

Wu and Palmer’s method considered the position relation of two concepts P and Q to their 

nearest common ancestor C to calculate similarity. Here, C is located at the lowest position on 

the ontology hierarchy among all the common ancestors of P and Q. The mathematical formula 

for calculating the similarity between P and Q is given by 

𝑠𝑖𝑚(𝑃, 𝑄) =  
2𝐻

𝐷𝑝 + 𝐷𝑞 + 2𝐻
 

where 𝐷𝑝  and 𝐷𝑞  are the minimum edge (is-a edge) counts from P to C and Q to C 

respectively. H is the minimum edge count from C to the root node of the ontology.  

6.5.4 Combination of Dispatching Rules Generation 

Once the semantic similarity between the user-selected production objectives and each of the 

dispatching rules have been calculated, dispatching rules that have higher similarity values will 

be selected for generating the combination of dispatching rules. This combination of dispatching 

rules can then be used directly in job shop scheduling. Dispatching rules with the similarity 

values greater than a threshold will be selected. This threshold is defined as same as the threshold 

for traversing the tree (Table 6.1). Then the combination of dispatching rules can be formed as 

follows: 

𝑓 = 𝜌1𝑅𝑎𝑛𝑘(𝑟𝑢𝑙𝑒1) + 𝜌2𝑅𝑎𝑛𝑘(𝑟𝑢𝑙𝑒2) + ⋯+ 𝜌𝑢𝑅𝑎𝑛𝑘(𝑟𝑢𝑙𝑒𝑢) 

𝜌𝑖 =
𝑠𝑖𝑚𝑖

𝑠𝑖𝑚1 + 𝑠𝑖𝑚2 +⋯+ 𝑠𝑖𝑚𝑢
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Where f represents the ranking value of a job; the smaller this value is, the more priority this job 

has. 𝑅𝑎𝑛𝑘(𝑟𝑢𝑙𝑒𝑖) returns a ranking value of the job according to the priority value given by 

𝑟𝑢𝑙𝑒𝑖. 𝜌𝑖 is the coefficient associated with each dispatching rule. A dispatching rule that has 

higher similarity value has higher 𝜌𝑖 value. 

6.6 Verification and Results 

As a proof-of-concept, this section provides a verification of the proposed semantics based 

dispatching rule selection approach. The implementation has been developed and the dispatching 

rule selection results of the implementation have been compared to their performances from 

simulation. The next two sections give a brief introduction to the implementation of the proposed 

approach and the simulation-based experiment. 

6.6.1 Implementation 

Figure 6.10 demonstrates the architecture of the implementation. Figure 6.11 shows the 

screenshot of the implemented extend Sustainable Manufacturing Ontology in protégé (BMIR, 

2018) The proposed semantic expressions of the dispatching rules and production objectives are 

implemented as an “Equivalent To” class in protégé. Apache Jena (2018), which is an open 

source Java framework for semantic web related applications, has been used to access the OWL 

file generated from protégé. The application of semantics-based dispatching rule selection 

including the semantic similarity measurement and generation of the combination of dispatching 

rules is programmed in Java on top of Apache Jena. 
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Figure 6.10 Architecture of the implementation 

 

Figure 6.11 Implementation of the Sustainable Manufacturing Ontology and the implemented 

semantic expressions 
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6.6.2 Simulation-Based Experiment 

A simulation program for dispatching rule-based scheduling has been developed to test the 

performance of the selected dispatching rules. Job shop scheduling problems with 8 machines 

and 50 jobs are randomly generated. Wilbrecht and Prescott (1969) have demonstrated that 6 

machines were adequate to represent the complex structure of a job shop. The number of 

operations for each job is uniformly distributed between 1 and 8. The processing times are drawn 

from a uniform distribution between 3 and 10. The release date is uniformly distributed between 

0 to 100. The due dates of jobs are assigned based on the method of total work-content (TWK) 

(Blackstone et al., 1982). In this study, the due date of a job is set at 5 times of a random number 

which is between its TWK and 3 times of its TWK. The due date setting can be represented 

formally as follows: 

Di = Ri + 5 × 𝑟𝑎𝑛𝑑𝑜𝑚(𝑇𝑊𝐾, 3 × 𝑇𝑊𝐾) 

where 𝑅𝑖 is the release date. By assigning due dates according to the random number generated 

from total work-content, the original strong connect between the release date and the due date in 

Wilbrecht and Prescott’s work can be eliminated. This simulation has 50 replications and each 

replication has 50000 Monte Carlo trials. The measurement of the performances for the selected 

10 production objectives is summarized in Table 6.3.  
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Table 6.3 Performance measures used in the experiment 

Performance 

Name 
Performance Measurement 

Fairness ∑
|𝑗𝑜𝑏𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑂𝑟𝑑𝑒𝑟𝐼𝑛𝑑𝑒𝑥𝑖  −  𝑗𝑜𝑏𝑆𝑡𝑎𝑟𝑡𝑂𝑟𝑑𝑒𝑟𝐼𝑛𝑑𝑒𝑥𝑖|

𝑛

𝑛

𝑖=1

 

Priority 

Conformity 
∑

|𝑗𝑜𝑏𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑖 −  𝑗𝑜𝑏𝑆𝑡𝑎𝑟𝑡𝑂𝑟𝑑𝑒𝑟𝐼𝑛𝑑𝑒𝑥𝑖|

𝑛

𝑛

𝑖=1

 

Job Lateness 

Variance 
∑

(𝑗𝑜𝑏𝐷𝑢𝑒𝐷𝑎𝑡𝑒𝑖 − 𝑗𝑜𝑏𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒𝑖 − ∑
𝑗𝑜𝑏𝐷𝑢𝑒𝐷𝑎𝑡𝑒𝑖 − 𝑗𝑜𝑏𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒𝑖

𝑛
𝑛
𝑖=1 )2

𝑛

𝑛

𝑖=1

 

Makespan 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒𝑂𝑓𝐿𝑎𝑠𝑡𝐹𝑖𝑛𝑖𝑠ℎ𝑒𝑑𝐽𝑜𝑏 − 𝑠𝑡𝑎𝑟𝑡𝑇𝑖𝑚𝑒𝑂𝑓𝐹𝑖𝑟𝑠𝑡𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑑𝐽𝑜𝑏 

Maximum 

Tardiness 
𝑀𝑎𝑥 {

𝑀𝑎𝑥{0, |𝑗𝑜𝑏𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒1 − 𝑗𝑜𝑏𝐷𝑢𝑒𝐷𝑎𝑡𝑒1|}

𝑀𝑎𝑥{0, |𝑗𝑜𝑏𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒2 − 𝑗𝑜𝑏𝐷𝑢𝑒𝐷𝑎𝑡𝑒2|}…
𝑀𝑎𝑥{0, |𝑗𝑜𝑏𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒𝑚 − 𝑗𝑜𝑏𝐷𝑢𝑒𝐷𝑎𝑡𝑒𝑚|}

} 

Mean Respond 

Time 
∑

𝑗𝑜𝑏𝑆𝑡𝑎𝑟𝑡𝑇𝑖𝑚𝑒𝑖 − 𝑗𝑜𝑏𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝐷𝑎𝑡𝑒𝑖
𝑛

𝑛

𝑖=1

 

Mean Setup 

Time 
∑

𝑗𝑜𝑏𝑆𝑒𝑡𝑢𝑝𝑇𝑖𝑚𝑒𝑖
𝑛

𝑛

𝑖=1

 

Waiting Time 

Variance 
∑

(𝑗𝑜𝑏𝑊𝑎𝑖𝑡𝑖𝑛𝑔𝑇𝑖𝑚𝑒𝑖  − ∑
𝑗𝑜𝑏𝑊𝑎𝑖𝑡𝑖𝑛𝑔𝑇𝑖𝑚𝑒𝑖

𝑛
𝑛
𝑖=1 )2

𝑛

𝑛

𝑖=1

 

 

The performance measurements are all designed to have a lower value for better 

performances so that the performance measurements can be easily combined. Additionally, all 

the performance measurement values are rounded to between 0 and 1. This is because when the 

combined objectives are used, the performance measures from different objectives should have 

the same scale. The explanation of each performance measure is narrated below. 

• Fairness: defined for identifying the FCFS rule. It measures the average differences 
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between the release order number and the start order number of jobs. 

• Priority conformity: defined for identifying the W (weight) rule. It measures the 

average differences between the jobs’ priority value (or weight) and their start order number. 

• Job lateness variance: defined for identifying the ODD rule. It measures the 

variance of the jobs’ lateness. 

• Makespan: defined for identifying the MWKR rule and the MOPNR rule. It 

measures the difference between the start time of the first release job and the completion 

time of the last finished job. 

• Maximum Tardiness: defined for identifying the EDD rule and the ODD rule. It 

measures maximum tardiness of all jobs. 

• Mean respond time: defined for identifying the LCFS rule. It measures the mean 

difference between the jobs’ start time and release time. 

• Mean setup time: defined for identifying the SST rule. It measures the mean setup 

time for all the jobs. 

• Waiting time variance: defined for identifying the LWT rule. It measures the 

waiting time variance among all jobs. 

6.6.3 Sensitivity Analysis to Configure the Threshold 

To configure the threshold values for controlling the tree traversal algorithm, sensitivity 

analysis has been carried out to test the semantic similarities for different threshold values. The 

sensitivity analysis tested all the production objectives against each one of the dispatching rules. 
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The combinations of two individual objectives and the combinations of three individual 

objectives are also tested. The threshold values tested are selected between 0.1 and 1.1. 

According to the simulation-based dispatching rule selection results, the threshold can be 

configured so that the better rules can be selected. Table 6.4 shows the results for dispatching 

rule selection with one production objective with the simulation results. For simplicity, Table 6.5 

only shows the semantics-based dispatching rule selection results. In Table 6.4, the first line for 

each production objective represents the simulation results (i.e. performances listed in Table 6.3) 

and the second line shows the semantic similarity values and the selection of dispatching rules 

(shown in bold). From the simulation results captured in the first lines of each objective, the best 

dispatching rule can be identified. Based on the simulation results, the threshold values can be 

defined.  

For example, a sensitivity analysis for the combination of the “Maximize Fairness” objective 

and the “Minimize Makespan” objective is shown in Figure 6.12. For this combined objective, 

the FCFS, the MWKR, and the MOPNR rules have relatively higher semantic similarity values. 

According to the simulation results with one objective shown in Table 6.4, the FCFS rule has 

good performance for the “Maximize Fairness” objective. The MWKR rule and the MOPNR rule 

have good performances for the “Minimize Makespan” objective. Therefore, the threshold 

should be defined so that only these three rules can be selected. In this case, the threshold value 

selected is 0.7. The same process is repeated for all other combinations of the objectives. 
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Figure 6.12 Sensitivity analysis to configure the thresholds 

6.6.4 Results 

As mentioned, the dispatching rule selection results for one objective are shown in Table 6.4. 

The performances of the combination of dispatching rules are also tested. Using the combined 

“Maximize Fairness” and the “Minimize Makespan” objective as an example, Figure 6.13 shows 

the performances of each individual dispatching rules and the combined rule. Based on the 

semantic similarity values listed in Table 6.5, the combination of the dispatching rule is  

𝑓 = 0.334𝑟𝑎𝑛𝑘(𝐹𝐶𝐹𝑆) + 0.332𝑟𝑎𝑛𝑘(𝑀𝑂𝑃𝑁𝑅) + 0.334𝑟𝑎𝑛𝑘(𝑀𝑊𝐾𝑅) 

It can be observed from the simulation results in Figure 6.13, the combination of the dispatching 

rule has better performance than the individual rules.  
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Figure 6.13 Simulation results for the combination of the “Maximize Fairness” and the 

“Minimize Makespan” objectives 
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CHAPTER 7.  Conclusion 

In this chapter, the conclusion of this dissertation is presented. The research work presented 

in this dissertation is first summarized. Then the research contributions of this dissertation are 

described. Finally, the limitation of the research work is discussed. 

7.1 Summary 

Smart Manufacturing (SM) has become a new production paradigm that is pursued by both 

industry and academia. It requires to develop standardized models to enable the accessibility and 

availability of computational models to a wide range of industrial users. It also requires 

computational models to be smoothly integrated with enterprise-wide data and to be properly 

incorporated human knowledge for efficient decision-making.  

To achieve this, it is crucial to develop a method to support the lifecycle activities of 

computational models like model development, deployment, and retrieval. However, the current 

standardized computational models can only capture the computational models, and they do not 

capture the corresponding domain knowledge that can support their lifecycle activities. The lack 

of interoperability and traceability of domain knowledge in standardized computational models 

greatly limits the lifecycle activities of computational models by industrial users. The major 

reason is that the lack of formally represented knowledge in standardized computational models 

makes the development, deployment, and retrieval of computational models difficult for software 

tools to carry out automatically and it leaves these lifecycle activities to manual work. 

This dissertation proposes a Knowledge Enriched Computational Model (KECM) to 
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formally capture domain knowledge and integrate that knowledge with standardized 

computational models to support lifecycle activities of computational models. In this model, the 

domain knowledge is captured into information model(s), physics-based model(s) and 

rationales/rules. The information model(s) can be used to explicitly express the domain meaning 

of a computational model’s entities. The physics-based model(s) can capture the physics or 

behavioral information of an SM system. The rationales/rules can be used to describe the 

rationality of a computational model and to guide the lifecycle activities of computational 

models. Semantic links are used to connect these models to the standardized computational 

model. To implement the KECM, text-based information interchange languages like XML, 

JSON, and OWL can be used.  

To support the development of computational models in distributed environments, the 

KECM is used as a medium to support formal communication between model developers. Each 

model developer can update a computational model and add the corresponding knowledge. A 

case study scenario, which developed a Bayesian Network (BN) model, has been used to validate 

the proposed method. A KECM model has been developed to support the information exchange 

between domain experts and data analysts. Due to the BN model and the knowledge used to 

develop the BN being formally represented, automation of the BN construction has been enabled. 

The BN can also be extracted by developed parsers for further learning and testing. The 

utilization of the proposed KECM has reduced the cycle time for the development of the BN and 

it can eliminate human errors. 

This dissertation has discussed two perspectives of model deployment. The first perspective 
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discusses the data integration between a computational model and an SM system using the 

KECM. Through the KECM, data in manufacturing systems can be smoothly integrated with the 

input/output data of a computational model. A case study was developed to deploy a Constraint 

Programming scheduling optimization model in a B2MML-based system. Through the KECM, 

input data like job and machine information can be successfully loaded to the standardized 

computational model; and the output schedule can be also loaded back to the B2MML-based 

system. The second perspective of model deployment that this dissertation discusses is the 

combination of multiple models. Three basic types of model combination have been discussed: 

sequential models, parallel models, and composed models. A general method to formally 

represent model combinations has been presented. A case study has been developed to 

demonstrate the composition of an Agent-based model and a Decision Tree model for real-time 

scheduling. In the case study, the Decision Tree selects the dispatching rule according to the 

system status. Different data types for representing dispatching rules of the two models have 

been connected through modeling rules. The consumption of the KECM has been partially 

implemented, and it proves that the proposed KECM can be easily consumed by software tools. 

To support model retrieval, this dissertation proposes a semantics-based method. By 

formally describing the computational models and the model retrieval requirements in formal 

semantic expressions, a semantic similarity-based method can be enabled to measure the 

similarity between them. If the similarity value can satisfy the threshold as defined, the 

computational model can be retrieved. To support this method, a semantics-based dispatching 

rule model selection approach has been presented. The formal semantic expressions of 
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dispatching rules and production objectives have been developed. A tree-based semantic 

similarity measure has been proposed to calculate the similarity between the given production 

objective(s) and each single dispatching rule. A combination of dispatching rule method has also 

been introduced to combine the retrieved individual dispatching rules. This semantics-based 

dispatching rule model retrieval method has been validated with simulation-based experiments 

and sensitivity analysis.  

7.2 Research Contribution 

This dissertation proposes a Knowledge Enriched Computational Model (KECM) to capture 

and integrate domain knowledge with standardized computational models to support the lifecycle 

activities of computational models. It fills the research gap of a lack of formally represented 

domain knowledge integrated with standardized computational models. KECMs have been 

developed to support several lifecycle applications of computational models. In these 

applications, the KECM demonstrates the capability to support the development, deployment, 

and retrieval of computational models. The contributions of these individual applications are: 

• Implementation of a KECM to support the development of a Bayesian Network model; 

• Implementation of a KECM to support the data integration between an optimization model 

and a B2MML-based manufacturing system; 

• Implementation of a KECM to support the model combination between an Agent-based 

model and a Decision Tree model; 

• Development of a dispatching rule model retrieval method for job shop scheduling using 
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the KECM. 

7.3 Discussion and Limitation 

This dissertation proposes a Knowledge Enriched Computational Model to support lifecycle 

activities of computational models. This dissertation selects OWL as the implementation to 

implement the KECM. Even though OWL has richer semantics than XML and JSON, OWL also 

has limitations. OWL does not provide primitive support for managing processes (e.g., 

workflows) and collection types (e.g., arrays, lists, and hash tables, etc.). It is true that they can 

be defined in OWL by users, but the reasoning about them is limited. This calls for more plug-ins 

or official releases to be developed for richer semantics.  

This work greatly relies on standardized models. However, currently, not all computational 

models have their own standardized models in text-based model interchange formats. This means 

that there is no uniform way to enable the interoperability of these models. But to achieve the 

Smart Manufacturing’s goal to have accessibility and availability of computational models, the 

standardized computational models must be developed. To allow plug-and-play capability, the 

interoperability of a type of computational model among only two or three specific software 

tools is not acceptable. This calls for the development of more standardized computational 

models.  
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APPENDIX – A 

 To facilitate the production of all 26 letters on the production line (as mentioned in section 

Error! Reference source not found.), the production sequences of all 26 letters are listed in 

 REF _Ref517010411 \h  \* MERGEFORMAT Table 0.1. Trentesaux et al. (2013) presented 

the production sequences of 7 letters. This dissertation expands their production sequences of 7 

letters to cover all 26 letters. 
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