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Abstract 

     Proteins carry out many extremely efficient functions, including catalysis and biomolecule 
recognition.  Underlying this efficiency is their extraordinary complexity and ability to fold into 
unique three-dimensional structures.  Attempts to replicate this efficiency through de novo 
design have only shown moderate success, and it is unclear how modern-day proteins may have 
evolved.  However, short peptides that alternate hydrophobic and hydrophilic residues can self-
assemble into amyloid fibrils to achieve well-defined secondary structure.  These aggregates may 
have served as a template from which the first proteins were derived.  We designed self-
assembling seven-residue peptides that are able to act as Zn2+-dependent esterases.  Zn2+ acts to 
both help induce fibril formation and to serve as a metal cofactor to catalyze acyl ester 
hydrolysis. Furthermore, we developed a second set of peptides to recognize a target molecule 
with moderate specificity.  The ability of this simple system to catalyze a chemical reaction and 
exhibit biomolecule recognition suggests that similar peptide aggregates may have been 
evolutionary precursors to modern-day proteins.  Additionally, the ability to use a minimalistic 
design approach to generate functional fibrils could have implications for the development of 
simple nanostructured biomaterials.  By using an alternating hydrophobic/hydrophilic template, 
novel functionality can be introduced into simple peptide aggregates. 
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Executive Summary 

     Proteins are the main molecular machinery inside of cells.  They carry out a wide diversity of 

jobs, from DNA replication to recognizing foreign pathogens.  Proteins are long chains, called 

polypeptides, of building blocks known as amino acids.  Humans have 20 naturally occurring 

amino acids.  These amino acids share a common structure, however each one differs in its “side 

group” (Figure ES1).   

H3N
O

-

O

R H

 

This side group differs for each of the 20 naturally occurring amino acids, and covers a wide 

range of possible properties.  Polar vs. non-polar, acidic vs. basic, and small vs. bulky are all 

characteristics that vary between the possible side chains.  It is this variability that gives the 

proteins their function. 

     Protein chains typically fold into stable 3-dimensional structures.  It is these stable 

conformations that allows the side groups of amino acids to be positioned such that they can 

reliably carry out a specific function.  Antibodies, for instance, use highly specific binding 

interactions to recognize a target molecule, often able to differentiate between differences in a 

single bond at the binding site.  Enzymes can not only display this specificity as well, but carry 

out catalysis on the bound target.  Because of their high efficiency, the design of new proteins for 

a novel desired function has long been a “Holy Grail” of biochemistry.  Being able to replicate a 

protein’s efficiency ourselves would allow us to design new proteins for any reaction or function 

we want, such as the degradation of a harmful environmental contaminant. 

Figure ES1. The structure of an L-amino acid, found 

in humans.  The R group can be any one of the 20 

found in the naturally occurring amino acids. 
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     Unfortunately, attempts to carry out this de novo design have only shown moderate success, 

and we are still unable to rival the extraordinary efficiency of proteins found in nature.  New 

approaches are required to achieve efficient design of novel functionality. 

     We can gain valuable insights into new minimalistic design techniques by observing how 

life’s first proteins evolved.  A typical protein chain consists of at least 100 amino acid residues.  

This length produces virtually infinite numbers of possible permutations, and it is uncertain how 

nature could effectively test such massive numbers of possibilities randomly.  However, much 

shorter peptides can also possess well-defined conformations through the formation of amyloid 

fibrils.  These fibrils are composed of many individual short peptides that associate with one 

another to form a large, stable, plaque, similar to those found in Alzheimer’s disease.  One 

hypothesis regarding protein evolution states that the first proteins arose from similar simple 

amyloid-forming peptides.  These peptides could organize into well-defined secondary structures 

capable of protein-like functions.   

     Using minimalistic techniques, we designed simple seven 

residue peptides capable of self-assembling and carrying out 

protein-like functions.  These peptides self-assemble into large, 

stable, fibril structures.  We designed to series of such peptides.  

The first series was designed to bind zinc metal ions (Figure 

ES2).  These fibrils utilize zinc to carry out a reaction known as 

ester hydrolysis. Furthermore, upon mixing peptides of different 

sequences, synergistic activity was observed, forming fibrils of 

increased catalytic efficiency.  The ability to mix various 

Figure ES2.   

Self-assembling aggregates 

can be engineered to carry 

out enzyme-like catalysis. 
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peptides into a single fibril provides virtually limitless possibilities for the arrangement and 

structure of functional sites.    

     The second series of peptides were designed to specifically recognize and bind to melittin, a 

polypeptide found in bee venom.  While high specificity is not yet achieved, we have designed 

the first generation of melittin-binding peptides.  We expect to be able to utilize peptide-mixing 

strategies to enhance the specificity of the fibrils for the target molecule.   

     These short self-assembling functional peptides are the first of their kind.  Enzyme-like 

catalysis from such a simple seven-residue system is unprecedented and provides a powerful 

platform from which more elaborate and advanced aggregates can be designed in the future.  

Further, if these peptides can also exhibit highly specific biomolecule recognition, fibrils can be 

designed to both recognize their target molecule, and to carry out chemical reactions on that 

target molecule. 

     The use of such a simple system to produce efficient protein-like functions provides a 

powerful tool for biomaterial design.  Their simplicity makes them easy to produce, while their 

display of synergistic activity affords virtually limitless possibilities of functionality.  

Furthermore, this work provides insight into how life’s first proteins may have evolved.   
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Introduction 

     Proteins exhibit a wide variety of extremely efficient functions.  Antibodies use highly 

specific binding interactions to recognize a target molecule, often able to differentiate between 

differences in a single bond at the binding site.  Enzymes can not only display this specificity as 

well, but also carry out catalysis on the bound target.  Replicating such efficiency with de novo 

designed proteins capable of novel functions is one of the Holy Grails of biochemistry.  Such 

unnatural functionality would provide a gateway to new highly efficient biomaterials and 

catalysts.  Attempts to design de novo proteins have only shown moderate success, and we are 

still unable to rival the extraordinary efficiency of those found in nature1.  New approaches are 

needed in order to achieve efficient design of novel functionality. 

     We can gain valuable insights into new minimalistic design techniques by observing how 

life’s first proteins evolved.  Underlying a protein’s functionality is the ability to fold into a 

unique stable three-dimensional structure.  A typical protein chain consists of at least 100 amino 

acid residues.  This length produces virtually infinite numbers of possible permutations, and it is 

uncertain how nature could effectively test such massive numbers of possibilities randomly.  

However, much shorter peptides can also possess well-defined secondary conformations through 

the formation of amyloid fibrils.  One hypothesis regarding protein evolution states that the first 

proteins arose from similar simple amyloid-forming peptides2,3.  These peptides could organize 

into well-defined secondary structures capable of protein-like functions.  In the lab, short 

heptapeptides that alternate hydrophobic residues have demonstrated the ability to form prion-

like β-sheet aggregates4,5,6.  These stable aggregates could serve as a scaffold to introduce 

functional residues into. 
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     Using minimalistic techniques, simple seven residue peptides capable of self-assembling 

and carrying out protein-like functions were successfully designed.  By inserting polar 

residues into an alternating hydrophobic peptide backbone, stable aggregates were 

engineered for specific desired capabilities, including catalysis and biomolecule recognition.   

     The first series of peptides were designed to self-assemble in 

the presence of Zn2+ (Fig.1).  Fibrils capable of zinc-dependent 

esterase activity were created by introducing histidine residues 

(a common residue found at zinc-binding sites in 

metalloproteins) into the alternating hydrophobic core.  The 

Zn2+ served to promote both β-sheet-rich fibril formation and 

hydrolysis of para-nitrophenyl acetate (pNPA).  We investigated 

the design, metal-binding interactions, and catalytic properties of 

these Zn2+-dependent self-assembling fibrils.  Furthermore, upon 

mixing peptides of different sequences, synergistic activity was observed, forming fibrils of 

increased catalytic efficiency.  The ability to mix various peptides into a single fibril provides 

virtually limitless possibilities for the arrangement and structure of functional sites.  These short 

self-assembling functional peptides are the first of their kind.  Enzyme-like catalysis from such a 

simple seven-residue system is unprecedented and provides a powerful platform from which 

more elaborate and advanced aggregates can be designed in the future. 

     To further test the use of self-assembling peptides as a potent platform for the design of novel 

functionality, we designed a series of peptides capable of biomolecule recognition.  Our model 

target molecule is melittin, a cationic α-helical peptide found in bee venom.  Its stable secondary 

structure and both hydrophobic and charged regions provide an ideal target candidate.  Peptides 

Figure 1.  Self-assembling 

aggregates can be 

engineered to carry out 

enzyme-like catalysis. 
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capable of self-assembling, independent of zinc, were first designed.  Negatively-charged 

residues were inserted into the alternating hydrophilic/hydrophobic peptide sequence.  These 

negatively-charged residues target melittin’s regions of positive charge.  Fibrils capable of 

binding to melittin were successfully created.  Efforts are currently underway to improve the 

specificity of the fibrils.  By mixing peptides, large libraries of fibrils with differing functional 

sites can be generated.  Through high-throughput screening of these libraries for target molecule 

binding, improved specificity should be attained.  The design of these fibrils will demonstrate the 

ability of functional aggregates to not only carry out novel catalysis, as previously demonstrated, 

but to exhibit remarkable specificity despite their simplicity. 

     We have successfully used minimalistic design techniques to create short seven-residue 

peptides capable of self-assembling into functional aggregates.  The first of their kind, these 

aggregates display protein-like characteristics, providing a powerful tool for biomaterial design.  

Their simplicity makes them easy to produce, while their display of synergistic activity affords 

virtually limitless possibilities of functionality.  Furthermore, this work provides insight into how 

life’s first proteins may have evolved.  Herein we investigate and characterize the properties and 

capabilities of such peptides.   
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Chapter One: 

Design of Self-Assembling Peptides for 

Catalysis 
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All work in the following chapter has been performed by the following authors, unless 

otherwise stated.  This work has led to the following publication: 

Rufo, C.M., Moroz, Y.S., Moroz, O.V., Stӧhr, J., Smith, T. A., Hu, X., *Degrado, W. F., 

*Korendovych, I. V. Nature Chemistry. 2014, 6, 303-309. 

1.1 Design of the Peptide Library 

To design our initial peptide library we utilized a simple three-step design process.  Step one: 

create an alternating hydrophobic core.  Step two: create a metal coordination sphere.  Step three: 

create a secondary coordination sphere (Figure 1.1). 

Figure 1.1.  Design scheme for short self-assembling peptides. 

Short heptapeptides that alternate hydrophobic residues have demonstrated the ability to form 

prion-like β-sheet aggregates4,5,6.  Step one is to create a core of alternating hydrophobic residues 

as the scaffold for our functional aggregates.  At positions 1, 3, 5, and 7 leucine, a nonpolar 

residue with a propensity to form β-sheets, was inserted. This hydrophobic core will drive β-

sheet and fibril formation, while tolerating considerable variation at positions 2, 4, and 6. 

Step two is to introduce a metal coordination sphere.  In both natural and artificial enzymes a 

histidine triad is a common metal-binding motif7,8,9.  We introduced histidine residues at 

XXXXXXX 
LXLXLXL 
LHLHLXL  
LHLHLRL 
LHLHLDL 
LHLHLEL 
LHLHLYL 
LHLHLHL 
LHLHLKL 

Step 1: create hydrophobic core 
Step 2: create a metal coordination sphere 
Step 3: Add polar residues for additional β-sheet/ secondary 
coordination sphere 
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positions 2 and 4, in order to form this motif between neighboring β-strands.  The histidine triad 

will coordinate to Zn2+, while leaving an open coordination site for a water molecule, the 

nucleophile in the esterase reaction. 

Step three is to form a secondary coordination sphere at position 6.  At position 6 a variety of 

polar amino acids were inserted and screened for catalytic activity.  An initial library of seven 

peptides was synthesized through Fmoc solid-phase peptide synthesis (Figure 1.2). 

Figure 1.2. List of initial leucine core peptides.  Red residues are the alternating hydrophobic 

core, blue the metal-binding residues, and gold the hyrdrophilic secondary coordination sphere 

residues.  All peptides were synthesized through Fmoc solid phase synthesis. 

Peptide Sequence 
1 Ac-LHLHLDL-CONH2 

2 Ac-LHLHLEL-CONH2 

3 Ac-LHLHLQL-CONH2 

4 Ac-LHLHLYL-CONH2 

5 Ac-LHLHLHL-CONH2 

6 Ac-LHLHLKL-CONH2 

7 Ac-LHLHLRL-CONH2 

 

1.2 Screening of Initial Leucine Core Peptides for Catalytic Activity 

1.2.1 Michaelis-Menten Kinetics 

Enzymes have been shown to follow the Michaelis-Menten model of kinetics.  In this 

model an enzyme (E) reacts with a substrate (S) to form the enzyme-substrate complex 

(ES).  This is the rate-limiting step of the reaction.  Once the complex is formed, the 

substrate is rapidly converted to and released as product (P), resulting once again in free 

enzyme.  This reaction scheme is demonstrated by the following equation (Figure 1.3). 

𝐸𝐸 + 𝑆𝑆 ⇄ 𝐸𝐸𝑆𝑆 → 𝐸𝐸 + 𝑃𝑃 (Figure 1.3) 
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 By relating the rate of the reaction to substrate concentration, figure 1.3 can be used to  

 derive the Michaelis-Menten equation (Figure 1.4). 

 

 V0 = (kcat[E][S])/ (KM + [S]) Figure 1.4 
 

According to this model, the appearance of product is linear to the substrate concentration 

until the enzyme binding sites become saturated and the rate levels off (known as Vmax).  

kcat, a measure of turnover number, and KM, a measure of how tightly the enzyme binds 

the substrate, can be used to calculate kcat/KM (a commonly used measure of catalytic 

efficiency). 

 

1.2.2 Choosing pNPA As A Benchmark Reaction 

In order to evaluate the catalytic efficiency of our fibrils, a benchmark reaction is needed.  

In the literature, many zinc-binding metalloenzymes are assayed by the hydrolysis of 

para-nitrophenyl acetate (pNPA) (Figure 1.5)10,11. 

 

                                                                                                      Figure 1.5 The hydrolysis  

 of pNPA. 

 

This allows for easy comparison between our fibrils and other previously designed 

artificial enzymes.  The product is yellow-colored with an absorption maxima at 405nm, 

allowing for the rate of reaction to be easily monitored in a 96-well platereader. 

1.2.3 Catalytic Activity of Leucine-Core Peptides 
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The seven leucine-core peptides from Figure 1.2 were assayed using pNPA in the 

presence of zinc.  The results are included in Figure 1.6.  They follow the Michaelis-

Menten model, indicating enzyme-like activity.  The amino acid present at position 6 has 

a critical role in the catalytic efficiency of the peptide.  The catalytic fibrils are extremely 

sensitive to even single residue changes in the primary amino acid sequence. 

Peptide Sequence kcat/KM, M-1s-1 kcat x 10-2, s-1 KM, mM 

1 Ac-LHLHLDL-CONH2 0.2 ± 0.1 - - 

2 Ac-LHLHLEL-CONH2 < 0.2 - - 

3 Ac-LHLHLQL-CONH2 30 ± 3 - - 

4 Ac-LHLHLYL-CONH2 13 ± 5 - - 

5 Ac-LHLHLHL-CONH2 0.60 ± 0.08 - - 

6 Ac-LHLHLKL-CONH2 12 ± 2 - - 

7 Ac-LHLHLRL-CONH2 18 ± 4 3.2 ± 0.4 1.8 ± 0.4 

   Figure 1.6. Results of pNPA assays for the seven leucine-core peptides.  All experiments  

                     were carried out in 25mM TRIS pH 8 buffer with 1mM ZnCl2.  Concentrations 

                     of pNPA varied from 0.195, to 0.375, to 0.57, and to 0.75mM. 

      Peptide 3 displayed the highest activity (kcat/KM=30 M-1s-1), whereas peptides 1, 2, and 5  

 showed almost no activity.  Peptides 4, 6, and 7 all displayed activities that were between  

 these ranges.  By changing just a single amino acid at a single position, the activity of the  

 peptides can be tuned to a desired level. 

1.3 Establishing Structure-Activity Relationships  

     Next we sought to develop structure-activity relationships for our peptide catalysts (Figure 

1.7).  First, we examined the effect of changes to the hydrophobic core of peptide 7.  Alanine, 
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a much smaller and less hydrophobic residue than leucine, resulted in an almost complete 

loss in activity.  In contrast, isoleucine and valine both resulted in similar increases in 

activity.  Both isoleucine and valine are β-branched amino acids and are known to have a 

higher propensity for β-sheet formation than leucine. 

Peptide Sequence kcat/KM (M-1s-1) 
Position 6 variants 

1 Ac-LHLHLDL-CONH2 0.2 ± 0.1 
2 Ac-LHLHLEL-CONH2 <0.2 
3 Ac-LHLHLQL-CONH2 30 ± 3 
4 Ac-LHLHLYL-CONH2 13 ± 5 
5 Ac-LHLHLHL-CONH2 0.6 ± 0.08 
6 Ac-LHLHLKL-CONH2 12 ± 2 
7 Ac-LHLHLRL-CONH2 18 ± 4 

Leucine Substitutions 
7 Ac-LHLHLRL-CONH2 18 ± 4 
8 Ac-AHAHARA-CONH2 0.12 ± 0.8 
9 Ac-IHIHIRI-CONH2 22 ± 8 
10 Ac-VHVHVRV-CONH2 26 ± 4 

Combined Substitutions 
11 Ac-IHIHIQI-CONH2 62 ± 2 
11a Ac-VHVHVQV-CONH2 32 ± 2 

Primary Ligand Variants 
12 Ac-IAIHIRI-CONH2 0.36 ± 0.16 
13 Ac-IHIAIRI-CONH2 0.2 ± 0.4 

Removal of N, C-Terminal Blocking Groups 
14 H2N-IHIHIQI-COOH 1 ± 3 

 

 

     Next, we combined the substitution to the hydrophobic core with the substitution of glutamine 

at position 6.  The combination of these two substitutions resulted in a doubling of activity in the 

valine variant and a more than tripling of activity in the isoleucine variant.  The most active 

peptide, peptide 11, displayed a kcat/KM of 62±M-1s-1. 

Figure 1.7  Structure-activity relationships of the peptide catalysts.  All reactions were 

carried out at pH 8 in the presence of 1mM Zn2+.  
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     In order to probe the importance of the histidines to the coordination of zinc and activity 

of the peptides, variants with histidine missing at either position 2 or 4 were synthesized.  

Removing the histidine at either position kills the activity of the peptide, suggesting that both 

histidines are needed and play a critical role in the catalytic activity of the peptides. 

     Finally, the N-terminal acyl and C-terminal amino caps were removed from the most 

active species, peptide 11.  This resulted in almost no catalytic activity.  This could be due to 

the introduction of charges to the N- and C-termini.  The resulting charges could cause 

unfavorable electrostatic interactions or disrupt proper β-sheet formation. 

1.4 Structural Characterization of Catalytic Peptides 

In order to understand the structure of the peptide catalysts, several techniques were utilized.  

Not only do these techniques reveal extended β-sheets, but also fibril aggregates on the scale 

of hundreds of nanometers.  When compared to the catalytic efficiency of the peptides, 

several trends between secondary structure and catalytic efficiency are also observed. 

1.4.1 Circular Dichroism Spectroscopy  

Circular dichroism (CD) measures the angle of rotation of plane-polarized light after it 

has passed through a chiral sample.  Peptides, being composed of chiral amino acids, give 

off CD signals.  The different possible secondary structures give unique and 

distinguishable signatures, allowing CD to determine the secondary structure present in a 

given sample (Figure 1.8). 
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     All of the leucine core peptides in the initial library display a random coil at pH 2 in 

the absence of Zn2+.  This is most likely due to the protonation of the histidine residues at 

pH 2, preventing the coordination of Zn2+.  At pH 8 in the presence of Zn2+ all of the 

leucine core peptides display β-sheet structure.  Interestingly, peptides 1, 2, 3, and 6 

display no β-sheet structure at pH 8 in the absence of Zn2+, while peptides 4 and 5 do 

show such structure under these conditions (Figure 1.9).  This indicates that β-sheet 

formation is not solely reliant on coordination to zinc ions, but also on the amino acid 

present at position 6. 

 

 

 

 

 

 

 

 

Figure 1.8.  A representative 

spectral trace of the most 

commonly observed protein 

secondary structures.  Red 

represents an α-helix, black a β-

sheet, and blue a random coil. 

 



19 
 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.9. Circular dichroism (CD) spectra of designed peptides 1-7.  A peptide 

concentration of 24μM was used for all experiments.  Red circles represent 10mM HCl 
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pH2, blue squares represent 5mM TRIS pH8, and green diamonds represent 5mM TRIS 

pH 8 in the presence of 0.5mM ZnCl2.  A 1cm cuvette was used for all CD experiments. 

     The isoleucine variants, which displayed higher activity, also exhibited significantly 

stronger β-sheet signals in their CD spectra (Figure 1.10).  Similar to peptides 1-7, β-

sheet formation is absent at pH 2.  However, the isoleucine variants display β-sheet 

formation at pH 8 in both the presence and absence of zinc.  This may indicate that the 

leucine to isoleucine substitution promotes more defined β-sheet structure, and in turn 

leads to more catalytically active species.  Supporting this is peptide 14, the uncapped 

isoleucine variant, which shows very little β-sheet formation and exhibited very poor 

catalytic activity. 
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Figure 1.10. Circular dichroism (CD) spectra of the designed isoleucine variants.  A 

peptide concentration of 25μM was used for all experiments.  Red circles represent 

10mM HCl pH2, blue squares represent 5mM TRIS pH8, and green diamonds represent 

5mM TRIS pH 8 in the presence of 0.5mM ZnCl2.  A 1cm cuvette was used for all CD 

experiments. 

     The valine-substituted peptides show a similar trend (Figure 1.11).  With the 

exception of peptide 10, the valine peptides also form β-sheet structures at pH 8 in both 

the absence and presence of zinc.  This also once again corresponds to their higher 

activity than their leucine variants.  
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Figure 1.11. Circular dichroism (CD) spectra of the designed valine variants.  A peptide 

concentration of 25μM was used for all experiments.  Red circles represent 10mM HCl 

pH2, blue squares represent 5mM TRIS pH8, and green diamonds represent 5mM TRIS 

pH 8 in the presence of 0.5mM ZnCl2.  A 1cm cuvette was used for all CD experiments. 

Finally, under no tested conditions did the alanine variant (peptide 8) display β-sheet 

structure (Figure 1.12).  This peptide also displayed no catalytic activity. 

 

Figure 1.12. Circular dichroism (CD) spectra of the designed alanine variant.  A peptide 

concentration of 25μM was used for all experiments.  Red circles represent 10mM HCl 

pH2, blue squares represent 5mM TRIS pH8, and green diamonds represent 5mM TRIS 

pH 8 in the presence of 0.5mM ZnCl2.  A 1cm cuvette was used for all CD experiments. 

     Based on these CD experiments it appears that catalytic activity is not only correlated 

to, but dependent on β-sheet formation.  The more catalytically active valine and 

isoleucine variants also show much stronger β-sheet CD signals, even in the absence of 

zinc.  Conversely, peptides such as the alanine variant (8) or the uncapped variant(14), 

which show little to no catalytic activity, also show either very weak or no β-sheet signal 

under any of the tested conditions. 
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1.4.2 Thioflavin-T Binding Assays 

     β-sheet forming peptides are known to have a propensity to form stable amyloid 

structures12.13.  A common technique to detect amyloid structure employs the use of the 

dye thioflavin-T (Figure 1.13). Upon binding to amyloid aggregates, the fluorescence 

properties of the dye change, causing an increase in fluorescence that corresponds to the 

degree of amyloid formation13-15. 

 

 

 

Figure 1.13.  Chemical structure of thioflavin-T. 

Figure 1.14 displays the varying degrees of amyloid formation by the designed leucine-

core peptides.  The peptides display varying degrees of β-sheet formation, with peptide 4 

giving the strongest signal at pH 8. 
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Figure 1.14.  Fluorescence spectrum of thioflavin-T (ThT) in the presence of the leucine-

core peptides.  Peptide samples were prepared in 25mM TRIS pH 8 with 1mM ZnCl2.  A 

peptide concentration of 200μM was used. 

Similarly, peptides 9 and 11 of the isoleucine variants also displayed significant amyloid 

structure (Figure 1.15).  Peptides 12 and 13, while they showed β-sheet structure in the 

CD experiments, did not exhibit significant fluorescence above the blank.  These peptides 

also were not catalytically active.  This suggests that while the histidines in positions 2 

and 4 are not required for β-sheet formation, they play an important role in both catalytic 

activity and amyloid aggregation. 

 

 

 

 

 

 

Figure 1.15.  Fluorescence spectrum of thioflavin-T (ThT) in the presence of the 

isoleucine-core peptides.  Peptide samples were prepared in 25mM TRIS pH 8 with 1mM 

ZnCl2.  A peptide concentration of 200μM was used. 

Peptides 10 and 11a, the valine variants, also show fluorescence above the blank (Figure 

1.16). 
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Figure 1.16.  Fluorescence spectrum of thioflavin-T (ThT) in the presence of the valine-

core peptides.  Peptide samples were prepared in 25mM TRIS pH 8 with 1mM ZnCl2.  A 

peptide concentration of 200μM was used. 

Finally, peptide 8, the alanine variant, shows essentially no fluorescence above the blank 

(Figure 1.17).  Based on these results, it appears that not only is β-sheet formation 

necessary for catalytic activity, but amyloid aggregation as well.  The isoleucine, leucine, 

and valine-core peptides all show significant amyloid-forming propensity, with the 

exception of peptides 12, 13, and 14, which all also show little to no catalytic activity. 
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Figure 1.17.  Fluorescence spectrum of thioflavin-T (ThT) in the presence of the alanine-

core peptide.  Peptide samples were prepared in 25mM TRIS pH 8 with 1mM ZnCl2.  A 

peptide concentration of 200μM was used. 

1.4.3 Transmission Electron Microscopy 

With the aid of collaborators from the University of California San Francisco (UCSF) we 

utilized transmission electron microscopy (TEM) to analyze the morphology of the 

fibrils.  In Figure 1.18 two images of peptide 7 are shown.  The images, one at 0 hours 

and the other at 72 hours, show a lag in the formation of mature amyloid fibrils.  This is 

consistent with the common maturation process found in self-aggregating fibrils.  Peptide 

monomers first assemble into small oligomeric protofibrils and then into fully mature 

fibrilsx.  At 0 hours peptide 7 displays the characteristic protofibrils, but at 72 hours these 

protofibrils have matured into the full fibrils. 

 

 

 

 

 

 

Figure 1.18. (Left) TEM image of peptide 7 at 0 hours. (Right) REM image of peptide 7 

at 72 hours.  Peptide concentration is 25μM. (25,000x magnification, size bar 100nm). 

Interestingly, peptide 11, the isoleucine derivatives, showed much more rapid formation 

of mature fibrils.  Mature fibrils were present at both 0 hours and 72 hours (Figure 1.19). 
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Figure 1.19. (Left) Peptide 11 at 0 hours and (Right) 72 hours. Peptide concentration is 

25μM. (25,000x magnification and size bar 100nm.) 

This suggests that the characteristics of fibril formation can be tuned through altering the 

sequence of the hydrophobic core. 

1.5 Structural Modelling 

Collaborators at UCSF aided us in producing a crude structural model of the amyloid 

aggregates.  The sequence of peptide 11 (IHIHIQI), our most active peptide, was submitted 

to the zipperdb database and broken up into 6-residue fragmentsx.  Rosettax ab initio folding 

generated 100 models of 7-residue peptides.  The top result was aligned into the zipperdb 

template with an acetylated N-terminus and amidated C-terminus.  This served as the starting 

model.  The Rosetta relax protocol was used to generate 200 trajectories for under the 

conditions of zinc coordination.  This generated the model shown in Figure 1.20. 
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Figure 1.20.  (A) Structural modelling shows peptide strands in a parallel arrangement 

within the β-sheet. (B) Structural modelling of the packing of the hyrdrophobic core.  

Structural modeling done by Xiaozhen Hu, UCSF. 

     The model aligns with many of our experimental predictions and conclusions.  The 

strands are arranged in a parallel fashion.  Zinc is also bound to three histidines, two from 

one strand, and a third from the neighboring strand.  

1.6 Mixing Peptides for Synergistic Activity 

     Short 7-residue peptides offer a simple system for designing amyloidogenic catalysts.  

Even with just 7 residues the number of possible sequences present with a 20 residue library 

is 1.28 x 109.  However, as observed in our studies, only a small fraction of these are capable 

of amyloid formation and catalysis.  By retaining a consistent hydrophobic core and both 

histidine residues, while varying position 6, this leaves a combination of just 3 different 

amino acids in a given strand.  While this still provides a relatively large number of 

possibilities, the diversity can be greatly expanded by thinking of active species as a mixture 

of 2 peptides.  Two separate peptides could mix into the same fibril to form functional groups 

that are a combination of the two strands. 

A B 
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     To test whether our peptides are capable of synergistic activity, we mixed two peptides of 

moderate activity and measured their catalytic activity.  Peptides 4 and 7 were mixed in 

varying ratios.  These peptides do not oligomerize at pH 2, so peptide stocks were mixed and 

then raised to pH 8 with TRIS buffer containing zinc to induce oligomerization.  Peptides 4 

and 7 did display synergistic activity, with a max catalytic activity at 50% of each peptide 

(Figure 1.21).   

  

Figure 1.21. The catalytic efficiency of varying ratios of peptide 4 and 7.  Graph on left 

results from mixing peptides before inducing fibril formation.  Graph on right results from 

mixing preformed fibrils.   

In contrast, if the peptides are raised to pH 8 and then mixed, no synergistic activity is 

observed.  This may be due to the preformed fibrils being too bulky and stable to mix 

together well.  Peptides at pH 2 have not formed fibrils and can thus adequately mix together 

before oligomerization is induced. 
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1.7 Conclusions 

     Short seven-residue peptides capable of carrying out ester hydrolysis were designed.  

They follow Michaelis-Menten kinetics and the most active species achieved a kcat/KM of 

62M-1s-1.  Zinc plays a role not only in catalysis, but in the formation of stable secondary 

structures.  The active species form β-sheet rich amyloid fibrils.  These stable arrangements 

are also necessary for catalytic function.  By altering the hydrophobic core or a single residue 

at position 6, the activity of the peptides can be tuned drastically.  Finally, these peptides also 

exhibit synergistic activity upon mixing.  This opens the door to virtually limitless 

possibilities of combinations in a single fibril.   

     These catalytic aggregates are the first of their kind and offer a novel approach to 

biomaterial design.  Their simplicity makes them easy and cost-effective to produce.  Despite 

this simplicity, they have the potential for remarkable diversity through the use of peptide 

mixing strategies.  These peptides could provide a simple yet highly efficient new strategy 

for biomaterial design. 

  



31 
 

Chapter Two: 

Design of Self-Assembling Peptides for 

Biomolecule Recognition 
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All work in the following chapter has been performed by the following authors, unless 

otherwise stated: 

Smith, T. A., Sternisha, A., *Korendovych, I. V. 

2.1 Design of the Peptide Library 

Enzymes not only carry out efficient catalytic activity, but also display high 

specificity for their target molecule.  Antibodies, likewise, identify antigens with 

extremely high specificity.  These proteins can often distinguish between differences 

in a single bond, preventing promiscuous and unwanted interactions from taking 

place.  To further test the ability of self-assembling peptides to carry out protein-like 

functions, we aimed to design peptides capable of biomolecule recognition.   

Melittin is a 26-residue cationic α-helical antimicrobial peptide with the sequence 

GIGAVLKVLTTGLPALISWIKRKRQQ (Figure 2.1).  Found in bee venom, it is thought to 

disrupt the cell membrane.  Melittin makes an ideal target due to its relatively small 

size and well-defined secondary structure.  Melittin also contains regions of positively 

charged residues and polar residues, offering the possibility of both electrostatic and 

polar interactions between melittin and the fibrils16. 

 

A series of peptides were designed to target melittin (Figure 2.2).  In order to 

facilitate amyloid-formation, an alternating hydrophobic core composed of leucine 

residues was maintained.  In the remaining positions combinations of negatively 

Figure 2.1. 3-dimensional structure of 
melittin, with side chains exposed.  
Positively charged regions are highlighted 
in blue, polar regions in green, and 
nonpolar regions in red.   
Melittin sequence: 
GIGAVLKVLTTGLPALISWIKRKRQQ 
Structure generated in Pymol with PDB 2MLT 
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charged glutamate residues and various polar residues were added.  The negative 

glutamate residues will target the melittin through electrostatic interactions.  The polar 

residues may help increase specificity of binding.  While polar interactions such as 

hydrogen bonding are weaker than electrostatic interactions, they require the two 

components to be closer in space, leading to tighter binding between melittin and the 

fibrils which more closely can identify its shape.  The accumulation of multiple 

specific polar interactions may lead to certain fibrils exhibiting specificity for the 

target molecule. 

Peptide Number Sequence 
BR-1 Ac-LELELQQ-CONH2 

BR-2 Ac-LELYLEL-CONH2 

BR-3 Ac-LNLELQL-CONH2 

BR-4 Ac-LELNLQL-CONH2 

BR-5 Ac-LELHLQL-CONH2 

BR-6 Ac-LHLELQL-CONH2 

BR-7 Ac-LELHLYL-CONH2 

BR-8 Ac-LHLELYL-CONH2 

Figure 2.2. Designed peptides for binding to melittin. Peptides were acetylated on 

the N-terminus and amidated on the C-terminus.  All peptides were synthesized by 

manual solid-phase synthesis. 

2.2 Thioflavin-T Binding Assays 

     In order to use these peptides as a functional biomaterial, the formation of an 

amyloid aggregate is essential.  By forming a stable 3-dimensional structure it allows 

for the fibrils to display functional groups on the surface which can bind to the target 

molecule.  The single peptides by themselves in solution would lack the size and 

stability necessary to specifically recognize a target.  To evaluate the propensity of the 

designed peptides to aggregate, we used thioflavin-T assays, as in Chapter 1 (Figure 

2.3). 
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Figure 2.3. Thioflavin-T experiments for peptides BR-1 to BR-8.  The blank at pH 2 is 

represented by a red circle, peptide at pH 2 a blue square, blank at pH 8 a green 

diamond, and peptide at pH 8 a black triangle. 

     Interestingly, the majority of the peptides only aggregate at pH 2 and not pH 8.  

This may be due to the protonation of the glutamate residues at low pH.  When 

deprotonated the residues are charged and may repel each other, preventing 

aggregation.  However, in the case of peptides BR-5 and BR-6, where a histidine is 

inserted into either position 2 or 4 and a glutamine into position 6, the peptides do not 

aggregate significantly at either of the two pHs.  BR-7 and BR-8 do aggregate at pH 8 

and not pH 2.  This may be due to the protonation of histidine acting as a molecular 

switch.  At low pH the histidine is protonated and charged, preventing fibril 

formation.  At high pH it deprotonates and is neutral.  This may be enough to 

overcome repulsion by the deprotonated glutamates at pH 8 and allows for 

aggregation. 
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     For our binding experiments we chose to use peptides BR-7 and BR-8.  Amyloids 

that form under higher pH conditions are desirable not only because the glutamates are 

deprotonated, allowing for electrostatic interactions, but pH 8 is also much closer to 

standard biological pH. 

2.3 Synthesis of Fluorescently-Labelled Melittin 

     To test whether our designed fibrils are bound to melittin a fluorescent probe must 

be added to the melittin peptide.  Dr. Yurii Moroz previously synthesized dansyl-

lysine, a derivative of lysine that contains a dansyl fluorescent tag on the lysine side 

chain (Figure 2.4).   

H2N

O

OH

HN
S

O
O

N

N

 

     Dansyl-lysine can easily be added on to the N-terminus of melittin during solid-

phase peptide synthesis.  Dansyl-lysine is known to have an extinction coefficient of 

3,400 M-1cm-1 at 330nm when attached to a polypeptide chain.  It is an ideal probe for 

our purposes as it drastically changes its fluorescent properties when its environment 

is altered17.  By monitoring shifts in the emission maximum at 540nm (excitation at 

330nm) in the presence and absence of fibrils, we can determine if melittin is binding. 

 

 

Figure 2.4. The chemical structure 
of dansyl-lysine. 
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2.4 Melittin-Binding Assays 

To evaluate binding of the designed peptides to the fluorescently-tagged melittin, 

25μM of peptide was mixed with 20μM of melittin at pH 8 using a TRIS buffer.  The 

solution was excited at 330nm and its fluorescence emission was measured from 

480nm to 640nm.  All 8 of the initial designed peptides were screened for binding 

(Figure 2.5). 

 

     Of the 8 initial peptides, only BR-7 and BR-8 induce large shifts in the 

fluorescence maximum of fluorescently-tagged melittin.  A large increase in intensity 

is observed along with a blueshift in the location of the maximum.  BR-7 and BR-8 

are also the only two peptides that form aggregates at pH 8.  This indicates that the 

formation of amyloid aggregates is essential for binding to the target molecule, and 

the single peptide species in solution are not sufficient. 

2.5 Testing Specificity of Fibril Binding 

     To test the specificity of BR-7 and BR-8, binding assays were also done with 

fluorescently-tagged magainin I, another cationic antimicrobial agent.  Magainin I is a 
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Figure 2.5. Melittin-
binding assays of the 8 
designed peptides.  
Binding is associated 
with a significant shift in 
the emission maximum 
of free melittin 
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similar length to melittin and has a sequence of GIGKFLHSAGKFGKAFVGEIMKS.  

The concentration of melittin and magainin was also decreased to 5μM and the 

concentration of designed peptide was increased to 50μM, in order to reduce non-

specific binding.  Results of the binding assays are in Figure 2.6. 

 

Figure 2.6. Binding assays of 50μM fibrils to 5μM fluorescently-tagged melittin or 

magainin. Binding assays were carried out at pH 8 in TRIS buffer. 

      The binding assay reveals that both BR-7 and BR-8 bind to both melittin and 

magainin with considerable affinity.  In order to better understand the binding 

interactions at work, we next developed a negatively-charged derivative of melittin. 

2.6 Probing the Binding Interactions 

     In order to probe the interactions between the melittin molecule and the fibrils, all 

of the positively charged residues in melittin were replaced with glutamate residues.  

This changes the charge of these residues from positive to negative.  This “melittin E” 

molecule exhibited virtually no binding to BR-7 and BR-8, suggesting that binding is 

highly dependent on electrostatic interactions (Figure 2.7). 
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This may mean that insufficient polar interactions are occurring to observe any 

significant specifity.  Binding is dominated by electrostatic interactions in BR-7 and 

BR-8.  

2.7 Ultra-Centrifugation Experiments 

     Finally, to confirm that it is the large molecular weight species binding to melittin 

and not small molecular weight species in solution, we did a series of ultra-

centrifugation experiments.  Fluorescently-labelled melittin was spun at 25,000rpm for 

1 hour, both in the presence and absence of fibrils.  A fluorescence spectrum was 

obtained of the solution before ultra-centrifugation, of the supernatant after ultra-

centrifugation, and of the solution after the spun-down sample had been resuspended.  

Results are in Figure 2.8. 
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Figure 2.7. Binding assay of BR-7 
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     As is apparent, melittin does not spin down out of solution by itself. However, in 

the presence of fibrils BR-7 and BR-8, the fluorescence disappears after ultra-

centrifugation.  The fluorescence partly returns after the centrifuge sample is mixed 

and resuspended.  The high molecular weight species are binding to the melittin and 

pulling it out of solution.  It is the large fibrils that bind to the target molecule. 

2.8 Conclusions 

We successfully designed peptides that, upon aggregating into amyloid fibrils, bind to 

melittin.  The formation of fibrils is also necessary for binding.  Single peptides 

dissolved in solution are not sufficient to bind melittin or pull it out of solution.  

However, the fibrils do not display significant selectivity for melittin over magainin, 
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another similar cationic antimicrobial peptide.  Experiments with a negatively-charged 

variant of melittin suggest that the binding interactions are dominated by electrostatic 

interactions.  These are relatively strong interactions and may be why there is not 

much preference for melittin over magainin.  

     In the future, the specificity of these peptides could be improved through peptide 

mixing techniques.  By incorporating peptides that have a higher propensity for 

hydrogen bonding, such as LYLYLYL or serine containing peptides, more specific 

polar interactions could be introduced into the fibril.  This could lead to more specific 

binding and higher recognition of the target molecule.  The fibrils also need to be 

structurally characterized more to determine their secondary structure and 

morphology. 

     Peptides capable of specific biomolecule recognition offer a versatile platform for 

biomaterial design.  Fibrils capable of biomolecule recognition could be mixed with 

catalytic fibrils to create biomaterials that bind a specific substrate and carry out 

catalysis on it.  One application would be in designing a biomaterial to bind and 

neutralize an environmental toxin.  Due to the large size and stability of the fibrils, 

they can also easily be placed on a filter for mechanization.  Self-assembling peptides 

capable of protein-like functions offer a versatile, simple, and efficient platform for 

future biomaterial design. 
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3.1 Peptide Synthesis & Purification 

     Peptides were synthesized by manual fluorenylmethyloxycarbonyl (FMOC) solid-phase 

peptide synthesis under elevated temperaturex.  A reactions were carried out on a 0.1 mmol 

scale.  A ChemImpex Rink Amide Resin was used as a solid support.  The resin was swelled 

in dimethylformamide (DMF) at room temperature for 30 minutes then lowered into a 65°C 

oil bath.  The resin was deprotected for 5 minutes with 5% piperazine and 0.1 

hydroxybenzotriazole (HOBt) in DMF.  Amino acids were coupled to the resin for 7 minutes 

using an AA:HCTU:DIPEA:resin (3:2.8:6:2:1 v:v:v) mixture in DMF.  Between deprotection 

and coupling steps the resin was washed 4 times with DMF for 30 seconds each.  After the 

last coupling reaction the peptide is deprotected and raised out of the 65°C oil bath.  An 

acetyl cap is added by coupling the N-terminus with 6 equivalents of acetic anhydride 

(Ac2O).  Resin was dried under vacuum for approximately 20 minutes.  Peptides were 

cleaved from the resin and side chains were simultaneously removed with a mixture of 

trifluoroacetic acid (TFA)/H2O/triisopropyl silane (TIS) (95:2.5:2.5 v:v) for 2 hours at room 

temperature.  The crude peptides were precipitated and washed with cold methyl-tert-butyl 

ether (MtBE).  Peptides were purified on a Varian Star 210 preparative reverse phase HPLC 

system.  A Vydac C4 preparative column was used with a linear gradient of solvent A (0.1% 

TFA in MilliQ H2O) and solvent B (90% CH3CN, 10% H2O, 0.1%TFA).  MALDI-TOF mass 

spectrometry with a Bruker Autoflex III Smartbeam mass spectrometer was used to confirm 

the identities of the purified peptides.  Purity was determined with a Shimadzu Prominence 

UFLC instrument and an analytical Zorbax Eclipse XDB-C18 column. 
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3.2 Preparation of Peptide Stocks 

Purified peptides were lyophilized to remove solvent.  Lyophilized peptides were dissolved 

in either 10mM hydrochloric acid or trifluoroethanol (TFE) to make a 1mM stock solution.  

Concentration was determined by absorbance at 214nm as measured by an Agilent 8453 UV-

Vis spectrophotometer.  Extinction coefficients were calculated using literature values18.  The 

pH 2 stock was stable for at least a week. 

3.3 Circular Dichroism Spectroscopy 

A JASCO J-715 spectrometer was used to collect CD spectra.  Data was collected in step-

scan mode (4s) and averaged over three runs.  Sample was held in a quartz cuvette with a 

1cm path length.  Peptide concentrations were held at 24μM in either 10mM HCl, 5mM 

TRIS (pH8), or 5mM TRIS (pH8) with 0.5mM ZnCl2. 

3.4 Thioflavin T Assays 

ThT assays were carried out on an ATF 105 spectrometer (Aviv Instruments, Inc.) at 25°C.  

The instrument was operated in the steady-state mode with emission and excitation band pass 

set to 4nm.  Samples were placed in a quartz cuvette with 5mm excitation and 5mm emission 

pathlengths.  Peptide concentration was held at 200μM in either 10mM HCl, 25mM TRIS 

(pH8), or 25mM TRIS (pH8) with 1mM ZnCl2.   ThT was added to a final concentration of 

25μM. 

3.5 Transmission Electron Microscopy 

Peptide stocks were diluted to approximately 25μM in 25mM TRIS (pH8) and 1mM ZnCl2 or 

CoCl2.  7μL were absorbed for 2-5 minutes onto formvar/carbon-coated, 200-mesh copper 

grids (Ted Pella, Redding, CA; glow-discharged prior to use).  Grids were briefly washed 

with 0.1 M and 0.01 M ammonium acetate buffer, and stained with two 50μL drops of 
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freshly filtered 2% (w/v) uranyl acetate.  Samples were viewed with a FEI Tecnal F20 

electron microscope (FEI Company, Hillsborough, OR) at an acceleration voltage of 80kV.  

Electron micrographs were recorded on a Gatan (Pleasanton, CA) UltraScan CCD camera. 

3.6 Kinetic Assays 

A Thermo Labsystems Multiskan Spectrum plate reader was used to monitor absorbance of 

the product (p-nitrophenol) at 405nm and 22°C in 96 well plates.  p-Nitrophenylacetate 

substrate as diluted to a 0.1M stock in acetonitrile.  150μL of freshly prepared substrate 

solution in 25mM TRIS (pH 8), 1mM ZnCl2 was added to 50μL of buffered peptide 

stocksolution at pH 8.   

3.7 Mixing Experiments 

When mixing at pH 8, 135μL of each 1mM stocks of peptides in 10mM HCl were separately 

mixed with 15μL of isopropanol and 1.35mL of 25mM TRIS (pH 8) with 1mM ZnCl2.  

These solutions were allowed to incubate for 48 hours.  The stock solutions were then mixed 

in the proportions reported to a final volume of 50μL within the well.  To each well was 

added 100μL of 25mM TRIS (pH 8) with 1mM ZnCl2.  50μL of substrate solution was added 

to a final concentration of 195μM.  The activity was measured by the protocol in section 3.6. 

When mixing at pH 2 the 1mM stock solutions of each peptide were prepared in 10mM HCl 

pH 2.  30μL of isopropanol was added to 270μL of each pH 2 stock solution.  The two stocks 

were mixed to form 40μL samples at various ratios, as reported.  360μL of 25mM TRIS pH 8 

with 1mM ZnCl2 was added to each sample, and allowed to incubate for 48 hours.  50μL of 

these samples were added to each well of a 96-well plate.  Finally, 150μL of substrate 

solution was added to each well to a final concentration of 195μM.  The activity was 

measured by the protocol in section 3.6. 
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3.8 Melittin Binding Fluorescence Assays 

1μL of 1mM melittin stock in TFE and 10μL of fibril stock were added to 189μL of 25mM 

TRIS pH 8, giving a final melittin concentration of 5μM and a final fibril concentration of 

50μM.  The solution was excited at a wavelength of 330nm and the emission spectrum was 

collected from 480nm to 600nm, with a slit of 5nm.  A PMT setting of “medium” was used 

with a scan control setting of “slow.” 

3.9 Ultra-Centrifuge Studies 

20μL of 1mM melittin stock in TFE and 200μL of fibril stock in TFE were added to 3.78mL 

of 25mM TRIS pH 8. This solution was centrifuged in a Beckman XL-80 ultracentrifuge for 

1 hour at 25,000 rpm and 4°C.  Fluorescence spectra were taken as reported in section 3.8 of 

the solution before centrifugation, after centrifugation, and after centrifugation and 

resuspension of the samples. 
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