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Abstract 

Medication use during pregnancy presents complex considerations due to its potential for 

causing congenital malformations and its implications for maternal and fetal health. With 

approximately 90% of pregnant women consuming at least one pharmaceutical agent, there is a 

critical need for comprehensive developmental toxicity screening, particularly for cancer 

treatments during pregnancy. Pluripotent stem cell (PSC) models, specifically iPSC-derived 

organoids, offer promising approaches for assessing drug toxicity and efficacy during pregnancy. 

This study introduces an embryotoxicity screening platform using biomaterial-engineered 3D 

cardiac organoids created through micropatterning techniques. The platform aims to characterize 

the response of six pharmaceutical agents across pregnancy risk categories, focusing on four 

chemotherapeutic compounds, based on the measurements of cardiac physiology and tissue 

morphology. The engineered cardiac organoids serve as a model for characterizing embryonic 

cardiac development and physiology, holding the potential to enhance diagnostic capabilities for 

chemotherapy-induced cardiotoxicity. This well-defined 3D structure is proposed as a pre-

validation model for early-stage cardiotoxicity assessment, potentially contributing to an updated 

pregnancy risk classification system.
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1 CHAPTER 1 INTRODUCTION 

 

1.1 Drug Embryotoxicity and Developmental Toxicity 

Congenital anomalies represent a significant global health issue, imposing substantial treatment 

costs and considerable financial and emotional strain on families and societies. Approximately 

6% of newborns worldwide are affected by congenital disorders, leading to hundreds of 

thousands of associated fatalities annually. [1] A 2023 survey by the World Health Organization 

(WHO) across 193 countries estimated that congenital disorders result in the deaths of around 

240,000 newborns within the first 28 days of life each year.[2] The administration of medication 

during pregnancy presents complex considerations, given its significant potential to contribute to 

congenital malformations and its contentious implications for maternal and fetal health 

outcomes. Epidemiological data suggest that approximately 90% of pregnant women consume at 

least one pharmaceutical agent.[3] Notably, 80% of pregnant individuals report medication use 

during the first trimester, a period of critical importance known as organogenesis.[4] On average, 

pregnant women are exposed to 2.6 pharmacological agents, encompassing both prescription and 

over-the-counter medications, throughout the course of pregnancy. This high prevalence of 

pharmaceutical exposure underscores the importance of continually updated clinical guidelines 

to ensure the safety and efficacy of medications used during pregnancy.[5] Avoiding exposure to 

harmful substances has become the primary part of preventing and managing severe congenital 

anomalies during pregnancy, as most of the teratogen-induced anomalies are preventable.[6]  

 

Embryonic development is highly sensitive and can be disrupted by toxic external molecules. 

Extensive research has demonstrated that toxicants can transfer from maternal blood to the 
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developing embryo or fetus through the placenta, leading to developmental toxicity. [6] In the 

United States, environmental or iatrogenic teratogens are responsible for 2–3% of the 3–5% of 

children born with birth defects. [7] Teratogens may pose the greatest risk during the 

organogenesis period, which occurs between the 3rd and 8th weeks of fetal development (Figure 

1).  [8] During this critical phase, tissues and organs are forming, and the rapidly dividing cells 

are particularly susceptible to the harmful effects of these toxic agents. [6] Embryotoxicity 

describes the detrimental effects of various substances on the critical phase of embryonic 

development, potentially resulting in malformations, growth retardation, or other abnormalities 

in the developing fetus. [8] Factors contributing to embryotoxicity mainly lie in the exposure to 

teratogenic agents during critical stages of embryonic development.[9] Studies have highlighted 

that exposure to teratogenic agents such as chemicals, viruses, environmental factors, physical 

factors like X-rays, and drugs, can contribute to approximately 10% of congenital anomalies. [10] 

These agents can disrupt normal cellular processes, interfere with organogenesis, and affect fetal 

growth, ultimately causing structural or functional abnormalities in the embryo. 

 

Drugs can have direct teratogenic effects on the developing embryo, potentially causing 

malformations or embryo-fetal demise. They may impair fetal development by disrupting the 

transplacental transfer of essential nutrients and oxygen from the mother, thereby reducing fetal 

blood supply. This disruption can also induce premature myometrial contractions, leading to 

preterm birth. [11] Furthermore, drugs can influence the intrauterine development of gene-

encoding proteins, altering transcriptional regulation signals and adversely impacting 

embryogenesis. [12] For many drugs, particularly new ones, the limit of human exposure data 

necessitates reliance on animal studies, in vitro tests, or information on related compounds for 



   

 

 3 

risk assessment. Regulatory authorities like the U.S. Food and Drug Administration (FDA) and 

the European Medicines Agency (EMA) require that medications potentially used by pregnant 

women be tracked through pregnancy registries.[7] Research indicates that drug exposure during 

pregnancy can result in various congenital anomalies, such as cardiovascular defects, neural tube 

defects, and facial clefts. [13] Nowadays, pharmaceutical agents have emerged as a primary focus 

in the assessment of developmental toxicity risk, particularly in the context of pregnancy safety 

evaluation. This focus not only underscores the critical necessity for comprehensive monitoring 

of drug safety profiles in pregnant populations but also necessitates the development and 

implementation of innovative methodologies for large-scale developmental toxicity screening of 

both novel and existing pharmaceutical compounds.[14] 

 

The thalidomide tragedy served as a pivotal moment in pharmacovigilance, catalyzing global 

awareness regarding the teratogenic potential of pharmaceutical agents. Thalidomide, notorious 

for its teratogenic effects, exerts its impact by binding to cereblon (CRBN) and inhibiting its 

ubiquitin ligase activity, which is essential for protein degradation and various cellular processes 

critical for normal development. This inhibition disrupts CRBN function, triggering a series of 

events that interfere with key signaling pathways involved in limb development and 

neovascularization, leading to limb deformities and other congenital anomalies. Thalidomide-

induced embryotoxicity also includes the prevention of angiogenic outgrowth during early limb 

formation, resulting in vessel loss that precedes alterations in limb morphogenesis and gene 

expression. [15] Given these profound developmental impacts, it is imperative to monitor and 

assess drug utilization patterns among pregnant women to mitigate fetal exposure to teratogenic 

agents.[16] Concurrently, elucidating the relationship between drug exposure and congenital 
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anomalies is of critical importance for healthcare providers to make informed decisions 

regarding pharmacological interventions during pregnancy. 

 

1.2 Pluripotent Stem Cell-based Embryotoxicity Testing 

Although mammalian models are considered the gold standard in toxicological studies and have 

been extensively utilized for pre-clinical drug toxicity testing, in vivo experiments are 

characterized by low throughput, high costs, intensive labor, lengthy durations, and significant 

ethical concerns.[17] Zebrafish were introduced four decades ago as a model for studying 

developmental biology [18] due to their small size, easy maintenance, and rapid development. 

Recently, zebrafish have garnered increased interest in toxicological studies and pharmaceutical 

screening (Figure 2a). Their transparent embryos and external development from the mother 

facilitate the assessment of teratogenic and embryotoxic effects.[19] Additionally, zebrafish are 

suitable for large-scale screenings; for instance, testing 100 biologically active substances on 

zebrafish at 2 days post-fertilization revealed that 18 substances induced cardiotoxicity in 

zebrafish, while 23 are known to cause adverse cardiac effects in humans. [20] However, despite 

the high similarity between the zebrafish and human genomes, results from zebrafish studies can 

be controversial due to inherent interspecies differences and the lack of complex human-like 

responses to stimuli.[21]  

 

Embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) have become the most 

widely used tools in the pharmaceutical industry for pre-clinical developmental toxicity 

screening. The embryonic period is particularly vulnerable due to the organisms' extensive 

proliferative capacity, pluripotency, and cytogenetic stability. Embryonic stem cells, in 
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particular, offer significant advantages in toxicity assessment, including their ability to mimic 

early developmental stages and their responsiveness to various toxic agents.[9] An in vitro assay 

to assess embryotoxicity was proposed by Spielmann et al. in 1997.[22] This mouse Embryonic 

Stem Cell Test (mEST) leverages the ability of mouse embryonic stem cells (mESCs) to 

differentiate into various cell types in culture. This assay evaluates three toxicological endpoints 

following 10-day exposure to chemicals: cytotoxicity assessment across two cell lines, non-

differentiated mESCs, and mouse 3T3 fibroblasts, and is conducted over two endpoints to 

determine the IC50 of the agent. Additionally, the ID50 is calculated based on the other endpoint 

evaluating the efficiency of mESC differentiation into contracting myocardial cells. (Figure 2b). 

[23] The mEST demonstrated equal or superior accuracy (78%) compared to other in vitro 

embryotoxicity assays.[24] In 2004, mEST was validated by the National European Centre for the 

Validation of Alternative Methods (ECVAM) to classify chemicals according to their 

embryotoxic potential for regulatory purposes.[25] However, the mEST exhibits limitations in its 

ability to accurately replicate the human physiological environment, potentially yielding drug 

response profiles that diverge from those observed in human subjects. The logical alternative of 

employing human embryonic stem cells (hESCs), derived from human embryos, presents 

significant ethical challenges. This approach remains controversial, particularly among those 

who ascribe equivalent moral status to human embryos and adult humans. The debate 

encompasses concerns regarding the ethical implications of manipulating human embryonic 

development in the pursuit of research objectives. [26] 

 

Induced pluripotent stem cells (iPSCs), generated by reprogramming adult somatic cells with the 

four Yamanaka transcription factors, exhibit similarities to hESCs in terms of morphology, 
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proliferation, feeder dependence, surface antigens, gene expression, epigenetic status, telomerase 

activity, and pluripotency.[27] However, iPSCs encounter fewer ethical concerns compared to 

hESCs. Following this groundbreaking development, research has focused on producing 

genetically modified differentiated cells such as neurons, cardiomyocytes, endothelial cells, and 

hepatocytes, which are suitable for large-scale toxicology screenings.[28] The development of 

spontaneously contracting CMs from iPSCs has emerged as a novel method for developing 

cardiotoxicity assay using physiologically relevant human cell models (Figure 2c).[29] [30] Multi-

dimensional function assays for drug toxicity screening are developed using orthogonal 

techniques in a high throughput fashion, allowing efficient and extensive drug toxicity 

characterization (Figure 2d). [31] iPSC-derived CMs expressed cardiac contractile proteins and 

major ion channels, mimicking the physical contraction observed in native CMs (Figure 2f), [32] 

which provides a more accurate evaluation of developmental toxicity that closely recapitulates 

human physiology. Compared to the traditional mEST, iPSCs offer enhanced versatility in their 

capacity to be directed towards specific differentiation, and identify the drug-induced toxicity at 

early stages of human development by enabling the evaluation of impacts on differentiation 

processes. This capability suggests that iPSC-based models represent a promising and potentially 

more predictive tool for developmental toxicity assessment. 

 

1.3 Organoid Technology for Embryotoxicity and Developmental Toxicity Testing 

The 2D monolayer model's feasibility and relative simplicity underscore its primary limitation: 

the lack of structural complexity, dynamic growth, diverse cell types, organ-level intricacy, in 

vivo environment, vascularization, and maturity. Critics have doubted the validity of studying 

isolated cells outside an intact system, as physiological pathways, drug responses, and 
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phenotypic outcomes cannot be accurately replicated in a manner that mirrors in vivo human 

conditions. This limitation raises concerns about the model's ability to reflect the true biological 

environment necessary for precise drug testing and disease modeling.[33] Organoids have long 

been acknowledged as complex three-dimensional structures that replicate the architecture and 

functionality of in vivo organs, which are developed from stem cells or organ-specific 

progenitors through a self-organization process.[34] They exhibit a composition and behavior 

closely aligned with physiological cells, maintain a more stable genome, and provide improved 

adaptability for biological transfection and high-throughput screening applications.[35] 

 

Compared to two-dimensional models, three-dimensional (3D) model systems are better 

equipped to accurately replicate the physiological environments and cellular interactions found 

in living organisms. iPSC-derived organoids can be regarded as minimal systems that emulate 

human developmental mechanisms and disorders in vitro, as these intrinsic processes are often 

challenging to identify in vivo.[36] Both hESCs and iPSCs have the capacity to spontaneously 

aggregate, forming structures known as embryoid bodies (EBs). These EBs can differentiate into 

derivatives of the three primary germ layers: ectoderm, mesoderm, and endoderm, thereby 

simulating the early stages of embryogenesis.[37] Consequently, EBs or EB-derived organoids 

serve as a valuable model for investigating human embryonic development and assessing the 

embryotoxicity of various chemicals that pose risks to the fetus through assays that measure 

abnormalities in cellular proliferation and differentiation (Figure 3a). The study of human 

development and organogenesis, traditionally limited by the scarce availability of human 

embryonic and fetal tissues and ethical concerns, stands to benefit significantly from the use of 

hiPSC-derived organoids.[36] 
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Evaluations of developmental toxicity are crucial for both preclinical screening of drug 

candidates and studying human embryo development. Organoids derived from iPSCs present a 

promising platform for these applications due to their capacity to closely replicate endogenous 

cell organization and organ structures. This fidelity enables researchers to examine cell-cell 

interactions within a context that closely mirrors human physiology and development, providing 

more reliable assessments compared to traditional 2D cell models or animal models.[38] These 

organoids have been developed for different organ systems, such as the digestive system, liver, 

kidney, brain, and retina (Figure 3, b-g)  [39–42] Compared to organoids derived from adult stem 

cells, iPSC-derived organoids offer a significant advantage in their ability to recapitulate the 

structural and functional characteristics of fetal organs. This capability provides valuable 

opportunities for modeling genetic or environmentally induced toxicity at various developmental 

stages or during specific phases of organogenesis. 

 

As previously noted, approximately 1% of congenital anomalies are associated with 

pharmaceutical exposure.[43] Beyond replicating key aspects of human development, organoid 

technology enables researchers to examine the impact of drugs on specific cell types and tissues 

involved in fetal growth and maturation. This specificity is crucial for identifying potential 

teratogenic effects that could affect the developing fetus. Consequently, organoid models offer 

valuable insights for regulatory agencies and healthcare providers, aiding in the assessment of 

pharmaceutical compound safety during pregnancy. 
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Kidney organoids, which feature nephron-like tubular structures, have been extensively produced 

and display a high degree of similarity to first-trimester human kidneys. [40] [33,44]These tubular 

organoids exhibit kidney injury molecule-1 (KIM-1) expression following nephrotoxic chemical 

injury.  Nephrotoxicity can be evaluated by assessing the KIM-1 expression and cellular 

apoptosis induced by nephrotoxicants, such as gentamicin and cisplatin, in proximal tubules 

(Figure 4a). [44–46] A novel human testis organoid, incorporating peritubular cells, Sertoli cells, 

Leydig cells, and spermatogonia stem cells, has been developed as an advanced screening tool 

for assessing the reproductive toxicity of chemotherapeutic drugs such as cisplatin, etoposide, 

doxorubicin, and busulfan (Figure 4b). The 3D testis organoids exhibited dose-dependent 

responses and maintained IC50 values that were significantly higher than those observed in 2D 

cultures, allowing for a more physiologically relevant assessment of gonad toxicity compared to 

traditional 2D cultures.[47]  

 

In addition to pharmaceutical compounds, in utero exposure to illicit drugs poses a threat to fetus 

development. Indeed, most drugs of abuse can easily cross the placenta and pose significant risks 

to nervous system development. However, classic clinical studies on fetal exposure often fall 

short in detecting induced deficits in brain formation and function[48]. Among these illicit 

substances, cocaine exposure during fetal development is consistently linked to impairments in 

fetal head growth and subsequent neurobehavioral deficits. [49] This highlights the critical need 

for comprehensive research to fully understand the nuanced impacts of such exposures on fetal 

development. Notably, prenatal cocaine exposure has been linked to impaired neurobehavioral 

function through disruption of frontal cortical development. [50,51] Kindberg et al. demonstrated 

cocaine-induced premature neuronal differentiation in various cortical neuronal subtypes, 
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impaired neocortical patterning, and increased reactive oxygen species (ROS) formation with a 

3D EB-based neocortical model.[52] Furthermore, by employing 3D neocortical organoids with a 

single cortex-like unit, Lee et. al identified a specific human cytochrome P450 isoform, 

CYP3A5, as responsible for cocaine-induced developmental abnormalities in the human 

neocortex. These abnormalities include a proliferation deficit and premature differentiation of 

neuroepithelial progenitors, along with a significant reduction in cortical plate formation in the 

organoids.[53]   

 

Besides the drug-induced developmental toxicity, organoid models have also been applied to 

examine the embryotoxicity of other chemical substances, such as environmental pollutants. As 

one of the most significant teratogens, environmental toxins are not only associated with 

respiratory symptoms and diseases but also with severe adverse birth outcomes following 

prenatal exposure.[54,55] Researchers have utilized iPSC-derived alveolar organoids to investigate 

the developmental toxicity associated with diesel PM2.5 exposure,[56]  demonstrating that high 

levels of dPM2.5 exposure disrupt the development of alveolar epithelial cells, rendering them 

more susceptible to infections. 

 

As many new or existing drugs have been found to cause unexpected adverse cardiac effects, 

cardiotoxicity has become a critical area in toxicity assessment. These cardiac adverse effects are 

often identified late in the traditional drug discovery pipeline or, in some cases, only after the 

drugs have been released to the market. [19,57] Therefore, it is necessary to conduct early and 

comprehensive cardiac safety evaluations during drug development. Doxorubicin is known to 

exhibit severe cytotoxic effects on cardiac organoids, evidenced by decreased cell viability, 



   

 

 11 

elevated expression of apoptosis-related and inflammatory factors, and alterations in beating 

frequency (Figure 4c).[58] [59] Recently, Chen's group demonstrated that doxorubicin induces 

severe cytotoxicity in cardiac organoids, evidenced by reduced cell viability, increased 

inflammation, and disrupted mitochondrial functions.[60] Additionally, doxorubicin treatment 

significantly elevated the lactate dehydrogenase (LDH) level in the organoid culture medium, 

consistent with the previous 2D cell model showing high serum LDH levels in patients with 

doxorubicin-induced cardiac injury.[61]  

 

Recent studies have demonstrated the power of human organoids as a platform for high-

throughput functional screenings in preclinical drug development, as they reduce false positives 

commonly encountered in traditional 2D screening systems. Mill et al. developed a high-content 

functional screening system for the assessment of a 5000-compound library. Utilizing human 

cardiac organoids, they have explored the pathway-regulated cardiomyocyte proliferation in both 

immature and mature cardiac organoids (Figure 4d). [62] Immature organoids were first used for 

pre-screening the compounds with CM pro-proliferative effects and normal contractile functions, 

while those inhibiting proliferation or contraction behaviors were both eliminated. Mature 

organoids were subsequently employed for compound validation and further single RNA-seq 

profiling of critical pathways that regulate CM proliferation, aiming for the accurate prediction of 

the potential cardiotoxicities and negative contraction effects on compounds that promote CM 

proliferation. Meanwhile, simvastatin was demonstrated to inhibit the regulation pathway and, 

therefore, decrease the CM proliferation and heart size. Indeed, maternal statin use during the 

first trimester of pregnancy has been linked with congenital heart defects in newborns.[63] In 

general, human organoid screening assays in a high-throughput fashion hold the promise of 
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accurately identifying potential therapeutic targets with minimum toxicity and, meanwhile, 

evaluating the safety of drug use during pregnancy and its potential implications for fetal cardiac 

development. 

 

1.4 State-of-Art Cardiac Organoids 

The heart is the first organ to function in human embryos, collaborating with the circulatory 

system to ensure the unidirectional and continuous flow of blood, which is crucial for 

transporting oxygen, nutrients, and hormones throughout the developing body. 

Cardiac organoids are three-dimensional self-organized structures that mimic the shape and 

function of heart tissue. These organoids include major cardiac cell types such as cardiomyocytes 

(CM), cardiac fibroblasts (CF), and endothelial cells (EC). Recent studies have demonstrated that 

cardiac organoids can effectively model human cardiac development, showcasing substantial 

progress in understanding heart formation and function.  

 

Drakhlis’s group introduced a method for generating cardiac organoids through Matrigel 

embedding, modulated by the WNT pathway, to replicate the initial stages of human 

cardiogenesis (Figure 5a, 5b).[64] This study detailed the development of early heart structures 

from mesoderm formation to the emergence of the foregut endoderm, mirroring the early stages 

of the native heart prior to heart tube formation. They further demonstrated that NKX2.5, one of 

the earliest cardiac lineage markers, was expressed in a ring shape, with the inner layer 

comprising endothelial and foregut-like cells, the middle layer primarily consisting of 

cardiomyocytes, and the outer layer containing mesenchymal and liver cells. Hofbauer’s team 

established chamber-like cardioids featuring a central cavity to emulate early heart lineage 
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development (Figure 5c).[65] They claimed the cavity formation, attributing it to the intrinsic 

capabilities of the cardiac mesoderm. [66,67] The formation of these cavities began during the 

mesoderm stage, with numerous small cavities merging into a single major cavity around Day 3, 

resembling the early left ventricular heart chamber. To recapitulate the subsequent stage of heart 

development involving epicardium interaction, Hofbauer et al. co-cultured cardioids, composed 

of endocardial and cardiomyocyte lineages, with epicardium. This integration extended the 

cardioid culture to the stage of epicardial tissue formation, enabling the investigations of 

interactions among the three cardiac lineages. 

 

Lewis et al. described a cost-effective method for generating cardioids by using chemical 

inhibitors, such as CHIR99021, in combination with exogenous growth factors BMP4 and 

Activin A. This approach resulted in the robust production of chamber-like heart organoids with 

well-defined vascular structures (Figure 5d). Similar to Hofbauer’s study, they optimized 

conditions to integrate epicardial tissue adjacent to myocardial tissue using distinct 

differentiation protocols, emphasizing the crucial role of epicardium-myocardium 

communication in early heart formation. [68,69] Additionally, they further employed this cardioid 

model to study pregestational diabetes-induced congenital heart disease by culturing the 

organoids in media with elevated glucose and insulin levels. These findings suggest that heart 

organoids can model non-genetically induced congenital heart disease, providing a valuable tool 

for studying disease pathology. 

 

Embryonic organoids, which replicate the morphological and transcriptional features of early 

embryos, have demonstrated significant potential for studying organogenesis. Rossi et al. 
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described an embryonic organoid model, termed gastruloids, that mimics early heart 

development, from the generation of cardiovascular progenitor cells to the specification of the 

first and second heart fields.[70] By culturing mESCs in a stem cell culture medium containing 

CHIR99021, followed by a cardiac differentiation medium supplemented with basic fibroblast 

growth factor (bFGF), L-ascorbic acid phosphate, and vascular endothelial growth factor 

(VEGF), a crescent-like structure emerged on the gastruloids by Day 6 (Figure 5e). The crescent 

subsequently developed into cardiac tube-like formations on their anterior side, representing the 

initial beating regions exhibiting Ca2+ signaling properties.[71] 

 

Current methods for generating cardiac organoids using supportive matrices or non-adhesive 

culturing face significant challenges in achieving multiple cell populations within a single tissue. 

This difficulty arises as specific culture conditions may favor the dominant cell type but be 

unsuitable for supplementary cell types within the organoids.[72] Additionally, controlling the 

patterning of these organoids is challenging, often leading to undesired differentiation, and their 

mechanical fragility exacerbates these issues. [73,74] For example, gel-embedding and suspension 

culturing protocols leverage the intrinsic tendency of cardiomyocytes to self-assemble or 

aggregate. [75] However, controlling the shape of organoids within a self-organizing environment 

poses significant challenges, especially when a defined shape is crucial for clinical applications. 

Moreover, traditional fabrication techniques have further hindered the clinical application of 

organoids due to low reproducibility and efficiency.[76] Therefore, it is essential to develop next-

generation cardiac organoids by integrating interdisciplinary research from biomaterials, tissue 

engineering, and stem cell biology [77]. Advances in bioengineering have focused on improving 

tissue regeneration while simultaneously replicating the complex cellular environments 
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characteristic of early cardiac morphogenesis in vivo. For example, the inefficient geometric 

control by gel embedding can be mitigated by employing well-defined tubular cardiac constructs 

through 3D bioprinting. [78] Arai's team addressed this by integrating the pre-cultured spheroids 

containing iPSC-derived CM, EC, and CF onto the designed needle arrays with a controlled 

shape. These spheroids were printed onto a needle array to form tubular structures, and scaffold-

free constructs were obtained by removing the needle arrays and allowing the tissues to mature 

for seven days in a bioreactor. Additionally, another study optimized the ECM formulation, 

incorporating it into a bioink that directly prints iPSCs, continuously promoting cell 

proliferation, resulting in high cell density and enhanced cardiac tissue connectivity.[79] 

Min’s team, this year, developed an engineered human cardiac tissue system that effectively 

integrates three critical microenvironmental cues from the native heart: cellular components 

(iPSC-CMs, ECs, and CFs), extracellular matrix derived from decellularized heart tissue, and 

dynamic flow provided by a microfluidic device.[80] The extracellular matrix hydrogel offers 

biocompatibility and mechanical support, promoting extensive cell-cell and cell-gel interactions, 

which result in a more compact and condensed cardiac tissue structure. Meanwhile, dynamic 

flow ensures the efficient transport of nutrients and oxygen to the developing cardiac tissues. 

This highly stimulated microenvironment enhances the differentiation and maturity of cardiac 

tissues compared to conventional culture matrices, leading to increased autonomous contractile 

activity. 

 

1.5 Overall Goal of the Thesis 

In this thesis, I will present an embryotoxicity screening platform utilizing the self-organization 

of 3D cardiac organoids through a biomaterial-based approach. This advanced system 
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incorporates micropatterning techniques to confine iPSC colonies within precisely defined 

micropatterns, which are fabricated utilizing polyethylene glycol (PEG) hydrogel with the aid of 

molded polydimethylsiloxane (PDMS) stencils etched on the solid tissue culture substrate. The 

grafted PEG hydrogel structure imparts geometric constraints to the iPSC colonies, thereby 

facilitating cellular organization and alignment during cardiac differentiation process. This 

engineered microenvironment more faithfully recapitulates the spatial dynamics characteristic of 

native cardiac development. The primary objectives of this thesis are: 1) To generate self-

organized cardiac organoids with geometric constraints; 2) To apply these engineered cardiac 

organoids for embryotoxicity screening using six drugs with varying profiles in FDA Pregnancy 

Risk Categories; and 3) To characterize the drug responses of 3D cardiac organoids in terms of 

cardiac differentiation and contractile functions. Chapter 2 will detail the micropatterning of the 

biomaterial substrate for 3D cardiac organoid generation. Chapter 3 will investigate drug-

induced embryotoxicity on the cardiac organoids. Chapter 4 will conclude the thesis by 

summarizing the advantages of this platform in generating 3D cardiac tissues and discussing the 

system limitations and future work for the development of embryotoxicity screening assay. 
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Figure 1. Sensitivity to teratogens during pregnancy. The developmental stage of 

organogenesis, occurred during the first trimester of pregnancy (3-8 weeks), is recognized as the 

most susceptible period to adverse effects from teratogens.[6] 
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Figure 2. Pluripotent stem cell technology for developmental toxicity screening. (a) Small 

and transparent zebrafish embryos serve as a toxicological model. Ethanol exposure induces 
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craniofacial abnormalities 48 hours post-fertilization.[19] (b) Schematic overview of the ECVAM-

validated mEST method, including the principle and the endpoints of the mEST method to assess 

the developmental toxicity using permanent cell lines: mouse 3T3 fibroblasts and mouse ES 

cells.[23] (c) Human induced pluripotent stem cell (iPSC) platforms for the characterization of 

drug-induced cardiotoxicity. Various independent methods are employed to develop functional 

assays for preclinical toxicity screening and prediction.[30] (d) High-content cardiotoxicity 

screening assays using iPSC-derived cardiomyocytes (iPSC-CMs) with multiple orthogonal 

techniques, including assessments of calcium flux, G-protein-coupled receptor activity, 

cytotoxicity, mitochondrial integrity, and reactive oxygen species (ROS) formation.[31] (f) The 

structure and morphology of iPSC-CMs. Immunolabeling demonstrates the expression of 

cardiac-specific proteins, such as cardiac troponin T (green) and α-actinin (red), connexin-43 

(green) and α-actinin (red), MLC2V (green) and MLC2A (red), and β-MHC (green) and α-MHC 

(red).[32] All figures are reproduced with copyright permission. 
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 c 
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Figure 3. Pluripotent stem cell (PSC)-derived 3D organoids. (a) Stages of mouse embryonic 

stem cell (mESC) development into embryoid bodies by Day 5 and beating cardiomyocytes by 

Day 10.[24] (b) Self-organized optic-cup-like structure by mESC aggregates, exhibiting early 

neural retina (NR) and retinal pigment epithelium (RPE) expression.[81] (c) Early human whole 

cerebral organoid with heterogeneous regions containing neural progenitors and neurons (Left) 

and forebrain-specific organoid maturation into a stratified structure (Right).[82] (d) Hepato-

biliary-pancreatic organoid exhibiting foregut-midgut boundary at Day 90.[83] (e) Multi-lineage 

cardiac-gut organoid with interstitial tissue and pre-vascular networks in between.[84] (f) Human 

tubuloid with mature tubular cells[40] and vascular structure[45] resembling human kidney section. 

(g) Human liver organoid demonstrating the luminal structure. [85] All figures are reproduced 

with copyright permission. 
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Figure 4. iPSC-derived organoid assays for drug-induced developmental toxicity screening. 

(a) Tubular organoid model for kidney nephrotoxicity studies, quantified by KIM-1 expression 

and cytotoxicity to proximal tubules.[44,86] (b) Quantification of human testicular organoid post-

drug exposure.[47] (c) High-throughput screening design for method optimization and drug-

induced cardiotoxicity screening, characterized by cytotoxicity and physiological tests.[59] (d) 

Preclinical compound screening and system approaches to identify therapeutic targets in a high-

throughput fashion.[62] All figures are reproduced with copyright permission. 
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Figure 5. State-of-art human cardiac organoids. (a-b) Human cardiac organoids recapitulate 

early cardiomyogenesis.[64] (a) Formation of ring-like cardiac lineages (inner core, myocardial 

layer, outer layer, left), outermost mesenchymal cell layer (middle), and endocardial-like cells in 

between (right). (b) A scheme of human cardiac organoids in comparison of early embryonic 

heart/foregut region. (c) Chamber-like cardioids indicate the self-organization of small cavities in 
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the cardiac mesoderm (top); intrinsic self-organization of co-cultured cardioids with epicardium 

aggregates into patterned layers resembling the early human left ventricular heart chamber 

(bottom).[65] (d) Composition of self-assembled human cardiac organoids with vascular 

structure.[37] (e) Gastruloids mimic early embryogenesis and formation of early heart crescent 

and heart tube-like domains.[70] All figures are reproduced with copyright permission. 
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2 CHAPTER 2 METHODS 

 

2.1 Introduction: Cell Micropatterning Techniques      

Micropatterning has been extensively utilized in cell and tissue culture applications, 

demonstrating that confining the geometric space of cell colonies can establish biophysical 

gradients within the patterns, thereby promoting cell organization and alignment. Commercial 

solutions, such as those provided by CYTOO, aim to balance the quality and quantity of 

screening in the pharmaceutical industry by enhancing the physiological relevance of cellular 

models through the use of micropatterned tissue culture plates. These advancements have 

facilitated high-throughput screening in pharmaceutical research and development, ensuring that 

data is not only comprehensive but also reproducible and reliable[87].  

 

Warmflash’s team developed an innovative technique for culturing human embryonic stem cells 

(hESCs) under micropatterned environments, which involves restricting cell colony geometries 

and promoting cell-cell interactions.[88] When exposed to BMP4, cells were confined with 

circular micropatterns and spontaneously organized into a disk-like area containing the three 

germ layers (endoderm, mesoderm, ectoderm), thereby recapitulating the gastrulation stage of 

mammalian embryonic development. The study also observed dynamic cell migration within the 

primitive streak region, suggesting an epithelial-mesenchymal transition as specific cells 

migrated inward. Additionally, the research demonstrated a size-dependent differentiation pattern 

by controlling the outer edges of the micropatterns. Etoc and colleagues further described BMP4 

signaling activity being regulated by its own inhibitor NOGGIN, which restricted pattern 

expansion from the colony edge, highlighting the crucial role of NOGGIN in positioning cell 
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fates within the confined patterns.[89] These findings underscore the significance and association 

of biophysical cues and biochemical signals for cell self-organization within the colonies, 

suggesting that micropatterning holds great promise in becoming the standard practice for 

pluripotent stem cell differentiation. 

 

While these studies applied geometric confinement to embryonic pattern culturing, they 

remained limited to a 2D approach with a restricted range of cell types and tissue structures. 

Recently, material-based methods have gained attention for their ability to impose 3D spatial 

boundary control, enabling cellular self-organization into complex, functional, multilayered 

tissues that better mimic in vivo arrangements. 3D micropatterning seeks to create single-layer 

3D microenvironments that spatially confine cell populations, incorporating the physical 

properties and architecture of the extracellular matrix (ECM), thereby enhancing the 

reproducibility of tissue development.[90]  

 

Micropatterning substrates and microdevices offer a promising approach to enhancing 

cardiomyocyte functionality by precisely controlling the topographical features and spatial 

distribution of surface molecules.[91] Studies indicate that 3D micropatterned hydrogels enhance 

cardiomyocyte proliferation, alignment, contractility, and intercellular communication. This is 

attributed to the elastic mechanical support provided by the hydrogels, which closely replicate 

the dynamic mechanical properties of the extracellular matrix (ECM) found in vivo.[92] As the 

patterns arise in a self-organized manner, micropatterned cardiac organoid culture offers a 

promising platform for dynamic studies of human embryogenesis and preclinical drug 

toxicology. A 3D biomaterial-based micropatterning method was introduced to generate cardiac 
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microchambers facilitated by the regulation of WNT signaling.[93] These iPSC-derived cardiac 

organoids demonstrated a further developmental stage beyond gastrulation to the stage where the 

linear heart tube forms before looping. Similarly, the spatial differentiation process confined by 

non-fouling substrates also promotes cardiac lineage specification, developing into well-defined 

cardiac microchambers with dense cardiomyocytes at the center surrounded by smooth muscle-

like cells at the periphery. Indeed, when colonies are constrained by 3D ECM micropatterns, 

cell-ECM interactions tend to polarize the colonies during pluripotency. E-cadherin upregulation 

at the perimeter results in cell proliferation along the boundary, with these regions of high 

mechanical stress also favoring epithelial-mesenchymal transition (EMT) events.[94] 

 

Various natural and synthetic materials have been utilized for cell micropattern engineering 

because the self-organization of organoids critically depends on the dynamic tissue remodeling 

process.[95] Alongside the spatial confinement provided by micropatterns, the designed properties 

of hydrogels—such as stiffness, density, porosity, and chemical grafting—play a crucial role in 

controlling stem cell fate differentiation. Achieving this requires a balance between material 

engineering and tissue reconstitution. Classical photolithography can fabricate micropatterns in 

various shapes, which can then be replicated in elastomers or hydrogels using soft lithography 

and coated with specific extracellular matrix (ECM) components on the substrate.[96] 

  

This chapter explores the application of engineering-inspired methodologies to the differentiation 

of iPSC-derived cardiac organoids. Specifically, we utilized material lithography and 

micropatterning techniques to engineer polyethylene glycol (PEG) hydrogel-based substrates to 

provide geometric constraints on the developing cellular structures (Figure 6a). The primary 
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objective of this methodology is to guide the self-organization process of cardiac organoids 

through controlled spatial cues. By manipulating the shape and structural properties of the 

hydrogel substrate, we aim to influence cellular behavior and tissue formation during cardiac 

differentiation. This approach facilitates the cell self-arrangement process within a confined 

environment, which we hypothesize more closely recapitulates the structural organization 

observed in natural embryonic heart tissue. 

 

2.2 Photolithography  

Standard photolithography was employed to imprint the silicon wafer with the designed patterns. 

Initially, 2 mL of SU8 photoresist was dispensed onto the silicon wafer, which was then spun at 

500 rpm for 10 seconds, followed by 2000 rpm for 30 seconds, achieving a thickness of 50 µm. 

Following the spin-coating, the wafer underwent a baking process. Subsequently, the wafer was 

exposed to UV light for crosslinking, using a CAD-designed photomask with 600 µm circular 

patterns. The exposed wafer was then placed in a developer solution to dissolve the photoresist 

from the unexposed areas, resulting in the formation of 600 µm patterns on the silicon wafer. 

     

2.3 Soft lithography  

Polydimethylsiloxane (PDMS) pre-polymer and curing agent were mixed in a 10:1 ratio and 

subsequently placed in a vacuum desiccator for degassing for 1.5 hours. After degassing, the 

PDMS mixture (0.5 mL) was dispensed and evenly spread in the center of the SU8 wafer. This 

setup was secured using two paper clips in a sandwich-like structure involving a glass slide and a 

transparency film. Following an overnight curing process at 60 °C, the PDMS was fully cured 

and carefully peeled off from the SU8 wafer. To create the PDMS stencils, the entire mask was 
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cut into smaller squares to fit the dimensions of the cell culture plate. Finally, the stencils were 

stored in 70% ethanol until their next use (Figure 6b through 6e). 

     

2.4 PEG Hydrogel Preparation 

The opened 12-well cell culture plate was first pre-treated with oxygen plasma in a plasma 

machine for 3 minutes. Meanwhile, the PEG polymer mixture was prepared by combining 150 

mg of PEG 1000, 1.8 mL of PEG diacrylate, 14.55 mL of IPA, 40 mg of Irgacure 2959, and 450 

µL of MilliQ water. This mixture was vortexed thoroughly while being protected from light. 

Following preparation, 380 µL of the PEG mixture was transferred into each well of the culture 

plate and allowed to rest at room temperature, still protected from light. The PEG-coated plate 

was then subjected to UV crosslinking for 45 seconds and subsequently washed with MilliQ 

water to remove any residual PEG. 

     

2.5 Plasma Etching 

The PDMS stencils were carefully placed and distributed on top of the PEG layer in the culture 

plate. Afterward, the plate was dried in an oven at 60 °C for 2 hours. Following the drying 

process, a second 3-minute oxygen plasma treatment was applied to etch away the PEG in the 

regions not covered by the PDMS. This procedure created a tissue culture plate with a PEG non-

fouling layer. Finally, the plate was sterilized with 70% ethanol for 1 hour before being used for 

cell culture. 
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2.6 Surface Cleaning and Geltrex Coating 

The sterilized tissue culture plate was thoroughly washed three times with Dulbecco's Phosphate-

Buffered Saline (DPBS) to remove any residual ethanol. Following this, 0.5 mL of Geltrax was 

added to each well, ensuring an even coating. The plate was then incubated for 1 hour at 37°C in 

a 5% CO2 environment to allow for proper coating and gelation of the Geltrax. 

     

2.7 GCaMP6f hiPSC Culture and Seeding 

GCaMP-engineered human induced pluripotent stem cells (hiPSCs) were cultured for at least 

three passages using E8/mTeSR Plus medium. Once the cells reached confluency, they were 

dissociated with Accutase and centrifuged. A cell suspension of 7 × 105 cells/mL was prepared, 

with the addition of 10 µM ROCK inhibitor (ROCKI) to aid cell survival and attachment, and 

seeded onto the plate after the Geltrax was removed. After 24 hours of cell seeding, the PDMS 

stencils were carefully removed from the PEG-grafted plate using tweezers. The ROCK inhibitor 

was then removed by replacing the medium with fresh culture media. The hiPSCs were cultured 

for an additional two days until the cell patterns reached confluency, at which point cardiac 

differentiation was initiated. 

 

2.8 Organoid Differentiation 

Once the cell patterns reached confluency (Day 0), the culture media was switched to RPMI 

1640 basal medium with B27 supplement minus insulin (RPMI/B27 -I) and supplemented with 

10 µM CHIR. After incubating for 24 hours, on Day 1, CHIR was removed and replaced with 

fresh RPMI/B27 -I media for another 24-hour incubation. On Day 2, the media was changed to 

RPMI/B27 -I containing 5 µM IWP4, and the cells were cultured for an additional 48 hours. On 
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Day 4, the media was refreshed with RPMI/B27 -I (without any small molecules) and cultured 

for 2 more days. From Day 6 to Day 20, the cells were maintained in RPMI 1640 with B27 

complete supplement (RPMI/B27 +C), with the media being refreshed every two days. The 

formation of 3D tissue structures was observed from Day 1 after CHIR treatment, and beating 

cardiac microchambers were visible from Day 8 (Figure 7). 

     

2.9 Bright-field Video Recording and Motion Tracking Analysis 

Brightfield video recordings of cardiac organoids were taken on Day 20 to assess their 

contractile functionality. The organoids were imaged using an onstage microscope incubator 

(OkoLab Stage Top Incubator, UNO-T-H-CO2), which was maintained at 37°C and 5% CO2 to 

preserve physiological activities. Contraction videos were recorded at approximately 30 frames 

per second with a Nikon Ti-E inverted microscope equipped with an Andor Zyla 4.2+ digital 

CMOS camera. Subsequently, the brightfield videos of the beating cardiac organoids were 

exported as image sequences and analyzed using Matlab software developed by Huebsch et al.[97] 

This software implements block matching to compute motion vectors, tracking pixel changes 

between frames to calculate contraction and relaxation velocities (Figure 7a). The software then 

reconstructs these pixel changes into a beating waveform, representing the muscle contraction 

and relaxation cycles of the tissues. The analysis provided functional readouts, including 

contraction velocity, relaxation velocity, beat rate, and beat duration, thereby offering a 

comprehensive quantification of the cardiac organoids' functionality (Figure 7b and 7c). 

Additionally, area ratio was calculated by dividing the selected area of beating cardiac tissue 

with respect to the entire pattern area of the organoids (Figure 7g). 
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2.10 Fluorescent Video Recording and Calcium Transient Analysis 

Calcium flux tracing through the cardiac organoids was captured using high-speed imaging at the 

same frame rate (~33 fps) as the brightfield videos for motion analysis. Calcium tracking videos 

of each organoid under the GFP channel were recorded concurrently with the motion videos 

under brightfield microscopy using a Nikon Ti-E inverted microscope equipped with an Andor 

Zyla 4.2+ digital CMOS camera (Figure 7d). The nd2 video files were then transformed into 

Matlab scripts, which measured the GCaMP fluorescence intensity and motions using optical 

flow algorithms.[97] Similarly, a GCaMP signal waveform was generated to represent the calcium 

tracing functionality (Figure 7e). The functional readouts included max signal, t0, t50, t75, df/f0, 

and peak time (Figure 7f). The waveforms of Ca2+ flux and contractile motion were spatially and 

temporally correlated, with a slight delay in the calcium waveform following contraction. 

     

2.11 Statistics 

All box plots present the minimum, maximum, median, and 25th and 75th percentiles. Statistical 

analyses were primarily conducted using analysis of variance (ANOVA) coupled with Tukey’s 

multiple comparison test unless noted otherwise. Data were considered significantly different 

when the p-value was less than 0.05. Significance levels were indicated with *, **, ***, and 

****, representing p-values of < 0.05, < 0.01, < 0.001, and < 0.0001, respective 
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Figure 6. Schematic representation of the PDMS stencil fabrication process. (a) Key steps of 

the entire procedure. (b) PDMS prepolymer droplets coated onto the SU8 master. (c) Fully 

assembled construct consisting of the patterned SU8 master, PDMS layer, and transparency glass 

slide. (d) Cured thin PDMS film was removed from the assembly and placed onto (e) an 

optically clear PEG-grafted surface. Figures (b-e) are reproduced from the work of Hoang et al. 

Nature Protocols, 2018 with copyright permission. [98] 
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Figure 7. Timeline of WNT-regulated cardiac differentiation. hiPSCs were seeded onto 

PDMS stencils on Day 3. Upon reaching confluency, the PDMS stencils were removed. Small 

molecules CHIR and IWP4 were subsequently introduced to promote mesoderm and cardiac 

lineage formation. From Day 6 onwards, cardiac differentiation was maintained in RPMI + B27 

– Complete media until the differentiation endpoint on Day 20. Scale bar: 600 µm. 
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Figure 8. Functional characterization of cardiac organoids. (a) Block-matching algorithms 

were utilized to analyze the contractility of beating tissue composed of cardiomyocytes. Frames 

were divided into arrays of pixel macroblocks (blue square, middle). In subsequent frames, the 

motion of these macroblocks was detected and calculated, with the motion vector (red arrow, 
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middle) connecting the previous and new positions of the macroblocks (right). (b) Motion 

tracking of the average velocity for the selected area of cardiac beating tissue. Double peaks 

representing contraction and relaxation were identified as a single beating cycle, with the 

duration of the peaks indicating the time interval between contraction and relaxation. (c) 

Heatmap indicating the contraction intensity, calculated by the motion vectors. (d) Calcium 

tracing of GCaMP-engineered iPSC in cardiac organoids under the green fluorescence 

microscope. (e) The original calcium tracing waveform (blue) detected by software; the corrected 

waveform (red) was generated by subtracting the photobleaching in the background. (f) Single 

calcium peak with calculated functional parameters indicating calcium signal tracking properties. 

Starting from the baseline, calcium signals rise, plateau, and then gradually decrease back to the 

baseline. t0, t30, t50, and t75 represent the times to reach the plateau (maximum signal intensity) 

and decay by 30%, 50%, and 75% from the maximum signal intensity, respectively. Peak time 

represents the duration of the signal above 80% of maximum intensity. (g) Area ratio quantifies 

the beating area of cardiac tissue with respect to the entire shape. 
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3 CHAPTER 3 RESULTS 

 

3.1 Introduction: Chemo Drugs on Cardiotoxicity and Embryotoxicity 

Cancer during pregnancy, although a rare event with an incidence rate between 1 in 1000 to 1 in 

1500 pregnancies, presents substantial challenges in the selection of appropriate anticancer drug 

therapies.[99] This complexity arises primarily due to the potential hazards these treatments may 

pose to both the mother and the fetus. The estimated risk of congenital anomalies when a single 

chemotherapy agent is applied during the first trimester ranges from 7.5% to 17%, with the 

teratogenic risk increasing further when combination chemotherapy is used.[100] Consequently, it 

is imperative to access comprehensive information regarding the selection of chemotherapeutics 

for pregnant patients, the safe administration of these potential teratogens during pregnancy, and 

strategies to mitigate the risks of fetal toxicity.[101] However, there is limited data available on the 

potential fetotoxicity of new antineoplastic agents, underscoring the need for further research. 

 

The majority of anticancer drugs possess high lipid solubility, allowing them to traverse the 

placental barrier in both directions via simple diffusion or receptor-mediated ligand binding. 

Numerous studies have emphasized the detrimental consequences of administering cytotoxic 

anticancer drugs and molecular-targeted therapies to pregnant women, highlighting significant 

risks to both maternal and fetal health.[102] For example, antineoplastic drugs employed in the 

treatment of acute lymphoblastic leukemia have been associated with teratogenic effects, 

particularly when these agents are administered during the first trimester.[103]  

In vitro methods of toxicity prediction rapidly provide a broader understanding of toxic 

mechanisms and have the potential to replace the current animal models used in predictive 
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toxicology. While traditional preclinical drug testing methods may not fully capture the 

complexities of drug interactions in pregnant individuals, novel pluripotent stem cell (PSC) 

models offer a promising approach for understanding drug-induced interactions during the 

developmental process, thus providing more accurate and comprehensive assessments of 

chemotherapeutic drug toxicity and efficacy during pregnancy. Furthermore, the precise 

recapitulation of drug-regulated biological pathways in PSC models may pave the way for 

tailored, and even personalized, chemotherapeutic administration for pregnant patients, [101] 

which will guide the development of evidence-based guidelines for managing cancer in pregnant 

individuals. 

 

Since 1984, drug risk classification systems have been introduced in the USA. The Food and 

Drug Administration (FDA) in the United States categorizes drugs into five main categories (A, 

B, C, D, and X) based on their potential fetal risk. [104] Studies have shown that a notable 

percentage of pregnant women are exposed to higher-risk medications classified as category D or 

X during pregnancy.[105] Despite uncertain safety, a significant proportion of chemotherapeutic 

drugs used during pregnancy fall into categories C, D, or X, with some being exclusively 

category X drugs.[106] Notably, the utilization of category X drugs during pregnancy has been 

reported in various countries, ranging from 0.6% to 4.9% of pregnancies[107,108]. 

  

This chapter aims to utilize the engineered cardiac organoids from Chapter 2, to conduct a 

comprehensive examination of six pharmaceutical agents spanning Categories A through X of 

pregnancy risk classification, with particular emphasis on four widely utilized chemotherapeutic 

compounds that present potential toxicity risks to embryonic or fetal development. A thorough 
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literature review will be undertaken, encompassing drug profiles, clinical applications, 

controversies surrounding pregnancy risks, and analyses of embryotoxicity potentials during 

gestation based on diverse testing models. To further elucidate drug-induced developmental 

toxicities, this chapter proposes to implement a novel embryotoxicity assay utilizing iPSC-

derived cardiac organoids. This innovative approach aims to characterize the cardiac 

differentiation toxicity (IC50) of the selected agents, with the ultimate objective of establishing a 

refined teratogenicity prediction model. This model holds promise as an updated pregnancy risk 

classification system, potentially categorizing pharmaceuticals as non-embryotoxic, potentially 

embryotoxic, or strongly embryotoxic based on functional readouts that indicate the toxicity's 

impact on the physiological properties and cardiac differentiation efficiency of the organoids. 

 

 

3.2 Drug Profiles of Study 

Thiamine (Category A) 

Thiamine, also known as vitamin B1, is one of the eight B-complex vitamins essential for 

metabolic reactions in humans and animals. It naturally occurs in specific foods and is available 

as a dietary supplement.[109] Therapeutically, thiamine is FDA-approved for intravenous 

administration to individuals with marginal thiamine status to prevent heart failure. The 

metabolite of thiamine serves as a cofactor for various enzymes in multiple metabolisms of 

human body,[110] and there is no evidence indicating toxicity from high intake through food or 

supplements. 
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Research indicates that thiamine deficiency (TD) disrupts oxidative phosphorylation, increases 

oxidative stress, and triggers inflammatory processes, which may result in neurological, cardiac, 

and gastrointestinal issues.[111] Pregnancy is identified as a condition particularly susceptible to 

thiamine deficiency, especially during periods of increased thiamine demand such as early 

pregnancy and the peripartum period.[112] Stem cell studies have further demonstrated that 

hiPSC-derived neurons exhibit increased cell death and oxidative stress when treated with a 

thiamine antagonist, while thiamine supplementation significantly reduces neuron death in a 

dose-dependent manner.[113] Impaired embryogenesis has also been observed in hESCs towards 

hEB growth, showing cell disintegration and decreased metabolism due to thiamine depletion in 

the culture media. Disturbed vasculogenesis was also observed from compromised vascular self-

renewal structures derived from hEBs.[114] In other embryonic studies, genetically modified 

zebrafish embryos expressing thiaminase (an enzyme that degrades thiamine) starting at the one-

cell stage exhibited embryonic and larval mortality at 5 days post-fertilization, which was 

partially rescued by thiamine supplementation.[115] 

 

Penicillin (Category B) 

Penicillin, a member of the β-lactam antibiotics family, was originally derived from Penicillium 

molds. Penicillin has a short half-life and is primarily excreted through the kidneys,[116] thus 

frequent dosing is needed to maintain therapeutic levels in the bloodstream. As one of the most 

common antibiotics, penicillin can diffuse across the placenta within minutes after maternal 

administration.[117] The PK properties of penicillin have been reported to be altered during 

pregnancy due to maternal physiological changes. Research indicates that pregnant women in the 

second and third trimesters exhibit significant reductions in maximum plasma concentration 
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(Cmax) and volume of distribution (Vd), along with an approximate 50% increase in clearance 

(CL) for penicillin V compared to non-pregnant women. This suggests a need for potential 

adjustments in penicillin dosage or dosing intervals to maintain optimal drug levels.[118] For 

infectious diseases like syphilis, penicillin G remains a key treatment for pregnant women. 

Studies have demonstrated its safety and effectiveness in preventing congenital syphilis without 

severe adverse reactions.[119] However, selecting appropriate antibiotics for pregnant women is 

crucial, particularly given the frequent reports of unverified penicillin allergies in this 

population.[120]  

 

Penicillin is classified as a Category B drug for pregnancy risk, indicating that animal studies 

have not demonstrated fetal risk, although there are no adequate and well-controlled studies in 

humans.[118] The use of antibiotics is sometimes essential for pregnant women, however, it is 

crucial to use antibiotics with well-established efficacy and safety profiles, as there have been 

occasional reports of teratogenic effects from antibiotics. A study comparing the maternal use of 

erythromycin and penicillin V revealed a cardiovascular teratogenic effect associated with 

erythromycin, but not with penicillin.[121] This difference may be due to erythromycin's side 

effect of inhibiting a specific cardiac potassium current (IKr) channel, which can result in 

proarrhythmic potential or lethal arrhythmia, whereas penicillin does not exhibit such 

proarrhythmic properties.[122,123] However, penicillin hypersensitivity has been reported to induce 

acute pericarditis in some patients who experience allergic skin reactions to penicillin. Given the 

uncertainty regarding penicillin allergies reported in pregnant women, alternative antibiotic 

strategies should be considered to ensure safety.[124] 
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Penicillin is commonly used as a negative control in various cell-based toxicity evaluation 

models and has been selected as a default non-embryotoxic chemical even when during the 

establishment of toxicity prediction models.[24,25,125] To date, penicillin is generally recognized as 

non-teratogenic in most PD studies conducted in vitro. However, although rare, some studies 

have suggested potential risks of this antibiotic on embryonic and fetal development. Research 

has reported that the combination of penicillin and streptomycin adversely affects both 

proliferation and differentiation in murine embryonic stem cells (ESCs). It has also been 

recommended to exclude antibiotics from current ESC differentiation protocols due to their 

negative impact on both growth rates and target mRNA expression levels during ESC 

differentiation.[126] Human ESC studies indicated that no significant effects were observed in 

pluripotency markers with antibiotic treatment in their pluripotent state. However, significant cell 

death was observed during differentiation toward neural and hepatic fates, where the expression 

of neural stem cell-specific markers was significantly reduced with antibiotics during neural 

differentiation.[127]  

 

Dacarbazine (Category C) 

Dacarbazine is a chemotherapeutic used to treat metastatic malignant melanoma and Hodgkin 

lymphoma, typically in combination with other antineoplastic agents.[128,129]Due to its poor 

gastrointestinal absorption, dacarbazine is administered exclusively via intravenous injection or 

infusion. With minimal binding to plasma proteins, dacarbazine undergoes extensive hepatic 

metabolism to form an active metabolite.[130] Dacarbazine exerts cytotoxic effects on tumor cells 

by acting as an alkylating agent that inhibits DNA, RNA, and protein synthesis.[131] Like many 

chemotherapy drugs, dacarbazine has numerous serious side effects, as it disrupts the growth of 
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normal cells in addition to cancer cells. Significant adverse effects include birth defects if the 

drug is used during conception or pregnancy, immune suppression, and possibly permanent 

sterility. Other developmental toxicities include liver damage and the risk of severe acute hepatic 

failure.[132] Additionally, cardiotoxicity and thyroid dysfunction have been reported as frequent 

late effects when dacarbazine is combined with other anthracycline drugs for the treatment of 

Hodgkin lymphoma.[133–136]  

 

Dacarbazine is classified as a Category C drug in terms of pregnancy risk. Studies have observed 

independent translocations of sex chromosomes and reduced fertility in female mice.[137] 

Although comprehensive and well-controlled human studies are lacking, there are some reports 

of adverse pregnancy outcomes related to dacarbazine chemotherapy. Typically, dacarbazine is 

used in combination with other chemotherapies to treat advanced Hodgkin lymphoma (HL) 

during pregnancy. One study indicated that 3% of 123 children born to mothers with HL had 

major congenital abnormalities, while another 3% had minor abnormalities at birth.[138]The 

ABVD regimen, which includes doxorubicin, bleomycin, vinblastine, and dacarbazine, is 

regarded as the optimal therapeutic choice for advanced HL in pregnant women, providing good 

overall survival rates with low fetotoxicity.[139,140] However, there have been reports of congenital 

abnormalities, fetal death, and premature births associated with this regimen. Additionally, 

congenital cardiac dysfunction, such as preserved ejection fraction, has been observed in infants 

whose mothers underwent ABVD therapy for stage II HL. [141,142] 

 

Although alkylating agents generally exhibit rapid transplacental passage,[143] dacarbazine 

remains the least studied alkylamine associated with pregnancy, with no human studies in the 
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literature available on its placental transfer.[102] Additionally, the safety dosage profile of 

dacarbazine during pregnancy remains unclear due to alterations in maternal pharmacokinetics. 

Studies have indicated that pregnancy reduces the metabolism of dacarbazine, leading to higher 

maximum plasma concentrations and lower exposure to its active metabolites, which might 

result in diminished efficacy.[144] Additionally, individual variations in maternal 

pharmacokinetics further complexed the use of dacarbazine during pregnancy. Despite being 

classified as relatively safe during pregnancy and tolerable for the fetus after the first 

trimester,[143] [145] data on dacarbazine as a standalone treatment is scarce. Most reports involve its 

use in combination with other anticancer agents, typically as a second or third-line therapy. There 

have been two reported cases out of five (40%) where exposure to dacarbazine alone resulted in 

congenital malformations, including pulmonary complications and growth restrictions.[146] This 

relatively high incidence of adverse outcomes suggests that dacarbazine may possess some 

degree of teratogenicity. 

 

Doxorubicin (Category D) 

Doxorubicin (DOX) is an anthracycline (ANT) drug commonly employed in combined 

chemotherapy to treat various malignant neoplasms, including leukemia, lymphoma, and some 

solid tumors. The potent anti-cancer effect of DOX is primarily achieved by inhibiting 

topoisomerase IIa, an enzyme essential for unwinding DNA during replication and transcription, 

which results in DNA damage and the death of rapidly proliferating cancer cells. However, like 

many chemotherapeutic agents, DOX also affects healthy cells with rapid proliferation, such as 

hematopoietic precursors, the epithelial lining of the intestine, and hair follicle cells.[74]  
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Doxorubicin (DOX) is classified in pregnancy Category D, which has been demonstrated to be 

embryo-lethal in rabbits[147] and teratogenic in rats.[148] The dose-related abnormalities observed 

include gastrointestinal, cardiovascular, urinary, and respiratory defects.[149] In vitro rat whole 

embryo studies have also confirmed that the primary target tissues as the endoderm of the 

digestive tract and the caudal mesoderm.[150] In humans, the debate regarding DOX-induced 

teratogenicity has continued for decades. Although evidence increasingly supports the safety and 

efficacy of anthracycline-based therapies, certain anthracycline drug classes remain 

controversial. A study involving 160 patients treated with anthracyclines during pregnancy found 

that 73% had normal outcomes. However, there were incidences of 27% anomalies, including 

fetal malformations, deaths, spontaneous abortions, and prematurity. Notably, the risk of severe 

fetal toxicity increased 30-fold at higher clinical doses of DOX treatment.[151] Another study 

reported a 10% incidence of congenital anomalies when DOX was administered with other 

chemotherapeutics during the first trimester,[152,153] where the congenital malformations, 

including skeletal and cardiac defects, were associated with intrauterine exposure to DOX during 

this critical developmental period.[154] PK studies emphasized the impact of variations in 

maternal pharmacokinetics during pregnancy in determining safe dosage, which further 

complicated the congenital malformations induced by DOX. In comparison to non-pregnant 

women, the maximum concentration (Cmax) of doxorubicin (DOX) decreases by 1%, with minor 

alterations in distribution volumes and clearance.[155] Contrarily, another study highlighted a 

notably reduced clearance rate in pregnant women.[156] The placenta passage of DOX towards the 

fetus is facilitated by its amphiphilic nature, low molecular weight (544 g/mol), and high plasma 

protein binding (70-75%). Detectable levels of DOX have been found in fetal organs such as the 
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liver, lung, and kidney at concentrations approximately ten times lower than those in the 

maternal system.[156,157] 

 

Despite it is recognized for its potent efficacy as a chemotherapeutic agent, DOX use is still 

complicated by significant cardiotoxicity, including acute atrial and ventricular arrhythmias, 

chronic cardiomyopathy, and heart failure.[158–160] Meanwhile, the potential for DOX-induced 

fetal cardiotoxicity remains controversial.[161,162] Large-scale retrospective studies have 

demonstrated that doxorubicin administration during the second and third trimesters does not 

result in detectable adverse effects on the fetal heart,[163] even with intensive two-week 

chemotherapy regimens.[164] Multiple mechanisms are involved in DOX-associated 

cardiotoxicity, including interfering with the cardiac muscle protein, causing the fetal contractile 

apparatus deficit due to the low force generation of smaller embryonic or fetal myocytes 

compared to those in adults. Fetal cardiac tissue is especially vulnerable to free radical damage 

owing to low cardiomyocyte tolerance to changes in the mitochondrial system. [165] Yeh et al. 

proposed another concept of DOX-induced cardiotoxicity that DOX binds to topoisomerase II𝛽 

(Top2𝛽), which is the predominant Top2 isoform in the heart, to induce cardiomyocyte apoptosis 

and disrupted mitochondrial biogenesis with the secondary formation of reactive oxygen species 

(ROS).[166,167] PSC studies further demonstrated the Top2𝛽 pathway in altering 

electrophysiological properties of hiPSC-CMs, manifesting as a time- and dose-dependent 

reduction in spike amplitude, an increase in beat rate, and a shortening of action potential 

duration. Notably, electrophysiological effects were detectable at doses as low as 0.25 μM, with 

immediate onset post-treatment progressing over time. After 20 hours of exposure to 1 μM DOX, 

the physiological functionality was reduced by 52.1% compared to controls. Cell viability began 
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to decrease at doses as low as 5 μM, and the cytotoxic concentration is reported as 30.1 μM. 

Another study identified DOX-induced apoptosis in hiPSC-CMs via a death receptor-mediated 

pathway, showing a dose-dependent decrease in cell viability with a concentration of 3.5 μM of 

significant inhibition.[168] Cytotoxic effects were significant at concentrations as low as 450 nM, 

although below the peak plasma levels seen in humans after IV administration, at which the 

upregulated death receptors with DOX treatment still lead to impaired beating functionalities of 

hiPSC-CMs. Cardiac organoid models further confirmed DOX’s toxicity by displaying a dose-

dependent decrease in cell viability and quantification of abnormal gene expressions of 

apoptosis, cardiac function, inflammation, and mitochondrial markers, providing a more 

sensitive detection of cardiotoxicity at DOX concentrations as low as 0.1 μM.[60] 

 

Hydroxyurea (Category D) 

Hydroxyurea (HU) is utilized in chemotherapy for treating melanoma, specific leukemias, and 

various solid tumors. Meanwhile, it is also used for essential thrombocythemia, polycythemia 

vera, and sickle cell disease.[8] As an antimetabolite, HU acts as a cytostatic agent that disrupts 

DNA synthesis and repair in cancer cells.[169] Known adverse reactions include skin-related 

inflammations particularly after prolonged daily use.[170] Additionally, HU is potentially 

mutagenic and carcinogenic, with reports indicating that 5% to 10% of patients with 

polycythemia vera and essential thrombocythemia who received HU developed acute 

leukemia.[8] 

 

The risk of HU during pregnancy is classified as Category D. Studies have shown that HU 

significantly increases the risk of teratogenic effects on animals. [171,172] During pregnancy, HU is 
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often used in combination therapies for cancers such as cervix, breast, melanoma, lymphoma, 

and leukemia, which are frequently diagnosed in pregnant women.[173] Single HU administration 

is considered palliative for acute and chronic myeloid leukemia (CML) during pregnancy, given 

the teratogenic potential of conventional tyrosine kinase inhibitors (TKIs).[174–176] However, HU 

use has been associated with intrauterine deaths, congenital malformations, premature births, and 

an increased incidence of preeclampsia, particularly in the second and third trimesters.[177] This is 

partly due to the relatively high recommended dose for resistant CML (20-35 mg/kg per day) 

compared with other uses, with a reported Cmax of 52 µg/ml at 35 mg/kg orally.[177] Clinical 

reports have documented adverse pregnancy outcomes with HU use in various hematologic 

malignancies and disorders. Review studies indicate that the overall frequency of fetal adverse 

effects with HU is 30%, with a 29% frequency of use as a single agent.[152] Notably, HU must be 

taken indefinitely for effectiveness, and exposure-dependent adverse effects have been observed. 

Nonetheless, there have been reported that more than two dozen apparently normal infants were 

born to mothers treated with HU during the first trimester.[152]  

 

HU  is classified as a Class II teratogen in animals, where embryopathic effects become evident 

only when the drug dose exceeds a certain threshold. According to the ICH S5(R3) 

Guideline,[178] the lowest HU dose causing adverse effects on rat embryos is 137 mg/kg, while a 

dose of 300 mg/kg significantly alters the ultrastructure of neuroepithelial cells.[179] The 

teratogenic potential of HU in animals is considered clinically relevant since the teratogenic dose 

in animals (250 mg/kg) is less than 25 times the recommended clinical dose (20-35 mg/kg). 

Despite HU's classification as a teratogen in animals, the peak plasma concentration at these 

doses is 5-10 times higher than therapeutic doses in humans.[180] Moreover, teratogenic effects in 
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animal models based on non-exposure-related evaluations are not particularly useful for 

categorizing drug teratogenicity by human standards.[181] 

 

The European Centre for the Validation of Alternative Methods (ECVAM) conducted an in vitro 

validation study of the mouse embryonic stem cell test (mEST), which assessed the test's ability 

to differentiate chemicals among three classes of embryotoxicity.[25]ECVAM identified HU as a 

strongly embryotoxic agent in the pre-validation stage, noting that the single endpoint tests for 

cytotoxic effects (IC50) on both D3 and 3T3 cell lines, as well as the inhibition of differentiation 

(ID50), were below 10 μg/ml. However, the prediction model suggested an incorrect 

classification of HU as strongly embryotoxic, with a probability of correct classification below 

50%. Instead, one experiment classified HU as weakly embryotoxic. A recent exposure-based 

teratogenicity assay has explored the drug impact on EB by quantifying the gene expressions 

associated with the three germ layers, providing human-specific predictions regarding 

teratogenic mechanisms during early embryonic development.[181] Cytotoxicity assays reported 

the IC50 for HU of approximately 0.1 mM on Day 7, with exposures lower than the peak plasma 

concentration in humans (683 nM). Interestingly, HU exhibited a non-teratogenic profile on Day 

7 while demonstrating teratogenic effects on Day 5, with significant changes in gene regulation 

observed across all lineages. However, the machine-learning mode only failed to predict HU’s 

teratogenicity due to the limited dataset. Consequently, the teratogenic risk of HU in humans 

tends to be interpreted as inconclusive or unknown. 
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Methotrexate (Category X) 

Methotrexate (MTX) is an antifolate antimetabolite commonly used to treat tumoral pathologies 

such as acute lymphoblastic leukemias and, in rheumatology, for conditions like rheumatoid 

arthritis and other chronic inflammatory diseases.[182] MTX functions by inhibiting dihydrofolate 

reductase, an enzyme crucial for DNA synthesis, leading to impaired DNA synthesis in tumor 

cells.[183] As a potent autoimmune and anti-cancer agent, MTX is often administered in higher 

doses alongside other chemotherapeutic agents.[8,102] MTX possesses a high molecular weight 

and is approximately 50% bound to plasma proteins,[184] with an average Cmax of 2.14 µg/mL 

following a single 30 mg/m² dose. The oral bioavailability of MTX tablets is relatively as low as 

approximately 36%.[185]  

 

In terms of pregnancy risk, MTX is classified as Category X, indicating its teratogenic effects 

observed in both animal and human studies. In animal studies, the lowest dose causing adverse 

effects in rats was found to be 0.1 mg/kg.[178] However, MTX is typically administered in a 

relatively high dose (30-200 mg/kg) for the treatment of neoplasia.[186] The inhibition of DNA 

synthesis by MTX results in a range of malformations similar to those caused by its derivative, 

aminopterin, which is known for inducing 100% adverse pregnancy outcomes (APOs),[187] 

including cranial dysostosis, limb anomalies, and heart defects.[152] In addition, MTX has been 

identified as multi-organ embryopathatic, causing a variety of malformations such as skeletal 

defects, growth restriction, and significant pulmonary anomalies.[188] Research indicates that 

17% of fetuses exposed to MTX during the first trimester exhibit malformations, and the overall 

incidence of adverse effects is 28%. Notably, 28% of APOs were recorded with single MTX 

treatments between 6 and 8 weeks post-conception.[152] 
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Clinical investigations have reported the complications of MTX-induced cardiomyopathy in 

healthy adults, showing evidence of myocardial necrosis.[182] High-dose intravenous 

administration of MTX has been associated with acute cardiac symptoms and arrhythmias.[189] 

While MTX-induced fetal cardiotoxicity is less frequently reported, there have been cases of 

congenital cardiac malformations potentially linked to aminopterin syndrome, all exhibiting 

defects in the pulmonary circulation.[187] One study reported a 69% incidence of congenital heart 

disease phenotypes, such as atrial septal defects, pulmonary stenosis, and ventricular septal 

defects, with varied exposure times throughout pregnancy. Notably, 50% of these cases involved 

exposure during the first trimester. [190] A recent study proposed the MTX-induced cardiotoxicity 

through disruption of the hypoxia-inducible factor 1 (HIF-1) pathway, leading to increased HIF-

1α levels in cardiomyocytes and subsequent nuclear and mitochondrial impairments.[191] HIF-1α, 

an oxygen-sensitive subunit, is typically upregulated under hypoxic conditions, suggesting that 

MTX may induce a hypoxic state in cardiomyocytes. The cytotoxic concentration was reported 

to be 2.2 µM after 48 hours of treatment, resulting in a six-fold increase in HIF-1 levels, a two-

fold increase in protein oxidation, and a 24% decrease in total antioxidant capacity. The 

developing heart, particularly during weeks 6-8 of pregnancy, is highly susceptible to hypoxia-

induced damage.[182] The EB-based teratogenicity assay mentioned above [181] indicates the 

adverse effects from MTX start at concentrations as low as 3.9 nM, with an IC50 of 107 nM, the 

lowest among tested compounds. MTX exhibited significant teratogenic effects on genes 

regulating all lineages (ectodermal, endodermal, and mesodermal) during EB differentiation, as 

well as on PSC self-proliferation at sub-cytotoxic concentrations, without any loss of 
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pluripotency. Consequently, MTX is classified as strongly embryotoxic with this model, with a 

total prediction accuracy of 90%. 

 

3.2.1 Experiment procedure 

The evaluation of drug-induced embryotoxicity was conducted using a toxicity assay system 

involving six representative pharmaceuticals from different pregnancy risk categories (Figure 9). 

These drugs were administered and maintained with organoids throughout the differentiation 

process, following the cardiac differentiation protocol regulated by the WNT-β pathway. 

Depending on their solubility, the drugs were initially dissolved in either MilliQ water or DMSO. 

The drug solutions were sterilized and serially diluted from 1 nM to 1 mM using organoid 

culture media. Beginning on Day 0, each drug, at eight different concentrations, was 

administered to the organoids along with vehicle control (0.1% DMSO) throughout the 

differentiation timeline. At the differentiation endpoint on Day 20, videos of the beating 

organoids were captured with the microscope and analyzed with MATLAB-based software. The 

functional analysis included quantitative contractile motion analysis and calcium flux transients 

reported by the GCaMP-engineered iPSC line, focusing on selected regions of interest (ROIs). 

Differentiation efficiency was evaluated and normalized by measuring the beating area as a 

proportion of the entire area of the patterned organoid in pixels, analyzed using ImageJ. 

 

3.2.2 Functional Readouts 

Calcium serves as the final integrator of electrical signals generated by the various ion channels 

contributing to the cardiomyocyte action potential (AP). Alterations in the AP will thus be 

reflected in intracellular calcium transients. The automated video-based system allows for high-
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resolution analysis of intracellular Ca2+ dynamics using the GCaMP-reported line, generating 

waveforms with parameters such as maximum calcium fluorescence intensity (max signal), 

decay times (t30, t50, t75) indicating the reduction in calcium peak intensity, upstroke duration (t0) 

indicating the time to reach plateau, plateau time of peak (peak time), and the ratio of peak 

fluorescent intensity to baseline intensity (df/f0), indicating relative fluorescence variation. These 

parameters accurately assess the peak shape in terms of amplitude, peak shoulder and tailing. 

 

The contraction and relaxation kinetics of beating cardiac organoids, a fundamental metric of 

cardiomyocyte physiological properties, were assessed using a frame-based block-matching 

algorithm with motion vector analysis. High-speed video imaging analyzed cardiomyocyte 

contraction to detect subtle changes in response to compounds, including beating rate, peak 

duration, contraction velocity, and relaxation velocity. These two well-defined cardiac 

functionality software systems allowed for simultaneous analysis of calcium flux and contraction 

motions (Figure 9). 

 

3.2.3 Data Analysis 

Functional readouts were scaled relative to the main value of each control group. Calculations 

were performed across several batches separately to balance trends and ensure comparability 

across batches. For the quantification of drug-induced cardiotoxicity, concentration-effect curves 

were plotted using GraphPad Prism 9.0, employing nonlinear regression analysis by fitting four 

parameters into a logistic function. The molar concentration producing 50% inhibition (IC50) of 

cardiac differentiation was calculated for all functional parameters of each tested drug. 
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3.3 Results for Six Drugs 

3.3.1 Category A 

Thiamine  

As a dietary supplement ranked as Category A regarding pregnancy risk, thiamine exhibits 

minimal effects on the differentiation of cardiac organoids (Figure 10a and 10b). In the context 

of calcium handling, calcium transients in the experimental groups remained relatively consistent 

with the control group. No significant differences were observed in maximum calcium intensity 

or time to peak calcium intensity (t0) (Figure 10c and 10d). However, at a higher concentration 

of 100 µM, there were noticeable changes in the time to 30% and 50% calcium decay (t30, t50) 

and a moderate increase in the time to 75% decay (Figure 10e through 10g), indicating a 

tailing-featured peak profile that corresponds with a prolonged plateau time (Figure 10i). 

Additionally, decreases in relative fluorescence variation (df/f0) were noted in the higher 

concentration groups (100 µM, 1 mM), which correlated with slight increases in t0 in these 

groups (Figure 10j). Nevertheless, according to the Institute of Medicine, there is no established 

upper limit for thiamine intake that causes toxicity.[109]  

 

For contraction motion, the 1 nM concentration exhibited a significantly higher beating rate 

compared to the control group (Figure 10k), which was partly reflected by the significantly 

lower peak time and slightly lower t0, resulting in a calcium waveform profile with thin peaks, 

indicating a faster release of intracellular calcium flux. Similar to the prolonged calcium re-

uptake time, the 100 µM group showed an increased contraction-to-relaxation peak interval 

(Figure 10l). No substantial variations were detected in both contraction and relaxation 

velocities, although a relatively higher standard deviation was observed in the 100 nM group for 
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both measures (Figure 10m and 10n). Additionally, a slightly lower relaxation velocity was 

found in the 100 µM group, potentially corresponding with the longer decay time seen in the 

calcium transients. The area ratio of beating cardiac tissue relative to the entire organoid did not 

show significant changes, except at the highest concentration (1 mM), which displayed a lower 

beating area compared to the control group, although this was not significantly different from 

other concentrations. 

 

Overall, thiamine exhibited limited effects on cardiac organoids in terms of motion behaviors, 

beating area, and calcium flux transients. Low concentrations of thiamine (1 nM) slightly 

improved cardiac functionality in both contraction motion and calcium transients, consistent with 

existing literature.[192] However, it is unable to conclusively state that higher concentrations of 

thiamine (100 µM, 1 mM) pose significant toxicity to cardiac organoids. 

 

3.3.2 Category B 

Penicillin 

Penicillin, classified as a Category B agent, is extensively utilized as an antibiotic in cell culture 

protocols and frequently serves as a default negative control in toxicity assay development. Both 

analyses detected moderate effects of penicillin on contraction motion and calcium transients 

from cardiac organoids (Figure 11a and 11b). In comparison to untreated organoids, calcium 

kinetics demonstrated enhancement under higher penicillin concentrations (100 μM, 1 mM), 

exhibiting a statistically significant increase in maximum fluorescence intensity (Figure 11c). 

Despite substantial standard deviations, the lowest data points for both experimental groups were 

observed to be elevated relative to the control group. Notably, the highest concentration (1 mM) 
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exhibited a decreased df/f0 (Figure 11h), indicative of a lower relative calcium fluorescence 

intensity. Given the significant increase in maximum calcium signal observed with 1mM 

penicillin treatment, the decreased df/f0 may be attributable to an elevated baseline fluorescence 

intensity (f0), suggesting persistent intracellular calcium activity without complete return to 

baseline. However, this phenomenon could also potentially be ascribed to insufficient 

background removal and the presence of photobleaching during video recording. Furthermore, 

the 1mM treatment group displayed a significantly higher area ratio (Figure 11j), implying an 

expanded region of calcium transient activity within the cardiac organoids. Although the 100 nM 

treatment group exhibited a reduced area of beating cardiac tissue, its lowest data point exceeded 

that of the control group due to the higher variability observed in the latter. In addition, a 

moderate alteration in calcium re-uptake properties was also noted following penicillin 

treatment. While no statistically significant changes were observed in t30 and t75, a shortened t50 

was detected in the 10nM group (Figure 11e through 11g). Given that the calcium transient 

time remained unaffected across all experimental groups, the 10 nM group can be characterized 

as exhibiting a more peak-shouldering waveform profile. 

 

Regarding the contraction motion tracking, no statistically significant alteration was seen in 

cardiac tissue beat rate across experimental groups. However, it is noteworthy that the dosed 

concentrations exhibited increased variability and occasionally displayed elevated beat rates at 

specific data points (Figure 11k). This observation suggests that the introduction of penicillin 

may induce a moderate, albeit limited, modification to cardiac motion dynamics. In the higher 

concentration groups, enhanced motion behaviors were observed, manifested by a reduced 

interval (Figure 11l) between contraction and relaxation cycles (1 mM), as well as improved 
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contraction and relaxation velocities (100  μM, 100 mM) occurring in a synchronized manner 

(Figure 11m and 11n). This phenomenon, in conjunction with the elevated calcium fluorescence 

intensity, potentially indicates accelerated calcium activity and energy transformation in 

response to higher penicillin concentrations. 

 

Overall, the administration of penicillin at higher concentrations demonstrated relative 

enhancements in both calcium and motion kinetics, while exhibiting no significant embryotoxic 

effects on cardiac organoids, aligning with existing literature. The results obtained in this study 

are consistent with other in vitro and in vivo systems, as well as human data, which collectively 

suggest that penicillin does not exhibit teratogenic properties within therapeutic concentration 

ranges.[178,193]  

 

3.3.3 Category C 

Dacarbazine 

Dacarbazine, classified as a Category C agent, is predominantly employed as a second- or third-

line chemotherapeutic in combination with other antineoplastic agents. Well-controlled human 

studies or clinical cases documenting dacarbazine-induced embryotoxicity are exceedingly 

scarce.[102] During the dacarbazine treatment (Figure 12a and 12b), cardiac organoids exposed 

to moderate concentrations (1 nM-10 μM) of dacarbazine survived the entire cardiac 

differentiation process. However, organoids under high concentrations (100 μM, 1 mM) 

disintegrated from the pattern following the initial or second addition of IWP4 (Day 1-Day 3). 

This observation not only confirms the cytotoxicity of dacarbazine but also indicates that the 

cytotoxic concentration threshold is below 100 μM.  
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Surviving organoids across all concentrations exhibited impaired morphology, manifesting 

various degrees of tissue disintegration, cell death, and insufficient differentiation, showing the 

significantly reduced beating area of cardiac tissue. Calcium transients were notably disrupted, 

with diminished relative and absolute calcium intensity observed in 1nM, 1μM, and 10 μM 

dacarbazine treatments (Figure 12c, 12h; Figure 16). The 10 nM and 100 nM groups showed 

less pronounced effects, albeit with some extremely low data points. The highest concentration 

permitting organoid survival (10 μM) demonstrated a delayed onset of calcium signaling (Figure 

12d), with prolonged time to 30% calcium peak decay (Figure 12e) and extended peak plateau 

duration (Figure 12i). The 1μM concentration group exhibited a significantly extended time for 

75% calcium signal decay (Figure 12g). Both higher concentrations displayed shouldered or 

tailed-peak calcium tracing waveforms, indicating the decelerated calcium activity.  

 

For contractile motion, the 10 nM group exhibited an increased beat rate, while several data 

points in the 100 nM group also showed elevated beat rates compared to the control (Figure 

12k). The duration of contraction and relaxation (Figure 12l) was significantly prolonged in the 

highest concentration group (10 μM), despite high variation, as software vectors failed to detect 

motion peaks due to impaired motion behaviors. Intriguingly, some organoids treated with 100 

nM dacarbazine displayed aberrations in peak regularity of contractile physiology, corresponding 

to split-peak tracing in their calcium waveform profiles, potentially indicating irregular beat 

rhythms. Consequently, all concentrations exhibited significantly impaired contraction and 

relaxation velocities (Figure 12m and 12n).  
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In conclusion, dacarbazine treatment inhibits cardiac organoid differentiation, manifesting in 

motion abnormalities, arrhythmia-like responses, and disrupted intracellular calcium flux 

transients. The averaged IC50 value of all functional readouts for dacarbazine is calculated as 5.3 

μM (Table 1, Figure 16). Notably, dacarbazine demonstrated a statistically more potent 

inhibition of contraction motion compared to calcium response.  

 

3.3.4 Category D 

Hydroxyurea 

Hydroxyurea, classified as a Category D member, presents a contentious profile regarding its 

teratogenicity, while the mechanism remains unknown. In this study, cardiac organoids 

demonstrated viability only up to a 100 μM hydroxyurea treatment, with a limited number 

surviving the treatment (Figure 13a and 13b). Organoids that persisted through the entire 

differentiation process exhibited concentration-dependent morphological aberrations, 

manifesting a dose-dependent reduction in the area of beating tissue. The addition of IWP4 

during cardiac differentiation emerged as a critical step as the WNT-β pathway inhibitor, with 

the highest concentration (1 mM) inducing severe apoptosis and cellular detachment during the 

second treatment (Day 3). Calcium handling capabilities of cardiac tissue were severely 

disrupted by hydroxyurea treatment, demonstrating a dose-dependent, statistically significant 

reduction across all concentrations in maximum calcium signal (Figure 13c), accompanied by 

delayed onset times (Figure 13d) at higher concentrations (10 μM). Higher concentration groups 

also exhibited prolonged calcium signal decay times (1 μM, 10 μM for t30; 1 μM, 10 μM, 100 

μM for t50; 10 μM, 100 μM for t75, Figure 13e through 13g), indicative of impaired calcium re-

uptake properties. Significantly extended peak times (Figure 13i) were observed in higher 
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concentration groups (1 μM, 10 μM), with a moderate increase and several elevated data points 

noted in the highest concentration group (100 μM). Analogous to the dramatic decrease in 

maximum calcium intensity, the relative fluorescence variation displayed a less dose-dependent 

decrease (Figure 13h).  

 

Hydroxyurea also exerted potent toxic effects on the contractile kinetics of cardiac organoids. 

Across all concentrations, cardiac organoids exhibited significantly reduced beat rates (Figure 

13k) and motion velocities (Figure 13m and 13n). Notably, the above-mentioned prolonged 

calcium decay times observed at higher treatment concentrations, coupled with decreased cardiac 

relaxation, may manifest as diastolic abnormalities, potentially promoting afterdepolarizations 

and arrhythmias that contribute to sudden cardiac death. [194,195] Intriguingly, the duration 

between motions displayed distinct trends of significant alterations (Figure 13l), showing 

decreases in 10 nM and 100 nM groups, while an increase was observed with 1 μM treatment. 

This aligns with literature reports of unexpected hydroxyurea interactions that have eluded 

detection by some prediction models. 

 

In conclusion, hydroxyurea exhibits relatively potent embryotoxic effects on cardiac organoids 

with respect to calcium dynamics and motion behaviors, potentially inducing diastolic 

insufficiency and life-threatening cardiac events, with an averaged IC50 value at 896 nM (Table 

1). These results emphasized the complex nature of hydroxyurea's teratogenic potential and 

necessitated further investigation into its mechanisms of action in the context of embryonic 

cardiac development. 
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Doxorubicin 

Doxorubicin, despite its classification as a Category D agent, has been widely recognized as a 

teratogen associated with congenital cardiac malformations.[149] In this study, the majority of 

doxorubicin concentrations proved incompatible with cardiac differentiation, with only an 

extremely limited number of organoids surviving at the lowest concentration of 1 nM. Most 

organoids underwent apoptosis following the initial RPMI/B27-Insulin treatment, indicative of 

doxorubicin's potent cytotoxicity as an antineoplastic agent. Even among the survivors at the 

lowest concentration, many failed to persist through the RPMI recovery phase to the 

differentiation endpoint. Severe morphological aberrations were observed in the sole treatment 

group. Rather than cellular disintegration from the pattern, organoids treated with 1 nM 

doxorubicin exhibited fibrosis-like structures across the pattern, with minimal beating cardiac 

tissue remaining (Figure 14j). A moderately significant reduction in intracellular calcium peak 

intensity was observed, while no significant alterations were noted in signal onset time, time to 

30% and 75% of signal decay, or relative signal intensity variation (Figure 14d through 14i). In 

contrast, an unexpected shortening of t50 was observed in the experimental group (Figure 14e). 

This phenomenon could potentially be attributed to high background noise, suggesting that even 

after background removal, extremely weak calcium tracing may have been obscured by 

photobleaching effects, limiting software detection capabilities.  

 

Doxorubicin exhibited a more potent inhibition of the physiological properties of cardiac 

organoids compared to calcium response, manifesting as a significantly decreased beat rate 

(Figure 14k), reduced motion velocities, and increased motion peak intervals (Figure 14m and 

14n). Notably, the motion tracking software was unable to detect minor relocations of motion 
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vectors due to extremely subtle contractile motion, potentially leading to missed relaxation peaks 

and consequently, longer statistically displayed peak intervals (Figure 14l). 

 

In conclusion, doxorubicin demonstrated greater inhibition of overall cytotoxicity compared to 

specific cardiotoxicity, suggesting that cell viability assays may serve as a more sensitive and 

visible alternative method for evaluating doxorubicin-induced toxicity. However, current data 

points of differentiation inhibition suggest that while an IC50 value has been identified, the lack 

of additional reference concentrations limits a reliable evaluation of the dose-response 

relationship. The calculated IC50 value for doxorubicin (3.08 nM) is insufficient to conclusively 

determine the drug-induced cardiotoxicity due to the limited availability of reference 

concentrations (Table 1). Therefore, the range of concentrations inducing cardiotoxicity should 

be re-evaluated, with 1 nM potentially serving as the upper limit. Future improvements should 

focus on optimizing algorithms to enhance motion vector detection, improving image resolution 

and video recording optics, and implementing selective image analysis techniques. 

 

3.3.5 Category X 

Methotrexate 

Methotrexate, categorized as a Category X agent, is a potent chemotherapeutic with substantial 

evidence of teratogenicity. While typically associated with skeletal, craniofacial, and limb 

abnormalities, cardiac malformations are less frequently reported.[187] This system detected the 

upper limit of methotrexate-induced cardiotoxicity at 10 nM (Figure 15a and 15b), with higher 

concentrations proving lethal after the second RPMI/B27-Insulin treatment, thus confirming its 

potent cytotoxicity as a first-line chemotherapeutic. Unexpectedly, 1nM methotrexate treatment 
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did not induce the anticipated apoptotic response. Despite a significant decrease in the beating 

cardiac tissue area (Figure 15j), organoid patterns under 1 nM treatment remained relatively 

intact, preserving the cardiac beating center. In contrast, the 10 nM group exhibited dramatic 

morphological impairment, presenting only single-layered beating tissue with minimal perimeter 

surrounding with a limited number of organoid patterns remaining.  

 

Significant reduction in calcium maximum intensity was detected only in the 10 nM group, while 

the lower concentration (1 nM) showed no statistical difference from the control group but 

differed significantly from the 10 nM group (Figure 15c). This observation could be attributed to 

the less severe morphological disruption and relatively intact organoids observed under 1nM 

methotrexate treatment. This phenomenon could be further reflected in the unaffected calcium 

onset time with 1nM methotrexate compared to the control group, while a significant increase 

was observed at 10 nM (Figure 15d). Methotrexate treatment induced moderate alterations in 

calcium re-uptake properties. Time to 30% calcium signal decay was significantly affected only 

at 1nM (Figure 15e), while time to 75% calcium decay showed significance at both 

concentrations (Figure 15g). Notably, t50 and calcium peak plateau time remained unaffected 

(Figure 15f and 15i). The relative calcium intensity variation corresponded to the trend observed 

in absolute maximum calcium intensity (Figure 15h), suggesting that 1nM methotrexate exerts 

limited effects on calcium amplitude compared to 10 nM.  

 

Correspondingly, motion tracking software frequently detected peaks with irregularity and 

complexity, suggesting potential arrhythmia-like responses, and was also reflected in the 

prolonged motion peak interval under the same concentration (Figure 15l). Surprisingly, the beat 
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rate of both experimental groups remained unaffected, indicating that the impairment of 

perimeter tissue did not influence the beat rate of the single-layered cardiac tissue present in the 

center of the pattern (Figure 15k), however, with significantly lower contractile motion 

velocities (Figure 15m and 15n).  

 

In conclusion, methotrexate demonstrated visibly strong embryotoxicity through interruption of 

the cardiac differentiation process, with all functional readouts corroborating each other. 

However, the quantification of half-inhibitory effects (Table 1) may be less accurate or reliable 

with only two available treatment concentrations. Therefore, the selection of testing 

concentrations may be re-considered, given the significant variation in functionality observed 

between 1nM and 10 nM treatment groups. 

 

3.4 Summary and Discussion 

The mouse embryonic stem cell test (mEST) stands as one of the prenatal developmental toxicity 

assays validated by the European Centre for the Validation of Alternative Methods (ECVAM). 

Despite not achieving regulatory acceptance, the mEST continues to be employed in industrial 

settings for prescreening and prioritization purposes.[196] Additionally, it serves as a valuable tool 

in toxicological research into the molecular mechanisms of chemical interference with 

embryonic cell differentiation.[197] In the context of this study, we have adopted the mEST as the 

standard against which we evaluate the efficacy of our cardiac organoid model in assessing 

embryotoxicity. 
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In comparison with the inhibition to cardiac differentiation observed in the D3 cell line (ID50) in 

mEST validation study [25] and other EB-based studies using the validated mEST, the four 

chemotherapeutic agents tested in this study demonstrated lower inhibitory concentrations when 

implementing the cardiac organoid model. Thiamine and penicillin, categorized as Class A and B 

for pregnancy risk respectively, exhibited inhibitory concentrations comparable to those 

observed in mEST models,[25,198] with both drugs and testing models displaying inhibition 

profiles exceeding 3 mM. These two substances can be validated as non-embryotoxic, exhibiting 

relatively safe profiles, which aligns with in vivo studies and corresponds to their pregnancy risk 

categories.  

 

Among the chemotherapeutic agents, dacarbazine exhibited toxicity with a mean IC50 of 5.3 

μM, indicating a moderate level of embryotoxicity relative to other anticancer agents. The 

literature and regulatory data regarding dacarbazine's embryotoxicity, as tested by mESC 

models, are extremely scarce. The limited available information indicates that approximately 66 

μM is sufficient to induce mutagenicity in mouse germ cells, resulting in structural defects 

manifesting as heritable chromosomal aberrations.[137] Hydroxyurea demonstrated a mean IC50 

of 21.4 μM in the mEST validation study, contrasting with the 896 nM observed in this study. 

However, in the mEST validation study, hydroxyurea exhibited inconsistent classifications 

across multiple experimental runs. Notably, it was incorrectly categorized as a weakly 

embryotoxic agent with less than 40% probability of accurate prediction, while the probability of 

correct classification as strongly embryotoxic was approximately 60%.[25] A later iPSC-based 

model established alternative criteria for embryotoxicity, categorizing substances as non-



   

 

 65 

embryotoxic, suspected embryotoxic, or embryotoxic. Under these new criteria, hydroxyurea 

remained classified as embryotoxic based on data quoted from the mEST database.[199] 

 

According to the literature of mEST-based studies, doxorubicin exhibits cardiotoxic effects 

within a concentration range of 1 μM to 5 μM.[200–203] Although a standard inhibitory 

concentration was not established in the validation study, doxorubicin is a well-documented 

chemotherapeutic agent with a known toxicity profile, including teratogenic effects. Our data, 

however, indicated an inhibitory concentration of 3.08 nM for doxorubicin treatment. With only 

the lowest concentration sustaining survival throughout the differentiation process, doxorubicin 

may not be compatible with the current cardiac differentiation endpoint at Day 20. Moreover, the 

limited reference concentration constrains the reliability of the data. Methotrexate has been 

consistently classified as strongly embryotoxic, not only in the mEST validation studies but also 

in various in vitro models, and has demonstrated a high risk of teratogenicity in animal 

studies.[25] While the mEST reported an average ID50 of 59 nM, our study revealed a slightly 

lower embryotoxic concentration of 24.3 nM for methotrexate. Despite this lower value, 

methotrexate exhibits the closest estimation to the standard mEST inhibition concentration 

among the chemotherapeutic agents examined.  

 

It is important to note that the reliability of these data may be compromised due to the limited 

reference concentrations available. The comparatively lower inhibitory concentrations observed 

in this study may be attributed to the simplified definition of the final inhibitory concentration, 

which equally weights the IC50 of each parameter. This suggests a need for re-evaluation of the 

relative importance of various parameters contributing to the overall inhibitory effects. For 
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instance, the motion-weighted IC50s were found to be significantly lower than the calcium-

weighted IC50s across all drugs tested. Given the more potent effects observed in motion 

properties compared to calcium handling abilities, it may be appropriate to assign higher 

weighting to motion parameters and lower weighting to calcium parameters. Furthermore, the 

multidimensional evaluation of embryotoxicity employed in this study fundamentally differs 

from the single evaluation of contractility in D3 cell-derived CMs, or the sarcomeric protein 

expression of EB-derived CMs used in the mEST. Additionally, the differentiation endpoint in 

mEST was analyzed on Day 10, representing less mature properties and a shorter drug exposure 

time compared to the Day 20 evaluations in our study. This extended exposure period in our 

model may account for the lower cardiac-inhibitory concentrations observed, as the contractile 

apparatus is likely more disrupted over a longer exposure duration. 

 

In conclusion, the six pharmaceuticals tested using our cardiac organoid model demonstrate 

consistency with their respective pregnancy risk categories, exhibiting a decreasing trend in IC50 

values as the pregnancy risk increases. Thiamine and penicillin can be validated and classified as 

non-embryotoxic, while dacarbazine, hydroxyurea, doxorubicin, and methotrexate can be 

hypothesized as embryotoxic agents. Further validation and investigation into the extent of 

embryotoxicity for these latter compounds is warranted to establish more definitive conclusions. 
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Figure 9. Schematic view of the drug dosing experiment. Drugs are dissolved, sterilized, and 

serial diluted with cell culture media and then dosed starting from Day 0 following the 

differentiation process. Upon the differentiation endpoint (Day 20), videos of beating organoids 

are captured for functional analysis. 
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Figure 10. Functionality readouts of cardiac organoids with thiamine treatment. (a-b) 

Bright-field and GFP fluorescent image of 1mM thiamine-treated cardiac organoid on Day 20. 

(c-i) Calcium flux functionality showed limited variations upon thiamine treatment. (j) Area ratio 

of beating cardiac tissue, no significant change was detected except a modest decrease in the 

1mM group. (k-n) Motion tracking analysis indicates thiamine exhibits minor effects on cardiac 

organoids in terms of motion behaviors 
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Figure 11. Functionality readouts of cardiac organoids with penicillin treatment. (a-b) 

Bright-field and GFP fluorescent images of cardiac organoid treated with 1mM penicillin on Day 

20. (c-i) Calcium flux activities showed relative enhancements upon penicillin treatment, with (c) 

higher calcium signal at higher concentrations and similarly, area ratio (j) and motion behaviors 

(k-n) showed some extent of improvement. 
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Figure 12. Functionality readouts of cardiac organoids with dacarbazine treatment. (a-b) 

Bright-field and GFP fluorescent images of cardiac organoids treated with 10 μM dacarbazine. 

(c-i) Disrupted calcium flux transients post-dacarbazine treatment with significantly decreased 

calcium intensity (c) and prolonged calcium re-uptake (d-i). (j) Reduced area of beating cardiac 

tissue. (k-n) Dacarbazine-induced motion abnormalities and arrhythmia-like responses, including 

(l) prolonged beat duration at the highest concentration and significantly decreased motion 

velocities across all concentrations. 
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Figure 13. Functionality readouts of cardiac organoids with hydroxyurea treatment. (a-b) 

Bright-field and GFP fluorescent images with 100 μM hydroxyurea treatment on Day 20. 

Hydroxyurea exhibits relatively potent embryotoxic effects on cardiac organoids with respect to 

calcium dynamics (c-i), tissue morphology (j), and motion behaviors (k-n). Disrupted calcium 

transients manifest significantly as reduced calcium intensities (c and h), prolonged onset time 

and signal decay time (d-g), and peak plateau time (j) in higher concentrations. Significant 

motion behavior inhibitory effects include reduced beat rate (k), altered time interval (l), and 
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decreased contraction and relaxation velocities (m-n) with the potential of inducing diastolic 

insufficiency.  
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Figure 14. Functionality readouts of cardiac organoids with doxorubicin treatment. (a-b) 

Bright-field and GFP fluorescent images with 1 nM doxorubicin treatment on Day 20. (c-n) 

Doxorubicin inhibits overall cytotoxicity compared to specific cardiotoxicity in terms of 

differentiation. Limited data points suggest the doxorubicin-induced potent cardiotoxicity 

regarding calcium transients (c-i), cardiac tissue morphology (j), and motion properties (k-n).  
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Figure 15. Functionality readouts of cardiac organoids with methotrexate treatment. (a-b) 

Bright-field and GFP fluorescent images with 10 nM methotrexate treatment on Day 20. (c-n) 

Limited dataset of methotrexate-induced interruption of the cardiac differentiation process, 

including significantly reduced calcium tracing (c-i), impaired cardiac tissue area (j), and 

irregular and complex contractile motions (m-n) suggesting arrhythmia-like responses. 
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Figure 16. Dose-response curve of relative fluorescence intensity (df/f0) with dacarbazine 

treatment. The four-parameter logistic curve is fitted with y value of maximal drug response, 

half-inhibited response (IC50), maximally inhibited response, and Hill’s slope. IC50 is the 

concentration of drug that gives a response to cardiac organoids halfway between the top and 

bottom plateaus, indicating the concentration of inducing cardiotoxicity. 
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Table 1. IC50 (nM) of functional readouts for each testing compound. 
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4 CHAPTER 4 CONCLUSION AND FUTURE WORK 

 

4.1 Conclusions 

This study explores the development of engineered cardiac organoids as an innovative tool for 

modeling embryonic cardiac development and characterizing cardiac physiology, with a 

particular focus on enhancing diagnostic capabilities for chemotherapy-induced cardiotoxicity. 

The well-defined three-dimensional cardiac organoid architecture, which closely mimics the 

human physiological environment, is envisioned to serve as a pre-validation model for 

cardiotoxicity assessment in the early stages of assay development.  

 

In Chapter 2, the study illustrates the methodology for generating biomaterial-based 

micropatterned cardiac organoids utilizing established protocols. This approach employs 

engineering-inspired techniques to guide self-organization through defined initial cellular density 

and spatial geometry. Methodological optimization was predicated on achieving control over the 

geometry of three-dimensional tissues by directly stamping micropatterns into a PEG-based 

hydrogel, with a focus on geometric shape and size as critical parameters guiding spatial cardiac 

differentiation into robust cardiac tissue.[204] The 600 μm circular geometry with low seeding 

density was identified as the optimized model, providing the largest area of cardiac tissue and 

highest motion velocities, indicative of higher cardiac differentiation efficiency compared to 

alternative shapes or sizes. By directing iPSC self-patterning through activation of the WNT 

pathway, cells are induced towards a mesoderm lineage and undergo self-migration to form an 

annulus shape characterized by a dense perimeter and dispersed center. At the differentiation 

endpoint, cardiac microchambers emerge in the center, surrounded by myofibroblasts at the 
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pattern periphery.[90]This phenomenon elucidates how the control of spatial boundary conditions 

through micropatterning illuminates fundamental mechanisms regulating stem cell 

differentiation. The application of a semi-automated imaging analysis with GCaMP-engineered 

iPSC reporter lines has replaced the traditional electrophysiological characterization methods for 

cardiac tissue, eliminating the need for stimulation and calcium dyes. This non-invasive 

approach is applicable to cardiomyocytes in various culture formats with minimal additional 

expertise required.[97]  

 

Chapter 3 employs the optimized cardiac organoid model as a toxicity screening assay, precisely 

characterizing the embryotoxic potential of six pharmaceuticals through functional readouts, 

including parameters related to physiological kinetics and tissue morphology. From the 

perspective of assay development, this study can be considered as the method pre-validation 

phase, with results potentially serving as a compound training set and coded pharmaceuticals for 

subsequent assay development utilizing biostatistical models for predicting developmental 

toxicity. Given its capacity to recapitulate the human developmental and physiological 

environment, this three-dimensional cardiac organoid assay holds promise for high-throughput 

applications and potential replacement of traditional two-dimensional cell models in preclinical 

drug safety screening by enhancing data accuracy, efficiency, and reliability. Furthermore, the 

assay may provide evidence-based guidelines for healthcare professionals in conducting risk 

assessments and managing existing antineoplastic therapies in pregnant individuals. 

 

The cardiac differentiation endpoint of this methodology is limited to Day 20, preceding 

epicardium formation, which indicates the inability of patterned cardiac organoids to achieve 
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further maturation due to geometrical constraints and insufficient cell population complexity. 

Indeed, the current cardiac organoid models lack several critical aspects of the human heart, 

including perfused vascularization, valves, and outflow tract. 

 

Although chamber formation is observed, left-right asymmetry, conductance properties, and 

chamber delineation remain poorly defined, albeit present to some extent in this study. 

Furthermore, other significant cell populations, such as resident immune cells and neural crest 

contributions to innervation, are absent.[205] More importantly, this model primarily reflects 

embryonic or fetal cardiac development, lacking fidelity when compared to the adult human 

heart. This disparity is particularly significant given that adult-derived cardiac tissue is more 

structurally and functionally defined than fetal cardiac tissue. An additional constraint of the 

patterned organoids is their limited utility as "building blocks" for constructing larger engineered 

heart tissue (EHT) constructs. The firm attachment of organoids to the etched PEG gel on the 

solid substrate impedes the dissociation of intact organoid patterns for cryopreservation, thus 

compromising the reproducibility of the patterned structure. Consequently, this organoid 

construct is primarily suitable for recapitulating embryonic heart chamber development prior to 

the initiation of cardiac looping. 

 

Notwithstanding these limitations, the immature, fetal-like microchambers offer valuable insights 

into studying early cardiac development and provide a promising platform for embryonic 

toxicological assessments. This applicability stems from the less differentiated nature of fetal 

cardiac tissue compared to adult cardiac tissue, potentially offering a more sensitive platform for 

detecting developmental perturbations induced by various compounds. 
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4.2 Future Improvement 

In the context of developing a comprehensive toxicity assay for the successful implementation of 

a standardized human iPSC-based in vitro model, future methodological optimizations and the 

establishment of computational prediction models are imperative. For example, the development 

of a standardized protocol for imaging processing and camera optics optimization should be 

considered. This is crucial as the image-based algorithm's efficacy is highly dependent on the 

resolution achieved through optical flow. Parameter optimization should not only focus on 

ensuring high-quality videos for analytical accuracy but also consider video storage efficiency. 

Furthermore, diverse characterization scopes with advanced analytical techniques are necessary 

for in-depth toxicity evaluation across various aspects. The current assay involves multiple 

dosing of test compounds throughout the cardiac differentiation timeline from Day 0. To enhance 

reliability, it would be prudent to conduct exposure-based evaluations with multiple 

differentiation endpoints. For instance, since the addition of IWP4 (Day 2) is a critical step in 

observing a wide range of cell apoptosis, cytotoxicity assays could be performed around Day 4 

prior to cardiac differentiation functionality assays. This approach is particularly relevant for 

agents demonstrating higher inhibition of organoid cell viability compared to cardiac 

differentiation inhibition, such as doxorubicin, in this study. Selecting appropriate compound 

concentrations can mitigate cytotoxicity-induced effects on differentiation readouts and provide a 

reliable range for subsequent concentration selections. However, cell death masked by dense 

viable cells may be challenging to detect within patterned organoids using direct Live/Dead 

staining. Consequently, luminescent staining of fine-lysed organoids may be offered as an 

alternative. Compound concentrations exhibiting cytotoxicity should be excluded from 

subsequent differentiation assays. 
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Additional electrophysiological evaluations, such as intracellular action potential measurements 

of cardiac tissue, can be implemented using automated fluorescence imaging analysis with 

membrane potential dyes. In conjunction with calcium flux tracing, this approach can further 

elucidate drug-induced cardiac repolarization-related responses. Moreover, flow cytometry-based 

measurements can serve as an alternative method for confirming differentiation efficiency by 

quantifying the expression of genes encoding cardiac differentiation markers, including MHC 

(myosin heavy chain), α-actinin (structural protein of sarcomere), and cTnT (cardiac troponin T). 

This technique could also be employed to investigate markers of signal transduction pathways 

regulating cardiac development, which have similar principles that apply to transcriptional 

analysis. Additionally, advanced techniques such as single-cell RNA sequencing or proteomics 

would complement the overall understanding of physiological pathways in this system beyond 

morphogenic effects. These high-throughput approaches would provide a more comprehensive 

molecular profile of the cardiac organoids, potentially revealing subtle drug-induced alterations 

in gene expression or protein abundance that may not be apparent through conventional assays. 

 

The optimized organoid constructs have demonstrated their capacity to recapitulate in vivo 

developing heart characteristics and have exhibited sensitivity to drug exposure, with toxicity 

manifesting as unique impairments specific to each drug. These cardiac constructs show promise 

in classifying developmental toxicity and identifying cellular developmental processes targeted 

by drugs, potentially evolving into a proof-of-concept toxicity assay for preclinical screening 

practices. To ensure data integrity and reliability for preclinical practices, rigorous control of the 

quality differentiation testing system is imperative. The current assay employed only solvent 
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control, represented by culture media with 0.1% DMSO substituting for test compounds. Future 

iterations should incorporate positive-reference chemicals, such as 5-FU or methotrexate (as 

validated in this study), and negative controls, like penicillin, known to have no adverse effects 

on reproduction or differentiation. Moreover, the development of biostatistical models 

incorporating machine learning algorithms coupled with functional readouts is essential for 

predicting and classifying drug-induced embryotoxicity. The classification of embryotoxic 

effects can be further refined using a scoring system, ranking compounds as non-embryotoxic, 

weakly embryotoxic, or strongly embryotoxic. This approach could provide insights beyond the 

current IC50 estimation based on single parameters, evaluating the weighted importance of 

various factors contributing to induced toxicity. Additionally, the readouts from this study can 

serve as an initial validation set for future training of predictive learning models, necessitating 

further data collection to cover a broader chemical space. 

 

In the early stages of pharmaceutical development, as exemplified in this study, assay 

concentrations are compared with effective pharmacological concentrations determined in cell-

based assays or animal models. To develop a therapeutic exposure-based toxicity assay, the 

relationship between in vitro assay concentration and in vivo plasma exposure (Cmax) must be 

established. As pharmaceutical development progresses, the predictive power of the assay for 

selected candidates can be optimized by incorporating actual human exposure data into the 

machine-learning prediction model. However, challenges remain in qualifying in vitro human-

based data for regulatory safety testing. The scarcity of teratogens with sufficient human data 

makes it difficult to demonstrate the superiority of human-based tests over rodent-based in vivo 

tests. Moreover, the results of metabolism-independent testing systems may be less reliable for 
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drugs that serve as metabolites in vivo, such as dacarbazine, in this study. Therefore, cross-

validation of this model with in vitro and in vivo study data requires further exploration. 

The primary limitation of most in vitro assays for human-based teratogenicity is their inability to 

specify the mechanism of drug-induced toxicity – whether the drug crosses the placenta and acts 

directly on its molecular target in the fetus, or acts directly on the uterus and/or placenta.[206] To 

address this, the in vitro model would benefit from biostatistical characterization of effective 

intracellular concentrations combined with data on active metabolism or trans-placental barrier 

transfer. This approach would provide a more comprehensive explanation of compound 

distribution within the test system, enhancing our understanding of drug-induced developmental 

toxicity mechanisms. 

 

In conclusion, while the optimized cardiac organoid model shows promise for developmental 

toxicity screening, further refinements in methodology, data analysis, and integration with 

complementary approaches are necessary to enhance its predictive power and regulatory 

acceptance. 
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