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Abstract 

Agriculturists continually look for ways to improve the nutrient content of crops without 

decreasing yield or economic benefits. Mutualistic relationships have the potential to enhance the 

nutrient content without sacrificing the production needs of the farmer. Mutualisms occur when 

two or more species interact and both members of the association benefit. An exceedingly 

important and often overlooked mutualism is the one formed between arbuscular mycorrhizal 

fungi (AMF) and plants. This interaction has been shown to be a critical component of most 

ecosystems, yet our understanding of these relationships is still limited. We know that in 

exchange for photosynthetically derived carbon, AMF help to increase plant nutrient uptake. 

However, the potential of AMF to improve the crop nutrient content relative to human health is 

relatively unstudied. Optimal levels of mutualistic activity could increase efficiency in 

agriculture, and these advancements would improve the economic and environmental impacts of 

agriculture.  

To assess the benefits of AMF on crop nutritional value, I designed a greenhouse 

experiment that tested the effect of AMF inoculation on carrots planted in nutrient deficient sand. 

I used two AMF species, Rhizophagus clarus and Rhizophagus intraradices and compared the 

effect of carrots grown with these AMF species individually, both together, and without AMF. I 

examined above- and belowground biomass as well as the levels of beta-carotene and a suite of 

minerals. The results showed that carrots grown with both AMF species had increased biomass, 

aluminum, phosphorous, and zinc levels and showed trends of increased beta-carotene. This 

suggests that AMF application in agriculture could increase the availability of nutrient dense 

crops and help sustain the global food supply.   
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Executive Summary 
 

 Arbuscular mycorrhizal fungi (AMF) sounds rather complicated, but in reality it is a 

simple soil organism that associates with over 90% of all plants. It is one of thousands of 

microscopic soil species that make up the underground ecology of plants. AMF have 

characteristics that make them a good candidate for agricultural application because they form a 

mutualism with plants. Mutualisms are a type of symbiotic relationship where both members of 

the relationship benefit. In the case of AMF, the fungi provide the plant with nutrients found in 

hard to reach spaces of the soil and the plant provides the fungi with carbohydrates from 

photosynthesis. The exchange occurs in fungal structures termed arbuscules that develop once 

the fungi establish inside the plant root cells. The fungus grows thread-like hyphae that extend 

from the plant root into inaccessible soil spaces and sequesters important nutrients needed for 

plant growth and maintenance. Research shows that the AMF-plant mutualism increases plant 

nitrogen and phosphorous levels. However, there are limited studies evaluating if the mutualism 

increases the crop nutrient content relevant to human health.  

 Increasing the nutrient content in crops is of topical importance to the current global 

supply food crisis. The world population is expected to reach 9 billion by the year 2050. In order 

to keep up with the growing population size, current agriculture yields need to increase by at 

least 70%. In addition, climate trends predict that the atmospheric level of carbon dioxide will 

continue to increase. As CO2 increases, the mineral content of crops decreases. Therefore, it is 

critical to find a way to increase the quality of the crops. AMF provide an economically and 

environmentally sustainable approach to agriculture.  

 The goal of my research project was to assess the benefit of the mutualism between AMF 

and crop plants with respect to the nutritional content relevant to human health. I believe the 
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application of my research extends beyond the scientific community to affect the global 

community. In order to test my hypothesis, I tested the effect of two AMF species, R. 

intraradices and R. clarus on the growth and nutrient content of carrots. I set up four different 

treatments in a greenhouse experiment: two single species AMF treatments (R. intraradices or R. 

clarus), one treatment with both species, and a control treatment where no AMF species were 

applied. Carrots were grown in sterile sand with limited water application to simulate nutrient 

deficient soils. The carrots were harvested after 20 weeks, and biomass and nutrient content was 

determined.  

The results showed the carrots grown with AMF had significantly higher aboveground 

and belowground biomass. An increase in biomass is enticing for farmers who desire ways to 

maximize production. In addition, the AMF increased aluminum, phosphorous, and zinc levels 

and decreased molybdenum and sodium levels. The results also indicated a trend of increased 

beta-carotene with AMF application. Beta-carotene is important for our body’s production of 

vitamin A. Vitamin A deficiencies rank among the most common and debilitating deficiencies in 

the world. Deficiencies are most common in areas of poor soil quality. If AMF can increase the 

levels of beta-carotene in sterile sand, it is indicative that AMF application could allow people 

living in areas of poor soil to receive more beta-carotene and therefore decrease instances of 

vitamin A deficiency.  Zinc deficiencies are also common and receiving adequate amounts of 

this mineral is necessary for proper nutrition. Zinc is an essential nutrient for DNA repair and 

immune response. If AMF can increase the content of these important nutrients in crops, 

agriculture application could reduce deficiencies around the globe. 

The results suggest AMF application in agriculture can aid in supplying the growing 

world population with nutrient rich crops. This method is better than the current methods used to 
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increase crop yields to feed the world. Right now, the solutions are actually making the situation 

worse. We use chemical filled pesticides and fertilizers that leak into our environment cause 

more damage. The application of synthetic fertilizers results in nitrogen runoff in waterways and 

contamination of drinking water.  If ingested, the nitrogen reduces our ability to carry oxygen. 

Moreover, the release of oxidized nitrates from the application of fertilizer also contributes to the 

formation of smog, greenhouse gasses, and destruction of the ozone layer. AMF application is 

clearly a more sustainable solution to sustaining the food supply by increasing the quality of a 

single serving of produce. In addition, past studies reveal that AMF increase the integrity and 

fertility of soil. AMF have the capacity to neutralize harmful soil toxins by storing them in 

structures called vesicles. This mechanism highlights their potential use in urban agriculture. 

City pollutants make soils unusable, AMF have the capacity to make the soil suitable for food 

production. 

 The results of my study combined with previous research on the benefit of AMF in 

agriculture suggest application of these underground fungi would enhance the quality of crops 

and the security of the global food supply.  
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Preface 
 

Under the mentorship of Professor Kari Segraves, I have been a working on my research 

project titled, “Evaluating the effect of arbusular mycorrhiza fungi on agriculture, for the past 

three years”. It has been an amazing experience studying and learning from Professor Segraves 

and the other members of the “Segraves lab”. The lab focuses on ecological relationships and has 

opened my eyes to important symbioses in our environment and their community importance. 

With the freedom to design my own research project, I decided to take the knowledge gained 

from the Segraves lab on mutualisms and apply it to broader topics. My research combines 

academic disciplines to challenge a question: How can we environmentally and economically 

sustain the global food demand? My research has evolved around discovering if a particular type 

of fungi, Arbuscular Mycorrhizal Fungi (AMF), could improve the nutritional content of a crop 

and aid in solving global concerns.  

In addition to working in the greenhouse and laboratory, I presented my research 

artistically in a gallery setting (see appendix). This challenged me to visually and orally present 

my project in a way that transcended to a broader audience. Ultimately, this experience taught 

me the importance of explaining scientific research to the general community in order to have a 

wider impact. In addition to learning to better translate the information, this opportunity also 

connected me with students and community members who became interested in applying AMF 

to the Syracuse community. Over the next year, I intend to work with a small group of motivated 

people to apply my research findings to the urban gardens in Syracuse.    
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Chapter 1 

Introduction 

  The ability to increase our future global food supply relies on innovative agricultural 

techniques to increase crop yield and nutrient content. These techniques are needed because the 

vulnerability of the food system is increasing due to pressures from an increasing world 

population and detrimental climate change effects. For instance, world population is expected to 

reach nine billion by the year 2050 (Fig. 1).  In order to sustain this growth alone, the UN Food 

and Agriculture Organization predicts agricultural yields must increase by at least seventy 

percent (O’Donoghue et al. 2011).  

 

 

 

 

 

 

 

 

  

 Moreover, the situation is further exacerbated by current climate trends. As atmospheric 

carbon dioxide levels rise, crop plants have decreased concentrations of minerals and nutrients 

such as iron, zinc, and protein (Loladze 2002). As the nutrient content of crops decreases, larger 

production quantities are required to meet human macronutrient and micronutrient needs. Even 

without taking into consideration the expected population and climate trends, there are currently 

Figure 1: Population growth trend according to the U.S. Census Bureau. 
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more than nine million people experiencing hunger due to insufficient access to nutrient dense 

food (Gardner & Halweil 2000). Studies reveal that large areas of hunger are in locations with 

the world’s poorest soil conditions (e.g., Henao & Baanante 2006). Because poor soil conditions 

inhibit plant growth, nutrient content, and maturity, we must find a way to increase crop yield 

and quality to help abate world hunger. 

 One relatively understudied solution to abating the global food crisis is integrating 

underground species interactions and community ecology to create a more sustainable 

agricultural system. Plants interact with underground microorganisms such as rhizobium bacteria 

and fungi that transform organic soil matter into plant nutrients and aid in carbon and nitrogen 

acquisition (Bender 2015; Lambers et al. 2009). The diversity of interactions between soil 

organisms and plant roots can ultimately determine the viability of plants and may increase 

overall soil fertility. These types of symbiotic relationships have been shown to increase the 

productivity of agricultural systems (Medina et al. 2010). In particular, mutualisms, interactions 

where both members of the association benefit, have the potential to enhance the nutrient content 

of crops without sacrificing production yields or product quality. Therefore, an emphasis on 

community ecology and underground soil species interaction is necessary to sustain the global 

food supply.  

 In particular, a key mutualism that could increase the yield and quality of crops is the 

interaction between plants and arbuscular mycorrhizal fungi (AMF). The mutualism between 

AMF and plants is a critical component of most ecosystems. Indeed, at least 90 percent of plant 

families form relationships with at least one type of mycorrhiza (Plenchettee el al. 2005). In 

exchange for photosynthetically derived carbon, AMF help increase plant nutrient uptake. AMF 

can also neutralize toxic soil chemicals, increase resistance to disease and harsh environmental 
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conditions, and help plants defend pathogens and predators (Karban 1989). Although there has 

been extensive research on the ability of AMF to forage for nutrients for plant maintenance, the 

potential of AMF to improve the nutrient value relative to human health is relatively 

understudied. 

 One reason AMF could increase the nutrient quality of crops is their ability to colonize 

the roots of plants and establish external structures that enhance the uptake of nutrients (Clark 

and Zeto 2000; Karaginnidis et al., 2007; Leigh et al., 2009; Veresoglou et al., 2010). Once the 

AMF enter the root cortical cells, they extend thread-like hyphae through the soil to maximize 

soil exploration and increase nutrient availability to the plant. The hyphae mobilize hard to reach 

nutrients and exchange them with the host plant through structures called arbuscules. The 

majority of AMF studies recognize AMF success in increasing plant phosphorous and nitrogen 

uptake (Leight et al., 2009; Johansen 1996), and evidence also supports increase of other 

nutrients including, zinc (Seres et al., 2006), copper (Toler et al., 2005), potassium, and iron 

(Cavagnaro 2008, Kim et al., 2010). These characteristics suggest the potential for this 

mutualism to increase crop yield in poor soil conditions. Indeed, in one of the few studies to 

address this, Hart and Forsythe et al. (2012) showed Allium, a highly mycorrhizal dependent 

plant, to have a strong positive nutrient response to AMF inoculation. This study represented an 

initial survey for the effect of AMF on nutrients important for human health. These results 

suggest that, from agricultural perspective, AMF application could increase nutrient crop quality 

and in turn, increase global food security. 

I examined this possibility by testing how AMF affect nutrient content and yield of a 

common agricultural crop. In this study, I observed the effect of two AMF species, Rhizophagus 

clarus and R. intraradices, on carrots (Daucus carota). I chose to work with carrots because of 
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their high mycorrhizal dependency due to their short root hairs that are inefficient at acquiring 

nutrients in depleted soils (Dechassa et al., 2003). In addition, the success of AMF and carrot 

symbiosis has been highlighted by a recent study that showed positive physiological and 

morphological root changes and increased carrot yield when carrots were inoculated with AMF 

(Affokpon et al. 2011). Carrots also have been shown to respond to a number of fungi species. I 

used the AMF species, R. clarus and R. intraradices, because they have a high success rate of 

infection in many key agricultural crops including carrots (Paradi 2003). Also, arbuscular 

colonization appears to peak earlier in these two species than many other species of AMF, which 

was conducive to the timeframe of my study (INVAM-WVU). Here, I tested if the successful 

mutualism of carrots with R. intraradices and R. clarus produces increased nutrient content 

benefits relevant to human consumption. This study addresses whether AMF application in 

agriculture could increase crop quality and suggest a viable solution to help meet future food 

demands.   
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Chapter 2 

Materials and Methods 

Creating bulk AMF 

In order to perform the study, I first created bulk inoculum. Inoculum consisted of three 

main sources: AMF spores, infected root pieces, and hyphae. The AMF inoculum was applied to 

the soil in order to allow it to colonize roots (Smith and Reed 2008). I obtained single-species 

inocula of R. clarus and R. intraradices from the University of West Virginia International 

Culture Collection of Arbuscular Mycorrhizal Fungi (INVAM-WVU). These pure inocula were 

grown on the “trap” plant Zea mays to create a large volume of bulk inoculum for each AMF 

species. I chose corn as a trap plant because it is a C4 plant with high ATP requirements that 

would optimize sporulation and mycotrophic dependency. Prior to growing corn and AMF, I 

sterilized pots, sand, soil, and seeds to eliminate the chance of bacterial or fungal contamination. 

The sand and soil were autoclaved twice for 45 min with a 24 h rest period to ensure that any 

heat-stimulated microbes were killed. The corn seeds were sterilized by soaking in 10% bleach 

for 10 min and then washed five times with autoclaved water. The sterilized seeds were 

subsequently soaked overnight in sterile water to enhance germination.  

Seeds were planted five per pot to maximize root development. I covered the bottom 

holes of each pot with tape and poked smaller holes in the tape for controlled water drainage. 

The pots were assembled by adding approximately a 7 cm section of autoclaved sand, followed 

by a mixture of 25 ml of AMF mixed and 400 ml of autoclaved soil, finished with a layer of sand 

with five corn seeds evenly sown (Fig. 2). This approach maximized root contact with the fungi 

as the corn roots penetrated through the soil. The plants were given low phosphorus fertilizer to 

increase the plant reliance and dependency on AMF (Plenchette et al. 2005).  To make a 1 gallon 
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supply of fertilizer 3g of Peters Professional 15-0-15 Peat Lite Dark Weather Feed Fertilizer, 

0.45g MgSO4, 0.75 mL of Scotts Miracle-gro 4-12-4, Quick Start Liquid Plant Food, and 

3785mL of H2O was mixed for a minimum of ten min. Each corn pot received 240 mL each 

treatment once a week (.19 g of Peters, 28.1mg MgSO4, 0.0469mL of Quick Start, and 236.6mL 

of H2O). The corn was watered every third day. Colonization was confirmed using staining 

techniques (described below) and the association with AMF formed within fifty days. Watering 

was stopped one week prior to inoculum harvest to increase spore production (INVAM-WVU) 

then aboveground biomass was removed and the roots and soil were chopped. The inoculum for 

each species was mixed well and stored at 4°C.  

 

 

 

 

 

 

 

Figure 2: Experimental design for corn inoculation. The tan layers 
represent the sterile sand, the blue middle layer represents the added AMF 
inoculum, the yellow circles represent the corn seeds and the brown root 
represents sprouting from the seed and root establishment. 
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Carrot Study 

The bulk supply of inoculum was used to test the effect of AMF on carrot nutrient levels 

and biomass. I used Gurney’s scarlet nantes carrots because of their short root hairs and 

mycorrhizal dependency. Carrots were germinated in sterilized sand and transplanted once they 

had grown to about 2.5 cm. I transplanted the seedlings into sterilized 10 cm wide pots lined with 

punctured foil for controlled drainage and filled with autoclaved sand.  Individual carrots were 

placed in a depression containing 25 mL of bulk inoculum or sterile sand. I used autoclaved sand 

to simulate low quality soil. There were four treatments with 20 replicates each. The 

experimental design consisted of 20 carrots grown with R. intraradices, 20 with R. clarus, 20 

with both AMF species, and 20 controls lacking AMF inoculation. Following the addition of 

inoculum, the pots were topped with sterilized sand. Plants were placed in the Syracuse 

University Life Sciences greenhouse, arranged in a block design on the bench to minimize 

position effects in the greenhouse (Figure 3). Plants were given an initial 80 mL of the low 

phosphorous fertilizer treatment mentioned above to ensure successful transplantation. Plants 

were watered every third day, but not fertilized again. 

 

A B C D A B C D A B C D A B C D 
B C D A B C D A B C D A B C D A 
C D A B C D A B C D A B         
D A B C D A B C D A B C         
A B C D A B C D A B C D         
B C D A B C D A B C D A         

 

 

Green House Carrot Pot Arrangement 

Figure 3: Pot arrangement in the greenhouse. A=R. 
intraradices, B=R. intraradices and R. clarus, C=R. 
clarus, D=Control; no AMF. 
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Staining technique to test for infection 

  To ensure the roots were infected with the fungi treatment, I used the methods of 

Brundett and Bougher (1996). In brief, to clear the roots, they were autoclaved for 15 min in 

10% KOH. The roots were rinsed with water before being transferred to a chlorazol black E 

staining solution. The roots were stained by autoclaving for 15 min and leaving them at room 

temperature for 24 h. Roots were scanned at 100X magnification and the presence of arbuscules 

and vesicle structures indicated positive infection.  

Carrot Harvest 

Carrots were allowed to grow for 20 weeks and then were harvested. To harvest, the pot 

contents were emptied onto a tray to remove the sand. The aboveground biomass (stem and 

leaves) was removed and placed individually into paper bags. The belowground tissue (carrot) 

was removed and placed into a separate paper bag. Fine root hairs were collected into 1.5 mL 

microcentrifuge tubes filled with 70% ethanol. Above- and below-ground tissues were dried in a 

70 ˚C drying oven overnight. Once dry, aboveground and belowground biomass was assessed 

using a Mettler Toledo balance and a Mettler AC 100 balance.  

Nutrient Testing 

Carrots were finely ground using a Wiley mill fitted with a 40 mesh sieve. Samples were 

sent to the Cornell Nutrient Analysis Laboratory to test for aluminum, boron, calcium, copper, 

magnesium, molybdenum, manganese, sodium, phosphorous, and zinc using a dry ash extraction 

method. The samples were also tested for total carbon and nitrogen using combustion analysis. A 

small subset of samples were sent to Microbac Laboratory headquarters in Pittsburgh, 

Pennsylvania to be tested for beta-carotene levels.  
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Statistics 

ANOVA was used to examine whether aboveground and belowground biomass differed 

between the treatments. A one-way ANOVA was also used to test for significant differences in 

the beta-carotene and nutrient levels of carrots from the different treatments.  
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Chapter 3 
 

Results 
 

Biomass 

 The experiment showed a statistically significant difference in above- and belowground 

biomass between the control group and those treated with both species of AMF. The 

belowground biomass of the carrots inoculated with both R. clarus and R. intraradices was 

68.76% greater than the carrots grown without AMF (F3,68 = 4.1877; P = 0.009) (Figure 4). 

Carrots treated with single inoculum also showed an increase in belowground biomass, but these 

trends were not significant (R .intraradices vs. control P = 0.133; R. clarus vs. control P = 

0.072). Aboveground biomass showed similar patterns with an increase of 112.38% between the 

plants inoculated with both AMF species and the control treatment (F3,67 = 5.170; P = 0.003) 

(Figure 5). Again, there was an increase in aboveground biomass between the carrots treated 

with each single AMF species and the controls but this trend was non-significant (Figure 5).  

 

 

 

 

 

 

 

 

 

 Figure 4: Carrots treated with both species of AMF increased 
belowground biomass by 68.76%. 
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Nutrient Content 

 One-way ANOVA indicated that there was no significant difference in beta-carotene levels 

between controls and carrots inoculated with both AMF species (F1,4 = 2.4643, P = 0.1915). 

However, there was a trend that suggested an 18.28% increase in carrots treated with both 

species as compared to the control (Figure 6). A power analysis predicted that a modest increase 

in sample size to 12 would have given a significant result. Results from the nutrient analysis 

showed a significant increase in aluminum, phosphorus, and zinc levels with carrots inoculated 

with AMF (Table 1; Figures 7-8). Although the ANOVA was not statistically for difference in 

iron levels, there was also a notable trend for increased iron in carrots grown with AMF (Figure 

9). There was a decrease in molybdenum and sodium (Table 1). 

 

Figure 5: Carrots treated with both species of AMF increased 
aboveground biomass by 112.38%. 
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Figure 6.  Levels of beta-carotene for the control and both AMF species 
inoculum treatment. 

Figure 7: Comparison of mean levels of zinc between the four treatments.  
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Table 1: One way ANOVA of nutrient content. 
Values in bold denote statistically different content 
levels between carrots from the control and 
inoculum with both AMF species. 

Figure 9: Comparison of the mean levels of iron between AMF treatments. 
These results were non-significant. 

Figure 8: Comparison of mean levels of phosphorus between the AMF 
treatments. 
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Nutrient F Ratio DF P-Value 
Al 4.0335 3, 19 0.0224 
B 1.093 3, 19 0.3762 
Ca 1.0558 3, 19 0.391 
Cu 0.8455 3, 19 0.4859 
Fe 2.4199 3, 19 0.097 
K 2.3698 3, 19 0.1027 
Mg 1.5469 3, 19 0.235 
Mn 0.439 3, 19 0.7277 
Mo 3.7618 3, 19 0.0283 
Na 3.682 3, 19 0.0303 
P 20.7547 3, 19 0.0001 
Zn 6.6016 3, 19 0.003 

Table 1: One way ANOVA of nutrient content. Values in 
bold denote statistically different content levels between 
carrots from the control and inoculum with both AMF 
species. 
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Chapter 4 

Discussion 

The mutualistic relationship between arbuscular mycorrhizal fungi and crop plants has 

the potential to increase the quality of crops. The mutualism has been understood for some time; 

however, little research has focused on how AMF affect crop nutritional content relevant to 

human health. Human health is dependent on the essential micro and macronutrients received 

from crop plants. Therefore, increasing the content of vitamins and minerals is of great interest to 

the security of the global food supply and overall health of society. Here I show that the 

inoculation of fungi increases the biomass and nutrients important to human health in carrots. By 

improving the quality of a crop, more nutrients can be obtained from a single serving. Therefore, 

high quality crops reduce some of the pressure to increase food production and will aid in 

sustaining global food supply. 

The results suggest that the mutualism between plants and AMF has the potential to 

affect the nutritional quality of plants. In the present study, AMF inoculation shows trends of 

increased beta-carotene levels, an important precursor to vitamin A. Humans convert beta-

carotene from plants to the active forms, retinol and retinoic acid, for use by the body. Vitamin A 

deficiencies are associated with immune infections, blindness, and lesions, and are the primary 

cause of childhood mortality in the developing world (Ejaz and Latif 2010). There was a trend of 

increasing beta-carotene when both R. clarus and R. intraradices were present. Although the 

results were not statistically significant, a power analysis predicted that a sample size of twelve 

would have produced significant results. A replicate study with more samples would most likely 

confirm AMF is a solution to increase the levels of this important pro-vitamin A carotenoid in 
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carrots.  If AMF increase can increase beta-carotene content per gram in carrots, there is huge 

potential to lower nutrient deficiencies globally. 

In addition to beta-carotene, the results showed an increase in the average levels of 

aluminum, zinc, and phosphorous in carrots and also indicated trends in increased iron. As 

mentioned previously, these are important nutrients for human health and deficiencies can impair 

everyday life. Iron and zinc deficiencies are extremely prevalent around the globe. Iron is an 

important component to keeping cells oxygenated and a deficiency results in anemic conditions 

with symptoms including fatigue, delayed growth, and inability to focus. Zinc is an important 

mineral for a healthy immune system and the mobility of zinc in soils is very low and its uptake 

by organisms is diffusion-limited (Vallee and Falchuk 1993; Frossard et al. 2000; Smith and 

Reed 2008). The ability of AMF to sequester these micronutrients in the soil and increase the 

content in the edible portion of the crop is exciting and should be a focus of future research. 

AMF inoculation had the opposite effect on molybdenum and sodium. The levels were decreased 

when compared to control carrot levels. Possibly, the AMF are not able to aid in transferring the 

nutrients to the carrot because the fungi use those specific resources for themselves (Smith and 

Reed 2008). Regardless, AMF use in agriculture can have a big impact on crop nutrient content 

and research should continue to look for ways to produce the highest nutrient crop.  

 In addition to an increase in nutrient content, the present study also finds that AMF 

increases both the above- and belowground biomass of carrots. I observed a 68.76% increase of 

belowground biomass and a 112.38% increase in aboveground biomass in carrots grown with 

both species of AMF. This finding is corroborated by past studies that show AMF increase carrot 

production. Affokopon et al. (2010) showed that application of AMF in field experiments 

increased yield more than 300% as compared to non-AMF controls. The percent increase should 
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be of particular economical interest for farmers; the more biomass produced from a single seed 

the better. Increased aboveground biomass can concomitantly increase photosynthetic activity by 

the plant. In turn, increases in photosynthetic activity means that plants can offer more carbon to 

the fungi and receive more rewards in return (Kiers et al. 2011). Future research should be 

focused on testing what combination and amount of AMF species can increase the 

photosynthetic activity of the plant and provide the fungi with more food to manipulate a 

reciprocal benefit from the fungi to the plant. 

The findings from this study showed that there was a significantly larger benefit observed 

when both R. clarus and R. intraradices were applied, suggesting enhanced nutrient status with a 

diverse community of fungi verses single isolates. The results from the ANOVA correspond to 

previous studies that acknowledge that specific AMF species combinations produce differing 

benefits for the plant (van der Heijden and Scheublin 2007). These benefits are possibly 

enhanced via specialization of the AMF. For instance, some AMF species may specialize on 

obtaining a specific nutrient for their host plant (Hart and Reader 2002). Alternatively, specific 

AMF-plant species combinations can be more efficient for nutrient acquisition (Hausmann and 

Hawkes, 2010; Wardle et al. 2004). In the present study, it seems that specialization in nutrient 

acquisition might explain the enhanced performance of carrots with both AMF species. This is 

supported by a recent study that identified the diversity of AMF and their roles in ecosystems 

(Lee et al. 2013). They found different community compositions of AMF affect plants differently 

because different species of AMF have different effects on various aspects of the symbiosis. 

Therefore, to maximize the benefits to agriculture productivity, it is essential to determine 

complementary combinations of inoculum for specific crop species.  
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An important aspect of the results is that the benefits derived from AMF were observed 

in exceedingly poor soil conditions. The fungi were successful at increasing nutrients in sterile 

sand, suggesting that AMF could be a realistic solution for improving crop production in 

extremely nutrient deficient soils. Deficient soils are common in underdeveloped countries that 

struggle with hunger issues. There is a strong correlation between nutrient deficient soils and 

hidden hunger. Hidden hunger occurs when people do not meet their nutrient requirements 

because the food is deficient in micronutrients. Therefore, the ability to grow nutrient dense 

crops in these poor soil conditions opens up the opportunity to decrease micronutrient and 

macronutrient disorders and aid in relieving world hunger.  
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Chapter 5 

Conclusion 

Together, the results of my study and previous research suggest that AMF inoculation is a 

viable solution to improve sustainable agricultural practices and improved food quality. There is 

an urgent need for agriculture to produce enough food of high nutritional quality and diversity to 

satisfy a balanced diet for all people. Traditional methods of increasing yields have been focused 

on increasing calorie bulk of staple crops, such as wheat and rice, and the use of harmful 

pesticides and fertilizers. The use of harmful chemicals to increase yields in nutrient poor soils 

has detrimental effects. The fertilizer industry is responsible for about 1.2% of the world global 

greenhouse gas emissions with 90% from the production of ammonia (NH3) (Swaminathan and 

Sukalac 2004). Nitrous oxide (N2O), which according to the Environmental Protection Agency 

has a greater impact compared to CO2 on the warming of the atmosphere, is emitted when 

nitrogen is added to the soil through synthetic fertilizers. The application of synthetic fertilizers 

results in nitrogen run off in waterways causing contamination of drinking water, which, if 

ingested, reduces our ability to carry oxygen. The release of oxidized nitrated from the 

application of fertilizer also contributes to the formation of smog, greenhouse gasses, and the 

destruction of the ozone layer. AMF can act as an environmentally safer application to produce 

more food with higher nutrient quality in poor soil conditions. 

On top of the use of harmful chemical, the current agricultural system has placed itself in a 

vulnerable position by reducing the diversity of crops.  The agricultural methods prioritizing 

monoculture systems aim to increase cereal yields creates major micronutrient deficiencies by 

creating an off-balance ratio of macronutrients and a diminished level of micronutrient (Welch 

1995).  A balanced diet is fundamental for ensuring healthy and productive lives. If you look at 
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Maslow’s hierarchy of needs, food is at the base of the pyramid. Therefore, without proper 

nutrition, humans cannot reach the higher levels such as security, social relationships, self-

esteem, and important problem solving/creativity skills. Without the energy to obtain the higher 

level needs, human’s benefit to society decreases. Malnutrition affects about 40% of the world’s 

people, many from developing nations (Schuftan et al. 1998). In order for developing nations to 

establish globally, it is vital to receive proper nutrition to ensure full cognitive and physical 

capacity. A well balanced diet includes proper macronutrient and micronutrients. Micronutrients 

include essential elements and vitamins that the body cannot produce and are required for 

humans. There are 49 nutrients required to meet human metabolic needs and inadequate 

consumption of even one of these nutrients will result in metabolic disturbances that can lead to 

poor health, impaired development, and large economic costs to society (Branca and Ferrari, 

2002; Ramakrishnan et al., 1999; Gordon 1997). Human rely on the agricultural system to 

provide enough products containing adequate quantities of all nutrients during all seasons.   

http://jxb.oxfordjournals.org/content/55/396/353.long
http://jxb.oxfordjournals.org/content/55/396/353.long
http://jxb.oxfordjournals.org/content/55/396/353.long
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Appendices 
  

"Eating is Cultural Act: Notes on Rhizomes, Deserts and Ugly Fruit," 
Presented by the Canary Lab 

12/7/15 
 

“AMF: The Future to Sustainable Agriculture 
Margo Malone, Lily Fein, Ryan Pierson 
 
Ecology deals with relationships. This relationship begins with a tiny spore. The relationship is 
mutually beneficial. The spore of the Arbuscular mycorrhizal fungi, AMF for short, germinates 
and produces hyphae that enter between the plant cell walls. The fungi extend through the soil 
and provide nutrients otherwise untapped in return for carbon delivered from the plant. The AMF 
act like fiber optic cables, carrying information and metabolites between plants and warning 
neighbors of herbivore attacks, threatening pathogens, and impending droughts.  
 
The AMF have the potential to sustain our future agricultural system. They allow the plant to 
grow in harsh conditions. Implanted in urban settings, AMF vesicles store soil toxins away from 
the edible crop product. Communication between the crops allows the farmer to use less 
pesticides and fertilizers. AMF means more plant nutrients, a better crop yield, and a more 
efficient food system. “ 
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