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Abstract

Recent experiments and simulations have indicated that confluent epithelial layers, where

there are no gaps or overlaps between the cells, can transition from a soft fluid-like state to

a solid-like state, with dynamics that share many features with glass transitions. While a

coherent picture has begun to form connecting the microscopic mechanisms that drive this

transition with macroscopic observables, much less is known of its consequences in biological

processes. Do tissues tune themselves to a fluid state in order to promote collective motion?

Has evolution made use of the ability of tissues to tune themselves between fluid and solid

states in programming the complex steps leading from the embryo to the organism? Here we

describe our recent e↵orts to answer such questions using continuum and mesoscopic models.

Employing the biophysical vertex model, active cells in confluent tissue are described as

polygons with shape-based energies. Recent work has shown that this class of models yields

a solid-liquid transition of tissue with evidence of glassy dynamics near the transition line.

Here, we extend one such model to include the influence of cell division and cell death.

With careful numerical studies, we refute a recent claim that the presence of such division

and death will always fluidify the tissue. In the second part of the thesis, we develop

a novel hydrodynamic model of confluent motile tissues that couples a structural order

parameter for tissue rigidity to cell polarization. Using this continuum model we identify a

new mechanism for pattern formation in confluent tissues via rigidity sensing that we name

“morphotaxis”. We find that a single “morphotactic” parameter controls whether a tissue

will remain homogeneous or will develop patterns such as asters and bands.
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Chapter 1

Introduction

1.1 Motivation

Quantifying cell dynamics is crucial in both understanding and manipulating biological pro-

cesses. In dense tissues, it is often useful to think of the tissue as a “living material” and

interactions between cells, such as steric repulsion and reorientation can give rise to interest-

ing macroscopic behaviors, such as coordinated cell migration. Interestingly, a comprehensive

theory of tissue rheology (e.g., whether a group of cells will behave like an elastic solid or like

a fluid) is lacking. Such a theory would provide a deeper understanding of morphogenetic

processes, cancer metastasis, wound healing, and more. These biological phenomena may

have non-trivial dependance on time-scales, internal mechanical properties, and “activity”

[28, 16, 101].

The idea that rheology and force play roles in the development and maintenance of organ-

isms is far from new [139]. Related questions of the biological importance of crowding [80, 1],

manipulation with optical force [135], and the precise role of force in development [64, 83]

have been under investigation over the past century, to the tune of numerous great successes.

More recently, the field of “Active Matter” has emerged within statistical physics to provide

new insight into biological processes. This new field has grown out of the observation that
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varieties of living and driven matter consume energy and thereby obey a di↵erent set of basic

symmetries and principles. Guided by this insight, it is possible that future investigations

may find application in materials science and drug delivery.

More recent biological manipulation techniques have been employed to isolate the e↵ect

of tissue boundaries [101, 110, 66], probe spatially dependent forces and rheology [38, 119,

65], and may even allow highly sensitive spatiotemporal activation of motility, contractility,

proliferation, and apoptosis [48, 142]. These have been developed in tandem with the growing

world of experimental imaging methods such as Particle Image Velocimetry (PIV) [100],

Traction Force Microscopy (TFM) [130], FRET [99, 118, 141, 159], light-sheet microscopy [71,

56, 148] and many more [92, 50, 151]. These have permitted new insight into the complex

interplay between internal cellular functions and tissue dynamics. While helping to constrain

theory and simulations, these insights also open up new realms for exploration in tissue

mechanics.

1.1.1 Dense Tissues

A substantial fraction of cell types form dense, confluent tissues. One important example is

the epithelial layer. In these tissues, which are typically one to a few cell layers in thickness,

each cell is tightly adherent to its neighbors forming a network of cell-cell interfaces. Al-

though the cell nucleus and other structures can contribute to the mechanical properties of

cells, in many epithelial layers it seems that the mechanical properties are well-approximated

by the network of interfaces. This self-regulated network may produce non-trivial rheolog-

ical properties as revealed by experiments over the past decade [36, 2, 49, 11]. Among the

observed phenomena is the transition to a “glassy” state in which cells become caged by

their neighbors [112, 2]. However, unlike conventional glasses, cells within tissues may gen-

erate additional dynamics such as directed motile forces and cell division. How might these

biological e↵ects influence mechanical tissue properties such as glassiness? How might tissue

rigidity then feed back and guide the biological processes? This is the focus of our work.
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1.2 Active Matter

“Active Matter” describes a set of materials in which the individual agents convert free energy

into kinetic motions and stresses. This motion is typically generated at the scale of a single

agent. Agents may be grouped into two categories based on the process which generates the

motion: synthetic and biological. For the broad zoo of synthetic active matter agents such

as Janus particles, camphor rafts and magnetic rollers [90, 32, 98, 54, 91, 22, 153] the driving

process is relatively simple, idealized, and reliable. However, for biological agents such as

a flying bird, swimming sperm or a crawling cell, motion is typically driven by an internal

metabolic process. This metabolism, and the conversion of the internal energy into motion

is typically regulated by a large number of internal biological factors. To describe this active

process with complete resolution would require an impossibly large number of variables.

Just as in the case of a molecular gas, such a complete description is niether feasable nor

productive. Instead, one typically constructs a simplified e↵ective model. In the case of

active matter, this comes as an e↵ective “active force” acting on the i-th constituent. The

equation of motion for the position of the i-th unit located at position ri(t) then takes the

form

mr̈i = Ffric
i + Fact

i + Fint
i + Fnoise

i , (1.1)

where Ffric
i is a dissipative force that comes from frictional interactions with a substrate

or the environment, Fint
i may come from mechanical interactions with other system con-

stituents, and Fnoise
i arises from fluctuations (e.g., thermal forces). The active force Fact

i

represents an explicitly out-of-equilibrium driving force, such as cells exerting traction forces

on a substrate to move. In this way, the complex process which produces motion (e.g. how

a bird flies) is grouped into a small number of parameters and we focus instead on the prop-

erties of the group (e.g. the collective dynamics of the flock). Just as in standard statistical

mechanics, Eq. (1.1) is considered a “microscopic model” as it describes the motion of indi-

vidual system “particles”. The defining microscopic parameters of this e↵ective model are
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assumed, case by case, to take a form which is reasonable in the appropriate limits (e.g.

colloidal matter displaying Brownian motion in the absence of interactions). As Eq. (1.1)

typically preserves neither energy conservation nor momentum conservation, it is one of the

pivotal observations of active matter that this lack of microscopic symmetry can control

which macroscopic states may be expected. In the following we both review types of active

forces and methods for understanding their influence on macroscopic system properties.

1.2.1 Polar Active Particles

Equation (1.1) above, is an example of the form that Newton’s second law might take for

an active “agent” or particle within a particle-based model. The first, and in some senses

the simplest particle-based model was developed by Craig Reynolds [108] for animated films.

This same model was later analyzed in-depth for phase behavior by Vicsek et. al. [147].

The Vicsek model of microscopic flocking consists of idealized “boids” which are prescribed

to move at a fixed speed. Boid is a shortened term for “bird-oid” that was introduced

by Reynolds [108] to describe bird-like active agents. It was by considering the possibility

that these velocity directions might interact that Vicsek et. al. were able to observe and

quantify the basic ingredients required for the formation of a flock. While informative and

foundational, the Vicsek model treated time as discrete and the process of alignment as

instantaneous. We therefore present here a more general continuous-time version of the

model which includes all the same ingredients as the original Vicsek model and is reflective

of the contemporary modes of study and simulation.

Vicsek: Activity and Alignment In the Vicsek model (and many other contemporary

models) activity comes in the form of a propulsive force of constant magnitude f

0

. In the

overdamped limit of motion, where friction with the substrate dominates, the active particles

will have a fixed speed v

0

= f

0

/� where � is the coe�cient of friction. The motion of the

4



i-th agent with position ri is then follows the equation of motion

@tri = v

0

n̂(✓i) . (1.2)

Here, ✓i is an angle defining the orientation of self propulsion, and n̂(✓i) is a unit vector in

this direction. In this and a large fraction of active matter models, it is this direction of

motion ✓i that is the free dynamical variable of interest. This angle evolves in time with the

following equation of motion:

✓̇i =
�i � ✓i

⌧a

+ ⌘i(t) , (1.3)

which includes an interaction whereby agents will update their propulsion over a timescale ⌧a

to align with a locally defined direction (angle) �i. This angle is traditionally taken to be the

average direction of motion in the neighborhood of particle i. This average can be defined

geometrically (e.g. by a cuto↵ distance) or topologically (e.g. by a Voronoi tesselation).

The second term corresponds to a rotational noise, which captures fluctuations in the

angle of polarization. This noise reflects any process that causes the agent orientation to

fluctuate. In the simplest and most common form, the noise is assumed to be white and

gaussian and it is defined by

h⌘i(t)i = 0, h⌘i(t)⌘j(t0)i = 2Dr�ij�(t� t

0), (1.4)

where Dr is the rotational di↵usion rate. To be a bit more precise, Dr is half of the variance

of this noise distribution.

Vicsek: Flocking We now note that this noise term helps to define a timescale which may

be defined as ⌧r ⌘ 1/Dr. This timescale is in competition with the timescale of alignment ⌧a

to determine the qualitative behavior of the system. For small ⌧r noise disrupts the velocity

quickly compared to the alignment and system agents are disordered, propelling themselves

in random directions. However, as ⌧r is increased the system undergoes a transition to a
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Figure 1.1: Depiction of the fundamental ingredients for the formation of a flock. On the left,
a self-propelled item may sense and interact with the direction of motion of its neighbors. At
high enough density and low enough noise, this behavior may lead to spontaneous emergence
of collective motion as depicted in the publication of Vicsek et. al. [147] (Center). This may
explain the onset of “gregarious” behavior in locusts [23] (Right) as well as other flocking
organisms. Locust photo adapted from the work of Ariel et. al. [3]

flocking state where all the agents have coordinated their propulsive forces to travel in a

common direction. This transition can be quantified by an order parameter

P =

�����
1

N

NX

i

n̂(✓i)

����� , (1.5)

which is zero when the propulsion directions are disordered (isotropic) and non-zero when

these orientations become aligned (polar flock).

At first glance one might expect that the important features of flocking are determined

simply by the timescales ⌧a and ⌧r. However, these timescales can only give a complete picture

of flocking behavior for active agents which may align with their neighbors over arbitrary

distances. Such a “topological” model of flocking is appropriate for some particular scenarios

such as starling flocks [5] and confluent tissues, where interactions appear to depend on the

number of neighbors regardless of the geometric distance. In other systems, such as the

swarming of locusts [23], metric distance plays a role along with ⌧a and ⌧r in determining

the flocking behavior. The original Vicsek Model included the simplest version of such an
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e↵ect, as shown in the left side of Fig. 1.1, whereby agents will only align if they are within

some radius of one another. Simulations of this model can numerically confirm the intuition

that higher density is required for flocking to arise, and that at these high densities the

behavior is indeed determined by a competition between the timescales ⌧a and ⌧r. A deeper

quantitative understanding is gained through coarse graining, as described in section 1.2.2.

Note also that our discussion of the Vicsek model thus far has not considered the influence

of mechanical contact interactions. In flocking scenarios in the animal kingdom, this is

often reasonable. For systems of birds, wildebeest and fish, flocking has more to do with

information travel via sensory perception than with actual physical forcing. The timescale

⌧a in these cases is then dependent on the vision and reflexes of the animal. The direction of

the propulsive force then need not be distinguished from the direction of actual motion. For

instance, it is unlikely to observe a wildebeest traveling along with a stampede while turned

sideways. However, this argument does not extend to the scale of cellular matter where

cells have been observed exerting persistent crawling forces perpendicular to their actual

motion [66]. At this scale, direct physical contact and forces between the cells are expected

to play a strong role in determining the system behavior.

Simulations of active matter with mechanical interactions have been studied in many con-

texts. At low noise and zero alignment, a clustering phenomena termed “motility-induced

phase separation” may be observed [137, 39, 19, 96], while at strong alignment flocking is

observed to compete with jamming to determine system behavior [52, 44]. In such regimes,

coarse-graining is generally unfeasable and analytic results connecting microscopic param-

eters to macroscopic observables have progressed slowly, due in large part to the inherent

complexity and non-linearities of high-density matter.

1.2.2 Active Hydrodynamics for the Vicsek Model

Just as in the case of traditional condensed matter physics, we do not always desire to

keep track of all these microscopic (agent) degrees of freedom. In analyzing the statistical
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behavior of large active systems, hydrodynamic equations become useful. Macroscopic prop-

erties of concern may be gleaned far more easily from such equations, when they exist. In

fact, the first analysis of large-flock statistics consisted of a hydrodynamic analysis [144].

This work ignited much of the active-matter research in the past 20 years. Aside from the

countless applications in biology, these models exibit the special quality of allowing spon-

taneous breaking of a continuous symmetry in two dimensions. A “flocked” state, with

microscopic constituents agreeing on a non-zero average velocity, requires these constituents

to choose this motion direction. This type of symmetry-breaking was previously considered

forbidden in two and fewer dimensions by the Mermin-Wagner theorem [86]. The inherently

non-equilibrium nature of the system breaks this restriction. This active movement of con-

stituents allows for faster dissipation of fluctuations emerging from noise, thereby stabilizing

the broken-symmetry state. While the initial analysis of Vicsek suggested that the transition

to a flocking state is continuous, a more careful later analysis revealed the transition to be

discontinuous [47]. Analytic explorations will therefore carry the additional complications

associated with first-order transitions.

Coarse-Graining Approach

In order to construct the relevant hydrodynamic equations of interest, one might imagine

beginning with analysis of the microscopic model. In many cases, the methods of con-

ventional statistical physics may be employed to “coarse-grain” the model. This method

produces equations for the long-wavelength dynamics of some number of relevant fields. In

the case of flocking, the minimal field of concern is an averaged velocity ~v analogous to the

Navier-Stokes equation in classical fluids. This velocity may be coupled to additional fields

(i.e. density, synchronization etc.) for more complex dynamical models. This approach is

advantageous because the continuum equations are expressed in terms of the microscopic

parameters, which lends insight for experimental manipulation.

In these active systems, the typical coarse-graining method starts with either a Smolu-
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chowski, Fokker-Planck, or Boltzmann equation to describe the evolution of microscopic

probability densities [15, 74, 10, 156]. Additional assumptions of molecular chaos and clo-

sure then allow isolation of the long-distance, slow dynamics which are expected to dominate

at the macroscopic level. Employing these methods, Bertin et. al. [15] were able to verify

the qualitative conclusions of the Vicsek model. This molecular chaos assumption is typi-

cally only valid in dilute (low-density) systems, resulting in the complications when trying

to coarse grain medium- and high-density dynamics. These complications arise similarly in

high density inactive matter. In these regimes, researchers turn to alternative methods.

Phenomenological Approach

In many cases, hydrodynamic equations may be written down on the basis of symmetry

and conservation laws instead of derived through coarse graining. In the simplest case, this

process allows one to consider the first time derivative of a field, and relate this to all possible

terms allowed by the symmetry of the problem. Of course, there are infinite terms allowed,

and it is the assumption that long-wavelength dynamics will control system behavior which

allows an expansion in gradients to be truncated. This method is employed by Toner and

Tu [144] in their initial analysis of flocking hydrodynamics. In this classic formulation, the

local number density obeys the simple conservation law

@t⇢ = �r · (⇢v) , (1.6)

while the collective velocity v is found to obey a generalization of the Navier-Stokes equation

@tv + �

1

(v ·r)v + �

2

(r · v)v + �

3

rv

2

= �↵v � �v

2v �rP + DBr (r · v) + DTr2v +D
2

(v ·r)2 v + f . (1.7)

This model includes the handicap that each coe�cient is generally an unknown function of

(⇢, |v|). Despite this, a stability analysis may be performed which indicates the existence
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of a stable, flocked state. Although there is no direct connection between microscopic and

macroscopic parameters, this method is not restricted by assumptions of low-density. Results

from coarse graining e↵orts have shown that ↵ may be approximated as a linear function of

density near the transition. This is an important feature of the model as the transition to

a flocked state may then be density-driven. A simple analysis of homogeneous, steady-state

solutions shows the emergence of a non-zero vector field v

2

0

= ↵/� as ↵ changes sign. For

a flocking model, this is a reasonable feature. That increasing the density leads to more

alignment, and thus to the emergence of flocking, is expected microscopically. In this case

the density takes the role of a tuning parameter, and the transition to a flocked state may

be achieved by increasing this density past a critical value ⇢

⇤.

1.2.3 Apolar and Isotropic Active Forces

Activity at the local level is generally produced by a force dipole. Thus far we have considered

systems where the dipole is produced by virtue of direct mechanical interaction with a

substrate (e.g., the surface which cells may crawl across). In many cases the substrate will

quickly dissipate the extra energy from these active forces, and can therefore be ignored.

In these cases, only half of this force dipole is considered, which then takes the form of a

directed propulsion. However, for a large class of active matter systems, the entire active

dipole must be considered. For many of these active systems, the force dipole arises from

agent-agent interactions rather than agent-substrate interactions. In these cases, rather than

producing a directed polar motion, local energy consumption produces an active stress. We

briefly review some characteristic examples of this which are important in understanding the

dynamics of biological tissues.

At the subcellular scale, mechanics are governed largely by the dynamics of semiflexible

polymer proteins called actin [149]. This network of proteins experiences local forces due

to the influence of a molecular “motor” called myosin [140, 67]. In place of directed mi-

gration, this local active stress serves to produce local contractions and extensions of the
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protein sca↵old. Similar behavior is found for the e↵ect of kinesin motors on assemblies

of microtubules [150, 113], another cytoskeletal ingredient which plays a key role in cell

division and has become another workhorse for active matter investigations. Questions of

how these microscopic forces lead to e.g. macroscopic Actomyosin contractility [73] as well

as what separates extensile from contractile behavior in microtubules [40] are still under

investigation.

Even at the tissue scale, the contractile e↵ects of myosin may play a role in rearrangements

and organization of cells. Here, the key ingredients of tissue remodeling are contained in

T1 transitions, as depicted in Fig. 1.3 and explained in more depth in section 1.3.1. These

transitions[106, 12], and general morphogenetic processes [61, 129] may be controlled by the

regulated activity of myosin motors clustered along the cell-cell interfaces. The myosins

contract the actin network which is mechanically coupled to the cell wall, thereby producing

an interfacial tension. These tensions may then actively produce t1 transitions which directly

influence tissue structure and may even render it fluid [70].

Within this category of apolar active matter, another ubiquitous source of activity comes

from proliferation and death in living cultures. These e↵ects of the cell cycle are expected,

by many predictions, to render previously rigid biological tissues and cell aggregates e↵ec-

tively fluidized [105, 81, 76]. This is rather intuitive in the limit of fast cell cycling, as

the constant adding and removing of cell material must eventually produce motion. These

stochastic events have been predicted [109] and experimentally shown [60] to play the role of

a temperature in bacterial biofilms. That is, the fluctuations in the height of the biofilm are

controlled by the rates of the cell lifecycles in a manner reminiscent of equilibrium thermal

matter. It is worth noting that such a comparison with thermal matter is not generic to

active matter systems, and at times is explicitly forbidden [124].
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1.3 Dense Biological Tissues

Developed organisms may be viewed as highly coordinated assemblies of specialized cells

and extracellular materials. A large fraction of these cells exist in regions of high number

density. In many tissues with little extracellular matrix, cells are in close mechanical contact

with their neighbors and thereby their boundaries form a sustained network structure. These

mechanical networks may display order, as in the case of both striated and smooth muscle,

the cornea, and the developed fly wing [38, 72], or disorder as in the cases of skin and

bone and vasculature. It is therefore not surprising that soft matter physicists have become

increasingly interested in understanding phase transitions and rheology in these biological

materials. Indeed, the animal and plant kingdoms would seem to then provide an endless

variety of tissues for systematic study.

However, physicists who have ventured into the study of biological tissues thus far have

focused much of their attention on the dynamical processes of development. Fully developed

animal species do not start out their life cycle resembling the finished product. The vast

majority will divide from a single cell into a ball of cells which are in many ways indistinguish-

able from one another. It is the process of morphogenesis which specializes and positions

these cells to begin functioning as an organism. Such a process generically comes in numer-

ous stages, each of which require tremendous coordination between di↵erent spatial regions.

How then does this ball of cells undergo this morphogenetic process so robustly? How is it

possible that mistakes and variances along the way lead chiefly to variations in appearance

rather than catastrophic failure? Much of this question is addressed by studies in chemical

dynamics of morphogens. Morphogens are signaling molecules which cells may produce to

both prompt and self-regulate these developmental processes. As noted first by Turing’s

reaction-di↵usion model [146, 68], such self-regulation of chemical concentrations may lead

to the formation of highly reproducible patterns. Naturally, the robust emergent length

scales produced by these dynamics may therefore be the root of success in developmental

processes.
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While the above picture may seem su�cient to explain some of the robustness of devel-

opment, there are many processes of invagination and migration [36, 77, 88, 53, 63] which

appear mechanical in nature. It is entirely possible for morphogens to regulate and produce

mechanical force via e.g. myosin phosphorylation [61]. Much of the recent work in devel-

opmental biophysics has produced many examples where these self-generated forces form a

necessary ingredient towards building the organism [36, 88, 84, 61, 77]. Despite these in-

sights, the field is far from a full picture of when and where such forces are programmed, and

what role is played by mechanics along the way. After all, tissues are complex materials, and

the dynamic response to an internally produced force depends on the mechanical properties

of said material. To develop a more complete understanding of development may not only

lead to a better understanding of biology, but may also naturally lead to advancements in

the field of self-assembly.

1.3.1 Epithelial Tissues and the Vertex Model

Along the detailed process of development, quasi two-dimensional sheets of cells form. Typ-

ically one or a few cell diameters in thickness, these tissues will rearrange, invaginate, and

morph, eventually forming the surfaces of organs and separating functions within the organ-

ism. These epithelial sheets have therefore become a central topic of investigation in the

morphogenetic community.

In the plane of an epithelial monolayer, the geometry of the close-packing of cells largely

determines the mechanical interactions between them. Using intermembrane proteins such

as the variety of cadherins, cells adhere tightly to their neighbors, e↵ectively forming a single

shared cell-cell interface. Within the cell, these interfaces are coupled to a complex network

of semiflexible polymers and proteins called the cell cortex. As described in section 1.2.3,

the combination of the polymers such as microtubules and actin with molecular motors such

as myosin and kinesin produce forces in the cell. These active networks near the cell wall

generically apply a tension to the cell-cell interface. While other e↵ective forces are at play
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Figure 1.2: Illustration of the Vertex Model reduction of a 3-dimensional epithelial tissue
cells to a simple 2-dimensional representation of cells as polygons which tile space.

in determining the fate of the network, these geometric tensions dominate the mechanics

and form the basis of vertex models.

While the vertex model has been implemented in many distinct ways, each assumes that

the dominant mechanical energies experienced by a cell are determined by the geometry of

the network of cell boundaries. In these models, cells in quasi 2-d monolayers are reduced to

polyhedra. These polyhedra are described by a height h perpendicular to the monolayer and

by polygonal tiles in the plane of the monolayer, each described by an area A and perimeter

P . In our model, and many other current models in the field, the energy of the a-th cell is

then defined via

Ea = A(Aa � A

0

)2 + P (Pa � P

0

)2 , (1.8)

or equivalently

Ea = A(ha � h

0

)2 + PP
2

a � 2PP0

Pa + E

0

. (1.9)
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Figure 1.3: Diagram of neighbor exchange during a T1-Transition in the Vertex Model

In Eq. 1.9, the terms are expanded in a more intuitive format. The first term on the right

hand side captures the resistance to height fluctuations. Assuming volume incompressibility

and small height fluctuations, one can rewrite this as a quadratic term in area, as shown

in Eq. 1.8. The third term in Eq. 1.9 captures the tension produced by the cortical actin

network and counteracted by cell-cell adhesive molecules. The second term is quadratic in

Pa, and has at least two possible origins. One possibility is active elastic contractility in the

acto-myosin network. A second possibility comes from the fact that cortical tension and cell

adhesions each draw from a finite pool of molecules, giving rise to a restoring force at large

interface lengths. The final term in Eq. 1.9 which shifts the energy with no influence on the

dynamics, allows the expression to be reduced to the quadratic expression in Eq. 1.8. Note

that this energy is, of course, what one would get using A,P as the relevant generalized

coordinates while considering small oscillations about some preferred state. However, this

term-by-term expansion adds credence to the validity of the energy as well as some intuition

for how these parameters might be manipulated experimentally.

For the polygonal cells in this model, motion across finite distances is inherently topo-

logical. Any motion of cells over distances larger than the cell diameter requires changes

in nearest neighbors, which are represented by the facet edges. In a tissue comprised of

three-fold vertices, T1 transitions are both required and su�cient to enable migration. A

T1 topological swap concerns a cluster of 4 objects and rearranges neighbors as shown in

Fig.[1.3].
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While many realizations of this vertex model have found great success in tissue modeling

[55, 38, 126], we focus now on cell dynamics. In [17], these T1 swaps are viewed as energetic

barriers to cell motion, whose statistics are then quantified. A scaling collapse of the energy

barrier data reveals the existence of a jamming transition which is tuned by a dimensionless

shape-index s

0

= P

0

/

p
A

0

[16]. As the value of s
0

is increased beyond a special value of

s

⇤
0

, the height of T1-energy barriers (along with the tissue shear modulus) decreases to zero.

Above s

⇤
0

⇠ 3.81, the tissue has zero e↵ective shear modulus and may be considered fluid.

Below this value, the tissue retains a finite shear modulus and is therefore jammed. Note here

that we use s

0

instead of p
0

to reserve the variable p for other use later in the manuscript.

Aside from the natural biological importance of this result, a notable feature is the

density-independence of the transition. Typical jamming transitions are tuned by a density

or packing fraction of constituents. However, in this case the tuning parameter s
0

may be

increased linearly via P

0

without changing the average area occupied by each cell.

While we have presented thus far a characteristic example of a vertex model, in practice

a variety have been implemented. Not surprisingly, some of these variations come from

modifications of the energy Eq. (1.8) and forces, while others modify the underlying degrees

of freedom used to represent the cell. In the iteration described here, typically referred to as

“the Vertex Model”, the cell-cell interfaces are straight lines traced between vertices. These

vertices, which are then the degrees of freedom of the model, are typically shared by three

cells. The voronoi model is similar [18, 133, 134, 85], except that the polygon configuration

is restricted to be a voronoi tiling, and the degrees of freedom become the voronoi centers.

Other notable variations include the cellular potts model [46, 59] which models space as a

grid and determines which cell each grid point “belongs to” at each time step. There are

also a number of phase-field models, which model each cell as a field with an intensity which

interact everywhere in space [121, 120, 160].

Each of these models carries certain benefits and disadvangates. For instance the phase

field model allows more detailed description of emergence of activity from the underlying
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actin gel and of the di↵usion of signaling molecules. However, the phase field model is more

computationally expensive, making it di�cult to simulate large tissues for long periods of

time. The cellular Potts model can be quite quick, while sacrificing some accuracy of cell

shape description. In practice, the choice of model comes with a balance of these pros and

cons depending on the phenomenon of interest.

While the model may be chosen to balance convenience and accuracy, one hopes that the

observed behavior will be independent of the choice. Recent work suggests this is largely,

though not always, true. Merkel and collaborators [85] have found that 3D Voronoi and

2D vertex models exhibit very similar transitions. However, Sussman and Merkel [133]

identified a particular 2D Voronoi model where the energy minimized states always remain

rigid, displaying no evident transition. This suggests that some care must be taken when

defining the degrees of freedom in these models.

Motile Tissues As noted previously, the tensions and pressures derived from the tissue

geometry are not the only factors at play. Cells are additionally known to exert tractions

through adhesions to their substrate and thereby propel themselves to migrate across the

layer. It is then natural to wonder what happens to this rigidity transition if the cells become

self-propelled objects. Such an exploration was first accomplished by Bi et. al. [18] using a

Voronoi model for tissue. In their model, mechanical forces from the shape energy (Eq. (1.8))

and directed motile forces are applied to the Voronoi centers of the cells. Examining the

mean square displacements of these cells, they find an intuitive picture where cells may break

out of their cages and migrate through the tissue by either increasing their motility v

0

or

increasing the e↵ective adhesion s

0

past a special value s

⇤
0

(v
0

).

The same investigation uncovered a rather surprising additional signature of this transi-

tion in the cell shape. It turns out that the measured shape index q =< P/

p
A > transitions

from q ⇠ 3.81 to q > 3.81 at just the same point that the cells fluidize. This represents a

transition to a glassy state which is quantified by a simple structural order parameter. This
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is notable, as a structural order parameter generally does not exist for glass transitions [123].

These many di↵erent markers of a transition of tissues from a solid-like to a fluid-like

state are inspiring. Hope is rising that these simple results may lead to better understanding

of the role of mechanical interactions and control in biological functions. There has already

been experimental evidence [94] that this cell shape based transition may not only control cell

migration in real tissues, but that this same transition may be connected to the pathological

behavior of asthma. However, real cell colonies, even in vitro, remain considerably more

complex than the simple picture that our vertex model has constructed. For one, epithelial

cells die and proliferate in a manner which is, in some cases, dependent on the strain that they

experience [128]. These cell division and cell death events produce stresses and are sure to

play a role in the dynamics of tissue cells [111, 114]. In addition, experiments have identified

examples of collective motion arising in bulk tissues [43, 75]. While much work is underway

toward the understanding of these and other varied phenomena [44, 143, 57, 21, 25, 81, 82],

unanswered questions still abound.
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Chapter 2

The Active Vertex Model

2.1 Introduction

Forces generated by cell motility in real epithelial tissues play important roles in the devel-

opment and function of organisms [102, 79, 145, 43, 44]. Similarly, directed active forces

in dense matter are expected to play a role in determining rheology [52, 14, 13]. As dis-

cussed in Chapter 1, simulations and experiments have both found that such activity may

control whether the cells are able to migrate in the tissue both with [44] and without [18]

the influence of alignment.

Numerical studies of the influence of motility in tissue rheology have been conducted

in particulate models [52] the Potts model [59, 26] and the Self-Propelled Voronoi (SPV)

model [18, 44]. These investigations have generally indicated that motile forces tend to pro-

mote fluidity and enhance di↵usion. The investigation by Bi et. al. [18] reveals a transition

line separating rigid, glass-like states, where cells are trapped in cages for long times, from

fluid-like states where cells frequently exchange neighbors. Notably, this same investigation

revealed that this transition is described by an order parameter based on cell shapes. Some

experimental evidence has already started to confirm a dimensionless “shape index” may be

su�cient to predict whether cells will migrate through real tissues [94].
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The numerical investigation which revealed this transition was performed using the SPV

model. In the SPV, cells are described as irregular polygons obtained from a Voronoi tiling

of the plane. While this description has numerical advantages for the study of topological

transitions, a recent study by Sussman and Merkel has indicated that in two dimensions the

Voronoi tiling constraint may have a substantial impact on tissue rigidity [133]. To under-

stand the impact of these constraints on the transition to a fluid state, we have constructed

a novel model for a motile tissue that preserves the freedom of cell shape. To our knowledge,

the “Active Vertex Model” presented herein has not been explored in any previous work.

Therefore, we include here a more detailed description of the model, as well as quantification

of the solid-like and fluid-like states.

2.2 The Vertex Model with Motility

In the Vertex Model [38, 126, 55, 17] cells are modeled as irregular polygons tiling the plane,

but in contrast to Voronoi models, the degrees of freedom are the positions of the vertices

of the spatial tiling. Previous studies using this model have typically involved searching for

geometric states which minimize the tissue energy,

EVM =
X

a

Ea =
X

a

A

⇥
(Aa � A

0

)2 + P (Pa � P

0

)2
⇤
, (2.1)

where the sum runs over all cells a and A and P are elastic moduli. As discussed in

Section. 1.3.1, this energy drives cell area Aa toward a preferred value A

0

and perimeter

Pa toward a preferred value P

0

. Although the simplest implementation of an Active Vertex

Model would be to allow each vertex to be self-propelled, we would like to model the behavior

of a polarized motile cell moving coherently along a specific direction. Therefore, we extend

this model to include self propulsion of cell a in the direction

n̂(✓a) = cos(✓a)x̂+ sin(✓a)ŷ , (2.2)
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where the cell propulsion angle ✓a is governed by

@t✓a = ⌘r , (2.3)

with ⌘r being a white gaussian noise defined by

< ⌘R(t) >= 0 (2.4)

and

< ⌘R(t1)⌘r(t2) >= 2Dr�(t1 � t

2

) . (2.5)

Assuming that cell motion takes place in the overdamped limit, vertex µ will then follow an

equation of motion,

@tr
µ = �1

�

@

@rµ
EAVM , (2.6)

where � is the substrate friction. The total e↵ective energy,

EAVM =
X

cells�a

[Ea � �v

0

n̂(✓a) · ra] , (2.7)

now captures both the cellular self-propulsion forces (of magnitude v

0

) in addition to the

standard shape energy terms from Eq. 2.1. The geometric center (centroid) ra of cell a

defined by

ra =
1

6Aa

X

⌫

�
r⌫ + r⌫+1

�
(r⌫ ⇥ r⌫+1) · k̂ , (2.8)

captures the center of mass of a polygon of uniform mass density. Here, the sum goes

counterclockwise over the Na vertices on cell a and rNa+1 = r1. The polygon area may be

expressed in similar terms as

Aa =
1

2

X

⌫

(r⌫ ⇥ r⌫+1) · k̂ . (2.9)
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While it is uncommon to think of such a self-propulsion force as coming from an energy,

writing things in this way permits an analogy with the Voronoi model. In the SPV, the

degrees of freedom are the Voronoi centers and we might imagine constructing the same

energy Eq. 2.7, using these Voronoi centers as the {ra}. It is easy to see that using these as

the degrees of freedom in the overdamped equation of motion

@tr
a = �1

�

@

@ra
E

= v

0

n̂(✓a)� 1

�

@

@ra
Eshape ,

(2.10)

indeed leads to the standard SPV dynamics [18, 155, 9]. We are therefore using the closest

energetic analog of SPV.

The force (and therefore motion) on each vertex can be calculated by carrying out the

derivatives in Eq. 2.6. Each vertex in this model is connected to 3 cells and each cell energy

will contribute separate terms to the net motion of the vertex. If vertex µ is connected to

cells a, b and c, then the motion breaks down into

@tr
µ = �1

�

✓
@

@rµ
Ea +

@

@rµ
Eb +

@

@rµ
Ec

◆

+ v

0

✓
@(n̂(✓a) · ra)

@rµ
+

@(n̂(✓b) · rb)
@rµ

+
@(n̂(✓c) · rc)

@rµ

◆
.

(2.11)

For simplicity, we may focus on the contributions from cell a. As has been identified in

previous work [155], the shape energy produces tension-based and pressure-based forces on

each vertex. The shape-based force on vertex µ from cell a reads

@

@rµ
Ea = �⇧a

2
(n̂ab

l

µ� + n̂ac
l

µ�)� Ta(̂l
µ� + l̂µ�) , (2.12)

where � and � index the vertices of cell a which neighbor µ, lµ�(lµ�) and l̂µ� (̂lµ�) are the

length and direction of the edge connecting vertex µ to vertex �(�) and the unit vector

n̂ab(n̂ac) points across the edge shared by cell a and cell b(c) as in Fig 2.1. The tension and
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Figure 2.1: Illustration of the vectors and geometric components involved in evaluating the
forces on vertex µ due to the shape energy and the motility of cell a

pressure of cell a are respectively

Ta =
@Eshape

@Pa

⇧a = �@Eshape

@Aa

. (2.13)

Similar to the above, we take the appropriate derivatives to understand the self propulsion

forces which act on the vertices. Again, we will consider only the contributions from cell a.

The derivative will take the form

@(n̂(✓a) · ra)
@rµ

=
@ra

@rµ
· n̂(✓a) (2.14)

With these expressions, taking the derivative in Eq. 2.14 is tedious but straightforward. The
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derivative becomes

@r

a
j

@r

µ
i

=
1

6Aa

"
�ij(r

� ⇥ rµ) · k̂+ �ij(r
µ ⇥ r�) · k̂

+ (r�j + r

µ
j )R(⇡/2)ikr

�
k + (rµj + r

�
j )R(�⇡/2)ikr

�
k

� 3(R(⇡/2)ikr
�
k +R(�⇡/2)ikr

�
k)r

a
j

#
,

(2.15)

where

Rij(✓) =

2

64
cos(✓) �sin(✓)

sin(✓) cos(✓)

3

75 (2.16)

is an active vector rotation by an angle ✓, i, j index cartesian components in the x� y plane

and Einstein summation convention is assumed for repeated indices. While the expression

in Eq. 2.15 is a bit unwieldy, we note that it is translationally invariant and may consider it

in a more convenient coordinate system which has its origin at ra. Using this, we find the

force on vertex µ due to the motility of cell a as

fµ(a)i = v

0

n̂(✓a)j
@r

a
j

@r

µ
i

=
v

0

n̂(✓a)i
3Aa

[A�µ
a + A

µ�
a ]

+
v

0

6Aa

"
R(⇡/2)ikr̃

�
k n̂(✓a)j(r̃

�
j + r̃

µ
j )

+R(�⇡/2)ikr̃
�
k n̂(✓a)j(r̃

µ
j + r̃

�
j )

#
,

(2.17)

where A�µ
a and A

µ�
a are the area of triangles with vertices {ra, r�, rµ} and {ra, rµ, r�} respec-

tively, as shown in Fig. 2.1. While this expression does not lend itself to insight, we can see

on inspection that the first terms will move the vertex in the direction of n̂(✓a). The second

terms in the large square brackets will roughly serve to shrink the length of interfaces at the

back of the cell, while expanding the length of interfaces at the front.

While these forces determine the continuous time-evolution of the vertices, there can be
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Figure 2.2: A T1 topological rearrangement in our AVM simulations identifies an edge with
length l

0

< lc, rewires the network connections appropriately, rotates by ⇡/2, and extends
the edge length to a factor � times its original length.

no finite migration of cells through the tissue until topological rearrangements are allowed.

We therefore include a protocol for T1 rearrangements (as shown in Fig 2.2) which are

su�cient to explore the space of cellular topological configurations at constant density. In

practice, the edge lengths are periodically checked after a time tT1

for values lower than a

threshold `c. These edges are topologically rearranged so that the two cells which share the

edge are no longer in contact. The edge is then rotated by ⇡/2 and the length extended

by a factor �T1

. The value of tT1

= 0.05 used here is chosen for speed of simulation, while

the rescaling factor �T1

= 2 is chosen to avoid “T1-traps” whereby the same transition may

repeat itself regardless of energetic favorability. the cuto↵ length `c = 0.04 is chosen small

enough to make the transition appear continuous but also large enough so that a vertex may

“find” the desired T1. The parameters `c, �T1

and tT1

have been separately varied within

reasonable ranges and the impact on the dynamics appears insubstantial.

We note again that this form of the Active Vertex Model is chosen to minimize the dif-

ferences with the Self-Propelled Voronoi model. The di↵erences are limited to the following:

(1) the Active Vertex Model has more degrees of freedom, avoiding the shape constraints

of Voronoi tesselations, (2) T1 rearrangements in the AVM must be done by hand, while in

the SPV they come about naturally and (3) motility in the AVM is designed to propel the
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centroid of the cell, whereas the SPV this is replaced by the Voronoi center.

Simulations of the AVM are developed and run using the “cellGPU” codebase [132].

2.3 Rheological States of the Model

Since this model for confluent tissue dynamics has not been explored in any previous work,

we first simulate and search for glassy states. We quantify the rheological state of the system

by using two familiar metrics: the mean square displacement and the self-overlap function.

The self-overlap function is defined as

O(t) =
1

Ncells

X

a

⇥ (b� |ra(t)� ra(0)|) , (2.18)

where ⇥ is the heaviside function and b represents the size of a typical cage in natural units

and is set to 0.5 for the purposes of this work. All distances are measured in units of 1/
p
⇢,

where ⇢ is the system number density. The function O has a value of 1 at t = 0 and will

decay toward zero as cells travel past this caging distance b. The structural relaxation time

⌧↵0 is estimated as the point at which the self-overlap decays below 1/e ⇠ 0.368 of its initial

value and is an estimate of the uncaging time. The results of averaging this timescale over

10 systems of Ncells = 300, displayed in Fig. 2.3, are in line with expectations from previous

work in the Self-Propelled [18] and Thermal [134] Voronoi models. Less motile tissues at

lower s

0

(higher cortical tension) are indeed glassy and have long relaxation times. The

tissue may be e↵ectively fluidized by either increasing v

0

(higher e↵ective temperature) or

increasing s

0

(higher cell-cell adhesion).

The uncaging time, as estimated by ⌧↵0, is useful for quantifying the system dynam-

ics. However, this metric of rheology combines information about the competition between

mechanical and motile forces with the inherent timescale of the motile dynamics. In other

words, cells may be slow to escape their cages either because they have a small intrinsic speed

v

0

, or because they are unable to surmount the energy barriers. We would therefore like to
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(c)

(a) (b)

Figure 2.3: Quantification of phase behavior in the Active Vertex Model (AVM) with
Dr = 1 and Ncells = 300. In (b), the timescale ⌧↵0 of the decay of the overlap function grows
beyond the length of simulations as the vertex model tuning parameter s

0

is deacreased
while v

0

= 0.05 is held fixed. In (b), the mean square displacement of cell centers for the
same phase points indicates this increasing timescale is associated with subdi↵usive caging
behavior. In (c), ⌧↵0 is shown on a logarithmic colorscale for a representative set of points
in the s

0

� v

0

plane. Black stars indicate phase points where ⌧↵0 is too long to be resolved
with our data. The inset shows the implementation of motile forces prescribed by Eq. (2.7).
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Figure 2.4: Colormap of phase behavior quantified with the normalized e↵ective di↵usion.
Black stars indicate points where De↵

D0
< 10�3. The red line shows the boundary of the region

where q > 3.82, which indicates a connection between sub-di↵usive behavior and cell shape
similar to that seen in the SPV.

understand these dynamics separately. For this reason, and to connect with existing results,

we will do this using the e↵ective self-di↵usivity employed by Bi et. al. [18]. Formally, the

self-di↵usivity is defined as

Ds = lim
t!1

h[�r(t)]2i
4t

, (2.19)

where h[�r(t)]2i is the mean square displacement of cells, with �r(t) = r(t) � r(0). The

dimensionless di↵usivity employed in Ref. [18] may then be defined as D
e↵

= Ds/D0

where

D

0

= v

2

0

/(2Dr) is the self-di↵usivity of active Brownian particles without interactions. To

approximate Ds from simulations that span a finite time, we perform a linear fit of the

msd data for times past the ballistic regime (i.e. between t = 10/Dr and the end of the

simulation). The self-di↵usivity is then approximated as one quarter of the slope of this fit.
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The colormap of the e↵ective di↵usion in Fig. 2.4 displays qualitative agreement with

results from the SPV model [18]. Cells with very small e↵ective di↵usion are found at the

lowest values of s
0

and v

0

, where the tissue is expected to be rigid. The di↵usion may be

greatly enhanced with an increase in v

0

or by an increase in s

0

. At the lowest motility values,

this transition is most sensitive near the rigidity transition expected from the investigation

of static tissue s⇤
0

⇠ 3.81 [16]. As expected from the discussion above, this phase behavior is

qualitatively di↵erent from that presented in Fig. 2.3 for the uncaging time ⌧↵0. In particular,

D

e↵

is able to identify a regime at low motility where cells are energetically capable of escaping

their cages, despite the long time it takes them to arrive there. We note that the same can

e↵ect can be identified in the data for self-overlap by measuring ⌧↵0 in units of ⌧
0

= b2Dr

2v20
,

similar to the normalization of D
e↵

.

To inspect whether this transition from a solid-like state to a fluid like state displays a

structural order parameter similar to the SPV model [18], we inspect the dimensionless shape

index q =< P/

p
A >. The red line in Fig 2.4 shows the boundary of the region defined by

q > 3.82, which indicates a rough correlation between the e↵ective di↵usion and this average

cell shape. Overall, this investigation situates our expectations for future investigations using

this model.

The e↵ect of the rotational di↵usion Dr on the phase behavior in Fig. 2.4 was included

in the investigation by Bi et. al. [18] for the SPV model. They found that at high self-

propulsion, states which were previously fluid-like may be rigidified by increasing Dr, while

at low self-propulsionDr has little e↵ect. This suggests that persistent self-propulsion is more

e�cient in fluidizing a tissue. While we do not directly explore this e↵ect here, the qualitative

behavior is expected to be the same. Future work may include such an investigation.
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Chapter 3

Glassy States in Confluent Tissues

with Mitosis and Apoptosis

As discussed in Section 1.3.1, experiments conducted over the past decade [2, 115, 94] have

indicated the existence of glassy states in confluent epithelial tissues. This evidence includes

the observation of dynamical heterogeneities characteristic of supercooled liquids [2], and

caging e↵ects in motile cell trajectories [94]. In tandem, many varied microscopic mod-

els [59, 16, 18, 155] of tissue have put forth clear indications as to the origin of these glassy

phenomena. Altogether, these combined works appear to be on the way towards a coherent

and perhaps paradigmatic understanding of glassiness and rigidity in tissues.

In the same living tissues, constituent cells will often undergo mitosis (cell division)

and apoptosis (programmed cell death) in a regulated cell life cycle. These cell life cycle

events are necessary for the survival and function of many tissues [107, 138]. Introducing

and removing mechanical elements from any system should impact the dynamics, and it is

therefore important to examine the e↵ect of cell division and cell death on the tissue glassy

state

Recent simulations have suggested that the presence of cell division and cell death should

generically render a tissue fluid [81, 82, 105, 76]. In the work of Matoz-Fernandez et. al. [81],
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a particle-based model of a dense tissue indicates that even at small rates k� of cell division

and death per cell, one will not observe sub-di↵usive behavior in the cell trajectories. This

therefore poses a serious question for the experiments and proximal theories: why are caging

behavior and glassiness observed at all?

Earlier work by Ranft et. al. [105] at the continuum level considered the e↵ect of these

cell division & death events on a model of 3-dimensional elastic tissue. Their analytical and

numerical findings suggest that cell dynamics will be di↵usive and controlled by k� in the

limit of infinitely large tissue.

These investigations include cell division and death as the only forces driving the dy-

namics. However, epithelial cells may also generate tractions to propel themselves across a

substrate and escape the cages set by their neighbors. The timescale over which cells may

escape their cages reflects the rigidity of the tissue. Even in the absence of cell division and

cell death, this uncaging timescale varies over orders of magnitude depending on the tissue

mechanical properties and the magnitude of the propulsive forces. The full dynamics of

tissues which experience motile forces in addition to mitosis and apoptosis should therefore

have contributions from each of these sources of internal driving. In particular, it seems

natural that the observed relaxation time of a tissue will be set by a competition between

the timescale of cell cycling events and the timescale of cage escape due to motility and

mechanical energy barriers.

Here, we investigate the influence of these driving forces on tissue using a modified version

of the Vertex Model which has been used extensively to understand patterning and rigidity

in tissues [38, 55, 126, 17, 16, 84]. Our modified model includes the influence of motility as

described in Chapter 2 as well as a single controlled rate of mitosis and apoptosis. Using this

model we confirm that the tissue exhibits signatures of glassy dynamics in the presence of a

slow, but finite, rate of mitosis and apoptosis. We identify the finite range of cell division &

death rates for which the tissue dynamics are e↵ectively unchanged.

In the opposite limit, where cell cycle events happen fast, we find that tissue motility
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and rigidity continue to play a role. To understand this combined influence, we carefully

investigate the displacements produced by single mitosis and single apoptosis events. Each

event produces an Eshelby-like displacement field of tissue cells, in addition to a mechanical

noise. From these ingredients, we construct simplified models that capture the contribution

of mitosis and apoptosis to the observed motion of cells. The results of this model provide

insight which allows us to collapse the dynamical data over a range of parameters into

a scaling plot, revealing a universal crossover between cell-cycle-dominated and motility-

dominated rheology.

3.1 Tissue Simulations with Cell Division and Cell Death

We perform simulations of a dynamic epithelial tissue with dividing and dying cells using a

modified version of the well-studied vertex model [38, 126, 55, 17, 16]. In this framework, the

plane is tiled by polygonal cells. As discussed in Section 1.3.1, the influence of subcellular

forces may be captured by the energy functional

Etotal =
X

a

[A(Aa � A

0a) + P (Pa � P

0a)� �v

0

n̂(✓a) · ra] , (3.1)

where the area Aa and perimeter Pa of cell a tend toward a target area A

0a and target

perimeter P
0a. Including cell division and cell cycling events means that these target shape

parameters will not always be the same for all cells. The last term on the right hand side

captures the forces exerted by cell a to propel itself across the substrate. As in Section 2.2,

cell a will propel its geometric center in the direction n̂(✓a). Here the angle of motion ✓a

evolves as in Eq. 2.3 by a white gaussian noise with a rotational di↵usion Dr. Motion of

cells is assumed to be overdamped and the position of vertex µ will then follow the equation

of motion

@trµ = �1

�

rµEtot . (3.2)
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For the purposes of this work, we set Dr = P = A = � = 1.0 and perform simulations

using the “cellGPU” codebase [132].

3.1.1 Simulation of mitosis and apoptosis events

We would now like to incorporate the influence of cell cycle events in these vertex model

simulations. To identify an appropriate procedure, we first acknowledge the expected influ-

ence of changing cell number in our model. Consider a tissue of cells having some target

perimeter P
0

and target area A

0

and for which each cell is able to realize these target values.

If some apoptosis events occur with the system size fixed, then these cells will no longer be

able to realize their target A
0

as they must continue to tile the same space. Lending from

known results from the rigidity transition in these tissues [16, 85] we might also expect that

the cells will no longer be able to realize their target P

0

, and thereby a potentially drastic

change in tissue rheology may result.

In an e↵ort to minimize such cell density e↵ects, we choose to work in a constant-number

ensemble. In our simple implementation, each instance of apoptosis will be accompanied

by a mitosis event somewhere else in the tissue. In addition, the implementation of the

individual cell cycle events is chosen to preserve the sum A

0T =
P

a A0a at all times.

In apoptosis, a cell will abruptly contract to a small size and then extrude itself, e↵ectively

disappearing from the 2d monolayer [111]. Shown in Fig.3.1(d-f), our simple realization of

apoptosis on cell a begins with setting A

0a ! 0 and P

0a ! 0. This change induces the rapid

contraction of cell a to small size and generally will lead to a final triangular shape. The

simulation then will detect triangular cells which are smaller than some threshold area Amin

and delete them.

Similarly, in the process of mitosis a cell will expand, eventually reaching a threshold

size checkpoint and dividing into two complete cells [27, 31, 128], all the while maintaining

tissue cohesion [4]. While this process typically spans a much longer time period than the

event of a cell death, we model this growth process as similarly instantaneous to preserve
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Figure 3.1: The process for a single mitosis event in our model is shown sequentially in
(a-c). Starting again with the initial cell in (a), the model steps for apoptosis are shown
sequentially in (d-f).

the constant A
0T and for simplicity. Shown in Fig 3.1, in the division of cell a opposite edges

of the cell are chosen at random, thus determining the axis of the division. A vertex is then

added to the center of each edge and these new vertices are connected with a new edge.

Naturally the product is two closed polygonal cells out of one, and the shape parameters of

these new cells are then set to the uniform value of the other cells in the tissue. These cells

are then allowed to expand dynamically in the simulation. Similar division dynamics were

studied in a quasi-static system by others, including Farhadifar et. al. [38].

In practice, such constant number simulations allow us to enforce the global cell cycle

event rate k

�

, which is implemented as a Poisson process. This sets the e↵ective cycle

rate per cell which may be written as k� = k

�

/Ncells. Note that k� is a more appropriate

observable parameter for real biological systems whose cell cycle timing does not depend

strongly on the overall tissue size. We therefore use k� = 1/⌧� as our tuning parameter.

In simulations with cell division and death, complications arise when trying to extract
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cell trajectory data. This is because many trajectories will start and end during the course

of the simulation. Rather than parse this network of trajectories, we follow the method

used in [81] and exclude a small (%10) subset of the cells from the cell cycle events. Using

these “tracer” cells to obtain our dynamical data is both convenient and a↵ords the closest

comparison with the existing investigation in [81].

3.2 Tissue rheology in the presence of mitosis and apop-

tosis

Similar to the analysis in Section 2.3, tissue rheology may be quantified using the trajectories

of cell center positions ra(t) over the course of simulations. This may be accomplished with

either the mean square displacement

⌦
[�r(t)]2

↵
=

*
1

Ncells

X

a

[ra(t)� ra(0)]2
+

, (3.3)

where the angle brackets indicate an ensemble average, or with the self-overlap, defined by

O(t) =
1

Ncells

X

a

⇥ (b� |ra(t)� ra(0)|) , (3.4)

where ⇥ is the heaviside function while b represents the size of a typical cage and is set to

0.5 in natural units for the purposes of this work. All distances are measured in units of

1/
p
⇢, where ⇢ is the system number density. The function O has a value of 1 at t = 0

and will decay toward zero as cells travel past this caging distance b. We may then define a

timescale ⌧↵ as the time required for the overlap to decay past 1/e ⇠ 0.368. This timescale

is an estimate of the time required for cells to escape their cages. The notation intentionally

di↵ers from that in Section 2.3, to distinguish ⌧↵0 as the uncaging time in the limit of zero

apoptosis and zero mitosis (k� ! 0).

We search for “glassiness” as identified by a sub-di↵usive mean square displacement and
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a long overlap decay time (⌧↵) as in Section 2.3. This is guided by the simple expectation

that rheology is determined by a competition between the timescale ⌧� of division and death

events and the timescale of motility driven cage escape ⌧↵0. In particular, we expect to

recover the dynamics of the “bare” (free of cell division and death) AVM for su�ciently

small values of ⌧�. This can be seen in Fig. 3.2 (b) and (c), where su�cient decrease in the

value of k� leads the msd and the self-overlap to approach a limiting form which matches

the data from Fig. 2.3. This is useful for identifying the limits of when cell division and cell

death events have an impact on mechanics.

That the influence of mitosis and apoptosis will be negligible in the limit ⌧� � ⌧↵0

where motility operates on a much faster timescale, is reasonable. One may expect to find

the opposite behavior in the limit ⌧� ⌧ ⌧↵0, where motility-based dynamics should play a

negligible role. To check this, we vary s

0

, because ⌧↵0 decreases as s
0

increases, in Fig. 3.2.

When ⌧↵0 is large and ⌧� is small (k� is high) we observe structural relaxation times ⌧↵ which

are independent of s
0

and by proxy, ⌧↵0.

3.3 Simple null model for interaction between ⌧

�

and

⌧

↵0

The limiting behaviors described above agree with expectations, and hint at possibilities for

understanding data in the intermediate regime where both timescales ⌧↵0 and ⌧� will play a

role. To establish expectations in this regime, we first develop a very simple null model for

the interactions between cell death & division and glassy dynamics. Specifically, we assume

that the overlap decay rate 1

⌧↵
of a dividing tissue is determined by the weighted sum of the

bare cage escape rate ( 1

⌧↵0
) and the rate of division & death events according to

1

⌧↵

=
C

1

⌧↵0

+
C

2

⌧�

, (3.5)
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(b) (c)

(d) (e)

(a)

Figure 3.2: Rheological measures of tissues with mitosis and apoptosis for v

0

= 0.05 and
Dr = 1. In (a), the measured overlap decay ⌧↵ as a function of s

0

and the cell cycling rate k�
is displayed as a colormap, indicating generically that k� tends to fluidize the tissue. In (b)
and (c), mean square displacement and overlap curves are plotted for constant s

0

= 3.83 over
a series of k� and show that the dynamics approach the expected values from the “bare” AVM
at small enough k�. In (d) and (e) are a similar series of curves for a constant k� = 1.6̄e� 5
over a series of s

0

values. Here, the approach towards a universal behavior (expected at the
lowest values of s

0

) only becomes clear at long times.
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where ⌧� is the time between division and death events for a single cell and C

2

captures

the displacements of surrounding cells resulting from the division & death events, which

is made more precise in the following sections. The weight C
1

, which captures the relative

contribution of bare glassy dynamics, is set to unity based on the limiting behavior identified

in the previous section. The strong assumption we have made here is that the two rates add

in series and are not strongly correlated. This null model predicts that the quantity ⌧↵
⌧↵0

will be a function only of ⌧�
⌧↵0

. As shown in Fig. 3.4(a), this works fairly well, indicating that

there is a regime with fast divisions where the dominate the rheology and ⌧↵ / ⌧�, and a

regime with slow divisions where ⌧↵ ? ⌧�. However, there is not a perfect collapse. One

possibility is that the coe�cient C
2

, which captures displacements generated by cell division

and death, does depend significantly on the inherent tissue rheology C

2

= C

2

(⌧↵0). This

possibility is explored further in the next section.

3.4 Flow and fluidization from individual mitosis and

apoptosis events

To quantify the e↵ect of a single cell cycling (division or death) event on the motion of

surrounding tissue, we perform a special set of “single-event” simulations. In these, the

standard AVM is run for a short equilibration time before a single cell is chosen at random

to undergo either apoptosis or mitosis in a randomly chosen direction. Following this, the

AVM continues to run, and the motion of the surrounding tissue cells are monitored and

quantities of interest are averaged over 1000 realizations.

We measure the individual vector cell displacements {ui} and use them to construct a few

useful quantities. In order to resolve coherent spatial data, the cells are first binned based

on their distance from the event (and in the case of cell division based on their angle relative

to the division axis orientation). Within each bin, we calculate two quantities: the vector

averaged displacement u(r, ✓) and the vector standard deviation of this average, �
(m,a)(r, ✓),
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where the subscripts m and a refer to mitosis and apoptosis events, respectively.

As noted by Puosi et. al. [103] for the similar case of shear transformations in thermal

sphere packings, the vector averaged u
(m,a)(r, ✓) captures the a�ne elastic response of the

surrounding medium. Straightforward calculation of the response of a homogeneous elastic

medium to localized strains [103] suggests that the a�ne field associated with either a cell

death or cell division event should fall o↵ as r�1 in two dimensions. This is consistent with

the numerical observations in our model, shown in Fig. 3.3 (a), (b) and (c). In particular, the

dashed line in Fig. 3.3(c) shows the expected scaling of r�1, which is in reasonable agreement

with the data. The “non-a�ne” piece captured in �
(m,a)(r, ✓) quantifies the additional cell

displacements which are expected to arise in the vicinity of the event due to disorder in the

tissue structure.

3.4.1 Toy Models for Cell Displacements

Guided by these single event results, we construct simplified models to estimate their in-

fluence on measurable quantities, such as ⌧↵. As pointed out by Ranft et. al. [105], the

“a�ne” displacements identified above will produce a constantly changing reference state

in an elastic material. Therefore, while these cells may oscillate in their cages, the cages

themselves move as a result of each event via the displacement fields u
(m,a)(r, ✓). We would

like to estimate the e↵ect of this changing reference state on the mean square displacement

of our tracer cells. In addition, these events will create additional non-a�ne displacements

on top of the a�ne motion.

In practice, the di↵usion produced by each of these contributions can be evaluated sep-

arately. Assuming these contributions do not display significant correlations (other than in

their chosen locations) the di↵usion constants from each mechanism may be summed to find

the total di↵usion due to cell cycling events

D� = D

a↵

(a) +D

a↵

(m)

+D

non-a↵

(a) +D

non-a↵

(m)

. (3.6)
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(a) (b)

(d)(c)

Figure 3.3: A�ne and non-a�ne displacements quantified in response to a single mito-
sis/apoptosis event for Ncells = 5000. In (a) and (b), arrows show the a�ne displacements
in response to a mitosis and apoptosis, respectively, for a tissue with s

0

= 3.6, v
0

= 0.05.
Colormap indicates the magnitude of these a�ne vectors with grid spacing 1.5. In (c), the
magnitude of a�ne displacements averaged over angles is plotted as a function of distance
from a mitosis event. The purple dot-dashed line shows the agreement with the expected
scaling of 1/r for a series of s

0

values. In (d), the values for the �u

(m,a)(r) per Eq. 3.10 are
plotted similarly, revealing a finite region of non-a�ne displacements. The inset in (d) shows
the same non-a�ne data without the long distance behavior removed, showing a plateau to
a finite value.

Here, Da↵

(m,a) captures the di↵usion due to u
(m,a)(r, ✓), while Dnon-a↵

(m,a) captures di↵usion due to

�
(m,a)(r, ✓) in a manner which is made more precise in the following sections. Each analysis

will rely on the simplifying assumptions (1) that we may ignore the randomness in the timing

of the divisions and deaths and (2) that the e↵ect from each event is felt instantaneously by
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the surrounding tissue; in other words, the speed of sound in the tissue is fast compared to

the structural relaxation. This enables us to simply sum up the n(t) = tNcells/⌧� events that

will have taken place after a time t.

Estimating a�ne contributions to displacement

To estimate the first and second terms on the right hand side of Eq. 3.6, we consider the

displacement of a tracer cell as a result of the a�ne motion u
(m,a)i(r, ✓) produced in each

cell cycle i. With the dynamics

�x
(m,a)(t) =

n(t)X

i

u
(m,a)i(r, ✓) , (3.7)

the msd may be computed as

h�x2

(m,a)(t)i =
n(t)X

i

hu2

(m,a)i(r, ✓)i . (3.8)

where hi represents the ensemble average over the realizations of these apoptosis and mitosis

events. As these contributions are each identical in form, the stochasticity here comes from

the spatial positioning (and orientation) of the mitosis (apoptosis) event with respect to our

tracer. Therefore, finding this average for hu2

(m,a)ii amounts to integrating over the possible

positions and orientations of this mitosis (apoptosis) event. Equivalently, we may center the

event location in our coordinate system and instead integrate over the possible positions of

our tracer. Appropriately normalized, this integral is written

hu2

(m,a)ii =
⇢

Ncells

Z rlarge

rsmall

drrhu2

(m,a)h✓(r) , (3.9)

where the small rsmall and large rlarge cuto↵s of integration respectively capture the typical

cell neighbor spacing and the extent of the a�ne field. The brackets hi✓ represent an average

over angular position. We have written things this way because hu2

(m,a)i✓(r) ⌘ u

2

(m,a)(r) is
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precisely the quantity we estimate from simulations. The data shown in Fig. 3.3 suggest it

is nearly identical for apoptosis and mitosis events in our model.

Estimating non-a�ne contributions to displacement

We now consider the contribution to tracer displacement from the non-a�ne (third and

fourth) terms in Eq. 3.6. We note that the quantity |�
(m,a)|(r) measured in simulations will

both capture local contributions from the mitosis(apoptosis) event as well as contributions

everywhere from active, motility driven, cell motions. To separate the contribution of non-

a�ne elastic displacements from the noise generated by the active forces in the AVM, we

define

�u

(m,a)(r) = |�
(m,a)|(r)� |�

(m,a)|(1) , (3.10)

where �

(m,a)(1) is the far-field plateau in the non-a�ne displacement field generated by

active noise, shown in the inset to Fig. 3.3 (d). The resulting elastic non-a�ne displacement

field, �u
(m,a)(r), is plotted in Fig. 3.3(d) for a mitosis event.

It is clear that �u

(m,a)(r) varies with s

0

, with less elastic displacement generated by

divisions in the more fluid states. Similarly to Eq. 3.7, the contribution to the tracer dynamics

generated by these non-a�ne displacements is written as

�rnon-a↵
(m,a) (t) =

n(t)X

i=0

�u
(m,a)i , (3.11)

where �ui is the non-a�ne displacement produced by the i-th mitosis(apoptosis) event.

This displacement is assumed to have a random direction and magnitude determined by the

distribution of �u
(m,a)(r) from Eq. 3.10. The mean square displacement is computed from

the average h�u2

(m,a)(r)i. Since the variation in this average comes from the placement of

the tracer with respect to the event, this average again takes the form of a spatial integral,

explicitly written as

h�u2

(m,a)ii =
⇢

Ncells

Z rlarge

rsmall

drr�u
(m,a)(r) . (3.12)
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(a) (b)

Figure 3.4: In (a) data for ⌧↵ vs. ⌧� for a series of ⌧↵0 does not collapse with simple rescaling
using ⌧↵0. In (b), the same data comes closer to collapse by additionally normalizing ⌧� using
an averaged scale of motion (C

2

(⌧↵0)) extracted from single event apoptosis and mitosis data.
Dotted lines represent the same data plotted for a constant C

2

. A universal curve for the
crossover between mitosis/apoptosis dominated behavior and motility-dominated behavior
is suggested.

3.4.2 Single event data guides a scaling collapse

Returning to Eq. 3.5, it is now clear that the term C

2

may depend significantly on s

0

, and

therefore on ⌧↵0. It is then not surprising that simply rescaling data for ⌧↵ vs. T� with the

timescale ⌧↵0 (Fig. 3.4 (a)) is insu�cient to collapse the data perfectly. We note that C
2

(⌧↵0)

can be written in terms of the integrals in Eq. 3.9 and Eq. 3.12:

C

2

/ h�u2

(m)ii+ h�u2

(a)ii+ hu2

(m)ii+ hu2

(a)ii , (3.13)

We may therefore simply integrate the simulation data in Fig. 3.3(a) and (b). This produces

an estimate for C
2

as a function of s
0

, which may then be incorporated into the scaling of

⌧↵ data as shown in Fig. 3.4(b).

While incorporating the variation of C
2

with s

0

brings the data closer together, as shown

in Fig. 3.4(b) the data at di↵erent ⌧↵0 are still visibly distinct. Why then does this rescaling
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factor not produce a full collapse of the data as suggested by Eq. 3.5? One reason comes

from simply writing down Eq. 3.5, where a cellular rate 1

⌧�
and a macroscopic rate 1

⌧↵0
are

treated on similar footing. Since ⌧↵0 quantifies dynamics similar to those in supercooled

fluids where heterogeneity is observed, and since the Stokes-Einstein relation which connects

microscopic and macroscopic rates is known to break down in such heterogeneous systems, it

is not clear that the overall tissue relaxation can be expressed as such an average of rates. In

addition, we have considered how the weight C
2

might vary with the intrinsic tissue rheology

(as quantified by ⌧↵0), but we have given no consideration to the opposite case. One might

imagine that motile forces act di↵erently on a tissue which is continuously experiencing cell

division and cell death events, and it is entirely possible that the coe�cient C

1

! C

1

(⌧�)

will reflect this.

Even our estimation of the rescaling parameter C
2

was enabled by additional assumptions.

Eq. 3.13 assumes that the total magnitude of motion coming from cell division and death

events in a single timestep is computed from separate contributions coming from nona�ne

and a�ne pieces of each event. However, it is entirely possible that these events interfere

with one another, displaying correlations which should be incorporated in a more appropriate

estimate of C
2

. In addition, we have assumed that the displacements from these cell cycling

events happen nearly instantaneously, and that they therefore do not correlate with one

another in time. In particular, the a�ne displacements destructively interfere with the

periodic images of themselves as shown by the long distance dropo↵ in Fig. 3.3(c). The

same interference may occur temporally when the division and death events are su�ciently

fast compared to the speed of sound in the tissue. Finally, we note that our numeric estimates

of the integrals in Eq. 3.9 and Eq. 3.12 extend from the division or death event out to a

radius L/2. We are therefore neglecting the corners of the box, assuming them not to

contribute significantly to the integral. This assumption is reasonable given the tendency of

displacements to decrease with distance as shown in Fig. 3.3 (c) and (d), and is not expected

to significantly impact our results.
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Chapter 4

Continuum Modeling of Tissues

Pattern formation during embryonic development, coordinated tissue movements in wound

healing, and the breakdown of patterning in cancer tumorogenesis have all traditionally

been explained in terms of biochemical signaling, such as morphogen gradients and growth

factor secretion. Although biochemical gradients are clearly important, recent work has

suggested that mechanical interactions and mechano-sensitive response can play a comple-

mentary and vital role in the robust patterning of these self-organized systems. For example,

the extra-cellular matrix (ECM) that contributes to the mechanical environment of cancer

tissues strongly a↵ects metastasis[41, 95], and the sti↵ness of an underlying substrate can

control di↵erentiation[30, 35] and collective cell migration in wound healing assays for cell

monolayers[131].

Concurrent with these investigations of cell-substrate and cell-ECM interactions, another

group of researchers has focused on cell-cell interactions, in an e↵ort to understand the “ma-

terial properties” of tissues. Continuum models that describe epithelia as active viscoelastic

fluids[21, 20, 105, 57, 152] or active elastic sheets[7, 6, 8, 69] have been shown to reproduce

many phenomena observed in wound healing assays and confined tissues. Experimental

studies discovered that many 2D monolayers[2, 93, 42] and 3D bulk tissues[116, 115, 97] are

viscoelastic, exhibiting glassy dynamics that indicates they are close to a continuous fluid-
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to-solid, or jamming transition. Developing continuum models that incorporate jamming

transitions has proven di�cult even in non-active materials [37, 123, 51], and so continuum

models to date have not included this e↵ect. In addition, although most work has focused

on the average material properties of a tissue, many tissues are heterogeneous. Therefore,

given the close proximity of a fluid-solid transition where the shear modulus is expected to

rise quickly from zero, it is natural to wonder if sti↵ness gradients within a tissue can drive

patterning. There is already some experimental evidence for this; Tambe and coworkers

coined the term “plithotaxis” to describe their observation that MDCK cells polarize and

move in the direction of local maximal principal stress to minimize local shear[136]. Using

a simple model, this phenomena may be understood in terms of the deformations of the

underlying actomyosin network[104].

To our knowledge, there are no models that seek to quantify how gradients in sti↵ness

within a tissue drive patterning, or predict the parameters that control patterning in such

a system, although there are some analogues that can guide us. For example, in active

particle-based models, there is a direct relationship between the packing fraction of particles

and the fluidity of the material. This leads to a natural coupling between the polarization

(the direction that a particle wants to move) and the packing fraction that can be encap-

sulated in hydrodynamic models[39, 24] and gives rise to a novel type of patterning called

motility induced phase separation. Similarly, in liquid crystals there is a relationship be-

tween the nematic order parameter and the molecular mobility[127]. Again, one can write a

hydrodynamic model that encapsulates this relationship and predicts pattern formation in

liquid crystals.

But what is an appropriate hydrodynamic model for confluent tissues? It is well-established

that cells in a tissue can be polarized to move in a particular direction and can coordi-

nate their motion to form a flock[75]. This suggests that a cell polarization field should

be incorporated in a continuum model of tissue, in analogy with continuum theories of

flocking[144, 45, 87] and particle-based active matter models. But confluent tissues can
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change from fluid to solid at a packing fraction of unity, suggesting that density might not

be an optimal choice for the hydrodynamic field. As described in Section 1.3.1, a recent body

of work based on vertex models at the cellular scale suggests that confluent tissues exhibit

a novel type of rigidity transition based on cell shape[38, 126, 17, 16, 18, 94]. Evidence for a

similar rigidity transition has also been found in cellular Potts models[46, 59, 26] that may

provide an alternate starting point for formulating a continuum theory of tissue.

Therefore, in Section 4.1 of this chapter, we develop a mean-field description of the

fluid-solid transition in vertex models that directly incorporates our knowledge from Chap-

ter 2 of how cell shapes govern jamming transitions and tissue sti↵ness in confluent tissues.

It is important to note the distinction between a single-cell shape anisotropy field and an

orientation field that captures alignment of elongated cells, first highlighted by Stark and

Lubensky[127] for liquid crystals. In inert materials, however, molecular shape fluctuations

decay on microscopic time scales and can therefore be neglected in hydrodynamic models.

Cells, in contrast, are extended objects that can individually acquire isotropic or anisotropic

shapes. Moreover, cellular shape changes have been shown to control the tissue rigidity,

driving a continuous transition between liquid-like and solid-like states. Shape fluctuations

become long-lived at the transition and their dynamics must be incorporated in a hydrody-

namic theory. When elongated, cells can additionally align their orientation and form states

with liquid crystalline order. Various shape-driven behavior of epithelial tissues are shown

schematically in Fig. (4.1-a). Recent work by Ishihara et al.[57], concurrent with our own,

also uses vertex model energy for the tissue to construct a continuum theory. This work does

not, however, distinguish between a tissue of cells with isotropic mean shape (see Fig.(4.1a-

left)) and a tissue of cells that have anisotropic shape on average, but do not exhibit nematic

order (see Fig.(4.1a-middle)), as observed in simulations [16, 18, 155]. In the model proposed

in Ref. [57] the onset of cell anisotropy is always accompanied by nematic order of elongated

cells, which was not observed in the shape-driven solid-liquid transition predicted in Vertex

and Voronoi models [16, 18, 155].
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MigrationMigration

a.

b.

c.

Isotropic Anisotropic Nematic

Figure 4.1: Diagrams illustrating various shape-related behaviors in epithelial tissues. a
From left to right: isotropic cell shapes (solid/jammed state), anisotropic cell shapes (fluid),
nematic order of anisotropic cell shapes. b and c together display the morphotaxis properties
of the tissue. b: Cells may sense local gradients in shape, corresponding to gradients in
tissue rigidity, and thereby polarize and migrate towards (left) or away from (right) the
more anisotropic cells. c: Sinks of polarized motile forces may induce an increase (left) or a
decrease (right) in the local cell anisotropy.

In Section 4.2, we present a hydrodynamic model that couples a cell-shape anisotropy

order parameter (that describes the tissue shear sti↵ness) to cell polarization. The hydro-

dynamic equations incorporate two important e↵ects illustrated in Figs. (4.1-b,4.1-c). The

first is a coupling between gradients of tissue rigidity (as embodied by cell shape) and cell

polarization through a parameter ⌫ that relates the coordination of cell migration to the

mechanical properties of the tissue providing a macroscopic analog of plithotaxis. We take

⌫ to be positive when cells migrate in the direction of sti↵er (higher shear modulus) tissue,

and negative when the cells migrate in the direction of softer tissue.

The second e↵ect captures how a sink of polarized motile forces a↵ects tissue shape and

shear sti↵ness. Our chosen convention is that if a sink (inward splay of polarization) tends

to fluidize the tissue, generating anisotropic shapes (Fig. (4.1-c) left), the coupling param-
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Figure 4.2: Schematic phase diagram comparing negative (left) and positive(right) mor-
photaxis parameters for a shape-based hydrodynamic model where convergent polarization
tends to decrease local cell shape anisotropy. The “target shape” axis captures the average
cell’s preferred perimeter to area ratio, while the “shape-driven flocking” axis quantifies the
degree to which elongated cell shapes promote polarization. The left panel corresponds to
tissues in which cells tend to migrate toward fluid-like regions with more shape anisotropy,
and the behavior is largely homogeneous. The right panel describes tissues where cells po-
larize toward solid-like regions of tissue with lower shape anisotropy, and the tissue exhibits
patterns like asters or bands in a large region of the phase space.

eter is negative, and positive in the opposite case (Fig. (4.1-c) right). As our analysis will

demonstrate, these two e↵ects encapsulate the interaction between polarization and shape

and their product controls patterning. Therefore we introduce the new term morphotaxis –

morpho- from the greek µo⇢�⌘́ meaning form or structure, and -taxis from the greek ⌧ ↵́⇠◆&.

When the morphotaxis parameter is positive, patterns such as asters and traveling bands

dominate. In contrast, when the morphotaxis parameter is negative, the tissue response is

largely homogeneous.

Our work explores for the first time the hydrodynamics of shape as a property distinct

from the orientational order of elongated shapes. It additionally provides perhaps the first

continuum description of glassy dynamics in terms of a structural order parameter. While

elusive in conventional soft matter systems, a structural signature of the onset of rigidity

appears naturally in tissues in terms of cellular shape.

49



4.1 A mean-field model for 2D shape anisotropy

As described in Section 1.3.1 as well as Chapter 2, the Vertex Model [38, 55, 126] is able

to describe the mechanics and dynamics of epithelial tissues from the cellular scale. In this

model, cells are represented as polygons which tile the plane. For a two-dimensional tissue

containing N cells the inter- and intra-cellular interactions are then captured by a shape

energy parametrized in terms of area Aa and perimeter Pa of the a-th cell, given (again) by

Eshape =
X

a

⇥
A(Aa � A

0

)2 + P (Pa � P

0

)2
⇤
, (4.1)

where the sum runs over the N cells in the tissue. As described in Section 1.3.1, the target

area A
0

and target perimeter P
0

may be understood in terms of subcellular ingredients. Most

notably P

0

arises from the competition between cell-cell adhesions and the tension produced

by the cortical actomyosin network.

Numerical studies of the ground states of the shape energy given in Eq. (4.1) have iden-

tified a rigidity transition[16, 18, 94] that occurs as a function of the dimensionless “target

shape-index” s

0

= P

0

/

p
A

0

. In previous work, the symbol p
0

was used for this quantity, but

we change it here both for consistency with work in 3D [84] and to distinguish it from cell

polarization p. When s

0

< s

⇤
0

⇡ 3.81, cortical tension dominates and the tissue is rigid with

finite barriers to cellular rearrangements. For s

0

> s

⇤
0

the energy barriers to cellular rear-

rangements vanish, resulting in zero-energy deformation modes that enable cells to elongate

their shapes and fluidize the tissue. An analysis of cellular shapes reveals that the spatially-

averaged cell shape-index q = hPa/
p
Aai provides an order parameter for the transition in

both non-motile and motile tissues: a tissue with q < s

⇤
0

is a rigid network of roughly regular

cell shapes, while a tissue with q > s

⇤
0

is a fluid-like tissue of elongated and irregular cell

shapes.
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4.1.1 The Shape Tensor

Our first goal is to construct a continuum mean-field model of the rigidity transition captured

by the VM. To do this we characterize the shape of the a-th cell via a shape tensor, given

by

Ga =
1

na

X

µ2a
(rµ � ra)⌦

✓
rµ � ra

|rµ � ra|
◆
, (4.2)

where rµ is the position of the µ-th vertex of the a-th cell, ra points to the geometric center of

cell-a and the sum runs over the na vertices on this cell. The cellular shape tensor Ga is very

Figure 4.3: Left: The Vertex Model representation of cells in a confluent monolayer. Right:
The vectors which are used to create the cellular shape tensor.

similar to the gyration tensor used to characterize the configuration of polymers[34, 117]. To

directly connect with area and perimeter, we define the shape tensor with units of length, in

contrast to what is done in most previous literature. This choice does not, however, impact

our results. Since Ga is a real and symmetric tensor, it has three independent degrees of

freedom in two dimensions, and can generally be written in the form

G

a
ij = Ma


ê

a
i ê

a
j �

1

2
�ij

�
+

1

2
�a�ij , (4.3)

where Ma = �

a
1

� �

a
2

> 0 and �a = Tr[Ga] = �

a
1

+ �

a
2

are the sum and di↵erences of the

eigenvalues �a
1,2, ê

a is the eigenvector of the largest eigenvalue, �a
1

, and i, j denote Cartesian

components. We introduce the dimensionless parameter ma = Ma/�a, which vanishes for
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isotropic cells and can be written as

ma =
2

�a

êa ·Ga · êa � 1 . (4.4)

Note that ma is chosen to be positive definite. For regular n-sided polygons the shape tensor

is always diagonal with �

a
1

= �

a
2

, hence ma = 0. The area Aa and the perimeter Pa can then

be expressed in terms of the shape tensor as

Aa = 2na sin (2⇡/na)Det[G
a] , (4.5)

Pa = 2na sin (⇡/na) Tr[G
a] . (4.6)

It can be shown numerically that these shape relations will hold approximately for small

deformations of irregular polygons. To verify the validity of Eqs. (4.5) & (4.6), we have

tested these equations by deforming polygons through the application of Gaussian noise to

the positions of the vertices of regular polygons of area = 1 . Up to a noise magnitude of

0.2, the shape tensor estimates correlate with the exact values of area and perimeter with a

correlation coe�cient r > 0.95.

4.1.2 Mean-field theory

Our first goal is to re-write the deformation energy of a single cell in terms of the cell shape

anisotropy, ma. This is accomplished using Eqs. (4.5) and (4.6):

✏a =
h
c

1

(na)(1�m

2

a)�̃
2

a � 1
i
2

+ ̃

h
c

2

(na)�̃a � s

0

i
2

,

(4.7)

where c

1

(na) =
na
2

sin(2⇡/na), c2(na) = 2na sin(⇡/na) and we have scaled lengths with
p
A

0

and energies with A

2

0

A and defined �̃a = �a/
p
A

0

and ̃ = P/(A0

A).

Now we would like to use this to develop a simple mean-field model that captures the

fluid-solid transition we see in metastable states at s

⇤
0

⇡ 3.81 in the vertex model. From
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previous work we expect the transition to be governed by the shape anisotropy ma, so we

minimize (4.7) as function of ma, keeping �̃a fixed such that Pa = P

0

. Alternatively, we could

have chosen to fix Det(Ga) such that Aa = A

0

, obtaining qualitatively the same results, as

shown in Appendix A.1.

The minimal single-cell energy can then be written as a function of cell shape anisotropy

as

✏

min
a =

1

2
↵(s

0

, na)m
2

a +
1

4
�(s

0

, na)m
4

a . (4.8)

The parameters ↵ and � are controlled by the target shape parameter s
0

and the polygon

degree na. While � is positive for all s
0

and na, ↵ changes sign as a function of s
0

and na.

Equation (4.8) has the familiar form of a �

4 theory, changing continuously from a single well

to a double well at a critical value s

⇤
0

(na), as shown in Fig. (4.4).

Nothing in our analysis so far has specified na, the polygon degree, which sets the value of

the shape order parameter at the critical point. Previous work on the 2D vertex model has

shown that the rigidity transition occurs at s⇤
0

⇡ 3.81, which is the shape index corresponding

to a regular pentagon. Although pentagons cannot tile space, we can still choose na = 5

in our mean field model, so that the ground state anisotropy m̄ that minimizes Eq. (4.8)

transitions from m̄ = 0 to m̄ > 0 at the correct value of s⇤
0

, as shown in the inset to Fig. (4.4).

With this choice, ↵ and � are given by

↵(s
0

) = as

2

0

� bs

4

0

, (4.9)

�(s
0

) = bs

4

0

. (4.10)

with a = Cot(⇡/5)/5 and b = [Cot(⇡/5)]2 /100. Cell-cell interactions could provide addi-

tional constraints not present in Eq. (4.8), which should generally increase the energy of a

cell (hence this is a minimal energy). Recent work by some of us has also shown that in

this model rigidity arises from purely geometric incompatibility[84], even in the absence of

topological defects such as T
1

transitions[89].
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Figure 4.4: Mean-Field tissue energy as a function of shape-anisotropy for various values
of the target shape-index s

0

. As this shape index is increased past s

⇤
0

⇡ 3.81 the energy
develops two minima and the anisotropy m̄ becomes finite, as shown in the inset.

In summary, we have re-written the vertex model energy functional in terms of the shape

anisotropy m of deformed polygons of degree n, minimized with respect to m to find a

ground state, and then chosen n = 5 so that the ground state switches from isotropic to

anisotropic shape at a value of the control parameter that is consistent with simulations of

the microscopic model. While the choice n = 5 is well motivated, we note that choosing

a di↵erent value of n (e.g. n = 6) will only shift the location of the fluid-solid transition,

without impacting the qualitative results of the model.

4.2 Hydrodynamic theory of cellular shape

Guided by the mean-field theory described in the previous section, we now formulate a

continuum model of the shape-driven rigidity transition. As previously pointed out in the
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context of the Poisson-bracket derivation of the hydrodynamic equations of nematic liquid

crystals [127], it is important to distinguish between fluctuations in the shape of individual

cells, as quantified by the single-cell anisotropy ma, and fluctuations in the local alignment

of elongated cells that are captured by correlations in the direction êa of the shape tensor

eigenvectors. To our knowledge, a hydrodynamic description of single cell fluctuations has

not been explored before. To define continuum fields, it is convenient to introduce the

traceless part of the cellular shape tensor, given by

G̃

a
ij = G

a
ij �

1

2
�ij�a = Ma


ê

a
i ê

a
j �

1

2
�ij

�
. (4.11)

Following conventional definitions, we introduce coarse-grained fields, given by

�(r, t) =

"
X

a

�a �(r� ra)

#

c

, (4.12)

G̃ij(~x, t) =

"
X

a

G̃

a
ij �(r� ra)

#

c

, (4.13)

where the brackets [...]c denote coarse-graining and ra is the position of the centroid of the

a-th polygonal cell. Additionally, the local coarse-grained number density is given by

⇢(r, t) =

"
X

a

�(r� ra)

#

c

. (4.14)

For fixed number of cells, i.e., in the absence of cell growth and death, and in systems of

fixed total area AT with periodic boundary conditions, the number density is slaved to cell

area. Recent experiments have reported “giant number fluctuations” (GNF) in tissues [42,

157, 158, 43]. One may then expect the dynamics of the number density, ⇢, to play a role

in tissue stability. GNF have been mainly observed, however, in highly motile, fluid tissue,

while in the rigid state the number density seems to remain uniformly high, with minimal

fluctuations. We therefore expect that the dynamics of density fluctuations may play an
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important role in fluid tissue, but not in the vicinity of the fluid-solid transition. The study

of such e↵ects is reserved for future work and in the following we simply equate the density

to its mean value ⇢

0

= 1/Ā, with Ā the mean cell area.

The coarse-grained field �(r, t) represents a fluctuating cell perimeter density. If all cell

perimeters are identical it will simply be proportional to the number density. The coarse-

grained field G̃ij(r, t) is a symmetric and traceless tensor of rank two. It has a structure

similar to that of the familiar nematic alignment tensor, but it incorporates both fluctuations

in individual cell shape and in the direction of the principal eigenvector. To separately

quantify cell-shape fluctuations, we define an additional coarse-grained field, the cell-shape

anisotropy, as

m(r, t) =
[
P

a Ma�(r� ra)]c
�(r, t)

. (4.15)

The traceless shape tensor is then written as

G̃ij(r, t) = m(r, t)�(r, t)Qij(r, t) , (4.16)

where

Qij(r, t) =
G̃ij(r, t)

m(r, t)�(r, t)
. (4.17)

is the nematic alignment tensor.

At the single-cell level, the shape tensor Ga
ij is characterized by three independent quan-

tities that can be chosen as the cell area (proportional to Det(Ga) and inversely propor-

tional to the mean density in a confluent tissue), the cell anisotropy ma = Ma/�a, and

the angle defined by êa. Then �a, which is proportional to cell perimeter, can be written

as �a = c

p
Aa/(1�m

2

a) ⇠ [⇢
0

(1�m

2

a)]
�1/2, with c a numerical constant of order unity.

Fluctuations in the field �(x, t) will then be controlled by density and shape anisotropy fluc-

tuations, and �(r, t) = � (⇢(r, t),m(r, t)) ' � (⇢
0

,m(r, t)). In other words, we do not need

to consider � as an independent field as it is slaved to m.

If cells are isotropic, both m and G̃ij vanish identically. When cells are elongated and m
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is finite, cells can additionally exhibit orientational order captured by the tensor Qij. For

uniaxial systems, Qij can be written as

Qij(r, t) = S(r, t)


ninj � 1

2
�ij

�
, (4.18)

where n(r, t) is the nematic director. Tissues of elongated cells with a nonzero mean value

of m can then additionally exhibit orientational order of cell elongation characterized by a

finite value of S(r, t). Such nematic order has not, however, been observed in simulations of

Active Vertex or Self-Propelled Voronoi models in the absence of interactions that tend to

align cell polarization. For this reason we do not consider the dynamics of Qij here and leave

this for future work. As seen below, here we only model tissues where cell elongation may

result in polar alignment of cell motility, possibly leading to global flocking of the tissue.

This may describe monolayers of MDCK cells as studied by Puliafito et. al.[102] that show a

strong correlation between cell morphology and the transition between motile and non-motile

tissues.

4.2.1 Hydrodynamics of Shape in Non-Motile Tissues

We begin by constructing a hydrodynamic equation for m(r, t) in the absence of cell motility.

Due to the complexity of the interactions arising from the shape energy, an exact coarse

graining appears intractable. Instead, we recognize that the simplified mean-field theory of

pentagons described in Section 4.1.2 already encodes the key properties of the shape driven

liquid-solid transition seen in simulations[16, 18]. At large length scales, we then neglect

density fluctuations and assume that the VM can be described by a Landau-type free energy

functional given by

F =

Z
dr

⇢
1

2
↵(s

0

)m2 +
1

4
�(s

0

)m4 +
D

2
(rm)2

�
, (4.19)
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where D is a sti↵ness that describes the energy cost of spatial variation in cellular shape

arising from interactions. Since the rigidity transition is found to be continuous in numerical

simulations of Vertex and Voronoi models, and well described by the free energy of Eq. (4.19),

we use here the same quadratic energy derived for a single cell as a mean-field description

for the tissue. The relaxational dynamics of m(r, t) is then given by

@tm =� 1

�

�F

�m

=� ⇥
↵(s

0

) + �(s
0

)m2

⇤
m+Dr2

m ,

(4.20)

where for simplicity we have taken the kinetic coe�cient � = 1. The phenomenological

parameters ↵ and � depend on the target shape index s

0

via Eqs.(4.9, 4.10), with � > 0

and ↵ changing sign at s

0

= 3.81. The steady state solution of Eq. (4.20) then yields two

homogeneous states: a solid state with mss = 0 for ↵ > 0, corresponding to s

0

< 3.81, and a

liquid state with mss =
p�↵/� for ↵ < 0, corresponding to s

0

> 3.81. It therefore provides

a mean-field description of the liquid-solid transition seen in the vertex model. The sti↵ness

D tends to stabilize the homogeneous states. Fluctuations are characterized by a correlation

length `m ⇠ p
D/|↵| that diverges at the transition. In the rest of this work ↵ and � are

functions of s
0

even where this dependence is suppressed.

4.2.2 Hydrodynamics of Shape in Motile Tissues

Inspired by the Toner-Tu model of flocking, we describe cell motility at the continuum level

in terms of a local polarization field, p(r, t), that defines the direction of the propulsive

force originating from the traction that cells exert on a substrate. In particle-based flocking

models, a mean polarization arises from the explicit tendency of particles to align with their

metric neighbors and is thereby tuned by density. In contrast, collective motion in our

model is directly tuned by cell shape, which can exhibit slow dynamics at the liquid-solid

transition. On the other hand, although cell-shape anisotropy can generate mechanical forces
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that build up local polarization, the direction of cellular polarization does not in general need

not correlate with the orientation of anisotropic cell shapes. As a result, a tissue may be

polarized (i.e., |p| 6= 0) even in the absence of nematic order of elongated cell shape (i.e.,

Tr[Q2] = 0). In this work, we ignore the dynamics of Qij and explore the possibility that

structural nematic order of elongated cell shapes and polar alignment of cell polarization be

e↵ectively independent. The long time dynamics of the tissue is then described by coupled

continuum equations for cell anisotropy and polarization, given by

@tm+ ⌫

1

p ·rm = � ⇥
↵(s

0

) + �(s
0

)m2

⇤
m+ �r · p+Dr2

m , (4.21)

@tp+ �

1

(p ·r)p =� ⇥
↵p(m) + �pp

2

⇤
p� ⌫rm

+ �

2

rp

2 � �

3

(r · p)p+Dpr2p .

(4.22)

As with all phenomenological hydrodynamic models, Eqs. (4.21) and (4.22) contain quite

a few parameters, which can in general be functions of m and p

2. For simplicity here we

take them as constant unless otherwise noted. The cell anisotropy field m is convected

by polarization at rate ⌫

1

and di↵uses with di↵usivity D. The polarization equation has

a form closely analogue to the Toner-Tu equations, with the shape anisotropy m replacing

the density, but with the important di↵erence that m is not conserved. The convective

parameters �
1

,�

2

and �

3

arise from the breaking of Galilean invariance due to the presence

of the substrate. For simplicity we neglect the anisotropy of the sti↵nesses for bend and splay

deformations and assume a single isotropic di↵usivity, Dp. The coe�cients � (described in

Section II) and �p are both assumed to be positive so the model admits stable anisotropic

and flocking states. Both ↵ (introduced in the previous section) and ↵p(m) = ↵

0

p�am (with

↵

0

p, a > 0) change sign as a function of s
0

, resulting in mean-field transitions and instabilities

tuned by the target cell shape s
0

. The choice a > 0 describes the possibility that anisotropic

cell shapes promote flocking in the fluid, which is a new ingredient of our model. Motivation

for such a term comes from the expectation that cell elongation and the associated tissue
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fluidity may enhance cell motility, promoting alignment. Since a controls the onset of flocking

and its value is not experimentally constrained, we explore the stability of the hydrodynamic

model as a function of this parameter. Note that an alternate mechanism for flocking, akin

to ones explored in particle-based active matter models, was recently considered in Ref. [44]

via a coupling that tends to align the cell polarization with the mean forces due to the

cell’s neighbors. This alignment mechanism allows for the formation of a flocking solid state

that cannot occur in the model presented here, where a finite value of m (hence fluidity)

is required for the onset of a polarized state. In fact the alignment with the local force

implemented in Ref. [44] even enhances tissue rigidity by suppressing fluctuations transverse

to the direction of mean motion. Incorporating such an alignment interaction into our model

may require coupling to internal cellular degrees of freedom distinct from shape anisotropy

and perhaps also higher order terms. This is left for future work.

There are two key parameters that couple p and m. The term proportional to � de-

scribes the fact that spatial gradients of polarization can drive changes in local cell shape. A

positive value of � corresponds to a situation where m increases towards regions of positive

polarization splay. The sign of this parameter could be determined by correlating TFM

measurements of local traction forces with cell shape fluctuations from segmentation images

of static tissues. Here we set � = +1. The term proportional to ⌫ represents a sti↵ness

gradient driven by cellular shape. Tambe et. al. [136] have shown that collective cell mi-

gration is directed by gradients in local stress. Since stress transmission is controlled by

the mechanical properties of the material, it is then natural to expect that cells may sense

gradients in tissue sti↵ness and this may direct their migration. Wound healing assays in

expanding tissues have reported the tendency of MDCK and RPME cells to migrate along

directions of minimal shear stresses[136]. This may suggest a tendency to move from the

solid to the liquid, corresponding to ⌫ < 0, although other behavior may occur in di↵erent

cell types. Below we explore our hydrodynamic model for both ⌫ = +1 and ⌫ = �1.

An important di↵erence between the Toner-Tu equations and our model is that cell-shape
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Table 4.1: Homogeneous steady states
Phase Fields Homogeneous Stability Condition

Solid mss = |pss| = 0 ↵ > 0 , ↵0

p > 0

Fluid m2

ss = �↵
� , |pss| = 0 ↵ < 0 , ↵p(mss) > 0

Flocking Fluid m2

ss = �↵
� , �pp2ss = �↵p(mss) ↵ < 0, ↵p(mss) < 0

anisotropy m is not a conserved field, but an order parameter associated with a liquid solid

transition. Our model couples for the first time collective cell motility with a tissue rigidity

transition, allowing us to examine the feedback between motility and shape in a crowded

environment.

4.2.3 Homogeneous Steady States

Our hydrodynamic equations for motile tissues exhibit three homogeneous steady state so-

lutions:

(i) a solid with mss = pss = 0 for ↵ > 0 and ↵

0

p > 0, corresponding to a non-motile rigid

tissue with isotropic cellular shapes;

(ii) a non-motile fluid with mss =
p�↵/� and pss = 0 for ↵ < 0 and ↵p(mss) > 0, or

equivalently ��(↵0

p/a)
2

< ↵ < 0, corresponding to a liquid-like tissue with elongated cellular

shapes and zero mean motion;

and

(iii) a flocking fluid with mss =
q

�↵
�

and pss =
q

(amss � ↵

0

p)/�p for ↵ < 0 and

↵p(mss) < 0, or equivalently ↵ < ��(↵0

p/a)
2, corresponding to a liquid-like tissue with

elongated cellular shapes and finite mean polarization.

The regions of parameter space where each solution exists are summarized in Table (4.1)

and in Fig. (4.5). We find two critical values of ↵(s
0

) in the mean-field phase diagram,

corresponding to ↵c1 = 0 and ↵c2 = ��(↵0

p/a)
2. These give two critical lines in the (s

0

, a)

phase diagram shown in Fig.(4.5), where s

0

is the target shape parameter and a controls

elongation-driven collective motility.

Our model yields a density-independent flocking transition in confluent tissues tuned by
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cortical tension and cell-cell adhesion, which are captured by the parameter s
0

. The existence

of a “flocking solid” state has been prevented by the choice ↵

0

p > 0.

Our hydrodynamic equations are formally similar to those studied by Yang et al. [156] to

describe populations of self-propelled entities in the absence of number conservation, with a

nonconserved density taking the place of the shape parameter m. This work, in fact, reports

static and dynamical patterns qualitatively similar to the ones obtained here. One di↵erence,

however, is that the density of self-propelled entities discussed by Yang et. al. [156] even if

not conserved always fluctuates around a finite value, so that small fluctuations can have

either sign. Here, the shape parameter m is defined positive and fluctuations in the solid

state where mss = 0 can only be positive, describing the occurrence of liquid-like regions

in a solid matrix. This impacts the linear stability of these states, as discussed in the next

section.

4.2.4 Simplified 1d Model

The hydrodynamic equations (4.21) and (4.22) contain many parameters and the linear

stability analysis described in the next section is not transparent. It is therefore instructive

to first consider an approximate form of the model that provides useful insight. Retaining

only the lowest order couplings between shape parameter and polarization in Eqs. (4.21) and

(4.22) and specializing to a one-dimensional system, the dynamics of small deviations from

the homogeneous values is governed by

@t�m = �↵̃�m+ �@x�px , (4.23)

@t�px = �↵̃p�px � ⌫@x�m (4.24)

where ↵̃, ↵̃p > 0 are e↵ective relaxation rates. At steady state these equations are readily

combined into a single equation describing, for instance, spatial variations of the shape
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parameter

@

2

r �m =
↵̃↵̃p

�⌫

�m , (4.25)

revealing a characteristic length scale `c =
p

(|�⌫|)/(↵̃↵̃p). For �⌫ < 0, there are no spatially

varying solutions that satisfy uniform boundary conditions, suggesting that the homogeneous

states are stable, as indeed found below from the analysis of the full equations. For �⌫ > 0,

the system admits wave-like solutions of wavelength 2⇡`c, which may be excited in the

presence of noise. In this case we expect the emergence of spatial patterns, as found below.

This simple model also reveals information about the nature of the patterns, specifically that

spatial variations of m and px are shifted by a quarter of a wavelength. Assuming � > 0,

for ⌫ > 0, we expect large migratory forces directed from fluid regions toward solid regions

of tissue, while these forces will point in the opposite direction for ⌫ < 0. This qualitative

picture is confirmed by the simulations of the full model described in Section 4.2.6.

4.2.5 Linear Stability Analysis

Here we examine the linear stability of each of the three homogeneous states against spon-

taneous fluctuations. After linearizing the hydrodynamic equations (4.21) and (4.22) in the

fluctuations of the fields around their steady state values, �m(r, t) = m(r, t) � mss and

�p(r, t) = p(r, t)� pss, we expand the fluctuations in Fourier components,

2

64
�m(r, t)

�p(r, t)

3

75 =

Z
dk e

�ik·r

2

64
mk(t)

pk(t)

3

75 . (4.26)

The linear dynamics of the Fourier components of the fluctuations can then be written in

the compact form

@t�k(t) = Mss(k) · �k(t) , (4.27)

where �k = (mk,pk) andMss(k) is a matrix given in Eqs. (A.15) and (A.25) of Appendix A.2.

The decay or growth of the fluctuations is governed by the eigenvalues zµ(k) of Mss(k),
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where µ labels the eigenvalue (see Appendix A.2 for details). An instability occurs when

Re[zµ(k)] > 0 for any (µ,k). A nonzero imaginary part of the eigenvalue corresponds to

propagating modes.

As we will see below, pattern formation in our model depends crucially on the sign of the

product �⌫ that defines the morphotaxis parameter of the tissue (or, since we have chosen

� = +1, the sign of ⌫) and is best discussed by examining each steady state one at a time.

This product combines the response of polarization to gradients in shape with the response

of shape to sinks/sources of polarization.

Solid State. The solid state with mss = pss = 0 exists for ↵ > 0. The steady state has

no spontaneously broken symmetry and fluctuations are isotropic in the sense that their

decay rates only depend on the magnitude of k, not on its direction. In this case it is

convenient to split pk in components longitudinal and transverse to k as pk =
�
p

L
k , p

T
k

�
,

where p

L
k = k̂ · pk and pT

k = pk � k̂pLk , with k̂ = k/|k|. Fluctuations in the transverse

part of the polarization that corresponds to bend deformations are decoupled and always

decay. The coupled dynamics of fluctuations in shape anisotropy and p

L
k that describes splay

deformation is controlled by two eigenvalues, given by

z

(solid)
± =� 1

2

⇥
↵ + ↵

0

p + (D + Dp)k
2

⇤

± 1

2

q⇥
↵� ↵

0

p + (D�Dp)k2

⇤
2

+ 4k2

⌫� .

(4.28)

The modes are always stable for �⌫ < 0. When �⌫ > 0 the mode z

(solid)
+

can become

positive and yield an instability when �⌫ >

⇥p
↵

0

pD+
p
↵Dp

⇤
2

. This condition is, however,

obtained by relinquishing the constraint thatm > 0 and allowing it to fluctuate freely around

mss = 0. Imposing the constraint of positive m renormalizes the stability boundary. Lacking

an analytic tool, the analysis must, however, be carried out numerically.

64



The wavelength of the fastest growing mode defines a characteristic length scale given by

`solid = 2⇡

s
2DDp

�⌫ � ↵

0

pD� ↵Dp

. (4.29)

At the onset of instability this becomes `solid = 2⇡(DDp/↵↵
0

p)
1/4 and can be interpreted as

the geometric mean of two length scales, `solid = 2⇡
p

`m`p, where `m =
p
D/↵ represents

the distance over which di↵usion balances the relaxation of the anisotropy field, while `p =
q

Dp/↵
0

p describes spatial variation in the polarization field.

Fluid state. The non-polarized fluid state is obtained for ↵ < 0 and ↵p = ↵p(mss) > 0 and

has finite mss =
p�↵/� and pss = 0. The behavior is formally the same as obtained for the

solid state, but with the relaxation rate of the anisotropy parameter m replaced by �2↵ > 0

and that of polarization decreased from ↵

0

p to ↵p = ↵

0

p � amss = ↵

0

p � a

p�↵/� > 0.

The steady state is again isotropic and fluctuations in the transverse polarization pT
k are

decoupled and always decaying. The coupled dynamics of fluctuations in shape and splay

polarization is controlled by the eigenvalues

z

(fluid)
± =� 1

2

⇥
2|↵|+ ↵p + (D + Dp)k

2

⇤

± 1

2

q
[2|↵|� ↵p + (D�Dp)k2]2 + 4k2

⌫� .

(4.30)

Again the steady state is stable when �⌫ < 0 and unstable for �⌫ >

hp
↵pD+

p
2|↵|Dp

i
2

.

The wavelength of the fastest growing mode is

`fluid = 2⇡

s
2DDp

�⌫ � ↵pD� 2|↵|Dp

(4.31)

that reduces to `fluid = 2⇡(DDp/2|↵|↵p)1/4 at the onset of the instability. Note, however,

that ↵p vanishes at |↵c2| = (↵0

p/a)
2

� where the system undergoes a mean-field transition to

a flocking liquid state and `fluid diverges.
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Flocking fluid. In the flocking fluid state, obtained for ↵ < ↵c2, the system acquires a

finite mean polarization, breaking rotational symmetry, and all modes are coupled. We then

choose the x axis along the direction of broken symmetry, i.e., pss = pssx̂. For simplicity we

only examine here the behavior of the fluctuations for wavevectors parallel and perpendic-

ular to the direction of broken symmetry. For wavevector k along the direction of broken

symmetry, k = kx̂, bending fluctuations in the orientation of polarization, �pyk, decouple and

are always stable. Fluctuations in shape anisotropy and the magnitude of polarization, �pxk,

are coupled and the stability is controlled by the eigenvalues

2z(band)± = 2(↵ + ↵p(mss)) + ipss(⌫1 + �T )k � (D + Dp)k
2

±
"
⇥
2(↵� ↵p(mss)) + ipss(⌫1 � �T )k � (D�Dp)k

2

⇤
2

+ 4�(⌫k2 � ikapss)

#
1/2

(4.32)

where �T = �

1

+ �

3

� 2�
2

. In this case the sign of the real part of the modes was examined

numerically. We find an instability close to the mean-field transition line in a range of

wavevectors along the direction of broken symmetry, analogous to the banding instability of

Toner-Tu models[15, 87]. Near the mean field transition, the banding instability occurs in a

narrow region of s
0

for �⌫ > 2|↵|Dp > 0 and is absent when �⌫ < 0. A numerical solution

of the nonlinear equations reveals, however, a narrow region of banding instability even for

�⌫ < 0. The sign of the morphotaxis parameter �⌫ additionally a↵ects the morphology of

these banded states (see Fig. (4.5C,4.5D).

Next we examine the stability of the ordered state deep in the flocking regime. In this

case fluctuations in the magnitude of polarization, �pxk, decay on microscopic time scales and

can be eliminated by neglecting @t�p
x
k in Eq. (4.27). We then obtain coupled equations for

fluctuations in cell shape and direction of orientational order. The latter are long-lived at long

wavelength because they represent the Goldstone mode associated with the spontaneously
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broken orientational symmetry. The full decay rates are shown in Appendix A.2.4. We

examine the stability by carrying out a small wavevector expansion of the hydrodynamic

modes. For k = kx̂, corresponding to bend deformation, the homogeneous state is always

stable. For k = kŷ, coupled splay and shape fluctuations become unstable for

�⌫ >

��

2

a

�p

+ 2|↵|
✓
Dp � �

2

�

3

�p

◆
. (4.33)

Unlike the corresponding instability obtained in the Toner-Tu model[87], this instability

persists even when the advective nonlinearities proportional to �

2

and �

3

are neglected.

4.2.6 Numerical simulations

We have solved numerically the full nonlinear hydrodynamic equations (Eqs. (4.21,4.22))

on a periodic grid using a standard RK4 explicit iterative method. We choose a timestep

�t = 0.005 and grid spacing �x = 0.1 to satisfy the Von Neumann stability condition. Simu-

lations are initialized in the appropriate homogeneous state (Table.(4.1)) with superimposed

spatially white noise of variance small compared to all equation parameters. To quantify the

onset of spatial patterns, we examine the Fourier spectrum of the configurations obtained at

long times. If the integral of the discrete Fourier transform of the deviations of the m-field

from its mean value is greater than some small cuto↵ number, then the corresponding state

is identified as patterned in Fig.(4.5). Because the perturbations are small, we expect these

numerics to agree with and reinforce our analytic phase diagram.

As shown in Fig. (4.5) the numerical results agree well with those of the linear stability

analysis. For ⌫ < 0 (Fig. (4.5) top left) the homogeneous states are stable in most of

parameter space, with patterns emerging only in a narrow banding region. In contrast,

for ⌫ > 0 (Fig. (4.5) bottom left) we obtain a variety of emergent patterns, as expected

from the linear stability analysis. As anticipated in Sec. 4.2.5, the stability boundary of

the ⌫ = 1 homogeneous solid is shifted as compared to the analytic prediction (i.e. there
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are blue circles denoting numerical observations of homogeneous states in the region linear

stability analysis suggests should be unstable). This is due to the m > 0 restriction used in

the numerics but not in the linear analysis, which prevents some instabilities from arising.

Reassuringly, we find that relaxing this constraint in simulations resolves the discrepancy

and yields agreement with the analytics.

The simulations also reveal the structure of the spatial patterns that replace the uniform

states. Examples are shown in Fig. (4.5). For ⌫ = 1, in the solid phase we find droplets of fluid

asters surrounded by solid tissue with a positively splayed polarization field (frame A). As s
0

increases, the asters become more closely spaced, and elongated inclusions begin to appear.

Past the transition from the solid into the liquid, these patterns invert and we find clusters of

solid tissue surrounded by fluid, with the polarization now pointing inward, corresponding to

negative splay (frame B). In the banding region we observe elongated regions of fluid tissue,

with outward pointing polarization (frame C). Because of the symmetry of the polarization in

these bands, the structures do not migrate and their dynamics is reminiscent of coalescence.

The banding patterns obtained for ⌫ = �1 are qualitatively di↵erent, as shown in Fig. (4.5D).

In this case we obtain alternating solid/fluid traveling bands with the polarization aligned

transverse to bands. The direction of motion of the band is opposite to that direction of the

net polarization, which is reminiscent of a“tra�c wave” phenomenon.
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Figure 4.5: Phase diagrams and simulation results in the s

0

� a plane. As in the legend,
blue circles represent simulations in which the fields relax to their homogeneous steady state
solution. Orange squares represent simulations in which patterns are found to emerge. Here
we compare the cases ⌫ = �1 (Top-Left) and ⌫ = 1 (Top-Right) to show the qualita-
tive change induced by this plithotactic parameter. Bottom: Snapshots of di↵erent types
of emergent patterns from tissue simulations. Colorbars represent the magnitude of local
anisotropy (m) while red arrows represent local cell polarization (p). (A): Sparse aster-like
islands of anisotropic cells emerge near the onset of instability in the solid phase. (B): shows
an example of “solid” islands arising in the flocking fluid phase due to a splay instability
and preventing collective motion. (C) shows the elongated structures resultant from banding
instability for ⌫ = 1 while (D) shows the qualitatively di↵erent band structures for ⌫ = �1.
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Chapter 5

Discussion

We have investigated the consequences of “active” driving forces on the dynamical behavior

of cells in epithelial tissues using both simulations and theory. Our investigations are guided

by the overarching question: How might evolution control and take advantage of tissue

rheological properties in the designing and maintenance of organisms? Using a modification

of the vertex model, we investigated the influence of two kinds of active processes on the tissue

rigidity: the self-propulsive forces that cells generate by exerting tractions on a substrate and

the strains produced by cell division and programmed cell death. We quantify the role of such

active forces in controlling tissue rheology. We then examine the interplay between tissue

rigidity and cell motility using a hydrodynamic model and identify a novel mechanism for

the formation of patterns in development. We summarize the results of each of these e↵orts

below and conclude with some remarks on future directions of investigation of developmental

dynamics in tissues.

Cell motility may fluidize tissues. To study the influence of propulsive forces on the

rheological state of tissue, we have developed a new Active Vertex Model (AVM). This model

generalizes the Vertex Model framework to incorporate cell motility. While other models of

confluent motile tissues have recently been developed, such as the Self Propelled Voronoi

model [18, 85], this is the first instance that preserves the freedom of cell shape associated
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with treating the cell vertices as the degrees of freedom.

In Chapter 2, we show that this new model reproduces the results of the SPV model.

As found previously by Bi et. al. [18], we locate “glassy” states where cells are stuck in

cages and exhibit sub-di↵usive mean square displacements. The transition from a fluid-like

state to a solid-like state is achieved either by decreasing the propulsive forces, or by in-

creasing the e↵ective cell-cell interfacial tension. This interfacial tension has been previously

shown [38, 17] to emerge from the competition between cell-cell adhesions and the active

tension generated in the cortical actomyosin gel. These control parameters are suggestive of

biological “dials” which tissues may use to self-regulate their rheology.

This tissue rigidity transition is reflected in the shapes of the tissue cells. We show

for our model, that a dimensionless cellular “shape-index” is correlated with the ability

of cells to escape their cages. This correspondence is not as sharp as in the case of the

SPV, where the average shape index transitions past a special value exactly where the

e↵ective di↵usivity becomes negligibly small [18]. However, in the AVM cell shape and

tissue rigidity are nonetheless highly correlated, suggesting a structural order parameter for

tissue glassiness.

Mitosis and apoptosis may fluidize tissues We then extended the AVM to investi-

gate the influence of cell death and cell division on tissue rheology. Our investigation is

guided by the expectation that the rate of cell division and death will compete with the

“bare” uncaging rate of the AVM identified in Chapter 2 to determine the tissue dynamics.

This simple picture allows us to identify evidence of glassy states (defined as states where

particles exhibit sub-di↵usive behavior) even at finite rates of apoptosis and mitosis, where

another investigation suggested they should not exist [81]. This appears to resolve a stand-

ing discrepancy between experiments and theory. While cell division and death events will

generally lead to di↵usive fluid-like behavior on the longest timescales, subdi↵usive behavior

is observed on intermediate timescales when the cell division rate and bare uncaging rate are
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slow enough. These tissues are analogous to a supercooled fluid and are thereby expected to

behave rigidly on all but the longest timescales.

We further characterized the spatial distribution of cell displacements in the vicinity of

each individual mitosis and apoptosis event. As expected from previous work for the case

of area-preserving deformations [103], we have identified an average displacement field that

matches the one obtained from elasticity theory, as well as “non-a�ne” displacements that

capture noise. The elastic a�ne response decays spatially as 1/r, with a magnitude that

does not depend significantly on tissue rheology. The non-a�ne displacements, in contrast,

have both a magnitude and spatial extent that varies with rheological tuning parameters,

such as cell interfacial tension. Specifically, mitosis and apoptosis events generate longer

ranged deformations in rigid tissues than in fluid ones.

Using the calculated a�ne and non-a�ne displacements resulting from these division and

death events, we assess the relative importance of motile forces versus division and death in

the tissue dynamics. This guides our search for a scaling collapse of rheological data across

a range of parameters. While the results suggest a universal behavior in the crossover from

tissues which are e↵ectively una↵ected by cell division & death to tissues where these events

will dominate, the data do not fully collapse onto a single curve. The remaining spread in

the data may be indicative of a few di↵erent e↵ects: (1) that the displacements produced

by cell division and by cell death events are not independent, but interfere and correlate

with one another in time and space, (2) that the tissue structural relaxation rate cannot be

expressed simply as a sum of relaxation rates from separate sources of activity or (3) that

cell division and death produce a structural change in a tissue, altering the role of motile

forces in fluidizing the tissue. In our future investigations, we will attempt to parse and

quantify these e↵ects.

Hydrodynamics of motile tissues In Chapter 4 we develop a hydrodynamic theory for

confluent tissue close to this shape-based rigidity transition. The hydrodynamic equations
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are formulated in terms of a scalar field that quantifies single-cell anisotropy and a cell

polarization field. Cell anisotropy can drive alignment of local polarization, resulting in a

flocking liquid state. The interplay of cell shape and polarization additionally drives the

organization of a variety of aster and banding patterns consisting of solid tissue inclusions

in a liquid matrix or liquid inclusions in the solid, with associated polarization patterns.

Since cell anisotropy is e↵ectively a measure of the rheological properties of the tis-

sue, with isotropic cell shapes identifying the solid or jammed state and anisotropic shapes

corresponding to a liquid, variations in cell shape anisotropy are directly associated with

variation in the rheological properties of the tissue. Our work therefore quantifies for the

first time the role of gradients in tissue sti↵ness in driving morphological patterns. This

is achieved through a morphotaxis parameter that couples polarization to gradients of cell

shape anisotropy. Tambe et al. [136] used the name “plithotaxis” to describe the observed

tendency of cells to move in the direction that minimizes local shear stresses. The parameter

⌫ in our equations could be related to such a plithotactic e↵ect as it embodies the trans-

mission of positional sensing in collective cell migrations via gradient in local tissue rigidity

arising from variations in cell shape (see the term ⌫rm in Eq. (4.22)). Patterning in our

model is controlled, however, by the combined action of this term and the changes in local

cell shapes induced by polarization sinks and sources (the term �r ·p in Eq. (4.21)). These

two e↵ects together define the “morphotaxis” properties of the tissue. Our work therefore

provides a complementary, purely mechanical view to how patterns of growth and di↵erenti-

ation may be specified in development and tissue regeneration. Our results could be tested in

experiments by combining segmented cell images with traction force microscopy and particle

image velocimetry. In solid regions, where cell migration is strongly suppressed, traction

forces provide a direct measure of local cell polarization. Correlating traction measurements

with cell shapes could therefore provide information on the sign of the morphotaxis param-

eter.

Once elongated, cells can also align their orientations and exhibit nematic order on tissue
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scales, an e↵ect not included in our work. Nematic order has been observed for instance in

mouse fibroblasts and can be enhanced by confinement [33]. Recent work has also established

an intriguing connection between topological defects in nematic tissue and cell extrusion

and death [114, 62]. Work concurrent to ours by Ishihara et. al. [57] has examined the

interplay of nematic alignment of elongated cells with tissue mechanical properties and active

contraction-elongation. This is accomplished with a continuum model that, although similar

in spirit to ours, does not highlight the important distinction between cell anisotropy and

nematic order that allows for the onset of polarized states even in the absence of nematic

alignment of cell shape, as seen in simulations of self-propelled Voronoi models. Further

work will be needed to examine the interplay between cell shape, polarization and nematic

order, as well as the role of cell growth, in driving tissue patterning.

Another open question is the role of number density fluctuations, that can be very large in

highly motile, fluid tissue, as recently observed in experiments [42, 157, 158, 43]. Extending

our work to include variations in number density will require understanding the density

dependence of the tuning parameters of the model, such as the cells target perimeter and

area, P
0

and A

0

. This is a challenging problem and is left for future investigation.

Open Questions. It will be interesting to explore in more details the interplay between

di↵erent flocking mechanisms. In particular, recent work by some of us has implemented

an explicit alignment interaction of the cell polarization with the local force due to the

neighbors and found that this alignment mechanism promotes solidification and allows for a

solid flocking state not present in the model considered here [44]. In contrast, in the present

model polar order is driven directly by cell shape anisotropy, hence requires tissue fluidity,

which in turn enhances coordinated cell migration. These two mechanisms may generally

be both at play in living tissue, but further work is needed to understand how they may

compete to control the tissue rheology.

The patterns obtained here are not uncommon in developmental biology. The polariza-
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tion sinks found in our model imply a local tissue compression that may lead to buckling

such as that seen in the apical constriction and invagination of the Drosophila embryo[78].

Similar developmental patterns are zebrafish stripes[154], hair follicles[122], evenly spaced

feathers in the chicken embryo[58], and branching during lung development[29]. These are

more commonly understood as biochemical in origin and modeled through reaction-di↵usion

equations and Turing-type models[146, 68]. Our work suggests an alternative or complemen-

tary purely mechanical mechanism for tissue sorting and pattern formation that may be at

play in many of these examples.
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Appendix A

Appendices

A.1 Anisotropic Perturbation of the Shape Tensor

We describe here two ways in which the shape energy of an irregular polygon may be obtained

as a perturbation of that of a regular one. In this section we work at the single-cell level and

for convenience suppress the cell label a. Using the definition given in Eq. (4.2), the shape

tensor Greg of a regular polygon is diagonal and has a single eigenvalue �, i.e., it takes the

form

Greg = �

2

64
1 0

0 1

3

75 =
TrGreg

2

2

64
1 0

0 1

3

75 . (A.1)

We are interested in the form that the tensor takes when perturbed away from this initial

reference state. As we will only be concerned with quantities constructed from the eigenvalues

of this tensor, we may choose to consider the perturbed tensor in a reference frame in which

it is diagonal. The perturbed shape tensor can then be written as

Gdiag =
TrGreg +�

2

0

B@

2

64
1 0

0 1

3

75+m

2

64
1 0

0 �1

3

75

1

CA , (A.2)

76



Figure A.1: The mean value m̄ of the order-parameter obtained by minimizing the single-
cell free energy derived using di↵erent geometric perturbations of the energy of a regular
pentagon.

where � is the change in the tensor trace due to the perturbation. Our choice of the function

� will constrain our perturbation to a subset of possible trajectories. Our goal is to show

that the choice of this function (within reasonable bounds) is not consequential, and therefore

that we may consider the energy in terms of the anisotropy m alone. Employing the Area

and Perimeter relations (Eqs.(4.5,4.6)), the dimensionless vertex model energy for a single

cell can be rewritten in terms of � and m as

✏ =


n

2
sin(2⇡/n)(1�m

2)
⇣
T̃r[Greg] + �̃(m)

⌘
2

� 1

�
2

+ ̄

h
2n sin(⇡/n)

⇣
T̃r[Greg] + �̃(m)

⌘
� s

0

i
2

,

(A.3)

where T̃r[Greg] = Tr[Greg]/
p
A

0

and �̃(m) = �(m)/
p
A

0

are dimensionless quantities.

We first explore the choice �̃(m) = 0 that corresponds to a perturbation with constant

77



trace, hence constant perimeter. In this case the cell energy becomes

✏ =
1

2
↵

(tr)(T̃rGreg)m2 +
1

4
�

(tr)(T̃rGreg)m4

, (A.4)

with

↵

(tr)(T̃rGreg) =2n sin(2⇡/n)(T̃rGreg)2

� n

2 sin2(2⇡/n)(T̃rGreg)4 ,
(A.5)

�

(tr)(T̃rGreg) = n

2 sin2(2⇡/n)(T̃rGreg)4 , (A.6)

where we have shifted the energy by an overall constant, independent of m. Eqs. (4.9)

& (4.10) may now be recovered from the above by setting T̃rGreg = s

0

(2n sin ⇡/n)�1, or

equivalently P = P

0

.

An alternative approach consists of perturbing Greg while keeping its determinant con-

stant, implying constant area. The �̃(m) that preserves this condition is given by

�̃(m) = T̃r[Greg]

✓
1p

1�m

2

� 1

◆
. (A.7)

Using this, the single-cell energy may be written in terms of m and the fixed (dimensionless)

area Ã. This energy has the same form as given in Eq. (A.4), but with coe�cients now given

by

↵

(det)(s
0

) = ̃Ã

"
8n tan

⇡

n

� 4
s

0p
Ã

r
n tan

⇡

n

#
, (A.8)

and

�

(det)(s
0

) = ̃Ã

"
16n tan

⇡

n

� 6
s

0p
Ã

r
n tan

⇡

n

#
. (A.9)

Because this energy corresponds to a free cell, the fixed area is expected to realize the target

area which implies Ã = 1.

The value m̄ of m that minimizes the single-cell energy (A.4) for ↵ < 0 is m̄ =
p�↵/�,
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where ↵ and � are given by Eqs (4.9,4.10) or by Eqs. (A.8,A.9) for each of the two pertur-

bations used. The dependence of m̄ on s

0

for pentagonal cells (n = 5) obtained using the

two perturbations shown in Fig. (A.1) demonstrates that the behavior does not depend on

the perturbation near the transition, which is the region of interest in our work. In the main

text we use the results obtained with the perturbation that keeps the trace constant.

A.2 Linear Stability Analysis

The stability analysis follows a well-known procedure. We consider the equations

@tm+⌫

1

p ·rm+ ⌫

2

mr · p = � ⇥
↵(s

0

) + �(s
0

)m2

⇤
m

+ �r · p+Dr2

m ,

(A.10)

and

@tp+�

1

(p ·r)p = � ⇥
↵p � am+ �pp

2

⇤
p

� ⌫rm+ �

2

rp

2 � �

3

(r · p)p+Dpr2p ,

(A.11)

where we have included the ⌫

2

term for generality. To recover the results of the main text,

one needs only to set ⌫

2

= 0 in the following equations. Equations (A.10,A.11) have the

uniform, steady state solutions (mss,pss) enumerated in Table.(4.1). There are two types of

solutions: stationary or non-polarized ones with |pss| = 0 (a fluid and a solid) and moving

or polarized ones with |pss| 6= 0 (flocking fluid). To evaluate the stability of these steady

states, we perturb the steady state solutions (m ! mss + �m,p ! pss + �p) and examine

the linear dynamics of the fluctuations (A.10,A.11). By introducing Fourier transforms, the

linear equations for the fluctuations can be written as

@t

2

66664

mk(t)

p

x
k(t)

p

y
k(t)

3

77775
= M(k)

2

66664

mk(t)

p

x
k(t)

p

y
k(t)

3

77775
, (A.12)
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where 2

66664

mk(t)

p

x
k(t)

p

y
k(t)

3

77775
=

Z
dr

(2⇡)2
e

ik·r

2

66664

�m(r, t)

�p

x(r, t)

�p

y(r, t)

3

77775
(A.13)

are the Fourier amplitudes and the explicit expression of the matrix M(k) depends on the

homogenenous state considered. We seek solutions of the form

(mk(t), p
x
k(t), p

y
k(t)) = exp(zt)(mk, p

x
k, p

y
k) . (A.14)

The eigenvalues of M(k) then represent the growth rates of the perturbations.

A homogeneous state is then linearly stable i↵ the real part of each eigenvalue of M(k)

is negative for all k. With this condition satisfied, all small perturbations decay in time and

the system returns to the steady state. The lack of symmetry breaking in the non-polarized

regimes allows M(k) and the stability analysis to be simplified greatly. We consider these

solutions first.

A.2.1 Stability of stationary (non-polarized ) states

First, we analyze the region in whichmss = |pss| = 0. Here, M(k) is simplified by considering

pk = p

L
k k̂+ p

T
k k̂? as shown in Eq. (A.15). This form, for later convenience, applies to both

the fluid and solid.

Miso(k) =
2

66664

�↵� 3�m2

ss �Dk2 �i�(mss)k 0

i⌫k �↵p(mss)�Dpk
2 0

0 0 �↵p(mss)�Dpk
2

3

77775
,

(A.15)

where ↵p(mss) ⌘ ↵

0

p � amss and �(mss) ⌘ � � ⌫

2

mss. We see that fluctuations p

T
k in

the transverse polarization, describing bend deformations, are decoupled and always stable,
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and decay at the rate z? = �↵p(mss) � Dpk
2. The other two eigenvalues control coupled

fluctuations in shape and longitudinal polarization p

L
k , corresponding to splay deformations

and are given by the solutions of a quadratic equation,

2z±(k) = �[↵(mss) + ↵p(mss)]� (D + Dp)k
2

±
q

[↵(mss)� ↵p(mss) + (D�Dp)k2]2 + 4k2

⌫�(mss) ,
(A.16)

where ↵(mss) = ↵ + 3�m2

ss. The stability is always controlled by the mode z

+

(k).

A.2.2 Stability of Stationary Solid

In the solid mss = 0, hence ↵p(mss) = ↵

0

p and �(mss) = �. Instabilities in the homogeneous

stationary solid will arise (z
+

(k) > 0) when

�⌫ >

⇣q
↵

0

pD+
p

↵Dp

⌘
2

(A.17)

in a band of wavectors k� < k < k

+

. The wavevectors k± are solutions of a quadratic

equation

↵↵

0

p +
⇥
↵Dp + ↵

0

pD� �⌫

⇤
k

2 +DDpk
4 = 0 (A.18)

and are given by

k

2
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↵

2D
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↵
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2Dp
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2DDp

�

±
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↵
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2Dp
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2DDp

�
2

� ↵↵

0

p

DDp
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(A.19)

These solutions are real provided Eq. (A.17) is satisfied. The dispersion relation of the

mode z

+

(k) in the stationary solid phase is shown in Fig. (A.2) for a few parameter values.

Note that an instability can only occur provided �⌫ > 0. Near the onset of instability the
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Figure A.2: Dispersion relation of the eigenvalue z

solid
+

(k) in the stationary solid phase as
a function of k. Lines correspond to points in the ⌫ = 1 phase diagram from Fig.4.5. The
blue curve then corresponds to a stable homogeneous state, while yellow and green represent
unstable states.

wavelength of the fastest growing mode is given by

`

solid =

✓
DDp

↵↵

0

p

◆
1/4

, (A.20)

which is the geometric average of the length scale lm(mss) =
p

D/↵(mss) governing vari-

ation in m and the length scale lp(mss) =
p
Dp/↵p(mss) controlling spatial variation of

the polarization p. The lengths lm and lp represent the characteristic distances over which

di↵usion balances the decay rate. In the solid phase, we find emergent patterns as s

0

is

increased. Further increase of s
0

increases the characteristic scales of such patterns. Because

↵(s
0

) is roughly linear in s

0

in the range of interest, we may deduce the critical scaling as

l ⇠ (s
0

� s

⇤
0

)0.25, where s

⇤
0

= 3.812.
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A.2.3 Stability of Stationary Fluid

In the fluid, we have m

2

ss = �↵/�, ↵p(mss) = ↵

0

p � amss and �(mss) = � � ⌫

2

mss. When

⌫�(mss) >

✓q
↵p(mss)D +

q
2|↵|Dp

◆
2

(A.21)

the mode z

+

is unstable for a band of wavevectors k� < k < k

+

. The wavevectors k± are

again solutions of a quadratic equation

↵↵p(mss) + [↵Dp + ↵p(mss)D� �(mss)⌫] k
2 +DDpk

4 = 0 (A.22)

and are given by
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DDp
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(A.23)

From this equation we are able to isolate the stability condition as well as the characteristic

wavevector of the fastest growing mode near the stability-instability boundary. This gives

us a lengthscale

`

fluid =
q
�DDp/2↵(↵0

p � amss) (A.24)

expected to govern emerging patterns. Again this may be thought of as the geometric average

of the length scales `m(mss) and `p(mss) controlling spatial variation in the decoupled fields.
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A.2.4 Stability of Flocking Fluid

In this case there is special direction in the system, which is the direction of the broken-

symmetry pss 6= 0, and all modes are coupled. The stability matrix is given by

Mpol(k) =
2

666666666666666664

2↵ + i⌫

1

psskx �i�(mss)kx �i�(mss)ky

�Dk2

i⌫kx + apss 2↵p(mss) i�

3

pssky

+i�Tpsskx �Dpk
2

i⌫ky �2i�
2

pssky i�

1

psskx �Dpk
2

3

777777777777777775

,

(A.25)

where we have chosen a coordinate system with the x axis along the direction of broken

symmetry, so that pss = pssx̂. We have defined �T = �

1

�2�
2

+�

3

. To avoid solving a cubic

equation for the decay rates, we only estimate stability along special directions.

Banding Instability

We first examine the behavior of the modes for k along the direction of broken symmetry,

k = kx̂. Fluctuations in p

y
k then decouple and are always stable. The quadratic equation for

the remaining two modes is easily solved, with the result

2z(band)± =2(↵ + ↵p(mss)) + ipss(⌫1 + �T )k � (D + Dp)k
2

±
"
⇥
2(↵� ↵p(mss)) + ipss(⌫1 � �TOT )k � (D�Dp)k

2

⇤
2

+ 4�(mss)(⌫k
2 � ikapss)

#
1/2

.

(A.26)
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Close to the mean-field transition between stationary and flocking liquid (↵p(mss) = 0) a

small wavevector expansion yields an instability for

⌫�(mss) > 2|↵|Dp > 0 . (A.27)

The instability boundaries shown in our phase diagram are obtained, however, through a

more general analysis carried out with Mathematica. The wavelength of the fastest growing

mode can also be calculated. In the limit ↵p(mss) ! 0 it is given by

`band ⇠ ⇡

|↵|

s
2�(mss)⌫|↵|(Dp �D)� �(mss)2⌫2

|↵|Dp � 1

2

�(mss)⌫
. (A.28)

This instability is analogous to the banding instability of Toner-Tu models, as it describes

the onset of bands of alternating ordered and disordered regions preferentially aligned in the

direction transverse to that of broken symmetry.

Instability of Splay Fluctuations

We now analyze the stability deep in the ordered polar state. In this region, fluctuations in

pss always decay on short time scales. For this reason we neglect @tpx and eliminate px in

favor of py and m, obtaining again a quadratic equation for the dispersion relation of the

modes that can be solved analytically. For simplicity we only examine the modes for k = kxx̂

and k = kyŷ. These decay rates of the hydrodynamic mode are then given by

z

(flock)
+

(kx) = iAxkx �Dpk
2

x +O(k3

x) (A.29)

and

z
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+

(ky) = iAyky �Deff
y k

2

y +O(k3

y) . (A.30)
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The mode is always stable for k = kxx̂. In contrast,

Deff
y = Dp � �

2

�

3

�p
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2|↵|
✓
⌫ � a�

2

�p

◆
(A.31)

changes sign, resulting in the coupled instability of shape anisotropy and splay fluctuations

of the polarization for

�(mss)⌫ >

�(mss)�2

a

�p

+ 2|↵|
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2
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. (A.32)
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