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Abstract 

Aging is often associated with cognitive decline, including problems with working memory and 
difficulties forming new memories.  These deficits can be directly linked to the hippocampus, an 
area of the temporal lobe of the brain that is engaged during spatial working memory. Age-
related declines may be influenced by changes in important modulatory pathways that impact 
hippocampal function, including regulation of the metabolite lactate.  When astrocytic stores of 
glycogen are hydrolyzed, lactate is released into the extracellular space where it can be taken up 
by neurons and used as fuel during moments of activation.  We previously found that the 
extracellular concentration of lactate rises in the hippocampus of young male rats while they 
performed a spatial working memory task (Newman et al., 2011).  Infusions of lactate into the 
hippocampus of young adult males improved their memory performance on this same task 
(Newman et al., 2011).  Recent data has shown that lactate does not rise as robustly in the 
hippocampus of old rats during spatial working memory when compared to their young 
counterparts.  To investigate whether age-related memory deficits were a result of reversible 
shifts in metabolic regulation, young (3 months) and old (24 months) male Fischer 344 rats were 
given infusions of lactate or a vehicle control directly into the hippocampus immediately before a 
spatial working memory task.  Old rats that received infusions of lactate showed robust 
improvement on this task compared to saline controls or young rats with the same treatment.  
These results indicate that age-related shifts in memory may be due to changes in metabolic 
regulation and may be reversed with the application of specific useful metabolites. 
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Executive Summary 
 

Aging can be defined as the changes in an organism’s physiology associated with the 

passage of time.  Elderly individuals frequently experience memory deficits that can drastically 

influence their quality of life.  These deficits often manifest as difficulty forming new memories 

and problems with working memory.  It is unclear whether these memory deficits are a result of 

permanent changes to the brain tissue itself, to changes in the systems that modulate the brain's 

function, or both.  An important modulator of memory shown to change across the lifespan is 

metabolism.  The human brain is an extraordinarily hungry organ that relies on metabolic fuel 

delivered by the body.  Although the brain is only 5% of the bodies’ total weight, it consumes 

approximately 20% of the bodies’ total energy requirements.  Activation of specialized areas of 

the brain result in localized increases in metabolic demand.     

The brain consists of different cell types that take on different functional roles.  Neurons 

are cells that send electrical and chemical signals creating intricate circuits, integrating important 

messages and allowing for cognition.  Astrocytes are a variety of glial cell that surround the 

brain vasculature and neurons and help to maintain the environment of the central nervous 

system.  Astrocytes play a role in mediating how metabolites are removed from the blood vessels 

and distributed to the neurons.  Unlike neurons, astrocytes store glycogen, a large branched 

molecule constructed with small glycosyl units that can be broken down and used for energy in 

the form of lactate.  The Astrocyte-Neuron Lactate Shuttle Hypothesis is a theory that describes 

the metabolic dynamics between different cell types in the brain during moments of activation. 

In moments of high metabolic demand, it is theorized that astrocytes release lactate to be used as 

metabolic fuel by the highly activated neural circuitry.  An important example of this 
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phenomenon is the metabolic activation of the hippocampus, an area of the temporal lobe 

associated with the formation of new memories, during tasks that rely on spatial working 

memory.   Previous research has shown that extracellular lactate concentrations increase in the 

hippocampus in young rats when they perform tasks of this kind.  Moreover, infusions of lactate 

directly into the hippocampus immediately prior to a working memory tasks improve 

performance of these tasks in young rats.  These studies provide evidence that lactate is a 

powerful modulator of hippocampal-sensitive memory.  Changes in the availability or use of this 

metabolite across the lifespan could explain the memory deficits experienced by elderly 

populations. 

 To investigate whether lactate retained its memory enhancing effects across the lifespan 

old (24 months of age) and young (3 months of age) male Fischer 344 rats were given infusions 

of lactate (100 nmol/ 0.5 μl) directly into the hippocampus immediately prior to a spatial 

working memory task, spontaneous alternation.  Guide cannula were surgically implanted into 

the dorsal hippocampus to allow for infusions directly into this brain region.  Each rat received 

either an infusion of lactate or saline vehicle immediately prior to spontaneous alternation 

testing.  Spontaneous alternation is a hippocampus sensitive task that exploits the rat's tendency 

to explore novelty to measure spatial working memory. Old rats that did not undergo surgery or 

infusions displayed age-related memory deficits when compared to their young counterparts.  

Young animals showed mild improvement with lactate infusion compared to saline infusion, but 

the enhancement was not statistically significant.  Importantly, the old animals displayed a robust 

improvement with the infusion of lactate, raising memory scores to levels comparable to those of 

young rats.  These impressive improvements were directly related to an increased percent of 
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correct choices on the task and not other behavioral changes such as increased overall movement 

or increased number of possible correct choices. 

These results support the claim metabolic modulation influences age-related memory 

deficits in the hippocampus and that these deficits are indeed reversible.   Thus, the findings 

suggest that aged rats can learn and remember new information but need a boost, such as an 

increase in metabolic support, to engage memory mechanisms as is done endogenously in young 

rats.  However, the underlying cause of these age related changes in metabolic modulation 

remains unclear.  This shift may be influenced by changes in how the astrocytes are activated to 

produce lactate for use by neurons.  One possibility is decreased adrenergic signaling associated 

with the aging process, potentially leading to a decreased breakdown of glycogen and subsequent 

decline in available lactate during moments of high metabolic demand.   

Scientific inquiry into the mechanics of memory and how it changes across the lifespan 

are extremely relevant in the twenty-first century.  Advances in technology, agriculture, and 

medicine have improved the general quality of life in many areas of the world and extended 

average life expectancy dramatically.  This demographic development has resulted in a large and 

ever expanding population of elderly people, resulting in a large population suffering from age-

related mild cognitive decline and other more severe dementias.  The impending social and 

economic consequences of this transition to an older population continues to motivate the 

scientific community to investigate the underlying mechanisms of memory and their shifts across 

the lifespan. 
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Introduction 

  

         Due to advances in technology and medicine, people are living longer than ever before.  

This distinct demographic shift has increased the proportion of the population reaching old age.  

The quality of life for elderly individuals is often degraded by the development of age-related 

memory deficits and more severe dementias.  Age-related memory deficits associated with the 

natural aging process may be directly linked to shifts in brain metabolism occurring across an 

organism’s lifetime.  Previous research focused on the metabolic demands of learning and 

memory has highlighted several pathways that may contribute to age-associated cognitive 

decline.  This experiment was designed and performed to investigate how the application of the 

metabolite lactate influences working memory across the lifespan in a rodent model. 

 Epinephrine’s Influence on Glucose, Glycogen, and Memory 

  The adrenergic signaling molecule epinephrine represents an important modulator of both 

metabolism and memory.  The release of epinephrine is a result of sympathetic activation and is 

often correlated with stressful or arousing situations. Increased epinephrine release has been 

shown to enhance memory in rats (Gold and van Buskirk 1975 and 1976).  This phenomenon 

was first shown in rodent models tested on an inhibitory avoidance learning paradigm.   In this 

task, rats escape a well-lit chamber and enter a dark chamber where they receive a foot shock at 

variable intensities.  At a later time, the same rats are placed into the apparatus and their latency 

to cross into the dark chamber represent retention or memory of the shock.  Researchers found 

that application of a high foot shock showed good retention while mild shock produced poor 
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retention.  Rats exposed to mild shock but also given an injection of epinephrine at the time of 

training showed good retention, suggesting that the increased release of epinephrine associated 

with increased arousal enhances memory (Gold and van Buskirk 1975).  These early studies also 

suggest that the influence of epinephrine on memory is time- and dose-dependent, illustrated by 

an inverted-U dose-response curve.   

There are several features of this pathway that have focused scientists’ attention to the 

importance of glycogen breakdown and glucose mobilization in association with memory 

retention.  Once epinephrine is released from the adrenal medulla into circulation it does not 

readily enter the brain from blood (Axelrod 1959); therefore a peripheral action must be 

responsible for changes in the central nervous system during arousal.  Epinephrine released 

during arousal activates adrenergic receptors in the liver and in the muscles, triggering the 

breakdown of glycogen and a release of glucose into the surrounding tissue or the blood stream.  

Glucose, the major source of metabolic energy in the body, is a robust memory-enhancing agent.  

The body closely regulates the concentration of glucose circulating in the blood and available to 

cells in the brain and periphery.  This increased circulating blood glucose supplies the brain with 

energy and enhances memory retention (Gold 2014). 

Epinephrine acts to breakdown peripheral stores of glycogen to increase the circulating 

levels of glucose during moments of arousal. Glycogen is a large, branched molecule composed 

of glucose residues connected by easily broken α-1, 4-glycosidic linkages (Berg 2002).  Instead 

of turning glucose directly to fatty acids, the production of glycogen has several advantages.  

Glycogen, particular that stored in liver, is broken down as a metabolic buffer in between 

influxes of glucose during mealtimes, acting to maintain metabolite levels high enough to 
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maintain proper function.  Unlike fatty acid metabolism, glycogen can be broken down without 

the presence of oxygen, acting to support anaerobic activity (Berg 2002).  Glycogen granules are 

stored within the cytoplasm of cells and can range in size from 10 to 40 nm (Berg 2002).  The 

largest stores of glycogen in the body are found in the liver and in skeletal muscle.  Liver 

glycogen is broken down after activation by epinephrine and releases glucose into the 

bloodstream while skeletal muscle glycogen is broken down and used to power contractions.   

There are several enzymatic mechanisms responsible for the accumulation and 

breakdown of glycogen.  Two key enzymes include glycogen synthase and glycogen 

phosphorylase.   Glycogen Synthase creates the chains of glycogen by adding the activated form 

of glucose (UDP-glucose) to an already existing glycogen chain.  The chain of glycosyl units 

originates from a primer, specifically the dimeric protein glycogenin.  Without glycogenin the 

chain has no starting point and glycogen synthesis cannot occur (Berg 2002).  Glycogen 

phosphorylase performs the opposite reaction termed glycogenolysis that releases single glucose-

1-phosphate molecules from the chain.  This free molecule is converted to glucose-6-phosphate 

and may have several different fates, including being turned into lactate through glycolysis 

(Newman 2011).  These enzymes are regulated by both allosteric feedback mechanisms and by 

hormonal regulation (Berg 2002).   

Once adrenergic activation has caused the peripheral breakdown of glycogen, the 

resulting glucose is released into the circulating blood it becomes readily available to the brain 

for consumption.  This physiological fact has lead researchers to believe that glucose is the 

molecule acting on the brain to improve cognition (Korol & Gold 1998; Gold 2014; Gold and 

Korol, 2014).   Glucose, like epinephrine, has been shown to enhance cognition in a dose and 



 

 
11 

time dependent manner, illustrated by dose response curves (Gold, 2014; Gold and Korol, 2014).  

Blocking epinephrine’s function with adrenergic receptor antagonists blocks the effects of 

epinephrine on memory but does not block the memory-enhancing effects of glucose, supporting 

the claim that glucose acts downstream from adrenergic activation to enhance neuronal function 

(Hall and Gold, 1992).   

 Glycogen in the Brain 

  The arrival of glucose to the cells of the nervous system is limited by peripheral 

mechanisms and blood flow.  As discussed above, circulating levels of glucose are regulated by 

endocrine mechanisms including the release of epinephrine.  If glucose becomes unavailable, the 

tissue must switch metabolic strategies to maintain proper cellular function.  One way the body 

maintains function under hypoglycemic conditions is by storing energy rich glucose in the form 

of glycogen for later use.  Glycogen is stored in a variety of different tissues throughout the 

body, including but not limited to hepatic tissue, muscles and the brain.  When glucose is 

delivered to an area of tissue it is rapidly stored as glycogen.  Glycogen can be broken down in 

the future, ensuring that the basal metabolic rate of the cells is maintained in the absence of 

glucose.  In the brain, the storage and breakdown of glycogen is isolated to a type of glial cell 

termed the astrocyte.  The breakdown of glycogen and release of lactate from these astrocytes 

(Newman et al., 2011) influence neuronal function including learning and memory. 

Astrocytes support the brain's vast network of neurons by creating and maintaining stores 

of glycogen.  Astrocytes are expressed in all brain regions and frequently outnumber neurons.  

Long thought to be the “glue” holding the neurons together, astrocytes actually command a 

degree of control over the neurons and the flow of nutrients entering the brain from the blood.  
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Fibrous and protoplasmic, astrocytes extend their processes to make connections with neurons 

and blood vessels (Abbott et al., 2006).  Astrocytes release signaling molecules such as 

glutamate, D-serine, and ATP that can change the local environment to influence neuronal 

activity and vascular tone (Haydon 2006).  Astrocytes also contain many different metabotropic 

receptors reacting to an array of different neurotransmitters and hormones (norepinephrine, 

acetylcholine, GABA, estrogen, etc.).  Activation of these receptors results in an increased 

internal calcium concentration and alterations in the astrocytes actions on the surrounding 

environment (Haydon 2006).  These features of astrocytes allow them to mediate the metabolites 

within neuronal tissues between vascular elements, neurons, and the astrocytes themselves. 

The most important feature of astrocytes for the purpose of this investigation is their 

ability to synthesize, store, and breakdown glycogen.  Most of our knowledge of glycogen comes 

from studies performed on peripheral tissues, however, glycogen plays an important role in the 

central nervous system.  Glycogen seems to be isolated to astrocytes in brains of healthy adults, 

supporting the idea that these cells function as modulators of metabolism in nervous tissue 

(Cataldo and Broadwell, 1986).  Immunolabeling with GFAP and NeuN to visualize astrocytes 

and neurons, respectively, shows colocalization of glycogen with GFAP, supporting the claim 

that glycogen is isolated to astrocytes (Newman et al 2011).  Glycogen phosphorylase is found 

only within astrocytes, although glycogen synthase is found in both neurons and astrocytes 

(Pellegeri 1996).  The brain contains relatively low concentrations (6-12 μmol) of glycogen 

compared to other regions of the body such as the liver (100-500 μmol) or skeletal muscle  (300-

350 μmol), implying that these stores are for local consumption during moments of high 

metabolic demand (Chryssanthopoulos et al., 2004).   Levels of brain glycogen change very little 
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with starvation compared to the liver.  Large changes in intracellular glucose concentration are 

not physiologically possible because of enormous osmotic pressure changes that would lead cells 

to burst.  The accumulation of glycogen allows for the intracellular accumulation of metabolic 

resources without this dangerous change in osmotic pressure.  

Under the appropriate conditions glycogen is transformed into lactate, a carbohydrate that 

can be metabolized by neurons in need of immediate energy.  The availability of lactate may be 

important for proper cellular function during periods of intense activation or arousal.   Brain has 

a high resting metabolic rate that is increased during local brain activation (McKenna et al 2006).  

When an organism experiences a strenuous task, such as learning, brain tissue rapidly consumes 

the local supplies of glucose and must produce another metabolic fuel (Brown and Ransom 

2007).   Activity-dependent hypoglycemic conditions lead to the breakdown of glycogen into 

lactate through glycogenolysis.  In this model, lactate protects against hypoglycemic injury, 

allowing neurons to continue to function during intense activation.   

Astrocytes can create and export lactate into the surrounding parenchyma through 

specific monocarboxylate transporters (MCT) 1 and MCT4 (Newman et al 2011).   Astrocytes 

release lactate into the extracellular fluid where neurons have access to this molecule and retain 

the capability to function at full capacity (Brown and Ransom 2007, Magistretti 2006).  Neurons 

express MCT2 that take up lactate from the surrounding extracellular fluid.  Neurons also 

contain the enzyme lactate dehydrogenase, which converts lactate to pyruvate in preparation for 

oxidative phosphorylation (Brown and Ransom 2007).  Low brain glycogen concentrations 

imply they can only provide support a short period of support in the absence of glucose or other 

energy substrates, being completely consumed in a few minutes under aglycemic conditions 
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(unlike liver glycogen supplies that would support euglycemia for up to 24 h).  Glycogen 

provides sufficient energy during hypoglycemia and increases past baseline level afterwards 

(Criego 2005).  Inhibition of glycogen degradation quickly ends basic neuronal functions under 

high stimulation or aglycemia and increases glycogen accumulation once returned to 

normoglycaemic conditions (Brown 2004).  These data indicate that the small astrocytic stores of 

glycogen have major implications for brain function, including support of the mechanisms 

important for learning and memory.  Shifts in this metabolic pathway across the lifespan may 

influence the cognitive changes experienced with age (Gold and Korol, 2014). 

.Lactate and memory 

Previous experiments performed by Lori Newman and other members of the Gold and 

Korol labs have highlighted several important trends during spatial working memory tasks in 

rats.  In these experiments, young male rats were tested on a hippocampus sensitive task 

(spontaneous alternation) in which rats were placed on a plus maze surrounded by extra maze 

cues.  The spontaneous alternation task makes use of the rats’ natural tendency to seek novelty. 

Cannula were implanted directly into the hippocampus and biosensor probes were used to 

measure single second recordings of extracellular glucose and lactate concentrations.  These 

experiments showed a decrease in glucose concentrations at the start of learning with a slow but 

steady increase returning to baseline levels before the end of training.  In contrast, there was a 

robust and almost immediate increase of lactate concentrations that persisted to the end of 

training (Newman et al., 2011). In a similar experiment 1, 4-dideoxy-1, 4-imino-D-arabinitol 

(DAB) was injected into the hippocampus to pharmacologically inhibit the production of lactate 

from glial glycogen stores.  These animals displayed impaired performance on spatial working 
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memory tasks (Newman et al., 2011). The results of this experiment indicate that without the 

production of lactate in astrocytes and release into the extracellular fluid, the hippocampal 

neurons did not have access to normal metabolic resources provided by astrocytes during periods 

of extended activity, limiting the rats’ learning and memory capabilities.   

The metabolites glucose and lactate act to support the actions of the brain, and therefore 

replenishment of these compounds should act to enhance cellular function and enhance learning.  

Injections of either lactate or glucose directly into the hippocampus both acted to enhance young 

male rats’ performance on a hippocampus-sensitive spatial working memory task.  Injections of 

either of these metabolites also reversed the memory impairments caused by pharmacologically 

blocking glycogenolysis with DAB (Newman, et al., 2011). These results support previous 

claims that glucose is an important metabolic resource for the brain and a potent enhancer of 

memory, but also bring lactate into the spotlight as an important modulator of brain state. 

 Age-Related Changes 

  In terms of glucose regulation, there seems to be an uncoupling of epinephrine and 

glucose release with age (Gold and Korol 2014).  There is a larger release of epinephrine into 

blood of old rats when performing a swim task and during inhibitory avoidance training when 

compared to young rats (Mabry et al. 1995a, b).  Following the model described previously, it 

would be safe to assume that this increased release of epinephrine should be correlated with 

increased circulating glucose levels in old animals.  However, blood glucose levels were 

significantly lower in the old animals than the young animals when compared to baseline (Mabry 

et al., 1995a).  Injections of epinephrine enhanced memory of an inhibitory avoidance task in 

young rats, but failed to significantly enhance memory in old rats (Morris et al., 2010).  Despite 
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this uncoupling, glucose remains a robust enhancer of memory, significantly enhancing memory 

in both old and young rats (McNay and Gold 2001; Salinas and Gold, 2005; Morris et al., 2010; 

cf. Gold and Korol, 2014), improving memory in aged rats to scores comparable to young rats.  

The effectiveness of glucose as a memory-enhancing substance has also been tested on human 

subjects.  The data collected from these experiments that elderly participants showed cognitive 

enhancement after consuming glucose (Hall 1989; Manning et al., 1993, 1998; cf. Korol and 

Manning, 2001; Korol, 2002; Gold and Korol, 2014).  

         Epinephrine-initiated glucose release, however, is only one mechanism supporting the 

metabolic state of an actively learning brain.  The shift from glucose to lactate metabolism may 

also change across an organism's lifespan, thereby influencing cognitive decline.  Recently 

collected data from the Gold and Korol labs show that 2-year-old rats displayed a reduced 

release of lactate in the hippocampus compared to young rats aged 3 months during training on a 

hippocampus-sensitive place learning task.  These data suggest that a lack of immediate 

metabolic support may influence memory impairments in these aged animals (Newman et al., 

unpublished 2016).  

These results raise several questions about mechanistic changes associated with age and 

how biochemical shifts might be influencing cognition.  Just as glucose acts as an enhancer of 

memory across lifespan regardless of the changing effectiveness of epinephrine, lactate may 

maintain its status as a memory-enhancing substance irrespective of changes in upstream 

signaling cascades.  The memory-enhancing effects of lactate have been shown in young rats, but 

it was unclear how lactate might influence learning in an old brain.  This experiment was 

designed to investigate whether or not the mechanism by which lactate enhances memory is 
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retained across the lifespan.  If the results depict difference across age groups, the differential use 

of lactate across the lifespan may influence some of the shifts in learning experienced by the 

elderly population. 

Outline of the Experiment 

  The purpose of this experiment is to investigate further how changes in brain metabolism, 

specifically lactate, influence spatial learning memory across the lifespan in rats. First, we 

assessed both young and old rats on a spatial memory task, spontaneous alternation.  Three-

month-old and 24-month-old Fischer-344 (F344) rats were tested on a spontaneous alternation 

task for 20 minutes.  On the basis of previous work, we hypothesized that old rats will alternate 

significantly less than young rats due to age-related memory impairments. Next, we infused 

lactate into the hippocampus of young and old rats before spontaneous alternation training to 

assess the memory-enhancing effects of this metabolites across the lifespan. Old and young F344 

rats underwent surgery for the bilateral implantation of guide cannula into both the left and right 

dorsal hippocampus. On the day of testing, rats received an injection of lactate or saline into the 

hippocampus 15 minutes before spontaneous alternation testing. During all phases of the 

experiment the rats were euthanized immediately following behavior and samples were collected 

for the analysis of glycogen content. Behavior on the maze was analyzed to determine if lactate 

enhances working memory.  We hypothesized that these infusions will enhance learning in both 

age groups. Enhancement with lactate infusions in the old age group imply that age-related 

deficits in spatial working memory are influenced by shifts in metabolic modulation and are 

reversible. 
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Methods 

Subjects and Experimental Design 

These experiments were conducted using male F344 rats supplied by the National 

Institute on Aging (NIA) colony managed by Charles River.  All of the procedures performed 

during these experiments were approved by the Syracuse University Animal Care and Use 

Committee (IACUC), accredited by the Association for Assessment and Accreditation of Animal 

Care (AAALAC).  The two experimental age groups included 3-month-old rats (young) and 24-

month-old (old) rats.  The 24-month-old group was examined daily for age-related health issues 

that might confound their performance in the study. These rats were housed individually and had 

free access to food and water at all times.  Animal housing was kept under a 12:12 hour light: 

dark cycle and animals were behaviorally tested during the light portion of this cycle. 

Experiment 1 compared performance of young and old animals on the spontaneous 

alternation task.  The rats used for this portion of the experiment did not undergo the surgical 

procedures described below.  Behavioral data and tissue samples were collected from this group.  

For Experiment 2, rats underwent surgery to implant bilateral guide cannula into the dorsal 

hippocampus.  Young and old rats were randomly selected to receive either a 0.5 μl injection of 

100 nmol sodium L-lactate in a saline vehicle or a saline control immediately before spontaneous 

alternation training.  All experimental procedures and analyses were performed by the author of 

this document. 

Bilateral Cannula Implantation Surgery 

         In experiment 2, all rats underwent stereotaxic surgery to implant bilateral cannula (6 

mm) into the dorsal hippocampus (coordinates: anterior posterior +3.8 mm; medial-lateral 2.5 
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mm, and ventral 1.5 mm from dura).  Rats were anesthetized using isoflurane and the area of the 

incision was shaved and prepared with betadine.  Each rat received a subcutaneous injection of 

the non-steroidal anti-inflammatory pain-relieving drug flunixin (1 mg/kg) and an intramuscular 

injection of the antibiotic penicillin (0.3 mg/kg) to avoid infection.  After surgery, rats received 

saline (10 ml injected subcutaneously) to avoid dehydration.  Rats were given ibuprofen (47 mg 

in 500 ml of drinking water) as a postoperative analgesic.  To insure their health, all rats were 

allowed one week to recover and were checked daily. 

Infusions 

         Before spontaneous alternation training, rats received either a 0.5 μl infusion of L-lactate 

(100 nmol in 0.9% saline, pH 7.2) or saline (0.9%, pH 7.2).  The injections were made with 7 

mm injection needles attached to a CMA injection pump running at a flow rate of 0.25 μl/min for 

2 min, ending 5 min before spontaneous alternation training.  

 Training Procedure 

         As a measure of spatial working memory, all experimental groups underwent 

spontaneous alternation training.  This is a useful task when examining metabolism in vivo 

because the task does not require a food reward or food restriction prior to training.  Spontaneous 

alternation takes advantage of the rat’s natural tendency to be motivated by novelty.  The testing 

room is decorated with extra-maze cues on the walls surrounding the maze.  The apparatus for 

this task is a four arm, plus-shaped maze made of black Plexiglas.  Each arm was designated 

either A, B, C, or D.  After receiving an injection of lactate or vehicle control animals were 

placed in the training room for 15 minutes in order to acclimate to their surroundings.   The rat 

was then placed on the maze and allowed to move freely from arm to arm for a 20-minute 
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period.  During this session arm entries were recorded by the investigator.  Scores on this task 

were determined by calculating each subject's percent alternation.  An alternation was defined as 

each time the rat entered all four arms in five consecutive arm choices.  The measure of percent 

alternation was determined by dividing the number of alternations performed by the animals by 

the number of possible alternation times 100.  This creates a score out of 100%; with this 

measure, chance performance results in an alternation score of 44%.  Rats which made fewer 

than 10 arm choices during the 20 minute training period were excluded from the study. 

 Post-training Procedure  

After spontaneous alternation training was completed, the subjects were immediately 

overdosed using an intraperitoneal injection (1 ml) of sodium pentobarbital.  For this experiment 

several different methods of post mortem tissue collection were used.  For Experiment 1, which 

tested rats without surgery or brain infusions, tissue samples were removed and flash frozen on 

dry ice.  Portions of the brain (frontal cortex, cerebellum, brainstem, striatum, and hippocampus) 

and the periphery (leg muscle, diaphragm, and liver) were collected and stored at -80º C.  These 

tissue samples will be analyzed for glycogen content using a colorimetric assay in the near 

future.  This analysis will be important for determining if there are age-related changes in the 

accumulation and breakdown of this energy reservoir. 

Rats with surgically implanted cannula and pre-training infusions from Experiment 2 

were deeply anesthetized with sodium pentobarbitol and were then perfused immediately after 

training.  The vasculature was flushed with saline then tissue was fixed using 4% 

paraformaldehyde.  The brains were removed and stored for two days in paraformaldehyde then 

stored in glycerol until sectioning.  These tissue samples were sectioned and nissl stained to 
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confirm the correct placement of the cannula tip within the dorsal region of the hippocampus.  If 

the cannula was not in the correct region of the brain that animal was excluded from the final 

analyses.  Sections were collected and stored in cryoprotectant at -20ºC in the hopes of 

performing immunohistochemistry in the near future.  This immunohistochemistry will be 

performed to assess the abundance and distribution of specific adrenergic receptors to determine 

if age-related changes in metabolic modulation are linked to altered adrenergic signaling. 

Data Analysis and Statistics 

         Statistical analyses were performed using SPSS software.  The behavioral data collected 

during spontaneous alternation training was analyzed using T tests to assess difference between 

old and young groups in experiment 1 and differences between treatment groups (saline control 

or lactate) within the age group in experiment 2.  Within the age groups, the scores of unoperated 

animals from experiment 1 were compared to the cannulated animals in experiment 2 using a t-

test as well.  These tests were run with an alpha level of 0.05. 
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Results 
 
 
Experiment 1:  Age-related deficit on spontaneous alternation task 

Previous studies claim that there is an age-related decline in spatial working 

memory.  Before examining the influence of lactate on learning, it was important to determine 

the extent of age-related deficits on the spontaneous alternation task in rats that had not received 

surgical cannula implantation and did not receive infusions of lactate or vehicle control.  Young 

rats (N=8) averaged a percent alternation score of 60.8 + 1.6%.  Old animals (N=8) averaged a 

percent alternation score of 52 + 0.9% (see Figure 1).  Young animals scored significantly higher 

than old animals (p < 0.05) on this task.  This difference supports the claim that the 24 month old 

animals experience spatial working memory deficits compared to the 3 month old animals within 

the parameters of this task.  

Experiment 2:  Lactate enhances spontaneous alternation scores in old rats  
 

Young rats that received the vehicle control (N=4) infusion of 0.9% saline showed a 

significantly reduced percent alternation score (p<0.05) compared to the intact controls with an 

average percent alternation score of 45.0 + 1.9% (see Figure 2).  Compared to saline controls, 

young rats that received infusions of lactate (N=5) showed slightly higher percent alternation 

scores with an average percent alternation score of 51 + 1.3%, although this difference was not 

statistically significant (p > 0.05).  

 Similar to the young rats, old rats (N=5) that received the vehicle control infusion of 

0.9% saline showed a significantly reduced percent alternation score (p<0.05) compared to the 

unimplanted rats (Experiment 1) with an average percent alternation score of 34.3+ 3.9% (see 
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Figure 3). Compared to these saline controls, old rats that received infusions of lactate (N=4) 

showed an enhanced percent alternation scores with an average percent alternation score of 54.7 

+ 2.6% (see Figure 4).  Old animals that received infusions of lactate had statistically 

significantly higher percent alternation scores when compared to animals that received infusions 

of saline (p<0.05) (see Figure 3).  Unlike the young experimental group, the percent alternation 

scores of old animals that received lactate (54.7%) exceeded the average scores of the intact 

controls (52%), although this was not a significant difference (p>0.05).  

Differences in number of arm entries between age groups 

 The number of arm entries made by rats from both age groups provides further evidence 

that infusion of lactate acts directly on working memory during this task.  Young animals who 

received infusions of lactate showed a slight increase in the number of arms entered during their 

time on the maze (42.2 + 1.1 arm entries) compared to the vehicle group (34.5 + 2.8), but this 

difference was not significant (p>0.05) (see Figure 5). Old animals did not display a change in 

the number of arm entries made between experimental groups: the lactate group entered an 

average of 17.3 + 2.4 arms and the saline group entered an average of 17.2 + 1.6 arms (see 

Figure 5).  Compared to the young cohort, the old animals made fewer overall arm choices 

regardless of their treatment group.  Old rats that received lactate performed at an average higher 

percent alternation score than age-matched saline controls or the young rats without changing the 

average number of arms entered.   

 These results indicate that both young and old rats show enhancement on a spatial 

working memory task with the direct infusion of lactate into the hippocampus.  In the near future 

additional animals will be added to all experimental groups in an effort to strengthen the effects 
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already seen with such small sample sizes.  These rats were perfused with 4% paraformaldehyde 

immediately post training and will be sectioned in the near future.  This measure is to ensure that 

the infusions of lactate were indeed deposited directly into the hippocampus.  Therefore, the 

results in Figures 2 and 3 remain preliminary until histological confirmations of placements are 

complete. 
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Discussion 
 
 

Data collected from these experiments and many others seem to indicate shifts in 

metabolite availability in the hippocampus across the lifespan.  Data collected during experiment 

1 indicate that old rats’ percent alternation scores were significantly lower than their younger 

counterparts, supporting the claim that old animals experience spatial working memory deficits.  

When interpreting these data it is important to note that the percent alternation scores recorded 

during this experiment differ slightly from those recorded in other similar experiments (Newman 

et al., 2011).  This difference may be due to the use of a different strain of rat in this experiment:  

this procedure used F344 rats while previous work used Sprague -Dawley rats (Newman et al. 

2011).  This trend of low scores may be specific to the F344 strain of rats.  In the near future, the 

tissue samples collected from experiment 1 will be analyzed for glycogen content.   Variable 

levels of this energy storage molecule immediately after training across age groups may indicate 

age related shifts in the dynamics of lactate release.  If consistent with previous findings, the old 

animals are expected to have higher levels compared to the young, indicating a mechanistic 

difference with glycogen breakdown between experimental groups. 

When infusions of lactate or saline were provided before spontaneous alternation 

training, young rats showed insignificant enhancement of spatial working memory with lactate 

compared to saline controls.  Although the groups were not statistically significant from one 

another, the direction of this trend supports previous findings made by our lab showing that 

young rat’s spatial working memory is enhanced by the addition of lactate (Newman et al. 

2011).  More young animals may be added to this experiment in the near future to determine the 
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reproducibility of these data.  In contrast, the old rats showed significant enhancement of spatial 

working memory when infused with lactate prior to spontaneous alternation.  This robust 

enhancement indicates that age-related deficits in spatial working memory are fully reversible 

with the application of the metabolite lactate. 

Analysis of the number of arm entries made by each group supports our claim that lactate 

is enhancing memory and not causing additional behavioral changes which might be interpreted 

incorrectly within the confines of this task.  There was no change in the number of arm choices 

between the rats which received lactate and the rats which received the saline control.   This 

indicates that the enhancement was not due to overall increased activity, but instead an overall 

increase in the amount of correct arm choices.  Regardless of their treatment old rats made a very 

limited number of arm choices compared to the young, supporting the claim that their spatial 

working memory was enhanced with the application of lactate.  Several old animals were 

excluded from the final evaluation because they made fewer than 10 arm choices during the 

twenty-minute testing period.  This lack of activity in the old animals is most likely due to age 

related lethargy seen in animals of this age.  Animals were regularly checked for health related 

problems that may have limited their motility on the maze apparatus and no animals showed 

signs of illness or injury that would hinder their physical performance of the task. 

The results of these experiments support the claim that changes in metabolic modulation 

are responsible for age-related memory deficits.  Previous experiments have shown that 

activation of the adrenergic signaling system modulates both metabolism and memory.  

Epinephrine is produced by the adrenal medulla and when this gland is removed surgically by 

adrenalectomy rats experience learning deficits on the inhibitory avoidance task (Borrell, 1983).  
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These deficits are attenuated by the subcutaneous administration of epinephrine or 

norepinephrine (Borrell, 1983).  Peripheral epinephrine enhances memory in young rats (Gold 

and van Buskirk 1975, 1976) by eliciting the release of glucose from the liver, thereby increasing 

circulating glucose available to the brain (Gold 2014).  In contrast, aged animals display a larger 

release of epinephrine during learning or arousal compared to young animals, but show a 

significantly smaller increase in plasma glucose (Mabry et al, 1995).  This shift in plasma 

glucose may have important implications for the amount of glucose reaching the brain, 

potentially changing the strategy used by cells like astrocytes to keep the brain metabolically 

stable.  In this way, age-related memory deficits can be linked to changes in adrenergic 

regulation of metabolic reserves. 

Dysregulation of peripheral epinephrine in old animals may influence metabolic 

mechanisms specific to the nervous system.  Early studies have shown that circulating levels of 

epinephrine influence the levels of norepinephrine found within the brain (Gold and van Buskirk, 

1978).  After the application of peripheral epinephrine, norepinephrine release increases through 

the brain, including the hippocampus (van Buskirk and Gold, 1978a, b; Miyashita and Williams, 

2004).  Blocking β-adrenergic receptors in the periphery or directly in the amygdala using the 

antagonist propranolol inhibits the memory enhancing effects of epinephrine (Gold and van 

Buskirk, 1978; Liang et al, 1985).  These results imply that peripheral epinephrine’s modulatory 

influence on learning is in part due to its influence on norepinephrine production and signaling in 

the brain.   

Noradrenergic receptors are expressed on both neurons and astrocytes (Hertz et al, 2010). 

Activation of these receptors has been shown to modulate glucose uptake, oxidative metabolism, 
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glutamate uptake and hydrolysis and most importantly for this study the creation and breakdown 

of glycogen (Dienel, 2015).  Activation of each specific receptor type (α1, α2, β1, and β2) has been 

shown to initiate different intracellular cascades.  Activation of α1 and α2 adrenergic receptors 

results in the accumulation of glycogen while activation of β1, and β2 adrenergic receptors results 

in the breakdown of glycogen stores (O’Donnelle, 2012).  By having the potential to increase or 

decrease glycogen stores within astrocytes depending on the variety of receptor on the surface of 

the astrocyte, norepinephrine has the ability to modulate long term metabolic dynamic in the 

brain.   Norepinephrine-producing neurons projecting from the locus coeruleus spread 

throughout the nervous system influencing many different cell types, potentially influencing 

glycogen metabolism in various areas of the brain (O’Donnell et al 2012).  A disruption at any 

point in this signaling pathway may lead to the accumulation of glycogen and lack of behavior 

induced release described in our preliminary work.  Shifts in this pathway in addition to the 

inability of epinephrine to induce glucose release from the liver may combine to produce 

learning deficits in aged organisms. 

At this point it is unclear how metabolic modulation is changing with age, but the 

dynamics of glycogen accumulation and breakdown may be important in this pathway.  

Previously collected data indicate that old animals retain more glycogen in the hippocampus than 

do young animals after memory testing (Newman, unpublished).  Old animals also release less 

lactate in the hippocampus during the hippocampus-sensitive spontaneous alternation task when 

compared to young rats (Newman, unpublished).  Although lactate retains its memory enhancing 

effects, old animals may lack the capability to break down the glycogen during moments of high 

energy demand.  This indicates a disconnection between accumulation of glycogen and its timely 
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breakdown.  This shift could be linked to dysfunction with the noradrenergic signaling cascade 

leading to the breakdown of glycogen within the brain.  

The data collected from this experiment pose several new questions that should be 

explored with further research.  This study focused on hippocampal sensitive spatial working 

memory but there are other learning strategies that are heavily influenced by other areas of the 

brain, including the striatum.  Learning strategy determines the metabolic response of the brain 

area most strongly activated.  Shifts in learning strategy across the lifespan may influence each 

brain areas response to activation (Gold, 2014).  This experiment was also performed on only 

male rats.  Estrogens have been shown to influence learning, memory and bioenergetics in the 

brain.  It is important to determine if the same results appear in female subjects or if circulating 

estrogens change the metabolic strategy of the brain or how these strategies shift with age.  As 

mentioned above, noradrenergic signaling also plays a role in the dynamics of glycogen in the 

brain.  Future work will investigate the role the noradrenergic signaling system plays in 

determining age-related memory deficits.  Future investigations will help the scientific 

community to define how memory is metabolically modulated and how this changes across the 

lifespan.  Research focused on the shifts in brain bioenergetics associated with age is extremely 

relevant in an ever-expanding aging society and has the potential to define many of the 

mechanisms underlying both healthy and pathological aging.   
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Figures 

 

 

Figure 1:  Age related deficit on spontaneous alternation task.  Young animals (N=8) mean 

percent alternation (60.78% with a standard deviation of 4.56%) was statistically significantly 

higher (p=0.0333 at a significance level of 0.05) compared to old animals (N=8) mean percent 

alternation (51.96% with a standard deviation of 2.68%) on this task. 
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Figure 2: Lactate fails to enhance spontaneous alternation scores in young rats.  Although these 

groups were not statistically different from one another (p=0.25 with a significance level of 

0.05), young rats that received lactate (N=5) had a higher mean percent alternation score 

(50.98% with a standard deviation of 2.96%) compared you young rats who received saline 

(N=4, mean of 44.975% with a standard deviation of 3.9%). 
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Figure 3: Lactate enhances spontaneous alternation scores in old rats. Old rats that received 

lactate (N=5) had a higher mean percent alternation score (57.45% with a standard deviation of 

7.76%) compared you young rats who received saline (N=4, mean of 34.275% with a standard 

deviation of 5.24%).  This difference was statistically significant (p=0.048 with a significance 

level of 0.05) 

 

 

 

 

 

 

 



 

 
33 

 

Figure 4:  Old rats show a robust increase in percent alternation score with lactate compared to 

young rats.  Young animals that received infusions of lactate performed approximately 6.0% 

higher on the spontaneous alternation task compared to age maatched saline controls.  Old rats 

that received  infusions of lactate performed approximately 23.2% higher on the spontaneous 

alternation task compared to age matched saline controls. 
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Figure 5: Differences in number of arm entries between age groups.  Although young animals 

that received lactate made slightly more arm choices (mean of 42.2 arm choices) compared to 

those that received saline (mean of 34.5 arm choices), there was no significant difference 

between these two groups.  Old animals made approximately the same number of arm choices 

regardless of their treatment with saline or lactate. 
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