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ABSTRACT 

Retinitis pigmentosa (RP) is a term used to describe a wide variety of inherited 
degenerative diseases that affect the eye. While there are many causes of this disease, the most 
commonly found mutation that causes RP in North America is an autosomal dominant missense 
mutation in rhodopsin (RhoP23H). Previous studies have shown that RhoP23H is predominantly 
misfolded, resulting in a dramatic loss of the ability to stably bind 11-cis retinal and thus 
function as a photopigment. Previous work has shown that this process is conserved to some 
degree across many models, from pigs to mice, and even is evident when mutant mammalian 
rhodopsin is exogenously expressed in flies. Presently, there is limited information on the 
mechanism(s) that detect and degrade rhodopsin. To investigate this phenomenon, we cultured 
transgenic Drosophila melanogaster and evaluated expression of exogenous rhodopsin through 
western blot analysis. Our results suggest that the fly system is capable of simulating a realistic 
environment for murine rhodopsin. By harnessing the powerful genetic tools surrounding the fly 
system, future studies using RNAi techniques may be able to elucidate identification and 
degradation pathways important to the progression of RP.  
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EXECUTIVE SUMMARY 

Sight is a complex sense made possible by the combination of many signaling pathways.  

Central to this process is an important cycle of protein modifications that convert energy from 

light to processed electrical signals in specialized cells called photoreceptors. The light-sensitive 

protein receptor responsible for this process of phototransduction in rod photoreceptors is called 

rhodopsin. Protein modification of rhodopsin has been observed to be a largely conserved feature 

of visual systems across the animal kingdom. 

 The complexity of the visual cycle leaves a lot of room for error. Small mutations in 

functional portions of DNA have been observed to have major consequences for the cycle as a 

whole. For example, a single missense mutation, resulting in an amino acid change from proline 

to histidine in the sequence that encodes the protein rhodopsin, is known to cause a disease 

named Retinitis pigmentosa (RP). On the biochemical level, this single missense mutation causes 

a misfolding of the proteins 3D structure. This aberrant conformational change in rhodopsin 

increases the propensity of aggregate formation in the retina. The accumulation of these 

aggregates has been shown to cause degeneration of first, rod photoreceptors, and then cone 

photoreceptors, which results in the patient level symptoms of progressive vision loss that leads 

to eventual blindness.  

 Mutations of this nature are not unique to the human system. This phenomenon has been 

observed in other models, including: large mammals9, invertebrates8, and even cultured cells10. 

While the outcome is known, the mechanism is largely unresolved.  

 Previous studies in mice have shown that observed RhoP23H expression is much lower 

than wild-type controls14. This suggests that mutant rhodopsin is recognized in the cell before it 

is transported to its functional location in the outer segment of the photoreceptor. Other 
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experiments using transgenic frogs17, and mice18 have shown disruptions in the membrane 

integrity of the specialized outer segment of the rod cell where phototransduction occurs. 

Therefore, it seems reasonable to propose that the RhoP23H that escapes degradation and is 

transported to the outer segment is contributing to rod death. By identifying and exploiting the 

pathways which recognize and degrade mutant rhodopsin through drug or gene therapy, it may 

be possible to halt or even prevent this diseases progressive fate. 

 The core aim of my project was to develop a protocol for screening genes of interest 

related to the identification and degradation of RhoP23H. In our model, mRhoP23H was 

exogenously expressed through the utilization of a Gal4-UAS system with an Rh1 promoter. 

Meaning that a mutant mouse gene for rhodopsin was inserted and expressed at a target location 

in the fly’s eye. By characterizing the behavior of mRhoP23H and mRhowt using western blot 

techniques, a baseline was set for future investigations using RNAi techniques. The baseline was 

expected to show a constant expression of mRhowt across several ages and a decrease across ages 

for mRhoP23H. The purpose of this baseline test was to confirm transgene expression and 

establish the correct size of gene products. However, results suggested that our controls were not 

behaving as previously understood. Both the mRhowt and mRhoP23H fly lines displayed odd 

trends of degradation across different aged flies.  

To further investigate this phenomenon, the fly lines were cleared of balancer 

chromosomes by selection and/or mating techniques. Flies were collected upon eclosion, which 

is when they come out of their pupal case, and reared to different ages upon which their heads 

were collected for protein analysis. The fly ages for the sample collections include days: 5, 7, 9, 

11, and 14. Collected heads were separated by age, gender, and genotype before being 

homogenized and prepared for western blot analysis.  
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Results showed that the mRhowt follows a similar pattern of expression to that of a 

congruent system, which instead of using exogenously expressed mRho (from mice) used bRho 

(from cattle)38. Our results also confirmed that exogenously expressed mRhoP23H is severely 

degraded, suggesting that the mechanism for identification and degradation of misfolded protein 

is conserved across mice and flies. This fortifies the usage of flies as a model system for studying 

this phenomenon. Flies offer many advantages in genetic studies which can be more easily 

exploited as compared to the mouse system. Through the use of readily available transgenic 

lines, identification and degradation pathways can be investigated through the use of the fly 

system with mouse rhodopsin.  
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ADVICE TO FUTURE HONORS STUDENTS 

If I had to offer two pieces of advice to future honors students, I would say this: 
Start your capstone early, and make sure it is on something you enjoy because you will undoubtedly be 
spending an enormous amount of time on it. 
And while we are speaking of time, you have much less than you may think. 
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INTRODUCTION 

Retinitis pigmentosa (RP) is the umbrella term for a large set of inherited degenerative 

eye diseases that affect the retina. The retina is the light-sensitive tissue in the back of the inner 

eye that is responsible for converting what we see into electrical signals that then get sent to the 

brain via the optic nerve1. RP is the causal factor of more than 1 million cases of blindness 

worldwide. While the disease is well characterized and easily diagnosed, there remains no 

effective cure. RP dramatically degrades this process by causing the photoreceptor cells to die. 

Most often, the rods, which are responsible for dim light vision, are first (primary) affected and 

secondarily cones, which are responsible for daytime and color vision, are lost. The loss of these 

cells, which line the outermost layer of retina, results in the characteristic symptoms of RP. 

Initially, the disease presents itself as nyctalopia or night blindness, a condition in which it is 

difficult for the patient to see clearly in dim light conditions. Because the rods are distributed in 

the periphery of the retina in humans while cones are concentrated in the macular (central 

region), the earliest symptoms are in peripheral vision while maintaining clear vision in their 

central field (Figure 1). As the condition worsens, rod cells continue to die and central regions of 

the retina start to degenerate, patients begin to experience loss of their central vision2. Other 

forms of RP exist, for example cone-rod dystrophy (CRD), in which the primary cell death 

includes both cones and rods, thus affecting central vision more severely earlier than other forms. 

FIGURE 1. SIMULATION OF RETINITIS PIGMENTOSA (IMAGE 1) 
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 RP is linked to many different genetic loci with about half the cases inherited3, through 

one of three genetic inheritance patterns: autosomal recessive, autosomal dominant or X-linked. 

The most commonly found mutation that causes RP in North America is an autosomal dominant 

missense mutation in rhodopsin (RhoP23H). Rhodopsin is the photosensitive pigment that is 

expressed in rod cells and absorbs light to initiate vision4. The mechanism by which the mutant 

rhodopsin causes rods to die is unknown, and the development of therapeutic strategies is 

therefore limited. A number of research groups have developed gene therapy approaches that 

have the potential to slow or reduce retinal degeneration5. However, these approaches are still in 

the early phases and the associated costs are not clear. A better understanding of the fate of 

RhoP23H protein could identify cellular pathways that could be targeted for drug development. 

This project aims to uncover such pathways using a powerful model system. 

Previous studies have shown that RhoP23H is predominantly misfolded, resulting in a 

dramatic loss of the ability to stably bind 11-cis retinal and thus function as a photopigment 6,7. 

Very little is known about the fate of RhoP23H in human retina, so model organisms have been 

used extensively, from invertebrates8 to large mammals9, in addition to cultured cells10. The 

recent development of a knock-in mouse model11 has provided a disease model without the 

complications of transgenic lines that overexpress rhodopsin12,13. In the knock-in heterozygote 

mouse, the RhoP23H protein levels are much lower compared to the wild-type protein14, 

suggesting most but not all of the mutant protein is targeted for degradation. However, 

haploinsufficiency does not explain the effects of RhoP23H on rod survival, since in hemizygous 

rhodopsin (Rho/-) knock-out mice, the photoreceptors degenerate with a much slower time 

course than Rho/RhoP23H 15,16. Thus, it appears that there is a “dominant-negative” effect of the 

RhoP23H protein, even at the low expression observed in the knock-in mice. Experiments using 
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transgenic Xenopus17, and knock-in mice18 have shown disruptions in the membrane integrity in 

the specialized outer segment compartment where phototransduction occurs. Therefore, it seems 

reasonable to propose that the RhoP23H that escapes degradation and is transported to the outer 

segment is contributing to rod demise.  

At present, there is limited information of the mechanism(s) that detect and degrade 

mutant rhodopsin. Although there have been extensive experiments using cultured mammalian 

cells19,20, the applicability of the cell line responses to that in photoreceptor is questionable21,22. 

So, it is important that mechanistic studies be designed to investigate photoreceptors.   

 In most cells, there are primarily two methods of protein degradation, lysosome-mediated 

and proteasome-mediated. Each method of degradation has several pathways to eventual protein 

degradation and could be the underlying cause of photoreceptor death in Rho P23H. The goal of 

my capstone project will be to determine if either pathway is involved in RhoP23H degradation so 

that future studies can work towards an understanding of its process. Currently, it is thought that 

through an endoplasmic-reticulum-associated-degradation (a lysosome-mediated process), 

misfolded RhoP23H proteins are recognized by an unknown protein and degraded. The proposed 

cause of photoreceptor death is the accumulation of residual or partially digested protein that 

becomes toxic for affected cells. Under this assumption, by identifying this protein we will be 

able to investigate in detail the mechanism of RhoP23H identification and degradation. Future 

goals of this research will be to develop methods to aid in the degradation of misfolded 

rhodopsin, thus reducing cellular toxicity, which in return may save the photoreceptor cells. 

 Previous approaches to large-scale screenings have been expensive, time consuming and 

often problematic. Using mammalian cells, and other animal models for exploratory studies have 

proven to be highly inefficient and time consuming. Using cell culture, an approach usually well 
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suited for studies such as this one, have proven to be problematic when Rho is involved because 

of its toxicity in cell lines when high concentration of exogenous Rho is present24. To screen for 

possible pathways affecting rhodopsin degradation, I will use a novel approach with Drosophila 

(fruit flies). 

 Many aspects of the Drosophila model are favorable for such an approach: fly 

photoreceptors produce rhodopsin in large amounts and elaborate light-sensitive membranes 

specialized for phototransduction25, and Drosophila are a well-characterized model used 

extensively in genetic research, especially for gene discovery. Drosophila’s minimal 

maintenance and low cost, make them efficient and cost effective for larger scale studies. Since 

Drosophila are so well studied, there are many tools for genetic analysis at the cellular and 

molecular level. But most importantly, Drosophila, like mammals, possess photoreceptor 

neurons with the unique ability to synthesize large amounts of protein-rich membranes. New 

studies by the Pignoni and Knox labs have shown that Drosophila photoreceptors can express 

mouse Rho and transport the wild type protein to the appropriate membranes26. Moreover, in 

unpublished studies31, mutant RhoP23H was degraded in photoreceptors over approximately two 

weeks while the wild type Rho was stably expressed. This restates a key feature of the mouse 

knock-in model, selective degradation of RhoP23H, and supports the use of Drosophila for 

dissecting the degradation pathway.  

 While there are many similarities between Drosophila and vertebrate models, it is 

important to note that there are many distinct differences as well. Drosophila’s photosensitive 

photoreceptors are elaborated microvilli structures of stacked membranes called 

rhabdomeres27,30, while rods are modified cilia with stacks of membrane disks28. Dropsophila 

and vertebrate phototransduction pathways follow similar conserved mechanisms of initial 
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events in transduction but diverge in terms of specific intermediates and interpretations of 

absorbed photons27.36. 

Under the direction of the Knox Laboratory and in collaboration with the Pignoni 

Laboratory at Upstate Medical University, a lab with specialty in Drosophila research, I will 

have the necessary mentorship and tools to effectively investigate my research goal. Using the 

fly model and RNA interference methods, I will search for RNAi lines that alter the degradation 

rate of RhoP23H. The basic approach will be to select various lines from the Drosophila stock 

centers and to cross those flies with the existing Drosophila lines in the Pignoni lab that express 

either mRhowt-eGFP or mRhoP23H-eGFP genes30. I will grow the flies for one to two weeks and 

then determine Rho protein levels using quantitative western blotting based upon luminescence 

detection32. In this way, I hope to identify candidates that may be involved in recognizing 

misfolded protein or directing misfolded protein to the degradation enzymes. Rhowt-eGFP will 

serve as a control for the specificity of the RNAi line to degradation. The Specific aims of my 

research project are to:  

1. To create Drosophila lines expressing RNAi for enzymes potentially involved in 

recognizing misfolded proteins, these will include initially E3 ubiquitin ligases and 

related genes, chaperonins, N-linked glycosylation pathway enzymes and endoplasmic 

reticulum-specific lectins33,34,35, the precise number of lines will depend upon how readily 

the crosses can be prepared and how variable the expression level of the Rho transgene is 

in the various RNAi lines;   

2. To confirm quantitative western blot analysis of Rhowt-eGFP and RhoP23H-eGFP in one to 

two-week old Drosophila is suitable for my screen. I will optimize the western blot as 
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needed. As controls, the VCP/ter948 and dPob/EMC36 lines will be tested, as those genes 

have been implicated in the biosynthetic pathway for endogeneous Drosophila rhodopsin. 

For every RNAi that induces altered degradation of RhoP23H-eGFP compared to Rhowt-eGFP, 

I will: 

1. Confirm that degradation occurs at the RhoP23H-eGFP protein level and not the mRNA 

level by showing transcript stability by qRT-PCR;  

2. Confirm that the mRNA level for the targeted degradation gene has indeed decreased, 

using qRT-PCR and/or immunostaining if the antibodies are available commercially.  

These experiments should permit an initial screen for potential genes of interest in the 

degradation of mutant rhodopsin. 
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MATERIALS AND METHODS 

A. FLY CROSSES 

Initial fly stocks were previously created by the Pignoni Lab (SUNY Upstate Medical 

University, NY). They were created by transforming white plus marked flies with mRho 

constructs in a white minus background.  

 Balancers were eliminated by a brother and sister intercross, followed by a cross to a 

wild-type white eye fly line (w1118; cs). Fly line “NT” received no modifications. For each –eGFP 

fly line, an -mCherry variation was made as well for future studies. A homozygous mRhoP23H-

mCherry was not sufficiently viable to establish a pure stock. Balancers were eliminated from fly 

line “D” by crossing it to w1118, followed by selection of phenotypic characteristics. The resulting 

genotypes of produced fly lines are listed below in Table 1.  

Table 1. Genotypes of modified fly lines. 

Fly Line Abbreviation Genotype1 

A Rh1-Gal4 , UAS-mRhowt-eGFP 
- // - 

B Rh1-Gal4 , UAS-mRhoP23H-eGFP 
- // - 

NT                                      w ;             SM5 
        T(2,3)apxa 

D Rh1-Gal4 , UAS-mRhowt-eGFP 
- // - 

F Rh1-Gal4 , UAS-mRhowt-eGFP 
- // - 

  

 

B. FLY REARING 

 Flies were reared and maintained at 25°C, unregulated humidity, in a 12-hour light/dark 

cycle. Adult flies, collected upon eclosion, were maintained with lab-made agar-based diets 

consisting of cornmeal, dextrose, agar, water, propionic acid, 20% tegosept and yeast (adapted 

                                                           
1 “- // -“ denotes the fly line is a heterozygote, “m” denotes murine 
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from a Perkin’s lab recipe). Flies were collected twice each day, once in the morning and once at 

night. Each collection was reared independently until desired age was reached. 

C. FLY HEAD HARVESTING 

Heads were collected from female flies on days 5, 7, 9, 11, and 14 days after eclosion. 

Head collection was performed on a sanitized CO2 flypad post CO2 anesthesia with a sanitized 

scalpel. Collected heads were separated by gender, genotype, and age and immediately frozen in 

1.7mL microcentrifuge tubes on dry ice after they were obtained. Collected fly heads were stored 

at -80°C until processed. 

D. WESTERN BLOT ANALYSIS 

For each sample, 20 frozen female fly heads were homogenized in 60uL of opsin 

solubilization buffer (OSB) (1X PBS, pH 7.4, 1mM EDTA, pH 8.0, 1% DM (n-dodecyl-beta-D-

malto (pyrano) side), and 1 tablet of Roche cOmplete™ Mini Protease Inhibitor, EDTA Free)) 

via tube and pestle over ice. Sample protein concentrations were calculated via Bio-RAD DC™ 

Protein Assay and normalized with excess OSB. See Figure 1 for protein extraction efficiency. 

Lysates were diluted in 4x Laemmli sample buffer (277.8 mM Tris-HCl, pH 6.8, 44.4% glycerol, 

4.4% LDS, 0.02% bromophenol blue, and 10% 2-mercaptoethanol) prior to storage at -20°C. 

80ug of denatured protein was loaded into precast 10% SDS- polyacrylamide gels (Bio-Rad 

Mini-PROTEAN® TGX™), with a ladder mixture (3uL Thermo Scientific™ PageRuler™ Plus 

Prestainied Protein Ladder, and 10uL Thermo Scientific™ MagicMark™ XP Western Protein 

Standard) and separated by electrophoresis at 0.03 amperes for about 50 minutes. Separated 

samples were transferred to a polyvinylidene difluoride membrane (Immun-Blot® PVDF), 

blocked in blocking buffer (BB) (5% powdered milk, 0.1% Tween 20 in PBS) and incubated for 

at least 16 hours overnight at 4°C with a primary antibody, mouse monoclonal 1D4 (University 
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of British Columbia), 1: 5,000 dilution in BB. Overnight blots were then incubated with a 

secondary antibody, goat anti-mouse HRP (Sigma), 1: 10,000 dilution in BB, at room 

temperature for one hour. Membranes were visualized by Enhanced Chemiluminescence (ECL) 

detection with Bio-Rad Clarity™ Western ECL Blotting Substrate or Thermo Scientific™ 

SuperSignal™ West Femto Maximum Sensitivity Substrate. The analysis of processed blots was 

done on a Bio-Rad Molecular Imager ChemiDoc XRS+ using Bio-Rad Image Lab™ Software. 

RESULTS 

A. HOMOGENIZATION EFFICIENCY 

Under the current sample preparation protocol, lysate total protein per sample did not vary 

significantly (Figure 2). When separated by group, post-homogenization lysates of 20 female fly 

heads displayed consistent levels of protein extraction (Figure 2A). When separated by age, 

lysates displayed uniform dispersion in all age categories with minor variation (Figure 2B), 

signifying no correlation between age and extraction efficiency. We believe that minor 

differences are not real differences in protein per head, but rather reflect improvements in the 

operator’s technique.  

B. WESTERN BLOT ANALYSIS 

Figure 3 depicts detection of bands using primary antibody mouse monoclonal 1D4, and 

secondary antibody, goat anti-mouse IgG-Peroxidase, with ECL reagents. Figure 3A shows the 

state of our eGFP wild-type control (mRhowt-eGFP) prior to the elimination of the balancer 

chromosome. Results from this line show that the expression of the transgene was variable, 

displaying a period of rapid increase in expression from Day 5 to Day 7, followed by a severe 

drop off between days 7 and 9. Figure 3B displays mRhowt-eGFP following the removal of the 

balancer chromosome from the stock. The detection of mRhowt-eGFP was predominately at ~55 
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kda. These bands display slight smearing which may indicate some level of variable protein 

glycosylation in the individual rhodopsin molecules. Through volumetric and visual analysis, it 

is evident that protein detection is decreasing overtime. Between Day 5 and Day 9, detection 

decreases 17%, followed by a decrease of ~30% from Day 9 to Day 14 (Figure 3C).  

To evaluate bands of interest from non-specific bands, we conducted a western blot with a 

negative control. In Figure 3D, non-Rho transgenic SM5/T(2,3)apxa, labelled “NT”  was 

compared to mRhoP23H-eGFP, labelled B5, both at 5 days of age. The mRhoP23H-eGFP lane 

displays one band that is very faint around 115 kda, labelled with a red arrow, which is not 

present in the non-Rho transgenic lane. We deduce that this may represent the dimer of 

mRhoP23H-eGFP. We were also expecting to see a faint band around 55 kda in lane B5, 

signifying the existence of the monomer, but it appears that because of low expression or transfer 

efficiency this band is not visible. However, comparing lane NT to blot “E” reinforces our 

assumption that the band seen at ~55 kda in blot “E” is in fact our protein of interest. 

The transgenic mRhoP23H-eGFP flies were observed to be much dimer under epiflourescence 

microscopy as compared to the mRhowt-eGFP line. In western blot analysis, this low expression 

was also observed. In Figure 3E, the detection of the monomer for mRhoP23H-eGFP was 

observed at ~55 kda, with variety of other bands. The increase in band detection can be, in part, 

connected to the use of the ECL reagent Femto which is a much more sensitive substrate than 

Clarity which was used for Figure 3B. It is important to note, however, that even with Femto, 

exogenous rhodopsin detection was extremely low. Other notable bands: ~110 kda may represent 

the dimer of mRhoP23H-eGFP. Volumetric analysis of the monomer bands show a trend of 

logarithmic increase from Day 5 until Day 9, followed by negative linear regression from Day 9 

to 14 resulting in a loss of expression of ~56% over five days (Figure 3F).  
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A.  

B.  

Figure 2.  Post-homogenization total protein of 20 female fly heads. A. Processed samples separated into groups 
by fly lines. Each dot represents 20 female fly heads collected as a group on different days. B. Processed samples 
separated into groups by age of heads. Each dot represents 20 female fly heads collected as a group on different 
days. 
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Figure 3. Western blot analysis of Rho  variants of flies at different ages. A. Western blot analysis of fly line A (mRhow t-eGFP, 
mixed stock with TM3 variance) for days 5, 7, and 9. 80 ug of homogenate per lane, immunodetection with mouse monoclonal 1D4, 
chemiluminescent with goat anti-mouse IgG-Peroxidase with Thermo Scientific™ SuperSignal™ West Femto Maximum Sensitivity 
Substrate, 7 second exposure.  B. Fly line A (mRhowt-eGFP with balancer chromosome TM3 eliminated) analysis of days 5, 7, 9, 11, and 
14. 80 ug of homogenate per lane, immunodetection with mouse monoclonal 1D4, chemiluminescent with goat anti-mouse IgG-
Peroxidase with  Bio-Rad Clarity™ western ECL substrate, 112.7 second exposure. C.  Volumetric analysis using intensity of blot “B” 
with Bio-Rad Image Lab™ Software. D. Negative Control with: NT- non-Rho  transgenic SM5/T(2,3)apxa and B5- mRhoP23 H-eGFP at 5 
days of age. 80 ug of homogenate per lane, immunodetection with mouse monoclonal 1D4, chemiluminescent detection with goat anti-
mouse IgG-Peroxidase with Thermo Scientific™ SuperSignal™ West Femto Maximum Sensitivity Substrate, 105.8 second exposure. 
Red arrow indicates band not present in NT. E. Fly line B (mRhoP 23H-eGFP) analysis of days 5, 7, 9, 11, and 14. 80 ug of homogenate 
per lane, immunodetection with mouse monoclonal 1D4, chemiluminescent detection with goat anti-mouse IgG-Peroxidase with Thermo 
Scientific™ SuperSignal™ West Femto Maximum Sensitivity Substrate, 49.4 second exposure. F. Volumetric analysis of the monomer 
bands using intensity of blot “D” with Bio-Rad Image Lab™ Software. 
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DISCUSSION 

 An Rh1-mediated Gal4-UAS system was chosen, as opposed to other more general 

expression drivers (namely glass multiple reporter (GMR)), in an attempt to simulate the most 

authentic environment for our protein of interest. While it is has been shown that GMR produces 

much higher desired protein expression levels as compared to Rh137, it is difficult to evaluate cell 

specific protein fates, such as that of rhodopsin, when expression levels are evaluated from non-

specific techniques. The use of an Rh1 promoter restricts transgene expression to cells that 

already express rhodopsin. 

At first, our wild-type positive control did not represent expectations (Figure 3A). 

Following intervention, which included removing balancer chromosomes, our wild-type 

displayed a very different, more expected, expression pattern (Figure 3B). There may be various 

reasons for the differences between Figures 3A and 3B, however without further analysis it is 

difficult to speculate the definitive cause. Several contributing factors may be, but are not limited 

to: extreme variance in the genotypes of flies within a single sample, a mutation on the balancer 

chromosome, or a high concentration of homozygous carriers of the transgene which could result 

in either extreme expression or degraded expression as a result of cellular toxicity from high 

concentrations of rhodopsin. 

The ages of flies used for our assays was determined from the results of a previous study 

that used flies with exogenously expressed bovine rhodopsin38. This study showed that in wild-

type Rh1-mediated Gal4-UAS systems, exogenous bovine rhodopsin expression reached a so-

called “steady state” by Day 3 which was maintained until at least Day 10. Establishing a “steady 

state” provides a predictable positive control to compare the results of future genetic 

manipulations effects on the fate of mRho. While we were unable to obtain a perfect “steady 
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state” of expression, our results do follow a congruent trend to Ahmad S. et al 2006. These 

results suggest several possibilities for the current state of our transgenic wild-type fly line 

(Figure 3B). A probable explanation is that murine rhodopsin may be inherently less stable than 

bovine rhodopsin when utilized this way, or there is still another factor contributing to the slow 

degradation of mRhowt. A factor that may contribute to this instability is the enhanced green 

fluorescent protein (eGFP) tag attached to our transgene which was not used in Ahmad S. et al 

2006. While there are powerful implications to keeping this tag, namely quick screening through 

epiflourescent microscopy, eGFP’s large size or biochemical characteristics may be contributing 

to the transgenes instability over time. A follow up experiment, which due to time constraints we 

were unable to perform, involved the use of a second set of transgenes with mCherry fluorescent 

tags (fly lines “D” and “F”). mCherry has been shown to have a fast maturation, good pH 

resistance, tolerance to N-terminal fusions39, and a low propensity for dimerization due to its 

monomer form.  

Figure 3E confirms existing understanding that the RhoP23H mutation results in extreme 

degradation of protein expression. This phenomenon requires highly potent ECL reagents to 

detect small fluctuations in band intensity leading to the subsequent detection of many non-

specific bands. The trend of an exponential increase in expression followed by steady decline 

offers a few interpretations (Figure 3F). It is possible that the cells are quickly overwhelmed by 

an exponentially increasing amount of un-degraded or partially degraded misfolded protein. This 

may result in a toxic or unfavorable environment for the rod photoreceptors leading to the 

degradation of the cells. To assess this theory, this experiment would need to be redone with 

additional steps to evaluate endogenous rhodopsin expression. 
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For future investigations, a wider time scale, starting at Day 1 may be more appropriate. 

By Day 5, it appears, because of how low the detection is even with an extremely potent ECL 

reagent, mRhoP23H-eGFP may be nearing complete degradation (Figure 3E). It may be possible 

that peak mRhoP23H expression occurs between Day 1 and 5. Expanding the ages analyzed for 

future studies would also be beneficial for our Rhowt line. Day 5 was observed to have the 

highest expression, making it difficult to infer when degradation of the protein actually began 

(Figure 3B).  

Nonetheless, the fact that expression of mouse rhodopsin in fly photoreceptors mimics 

behavior seen in native mouse photoreceptors is both exciting and promising for future 

investigations of degradation pathways using the fly system. This suggests that the signaling 

pathways for detecting the misfolding and subsequent degradation of the mutant protein could be 

conserved in evolution between fly and mouse. Use of the powerful genetic tools available to the 

fly system, including readily available stocks with disabled genetic pathways, may prove to be a 

very effective method for screening candidate genes in future investigations. 
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