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Abstract 
 
More than 30 million Americans are blind or visually impaired due to injury or disease. Retinitis 
pigmentosa is a genetic disease that initially causes death of rod photoreceptor cells and is 
followed by the progressive degeneration of the retina, the light sensing tissue of the eye, 
ultimately leading to blindness. Retinitis pigmentosa leads toretinal gliosis, a process in which a 
specialized neuroglial cell that is specific to the retina, known as Müller glia, undergoes 
hypertrophy and migration as a reaction to retinal stress or damage.  I am investigating the 
mechanisms that are responsible for this type of degeneration in the African clawed frog 
(Xenopus laevis), as well as those that allow regeneration of the rod photoreceptor cells in this 
model organism. Intermediate filament proteins (IFPs) are hypothesized to contribute to 
progressive retinal degeneration and may inhibit retinal regeneration. IFPs are cytoskeletal 
components of cells responsible for structural and mechanical support, and are thought to be 
upregulated during a process known as gliosis. Genomic analysis of the Xenopus genome has led 
to the hypothesis that this species does not contain the gene for one of the class III IFPs known 
as Glial Fibrillary Acidic Protein (GFAP).  Therefore, degeneration may be regulated by one of 
the other class III and IV IFPs including Vimentin (Vim), Peripherin (Prph), Desmin (Des), and 
α-Internexin (Ina). Using immunohistochemistry and in situ hybridization, I examined the 
expression patterns of IFPs to determine where the proteins and corresponding mRNA localize in 
the retina and brain. I found that two GFAP antibodies used in previous publications have 
distinct expression patterns in Xenopus retina. Additionally, I found that three of the five class III 
IFPs are expressed in the retina. Since GFAP is not present in the Xenopus genome, the results 
suggest that the GFAP antibodies must be nonspecific. Given the high level of sequence 
similarity among the IFPs, and their response to retinal injury, the IFPs Vimentin and Peripherin 
may be the immunogens detected by the anti-GFAP antibodies used in previous publications. 
Since gliosis and progressive retinal degeneration are observed in Xenopus following retinal 
injury, future research should investigate the expression patterns of these IFPs in injured retinas 
using a controllable ablation model. 
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Executive Summary 

 

In the United States alone, there are more than 30 million adults that are blind or suffer 

from visual impairment due to injury or disease. Retinitis pigmentosa is a genetic disease that 

affects one in 4,000 people worldwide (National Eye Institute 2014). Otherwise known as rod 

cone dystrophy, retinitis pigmentosa is characterized as a progressive loss of rod photoreceptor 

cells caused by an improperly made protein (Hartong et al. 2006). This protein is integral to the 

function of cells that convert photons of light into vision. In the retina, or the light sensing tissue 

of the eye, there are two types of photoreceptor cells: rods and cones. Rods are responsible for 

vision in low light environments and are more numerous, while the cones are responsible for 

color vision. Within the retina is a specialized type of neuroglia known as Müller glial cells. 

Neuroglia provide mechanical support and protection for neurons. In humans, the loss of rod 

cells due to diseases such as retinitis pigmentosa result in a reactive process of Müller glia 

known as retinal gliosis. Following retinal injury, Müller glial cells will grow in size and extend 

projections that form a gliotic scar.  

Progressive retinal degeneration in humans results in increased production of 

intermediate filament proteins (IFPs), which are responsible for structural and mechanical 

support in a cell. There are six different classes of IFPs, with class III being of the most 

importance to retinal gliosis. These include Vimentin (Vim), Desmin (Des), Peripherin (Prph), 

Internexin-α (Ina-a), and Glial Fibrillary Acidic Protein (GFAP). GFAP is known to be produced 

in excess during retinal injury and is of special interest in the present study. 

African clawed frogs (Xenopus laevis) have the ability to regenerate rod cells and 

essentially regain sight after injury. This makes it a good model system for studying retinal 
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regeneration. I used a specific line of frogs that is susceptible to the antibiotic Metranidazole. In 

the presence of the antibiotic, the rod cells in these frogs are selectively destroyed or ablated. 

This results in a controllable rod ablation model that can also be reversed and allow for a specific 

time of regeneration.  

Previously, GFAP was shown to be produced in excess during retinal injury in Xenopus. 

We believe that the antibodies used in this study may have been recognizing another closely 

related protein rather than GFAP specifically, because our lab has been unable to find GFAP in 

the Xenopus genome. Antibodies work as tags that attach to proteins that they recognize. They 

can be labeled with fluorescent markers, so we can visualize where the antibodies attach in the 

organism. Because closely related proteins can be bound by the same antibody, if GFAP is not 

part of the genome, then it seems likely that the previous results were caused by binding of the 

antibodies to proteins other than GFAP. To examine this hypothesis, we tested two GFAP 

antibodies (DAKO & Sigma G3893) used in a previously published paper on the retinas of 

Xenopus tadpoles to see if they showed identical expression patterns. We found that the GFAP 

antibodies had distinct expression patterns, suggesting that they either aren’t recognizing the 

same part of a protein or aren’t recognizing the same protein at all.  

We then performed in situ hybridization to detect the pattern of mRNA (protein coding 

sequence) expression on retinal sections for each of the five IFPs. If we know where mRNA is 

within an organism, we can tell where that protein is being made. With this test, the mRNA of a 

specific protein that we are looking for will be stained purple, and we can visualize where the 

mRNA is located in the organism. Of the five genes we tested (GFAP, Vim, Des, Prph, and Ina-

a) we found that Vimentin, Peripherin, and Internexin-α were expressed in the retina. Vimentin 
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was the only one that was found within the retinal layers and likely to be in the Müller cells, 

which is the site of the detected antibody expression following retinal injury.  

The next step is to investigate how the expression patterns of these proteins change 

following injury. To accomplish this, the controllable rod ablation Xenopus lines will be used, 

and so we needed to ensure that results would be consistent among the different individuals used 

in experiments. Using the controllable ablation model described above, I determined if there was 

a difference in the rates of retinal degeneration of the progeny from different adult females. I 

found that there was variation within the lines, but there was no significant difference in 

degeneration rate between tadpoles generated from the three tested females, meaning that 

embryos any of the three female lines could be used interchangeably in future experiments.  

This work provides preliminary data for further experiments investigating the role of IFPs 

during retinal injury. Gaining knowledge about this specific class of proteins may also provide 

insight into how a lack of GFAP might in part be responsible for the ability of Xenopus to 

regenerate rod photoreceptors. 
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Project Body 
 

Introduction 
 

Over 30 million adults in America suffer from blindness or visual impairment, and this 

number is projected to double by the year 2050 (Vision Problems). A number of factors that can 

lead to blindness, including cataracts, glaucoma, macular degeneration, diabetic retinopathy, and 

retinitis pigmentosa. Retinitis pigmentosa is a genetic disease that usually starts showing 

symptoms during middle age. The first symptom is difficulty seeing at night, and as the disease 

progresses, it eventually results in complete blindness due to the impaired functioning of the 

retina, the light sensing tissue of the eye (Hartong et al. 2006). In the retina there are two classes 

of light capturing cells known as rod and cone photoreceptors. In many cases of retinitis 

pigmentosa a protein within the rods known as rhodopsin is made incorrectly (Hartong et al. 

2006). When this protein does not function normally, rod photoreceptors die. As a result of the 

rod photoreceptors dying, the cones also die by an unknown mechanism. Currently, there is no 

cure or successful treatment for retinitis pigmentosa (Hartong et al. 2006). Understanding the 

cellular and biochemical mechanisms that underlie this disease and the process that leads to 

blindness is key to finding a way to combat retinitis pigmentosa and other blinding diseases. To 

do this, we must first understand the retina and the key players involved in retinal degeneration. 

Within the retina there are six distinct layers of cellular and synaptic layers (Figure 1). 

Closest to the lens side of the eye is the ganglionic layer composed of ganglion cells and their 

nerve fibers that eventually join together to form the optic nerve. Next is the inner plexiform 

layer (IPL) that consists of the synapses between bipolar cells and ganglion cells, and is followed 

by the inner nuclear layer (INL) that is composed of the nuclei of amacrine and bipolar cells. 

Next is the outer plexiform layer (OPL) that contains the synapses between the bipolar cells and 
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the photoreceptor cells, and the outer nuclear layer (ONL) contains the nuclei of photoreceptor 

cells. The outermost layer of the retina is the photoreceptor layer, which contains the outer 

segments of two types of photoreceptor cells known as rods and cones. It is here where a photon 

of light is transformed into an action potential, ultimately causing a nerve impulse to be sent to 

the brain where it is interpreted as vision.  

There are two types of photoreceptors found in the retina. Rod cells are responsible for 

vision in low light environments, and cone cells detect color and function poorly in low light 

settings. As these cells die and degeneration increases in severity, a person’s sight worsens, and 

eventually they will become blind. This occurs in any damage or disease that leads to the death 

of rod photoreceptors. 

As light enters the eye, a photon first strikes the back of the retina, where it activates a 

change in the confirmation of the protein known as rhodopsin within the outer segment of the 

photoreceptor rod cell. From there, the cell hyperpolarizes and creates a cascade through all the 

retinal layers until it reaches the ganglion cell. The ganglion cell creates an action potential that 

travels down the axon that eventually forms a nerve bundle known as the optic nerve. This action 

potential eventually reaches the brain, where sensory information is interpreted. 

Spanning across most of the retinal layers in humans are 8-10 million Müller cells, 

specialized neuroglial cells found only in the retina. In a general sense, neuroglial cells act to 

support the function and health of nerve cells. Müller cells provide mechanical support for 

photoreceptors and regulate the concentration of potassium ions and neurotransmitters in the 

retina, which are required for normal functioning of photoreceptors and other neural cells 

(Bringmann & Wiedemann 2012).  
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Figure 1. http://www.retinareference.com/anatomy/ Visual of cellular and synaptic layers within retina. Nerve fiber 
layer (NFL), Ganglion cell layer (GCL), Inner plexiform layer (IPL), Inner nuclear layer (INL), Outer plexiform 
layer (OPL), Outer nuclear layer (ONL), External limiting membrane (ELM), Rod and cone inner and outer 
segments (IS/OS), Retinal pigmented epithelium (RPE), Basal membrane (BM) 
  

http://www.retinareference.com/anatomy/
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Retinal gliosis is a condition in which Müller cells react to damage/stress of the retina.  

Triggered by rod cell death in the human eye, IFPs are produced in excess (Tassoni et al. 2015). 

This is hypothesized to hinder the regeneration of rod photoreceptors because their induction is 

correlated with hypertrophy (growth in size) of the Müller cells (Bringmann & Weidemann 

2012) along with the sprouting of processes, and when these supportive cells become enlarged, 

they take up space and form a fibrous layer on the retina known as a gliotic scar that may prevent 

the regeneration of rod cells (Bringmann & Weidemann 2012) (Figure 2). The death of rod cells 

leads to the subsequent death of cone cells by an unknown mechanism. Although there are 

detrimental effects on the retina, the ultimate purpose of gliosis is to seal off the injured portion 

of the retina to prevent the spread of damage. The effect of Müller gliosis on a retina is both 

helpful and detrimental; by releasing antioxidants and neurotrophic factors, gliosis can be 

neuroprotective (Bringmann et al. 2006). 

An important characteristic of retinal gliosis is the upregulation of Intermediate Filament 

proteins (IFPs), the key components in the cytoskeleton of a cell which are responsible for 

structure and mechanical support. IFPs are organized into six different classes. Class III and IV 

are of most importance to the nervous system and retina. Class III consists of Glial Fibrillary 

Acidic Protein (GFAP), Vimentin (Vim), Peripherin (Prph), and Desmin (Des); and class IV 

consists of the neurofilaments α-Internexin (Ina) and Nestin (Nes). These IFPs are present in the 

cells that compose the six retinal layers. Although it is known that GFAP is upregulated in 

Müller cell gliosis in humans (Bringmann et al. 2009), there is still much to be learned about the 

role of IFPs in response to retinal injury including how and why they are upregulated, and if 

these mechanisms are conserved across species.  
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Figure 2. Taken from Giaume et al. 2007; a) cartoon visual of Müller cell undergoing gliosis and forming a scar; b) 
retinal folding and detachment caused by proliferating and migrating cells 
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The African clawed frog, Xenopus laevis, has the ability to regenerate their rod 

photoreceptor cells after ablation (Choi et al. 2011), making Xenopus an excellent model system 

in which to study retinal regeneration. Moreover, Xenopus eyes are structurally similar to many 

organisms, including humans, yet develop at a much faster rate, making experimentation on a 

reasonable timescale feasible.  

To investigate the relationship between gliosis, degeneration and retinal regeneration, we 

used a transgenic strain of frogs as our model system (XOPNTR). XOPNTR frogs express a 

bacterial gene called nitroreductase (NTR), under the control of the rhodopsin promoter (XOP), 

resulting in rod photoreceptor-specific expression of NTR. Nitroreductase converts the antibiotic 

metronidazole (Mtz) into a toxin that causes rod cell-specific ablation. This model mimics rod 

degeneration in the eyes of human patients with retinitis pigmentosa because of its specificity to 

the rods. Rod ablation only occurs in the presence of Mtz, thus making a controllable model of 

rod ablation. This model is also reversible, allowing us to study the ability of retinal 

regeneration.  By altering the length of the Mtz treatment, we can control the degree of 

degeneration and regeneration that we want to study. 

Previously, it has been reported that GFAP has been observed in normal and injured X. 

laevis retina. Based on a genomic and synteny analysis done by others in our lab, we believe that 

the X. laevis genome lacks GFAP, and may have been lost over the course of evolution 

(Martinez-De Luna et al. 2016). We hypothesized that the anti-GFAP antibodies used in this 

study may be recognizing one of the other closely related IFPs rather than GFAP.  
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Figure 3. Visual of Health and Injured Retina 
Immunolabeled cross section of tadpole retina. The red areas are immunolabeled rod cells, the blue are nuclei of 
individual cells. On the left panel there are healthy rod cells around the entire retina, this individual has full vision. 
On the right panel there are few rod cells, only on the progenitor region. This is a XOPNTR animal that has received 
Mtz treatment and therefore is blind.  
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Figure 4. Taken from Martinez-De Luna et al. 2016; Syntenic analysis showing chromosomal rearrangement across 
species that may have resulted in deletion of gfap gene 
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Figure 5. Taken from Martinez-De Luna et al. 2016; Genomic analysis of Xenopus A) conserved gfap sequences 
used to distinguish it from other IFPs B) Cladogram showing unknown Xenopus sequences in red and known in 
black, with other GFAP orthologs 
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Our overall hypothesis is that the IFPs regulate retinal degeneration and regeneration. 

The exact mechanisms remain unknown, but if this is true, the absence of GFAP in X. laevis 

may, in part, be the reason Xenopus can regenerate their retinal cells whereas mammals cannot. 

Based on the previously obtained data that suggests that that Xenopus lack GFAP, here we 

investigate whether the immunoreactivity of anti-GFAP antibodies in the Xenopus retina is 

distinct. If there is reactivity in the glial cells and this matches the patterns of other IFP 

expression, then we hypothesize that the GFAP antibodies are likely recognizing another closely 

related IFP. Although we hypothesize that IFPs are key players in retinal degeneration, it was 

still unknown where in the retina these proteins are overexpressed once gliosis was induced. 

Likewise, it was unknown in what cells and where within those cells these proteins are expressed 

under normal conditions.  

Future studies in my lab will go on to investigate the expression patterns of IFPs in 

injured retinas, and how this would compare to expression patterns of uninjured retinas. To lay 

the ground work for these future studies, I compared the rates of degeneration between the 

progeny of three different adult females to determine which female line should be used for 

experiments. This was done using the same controllable rod ablation model described above.  

Based on this information, three main questions were addressed: 

1) Are antibodies that purportedly recognize GFAP in X. laevis actually recognizing 

the GFAP protein? 

2) What are the expression patterns of IFPs in uninjured X. laevis retina? That is, 

where in the retina are the class III and IV IFPs being transcribed? Additionally, 

are these proteins being expressed in the brain tissue, and if so, where?  
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3) Is there a difference in the rate of rod ablation in the progeny of different female 

transgenic frogs? 
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Methods 

 

Testing GFAP Antibodies on Retinal and Brain Sections 

 

Embryo Fixation, Tissue Isolation, and Sectioning 

Untreated tadpoles were kept in frog water (0.5% sea salt; 2mM potassium chloride) in a 

temperature controlled room set to 22°C. Once they reached stage 50, they were anesthetized 

using 1% Tricaine and rinsed in 1X PBS. The eyes were removed, and brains and spinal cords 

were dissected out, fixed in 4% paraformaldehyde (PFA) for 1 h, placed in 20% sucrose 

overnight at 4°C and then embedded in optimal cutting temperature compound (OCT, Tissue-

Tek). Samples were cryostat sectioned at 16μm. 

 

Immunohistochemistry 

Slides were thawed at room temperature for 30 min, washed in PBS+0.1% Triton X-100 three 

times, and blocked for 1 h in 5% heat-inactivated goat serum in 0.1% Triton in PBS. Slides were 

incubated in primary antibodies overnight at 4°C (Table 1), and in the secondary antibodies for 2 

hours at room temperature (Table 2). DAPI (1:1000) was added during the incubation with the 

secondary antibody. 

 

Table 1. Primary Antibodies 
Antibody Source Catalog # Dilution 

Polyclondal rabbit 
Anti-GFAP 

Dako Z0334 1:500 

Monoclonal mouse 
Anti-GFAP 

Sigma G3898 1:200 
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Table 2. Secondary Antibodies 
Antibody Source Catalog # Dilution 

Alexa 488 goat 
anti-mouse IgG 

Invitrogen A-11001 1:500 

Alexa 555 goat 
anti-rabbit 

Invitrogen A21428 1:500 

 

Image Acquisition 

Images were acquired using a Leica DM6000 B upright microscope (Leica Microsystems, 

Bannockburn, IL) fitted with a Retiga SRV camera (Q-Imaging). Auto-exposure was used to 

determine the exposure time for each filter. The long-pass green filter (wavelength 488) was 

used for the Sigma antibody and the Cy3 filter (wavelength 555) was used for DAKO. 

 

In Situ Hybridization of Class III IFPs on Retinal and Brain Tissue 

 

Animals, Tissue Isolation, and Sectioning 

Tadpoles were grown to stage 50 in frog water. Tadpoles were then anesthetized in 1% 

methanesulfonate (Tricaine ; Sigma Aldrich, St. Louis, MO). Eyes, brain, and spinal cord were 

isolated, and fixed in 4% paraformaldehyde (PFA) for one hour, soaked in 20% sucrose for 30 

minutes in 4°C, then embedded in optimal cutting temperature compound (OCT, Tissue-Tek) 

and stored at -80°C. Blocks were cryostat sectioned at 12μm. Slides were dried for 2 h at room 

temperature then stored at -20°C. 
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Probe Design 

RNA probes used in in situ hybridization were designed for each of the five IFPs under study. 

The probe mix was composed of 2μL of 10X DIG labelling mix, 2μL of 10X transcription 

buffer, 1μg of linearized template DNA of each respective IFP, 1μL of RNA Polymerase Plus, 

and filled to a final volume of 20μL with Nuclease-free water. Reactions were held at 37°C for 2 

h, followed by adding 1μL of turbo DNase I and incubated in a 37°C water bath for 10 min. 1μL 

of mixture was tested on a 1% agarose gel run for 10 min to ensure the plasmid was cut. Next, 

1μL of 0.5 M EDTA pH 8.0 was added to each mixture, followed by 1.5 μL of LiCl and 66μl of 

ribonuclease-free 100% ethanol. Mixtures were incubated overnight at -20°C, then centrifuged at 

15,600 rcf for 15 min at 4°C. The supernatant was removed and 100μl of ribonuclease-free 75% 

ethanol was added. The mixture was then centrifuged at 15,600 rcf for five min at 4°C. All 

excess ethanol was removed and the tubes were dried on ice for 7 min. Pellets were resuspended 

in 20 μL of ribonuclease-free water. Probes were then resuspended in hybridization buffer (50%: 

100% deionized formamide, 15%: 5M NaCl, 10%: 10X PE, 1%: 5% heparin, 5%: 20% SDS, 

18%: ddH2O) to the DNA concentration of 20μg/mL. Probes were stored at -20°C. 

 

In Situ Hybridization 

Day 1: Slides were thawed at room temperature for 30 min, then washed in 1X PBS for 5 min, 

washed in 100% methanol for 10 min, and washed in PTw (10%: 10X PBS, 1%: 10% Tween-20, 

89%: ddH2O) 3 times for 5 min each. Slides were then treated with 10μg/mL Proteinase K in 

PTw for 30 s, then washed in 2mg/mL Glycine in PTw twice for 2 min. Next, slides were fixed 

in 0.2% glutaraldehyde in 4% paraformaldehyde (PFA) for 10 min. Slides were then washed in 

PTw 3 times for 2 min each. Slides were then washed in 0.1% sodium borohydride in PTw for 10 
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min, and once again washed in PTw three times for 2 min. Next, slides were washed twice in 

hybridization buffer for 2 min each, then prehybridized in hybridiztion buffer for 30 min in a 

60°C water bath. Next, 100 μL of probe was added to the coverslip, and placed on the slide. 

Coverslips were sealed with synthetic resin slide mounting medium (DPX; Sigma Aldrich, St. 

Louis, MO) and dried for 1 h before being placed in a 60°C slide heather overnight. 

Day 2: The synthetic resin slide mount medium and coverslips were removed, followed by the 

slides being washed once in hybridization buffer for 15 min in a 60°C water bath, then washed 

twice in wash buffer 1 (6%: 5M NaCl, 10%: 10X PE, 5%: 20% SDS, 79%: ddH2O) for 15 min 

each in a 60°C water bath, then washed twice in wash buffer 1.5 (1%: 5M NaCl, 10%: 10X PE, 

0.5%: 20% SDS, 88.5%: ddH2O) for 15 min each in a 50°C water bath. Slides were then rinsed 

in NTE buffer (10%: 5M NaCl, 1%: 1M Tris-Cl pH 8.0, 0.2%: 0.5 M EDTA, 88.8%: ddH2O) for 

2 min, followed by incubating in 100μg/mL RNaseA in NTE for 45 min in a 37°C incubator. 

Slides were once again rinsed in NTE buffer for 2 min, then washed in wash buffer 2 (50%: 

100% Formamide, 6%: 5M NaCl, 10%: 10X PE, 5%: 20% SDS, 29%: ddH2O) for 15 min in a 

50°C water bath, washed in wash buffer 3 (50%: 100% Formamide, 3%: 5M NaCl, 10%: 10X 

PE, 1%: 10% Tween-20, 36%: ddH2O) for 15 min in a 50°C water bath, washed twice in wash 

buffer 4 (10%: 5M NaCl, 10%: 10X PE, 1%: 10% Tween-20, 79%: ddH2O) for 2 min each at 

room temperature, then once in wash buffer 4 at 70°C for 10 min. At room temperature, slides 

were then treated with a MABT and BMBR mixture (10%: 10X MAB, 1%: 10% Tween-20, 

20%: 10% BMBR, 69%: ddH2O) for 30 min, followed by treatment with anti-DIG (1:2000) in 

the MABT and BMBR mixture overnight. 

Day 3: Slides were washed 3 times for 10 min each with 1X MABT (10%: 10X MAB, 1%: 10% 

Tween-20, 89%: ddH2O), then washed twice for 5 min each in AP Development Buffer (0.5%: 
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1M Levamisole (Tetramisole hydrochloride; alkaline phosphatase inhibitor; Sigma Aldrich, St. 

Louis, MO), 10%: 1M Tris-Cl pH 9.5, 2%: 5M NaCl, 10%: 0.5 M MgCl2, 1%: 10% Tween-20, 

76.5%: ddH2O). Slides were then left overnight in BM Purple Solution (Roche; Basel, 

Switzerland) mixed with 2mM Levamisole.  

Day 4: Slides were washed 3 times for 5 min each in PTw & EDTA (10%: 10X PBS, 1%: 

10%Tween-20, 0.2%: 0.5M EDTA, 88.8%: ddH2O), then fixed in 4% paraformaldehyde (PFA) 

for 30 min, washed in 1X PBS twice for 2 min each, and coverslipped with 50% glycerol. After 

they dried, slides were stored at 4°C. 

 

Image Acquisition 

Images were acquired using a Leica DM6000 B upright microscope (Leica Microsystems, 

Bannockburn, IL) fitted with a Retiga SRV camera (Q-Imaging). The color filter was used with a 

bright field light source.  

 

Rates of Degeneration in XOPNTR Progeny  

 

Animals 

Embryos were collected from three different XOPNTR transgenic females. 100 tadpoles each 

were collected from females 13 and 16, and 48 were collected from female 21. Tadpoles from 

each female were divided into two treatment groups, and half were used for this experiment. 
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Metronidazole Treatment 

Metronidazole at a concentration of 10 mM (Mtz; Sigma Aldrich, St. Louis, MO) was dissolved 

in frog water, then 0.2% dimethyl sulfoxide (DMSO; Sigma-Aldrich, St. Louis, MO) was added. 

Animals were treated for six days in tanks with 20mL of water per tadpole at 22°C in the dark 

and recovered at 19°C with light exposure for one day. BrdU (1mM; Sigma Aldrich, St. Louis, 

MO) was added to the Mtz solution starting on day four of treatment. 

 

Embryo Fixation and Sectioning 

On day seven, 25 tadpoles from each tank of females 13 and 16, and 12 of female 21 were 

collected and anesthetized with 1% methanesulfonate (Tricaine ; Sigma Aldrich, St. Louis, MO). 

After rinsing in 1X PBS, tails were removed and heads fixed in 4% paraformaldehyde (PFA) for 

one hour, cryoprotected in 20% sucrose overnight at 4°C, embedded in optimal cutting 

temperature compound (OCT, Tissue-Tek), and cryostat sectioned at 12 μm. 

 

Immunohistochemistry 

Slides were thawed at room temperature for 30 mins, washed in PBS+0.1% Triton X-100 three 

times, and blocked for 1 h in 5% heat inactivated goat serum in 0.1% Triton in PBS. The primary 

antibodies used were rabbit anti-transducin (1:100), mouse anti-R5 (1:5), and mouse anti-BrdU 

(1:20) (Table 3). The secondary antibodies used were goat-anti mouse IgM Alexa Fluor 546 

(1:500) and goat-anti-rabbit IgG Alexa Fluor 647 (Table 4). Slides were incubated with primary 

antibodies 4°C overnight, and in secondary antibodies at room temperature for 2 h. DAPI 

(1:1000) was added during incubation in the econdary antibody.  
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Table 3. Primary antibodies. 
 
 
 
 
 
 
 
 

 
Table 4. Secondary antibodies 

Antibody Product 
no. 

Company Dilution 

Goat anti rabbit 
IgG Alexa 647 

A21236 Invitrogen 1:500 

Goat anti mouse 
IgM Alexa 546 

A21045 Invitrogen 1:500 
 

Goat anti mouse 
IgG Alexa 488 

A11001 Invitrogen 1:500 

 

 

Image Acquisition 

Images were acquired using a Leica DM6000 B upright microscope (Leica Microsystems, 

Bannockburn, IL) fitted with a Retiga SRV camera (Q-Imaging). Images of transducin signal 

were all acquired using the same exposure time under the filter Cy5 (wavelength 647). The 

exposure was set to 80% of the transducin fluorescence detected in wild type sibling control 

animals. Exposure time for R5 was also uniform for all pictures, and was set to 80% of the 

fluorescence detected in tadpoles carrying the XOPNTR transgene. Images were obtained from 

three consecutive central retina sections of both eyes.  

 

Measurements 

Signal above threshold (SAT) (arbitrary units) and retinal distance measurements were obtained 

using Volocity (Perkin Elmer). Signal intensity was set between 454 and 1000. Transducin SAT 

Antibody Clone Company Dilution 
Anti-transducin Sc389 Santa Cruz 

Biotechnology 
1:100 

R5 monoclonal W.A. Harris; 
Cambridge 
University 

1:5 

Anti-BrdU G3G4 DSHB 1:20 
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detection was restricted to the area above the inner nuclear layer excluding any signal observed 

in the retinal pigment epithelium (RPE). Signal observed in the RPE was excluded because of its 

phagocytic behavior, suggesting that the transducin was causing fluorescence in dead cells. 

Retinal distance was measured in retinal sections along the perimeter of the inner nuclear layer to 

the tip of the ciliary marginal zone. SAT/μm was calculated by dividing SAT value by the retinal 

distance. 

 

Statistics 

A one-way ANOVA test was used to test if there was a difference between the average SAT/μm 

from each animal. Post-hoc tests were used to analyze whether there was a statistical difference 

between the SAT/ μm averages from each line.  
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Results 

 
GFAP Antibody Staining  
 

The DAKO and Sigma anti-GFAP antibodies showed distinct expression patterns in the retina, 

brain, and spinal cord (fig. 6). In the retina, both antibodies had fibrous recognition patterns, and 

spanned the multiple layers of the retina (fig. 6 A, B). The DAKO antibody stained more toward 

the ganglion cell layer (fig. 6 A’, B’), while the Sigma antibody didn’t stain as strongly in that 

area and showed more specific recognition down into the OPL and ONL (fig. 6 A”, B”).  

In the brain there was background fluorescence for both antibodies, but there remained portions 

of the recognition pattern that did not overlap (fig. 6 C, D). DAKO recognition was closer to the 

outer portions of the brain sections (fig. 6 C’, D’), while the Sigma recognition was concentrated 

more on the inner portions of the brain sections (fig. 6 C”, D”).  

The spinal cord sections also showed significant background fluorescence, but had clear distinct 

fibrous patterned recognition (fig. 6 E). DAKO had stronger recognition around the distal edges 

of the spinal cord (fig. 6 E’), and Sigma showed stronger recognition in the center of the spinal 

cord section (fig. 6 E”). 
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Figure 6. GFAP Antibody Staining. A) Retinal section double stained with anti-GFAP antibodies, A’ showing 
only DAKO and A” showing only Sigma-G3893, all shown at 10X magnification, and the same retinal section 
stained with the same antibodies shown in B) at 20X. C) Brain double stained with the same anti-GFAP antibodies 
shown at 20X magnification and D) showing the same brain sections at 10X magnification. E) Spinal cord section 
stained with the same anti-GFAP antibodies 
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Intermediate Filament Protein Expression Patterns 
 

The GFAP probe did not stain any tissue within the retina or the brain (fig. 7 A). Likewise, 

desmin showed no recognition in the retina or brain (fig. 7 B, B’), but did stain muscle tissue 

quite strongly (fig. 7 B”). Internexin-α showed recognition in the retina along the ganglion layer 

and possibly into the IPL or INL (fig. 7 C), and showed light recognition in the brain (fig. 7 C’). 

Peripherin had the strongest staining in the peripheral regions near the proliferating zones at the 

tip of the retina (fig. 7 D). It also stained the internal portions of the brain, indicating its presence 

there as well (fig. 7 D’). Vimentin stained the darkest of all the IFPs, with expression in the 

proliferating zone, the lens, and the inner layers of the retina, possibly extending further into the 

IPL (fig. 7 E). Staining in the brain was also quite dark and is the most densely concentrated in 

the interior portions of each lobe (fig. 7 E’). Staining by ISH indicates that there is mRNA of 

each respective IFP present, and ultimately that is probably where the respective IFP is being 

transcribed (Table 5). 

 
tissue type GFAP Des Ina-a Prph Vim 
retina no no yes yes yes 
brain no no yes yes yes 
muscle no yes no no no 

 
Table 5. IFP In Situ Hybridization Expression Summary. For each IFP listed, presence in each named tissue 
determined by staining by ISH is indicated by yes and no staining is indicated by no. 
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Figure 7. In situ hybridization using IFPs in 
Xenopus retinas and brains. Expression patterns 
of intermediate filament proteins A) GFAP B) 
Desmin C) Internexin-α D) Peripherin E) Vimentin 
in the retina and respective brain sections. B” shows 
stained muscle tissue by Desmin probes. 
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Rates of Degeneration Among Female Progeny  

After Mtz treatment, tadpoles from the three different XOPNTR females showed no significant 

difference in rates of rod cell ablation (Fig. 8 A-F). Complete rod ablation was observed in 43% 

of the tadpoles (n=7) from female 13, 50% (n=8) from female 16 and 50% (n=4) from female 21; 

p=0.2981 (Figure 8B, D, F, and G). The remaining 57% (female 13; n=7) and 50% (females 16 

and 21; n=8 and 4, respectively) still had detectable transducin signal in the retina (Figure 8A, C 

and E). These results suggest that the rate of rod ablation is comparable in these three XOPNTR 

transgenic females for this time point, and that any of these females may be used interchangeably 

in further experiments using an Mtz treatment of six days.  
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Figure 8. Rod Ablation in tadpoles treated with Mtz for six days and recovered for one day. (A-F) Retinal 
sections stained for transducin and DAPI. Panels A,C, and E show mild rod loss in central retina for all three 
XOPNTR female progeny. Panels B,D, and F show severe rod loss in central retina for all three XOPNTR females. 
Results for the transducin  SAT/µm results for the progeny of the three XOPNTR females used (G). Scale bar= 100 
μm. 
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Discussion 
 

The number of blind individuals throughout the world is climbing every day. There are 

currently no effective treatments for retinitis pigmentosa, and one in 4,000 adults will lose their 

vision entirely because of it. Beginning to understand the role that IFPs play in retinal 

degeneration and regeneration will bring us closer to understanding and therefore combating 

retinal diseases such as retinitis pigmentosa. By using immunohistochemistry and in situ 

hybridizations, the present study examined class III IFPs to determine where in the retina and 

brain they are expressed in X. laevis. I also investigated the recognition patterns of two GFAP 

antibodies in the Xenopus retina. 

The two tested GFAP antibodies that were purportedly binding to GFAP in the Xenopus 

retina as reported in previous publications are most likely not recognizing the GFAP protein. 

Because the two anti-GFAP antibodies should both recognize GFAP, their distinct recognition 

patterns suggest that either one or both of them are not recognizing GFAP. Furthermore, based 

on the previous genomic and synteny analysis conducted by our lab (fig. 4, 5), we failed to find 

GFAP in the Xenopus genome, suggesting that neither of the tested antibodies are recognizing 

GFAP. One possibility is that these GFAP antibodies are recognizing one of the other closely 

related class III IFPs. Based on the expression patterns observed using in situ hybridization, it’s 

likely one of the three that are expressed in the retina: Vim, Prph, or Ina-a.  

These results are further corroborated by recent work published by members of our lab 

that suggest that GFAP antibodies are in fact recognizing other IFPs (Martinez-De Luna et al. 

2016). Purified proteins (mouse GFAP, Vim, Des, Prph, Ina-a) were myc tagged visualized via 

western blots with the same antibodies used in the present study, GFAP polyclonal antibody 

(pAb) DAKO and monoclonal antibody (mAb) Sigma-G3893. The results showed that pAb 
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recognized all of the proteins, and mAb recognized only the mouse GFAP (Fig. 9). This 

supportsthe idea that the DAKO antibody used in my study was most likely recognizing one of 

the other IFPs rather than GFAP. 

Vimentin, peripherin, and internexin-a are the most likely to be expressed in the Müller 

glia based on the results observed in the in situ hybridizations. Of the five IFP probes tested, only 

Vim, Prph, and Ina-a showed localization in the retina. As predicted, GFAP probes were not 

found in the retina or the brain. Similarly, Desmin did not stain any part of the retina or brain, but 

did show dark staining in muscle tissue. Based on these results, it is unlikely that Desmin plays 

any role in the process of retinal degeneration. Because of the presence of Vim, Prph, and Ina-a 

in the uninjured Xenopus retina, it is possible that thse genes may play a role in degeneration. We 

hypothesize that they are upregulated during gliosis and therefore may be more important for 

glial scarring than the other related IFPs. In the future, we will go on to test this hypothesis by 

repeating the experiments presented here, but using injured retinas and the XOPNTR model. 

In addition to the results described above, I also found that any of the transgenic females 

can be used for embryo collection for future experiments because there was no significant 

difference in the rate of degeneration among progeny originating from different female lines. 

Previously, it was suspected that degeneration rate might differ among the progeny of different 

female transgenic frogs. Based on a statistical analysis of the average SAT/ μm score for injured 

retinas of the progeny in each female line I found that there was no difference between the lines, 

but there was variation in rate of retinal degeneration within each line.  

Moving forward, the Zuber lab will continue to investigate where IFPs are expressed in the 

injured retina and whether they are in fact upregulated during the process of gliosis in Xenopus. 

The results presented here will form the foundation for future efforts addressing how IFPs are  
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Figure 9. Specificity of GFAP antibodies on western blot. Adapted from Martinez-De Luna et al. 2016. A) GFAP 
pAb tested against mouse GFAP, uninjected embryos, Vim, Des, Prph, Ina-a in green. In red is myc mAb used as a 
control for the myc tagged proteins. B) GFAP mAb tested against the same proteins in green, with the myc pAb in 
red used as a control.  
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involved in retinal degeneration, and which IFPs to focus on. In particular, Vim, Prph, and Ina-a 

present a compelling case for future investigations of their role in retinal gliosis and the 

formation of glial scarring.  

IFPs are an important factor in the process of gliosis. Glial cells are present wherever 

there are neural cells, and neurons and their axons extend throughout the entire body. This means 

that the process of gliosis can occur almost anywhere within the body. Because IFPs are present 

in the brain, they may also play a role in the process of gliosis in the brain. The expression 

patterns of each IFP are unique, and each has a specific purpose within the cell. More 

importantly, each has a different contribution to the process of retinal gliosis. Discovering the 

precise function that each IFP has in progressive retinal degeneration would lead to a possible 

approach to treating blinding diseases such as retinitis pigmentosa. 
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