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Abstract   
 

Adenosine triphosphate (ATP) contains energy-rich phosphoanhydride bonds that provide 
the energy needed for many cellular processes. F-type ATP synthase is found in bacteria, 
chloroplasts, and mitochondria, having a conserved function to catalyze the synthesis and 
hydrolysis of ATP. ATP synthase is a membrane bound rotary motor enzyme, with coupled rotation 
between it’s two distinct complexes Fo and F1. In bacteria and chloroplasts, the ε-subunit’s C-
terminal Domain (εCTD) has a distinct regulatory function that is absent in mitochondria. 
Determining the inhibitory interactions of ε is important in understanding it’s physiological 
functions and for potential targeting of ε’s bacteria-specific inhibition for development of new 
antibiotics. Guided by a high-resolution structure of ε inhibition catalytic complex, in this study I 
use site-specific mutagenesis of the εCTD in Escherichia coli (E. coli) to investigate interactions 
and make mutations at regions important for ε inhibition. I then analyze the effects of these mutants 
through phenotypic growth and ATP hydrolysis assays.  
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Executive Summary  
 

Adenosine triphosphate (ATP) is a primary energy carrier in cells of all known kingdoms. 

ATP synthase, an evolutionarily conserved membrane bound enzyme, is responsible for making 

most cellular ATP in animals, plants, and in bacteria. The ATP synthase is essential for a number 

of pathogenic bacteria. Although the bacterial and human ATP synthase share homologs, the C-

terminal domain of bacterial epsilon subunit (εCTD) has an inhibitory interaction that is absent 

in humans. If we can understand how this bacterial-specific inhibition works, we can target the 

enzyme to kill bacteria without harming our own enzyme. This makes the εCTD a good potential 

target for antibiotic development.  

The model organism being investigated in this study is Escherichia coli (E. coli), a gram-

negative bacteria found in the human gut, and used for over 30 years to study ATP synthase. All 

subunits of E. coli ATP synthase have homologs in ATP synthases of other bacteria, 

chloroplasts, and mitochondria. Exploring the interactions between εCTD of F1-ATPase is 

crucial to understanding the inhibition of ATP synthesis and hydrolysis in bacteria. In this study, 

I will investigate two sites on the εCTD that may be important in inhibiting ATP synthesis and 

hydrolysis in bacteria.  
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Introduction  
 

The synthesis of ATP from ADP and Pi is facilitated by a proton transport mechanism found 

in the membrane embedded FO complex. Proton motive force (pmf) is the electrochemical gradient 

of protons utilized by Fo to drive synthesis of ATP at catalytic sites located in the F1 complex (Fig. 

1; Duncan 2004). In vitro, F1 can be dissociated from the membrane as a water-soluble form that 

can only hydrolyze ATP.  

 
The F1 complex is composed of 5 distinct subunits: α3β3γ1δ1ε1. The Fo complex, located in 

the membrane lipid bilayer, is composed of 3 distinct subunits: a1, b2, and c10. Specifically, the a- 

and c-subunit play a role in catalyzing proton transport through proton binding at the c-subunit ring 

proton transport sites, facilitating rotation relative to the a- and b- subunits.  

 

 
Figure 1: Model of E. coli ATP synthase rotary motor enzyme: Black arrows show the direction 

of proton transport and subunit rotation during ATP synthesis (Duncan 2014 review). 
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The ε-subunit of F1 has been further studied for its role in inhibition of enzyme activity. 

Epsilon consists of two domains: the N-terminal domain (εNTD) and the C-terminal domain 

(εCTD) (Fig. 2). Studies have revealed that the εCTD is not required for oxidative phosphorylation 

but instead is involved in the regulation and inhibition of enzyme activity (Feniouk 2006). The 

εCTD has two known conformations: extended and compact. The extended conformation or 

inhibitory state of εCTD (εx state) inserts into the central catalytic cavity of the F1 complex, 

interacting with 5 other subunits (Cingoloni and Duncan 2011). The εCTD in εx state inhibits the 

enzyme by preventing the rotation of the γ-subunit. The active form of the enzyme has a compact 

conformation of the εCTD (εc state) (Wilkens et al. 1998). When soluble F1 is diluted to low 

concentrations, ε can dissociate from the enzyme, which releases the inhibition. The primary focus 

of my research project is to use site-directed mutagenesis to identify residues in the εCTD that are 

most important for inhibitory interactions of the εCTD with the β- and γ- subunits.  
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Figure 2, Extended and compact conformations of epsilon. Image a shows  the F1 complex with 
α subunits omitted to visualize ε’s extended state (magenta), and the position of the εCTD in the 
compact state (gray helices). Image b shows ε alone with the two helices in the extended 
conformation. Image c shows the compact conformation of ε. Adapted from Cingolani and Duncan 
(2011). 

              
A recent structure of F1 from E. coli has provided relevant insights on the catalytic sites and 

subunit interactions of the enzyme (Cingolani and Duncan 2011). In Tom Duncan’s lab, previous 

research demonstrated that the εx state is prevented from forming until hydrolysis of ATP at a 

catalytic site. This conformational change is significant in showing how εCTD inhibits F1 (Shah et 

al. 2013). Since ε-inhibition is bacterial-specific, the εCTD could be a good target for antibiotic 

development by discovering compounds that mimic or strengthen inhibition on ATP synthase by 

the εCTD. 

 
The aim of this research project is to understand the inhibitory behavior of the εCTD in the 

F1 complex of FOF1. Guided by a high-resolution structure of the ε-inhibited catalytic complex 

(Cingolani and Duncan 2011), site-specific mutagenesis of the εCTD will be used to investigate 

interactions thought to be important for inhibition. Mutating residues of the enzyme can provide 

information on specific interactions necessary for ATP synthesis, hydrolysis, and inhibition. Using 

information available from the E. coli F1 structure, I will explore interactions between the εCTD 

and other F1 subunits of the enzyme that are likely to play a role in inhibition. The target sites for 

mutagenesis  are in the C-terminal domain of the ε-subunit.  

 

Previous existing mutations include ε∆5, with the last five residues of the ε-CTD deleted 

and ε88stop, with the whole inhibitory domain deleted (Shah 2015). These mutants will be useful 

for comparison with new mutants. Specific residues in two sites on the εCTD will be mutated to 

observe changes in functional and possibly disruptive interactions with other subunits. Three single 
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point mutations will be made at alanine97 (εA97) residue in helix 1. The second site is on helix 2, 

lysine123 (εK123). The primary focus is to use site-directed mutagenesis to identify residues in the 

ε-CTD that are most important for inhibitory interactions of ε-CTD with the γ- and β- subunits.  

 
Methods 

Construction of pMBε01 plasmid: 

The vector for separate expression of ε-subunit is modified version from pXH302s (Xiong 

and Vik 1995). An insert  encoding an affinity tag (6xHis.Nsi) was introduced into the vector at the 

start of the atpC gene for ε. The final plasmid pXH302s+NsiI.6xHis was named pMBε01. The NsiI 

site will be useful for moving the 6xHis-tagged ε into other constructs. The method used to 

introduce the insert was fusion PCR (Ho et al 1989). Two initial PCR reactions (PCR 1 and PCR 2) 

amplified the upstream and downstream regions of the plasmid. The final fusion PCR reaction 

(PCR 3) created the desired insert. Then a ligation reaction (Wu and Wallace 1989) with vector and 

insert generated pMBε01. The unique NsiI site was used to screen plasmids from transformed 

colonies by restriction digest: a linearized plasmid showed successful insertion of the NsiI-

containing fusion product. DNA sequence analysis (Upstate Medical University core Facility) 

confirmed that the plasmid contained the correct atpC gene with the added region including the NsiI 

site and encoding the 6xHis tag.  

 

SEQ:  

ε:     M   H   H   H   H   H   H   G   H   M>Epsilon  
atpC: ATG CAT CAC CAT CAT CAC CAC GGT CAT ATG  
      (NsiI)         (NdeI)  
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Structural identification of residues to mutate in the εCTD: 

 Using the molecular modeling program Chimera (Petterson et al, 2004), I was able to 

analyze the epsilon-inhibited structure of the F1 complex. Individual amino acids in the sequence 

were studied based on distances between individual atoms, angles/torsions, hydrogen bonds, and 

any clashes/contacts that may be important in the structure and function of the F1 complex. I 

identified two residues, based on what is currently known about the molecular structure of ATP 

synthase, that appear to play important roles in εCTD: εA97 and εK123. “In silico” mutagenesis 

was used to introduce possible amino acid substitutions (rotomers) and study the contacts/clashes to 

determine the substitution that should be most effective at each residue.  

 

Site-Directed Mutagenesis of the atpC gene for Epsilon:  

Using mutagenic primers for εA97, the following mutants were made in pMBε01: εA97M, 

εA97Q, εA97L. Mutagenic primers were designed by first checking common codon usage in E. 

coli. The plasmid was linearized in a double-digest reaction with AfeI and PstI, and 5’ and 3’ PCR 

fragments were generated. Gibson Assembly (Gibson 2009) was used to combine the vector and 

insert for the εA97L mutant. A more traditional cloning method as described for pMBε01 

construction was used for εA97Q, εA97M, ε88stop, and εΔ5 mutants. Mutant plasmids were 

transformed into competent DH5α cells and transformant plasmids were screened by DNA 

sequencing to confirm the presence of the desired mutation and the absence of any undesired 

changes. Outstanding mutagenesis projects are εL123M, εL123Q, εL123E.  
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Phenotypic Assay measuring Respiratory Growth:  

Phenotypic effects of the mutations were observed after transforming each pMBε01 mutant 

into the XH1 expression strain (Xiong and Vik 1995). The XH1 expression strain has a deletion of 

the chromosomal epsilon gene but expresses all other subunits of the enzyme. This phenotypic 

assay measures growth of the mutants in liquid culture with succinate as a non-fermentable carbon 

source (Shah and Duncan 2015). E. coli is a facultative anaerobe, and can grow by aerobic 

respiration or by fermentation through glycolysis. Growth in liquid culture can provide a more 

sensitive ranking of the effects of the mutations on the in vivo assembly of functional ATP 

synthases. ATP synthesis function is required for growth on succinate. Thus, if cells do not grow, 

assembly of ATP synthase has been disturbed or enzymatic activity is compromised. For XH1 cells 

transformed with pMBε01 (wild-type or each ε mutant), bacterial colonies were inoculated in 10 

mL of Luria Bertani broth (LB) + ampicillin (0.1 mg/ml) overnight. Cells were then diluted again 

into 10 mL LB + ampicillin to an initial A600 = 0.1. Cultures were grown at 37 °C until A600 = 0.8, 

then cells were diluted 100-fold in minimal medium containing succinate as carbon source. Growth 

was measured every 15 minutes using a Biotek Synergy HT plate reader at 37 °C,  with 0.4 mL 

triplicates of each strain in a 48-well microplate (Shah and Duncan 2015).  

 

Preparation of inverted membrane vesicles for functional assays: 

E. coli cells can be put under high pressure in a French Pressure cell and, as the pressure is 

slowly released, the pressure shift disrupts the cells (protocol in Shah and Duncan 2015). Cell 

membrane fragments turn inside out as a result, and the F1 complex is exposed to the external 
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environment. Modified Lowry assay protocol was used to determine membrane protein 

concentration (Peterson 1977). 

 

ATP Hydrolysis:  

 Assays to measure ATP hydrolysis by membranes were done by a photometric “coupled 

enzymes” assay (protocol in Shah and Duncan 2015). Assays testing the effects of lauryl 

dimethylamine-N-oxide (LDAO) and Dicyclohexylcarbodiimide (DCCD) were included as 

before (Shah and Duncan 2015). LDAO is known to alleviate epsilon inhibition, therefore 

activating the enzyme. DCCD covalently modifies aspartate61 residues in the c-ring of FO, which 

are required for proton transport. Therefore, DCCD irreversibly inhibits ATP synthesis and 

hydrolysis by blocking proton transport through Fo.  
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Table 1: Primers used in site-directed mutagenesis   

Construct  Primers used in PCR: Sequence 5’ to 3’ 
pMBε01  PCR reaction 1: 

 pMBε01 forward:  
C AAA CTG GAG ACT GTC ATG CAT CAC CAT CAT CAC CAC GGT  
GGC CAT ATG GCA ATG ACT TAC CAC  
XH downstream: GAC TGG CTT TTG TGC TTT TCA AGC CGG 
PCR reaction 2:  
pMBε01 reverse:  
GTG GTA AGT CAT TGC CAT ATG GCC ACC GTG GTG ATG ATG GTG ATG 
CAT GAC AGT CTC CAG TTT G 
XH upstream: GAG CGT CGA TTT TTG TGA TGC TCG TC 
FPCR reaction 3: pMBε01 forward and pMBε01 reverse  

εA97L εA97L forward:  
GAA GCG GCC ATG GAA CTG AAA CGT AAG GCT GAA GAG 
εA97L reverse: 
 CTC TTC AGC CTT ACG TTT CAG TTC CAT GGC GCG CGC TTC 

εA97M εA97M forward:  
GAA GCG CGC GCC ATG GAA ATG AAA CGT AAG GCT GAA GAG 
εA97M reverse:  
CTC TTC AGC CTT ACG TTT CAT TTC CAT GGC GCG CGC TTC  

εA97Q εA97Q forward:  
GAA GCG CGC GCC ATG GAA CAG AAA CGT AAG GCT GAA GAG 
εA97Q reverse:  
CTC TTC AGC CTT ACG TTT CTG TTC CAT GGC GCG CGC TTC 

εΔ5 εΔ5 forward:  
GCT GCG CGT TAT CGA GTT GTA ACA CCG GCT TGA AAA GCA C 
εΔ5 reverse:  
GTG CTT TTC AAG CCG GTG TTA CAA CTC GAT AAC GCG CAG C 

ε88stop ε88stop forward:  
GCC GAC ACC GCA ATT CGT GGC CAA TAA CAC CGG CTT GAA AAG C  
ε88stop reverse:  
GCT TTT CAA GCC GGT GTT ATT GGC CAC GAA TTG CGG TGT CGG C  
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Results 

Epsilon Mutants: 

 In order to examine the role of ε-helix1/γ interaction for forming inhibited states, we 

targeted alanine97 (εA97) in the εCTD’s first helix. Mutations were avoided that would likely 

disrupt the compact state. In ε’s extended state, εA97 side chain contacts four residues of γ (γP151, 

γQ135, γA134, γG150). The structure of ε-inhibited F1 indicates tight packing of the εA97 side 

chain  in a pocket formed by these γ residues (Fig. 3). Mutations at this first target site should 

address whether the γ/ε-helix 1 contact  is important for transition into the ε-inhibited state, and I 

will test this by introducing bulky residues that should disrupt this interface. Mutating εA97 to an 

amino acid with a larger side chain should disrupt this tight packing. Hydrophobic/nonpolar amino 

acid like leucine or methionine and a polar uncharged amino acid such as glutamine were 

considered as possible mutants. In the compact state, εA97 does not contact ε’s second helix or the 

εNTD (Fig. 4). Mutating εA97 should not disrupt the compact conformation of ε. 

  



Mariam Bhatti  
Capstone  

 13 

Figure 3, In ε’s extended conformation (magenta), εA97 (ball/stick) packs against several γ 
residues (yellow, space-filling).  Van der Waal contacts of εA97 with γ are shown with green lines. 
The position of εA97 indicates tight packing with four residues of gamma. A larger side chain 
should disrupt the packing in this region.  

 

 
Figure 4, εA97 compact conformation. The side chain of εA97 has no contacts in the compact 
conformation, and faces away from the second helix. A mutation in this region should not disrupt 
the compact conformation of ε.  
 

Using Chimera, three potential mutants at εA97 were examined: leucine (εA97L), glutamine 

(εA97Q), and methionine (εA97M). In the extended state, εA97L and εA97Q have many predicted 

clashes. Leucine indicates 6-9 clashes, with 1 potential clash in the compact conformation. 

Glutamine indicates 8-15 clashes with residues on γ. Methionine is also a possible mutant, as it is 

not too hydrophobic and should not destabilize the α-helix. Methionine in extended conformation 

indicates 8-14 clashes. There is a high probability of 0 clashes in the compact conformation for all 

three amino acid substitutions.  

 Another target site includes the second helix of ε and its predominant role in inhibition. A 

few distinct residues of the εCTD appear to form specific hydrogen bonds that may be critical for 

stabilizing the ε-inhibited state. Epsilon Lysine123 (εK123) in helix two contacts βD372 of subunit 

β1 and αA405 of subunit α3. There is likely a hydrogen bond and a charge interaction between the 

side chains of εK123 and βD372 (Fig. 5). Lysine is positively charged, so introducing a long non-
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polar amino acid like methionine or polar uncharged glutamine would disrupt this bond. Mutating 

lysine to a negatively charged amino acid like glutamate would disrupt this bond and introduce an 

electrostatic repulsion with βD372.  

 
 

Figure 5, εK123 in ε’s extended conformation. Ball and stick models of contacting residues are 
shown with green lines and apparent hydrogen bonds are shown with orange lines. 
 

In ε’s compact conformation, the first two carbons of the εK123 side chain contact 

Tyrosine53 and Proline47 in the εNTD (Fig. 6). Structural analysis indicates methionine, glutamine, 

and glutamate should not alter these interactions in the compact conformation. Additionally, these 

mutants should not disrupt the α-helical structure of ε.  
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Figure 6, Contacts of εK123 in the compact conformation. The  Cβ and Cγ carbons of the εK123 
side chain have contacts (green lines) with Tyr53 and Pro47 in the εNTD. The most favorable 
rotamers of methionine, glutamine, and glutamate would have their Cβ and Cγ carbons in similar 
positions, so these mutations should not alter these interactions in the compact conformation. 
 

Using structure editing in Chimera, three potential mutants were modeled at εK123:  

methionine (εK123M), glutamine (εK123Q), and glutamate (εK123E). In the extended 

conformation, 1 likely rotamer of εK123M had a high probability to clash with αA405-Cβ of 

subunit α3. Another favorable εK123M rotamer is oriented away from this αA405  and from βD372 

of β1, indicating the εK123M substitution may occur without significant steric disruptions. In ε’s 

extended state, the εK123Q mutation indicates only one clash with αA405 of subunit α3. The 

εK123Q mutation in ε’s extended conformation indicates a high probability of having no clashes, 

but a small probability of having clashes with αA405. In the compact conformation, εK123M 

indicates low probability of clashes with the εNTD, while εK123Q indicates a low probability of 

clashing with Tyrosine53 on the εNTD and Glutamine127 on ε’s second helix. However, the 

compact conformation also indicates probability of forming clashes with Tyr 53 on εNTD and 

Glutamine 127 on ε’s second a helix. Compact confirmation also indicates probability of forming 

clashes with Tyr 53 on εNTD. Thus, the potential for mutagenesis of εK123 in ε’s second α-helix is 

promising. However, the εK123 mutants have not been created yet, so the remaining results will 

focus on the εA97 mutants.  

 

Phenotypic Assay measuring Respiratory Growth 

As shown in a recent study, aerobic growth is inhibited when five C-terminal residues are 

deleted from the ε subunit of E. coli’s ATP synthase (Shah and Duncan 2015). This growth 

inhibition is due to a reduced capacity for ATP synthesis  in vivo. Whereas the prior study over-
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expressed the entire ATP synthase, our results (Figs. 7, 8) confirm a similar or slightly greater 

reduction in growth yield when ε∆5 is expressed separately and all other FOF1 subunits are 

expressed from the chromosomal atp operon. The new εA97 mutants tested here are expected to 

disrupt the interaction of ε-helix1 with γ. If the interaction of ε-helix1 with γ is critical for epsilon to 

achieve the extended state, disrupting it will prevent inhibition of the enzyme. Aerobic growth 

assays of εA97 mutants in liquid medium with succinate as the sole carbon source show that the 

εA97 mutants grew almost as well as wild-type cells (Figs. 7, 8). The εA97 mutants grew as well as 

or better than the ε88stop mutant, which has its entire C-terminal domain deleted.. Overall, these 

results indicate that FoF1 is assembled properly in εA97 mutants and retains near-normal ATP 

synthesis in vivo. Hence, εA97 mutations do not lead to increased inhibition of the enzyme as seen 

with ε∆5. 
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Fig 7, Phenotypic Respiratory Growth Curves. Growth kinetics are shown in defined medium 
that contains succinate as sole carbon source. Cells were grown for at least 24 hours, with OD 
measurements taken every 15 minutes.    
 

 

Fig 8, Relative Growth Yield of Mutants as compared to wild-type: Wild-type’s growth 
plateau was set as  100% and values for the relative growth yields of mutants are shown.  Error 
bars represent standard error of the mean (SEM) from 4 separate assays.   
 
 

ATPase Activities of wild-type and mutant membranes:  

ε97 mutants show higher activity than WT,  this could be because mutants are inherently 

activated compared to WT, but might also be due to higher levels of FOF1 expressed in the 

mutant membranes. LDAO is an amine oxide detergent that has been shown to increase ATPase 

activity by disrupting the epsilon inhibition of the enzyme. Therefore, it can indicate the extent 

of inhibition by ε. We subjected all membranes to coupled ATPase assays with and without 

LDAO to estimate the levels of ε-mediated inhibition. WT showed 1.9x activation by LDAO (p= 

0.002), which is consistent with previous studies. The εA97M and εA97Q mutants showed 

almost no activation by LDAO, suggesting those membranes lack intrinsic capacity for ε 
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inhibition.. The εA97L data were too scattered to conclude if it is more similar to WT or the 

other two εA97 mutants. LDAO activation data for εΔ5 and ε88stop are scattered but similar to 

results with those mutants shown by Shah and Duncan, 2015 (2X for εΔ5, 1.4X for ε88stop). 

DCCD is an inhibitor of ATP synthase that covalently binds to the Aspartate 61 (Asp61) 

residue of the c-subunits. This residue is essential for proton transport through FO. Thus, pre-

incubation of membranes with DCCD for 30 min inhibits proton transport through FO and, when 

F1 is well coupled to FO in the membranes, inhibits the majority of membrane ATPase activity. 

We found that the ATPase activity of all mutant membranes is as sensitive to inhibition by 

DCCD as are WT membranes. Thus, the εA97 mutations do not cause any significant uncoupling 

between the F1 and FO motors in the ATP synthase.  

       

Figure 9, In-vitro membrane ATPase activities. Direct assays (clear bars) and LDAO activation 
(shaded bars) are shown. Below each sample, the number of separate assays is shown in 
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parentheses.(direct, +LDAO). Error bars represent the SEM. For each membrane sample, the value 
above the bars is the ratio of activity +LDAO to the direct activity. 
 

 

Discussion  

 My project focused on understanding the inter-subunit and intra-subunit 

interactions of the epsilon subunit in bacterial F-type ATP synthase. We generated three mutants 

that had single point mutations at εA97 with the help of site-directed mutagenesis. The mutants 

were subjected to phenotypic growth assays in medium containing a non-fermentable carbon 

source, succinate.  Since non-fermentative growth requires ATP synthesis by FOF1, any defect in 

growth would be a result of impaired ATP synthase function. Our assays did not show any major 

defect in growth in the εA97 mutants. The growth yield was slightly reduced but was still better 

than ε88stop, which has the entire εCTD deleted.  

ATP hydrolysis activity of the mutants was examined with the help of a coupled 

enzyme assay. In order to take a closer look at ε-mediated inhibition, the samples were treated 

with LDAO, which relieves ε-mediated inhibition, increasing the ATPase activity. The three 

mutants showed less activation than WT membranes. The reduced activation of εA97 mutants 

was similar to that seen with ε88stop, which suggests that εA97 mutations may disrupt the ability 

of ε to achieve the inhibited state. In order to take a closer look at the effect of the εA97 mutants 

on the enzymatic activity, the inhibition of ATPase activity by εA97M/Q/L should be directly 

measured by quantifying FO F1 in membranes by immuno-blotting (as in Shah and Duncan, 

2015).  

Residue εA97 is present in helix1, and contacts the γ subunit in the ε-inhibited state or 

ε-helix2 in ε’s compact conformation. Residue εK123 is present in ε-helix2, which contacts α 
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and β subunits in the inhibitory state, but contacts ε-helix1 in ε’s compact state. The proton flow 

through FO is coupled with enzymatic reactions by F1. However, in reality, there is some amount 

of slippage observed even in WT enzyme whereby some protons ‘slip’ through without resulting 

in work. The mutations in the above mentioned locations might result in increased leakage of 

protons or decreased coupling. As a result, the mutant enzymes may have an impaired capacity 

to generate proton motive force. This is unlikely for two reasons: first, mutant cells showed 

nearly normal growth on the respiratory substrate succinate; second, DCCD modification of FO 

inhibited mutant membrane ATPase as effectively as for WT, indicating normal FO-F1 coupling. 

To further confirm this, a fluorescent assay could be used to directly measure the kinetics of 

proton pumping by the mutant membranes (as in Shah and Duncan 2015). 

In order to study the effects of the mutations on interaction of the εCTD with F1, 

another approach should be used for future studies: to correlate inhibition with F1 binding and 

dissociation of ε. F1 can be isolated from FoF1-ATPase in a soluble form and ε becomes a 

dissociable inhibitor. F1 can be depleted of endogenous ε by an anti-ε immuno-affinity column. 

Thus, inhibition of isolated F1(–ε)can be quantified by adding each isolated ε mutant. As shown 

by Shah and Duncan (2013), affinity-tagged ε (+/- mutants) can be overexpressed for this 

purpose. Thus, the inhibitory constant (KI) can be compared between wild type and mutant forms 

of ε. The εA97 mutations may lead to altered binding of ε to other F1 subunits. In wild-type 

enzyme, ε’s C-terminal α-helices alternate rapidly between the compact and extended 

conformations. In the compact conformation, the helices are in a coiled-coil conformation with 

each other; whereas in the extended conformation, helix1 establishes contacts with the γ subunit 

and helix2 establishes contacts with 2 α, 2 β and γ subunits. With isolated WT F1, ε favors the 

extended conformation and the enzyme is strongly inhibited. This conformational change may be 
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prevented if the εA97 mutations disrupt the ε-helix1/γ interaction, and that interaction is 

necessary for ε-helix2 to insert inside F1 to achieve the fully-inhibited state. To test this directly, 

an established optical method can be used to measure kinetics of binding and dissociation for F1 

and mutant ε. The extended state of the εCTD limits the F1/ε dissociation rate so, for example, 

F1/ε88stop dissociates ~80X faster than F1/wt-ε (Shah and Duncan, 2013).  Thus, measuring F1/ε 

with the εA97 mutants should confirm whether the mutations disrupt access to the extended, 

inhibitory conformation. 

ATP synthesis assays will also be needed for key interpretation of the εA97 mutants. 

These assays can be easily done with the same membrane samples that were used for ATP 

hydrolysis assays. Other future experiments should include carrying out immunoblotting 

experiments to determine expression level of ε in the strains and the content of FOF1 in the 

membranes (anti-β blot, as in Shah et al., 2015). A western blot will quantify activity per mg of 

enzyme rather than activity per mg of membrane. Additionally, outstanding projects include 

mutations at εK123. This site contains possible hydrogen bond and side chain specific 

interactions that may be important for ε inhibition..  

            Overall, my work continues the lab’s focus on understanding the complete role of the ε 

subunit in the functioning of the bacterial ATP synthase. It is established that ε is responsible for 

auto–inhibition of the enzyme. With ATP synthase approved as a target for drugs against 

pathogenic bacteria like Mycobacterium tuberculosis, targeting the auto–inhibitory properties of 

ε subunit in pathogens may provide another way of inhibiting their growth and working around 

the problem of drug resistance. In order to do so, further studies need to be done to elucidate the 

unique role of the ε subunit in regulating function of bacterial ATP synthases.  
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